=) DPDK

DATA PLANE DEVELOPMENT KIT

Crypto Device Drivers
Release 17.08.2

April 23, 2018

Crypto Device Supported Functionality Matrices

1.1 Supported FeatureFlags
1.2 Supported Cipher Algorithms
1.3 Supported Authentication Algorithms
1.4 Supported AEAD Algorithms
AESN-NI Multi Buffer Crypto Poll Mode Driver

21 Features
2.2 Limitations
2.3 Installationo oo oL
2.4 nitialization.
25 Extranotes,

AES-NI GCM Crypto Poll Mode Driver

3.1 Features
3.2 Limitationso
3.3 Installation
3.4 Initialization.

ARMv8 Crypto Poll Mode Driver

41 Features
4.2 Installation
4.3 Initialization. L o
4.4 Limitations

NXP DPAA2 CAAM (DPAA2_SEC)

5.1 Architecture o
5.2 Implementation
583 Features
5.4 Supported DPAA2SoCs
55 Limitations L L
56 Prerequisites
5.7 Pre-Installation Configuration
5.8 Installations L.

KASUMI Crypto Poll Mode Driver

6.1 Features
6.2 Limitationso
6.3 Installation
6.4 Initialization.

CONTENTS

6.5 Extranoteson KASUMIFO

7 OpenSSL Crypto Poll Mode Driver

7.1 Features e e e e
7.2 Installation e
7.3 Initialization. e
7.4 Limitations e

8 Null Crypto Poll Mode Driver

8.1 Features e e e e e e e
8.2 Limitations e e e e e e e
8.3 Installation e e e
8.4 Initialization. L e e e e

9 Cryptodev Scheduler Poll Mode Driver Library
9.1 Limitations e
9.2 Installation e
9.3 Initialization. e e
9.4 Cryptodev Scheduler Modes Overview

10 SNOW 3G Crypto Poll Mode Driver
10.1 Features e e e e e
10.2 Limitations e e
10.3 Installation e
10.4 Initialization. e

11 Intel(R) QuickAssist (QAT) Crypto Poll Mode Driver
11.1 Features
11.2 Limitations
11.3 Installation
11.4 Installation using kernel.orgdriver oo
11.5 Installation using 01.org QAT driver
11.6 Binding the available VFs to the DPDK UIOdriver
11.7 Extranoteson KASUMIFO

12 ZUC Crypto Poll Mode Driver
12.1 Features e e e e e e
12.2 Limitations e e e e
12.3 Installation e
12.4 Initialization. e e e e

CHAPTER
ONE

CRYPTO DEVICE SUPPORTED FUNCTIONALITY MATRICES

1.1 Supported Feature Flags

Table 1.1: Features availability in crypto drivers

Feature aesni |aesn |ar dpaa |kas |n ope |gq |snho
_gcm |i_mb |mv |[2_se umi |ul [nssl |at|w3g
8 c I

<o N

Symmetric | Y Y Y Y Y Y Y Y |Y
crypto

Asymmet-
ric
crypto

Sym Y Y Y Y Y Y |Y Y |Y Y
operation
chaining

HW Accel- Y Y
erated

CPU SSE

CPU AVX

<[<[=<

CPU AVX2

<| <[<|<

CPU
AVX512

CPU Y
AESNI

<

CPU Y
NEON

CPU ARM Y
CE

Crypto Device Drivers, Release 17.08.2

1.2 Supported Cipher Algorithms

Table 1.2: Cipher algorithms in crypto drivers

Cipher aesni [aesn |ar dpaa kas |[nu|ope |q |snho |z
algoritihm | _gecm |i_mb |mv |2 sec|umi |II nssl |at|w3g
8 c
NULL Y Y
AES Y Y Y Y Y
CBC
(128)
AES Y Y Y Y
CBC
(192)
AES Y Y Y Y
CBC
(256)
AES Y Y Y Y
CTR
(128)
AES Y Y Y Y
CTR
(192)
AES Y Y Y Y
CTR
(256)
AES Y Y
DOCSIS
BPI

3DES Y Y Y
CBC
3DES Y Y
CTR
DES Y
CBC
DES Y Y
DOCSIS
BPI

SNOW3G Y |Y
UEA2
KASUMI Y Y
F8
ZUC Y Y
EEAS3

[

1.2. Supported Cipher Algorithms 2

Crypto Device Drivers, Release 17.08.2

1.3 Supported Authentication Algorithms

Table 1.3: Authentication algorithms in crypto drivers

Authentica- |aesni |aesn |ar dpaa |kas |n ope |q |sno |z
tion _gcm |i_mb |mv |[2_se umi |ul |nssl|jat|w3g |u
algorithm 8 c I c
NULL Y Y

MD5 Y

MD5 HMAC Y Y Y Y

SHA1 Y

SHA1 Y Y Y Y Y

HMAC

SHA224 Y

SHA224 Y Y Y Y

HMAC

SHA256 Y

SHA256 Y Y Y Y Y

HMAC

SHA384 Y

SHA384 Y Y Y Y

HMAC

SHA512 Y

SHA512 Y Y Y Y

HMAC

AES XCBC Y Y

MAC

AES GMAC | Y Y Y

SNOW3G Y |Y

UIA2

KASUMI F9 Y Y

ZUC EIA3 Y Y

1.4 Supported AEAD Algorithms

Table 1.4: AEAD algorithms in crypto drivers

AEAD aesni |aesn |ar dpaa2|kas |nu|lope |q |[snho |z
algo- ~gcm |i_mb |mv | _sec umi | Il nssl |at|w3g
rithm 8 c
AES Y Y Y Y
GCM
(128)
AES Y Y Y Y
GCM
(192)
AES Y Y Y Y
GCM
(256)

c

1.3. Supported Authentication Algorithms 3

CHAPTER
TWO

AESN-NI MULTI BUFFER CRYPTO POLL MODE DRIVER

The AESNI MB PMD (librte_pmd_aesni_mb) provides poll mode crypto driver support for
utilizing Intel multi buffer library, see the white paper Fast Multi-buffer IPsec Implementations
on Intel® Architecture Processors.

The AES-NI MB PMD has current only been tested on Fedora 21 64-bit with gcc.

2.1 Features

AESNI MB PMD has support for:
Cipher algorithms:

+ RTE_CRYPTO_CIPHER_AES128_CBC

« RTE_CRYPTO_CIPHER_AES192_CBC

» RTE_CRYPTO_CIPHER_AES256_CBC

+ RTE_CRYPTO_CIPHER_AES128_CTR

« RTE_CRYPTO_CIPHER_AES192_CTR

« RTE_CRYPTO_CIPHER_AES256_CTR

* RTE_CRYPTO_CIPHER_AES_DOCSISBPI
Hash algorithms:

« RTE_CRYPTO_HASH_MD5_HMAC

+ RTE_CRYPTO_HASH_SHA1_HMAC

+ RTE_CRYPTO_HASH_SHA224_HMAC

* RTE_CRYPTO_HASH_SHA256_HMAC

+ RTE_CRYPTO_HASH_SHA384_HMAC

* RTE_CRYPTO_HASH_SHA512_HMAC

« RTE_CRYPTO_HASH_AES_XCBC_HMAC

2.2 Limitations

» Chained mbufs are not supported.

https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-paper.html?wapkw=multi+buffer
https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-paper.html?wapkw=multi+buffer

Crypto Device Drivers, Release 17.08.2

» Only in-place is currently supported (destination address is the same as source address).

