=) DPDK

DATA PLANE DEVELOPMENT KIT

Crypto Device Drivers
Release 16.04.0

April 12, 2016

Crypto Device Supported Functionality Matrices

AESN-NI Multi Buffer Crytpo Poll Mode Driver

2.1 Features
2.2 Limitations
2.3 Installation
2.4 Initialization.

AES-NI GCM Crypto Poll Mode Driver

3.1 Features
3.2 Initialization.
3.3 Limitations

Null Crypto Poll Mode Driver

41 Features e e e
4.2 Limitations
4.3 Installation
4.4 Initialization.

SNOW 3G Crypto Poll Mode Driver

5.1 Features
5.2 Limitations
5.3 Installation
5.4 Initialization.

Quick Assist Crypto Poll Mode Driver

6.1 Features
6.2 Limitations oL
6.3 Installation oL
6.4 Installation using 01.org QAT driver
6.5 Installation using kernel.orgdriver

6.6 Binding the available VFs to the DPDK UIO driver

CONTENTS

CHAPTER

ONE

CRYPTO DEVICE SUPPORTED FUNCTIONALITY MATRICES

Supported Feature Flags

Feature Flags gat | null | aesni_mb| aesni_gcm snow3g
RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTQ x X
RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO
RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING X X X
RTE_CRYPTODEV_FF_CPU_SSE X X X
RTE_CRYPTODEV_FF_CPU_AVX X X X
RTE_CRYPTODEV_FF_CPU_AVX2 X X
RTE_CRYPTODEV_FF_CPU_AESNI X X
RTE_CRYPTODEV_FF_HW_ACCELERATED | x

Supported Cipher Algorithms

Cipher Algorithms | qat | null | aesni_mb | aesni_gcm | snow3g

NULL X

AES CBC 128 X X

AES _CBC 192 X X

AES CBC 256 X X

AES _CTR_128

AES_CTR_192

AES_CTR_256

SNOW3G_UEA2

X

Supported Authentication Algorithms

Crypto Device Drivers, Release 16.04.0

Cipher Algorithms | gat | null | aesni_mb | aesni_gcm | snow3g
NONE X

MD5

MD5_HMAC X

SHA1

SHA1_HMAC X X

SHA224

SHA224 HMAC X

SHA256

SHA256_HMAC X X

SHA384

SHA384_HMAC X

SHA512

SHA512_HMAC X X

AES XCBC X X

SNOW3G_UIA2 X X

Supported AEAD Algorithms

AEAD Algorithms | gat | null | aesni_mb | aesni_gcm | snow3g

AES GCM_128 X X

AES_GCM_192 X

AES_GCM_256 X

CHAPTER
TWO

AESN-NI MULTI BUFFER CRYTPO POLL MODE DRIVER

The AESNI MB PMD (librte_pmd_aesni_mb) provides poll mode crypto driver support for
utilizing Intel multi buffer library, see the white paper Fast Multi-buffer [Psec Implementations
on Intel® Architecture Processors.

The AES-NI MB PMD has current only been tested on Fedora 21 64-bit with gcc.

2.1 Features

AESNI MB PMD has support for:
Cipher algorithms:
+ RTE_CRYPTO_SYM_CIPHER_AES128_CBC
« RTE_CRYPTO_SYM_CIPHER_AES256_CBC
« RTE_CRYPTO_SYM_CIPHER_AES512_CBC
Hash algorithms:
« RTE_CRYPTO_SYM_HASH_SHA1_HMAC
« RTE_CRYPTO_SYM_HASH_SHA256_HMAC
+ RTE_CRYPTO_SYM_HASH_SHA512_HMAC

2.2 Limitations

+ Chained mbufs are not supported.

» Hash only is not supported.

 Cipher only is not supported.

* Only in-place is currently supported (destination address is the same as source address).

* Only supports session-oriented API implementation (session-less APIs are not sup-
ported).

+ Not performance tuned.

https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-paper.html?wapkw=multi+buffer
https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-paper.html?wapkw=multi+buffer

Crypto Device Drivers, Release 16.04.0

2.3 Installation

To build DPDK with the AESNI_MB_PMD the user is required to download the mult- buffer
library from here and compile it on their user system before building DPDK. When building
the multi-buffer library it is necessary to have YASM package installed and also requires the
overriding of YASM path when building, as a path is hard coded in the Makefile of the release
package.

make YASM=/usr/bin/yasm

2.4 Initialization

In order to enable this virtual crypto PMD, user must:

» Export the environmental variable AESNI_MULTI_BUFFER_LIB_PATH with the path
where the library was extracted.

+ Build the multi buffer library (explained in Installation section).

+ Set CONFIG_RTE_LIBRTE_PMD_AESNI_MB-=y in config/common_base.
To use the PMD in an application, user must:

» Call rte_eal_vdev_init(“cryptodev_aesni_mb_pmd”) within the application.

* Use -—vdev="cryptodev_aesni_mb_pmd” in the EAL options, which will call
rte_eal_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

+ socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running
on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by
default).

* max_nb_sessions: Specify the maximum number of sessions that can be created (2048
by default).

Example:

./12fwd-crypto —-c 40 -n 4 —--vdev="cryptodev_aesni_mb_pmd, socket_id=1,max_nb_sessions=128"

2.3. Installation 4

https://downloadcenter.intel.com/download/22972

CHAPTER
THREE

AES-NI GCM CRYPTO POLL MODE DRIVER

The AES-NI GCM PMD (librte_pmd_aesni_gcm) provides poll mode crypto driver support
for utilizing Intel multi buffer library (see AES-NI Multi-buffer PMD documentation to learn more
about it, including installation).

The AES-NI GCM PMD has current only been tested on Fedora 21 64-bit with gcc.

3.1 Features

AESNI GCM PMD has support for:
Cipher algorithms:

+ RTE_CRYPTO_CIPHER_AES_GCM
Authentication algorithms:

+ RTE_CRYPTO_AUTH_AES_GCM

3.2 Initialization

In order to enable this virtual crypto PMD, user must:

» Export the environmental variable AESNI_MULTI_BUFFER_LIB_PATH with the path
where the library was extracted.

* Build the multi buffer library (go to Installation section in AES-NI MB PMD documenta-
tion).

+ Set CONFIG_RTE_LIBRTE_PMD_AESNI_GCM=y in config/common_base.
To use the PMD in an application, user must:
» Call rte_eal_vdev_init(“cryptodev_aesni_gcm_pmd”) within the application.

* Use -vdev="cryptodev_aesni_gcm_pmd” in the EAL options, which will call
rte_eal_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

» socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running
on).

Crypto Device Drivers, Release 16.04.0

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by

default).
* max_nb_sessions: Specify the maximum number of sessions that can be created (2048
by default).
Example:
./12fwd-crypto —-c 40 -n 4 —--vdev="cryptodev_aesni_gcm_pmd, socket_id=1,max_nb_sessions=128"

3.3 Limitations

Chained mbufs are not supported.

Hash only is not supported.

Cipher only is not supported.

Only in-place is currently supported (destination address is the same as source address).

* Only supports session-oriented APl implementation (session-less APIs are not sup-
ported).

Not performance tuned.

3.3. Limitations 6

CHAPTER
FOUR

NULL CRYPTO POLL MODE DRIVER

The Null Crypto PMD (librte_pmd_null_crypto) provides a crypto poll mode driver which
provides a minimal implementation for a software crypto device. As a null device it does not
modify the data in the mbuf on which the crypto operation is to operate and it only has support
for a single cipher and authentication algorithm.

When a burst of mbufs is submitted to a Null Crypto PMD for processing then each mbuf in the
burst will be enqueued in an internal buffer for collection on a dequeue call as long as the mbuf
has a valid rte_mbuf_offload operation with a valid rte_cryptodev_session or rte_crypto_xform
chain of operations.

4.1 Features

Modes:
« RTE_CRYPTO_XFORM_CIPHER ONLY
« RTE_CRYPTO_XFORM_AUTH ONLY
« RTE_CRYPTO_XFORM_CIPHER THEN RTE_CRYPTO_XFORM_AUTH
« RTE_CRYPTO_XFORM_AUTH THEN RTE_CRYPTO_XFORM_CIPHER
Cipher algorithms:
« RTE_CRYPTO_CIPHER_NULL
Authentication algorithms:
« RTE_CRYPTO_AUTH_NULL

4.2 Limitations

* Only in-place is currently supported (destination address is the same as source address).