2.3 Installation

To build DPDK with the AESNI_MB_PMD the user is required to download the multi-
buffer library from here and compile it on their user system before building DPDK. The lat-
est version of the library supported by this PMD is v0.46, which can be downloaded in
https://github.com/01org/intel-ipsec-mb/archive/v0.46.zip.

make

As a reference, the following table shows a mapping between the past DPDK versions and the
Multi-Buffer library version supported by them:

Table 2.1: DPDK and Multi-Buffer library ver-
sion compatibility

DPDK version | Multi-buffer library version
2.2-16.11 0.43-0.44

17.02 0.44

17.05+ 0.45+

2.4 Initialization

In order to enable this virtual crypto PMD, user must:

» Export the environmental variable AESNI_MULTI_BUFFER_LIB_PATH with the path
where the library was extracted.

+ Build the multi buffer library (explained in Installation section).

» Set CONFIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_base.
To use the PMD in an application, user must:

+ Call rte_vdev_init(“crypto_aesni_mb”) within the application.

» Use —vdev="crypto_aesni_mb” in the EAL options, which will call rte_vdev_init() inter-
nally.

The following parameters (all optional) can be provided in the previous two calls:

 socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running
on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by
default).

* max_nb_sessions: Specify the maximum number of sessions that can be created (2048
by default).

Example:

./12fwd-crypto -1 1 -n 4 —--vdev="crypto_aesni_mb, socket_id=0,max_nb_sessions=128" \
-—— -p 1 —--cdev SW —--chain CIPHER_HASH --cipher_algo "aes-cbc" —--auth_algo "shal-hmac"

2.3. Installation 5

https://github.com/01org/intel-ipsec-mb
https://github.com/01org/intel-ipsec-mb/archive/v0.46.zip

Crypto Device Drivers, Release 17.08.2

2.5 Extra notes

For AES Counter mode (AES-CTR), the library supports two different sizes for Initialization
Vector (1V):

* 12 bytes: used mainly for IPSec, as it requires 12 bytes from the user, which internally
are appended the counter block (4 bytes), which is set to 1 for the first block (no padding
required from the user)

* 16 bytes: when passing 16 bytes, the library will take them and use the last 4 bytes as
the initial counter block for the first block.

2.5. Extra notes 6

CHAPTER
THREE

AES-NI GCM CRYPTO POLL MODE DRIVER

The AES-NI GCM PMD (librte_pmd_aesni_gcm) provides poll mode crypto driver support
for utilizing Intel multi buffer library (see AES-NI Multi-buffer PMD documentation to learn more
about it, including installation).

3.1 Features

AESNI GCM PMD has support for:
Authentication algorithms:

+ RTE_CRYPTO_AUTH_AES_GMAC
AEAD algorithms:

« RTE_CRYPTO_AEAD_AES_GCM

3.2 Limitations

» Chained mbufs are supported but only out-of-place (destination mbuf must be contigu-
ous).

+ Cipher only is not supported.

3.3 Installation

To build DPDK with the AESNI_GCM_PMD the user is required to download the multi-
buffer library from here and compile it on their user system before building DPDK. The lat-
est version of the library supported by this PMD is v0.46, which can be downloaded in
https://github.com/01org/intel-ipsec-mb/archive/v0.46.zip.

make

As a reference, the following table shows a mapping between the past DPDK versions and the
external crypto libraries supported by them:

https://github.com/01org/intel-ipsec-mb
https://github.com/01org/intel-ipsec-mb/archive/v0.46.zip

Crypto Device Drivers, Release 17.08.2

Table 3.1: DPDK and external crypto library ver-
sion compatibility

DPDK version | Crypto library version

16.04 - 16.11 Multi-buffer library 0.43 - 0.44
17.02 - 17.05 ISA-L Crypto v2.18

17.08+ Multi-buffer library 0.46+

3.4 Initialization

In order to enable this virtual crypto PMD, user must:

» Export the environmental variable AESNI_MULTI_BUFFER_LIB_PATH with the path
where the library was extracted.

+ Build the multi buffer library (explained in Installation section).

+ Set CONFIG_RTE_LIBRTE_PMD_AESNI_GCM=y in config/common_base.
To use the PMD in an application, user must:

+ Call rte_vdev_init(“crypto_aesni_gcm”) within the application.

» Use —vdev="crypto_aesni_gcm” in the EAL options, which will call rte_vdev_init() inter-
nally.

The following parameters (all optional) can be provided in the previous two calls:

» socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running
on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by
default).

* max_nb_sessions: Specify the maximum number of sessions that can be created (2048
by default).

Example:

./12fwd-crypto -1 1 -n 4 —-vdev="crypto_aesni_gcm, socket_id=0,max_nb_sessions=128" \
-—— —p 1 —--cdev SW —--chain AEAD --aead_algo "aes-gcm"

3.4. Initialization 8

CHAPTER
FOUR

ARMVS8 CRYPTO POLL MODE DRIVER

This code provides the initial implementation of the ARMv8 crypto PMD. The driver uses
ARMv8 cryptographic extensions to process chained crypto operations in an optimized way.
The core functionality is provided by a low-level library, written in the assembly code.

4.1 Features

ARMv8 Crypto PMD has support for the following algorithm pairs:
Supported cipher algorithms:

* RTE_CRYPTO_CIPHER_AES_CBC
Supported authentication algorithms:

* RTE_CRYPTO_AUTH_SHA1_HMAC

* RTE_CRYPTO_AUTH_SHA256_HMAC

4.2 Installation

In order to enable this virtual crypto PMD, user must:
* Download ARMvS crypto library source code from here

» Export the environmental variable ARMV8_CRYPTO_LIB_PATH with the path where the
armv8_crypto library was downloaded or cloned.

+ Build the library by invoking:
make -C SARMVS8_CRYPTO_LIB_PATH/

» Set CONFIG_RTE_LIBRTE_PMD_ARMV8_CRYPTO=y in config/defconfig_armé4-
armv8a-linuxapp-gcc

The corresponding device can be created only if the following features are supported by the
CPU:

* RTE_CPUFLAG_AES
* RTE_CPUFLAG_SHA1
* RTE_CPUFLAG_SHA2

* RTE_CPUFLAG_NEON

https://github.com/caviumnetworks/armv8_crypto

Crypto Device Drivers, Release 17.08.2

4.3 Initialization

User can use app/test application to check how to use this PMD and to verify crypto processing.

Test name is cryptodev_sw_armv8_ autotest.
todev_sw_armv8_perftest can be used.

4.4 Limitations

* Maximum number of sessions is 2048.

Only chained operations are supported.

Cipher input data has to be a multiple of 16 bytes.

Digest input data has to be a multiple of 8 bytes.

AES-128-CBC is the only supported cipher variant.

For

performance

test

cryp-

4.3. Initialization

10

CHAPTER
FIVE

NXP DPAA2 CAAM (DPAA2_SEC)

The DPAA2_SEC PMD provides poll mode crypto driver support for NXP DPAA2 CAAM hard-
ware accelerator.