4.3 Installation

The Null Crypto PMD is enabled and built by default in both the Linux and FreeBSD builds.

Crypto Device Drivers, Release 16.04.0

4.4 Initialization

To use the PMD in an application, user must:
+ Call rte_eal_vdev_init(“cryptodev_null_pmd”) within the application.

» Use —vdev="cryptodev_null_pmd” in the EAL options, which will call rte_eal_vdev_init()
internally.

The following parameters (all optional) can be provided in the previous two calls:

+ socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running
on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by
default).

» max_nb_sessions: Specify the maximum number of sessions that can be created (2048
by default).

Example:

./12fwd-crypto -c 40 -n 4 —--vdev="cryptodev_null_pmd, socket_id=1,max_nb_sessions=128"

4.4. Initialization 8

CHAPTER
FIVE

SNOW 3G CRYPTO POLL MODE DRIVER

The SNOW 3G PMD (librte_pmd_snow3g) provides poll mode crypto driver support for utiliz-
ing Intel Libsso library, which implements F8 and F9 functions for SNOW 3G UEA2 cipher and
UIA2 hash algorithms.

5.1 Features

SNOW 3G PMD has support for:
Cipher algorithm:

« RTE_CRYPTO_SYM_CIPHER_SNOW3G_UEA?2
Authentication algorithm:

« RTE_CRYPTO_SYM_AUTH_SNOWS3G_UIA2

5.2 Limitations

» Chained mbufs are not supported.
+ Snow3g(UEA2) supported only if cipher length, cipher offset fields are byte-aligned.
» Snow3g(UIA2) supported only if hash length, hash offset fields are byte-aligned.

5.3 Installation

To build DPDK with the SNOW3G_PMD the user is required to download the export
controlled 1ibsso library, by requesting it from https:/networkbuilders.intel.com/network-
technologies/dpdk, and compiling it on their system before building DPDK:

make —f Makefile_snow3g

Note: If using a gcc version higher than 5.0, and compilation fails, apply the following patch:

/libsso/src/snow3g/sso_snow3g.c

static inline void ClockFSM_4 (sso_snow3gKeyStated_t *pCtx, _ _ml28i xdata)
{
_ ml28i F, R;
uint32_t K, L;
+ uint32_t K;
+ /+ Declare unused i1if SNOW3G_WSM/SNB are defined x/

https://networkbuilders.intel.com/network-technologies/dpdk
https://networkbuilders.intel.com/network-technologies/dpdk

Crypto Device Drivers, Release 16.04.0

+ uint32_t L _ attribute_ ((unused)) = 0;
F = _mm_add_epi32 (pCtx—->LFSR_X[15], pCtx—->FSM_X[0]);
R = _mm_xor_si128 (pCtx->LFSR_X[5], pCtx->FSM_X[2]);

/libsso/include/sso_snow3g_internal.h

—inline void ClockFSM_1 (sso_snow3gKeyStatel t *pCtx, uint32_t =xdata);

—inline void ClockLFSR_1 (sso_snow3gKeyStatel_t *pCtx);

—inline void sso_snow3gStateInitialize_1 (sso_snow3gKeyStatel_t * pCtx, sso_snow3g_key_schedule_
+void ClockFSM_1 (sso_snow3gKeyStatel_t *xpCtx, uint32_t =xdata);

+void ClockLFSR_1 (sso_snow3gKeyStatel_t xpCtx);

+void sso_snow3gStateInitialize_1 (sso_snow3gKeyStatel_ t x pCtx, sso_snow3g_key_schedule_t xpKey

5.4 Initialization

In order to enable this virtual crypto PMD, user must:

» Export the environmental variable LIBSSO_PATH with the path where the library was
extracted.

+ Build the LIBSSO library (explained in Installation section).

+ Set CONFIG_RTE_LIBRTE_PMD_SNOW3G=y in config/common_base.
To use the PMD in an application, user must:

» Call rte_eal_vdev_init(“cryptodev_snow3g_pmd”) within the application.

* Use —vdev="cryptodev_snow3g_pmd” in the EAL options, which will call
rte_eal_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

» socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running
on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by
default).

* max_nb_sessions: Specify the maximum number of sessions that can be created (2048
by default).

Example:

./12fwd-crypto —-c 40 -n 4 —--vdev="cryptodev_snow3g_pmd, socket_id=1,max_nb_sessions=128"

5.4. Initialization 10

CHAPTER
SIX

QUICK ASSIST CRYPTO POLL MODE DRIVER

The QAT PMD provides poll mode crypto driver support for Intel QuickAssist Technology
DH895xxC hardware accelerator.

6.1

Features

The QAT PMD has support for:

Cipher algorithms:

RTE_CRYPTO_SYM_CIPHER_AES128_CBC
RTE_CRYPTO_SYM_CIPHER_AES192_CBC
RTE_CRYPTO_SYM_CIPHER_AES256_CBC
RTE_CRYPTO_SYM_CIPHER_SNOW3G_UEA2

RTE_CRYPTO_CIPHER_AES_GCM

Hash algorithms:

6.2

RTE_CRYPTO_AUTH_SHA1l_HMAC
RTE_CRYPTO_AUTH_SHA256_HMAC
RTE_CRYPTO_AUTH_SHA512_HMAC
RTE_CRYPTO_AUTH_AES_XCBC_MAC

RTE_CRYPTO_AUTH SNOW3G_UIA2

Limitations

Chained mbufs are not supported.

Hash only is not supported except Snow3G UIA2.
Cipher only is not supported except Snow3G UEA2.

Only supports the session-oriented API implementation (session-less APIs are not sup-

ported).

Not performance tuned.

Snow3g(UEA2) supported only if cipher length, cipher offset fields are byte-aligned.

11

Crypto Device Drivers, Release 16.04.0

» Snow3g(UIA2) supported only if hash length, hash offset fields are byte-aligned.
» No BSD support as BSD QAT kernel driver not available.

6.3 Installation

To use the DPDK QAT PMD an SRIOV-enabled QAT kernel driver is required. The VF devices
exposed by this driver will be used by QAT PMD.

If you are running on kernel 4.4 or greater, see instructions for Installation using kernel.org
driver below. If you are on a kernel earlier than 4.4, see Installation using 01.org QAT driver.

6.4 Installation using 01.org QAT driver

Download the latest QuickAssist Technology Driver from 01.org Consult the Getting Started
Guide at the same URL for further information.

The steps below assume you are:
* Building on a platform with one DH895xCC device.
» Using package gatmux.1.2.3.0-34.tgz.
* On Fedora21 kernel 3.17.4-301.fc21.x86_64.
In the BIOS ensure that SRIOV is enabled and VT-d is disabled.
Uninstall any existing QAT driver, for example by running:
* ./installer.sh uninstall in the directory where originally installed.
* Or rmmod gat_dh895xcc; rmmod intel_gat.
Build and install the SRIOV-enabled QAT driver:

mkdir /QAT

cd /QAT

copy gatmux.1.2.3.0-34.tgz to this location
tar zxof gatmux.1.2.3.0-34.tgz

export ICP_WITHOUT_IOMMU=1
./installer.sh install QAT1.6 host

You can use cat /proc/icp_dh895xcc_dev0/version to confirm the driver is correctly
installed. You can use 1spci —-d:443 to confirm the bdf of the 32 VF devices are available
per DH895xCC device.

To complete the installation - follow instructions in Binding the available VFs to the DPDK UIO
driver.

Note: If using a later kernel and the build fails with an error relating to strict_stroul not
being available apply the following patch:

/QAT/QAT1.6/quickassist/utilities/downloader/Target_CorelLibs/uclo/include/linux/uclo_platform.r
+ #if LINUX_VERSION_CODE >= KERNEL_VERSION (3,18,5)

+ #define STR_TO_64 (str, base, num, endPtr) {endPtr=NULL; if (kstrtoul((str), (base), (num))) t
+ #else

#if LINUX_VERSION_CODE >= KERNEL_VERSION (2, 6,38)

#define STR_TO_64 (str, base, num, endPtr) {endPtr=NULL; if (strict_strtoull((str), (base), (nun