5.1 Architecture

SEC is the SOC’s security engine, which serves as NXP’s latest cryptographic acceleration
and offloading hardware. It combines functions previously implemented in separate modules
to create a modular and scalable acceleration and assurance engine. It also implements block
encryption algorithms, stream cipher algorithms, hashing algorithms, public key algorithms,
run-time integrity checking, and a hardware random number generator. SEC performs higher-
level cryptographic operations than previous NXP cryptographic accelerators. This provides
significant improvement to system level performance.

DPAA2_SEC is one of the hardware resource in DPAA2 Architecture. More information on
DPAA2 Architecture is described in dpaa2_overview.

DPAA2_SEC PMD is one of DPAA2 drivers which interacts with Management Complex (MC)
portal to access the hardware object - DPSECI. The MC provides access to create, discover,
connect, configure and destroy dpseci objects in DPAA2_SEC PMD.

DPAA2_SEC PMD also uses some of the other hardware resources like buffer pools, queues,
queue portals to store and to enqueue/dequeue data to the hardware SEC.

DPSECI objects are detected by PMD using a resource container called DPRC (like in
dpaa2_overview).

For example:

DPRC.1 (bus)

e po— o o pom +

\ | \ \ | \
DPMCP.1 DPIO.1 DPBP.1 DPNI.1 DPMAC.1 DPSECI.1
DPMCP.2 DPIO.2 DPNI.2 DPMAC.2 DPSECI.2
DPMCP. 3

5.2 Implementation

SEC provides platform assurance by working with SecMon, which is a companion logic block
that tracks the security state of the SOC. SEC is programmed by means of descriptors (not
to be confused with frame descriptors (FDs)) that indicate the operations to be performed and

11

Crypto Device Drivers, Release 17.08.2

link to the message and associated data. SEC incorporates two DMA engines to fetch the
descriptors, read the message data, and write the results of the operations. The DMA engine
provides a scatter/gather capability so that SEC can read and write data scattered in memory.
SEC may be configured by means of software for dynamic changes in byte ordering. The
default configuration for this version of SEC is little-endian mode.

A block diagram similar to dpaa2 NIC is shown below to show where DPAA2_SEC fits in the
DPAA2 Bus model

PMD |

o + o +
| MC SEC object [....... | Mempool |
| (DPSECI) | | (DPBP) [
ot + +———— - +
» |
| | <enqueue,
| | dequeue>
\ |
+———t———V-————
.| DPIO driver]|
| (DPIO) |
+———— - +
| QBMAN \
. . | Driver |
ot o + +———— +——— |
| dpaa2 bus \ \
| VFIO fslmc-bus e e e e e e e e e e e
\ \ \
\ /bus/fslmc \ |
o +
\
========================== HARDWARE =====|===== ============ ======
DPIO
\
DPSECI-——-DPRBP
5.3 Features

The DPAA2_SEC PMD has support for:

Cipher algorithms:

RTE_CRYPTO_CIPHER_3DES_CBC

RTE_CRYPTO_CIPHER_AES128_CBC
RTE_CRYPTO_CIPHER_AES192_CBC
RTE_CRYPTO_CIPHER_AES256_CBC
RTE_CRYPTO_CIPHER_AES128_CTR
RTE_CRYPTO_CIPHER_AES192_CTR

RTE_CRYPTO_CIPHER_AES256_CTR

Hash algorithms:

5.3. Features

12

Crypto Device Drivers, Release 17.08.2

* RTE_CRYPTO_AUTH_SHA1l_HMAC

* RTE_CRYPTO_AUTH_SHA224_HMAC

* RTE_CRYPTO_AUTH_SHA256_HMAC

* RTE_CRYPTO_AUTH_SHA384_HMAC

* RTE_CRYPTO_AUTH_SHA512_HMAC

* RTE_CRYPTO_AUTH_MD5_HMAC
AEAD algorithms:

* RTE_CRYPTO_AEAD_AES_GCM

5.4 Supported DPAA2 SoCs

* LS2080A/LS2040A
* LS2084A/LS2044A
» LS2088A/LS2048A
* LS1088A/LS1048A

5.5 Limitations

» Chained mbufs are not supported.
» Hash followed by Cipher mode is not supported

* Only supports the session-oriented API implementation (session-less APIs are not sup-
ported).

5.6 Prerequisites

DPAA2_SEC driver has similar pre-requisites as described in dpaa2_overview. The following
dependencies are not part of DPDK and must be installed separately:

* NXP Linux SDK

NXP Linux software development kit (SDK) includes support for the family of QorlQ®
ARM-Architecture-based system on chip (SoC) processors and corresponding boards.

It includes the Linux board support packages (BSPs) for NXP SoCs, a fully operational
tool chain, kernel and board specific modules.

SDK and related information can be obtained from: NXP QorlQ SDK.
+ DPDK Helper Scripts

DPAA2 based resources can be configured easily with the help of ready scripts as pro-
vided in the DPDK helper repository.

DPDK Helper Scripts.

5.4. Supported DPAA2 SoCs 13

http://www.nxp.com/products/software-and-tools/run-time-software/linux-sdk/linux-sdk-for-qoriq-processors:SDKLINUX
https://github.com/qoriq-open-source/dpdk-helper

Crypto Device Drivers, Release 17.08.2

Currently supported by DPDK:
* NXP SDK 2.0+.
* MC Firmware version 10.0.0 and higher.
» Supported architectures: arm64 LE.

* Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

5.7 Pre-Installation Configuration

5.7.1 Config File Options

Basic DPAA2 config file options are described in dpaa2_overview. In addition to those, the
following options can be modified in the config file to enable DPAA2_SEC PMD.

Please note that enabling debugging options may affect system performance.

* CONFIG_RTE_LIBRTE_PMD_DPAA2_SEC (default n) By default it is only enabled in
defconfig_arm64-dpaa2-* config. Toggle compilation of the 1ibrte_pmd_dpaa2_sec
driver.

* CONFIG_RTE_LIBRTE_DPAA2_SEC_DEBUG_INIT (default n) Toggle display of initial-
ization related driver messages

* CONFIG_RTE_LIBRTE_DPAA2_SEC_DEBUG_DRIVER (default n) Toggle display of driver
runtime messages

* CONFIG_RTE_LIBRTE_DPAA2_SEC_DEBUG_RX (default n) Toggle display of receive
fast path run-time message

* CONFIG_RTE_DPAA2_SEC_PMD_MAX_NB_SESSIONS By default it is set as 2048 in
defconfig_arm64-dpaa2-* config. It indicates Number of sessions to create in the session
memory pool on a single DPAA2 SEC device.

5.8 Installations

To compile the DPAA2_SEC PMD for Linux armé4 gcc target, run the following make com-
mand:

cd <DPDK-source-directory>
make config T=arm64-dpaaZ2-linuxapp-gcc install

5.7. Pre-Installation Configuration 14

CHAPTER
SIX

KASUMI CRYPTO POLL MODE DRIVER

The KASUMI PMD (librte_pmd_kasumi) provides poll mode crypto driver support for utilizing
Intel Libsso library, which implements F8 and F9 functions for KASUMI UEA1 cipher and UIA1
hash algorithms.

6.1 Features

KASUMI PMD has support for:
Cipher algorithm:

« RTE_CRYPTO_CIPHER_KASUMI_F8
Authentication algorithm:

« RTE_CRYPTO_AUTH_KASUMI_F9

6.2 Limitations

» Chained mbufs are not supported.
+ KASUMI(F9) supported only if hash offset and length field is byte-aligned.

* In-place bit-level operations for KASUMI(F8) are not supported (if length and/or offset of
data to be ciphered is not byte-aligned).

6.3 Installation

To build DPDK with the KASUMI_PMD the user is required to download the export controlled
libsso_kasumi library, by requesting it from https:/networkbuilders.intel.com/network-
technologies/dpdk. Once approval has been granted, the user needs to log in
https://networkbuilders.intel.com/dpdklogin and click on “Kasumi Bit Stream crypto library” link,
to download the library. After downloading the library, the user needs to unpack and compile it
on their system before building DPDK:

make

Note: When encrypting with KASUMI F8, by default the library encrypts full blocks of 8 bytes,
regardless the number of bytes to be encrypted provided (which leads to a possible buffer
overflow). To avoid this situation, it is necessary not to pass 3GPP_SAFE_BUFFERS as a

15

https://networkbuilders.intel.com/network-technologies/dpdk
https://networkbuilders.intel.com/network-technologies/dpdk
https://networkbuilders.intel.com/dpdklogin

Crypto Device Drivers, Release 17.08.2

compilation flag. Also, this is required when using chained operations (cipher-then-auth/auth-
then-cipher). For this, in the Makefile of the library, make sure that this flag is commented
out:

#EXTRA_CFLAGS += -D_3GPP_SAFE_BUFFERS

Note: To build the PMD as a shared library, the libsso_kasumi library must be built as follows:

make KASUMI_CFLAGS=-DKASUMI_C

6.4 Initialization

In order to enable this virtual crypto PMD, user must:

» Export the environmental variable LIBSSO_KASUMI_PATH with the path where the li-
brary was extracted (kasumi folder).

+ Build the LIBSSO library (explained in Installation section).

» Set CONFIG_RTE_LIBRTE_PMD_KASUMI=y in config/common_base.
To use the PMD in an application, user must:

+ Call rte_vdev_init(“crypto_kasumi”) within the application.

* Use —vdev="crypto_kasumi” in the EAL options, which will call rte_vdev_init() internally.
The following parameters (all optional) can be provided in the previous two calls:

» socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running
on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by
default).

* max_nb_sessions: Specify the maximum number of sessions that can be created (2048
by default).

Example:

./12fwd-crypto -1 1 -n 4 --vdev="crypto_kasumi, socket_id=0,max_nb_sessions=128" \
-— -p 1 ——cdev SW —--chain CIPHER_ONLY --cipher_algo "kasumi-£8"

6.5 Extra notes on KASUMI F9

When using KASUMI F9 authentication algorithm, the input buffer must be con-
structed according to the 3GPP KASUMI specifications (section 4.4, page 13):
http://cryptome.org/3gpp/35201-900.pdf. Input buffer has to have COUNT (4 bytes), FRESH
(4 bytes), MESSAGE and DIRECTION (1 bit) concatenated. After the DIRECTION bit, a single
‘1’ bit is appended, followed by between 0 and 7 ‘0’ bits, so that the total length of the buffer is
multiple of 8 bits. Note that the actual message can be any length, specified in bits.

Once this buffer is passed this way, when creating the crypto operation, length of data to
authenticate (op.sym.auth.data.length) must be the length of all the items described above,
including the padding at the end. Also, offset of data to authenticate (op.sym.auth.data.offset)
must be such that points at the start of the COUNT bytes.

6.4. Initialization 16

http://cryptome.org/3gpp/35201-900.pdf

CHAPTER
SEVEN

OPENSSL CRYPTO POLL MODE DRIVER

This code provides the initial implementation of the openssl poll mode driver. All cryptogra-
phy operations are using Openssl library crypto API. Each algorithm uses EVP interface from
openssl API - which is recommended by Openssl maintainers.

For more details about openssl library please visit openssl webpage: https://www.openssl.org/

7.1 Features

OpenSSL PMD has support for:

Supported cipher algorithms: * RTE_CRYPTO_CIPHER_3DES_CBC *
RTE_CRYPTO_CIPHER_AES_CBC * RTE_CRYPTO_CIPHER_AES_CTR
RTE_CRYPTO_CIPHER_3DES_CTR * RTE_CRYPTO_CIPHER_DES_DOCSISBPI

*

Supported authentication algorithms: * RTE_CRYPTO_AUTH_AES_GMAC
RTE_CRYPTO_AUTH_MD5 * RTE_CRYPTO_AUTH_SHA1l * RTE_CRYPTO_AUTH_SHA224 *
RTE_CRYPTO_AUTH_SHA256 * RTE_CRYPTO_AUTH_SHA384 * RTE_CRYPTO_AUTH_SHA512
* RTE_CRYPTO_AUTH_MD5_HMAC * RTE_CRYPTO_AUTH_SHA1_HMAC *
RTE_CRYPTO_AUTH_SHA224_HMAC * RTE_CRYPTO_AUTH_SHA256_HMAC
RTE_CRYPTO_AUTH_SHA384_HMAC * RTE_CRYPTO_AUTH_SHA512_HMAC

*

Supported AEAD algorithms: * RTE_CRYPTO_AEAD_AES_GCM

7.2 Installation

To compile openssl PMD, it has to be enabled in the config/common_base file and appropriate
openss| packages have to be installed in the build environment.

The newest openssl library version is supported: * 1.0.2h-fips 3 May 2016. Older versions that
were also verified: * 1.0.1f 6 Jan 2014 * 1.0.1 14 Mar 2012

For Ubuntu 14.04 LTS these packages have to be installed in the build system: sudo apt-get
install openssl sudo apt-get install libc6-dev-i386 (for i686-native-linuxapp-gcc target)

This code was also verified on Fedora 24. This code was NOT yet verified on FreeBSD.

7.3 Initialization

User can use app/test application to check how to use this pmd and to verify crypto processing.

17

https://www.openssl.org/

Crypto Device Drivers, Release 17.08.2

Test name is cryptodev_openss|_autotest. For performance test cryptodev_openss|_perftest
can be used.

To verify real traffic 12fwd-crypto example can be used with this command:

sudo ./build/l12fwd-crypto -1 0-1 -n 4 --vdev "crypto_openssl"

--vdev "crypto_openssl"-- -p 0x3 —--chain CIPHER_HASH

——cipher_op ENCRYPT --cipher_algo AES_CBC

——cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f

——iv 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:ff

——auth_op GENERATE —--auth_algo SHA1_HMAC

-—-auth_key 11:11:11:11:11:11:11:11:11:121:211:11:121:11:11:211:121:121:11:11:11:11
:11:121:211:121:11:211:212:212:221:12:21:12:212:22:12:22:11:12:2121:121:12:11:11:11:11
:11:11:127:11:11:11:22:12:12:11:211:221:2121:12:121:11:11

7.4 Limitations

» Maximum number of sessions is 2048.

Chained mbufs are supported only for source mbuf (destination must be contiguous).
Hash only is not supported for GCM and GMAC.
+ Cipher only is not supported for GCM and GMAC.