6.3. Installation 12

https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches

Crypto Device Drivers, Release 16.04.0

#else
#if LINUX_VERSION_CODE >= KERNEL_VERSION (2, 6,25)
#define STR_TO_64 (str, base, num, endPtr) {endPtr=NULL; strict_strtoll((str), (base),
#else
#define STR_TO_64 (str, base, num, endPtr) \
do { \
if (str[0] == '-") \
{ \
% (num) = —(simple_strtoull ((str+l), &(endPtr), (base))); \
}else { \
* (num) = simple_strtoull ((str), & (endPtr), (base)); \
} \
} while (0)
+ #endif
#endif
#endif

If the build fails due to missing header files you may need to do following:
* sudo yum install zlib-devel
* sudo yum install openssl-devel

If the build or install fails due to mismatching kernel sources you may need to do the following:
* sudo yum install kernel-headers-‘uname -r‘'

* sudo yum install kernel-src-‘uname -r‘'

* sudo yum install kernel-devel-‘uname -r‘

6.5 Installation using kernel.org driver

Assuming you are running on at least a 4.4 kernel, you can use the stock kernel.org QAT driver
to start the QAT hardware.

The steps below assume you are:
* Running DPDK on a platform with one DH8 95xCC device.
» On a kernel at least version 4.4.

In BIOS ensure that SRIOV is enabled and VT-d is disabled.

Ensure the QAT driver is loaded on your system, by executing:
lsmod | grep gat

You should see the following output:

gat_dh895xcc 5626 0
intel_gat 82336 1 gat_dh895xcc

Next, you need to expose the VFs using the sysfs file system.
First find the bdf of the DH895xCC device:

lspci -d : 435
You should see output similar to:

03:00.0 Co-processor: Intel Corporation Coleto Creek PCIe Endpoint

Using the sysfs, enable the VFs:

6.5. Installation using kernel.org driver 13

(num)) ; }

Crypto Device Drivers, Release 16.04.0

echo 32 > /sys/bus/pci/drivers/dh895xcc/0000\:03\:00.0/sriov_numvfs
If you get an error, it’s likely you're using a QAT kernel driver earlier than kernel 4.4.

To verify that the VFs are available for use - use 1spci -d:443 to confirm the bdf of the 32
VF devices are available per DH895xCC device.

To complete the installation - follow instructions in Binding the available VFs to the DPDK UIO
driver.

Note: If the QAT kernel modules are not loaded and you see an error like Failed to
load MMP firmware gat_895xcc_mmp.bin this may be as a result of not using a
distribution, but just updating the kernel directly.

Download firmware from the kernel firmware repo at: http:/git.kernel.org/cgit/linux/kernel/git/firmware/linux-
firmware.git/tree/

*

Copy qat binaries to /lib/firmware: cp gat_895xcc.bin /lib/firmware * cp
gat_895xcc_mmp.bin /lib/firmware

*

cd to your linux source root directory and start the qgat kernel modules:
insmod ./drivers/crypto/gat/gat_common/intel_gat.ko * insmod
./drivers/crypto/qgat/gat_dh895xcc/gat_dh895xcc.ko

Note:The following warning in /var/log/messages can be ignored: T10MMU should be
enabled for SR-IOV to work correctly

6.6 Binding the available VFs to the DPDK UIO driver

The unbind command below assumes bdfs of 03:01.00-03:04.07, if yours are different
adjust the unbind command below:

cd SRTE_SDK
modprobe uio
insmod ./build/kmod/igb_uio.ko

for device in $(seq 1 4); do \
for fn in $(seq 0 7); do \
echo —n 0000:03:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:03\:0${device}.${fn}/driver/unbind; \
done; \
done

echo "8086 0443" > /sys/bus/pci/drivers/igb_uio/new_id

You can use 1spci -vvd:443 to confirm that all devices are now in use by igb_uio kernel
driver.

6.6. Binding the available VFs to the DPDK UIO driver 14

http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git/tree/
http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git/tree/

	Crypto Device Supported Functionality Matrices
	AESN-NI Multi Buffer Crytpo Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization

	AES-NI GCM Crypto Poll Mode Driver
	Features
	Initialization
	Limitations

	Null Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization

	SNOW 3G Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization

	Quick Assist Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Installation using 01.org QAT driver
	Installation using kernel.org driver
	Binding the available VFs to the DPDK UIO driver