7.4. Limitations 18

CHAPTER
EIGHT

NULL CRYPTO POLL MODE DRIVER

The Null Crypto PMD (librte_pmd_null_crypto) provides a crypto poll mode driver which
provides a minimal implementation for a software crypto device. As a null device it does not
modify the data in the mbuf on which the crypto operation is to operate and it only has support
for a single cipher and authentication algorithm.

When a burst of mbufs is submitted to a Null Crypto PMD for processing then each mbuf in the
burst will be enqueued in an internal buffer for collection on a dequeue call as long as the mbuf
has a valid rte_mbuf_offload operation with a valid rte_cryptodev_session or rte_crypto_xform
chain of operations.

8.1 Features

Modes:
« RTE_CRYPTO_XFORM_CIPHER ONLY
« RTE_CRYPTO_XFORM_AUTH ONLY
« RTE_CRYPTO_XFORM_CIPHER THEN RTE_CRYPTO_XFORM_AUTH
« RTE_CRYPTO_XFORM_AUTH THEN RTE_CRYPTO_XFORM_CIPHER
Cipher algorithms:
« RTE_CRYPTO_CIPHER_NULL
Authentication algorithms:
« RTE_CRYPTO_AUTH_NULL

8.2 Limitations

* Only in-place is currently supported (destination address is the same as source address).

8.3 Installation

The Null Crypto PMD is enabled and built by default in both the Linux and FreeBSD builds.

19

Crypto Device Drivers, Release 17.08.2

8.4 Initialization

To use the PMD in an application, user must:

 Call rte_vdev_init(“crypto_null”) within the application.

» Use —vdev="crypto_null” in the EAL options, which will call rte_vdev_init() internally.
The following parameters (all optional) can be provided in the previous two calls:

» socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running
on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by
default).

* max_nb_sessions: Specify the maximum number of sessions that can be created (2048
by default).

Example:

./12fwd-crypto -1 1 -n 4 —-vdev="crypto_null, socket_id=0,max_nb_sessions=128" \
-—— -p 1 ——cdev SW —-chain CIPHER_ONLY —--cipher_algo "null"

8.4. Initialization 20

CHAPTER
NINE

CRYPTODEV SCHEDULER POLL MODE DRIVER LIBRARY

Scheduler PMD is a software crypto PMD, which has the capabilities of attaching hardware
and/or software cryptodevs, and distributes ingress crypto ops among them in a certain man-
ner.

User Application

Cryptodev Scheduler

Cryptodev Cryptodev Cryptodev

Fig. 9.1: Cryptodev Scheduler Overview

The Cryptodev Scheduler PMD library (librte_pmd_crypto_scheduler) acts as a software
crypto PMD and shares the same API provided by librte_cryptodev. The PMD supports attach-
ing multiple crypto PMDs, software or hardware, as slaves, and distributes the crypto workload
to them with certain behavior. The behaviors are categorizes as different “modes”. Basically, a
scheduling mode defines certain actions for scheduling crypto ops to its slaves.

The librte_pmd_crypto_scheduler library exports a C API which provides an API for attach-
ing/detaching slaves, set/get scheduling modes, and enable/disable crypto ops reordering.

9.1 Limitations

» Sessionless crypto operation is not supported

» OOP crypto operation is not supported when the crypto op reordering feature is enabled.

21

Crypto Device Drivers, Release 17.08.2

9.2 Installation

To build DPDK with CRYTPO_SCHEDULER_PMD the user is required to set CON-
FIG_RTE_LIBRTE_PMD_CRYPTO_SCHEDULER=y in config/common_base, and recompile
DPDK

9.3 Initialization

To use the PMD in an application, user must:
+ Call rte_vdev_init(“crypto_scheduler”) within the application.

» Use —vdev="crypto_scheduler” in the EAL options, which will call rte_vdev_init() inter-
nally.

The following parameters (all optional) can be provided in the previous two calls:

» socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running
on).

* max_nb_sessions: Specify the maximum number of sessions that can be created. This
value may be overwritten internally if there are too many devices are attached.

« slave: If a cryptodev has been initialized with specific name, it can be attached to the
scheduler using this parameter, simply filling the name here. Multiple cryptodevs can be
attached initially by presenting this parameter multiple times.

» mode: Specify the scheduling mode of the PMD. The supported scheduling mode pa-
rameter values are specified in the “Cryptodev Scheduler Modes Overview” section.

 ordering: Specify the status of the crypto operations ordering feature. The value of this
parameter can be “enable” or “disable”. This feature is disabled by default.

Example:

. ——vdev "crypto_aesni_mb0, name=aesni_mb_1" --vdev "crypto_aesni_mbl, name=aesni_mb_2" --vdev

Note:

» The scheduler cryptodev cannot be started unless the scheduling mode is set and at least
one slave is attached. Also, to configure the scheduler in the run-time, like attach/detach
slave(s), change scheduling mode, or enable/disable crypto op ordering, one should stop
the scheduler first, otherwise an error will be returned.

» The crypto op reordering feature requires using the userdata field of every mbuf to be
processed to store temporary data. By the end of processing, the field is set to pointing
to NULL, any previously stored value of this field will be lost.

9.4 Cryptodev Scheduler Modes Overview

Currently the Crypto Scheduler PMD library supports following modes of operation:
« CDEV_SCHED_MODE_ROUNDROBIN:

9.2. Installation 22

Crypto Device Drivers, Release 17.08.2

Initialization mode parameter: round-robin

Round-robin mode, which distributes the enqueued burst of crypto ops among its
slaves in a round-robin manner. This mode may help to fill the throughput gap
between the physical core and the existing cryptodevs to increase the overall per-
formance.

CDEV_SCHED_MODE_PKT_SIZE_DISTR:
Initialization mode parameter: packet-size-distr

Packet-size based distribution mode, which works with 2 slaves, the primary slave
and the secondary slave, and distributes the enqueued crypto operations to them
based on their data lengths. A crypto operation will be distributed to the primary
slave if its data length is equal to or bigger than the designated threshold, otherwise
it will be handled by the secondary slave.

A typical usecase in this mode is with the QAT cryptodev as the primary and a
software cryptodev as the secondary slave. This may help applications to process
additional crypto workload than what the QAT cryptodev can handle on its own, by
making use of the available CPU cycles to deal with smaller crypto workloads.

The threshold is set to 128 bytes by default. It can be updated by calling
function rte_cryptodev_scheduler_option_set. The parameter of option_type
must be CDEV_SCHED_OPTION_THRESHOLD and option should point to a
rte_cryptodev_scheduler_threshold_option structure filled with appropriate thresh-
old value. Please NOTE this threshold has be a power-of-2 unsigned integer.

CDEV_SCHED_MODE_FAILOVER:
Initialization mode parameter: fail-over

Fail-over mode, which works with 2 slaves, the primary slave and the secondary
slave. In this mode, the scheduler will enqueue the incoming crypto operation burst
to the primary slave. When one or more crypto operations fail to be enqueued, then
they will be enqueued to the secondary slave.

CDEV_SCHED_MODE_MULTICORE:
Initialization mode parameter: multi-core

Multi-core mode, which distributes the workload with several (up to eight) worker
cores. The enqueued bursts are distributed among the worker cores in a round-
robin manner. If scheduler cannot enqueue entire burst to the same worker, it
will enqueue the remaining operations to the next available worker. For pure small
packet size (64 bytes) traffic however the multi-core mode is not an optimal solution,
as it doesn’t give significant per-core performance improvement. For mixed traffic
(IMIX) the optimal number of worker cores is around 2-3. For large packets (1.5
Kbytes) scheduler shows linear scaling in performance up to eight cores. Each
worker uses its own slave cryptodev. Only software cryptodevs are supported.
Only the same type of cryptodevs should be used concurrently.

The multi-core mode uses one extra parameter:

« corelist: Semicolon-separated list of logical cores to be used as workers. The
number of worker cores should be equal to the number of slave cryptodevs.
These cores should be present in EAL core list parameter and should not be
used by the application or any other process.

9.4. Cryptodev Scheduler Modes Overview

23

Crypto Device Drivers, Release 17.08.2

Example: ... —vdev “crypto_aesni_mb1,name=aesni_mb_1" -
vdev “crypto_aesni_mb_pmd2,name=aesni_mb_2" —vdev
“crypto_scheduler,slave=aesni_mb_1,slave=aesni_mb_2,mode=multi-
core,corelist=23;24" ...

9.4. Cryptodev Scheduler Modes Overview 24

CHAPTER
TEN

SNOW 3G CRYPTO POLL MODE DRIVER

The SNOW 3G PMD (librte_pmd_snow3g) provides poll mode crypto driver support for utiliz-
ing Intel Libsso library, which implements F8 and F9 functions for SNOW 3G UEA2 cipher and
UIA2 hash algorithms.

10.1 Features

SNOW 3G PMD has support for:
Cipher algorithm:

+ RTE_CRYPTO_CIPHER_SNOW3G_UEA2
Authentication algorithm:

« RTE_CRYPTO_AUTH_SNOW3G_UIA2

10.2 Limitations

» Chained mbufs are not supported.
+ SNOW 3G (UIA2) supported only if hash offset field is byte-aligned.

* In-place bit-level operations for SNOW 3G (UEA2) are not supported (if length and/or
offset of data to be ciphered is not byte-aligned).

10.3 Installation

To build DPDK with the SNOW3G_PMD the user is required to download the export controlled
libsso_snow3g library, by requesting it from https:/networkbuilders.intel.com/network-
technologies/dpdk. Once approval has been granted, the user needs to log in
https://networkbuilders.intel.com/dpdklogin and click on “Snow3G Bit Stream crypto library”
link, to download the library. After downloading the library, the user needs to unpack and
compile it on their system before building DPDK:

make snow3G
Note: When encrypting with SNOW3G UEA2, by default the library encrypts blocks of 4 bytes,

regardless the number of bytes to be encrypted provided (which leads to a possible buffer
overflow). To avoid this situation, it is necessary not to pass 3GPP_SAFE_BUFFERS as a

25

https://networkbuilders.intel.com/network-technologies/dpdk
https://networkbuilders.intel.com/network-technologies/dpdk
https://networkbuilders.intel.com/dpdklogin

Crypto Device Drivers, Release 17.08.2

compilation flag. For this, in the Makefile of the library, make sure that this flag is commented
out.:

#EXTRA_CFLAGS += -D_3GPP_SAFE_BUFFERS

10.4 Initialization

In order to enable this virtual crypto PMD, user must:

» Export the environmental variable LIBSSO_SNOW3G_PATH with the path where the li-
brary was extracted (snow3g folder).

+ Build the LIBSSO_SNOWSG library (explained in Installation section).

« Set CONFIG_RTE_LIBRTE_PMD_SNOW3G=y in config/common_base.
To use the PMD in an application, user must:

+ Call rte_vdev_init(“crypto_snow3g”) within the application.

» Use —vdev="crypto_snow3g” in the EAL options, which will call rte_vdev_init() internally.
The following parameters (all optional) can be provided in the previous two calls:

» socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running
on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by
default).

* max_nb_sessions: Specify the maximum number of sessions that can be created (2048
by default).

Example:

./12fwd-crypto -1 1 -n 4 --vdev="crypto_snow3g, socket_id=0,max_nb_sessions=128" \
-—— -p 1 ——cdev SW —--chain CIPHER_ONLY --cipher_algo "snow3g-uea2"

10.4. Initialization 26

CHAPTER
ELEVEN

INTEL(R) QUICKASSIST (QAT) CRYPTO POLL MODE DRIVER

The QAT PMD provides poll mode crypto driver support for the following hardware accelerator
devices:

* Intel QuickAssist Technology DH895xCC
* Intel QuickAssist Technology C62x
* Intel QuickAssist Technology C3xxx

* Intel QuickAssist Technology D15xx

11.1 Features

The QAT PMD has support for:
Cipher algorithms:
* RTE_CRYPTO_CIPHER_3DES_CBC
* RTE_CRYPTO_CIPHER_3DES_CTR
* RTE_CRYPTO_CIPHER_AES128_CBC
* RTE_CRYPTO_CIPHER_AES192_CBC
* RTE_CRYPTO_CIPHER_AES256_CBC
* RTE_CRYPTO_CIPHER_AES128_CTR
* RTE_CRYPTO_CIPHER_AES192_CTR
* RTE_CRYPTO_CIPHER_AES256_CTR
* RTE_CRYPTO_CIPHER_SNOW3G_UEA2
* RTE_CRYPTO_CIPHER_NULL
* RTE_CRYPTO_CIPHER_KASUMI_F8
* RTE_CRYPTO_CIPHER_DES_CBC
* RTE_CRYPTO_CIPHER_AES_DOCSISBPI
* RTE_CRYPTO_CIPHER_DES_DOCSISBPI
* RTE_CRYPTO_CIPHER_ZUC_EEA3

Hash algorithms:

27

Crypto Device Drivers, Release 17.08.2

RTE_CRYPTO_AUTH_SHA1l_HMAC
RTE_CRYPTO_AUTH_SHA224_HMAC
RTE_CRYPTO_AUTH_SHA256_HMAC
RTE_CRYPTO_AUTH_SHA384_HMAC
RTE_CRYPTO_AUTH_SHA512_HMAC
RTE_CRYPTO_AUTH_AES_XCBC_MAC
RTE_CRYPTO_AUTH_SNOW3G_UIAZ2
RTE_CRYPTO_AUTH_MD5_HMAC
RTE_CRYPTO_AUTH_NULL
RTE_CRYPTO_AUTH_KASUMI_F9
RTE_CRYPTO_AUTH_AES_GMAC

RTE_CRYPTO_AUTH_ZUC_EIA3

Supported AEAD algorithms: * RTE_CRYPTO_AEAD_AES_GCM

11.2 Limitations

Only supports the session-oriented APl implementation (session-less APIs are not sup-
ported).

SNOW 3G (UEA2), KASUMI (F8) and ZUC (EEAS3) supported only if cipher length and
offset fields are byte-multiple.

SNOW 3G (UIA2) and ZUC (EIA3) supported only if hash length and offset fields are
byte-multiple.

No BSD support as BSD QAT kernel driver not available.
ZUC EEAB/EIA3 is not supported by dh895xcc devices
Maximum additional authenticated data (AAD) for GCM is 240 bytes long.

11.3 Installation

To enable QAT in DPDK, follow the instructions for modifying the compile-time configuration
file as described here.

Quick instructions are as follows:

cd to the top-level DPDK directory

make config T=x86_64-native-linuxapp-gcc

sed -1 's,\ (CONFIG_RTE_LIBRTE_PMD_QAT\)=n,\1l=y,' build/.config
make

To use the DPDK QAT PMD an SRIOV-enabled QAT kernel driver is required. The VF devices
exposed by this driver will be used by the QAT PMD. The devices and available kernel drivers
and device ids are :

11.2.

Limitations 28

http://dpdk.org/doc/guides/linux_gsg/build_dpdk.html

Crypto Device Drivers, Release 17.08.2

Table 11.1: QAT device generations, devices and drivers

Gen | Device Driver | Kernel Pci PF Did | #PFs | Vi Did | VFs/PF
Module Driver

1 DH895xCC| 01.org | icp_qa_al n/a 435 1 443 32

1 DH895xCC| 4.4+ | qat_dh895xcc | dh895xcc | 435 1 443 32

2 C62x 4.5+ gat_c62x CHXX 37c8 3 37¢9 16

2 C3xxx 4.5+ gat_c3xxx C3XXX 19e2 1 19e3 | 16

2 D15xx p gat_d15xx d15xx 6154 1 6f55 16

The Driver column indicates either the Linux kernel version in which support for this device
was introduced or a driver available on Intel's 01.org website. There are both linux and 01.org
kernel drivers available for some devices. p = release pending.

If you are running on a kernel which includes a driver for your device, see Installation using
kernel.org driver below. Otherwise see Installation using 01.org QAT driver.

11.4 Installation using kernel.org driver

The examples below are based on the C62x device, if you have a different device use the
corresponding values in the above table.

In BIOS ensure that SRIOV is enabled and either:

* Disable VT-d or

* Enable VT-d and set "intel_iommu=on iommu=pt" inthe grub file.
Check that the QAT driver is loaded on your system, by executing:

lsmod | grep ga

You should see the kernel module for your device listed, e.g.:

gat_c62x 5626 0
intel_gat 82336 1 gat_c62x

Next, you need to expose the Virtual Functions (VFs) using the sysfs file system.

First find the BDFs (Bus-Device-Function) of the physical functions (PFs) of your device, e.g.:
lspci -d : 37c8

You should see output similar to:

1a:00.0 Co-processor: Intel Corporation Device 37c8
3d:00.0 Co-processor: Intel Corporation Device 37c8
3f:00.0 Co-processor: Intel Corporation Device 37c8

Enable the VFs for each PF by echoing the number of VFs per PF to the pci driver:

echo 16 > /sys/bus/pci/drivers/c6xx/0000:1a:00.0/sriov_numvfs
echo 16 > /sys/bus/pci/drivers/c6xx/0000:3d:00.0/sriov_numvfs
echo 16 > /sys/bus/pci/drivers/c6xx/0000:3£:00.0/sriov_numvfs

Check that the VFs are available for use. For example 1spci -d:37c9 should list 48 VF
devices available for a c62x device.

To complete the installation follow the instructions in Binding the available VFs to the DPDK
UIO driver.

11.4. Installation using kernel.org driver 29

Crypto Device Drivers, Release 17.08.2

Note: If the QAT kernel modules are not loaded and you see an error like Failed to load
MMP firmware gat_895xcc_mmp.bin in kernellogs, this may be as a result of not using a

distribution, but just updating the kernel directly.
Download firmware from the kernel firmware repo.

Copy gat binariesto /1ib/firmware:

cp gat_895xcc.bin /lib/firmware
cp gat_895xcc_mmp.bin /lib/firmware

Change to your linux source root directory and start the gat kernel modules:

insmod ./drivers/crypto/gat/gat_common/intel_gat.ko
insmod ./drivers/crypto/gat/gat_dh895xcc/gat_dh895xcc.ko

Note: If you see the following warning in /var/log/messages it can be ignored: TOMMU
should be enabled for SR-IOV to work correctly.

11.5 Installation using 01.org QAT driver

Download the latest QuickAssist Technology Driver from 01.org. Consult the Getting Started
Guide at the same URL for further information.

The steps below assume you are:
+ Building on a platform with one DH8 95xCC device.
» Using package gatmux.1.2.3.0-34.tgz.
* On Fedora21 kernel 3.17.4-301.fc21.x86_64.
In the BIOS ensure that SRIOV is enabled and VT-d is disabled.
Uninstall any existing QAT driver, for example by running:
* ./installer.sh uninstall inthe directory where originally installed.
* Or rmmod gat_dh895xcc; rmmod intel_gat.
Build and install the SRIOV-enabled QAT driver:

mkdir /QAT
cd /QAT

Copy gatmux.1.2.3.0-34.tgz to this location
tar zxof gatmux.1.2.3.0-34.tgz

export ICP_WITHOUT_IOMMU=1
./installer.sh install QAT1.6 host

You can use cat /proc/icp_dh895xcc_dev0/version to confirm the driver is correctly
installed. You can use 1spci —-d:443 to confirm the of the 32 VF devices available per
DH895xCC device.

To complete the installation - follow instructions in Binding the available VFs to the DPDK UIO
driver.

Note: If using a later kernel and the build fails with an error relating to strict_stroul not
being available apply the following patch:

11.5. Installation using 01.org QAT driver 30

http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git/tree/
https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches

Crypto Device Drivers, Release 17.08.2

/QAT/QAT1.6/quickassist/utilities/downloader/Target_CorelLibs/uclo/include/linux/uclo_platform.t
+ #if LINUX_VERSION_CODE >= KERNEL_VERSION (3,18,5)

+ #define STR_TO_64 (str, base, num, endPtr) {endPtr=NULL; if (kstrtoul ((str), (base), (num))) ¢
+ f#else

#if LINUX_VERSION_CODE >= KERNEL_VERSION (2,6, 38)

#define STR_TO_64 (str, base, num, endPtr) {endPtr=NULL; if (strict_strtoull ((str), (base), (nun
#else

#if LINUX_VERSION_CODE >= KERNEL_VERSION (2, 6,25)
#define STR_TO_64 (str, base, num, endPtr) {endPtr=NULL; strict_strtoll((str), (base), (num));}

#else
#define STR_TO_64 (str, base, num, endPtr) \
do { \
if (str[0] == '-") \
{ \
% (num) = —(simple_strtoull ((str+l), &(endPtr), (base))); \
lelse { \
* (num) = simple_strtoull ((str), & (endPtr), (base)); \
} \
} while (0)
+ #endif
#endif
#endif

Note: If the build fails due to missing header files you may need to do following:

sudo yum install zlib-devel
sudo yum install openssl-devel

]!\lﬁte:. If the build or install fails due to mismatching kernel sources you may need to do the
ollowing:

sudo yum install kernel-headers- uname -r°
sudo yum install kernel-src- uname -r’
sudo yum install kernel-devel-"uname -r°

11.6 Binding the available VFs to the DPDK UIO driver

Unbind the VFs from the stock driver so they can be bound to the uio driver.

11.6.1 For an Intel(R) QuickAssist Technology DH895xCC device

The unbind command below assumes BDFs of 03:01.00-03:04.07, if your VFs are different
adjust the unbind command below:

for device in $(seq 1 4); do \
for fn in $(seq 0 7); do \
echo —n 0000:03:0S${device}.S${fn} > \
/sys/bus/pci/devices/0000\:03\:0${device}.${fn}/driver/unbind; \
done; \
done

11.6. Binding the available VFs to the DPDK UIO driver 31

Crypto Device Drivers, Release 17.08.2

11.6.2 For an Intel(R) QuickAssist Technology C62x device

The unbind command below assumes BDFs of 1a:01.00-1a:02.07,3d:01.00-3d:02.07
and 3£:01.00-3£:02.07, if your VFs are different adjust the unbind command below:
for device in $(seq 1 2); do \
for fn in $(seq 0 7); do \

echo -n 0000:1la:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:1a\:0${device}.${fn}/driver/unbind; \

echo -n 0000:3d:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:3d\:0${device}.${fn}/driver/unbind; \

echo —-n 0000:3f:0${device}.S${fn} > \
/sys/bus/pci/devices/0000\:3f\:0${device}.${fn}/driver/unbind; \
done; \
done

11.6.3 For Intel(R) QuickAssist Technology C3xxx or D15xx device

The unbind command below assumes BDFs 0of 01:01.00-01:02.07, if your VFs are different
adjust the unbind command below:
for device in $(seq 1 2); do \
for fn in $(seq 0 7); do \
echo -n 0000:01:0${device}.S${fn} > \
/sys/bus/pci/devices/0000\:01\:0${device}.${fn}/driver/unbind; \

done; \
done

11.6.4 Bind to the DPDK uio driver

Install the DPDK igb_uio driver, bind the VF PCI Device id to it and use Ispci to confirm the VF
devices are now in use by igb_uio kernel driver, e.g. for the C62x device:

cd to the top-level DPDK directory

modprobe uio

insmod ./build/kmod/igb_uio.ko

echo "8086 37c9" > /sys/bus/pci/drivers/igb_uio/new_id
lspci -vvd:37c9

Another way to bind the VFs to the DPDK UIO driver is by using the dpdk-devbind. py script:

cd to the top-level DPDK directory
./usertools/dpdk-devbind.py -b igb_uio 0000:03:01.1

11.7 Extra notes on KASUMI F9

When using KASUMI F9 authentication algorithm, the input buffer must be con-
structed according to the 3GPP KASUMI specifications (section 4.4, page 13):
http://cryptome.org/3gpp/35201-900.pdf. Input buffer has to have COUNT (4 bytes), FRESH
(4 bytes), MESSAGE and DIRECTION (1 bit) concatenated. After the DIRECTION bit, a single
‘1’ bit is appended, followed by between 0 and 7 ‘0’ bits, so that the total length of the buffer is
multiple of 8 bits. Note that the actual message can be any length, specified in bits.

11.7. Extra notes on KASUMI F9 32

http://cryptome.org/3gpp/35201-900.pdf

Crypto Device Drivers, Release 17.08.2

Once this buffer is passed this way, when creating the crypto operation, length of data to
authenticate (op.sym.auth.data.length) must be the length of all the items described above,
including the padding at the end. Also, offset of data to authenticate (op.sym.auth.data.offset)
must be such that points at the start of the COUNT bytes.

11.7. Extra notes on KASUMI F9 33

CHAPTER
TWELVE

ZUC CRYPTO POLL MODE DRIVER

The ZUC PMD (librte_pmd_zuc) provides poll mode crypto driver support for utilizing Intel
Libsso library, which implements F8 and F9 functions for ZUC EEAS3 cipher and EIA3 hash
algorithms.

12.1 Features

ZUC PMD has support for:
Cipher algorithm:

+ RTE_CRYPTO_CIPHER_ZUC_EEAS
Authentication algorithm:

« RTE_CRYPTO_AUTH_ZUC_EIA3

12.2 Limitations

Chained mbufs are not supported.

ZUC (EIA3) supported only if hash offset field is byte-aligned.

ZUC (EEAS3) supported only if cipher length, cipher offset fields are byte-aligned.

ZUC PMD cannot be built as a shared library, due to limitations in in the underlying library.

12.3 Installation

To build DPDK with the ZUC_PMD the user is required to download the export con-
trolled 1ibsso_zuc library, by requesting it from https:/networkbuilders.intel.com/network-
technologies/dpdk. Once approval has been granted, the user needs to log in
https://networkbuilders.intel.com/dpdklogin and click on “ZUC Library” link, to download the
library. After downloading the library, the user needs to unpack and compile it on their system
before building DPDK:

make

34

https://networkbuilders.intel.com/network-technologies/dpdk
https://networkbuilders.intel.com/network-technologies/dpdk
https://networkbuilders.intel.com/dpdklogin

Crypto Device Drivers, Release 17.08.2

12.4 Initialization

In order to enable this virtual crypto PMD, user must:

» Export the environmental variable LIBSSO_ZUC_PATH with the path where the library
was extracted (zuc folder).

» Export the environmental variable LD_LIBRARY_PATH with the path where the built lib-
sso library is (LIBSSO_ZUC_PATH/build).

* Build the LIBSSO_ZUC library (explained in Installation section).
* Build DPDK as follows:

make config T=x86_64-native-linuxapp-gcc

sed -1 's,\ (CONFIG_RTE_LIBRTE_PMD_ZUC\)=n,\1=y,"' build/.config

make
To use the PMD in an application, user must:

+ Call rte_vdev_init(“crypto_zuc”) within the application.

» Use —vdev="crypto_zuc” in the EAL options, which will call rte_vdev_init() internally.
The following parameters (all optional) can be provided in the previous two calls:

» socket_id: Specify the socket where the memory for the device is going to be allocated
(by default, socket_id will be the socket where the core that is creating the PMD is running
on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by
default).

» max_nb_sessions: Specify the maximum number of sessions that can be created (2048
by default).

Example:

./12fwd-crypto -1 1 -n 4 —-vdev="crypto_zuc, socket_id=0,max_nb_sessions=128" \
-—— -p 1 —--cdev SW —--chain CIPHER_ONLY --cipher_algo "zuc-eea3"

12.4. Initialization 35

	Crypto Device Supported Functionality Matrices
	Supported Feature Flags
	Supported Cipher Algorithms
	Supported Authentication Algorithms
	Supported AEAD Algorithms

	AESN-NI Multi Buffer Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization
	Extra notes

	AES-NI GCM Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization

	ARMv8 Crypto Poll Mode Driver
	Features
	Installation
	Initialization
	Limitations

	NXP DPAA2 CAAM (DPAA2_SEC)
	Architecture
	Implementation
	Features
	Supported DPAA2 SoCs
	Limitations
	Prerequisites
	Pre-Installation Configuration
	Installations

	KASUMI Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization
	Extra notes on KASUMI F9

	OpenSSL Crypto Poll Mode Driver
	Features
	Installation
	Initialization
	Limitations

	Null Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization

	Cryptodev Scheduler Poll Mode Driver Library
	Limitations
	Installation
	Initialization
	Cryptodev Scheduler Modes Overview

	SNOW 3G Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization

	Intel(R) QuickAssist (QAT) Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Installation using kernel.org driver
	Installation using 01.org QAT driver
	Binding the available VFs to the DPDK UIO driver
	Extra notes on KASUMI F9

	ZUC Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization

