
Testpmd Application User Guide
Release 17.08.2

April 23, 2018

CONTENTS

1 Introduction 1

2 Compiling the Application 2

3 Running the Application 3
3.1 EAL Command-line Options . 3
3.2 Testpmd Command-line Options . 5

4 Testpmd Runtime Functions 11
4.1 Help Functions . 11
4.2 Command File Functions . 12
4.3 Control Functions . 12
4.4 Display Functions . 13
4.5 Configuration Functions . 17
4.6 Port Functions . 31
4.7 Link Bonding Functions . 37
4.8 Register Functions . 39
4.9 Filter Functions . 41
4.10 Flow rules management . 47

i

CHAPTER

ONE

INTRODUCTION

This document is a user guide for the testpmd example application that is shipped as part of
the Data Plane Development Kit.

The testpmd application can be used to test the DPDK in a packet forwarding mode and also
to access NIC hardware features such as Flow Director. It also serves as a example of how to
build a more fully-featured application using the DPDK SDK.

The guide shows how to build and run the testpmd application and how to configure the appli-
cation from the command line and the run-time environment.

1

CHAPTER

TWO

COMPILING THE APPLICATION

The testpmd application is compiled as part of the main compilation of the DPDK libraries
and tools. Refer to the DPDK Getting Started Guides for details. The basic compilation steps
are:

1. Set the required environmental variables and go to the source directory:

export RTE_SDK=/path/to/rte_sdk
cd $RTE_SDK

2. Set the compilation target. For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc

3. Build the application:

make install T=$RTE_TARGET

The compiled application will be located at:

$RTE_SDK/$RTE_TARGET/app/testpmd

2

CHAPTER

THREE

RUNNING THE APPLICATION

3.1 EAL Command-line Options

The following are the EAL command-line options that can be used in conjunction with the
testpmd, or any other DPDK application. See the DPDK Getting Started Guides for more
information on these options.

• -c COREMASK

Set the hexadecimal bitmask of the cores to run on.

• -l CORELIST

List of cores to run on

The argument format is <c1>[-c2][,c3[-c4],...] where c1, c2, etc are core in-
dexes between 0 and 128.

• --lcores COREMAP

Map lcore set to physical cpu set

The argument format is:

<lcores[@cpus]>[<,lcores[@cpus]>...]

Lcore and CPU lists are grouped by (and) Within the group. The - character is used
as a range separator and , is used as a single number separator. The grouping () can
be omitted for single element group. The @ can be omitted if cpus and lcores have the
same value.

• --master-lcore ID

Core ID that is used as master.

• -n NUM

Set the number of memory channels to use.

• -b, --pci-blacklist domain:bus:devid.func

Blacklist a PCI device to prevent EAL from using it. Multiple -b options are allowed.

• -d LIB.so

Load an external driver. Multiple -d options are allowed.

• -w, --pci-whitelist domain:bus:devid:func

Add a PCI device in white list.

3

Testpmd Application User Guide, Release 17.08.2

• -m MB

Memory to allocate. See also --socket-mem.

• -r NUM

Set the number of memory ranks (auto-detected by default).

• -v

Display the version information on startup.

• --xen-dom0

Support application running on Xen Domain0 without hugetlbfs.

• --syslog

Set the syslog facility.

• --socket-mem

Set the memory to allocate on specific sockets (use comma separated values).

• --huge-dir

Specify the directory where the hugetlbfs is mounted.

• --proc-type

Set the type of the current process.

• --file-prefix

Prefix for hugepage filenames.

• -vmware-tsc-map

Use VMware TSC map instead of native RDTSC.

• --vdev

Add a virtual device using the format:

<driver><id>[,key=val, ...]

For example:

--vdev 'net_pcap0,rx_pcap=input.pcap,tx_pcap=output.pcap'

• --base-virtaddr

Specify base virtual address.

• --create-uio-dev

Create /dev/uioX (usually done by hotplug).

• --no-shconf

No shared config (mmap-ed files).

• --no-pci

Disable pci.

• --no-hpet

Disable hpet.

3.1. EAL Command-line Options 4

Testpmd Application User Guide, Release 17.08.2

• --no-huge

Use malloc instead of hugetlbfs.

3.2 Testpmd Command-line Options

The following are the command-line options for the testpmd applications. They must be sepa-
rated from the EAL options, shown in the previous section, with a -- separator:

sudo ./testpmd -l 0-3 -n 4 -- -i --portmask=0x1 --nb-cores=2

The commandline options are:

• -i, --interactive

Run testpmd in interactive mode. In this mode, the testpmd starts with a prompt that can
be used to start and stop forwarding, configure the application and display stats on the
current packet processing session. See Testpmd Runtime Functions for more details.

In non-interactive mode, the application starts with the configuration specified on the
command-line and immediately enters forwarding mode.

• -h, --help

Display a help message and quit.

• -a, --auto-start

Start forwarding on initialization.

• --tx-first

Start forwarding, after sending a burst of packets first.

Note: This flag should be only used in non-interactive mode.

• --stats-period PERIOD

Display statistics every PERIOD seconds, if interactive mode is disabled. The default
value is 0, which means that the statistics will not be displayed.

• --nb-cores=N

Set the number of forwarding cores, where 1 <= N <= “number of cores” or
CONFIG_RTE_MAX_LCORE from the configuration file. The default value is 1.

• --nb-ports=N

Set the number of forwarding ports, where 1 <= N <= “number of ports” on the board
or CONFIG_RTE_MAX_ETHPORTS from the configuration file. The default value is the
number of ports on the board.

• --coremask=0xXX

Set the hexadecimal bitmask of the cores running the packet forwarding test. The master
lcore is reserved for command line parsing only and cannot be masked on for packet
forwarding.

• --portmask=0xXX

Set the hexadecimal bitmask of the ports used by the packet forwarding test.

3.2. Testpmd Command-line Options 5

Testpmd Application User Guide, Release 17.08.2

• --numa

Enable NUMA-aware allocation of RX/TX rings and of RX memory buffers (mbufs). [De-
fault setting]

• --no-numa

Disable NUMA-aware allocation of RX/TX rings and of RX memory buffers (mbufs).

• --port-numa-config=(port,socket)[,(port,socket)]

Specify the socket on which the memory pool to be used by the port will be allocated.

• --ring-numa-config=(port,flag,socket)[,(port,flag,socket)]

Specify the socket on which the TX/RX rings for the port will be allocated. Where flag is
1 for RX, 2 for TX, and 3 for RX and TX.

• --socket-num=N

Set the socket from which all memory is allocated in NUMA mode, where 0 <= N <
number of sockets on the board.

• --mbuf-size=N

Set the data size of the mbufs used to N bytes, where N < 65536. The default value is
2048.

• --total-num-mbufs=N

Set the number of mbufs to be allocated in the mbuf pools, where N > 1024.

• --max-pkt-len=N

Set the maximum packet size to N bytes, where N >= 64. The default value is 1518.

• --eth-peers-configfile=name

Use a configuration file containing the Ethernet addresses of the peer ports. The config-
uration file should contain the Ethernet addresses on separate lines:

XX:XX:XX:XX:XX:01
XX:XX:XX:XX:XX:02
...

• --eth-peer=N,XX:XX:XX:XX:XX:XX

Set the MAC address XX:XX:XX:XX:XX:XX of the peer port N, where 0 <= N <
CONFIG_RTE_MAX_ETHPORTS from the configuration file.

• --pkt-filter-mode=mode

Set Flow Director mode where mode is either none (the default), signature or
perfect. See flow_director_filter for more details.

• --pkt-filter-report-hash=mode

Set Flow Director hash match reporting mode where mode is none, match (the default)
or always.

• --pkt-filter-size=N

Set Flow Director allocated memory size, where N is 64K, 128K or 256K. Sizes are in
kilobytes. The default is 64.

3.2. Testpmd Command-line Options 6

Testpmd Application User Guide, Release 17.08.2

• --pkt-filter-flexbytes-offset=N

Set the flexbytes offset. The offset is defined in words (not bytes) counted from the first
byte of the destination Ethernet MAC address, where N is 0 <= N <= 32. The default
value is 0x6.

• --pkt-filter-drop-queue=N

Set the drop-queue. In perfect filter mode, when a rule is added with queue = -1, the
packet will be enqueued into the RX drop-queue. If the drop-queue does not exist, the
packet is dropped. The default value is N=127.

• --disable-crc-strip

Disable hardware CRC stripping.

• --enable-lro

Enable large receive offload.

• --enable-rx-cksum

Enable hardware RX checksum offload.

• --enable-scatter

Enable scatter (multi-segment) RX.

• --disable-hw-vlan

Disable hardware VLAN.

• --disable-hw-vlan-filter

Disable hardware VLAN filter.

• --disable-hw-vlan-strip

Disable hardware VLAN strip.

• --disable-hw-vlan-extend

Disable hardware VLAN extend.

• --enable-drop-en

Enable per-queue packet drop for packets with no descriptors.

• --disable-rss

Disable RSS (Receive Side Scaling).

• --port-topology=mode

Set port topology, where mode is paired (the default) or chained.

In paired mode, the forwarding is between pairs of ports, for example: (0,1), (2,3), (4,5).

In chained mode, the forwarding is to the next available port in the port mask, for exam-
ple: (0,1), (1,2), (2,0).

The ordering of the ports can be changed using the portlist testpmd runtime function.

• --forward-mode=mode

Set the forwarding mode where mode is one of the following:

3.2. Testpmd Command-line Options 7

Testpmd Application User Guide, Release 17.08.2

io (the default)
mac
mac_swap
flowgen
rxonly
txonly
csum
icmpecho
ieee1588

• --rss-ip

Set RSS functions for IPv4/IPv6 only.

• --rss-udp

Set RSS functions for IPv4/IPv6 and UDP.

• --rxq=N

Set the number of RX queues per port to N, where 1 <= N <= 65535. The default value
is 1.

• --rxd=N

Set the number of descriptors in the RX rings to N, where N > 0. The default value is
128.

• --txq=N

Set the number of TX queues per port to N, where 1 <= N <= 65535. The default value
is 1.

• --txd=N

Set the number of descriptors in the TX rings to N, where N > 0. The default value is 512.

• --burst=N

Set the number of packets per burst to N, where 1 <= N <= 512. The default value is 16.

• --mbcache=N

Set the cache of mbuf memory pools to N, where 0 <= N <= 512. The default value is 16.

• --rxpt=N

Set the prefetch threshold register of RX rings to N, where N >= 0. The default value is
8.

• --rxht=N

Set the host threshold register of RX rings to N, where N >= 0. The default value is 8.

• --rxfreet=N

Set the free threshold of RX descriptors to N, where 0 <= N < value of –rxd. The default
value is 0.

• --rxwt=N

Set the write-back threshold register of RX rings to N, where N >= 0. The default value
is 4.

3.2. Testpmd Command-line Options 8

Testpmd Application User Guide, Release 17.08.2

• --txpt=N

Set the prefetch threshold register of TX rings to N, where N >= 0. The default value is
36.

• --txht=N

Set the host threshold register of TX rings to N, where N >= 0. The default value is 0.

• --txwt=N

Set the write-back threshold register of TX rings to N, where N >= 0. The default value is
0.

• --txfreet=N

Set the transmit free threshold of TX rings to N, where 0 <= N <= value of --txd. The
default value is 0.

• --txrst=N

Set the transmit RS bit threshold of TX rings to N, where 0 <= N <= value of --txd. The
default value is 0.

• --txqflags=0xXXXXXXXX

Set the hexadecimal bitmask of TX queue flags, where 0 <= N <= 0x7FFFFFFF. The
default value is 0.

Note: When using hardware offload functions such as vlan or checksum add
txqflags=0 to force the full-featured TX code path. In some PMDs this may already be
the default.

• --rx-queue-stats-mapping=(port,queue,mapping)[,(port,queue,mapping)]

Set the RX queues statistics counters mapping 0 <= mapping <= 15.

• --tx-queue-stats-mapping=(port,queue,mapping)[,(port,queue,mapping)]

Set the TX queues statistics counters mapping 0 <= mapping <= 15.

• --no-flush-rx

Don’t flush the RX streams before starting forwarding. Used mainly with the PCAP PMD.

• --txpkts=X[,Y]

Set TX segment sizes or total packet length. Valid for tx-only and flowgen forwarding
modes.

• --disable-link-check

Disable check on link status when starting/stopping ports.

• --no-lsc-interrupt

Disable LSC interrupts for all ports, even those supporting it.

• --no-rmv-interrupt

Disable RMV interrupts for all ports, even those supporting it.

3.2. Testpmd Command-line Options 9

Testpmd Application User Guide, Release 17.08.2

• --bitrate-stats=N

Set the logical core N to perform bitrate calculation.

• --print-event <unknown|intr_lsc|queue_state|intr_reset|vf_mbox|macsec|intr_rmv|all>

Enable printing the occurrence of the designated event. Using all will enable all of them.

• --mask-event <unknown|intr_lsc|queue_state|intr_reset|vf_mbox|macsec|intr_rmv|all>

Disable printing the occurrence of the designated event. Using all will disable all of them.

• --flow-isolate-all

Providing this parameter requests flow API isolated mode on all ports at initialization
time. It ensures all traffic is received through the configured flow rules only (see flow
command).

Ports that do not support this mode are automatically discarded.

3.2. Testpmd Command-line Options 10

CHAPTER

FOUR

TESTPMD RUNTIME FUNCTIONS

Where the testpmd application is started in interactive mode, (-i|--interactive), it dis-
plays a prompt that can be used to start and stop forwarding, configure the application, display
statistics (including the extended NIC statistics aka xstats) , set the Flow Director and other
tasks:

testpmd>

The testpmd prompt has some, limited, readline support. Common bash command-line func-
tions such as Ctrl+a and Ctrl+e to go to the start and end of the prompt line are supported
as well as access to the command history via the up-arrow.

There is also support for tab completion. If you type a partial command and hit <TAB> you get
a list of the available completions:

testpmd> show port <TAB>

info [Mul-choice STRING]: show|clear port info|stats|xstats|fdir|stat_qmap|dcb_tc|cap X
info [Mul-choice STRING]: show|clear port info|stats|xstats|fdir|stat_qmap|dcb_tc|cap all
stats [Mul-choice STRING]: show|clear port info|stats|xstats|fdir|stat_qmap|dcb_tc|cap X
stats [Mul-choice STRING]: show|clear port info|stats|xstats|fdir|stat_qmap|dcb_tc|cap all
...

Note: Some examples in this document are too long to fit on one line are are shown wrapped
at “\” for display purposes:

testpmd> set flow_ctrl rx (on|off) tx (on|off) (high_water) (low_water) \
(pause_time) (send_xon) (port_id)

In the real testpmd> prompt these commands should be on a single line.

4.1 Help Functions

The testpmd has on-line help for the functions that are available at runtime. These are divided
into sections and can be accessed using help, help section or help all:

testpmd> help

help control : Start and stop forwarding.
help display : Displaying port, stats and config information.
help config : Configuration information.
help ports : Configuring ports.
help registers : Reading and setting port registers.
help filters : Filters configuration help.
help all : All of the above sections.

11

Testpmd Application User Guide, Release 17.08.2

4.2 Command File Functions

To facilitate loading large number of commands or to avoid cutting and pasting where not
practical or possible testpmd supports alternative methods for executing commands.

• If started with the --cmdline-file=FILENAME command line argument testpmd will
execute all CLI commands contained within the file immediately before starting packet
forwarding or entering interactive mode.

./testpmd -n4 -r2 ... -- -i --cmdline-file=/home/ubuntu/flow-create-commands.txt
Interactive-mode selected
CLI commands to be read from /home/ubuntu/flow-create-commands.txt
Configuring Port 0 (socket 0)
Port 0: 7C:FE:90:CB:74:CE
Configuring Port 1 (socket 0)
Port 1: 7C:FE:90:CB:74:CA
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
Flow rule #0 created
Flow rule #1 created
...
...
Flow rule #498 created
Flow rule #499 created
Read all CLI commands from /home/ubuntu/flow-create-commands.txt
testpmd>

• At run-time additional commands can be loaded in bulk by invoking the load FILENAME
command.

testpmd> load /home/ubuntu/flow-create-commands.txt
Flow rule #0 created
Flow rule #1 created
...
...
Flow rule #498 created
Flow rule #499 created
Read all CLI commands from /home/ubuntu/flow-create-commands.txt
testpmd>

In all cases output from any included command will be displayed as standard output. Execution
will continue until the end of the file is reached regardless of whether any errors occur. The
end user must examine the output to determine if any failures occurred.

4.3 Control Functions

4.3.1 start

Start packet forwarding with current configuration:

testpmd> start

4.2. Command File Functions 12

Testpmd Application User Guide, Release 17.08.2

4.3.2 start tx_first

Start packet forwarding with current configuration after sending specified number of bursts of
packets:

testpmd> start tx_first (""|burst_num)

The default burst number is 1 when burst_num not presented.

4.3.3 stop

Stop packet forwarding, and display accumulated statistics:

testpmd> stop

4.3.4 quit

Quit to prompt:

testpmd> quit

4.4 Display Functions

The functions in the following sections are used to display information about the testpmd con-
figuration or the NIC status.

4.4.1 show port

Display information for a given port or all ports:

testpmd> show port (info|stats|xstats|fdir|stat_qmap|dcb_tc|cap) (port_id|all)

The available information categories are:

• info: General port information such as MAC address.

• stats: RX/TX statistics.

• xstats: RX/TX extended NIC statistics.

• fdir: Flow Director information and statistics.

• stat_qmap: Queue statistics mapping.

• dcb_tc: DCB information such as TC mapping.

• cap: Supported offload capabilities.

For example:

testpmd> show port info 0

********************* Infos for port 0 *********************

MAC address: XX:XX:XX:XX:XX:XX
Connect to socket: 0
memory allocation on the socket: 0
Link status: up

4.4. Display Functions 13

Testpmd Application User Guide, Release 17.08.2

Link speed: 40000 Mbps
Link duplex: full-duplex
Promiscuous mode: enabled
Allmulticast mode: disabled
Maximum number of MAC addresses: 64
Maximum number of MAC addresses of hash filtering: 0
VLAN offload:

strip on
filter on
qinq(extend) off

Redirection table size: 512
Supported flow types:

ipv4-frag
ipv4-tcp
ipv4-udp
ipv4-sctp
ipv4-other
ipv6-frag
ipv6-tcp
ipv6-udp
ipv6-sctp
ipv6-other
l2_payload
port
vxlan
geneve
nvgre

4.4.2 show port rss reta

Display the rss redirection table entry indicated by masks on port X:

testpmd> show port (port_id) rss reta (size) (mask0, mask1...)

size is used to indicate the hardware supported reta size

4.4.3 show port rss-hash

Display the RSS hash functions and RSS hash key of a port:

testpmd> show port (port_id) rss-hash ipv4|ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp|ipv4-other|ipv6|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp|ipv6-other|l2-payload|ipv6-ex|ipv6-tcp-ex|ipv6-udp-ex [key]

4.4.4 clear port

Clear the port statistics for a given port or for all ports:

testpmd> clear port (info|stats|xstats|fdir|stat_qmap) (port_id|all)

For example:

testpmd> clear port stats all

4.4.5 show (rxq|txq)

Display information for a given port’s RX/TX queue:

testpmd> show (rxq|txq) info (port_id) (queue_id)

4.4. Display Functions 14

Testpmd Application User Guide, Release 17.08.2

4.4.6 show config

Displays the configuration of the application. The configuration comes from the command-line,
the runtime or the application defaults:

testpmd> show config (rxtx|cores|fwd|txpkts)

The available information categories are:

• rxtx: RX/TX configuration items.

• cores: List of forwarding cores.

• fwd: Packet forwarding configuration.

• txpkts: Packets to TX configuration.

For example:

testpmd> show config rxtx

io packet forwarding - CRC stripping disabled - packets/burst=16
nb forwarding cores=2 - nb forwarding ports=1
RX queues=1 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=8 hthresh=8 wthresh=4
TX queues=1 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=36 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0

4.4.7 set fwd

Set the packet forwarding mode:

testpmd> set fwd (io|mac|macswap|flowgen| \
rxonly|txonly|csum|icmpecho) (""|retry)

retry can be specified for forwarding engines except rx_only.

The available information categories are:

• io: Forwards packets “as-is” in I/O mode. This is the fastest possible forwarding opera-
tion as it does not access packets data. This is the default mode.

• mac: Changes the source and the destination Ethernet addresses of packets before
forwarding them. Default application behaviour is to set source Ethernet address to that
of the transmitting interface, and destination address to a dummy value (set during init).
The user may specify a target destination Ethernet address via the ‘eth-peer’ or ‘eth-peer-
configfile’ command-line options. It is not currently possible to specify a specific source
Ethernet address.

• macswap: MAC swap forwarding mode. Swaps the source and the destination Ethernet
addresses of packets before forwarding them.

• flowgen: Multi-flow generation mode. Originates a number of flows (with varying desti-
nation IP addresses), and terminate receive traffic.

• rxonly: Receives packets but doesn’t transmit them.

• txonly: Generates and transmits packets without receiving any.

• csum: Changes the checksum field with hardware or software methods depending on
the offload flags on the packet.

4.4. Display Functions 15

Testpmd Application User Guide, Release 17.08.2

• icmpecho: Receives a burst of packets, lookup for IMCP echo requests and, if any, send
back ICMP echo replies.

• ieee1588: Demonstrate L2 IEEE1588 V2 PTP timestamping for RX and TX. Requires
CONFIG_RTE_LIBRTE_IEEE1588=y.

Note: TX timestamping is only available in the “Full Featured” TX path. To force testpmd into
this mode set --txqflags=0.

Example:

testpmd> set fwd rxonly

Set rxonly packet forwarding mode

4.4.8 read rxd

Display an RX descriptor for a port RX queue:

testpmd> read rxd (port_id) (queue_id) (rxd_id)

For example:

testpmd> read rxd 0 0 4
0x0000000B - 0x001D0180 / 0x0000000B - 0x001D0180

4.4.9 read txd

Display a TX descriptor for a port TX queue:

testpmd> read txd (port_id) (queue_id) (txd_id)

For example:

testpmd> read txd 0 0 4
0x00000001 - 0x24C3C440 / 0x000F0000 - 0x2330003C

4.4.10 ddp get list

Get loaded dynamic device personalization (DDP) package info list:

testpmd> ddp get list (port_id)

4.4.11 ddp get info

Display information about dynamic device personalization (DDP) profile:

testpmd> ddp get info (profile_patch)

4.4.12 show vf stats

Display VF statistics:

testpmd> show vf stats (port_id) (vf_id)

4.4. Display Functions 16

Testpmd Application User Guide, Release 17.08.2

4.4.13 clear vf stats

Reset VF statistics:

testpmd> clear vf stats (port_id) (vf_id)

4.5 Configuration Functions

The testpmd application can be configured from the runtime as well as from the command-line.

This section details the available configuration functions that are available.

Note: Configuration changes only become active when forwarding is started/restarted.

4.5.1 set default

Reset forwarding to the default configuration:

testpmd> set default

4.5.2 set verbose

Set the debug verbosity level:

testpmd> set verbose (level)

Currently the only available levels are 0 (silent except for error) and 1 (fully verbose).

4.5.3 set nbport

Set the number of ports used by the application:

set nbport (num)

This is equivalent to the --nb-ports command-line option.

4.5.4 set nbcore

Set the number of cores used by the application:

testpmd> set nbcore (num)

This is equivalent to the --nb-cores command-line option.

Note: The number of cores used must not be greater than number of ports used multiplied by
the number of queues per port.

4.5. Configuration Functions 17

Testpmd Application User Guide, Release 17.08.2

4.5.5 set coremask

Set the forwarding cores hexadecimal mask:

testpmd> set coremask (mask)

This is equivalent to the --coremask command-line option.

Note: The master lcore is reserved for command line parsing only and cannot be masked on
for packet forwarding.

4.5.6 set portmask

Set the forwarding ports hexadecimal mask:

testpmd> set portmask (mask)

This is equivalent to the --portmask command-line option.

4.5.7 set burst

Set number of packets per burst:

testpmd> set burst (num)

This is equivalent to the --burst command-line option.

When retry is enabled, the transmit delay time and number of retries can also be set:

testpmd> set burst tx delay (microseconds) retry (num)

4.5.8 set txpkts

Set the length of each segment of the TX-ONLY packets or length of packet for FLOWGEN
mode:

testpmd> set txpkts (x[,y]*)

Where x[,y]* represents a CSV list of values, without white space.

4.5.9 set txsplit

Set the split policy for the TX packets, applicable for TX-ONLY and CSUM forwarding modes:

testpmd> set txsplit (off|on|rand)

Where:

• off disable packet copy & split for CSUM mode.

• on split outgoing packet into multiple segments. Size of each segment and number of
segments per packet is determined by set txpkts command (see above).

• rand same as ‘on’, but number of segments per each packet is a random value between
1 and total number of segments.

4.5. Configuration Functions 18

Testpmd Application User Guide, Release 17.08.2

4.5.10 set corelist

Set the list of forwarding cores:

testpmd> set corelist (x[,y]*)

For example, to change the forwarding cores:

testpmd> set corelist 3,1
testpmd> show config fwd

io packet forwarding - ports=2 - cores=2 - streams=2 - NUMA support disabled
Logical Core 3 (socket 0) forwards packets on 1 streams:
RX P=0/Q=0 (socket 0) -> TX P=1/Q=0 (socket 0) peer=02:00:00:00:00:01
Logical Core 1 (socket 0) forwards packets on 1 streams:
RX P=1/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer=02:00:00:00:00:00

Note: The cores are used in the same order as specified on the command line.

4.5.11 set portlist

Set the list of forwarding ports:

testpmd> set portlist (x[,y]*)

For example, to change the port forwarding:

testpmd> set portlist 0,2,1,3
testpmd> show config fwd

io packet forwarding - ports=4 - cores=1 - streams=4
Logical Core 3 (socket 0) forwards packets on 4 streams:
RX P=0/Q=0 (socket 0) -> TX P=2/Q=0 (socket 0) peer=02:00:00:00:00:01
RX P=2/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer=02:00:00:00:00:00
RX P=1/Q=0 (socket 0) -> TX P=3/Q=0 (socket 0) peer=02:00:00:00:00:03
RX P=3/Q=0 (socket 0) -> TX P=1/Q=0 (socket 0) peer=02:00:00:00:00:02

4.5.12 set tx loopback

Enable/disable tx loopback:

testpmd> set tx loopback (port_id) (on|off)

4.5.13 set drop enable

set drop enable bit for all queues:

testpmd> set all queues drop (port_id) (on|off)

4.5.14 set split drop enable (for VF)

set split drop enable bit for VF from PF:

testpmd> set vf split drop (port_id) (vf_id) (on|off)

4.5. Configuration Functions 19

Testpmd Application User Guide, Release 17.08.2

4.5.15 set mac antispoof (for VF)

Set mac antispoof for a VF from the PF:

testpmd> set vf mac antispoof (port_id) (vf_id) (on|off)

4.5.16 set macsec offload

Enable/disable MACsec offload:

testpmd> set macsec offload (port_id) on encrypt (on|off) replay-protect (on|off)
testpmd> set macsec offload (port_id) off

4.5.17 set macsec sc

Configure MACsec secure connection (SC):

testpmd> set macsec sc (tx|rx) (port_id) (mac) (pi)

Note: The pi argument is ignored for tx. Check the NIC Datasheet for hardware limits.

4.5.18 set macsec sa

Configure MACsec secure association (SA):

testpmd> set macsec sa (tx|rx) (port_id) (idx) (an) (pn) (key)

Note: The IDX value must be 0 or 1. Check the NIC Datasheet for hardware limits.

4.5.19 set broadcast mode (for VF)

Set broadcast mode for a VF from the PF:

testpmd> set vf broadcast (port_id) (vf_id) (on|off)

4.5.20 vlan set strip

Set the VLAN strip on a port:

testpmd> vlan set strip (on|off) (port_id)

4.5.21 vlan set stripq

Set the VLAN strip for a queue on a port:

testpmd> vlan set stripq (on|off) (port_id,queue_id)

4.5. Configuration Functions 20

Testpmd Application User Guide, Release 17.08.2

4.5.22 vlan set stripq (for VF)

Set VLAN strip for all queues in a pool for a VF from the PF:

testpmd> set vf vlan stripq (port_id) (vf_id) (on|off)

4.5.23 vlan set insert (for VF)

Set VLAN insert for a VF from the PF:

testpmd> set vf vlan insert (port_id) (vf_id) (vlan_id)

4.5.24 vlan set tag (for VF)

Set VLAN tag for a VF from the PF:

testpmd> set vf vlan tag (port_id) (vf_id) (on|off)

4.5.25 vlan set antispoof (for VF)

Set VLAN antispoof for a VF from the PF:

testpmd> set vf vlan antispoof (port_id) (vf_id) (on|off)

4.5.26 vlan set filter

Set the VLAN filter on a port:

testpmd> vlan set filter (on|off) (port_id)

4.5.27 vlan set qinq

Set the VLAN QinQ (extended queue in queue) on for a port:

testpmd> vlan set qinq (on|off) (port_id)

4.5.28 vlan set tpid

Set the inner or outer VLAN TPID for packet filtering on a port:

testpmd> vlan set (inner|outer) tpid (value) (port_id)

Note: TPID value must be a 16-bit number (value <= 65536).

4.5.29 rx_vlan add

Add a VLAN ID, or all identifiers, to the set of VLAN identifiers filtered by port ID:

testpmd> rx_vlan add (vlan_id|all) (port_id)

4.5. Configuration Functions 21

Testpmd Application User Guide, Release 17.08.2

Note: VLAN filter must be set on that port. VLAN ID < 4096. Depending on the NIC used,
number of vlan_ids may be limited to the maximum entries in VFTA table. This is important if
enabling all vlan_ids.

4.5.30 rx_vlan rm

Remove a VLAN ID, or all identifiers, from the set of VLAN identifiers filtered by port ID:

testpmd> rx_vlan rm (vlan_id|all) (port_id)

4.5.31 rx_vlan add (for VF)

Add a VLAN ID, to the set of VLAN identifiers filtered for VF(s) for port ID:

testpmd> rx_vlan add (vlan_id) port (port_id) vf (vf_mask)

4.5.32 rx_vlan rm (for VF)

Remove a VLAN ID, from the set of VLAN identifiers filtered for VF(s) for port ID:

testpmd> rx_vlan rm (vlan_id) port (port_id) vf (vf_mask)

4.5.33 tunnel_filter add

Add a tunnel filter on a port:

testpmd> tunnel_filter add (port_id) (outer_mac) (inner_mac) (ip_addr) \
(inner_vlan) (vxlan|nvgre|ipingre) (imac-ivlan|imac-ivlan-tenid|\
imac-tenid|imac|omac-imac-tenid|oip|iip) (tenant_id) (queue_id)

The available information categories are:

• vxlan: Set tunnel type as VXLAN.

• nvgre: Set tunnel type as NVGRE.

• ipingre: Set tunnel type as IP-in-GRE.

• imac-ivlan: Set filter type as Inner MAC and VLAN.

• imac-ivlan-tenid: Set filter type as Inner MAC, VLAN and tenant ID.

• imac-tenid: Set filter type as Inner MAC and tenant ID.

• imac: Set filter type as Inner MAC.

• omac-imac-tenid: Set filter type as Outer MAC, Inner MAC and tenant ID.

• oip: Set filter type as Outer IP.

• iip: Set filter type as Inner IP.

Example:

testpmd> tunnel_filter add 0 68:05:CA:28:09:82 00:00:00:00:00:00 \
192.168.2.2 0 ipingre oip 1 1

Set an IP-in-GRE tunnel on port 0, and the filter type is Outer IP.

4.5. Configuration Functions 22

Testpmd Application User Guide, Release 17.08.2

4.5.34 tunnel_filter remove

Remove a tunnel filter on a port:

testpmd> tunnel_filter rm (port_id) (outer_mac) (inner_mac) (ip_addr) \
(inner_vlan) (vxlan|nvgre|ipingre) (imac-ivlan|imac-ivlan-tenid|\
imac-tenid|imac|omac-imac-tenid|oip|iip) (tenant_id) (queue_id)

4.5.35 rx_vxlan_port add

Add an UDP port for VXLAN packet filter on a port:

testpmd> rx_vxlan_port add (udp_port) (port_id)

4.5.36 rx_vxlan_port remove

Remove an UDP port for VXLAN packet filter on a port:

testpmd> rx_vxlan_port rm (udp_port) (port_id)

4.5.37 tx_vlan set

Set hardware insertion of VLAN IDs in packets sent on a port:

testpmd> tx_vlan set (port_id) vlan_id[, vlan_id_outer]

For example, set a single VLAN ID (5) insertion on port 0:

tx_vlan set 0 5

Or, set double VLAN ID (inner: 2, outer: 3) insertion on port 1:

tx_vlan set 1 2 3

4.5.38 tx_vlan set pvid

Set port based hardware insertion of VLAN ID in packets sent on a port:

testpmd> tx_vlan set pvid (port_id) (vlan_id) (on|off)

4.5.39 tx_vlan reset

Disable hardware insertion of a VLAN header in packets sent on a port:

testpmd> tx_vlan reset (port_id)

4.5.40 csum set

Select hardware or software calculation of the checksum when transmitting a packet using the
csum forwarding engine:

testpmd> csum set (ip|udp|tcp|sctp|outer-ip) (hw|sw) (port_id)

Where:

• ip|udp|tcp|sctp always relate to the inner layer.

4.5. Configuration Functions 23

Testpmd Application User Guide, Release 17.08.2

• outer-ip relates to the outer IP layer (only for IPv4) in the case where the packet is rec-
ognized as a tunnel packet by the forwarding engine (vxlan, gre and ipip are supported).
See also the csum parse-tunnel command.

Note: Check the NIC Datasheet for hardware limits.

4.5.41 csum parse-tunnel

Define how tunneled packets should be handled by the csum forward engine:

testpmd> csum parse-tunnel (on|off) (tx_port_id)

If enabled, the csum forward engine will try to recognize supported tunnel headers (vxlan, gre,
ipip).

If disabled, treat tunnel packets as non-tunneled packets (a inner header is handled as a packet
payload).

Note: The port argument is the TX port like in the csum set command.

Example:

Consider a packet in packet like the following:

eth_out/ipv4_out/udp_out/vxlan/eth_in/ipv4_in/tcp_in

• If parse-tunnel is enabled, the ip|udp|tcp|sctp parameters of csum set com-
mand relate to the inner headers (here ipv4_in and tcp_in), and the outer-ip
parameter relates to the outer headers (here ipv4_out).

• If parse-tunnel is disabled, the ip|udp|tcp|sctp parameters of csum set
command relate to the outer headers, here ipv4_out and udp_out.

4.5.42 csum show

Display tx checksum offload configuration:

testpmd> csum show (port_id)

4.5.43 tso set

Enable TCP Segmentation Offload (TSO) in the csum forwarding engine:

testpmd> tso set (segsize) (port_id)

Note: Check the NIC datasheet for hardware limits.

4.5.44 tso show

Display the status of TCP Segmentation Offload:

testpmd> tso show (port_id)

4.5. Configuration Functions 24

Testpmd Application User Guide, Release 17.08.2

4.5.45 gro

Enable or disable GRO in csum forwarding engine:

testpmd> gro (on|off) (port_id)

If enabled, the csum forwarding engine will perform GRO on the TCP/IPv4 packets received
from the given port.

If disabled, packets received from the given port won’t be performed GRO. By default, GRO is
disabled for all ports.

Note: When enable GRO for a port, TCP/IPv4 packets received from the port will be per-
formed GRO. After GRO, the merged packets are multi-segments. But csum forwarding engine
doesn’t support to calculate TCP checksum for multi-segment packets in SW. So please select
TCP HW checksum calculation for the port which GROed packets are transmitted to.

4.5.46 gro set

Set max flow number and max packet number per-flow for GRO:

testpmd> gro set (max_flow_num) (max_item_num_per_flow) (port_id)

The product of max_flow_num and max_item_num_per_flow is the max number of packets
a GRO table can store.

If current packet number is greater than or equal to the max value, GRO will stop processing
incoming packets.

4.5.47 mac_addr add

Add an alternative MAC address to a port:

testpmd> mac_addr add (port_id) (XX:XX:XX:XX:XX:XX)

4.5.48 mac_addr remove

Remove a MAC address from a port:

testpmd> mac_addr remove (port_id) (XX:XX:XX:XX:XX:XX)

4.5.49 mac_addr add (for VF)

Add an alternative MAC address for a VF to a port:

testpmd> mac_add add port (port_id) vf (vf_id) (XX:XX:XX:XX:XX:XX)

4.5.50 mac_addr set

Set the default MAC address for a port:

testpmd> mac_addr set (port_id) (XX:XX:XX:XX:XX:XX)

4.5. Configuration Functions 25

Testpmd Application User Guide, Release 17.08.2

4.5.51 mac_addr set (for VF)

Set the MAC address for a VF from the PF:

testpmd> set vf mac addr (port_id) (vf_id) (XX:XX:XX:XX:XX:XX)

4.5.52 set port-uta

Set the unicast hash filter(s) on/off for a port:

testpmd> set port (port_id) uta (XX:XX:XX:XX:XX:XX|all) (on|off)

4.5.53 set promisc

Set the promiscuous mode on for a port or for all ports. In promiscuous mode packets are not
dropped if they aren’t for the specified MAC address:

testpmd> set promisc (port_id|all) (on|off)

4.5.54 set allmulti

Set the allmulti mode for a port or for all ports:

testpmd> set allmulti (port_id|all) (on|off)

Same as the ifconfig (8) option. Controls how multicast packets are handled.

4.5.55 set promisc (for VF)

Set the unicast promiscuous mode for a VF from PF. It’s supported by Intel i40e NICs now. In
promiscuous mode packets are not dropped if they aren’t for the specified MAC address:

testpmd> set vf promisc (port_id) (vf_id) (on|off)

4.5.56 set allmulticast (for VF)

Set the multicast promiscuous mode for a VF from PF. It’s supported by Intel i40e NICs now.
In promiscuous mode packets are not dropped if they aren’t for the specified MAC address:

testpmd> set vf allmulti (port_id) (vf_id) (on|off)

4.5.57 set tx max bandwidth (for VF)

Set TX max absolute bandwidth (Mbps) for a VF from PF:

testpmd> set vf tx max-bandwidth (port_id) (vf_id) (max_bandwidth)

4.5.58 set tc tx min bandwidth (for VF)

Set all TCs’ TX min relative bandwidth (%) for a VF from PF:

testpmd> set vf tc tx min-bandwidth (port_id) (vf_id) (bw1, bw2, ...)

4.5. Configuration Functions 26

Testpmd Application User Guide, Release 17.08.2

4.5.59 set tc tx max bandwidth (for VF)

Set a TC’s TX max absolute bandwidth (Mbps) for a VF from PF:

testpmd> set vf tc tx max-bandwidth (port_id) (vf_id) (tc_no) (max_bandwidth)

4.5.60 set tc strict link priority mode

Set some TCs’ strict link priority mode on a physical port:

testpmd> set tx strict-link-priority (port_id) (tc_bitmap)

4.5.61 set tc tx min bandwidth

Set all TCs’ TX min relative bandwidth (%) globally for all PF and VFs:

testpmd> set tc tx min-bandwidth (port_id) (bw1, bw2, ...)

4.5.62 set flow_ctrl rx

Set the link flow control parameter on a port:

testpmd> set flow_ctrl rx (on|off) tx (on|off) (high_water) (low_water) \
(pause_time) (send_xon) mac_ctrl_frame_fwd (on|off) \
autoneg (on|off) (port_id)

Where:

• high_water (integer): High threshold value to trigger XOFF.

• low_water (integer): Low threshold value to trigger XON.

• pause_time (integer): Pause quota in the Pause frame.

• send_xon (0/1): Send XON frame.

• mac_ctrl_frame_fwd: Enable receiving MAC control frames.

• autoneg: Change the auto-negotiation parameter.

4.5.63 set pfc_ctrl rx

Set the priority flow control parameter on a port:

testpmd> set pfc_ctrl rx (on|off) tx (on|off) (high_water) (low_water) \
(pause_time) (priority) (port_id)

Where:

• high_water (integer): High threshold value.

• low_water (integer): Low threshold value.

• pause_time (integer): Pause quota in the Pause frame.

• priority (0-7): VLAN User Priority.

4.5. Configuration Functions 27

Testpmd Application User Guide, Release 17.08.2

4.5.64 set stat_qmap

Set statistics mapping (qmapping 0..15) for RX/TX queue on port:

testpmd> set stat_qmap (tx|rx) (port_id) (queue_id) (qmapping)

For example, to set rx queue 2 on port 0 to mapping 5:

testpmd>set stat_qmap rx 0 2 5

4.5.65 set port - rx/tx (for VF)

Set VF receive/transmit from a port:

testpmd> set port (port_id) vf (vf_id) (rx|tx) (on|off)

4.5.66 set port - mac address filter (for VF)

Add/Remove unicast or multicast MAC addr filter for a VF:

testpmd> set port (port_id) vf (vf_id) (mac_addr) \
(exact-mac|exact-mac-vlan|hashmac|hashmac-vlan) (on|off)

4.5.67 set port - rx mode(for VF)

Set the VF receive mode of a port:

testpmd> set port (port_id) vf (vf_id) \
rxmode (AUPE|ROPE|BAM|MPE) (on|off)

The available receive modes are:

• AUPE: Accepts untagged VLAN.

• ROPE: Accepts unicast hash.

• BAM: Accepts broadcast packets.

• MPE: Accepts all multicast packets.

4.5.68 set port - tx_rate (for Queue)

Set TX rate limitation for a queue on a port:

testpmd> set port (port_id) queue (queue_id) rate (rate_value)

4.5.69 set port - tx_rate (for VF)

Set TX rate limitation for queues in VF on a port:

testpmd> set port (port_id) vf (vf_id) rate (rate_value) queue_mask (queue_mask)

4.5. Configuration Functions 28

Testpmd Application User Guide, Release 17.08.2

4.5.70 set port - mirror rule

Set pool or vlan type mirror rule for a port:

testpmd> set port (port_id) mirror-rule (rule_id) \
(pool-mirror-up|pool-mirror-down|vlan-mirror) \
(poolmask|vlanid[,vlanid]*) dst-pool (pool_id) (on|off)

Set link mirror rule for a port:

testpmd> set port (port_id) mirror-rule (rule_id) \
(uplink-mirror|downlink-mirror) dst-pool (pool_id) (on|off)

For example to enable mirror traffic with vlan 0,1 to pool 0:

set port 0 mirror-rule 0 vlan-mirror 0,1 dst-pool 0 on

4.5.71 reset port - mirror rule

Reset a mirror rule for a port:

testpmd> reset port (port_id) mirror-rule (rule_id)

4.5.72 set flush_rx

Set the flush on RX streams before forwarding. The default is flush on. Mainly used with PCAP
drivers to turn off the default behavior of flushing the first 512 packets on RX streams:

testpmd> set flush_rx off

4.5.73 set bypass mode

Set the bypass mode for the lowest port on bypass enabled NIC:

testpmd> set bypass mode (normal|bypass|isolate) (port_id)

4.5.74 set bypass event

Set the event required to initiate specified bypass mode for the lowest port on a bypass en-
abled:

testpmd> set bypass event (timeout|os_on|os_off|power_on|power_off) \
mode (normal|bypass|isolate) (port_id)

Where:

• timeout: Enable bypass after watchdog timeout.

• os_on: Enable bypass when OS/board is powered on.

• os_off: Enable bypass when OS/board is powered off.

• power_on: Enable bypass when power supply is turned on.

• power_off: Enable bypass when power supply is turned off.

4.5. Configuration Functions 29

Testpmd Application User Guide, Release 17.08.2

4.5.75 set bypass timeout

Set the bypass watchdog timeout to n seconds where 0 = instant:

testpmd> set bypass timeout (0|1.5|2|3|4|8|16|32)

4.5.76 show bypass config

Show the bypass configuration for a bypass enabled NIC using the lowest port on the NIC:

testpmd> show bypass config (port_id)

4.5.77 set link up

Set link up for a port:

testpmd> set link-up port (port id)

4.5.78 set link down

Set link down for a port:

testpmd> set link-down port (port id)

4.5.79 E-tag set

Enable E-tag insertion for a VF on a port:

testpmd> E-tag set insertion on port-tag-id (value) port (port_id) vf (vf_id)

Disable E-tag insertion for a VF on a port:

testpmd> E-tag set insertion off port (port_id) vf (vf_id)

Enable/disable E-tag stripping on a port:

testpmd> E-tag set stripping (on|off) port (port_id)

Enable/disable E-tag based forwarding on a port:

testpmd> E-tag set forwarding (on|off) port (port_id)

Add an E-tag forwarding filter on a port:

testpmd> E-tag set filter add e-tag-id (value) dst-pool (pool_id) port (port_id)

Delete an E-tag forwarding filter on a port:: testpmd> E-tag set filter del e-tag-id (value)
port (port_id)

4.5.80 ddp add

Load a dynamic device personalization (DDP) package:

testpmd> ddp add (port_id) (package_path[,output_path])

4.5. Configuration Functions 30

Testpmd Application User Guide, Release 17.08.2

4.5.81 ddp del

Delete a dynamic device personalization package:

testpmd> ddp del (port_id) (package_path)

4.5.82 ptype mapping

List all items from the ptype mapping table:

testpmd> ptype mapping get (port_id) (valid_only)

Where:

• valid_only: A flag indicates if only list valid items(=1) or all itemss(=0).

Replace a specific or a group of software defined ptype with a new one:

testpmd> ptype mapping replace (port_id) (target) (mask) (pkt_type)

where:

• target: A specific software ptype or a mask to represent a group of software ptypes.

• mask: A flag indicate if “target” is a specific software ptype(=0) or a ptype mask(=1).

• pkt_type: The new software ptype to replace the old ones.

Update hardware defined ptype to software defined packet type mapping table:

testpmd> ptype mapping update (port_id) (hw_ptype) (sw_ptype)

where:

• hw_ptype: hardware ptype as the index of the ptype mapping table.

• sw_ptype: software ptype as the value of the ptype mapping table.

Reset ptype mapping table:

testpmd> ptype mapping reset (port_id)

4.6 Port Functions

The following sections show functions for configuring ports.

Note: Port configuration changes only become active when forwarding is started/restarted.

4.6.1 port attach

Attach a port specified by pci address or virtual device args:

testpmd> port attach (identifier)

To attach a new pci device, the device should be recognized by kernel first. Then it should be
moved under DPDK management. Finally the port can be attached to testpmd.

For example, to move a pci device using ixgbe under DPDK management:

4.6. Port Functions 31

Testpmd Application User Guide, Release 17.08.2

Check the status of the available devices.
./usertools/dpdk-devbind.py --status

Network devices using DPDK-compatible driver
==
<none>

Network devices using kernel driver
===================================
0000:0a:00.0 '82599ES 10-Gigabit' if=eth2 drv=ixgbe unused=

Bind the device to igb_uio.
sudo ./usertools/dpdk-devbind.py -b igb_uio 0000:0a:00.0

Recheck the status of the devices.
./usertools/dpdk-devbind.py --status
Network devices using DPDK-compatible driver
==
0000:0a:00.0 '82599ES 10-Gigabit' drv=igb_uio unused=

To attach a port created by virtual device, above steps are not needed.

For example, to attach a port whose pci address is 0000:0a:00.0.

testpmd> port attach 0000:0a:00.0
Attaching a new port...
EAL: PCI device 0000:0a:00.0 on NUMA socket -1
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x7f83bfa00000
EAL: PCI memory mapped at 0x7f83bfa80000
PMD: eth_ixgbe_dev_init(): MAC: 2, PHY: 18, SFP+: 5
PMD: eth_ixgbe_dev_init(): port 0 vendorID=0x8086 deviceID=0x10fb
Port 0 is attached. Now total ports is 1
Done

For example, to attach a port created by pcap PMD.

testpmd> port attach net_pcap0
Attaching a new port...
PMD: Initializing pmd_pcap for net_pcap0
PMD: Creating pcap-backed ethdev on numa socket 0
Port 0 is attached. Now total ports is 1
Done

In this case, identifier is net_pcap0. This identifier format is the same as --vdev format of
DPDK applications.

For example, to re-attach a bonded port which has been previously detached, the mode and
slave parameters must be given.

testpmd> port attach net_bond_0,mode=0,slave=1
Attaching a new port...
EAL: Initializing pmd_bond for net_bond_0
EAL: Create bonded device net_bond_0 on port 0 in mode 0 on socket 0.
Port 0 is attached. Now total ports is 1
Done

4.6.2 port detach

Detach a specific port:

4.6. Port Functions 32

Testpmd Application User Guide, Release 17.08.2

testpmd> port detach (port_id)

Before detaching a port, the port should be stopped and closed.

For example, to detach a pci device port 0.

testpmd> port stop 0
Stopping ports...
Done
testpmd> port close 0
Closing ports...
Done

testpmd> port detach 0
Detaching a port...
EAL: PCI device 0000:0a:00.0 on NUMA socket -1
EAL: remove driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory unmapped at 0x7f83bfa00000
EAL: PCI memory unmapped at 0x7f83bfa80000
Done

For example, to detach a virtual device port 0.

testpmd> port stop 0
Stopping ports...
Done
testpmd> port close 0
Closing ports...
Done

testpmd> port detach 0
Detaching a port...
PMD: Closing pcap ethdev on numa socket 0
Port 'net_pcap0' is detached. Now total ports is 0
Done

To remove a pci device completely from the system, first detach the port from testpmd. Then
the device should be moved under kernel management. Finally the device can be removed
using kernel pci hotplug functionality.

For example, to move a pci device under kernel management:

sudo ./usertools/dpdk-devbind.py -b ixgbe 0000:0a:00.0

./usertools/dpdk-devbind.py --status

Network devices using DPDK-compatible driver
==
<none>

Network devices using kernel driver
===================================
0000:0a:00.0 '82599ES 10-Gigabit' if=eth2 drv=ixgbe unused=igb_uio

To remove a port created by a virtual device, above steps are not needed.

4.6.3 port start

Start all ports or a specific port:

testpmd> port start (port_id|all)

4.6. Port Functions 33

Testpmd Application User Guide, Release 17.08.2

4.6.4 port stop

Stop all ports or a specific port:

testpmd> port stop (port_id|all)

4.6.5 port close

Close all ports or a specific port:

testpmd> port close (port_id|all)

4.6.6 port start/stop queue

Start/stop a rx/tx queue on a specific port:

testpmd> port (port_id) (rxq|txq) (queue_id) (start|stop)

Only take effect when port is started.

4.6.7 port config - speed

Set the speed and duplex mode for all ports or a specific port:

testpmd> port config (port_id|all) speed (10|100|1000|10000|25000|40000|50000|100000|auto) \
duplex (half|full|auto)

4.6.8 port config - queues/descriptors

Set number of queues/descriptors for rxq, txq, rxd and txd:

testpmd> port config all (rxq|txq|rxd|txd) (value)

This is equivalent to the --rxq, --txq, --rxd and --txd command-line options.

4.6.9 port config - max-pkt-len

Set the maximum packet length:

testpmd> port config all max-pkt-len (value)

This is equivalent to the --max-pkt-len command-line option.

4.6.10 port config - CRC Strip

Set hardware CRC stripping on or off for all ports:

testpmd> port config all crc-strip (on|off)

CRC stripping is on by default.

The off option is equivalent to the --disable-crc-strip command-line option.

4.6. Port Functions 34

Testpmd Application User Guide, Release 17.08.2

4.6.11 port config - scatter

Set RX scatter mode on or off for all ports:

testpmd> port config all scatter (on|off)

RX scatter mode is off by default.

The on option is equivalent to the --enable-scatter command-line option.

4.6.12 port config - TX queue flags

Set a hexadecimal bitmap of TX queue flags for all ports:

testpmd> port config all txqflags value

This command is equivalent to the --txqflags command-line option.

4.6.13 port config - RX Checksum

Set hardware RX checksum offload to on or off for all ports:

testpmd> port config all rx-cksum (on|off)

Checksum offload is off by default.

The on option is equivalent to the --enable-rx-cksum command-line option.

4.6.14 port config - VLAN

Set hardware VLAN on or off for all ports:

testpmd> port config all hw-vlan (on|off)

Hardware VLAN is on by default.

The off option is equivalent to the --disable-hw-vlan command-line option.

4.6.15 port config - VLAN filter

Set hardware VLAN filter on or off for all ports:

testpmd> port config all hw-vlan-filter (on|off)

Hardware VLAN filter is on by default.

The off option is equivalent to the --disable-hw-vlan-filter command-line option.

4.6.16 port config - VLAN strip

Set hardware VLAN strip on or off for all ports:

testpmd> port config all hw-vlan-strip (on|off)

Hardware VLAN strip is on by default.

The off option is equivalent to the --disable-hw-vlan-strip command-line option.

4.6. Port Functions 35

Testpmd Application User Guide, Release 17.08.2

4.6.17 port config - VLAN extend

Set hardware VLAN extend on or off for all ports:

testpmd> port config all hw-vlan-extend (on|off)

Hardware VLAN extend is off by default.

The off option is equivalent to the --disable-hw-vlan-extend command-line option.

4.6.18 port config - Drop Packets

Set packet drop for packets with no descriptors on or off for all ports:

testpmd> port config all drop-en (on|off)

Packet dropping for packets with no descriptors is off by default.

The on option is equivalent to the --enable-drop-en command-line option.

4.6.19 port config - RSS

Set the RSS (Receive Side Scaling) mode on or off:

testpmd> port config all rss (all|ip|tcp|udp|sctp|ether|port|vxlan|geneve|nvgre|none)

RSS is on by default.

The none option is equivalent to the --disable-rss command-line option.

4.6.20 port config - RSS Reta

Set the RSS (Receive Side Scaling) redirection table:

testpmd> port config all rss reta (hash,queue)[,(hash,queue)]

4.6.21 port config - DCB

Set the DCB mode for an individual port:

testpmd> port config (port_id) dcb vt (on|off) (traffic_class) pfc (on|off)

The traffic class should be 4 or 8.

4.6.22 port config - Burst

Set the number of packets per burst:

testpmd> port config all burst (value)

This is equivalent to the --burst command-line option.

4.6. Port Functions 36

Testpmd Application User Guide, Release 17.08.2

4.6.23 port config - Threshold

Set thresholds for TX/RX queues:

testpmd> port config all (threshold) (value)

Where the threshold type can be:

• txpt: Set the prefetch threshold register of the TX rings, 0 <= value <= 255.

• txht: Set the host threshold register of the TX rings, 0 <= value <= 255.

• txwt: Set the write-back threshold register of the TX rings, 0 <= value <= 255.

• rxpt: Set the prefetch threshold register of the RX rings, 0 <= value <= 255.

• rxht: Set the host threshold register of the RX rings, 0 <= value <= 255.

• rxwt: Set the write-back threshold register of the RX rings, 0 <= value <= 255.

• txfreet: Set the transmit free threshold of the TX rings, 0 <= value <= txd.

• rxfreet: Set the transmit free threshold of the RX rings, 0 <= value <= rxd.

• txrst: Set the transmit RS bit threshold of TX rings, 0 <= value <= txd.

These threshold options are also available from the command-line.

4.6.24 port config - E-tag

Set the value of ether-type for E-tag:

testpmd> port config (port_id|all) l2-tunnel E-tag ether-type (value)

Enable/disable the E-tag support:

testpmd> port config (port_id|all) l2-tunnel E-tag (enable|disable)

4.7 Link Bonding Functions

The Link Bonding functions make it possible to dynamically create and manage link bonding
devices from within testpmd interactive prompt.

4.7.1 create bonded device

Create a new bonding device:

testpmd> create bonded device (mode) (socket)

For example, to create a bonded device in mode 1 on socket 0:

testpmd> create bonded 1 0
created new bonded device (port X)

4.7. Link Bonding Functions 37

Testpmd Application User Guide, Release 17.08.2

4.7.2 add bonding slave

Adds Ethernet device to a Link Bonding device:

testpmd> add bonding slave (slave id) (port id)

For example, to add Ethernet device (port 6) to a Link Bonding device (port 10):

testpmd> add bonding slave 6 10

4.7.3 remove bonding slave

Removes an Ethernet slave device from a Link Bonding device:

testpmd> remove bonding slave (slave id) (port id)

For example, to remove Ethernet slave device (port 6) to a Link Bonding device (port 10):

testpmd> remove bonding slave 6 10

4.7.4 set bonding mode

Set the Link Bonding mode of a Link Bonding device:

testpmd> set bonding mode (value) (port id)

For example, to set the bonding mode of a Link Bonding device (port 10) to broadcast (mode
3):

testpmd> set bonding mode 3 10

4.7.5 set bonding primary

Set an Ethernet slave device as the primary device on a Link Bonding device:

testpmd> set bonding primary (slave id) (port id)

For example, to set the Ethernet slave device (port 6) as the primary port of a Link Bonding
device (port 10):

testpmd> set bonding primary 6 10

4.7.6 set bonding mac

Set the MAC address of a Link Bonding device:

testpmd> set bonding mac (port id) (mac)

For example, to set the MAC address of a Link Bonding device (port 10) to 00:00:00:00:00:01:

testpmd> set bonding mac 10 00:00:00:00:00:01

4.7.7 set bonding xmit_balance_policy

Set the transmission policy for a Link Bonding device when it is in Balance XOR mode:

testpmd> set bonding xmit_balance_policy (port_id) (l2|l23|l34)

4.7. Link Bonding Functions 38

Testpmd Application User Guide, Release 17.08.2

For example, set a Link Bonding device (port 10) to use a balance policy of layer 3+4 (IP
addresses & UDP ports):

testpmd> set bonding xmit_balance_policy 10 l34

4.7.8 set bonding mon_period

Set the link status monitoring polling period in milliseconds for a bonding device.

This adds support for PMD slave devices which do not support link status interrupts. When the
mon_period is set to a value greater than 0 then all PMD’s which do not support link status ISR
will be queried every polling interval to check if their link status has changed:

testpmd> set bonding mon_period (port_id) (value)

For example, to set the link status monitoring polling period of bonded device (port 5) to 150ms:

testpmd> set bonding mon_period 5 150

4.7.9 set bonding lacp dedicated_queue

Enable dedicated tx/rx queues on bonding devices slaves to handle LACP control plane traffic
when in mode 4 (link-aggregration-802.3ad):

testpmd> set bonding lacp dedicated_queues (port_id) (enable|disable)

4.7.10 set bonding agg_mode

Enable one of the specific aggregators mode when in mode 4 (link-aggregration-802.3ad):

testpmd> set bonding agg_mode (port_id) (bandwidth|count|stable)

4.7.11 show bonding config

Show the current configuration of a Link Bonding device:

testpmd> show bonding config (port id)

For example, to show the configuration a Link Bonding device (port 9) with 3 slave devices (1,
3, 4) in balance mode with a transmission policy of layer 2+3:

testpmd> show bonding config 9
Bonding mode: 2
Balance Xmit Policy: BALANCE_XMIT_POLICY_LAYER23
Slaves (3): [1 3 4]
Active Slaves (3): [1 3 4]
Primary: [3]

4.8 Register Functions

The Register Functions can be used to read from and write to registers on the network card
referenced by a port number. This is mainly useful for debugging purposes. Reference should
be made to the appropriate datasheet for the network card for details on the register addresses
and fields that can be accessed.

4.8. Register Functions 39

Testpmd Application User Guide, Release 17.08.2

4.8.1 read reg

Display the value of a port register:

testpmd> read reg (port_id) (address)

For example, to examine the Flow Director control register (FDIRCTL, 0x0000EE000) on an
Intel 82599 10 GbE Controller:

testpmd> read reg 0 0xEE00
port 0 PCI register at offset 0xEE00: 0x4A060029 (1241907241)

4.8.2 read regfield

Display a port register bit field:

testpmd> read regfield (port_id) (address) (bit_x) (bit_y)

For example, reading the lowest two bits from the register in the example above:

testpmd> read regfield 0 0xEE00 0 1
port 0 PCI register at offset 0xEE00: bits[0, 1]=0x1 (1)

4.8.3 read regbit

Display a single port register bit:

testpmd> read regbit (port_id) (address) (bit_x)

For example, reading the lowest bit from the register in the example above:

testpmd> read regbit 0 0xEE00 0
port 0 PCI register at offset 0xEE00: bit 0=1

4.8.4 write reg

Set the value of a port register:

testpmd> write reg (port_id) (address) (value)

For example, to clear a register:

testpmd> write reg 0 0xEE00 0x0
port 0 PCI register at offset 0xEE00: 0x00000000 (0)

4.8.5 write regfield

Set bit field of a port register:

testpmd> write regfield (port_id) (address) (bit_x) (bit_y) (value)

For example, writing to the register cleared in the example above:

testpmd> write regfield 0 0xEE00 0 1 2
port 0 PCI register at offset 0xEE00: 0x00000002 (2)

4.8. Register Functions 40

Testpmd Application User Guide, Release 17.08.2

4.8.6 write regbit

Set single bit value of a port register:

testpmd> write regbit (port_id) (address) (bit_x) (value)

For example, to set the high bit in the register from the example above:

testpmd> write regbit 0 0xEE00 31 1
port 0 PCI register at offset 0xEE00: 0x8000000A (2147483658)

4.9 Filter Functions

This section details the available filter functions that are available.

Note these functions interface the deprecated legacy filtering framework, superseded by
rte_flow. See Flow rules management .

4.9.1 ethertype_filter

Add or delete a L2 Ethertype filter, which identify packets by their L2 Ethertype mainly assign
them to a receive queue:

ethertype_filter (port_id) (add|del) (mac_addr|mac_ignr) (mac_address) \
ethertype (ether_type) (drop|fwd) queue (queue_id)

The available information parameters are:

• port_id: The port which the Ethertype filter assigned on.

• mac_addr: Compare destination mac address.

• mac_ignr: Ignore destination mac address match.

• mac_address: Destination mac address to match.

• ether_type: The EtherType value want to match, for example 0x0806 for ARP packet.
0x0800 (IPv4) and 0x86DD (IPv6) are invalid.

• queue_id: The receive queue associated with this EtherType filter. It is meaningless
when deleting or dropping.

Example, to add/remove an ethertype filter rule:

testpmd> ethertype_filter 0 add mac_ignr 00:11:22:33:44:55 \
ethertype 0x0806 fwd queue 3

testpmd> ethertype_filter 0 del mac_ignr 00:11:22:33:44:55 \
ethertype 0x0806 fwd queue 3

4.9.2 2tuple_filter

Add or delete a 2-tuple filter, which identifies packets by specific protocol and destination
TCP/UDP port and forwards packets into one of the receive queues:

2tuple_filter (port_id) (add|del) dst_port (dst_port_value) \
protocol (protocol_value) mask (mask_value) \
tcp_flags (tcp_flags_value) priority (prio_value) \
queue (queue_id)

4.9. Filter Functions 41

Testpmd Application User Guide, Release 17.08.2

The available information parameters are:

• port_id: The port which the 2-tuple filter assigned on.

• dst_port_value: Destination port in L4.

• protocol_value: IP L4 protocol.

• mask_value: Participates in the match or not by bit for field above, 1b means participate.

• tcp_flags_value: TCP control bits. The non-zero value is invalid, when the pro_value
is not set to 0x06 (TCP).

• prio_value: Priority of this filter.

• queue_id: The receive queue associated with this 2-tuple filter.

Example, to add/remove an 2tuple filter rule:

testpmd> 2tuple_filter 0 add dst_port 32 protocol 0x06 mask 0x03 \
tcp_flags 0x02 priority 3 queue 3

testpmd> 2tuple_filter 0 del dst_port 32 protocol 0x06 mask 0x03 \
tcp_flags 0x02 priority 3 queue 3

4.9.3 5tuple_filter

Add or delete a 5-tuple filter, which consists of a 5-tuple (protocol, source and destination IP
addresses, source and destination TCP/UDP/SCTP port) and routes packets into one of the
receive queues:

5tuple_filter (port_id) (add|del) dst_ip (dst_address) src_ip \
(src_address) dst_port (dst_port_value) \
src_port (src_port_value) protocol (protocol_value) \
mask (mask_value) tcp_flags (tcp_flags_value) \
priority (prio_value) queue (queue_id)

The available information parameters are:

• port_id: The port which the 5-tuple filter assigned on.

• dst_address: Destination IP address.

• src_address: Source IP address.

• dst_port_value: TCP/UDP destination port.

• src_port_value: TCP/UDP source port.

• protocol_value: L4 protocol.

• mask_value: Participates in the match or not by bit for field above, 1b means participate

• tcp_flags_value: TCP control bits. The non-zero value is invalid, when the proto-
col_value is not set to 0x06 (TCP).

• prio_value: The priority of this filter.

• queue_id: The receive queue associated with this 5-tuple filter.

Example, to add/remove an 5tuple filter rule:

4.9. Filter Functions 42

Testpmd Application User Guide, Release 17.08.2

testpmd> 5tuple_filter 0 add dst_ip 2.2.2.5 src_ip 2.2.2.4 \
dst_port 64 src_port 32 protocol 0x06 mask 0x1F \
flags 0x0 priority 3 queue 3

testpmd> 5tuple_filter 0 del dst_ip 2.2.2.5 src_ip 2.2.2.4 \
dst_port 64 src_port 32 protocol 0x06 mask 0x1F \
flags 0x0 priority 3 queue 3

4.9.4 syn_filter

Using the SYN filter, TCP packets whose SYN flag is set can be forwarded to a separate
queue:

syn_filter (port_id) (add|del) priority (high|low) queue (queue_id)

The available information parameters are:

• port_id: The port which the SYN filter assigned on.

• high: This SYN filter has higher priority than other filters.

• low: This SYN filter has lower priority than other filters.

• queue_id: The receive queue associated with this SYN filter

Example:

testpmd> syn_filter 0 add priority high queue 3

4.9.5 flex_filter

With flex filter, packets can be recognized by any arbitrary pattern within the first 128 bytes of
the packet and routed into one of the receive queues:

flex_filter (port_id) (add|del) len (len_value) bytes (bytes_value) \
mask (mask_value) priority (prio_value) queue (queue_id)

The available information parameters are:

• port_id: The port which the Flex filter is assigned on.

• len_value: Filter length in bytes, no greater than 128.

• bytes_value: A string in hexadecimal, means the value the flex filter needs to match.

• mask_value: A string in hexadecimal, bit 1 means corresponding byte participates in
the match.

• prio_value: The priority of this filter.

• queue_id: The receive queue associated with this Flex filter.

Example:

testpmd> flex_filter 0 add len 16 bytes 0x00000000000000000000000008060000 \
mask 000C priority 3 queue 3

testpmd> flex_filter 0 del len 16 bytes 0x00000000000000000000000008060000 \
mask 000C priority 3 queue 3

4.9. Filter Functions 43

Testpmd Application User Guide, Release 17.08.2

4.9.6 flow_director_filter

The Flow Director works in receive mode to identify specific flows or sets of flows and route
them to specific queues.

Four types of filtering are supported which are referred to as Perfect Match, Signature, Perfect-
mac-vlan and Perfect-tunnel filters, the match mode is set by the --pkt-filter-mode
command-line parameter:

• Perfect match filters. The hardware checks a match between the masked fields of the
received packets and the programmed filters. The masked fields are for IP flow.

• Signature filters. The hardware checks a match between a hash-based signature of the
masked fields of the received packet.

• Perfect-mac-vlan match filters. The hardware checks a match between the masked fields
of the received packets and the programmed filters. The masked fields are for MAC VLAN
flow.

• Perfect-tunnel match filters. The hardware checks a match between the masked fields of
the received packets and the programmed filters. The masked fields are for tunnel flow.

The Flow Director filters can match the different fields for different type of packet: flow type,
specific input set per flow type and the flexible payload.

The Flow Director can also mask out parts of all of these fields so that filters are only applied
to certain fields or parts of the fields.

Different NICs may have different capabilities, command show port fdir (port_id) can be used
to acquire the information.

Commands to add flow director filters of different flow types:

flow_director_filter (port_id) mode IP (add|del|update) \
flow (ipv4-other|ipv4-frag|ipv6-other|ipv6-frag) \
src (src_ip_address) dst (dst_ip_address) \
tos (tos_value) proto (proto_value) ttl (ttl_value) \
vlan (vlan_value) flexbytes (flexbytes_value) \
(drop|fwd) pf|vf(vf_id) queue (queue_id) \
fd_id (fd_id_value)

flow_director_filter (port_id) mode IP (add|del|update) \
flow (ipv4-tcp|ipv4-udp|ipv6-tcp|ipv6-udp) \
src (src_ip_address) (src_port) \
dst (dst_ip_address) (dst_port) \
tos (tos_value) ttl (ttl_value) \
vlan (vlan_value) flexbytes (flexbytes_value) \
(drop|fwd) queue pf|vf(vf_id) (queue_id) \
fd_id (fd_id_value)

flow_director_filter (port_id) mode IP (add|del|update) \
flow (ipv4-sctp|ipv6-sctp) \
src (src_ip_address) (src_port) \
dst (dst_ip_address) (dst_port) \
tos (tos_value) ttl (ttl_value) \
tag (verification_tag) vlan (vlan_value) \
flexbytes (flexbytes_value) (drop|fwd) \
pf|vf(vf_id) queue (queue_id) fd_id (fd_id_value)

flow_director_filter (port_id) mode IP (add|del|update) flow l2_payload \
ether (ethertype) flexbytes (flexbytes_value) \
(drop|fwd) pf|vf(vf_id) queue (queue_id)

4.9. Filter Functions 44

Testpmd Application User Guide, Release 17.08.2

fd_id (fd_id_value)

flow_director_filter (port_id) mode MAC-VLAN (add|del|update) \
mac (mac_address) vlan (vlan_value) \
flexbytes (flexbytes_value) (drop|fwd) \
queue (queue_id) fd_id (fd_id_value)

flow_director_filter (port_id) mode Tunnel (add|del|update) \
mac (mac_address) vlan (vlan_value) \
tunnel (NVGRE|VxLAN) tunnel-id (tunnel_id_value) \
flexbytes (flexbytes_value) (drop|fwd) \
queue (queue_id) fd_id (fd_id_value)

For example, to add an ipv4-udp flow type filter:

testpmd> flow_director_filter 0 mode IP add flow ipv4-udp src 2.2.2.3 32 \
dst 2.2.2.5 33 tos 2 ttl 40 vlan 0x1 flexbytes (0x88,0x48) \
fwd pf queue 1 fd_id 1

For example, add an ipv4-other flow type filter:

testpmd> flow_director_filter 0 mode IP add flow ipv4-other src 2.2.2.3 \
dst 2.2.2.5 tos 2 proto 20 ttl 40 vlan 0x1 \
flexbytes (0x88,0x48) fwd pf queue 1 fd_id 1

4.9.7 flush_flow_director

Flush all flow director filters on a device:

testpmd> flush_flow_director (port_id)

Example, to flush all flow director filter on port 0:

testpmd> flush_flow_director 0

4.9.8 flow_director_mask

Set flow director’s input masks:

flow_director_mask (port_id) mode IP vlan (vlan_value) \
src_mask (ipv4_src) (ipv6_src) (src_port) \
dst_mask (ipv4_dst) (ipv6_dst) (dst_port)

flow_director_mask (port_id) mode MAC-VLAN vlan (vlan_value)

flow_director_mask (port_id) mode Tunnel vlan (vlan_value) \
mac (mac_value) tunnel-type (tunnel_type_value) \
tunnel-id (tunnel_id_value)

Example, to set flow director mask on port 0:

testpmd> flow_director_mask 0 mode IP vlan 0xefff \
src_mask 255.255.255.255 \

FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF 0xFFFF \
dst_mask 255.255.255.255 \

FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF:FFFF 0xFFFF

4.9.9 flow_director_flex_mask

set masks of flow director’s flexible payload based on certain flow type:

4.9. Filter Functions 45

Testpmd Application User Guide, Release 17.08.2

testpmd> flow_director_flex_mask (port_id) \
flow (none|ipv4-other|ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp| \

ipv6-other|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp| \
l2_payload|all) (mask)

Example, to set flow director’s flex mask for all flow type on port 0:

testpmd> flow_director_flex_mask 0 flow all \
(0xff,0xff,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

4.9.10 flow_director_flex_payload

Configure flexible payload selection:

flow_director_flex_payload (port_id) (raw|l2|l3|l4) (config)

For example, to select the first 16 bytes from the offset 4 (bytes) of packet’s payload as flexible
payload:

testpmd> flow_director_flex_payload 0 l4 \
(4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)

4.9.11 get_sym_hash_ena_per_port

Get symmetric hash enable configuration per port:

get_sym_hash_ena_per_port (port_id)

For example, to get symmetric hash enable configuration of port 1:

testpmd> get_sym_hash_ena_per_port 1

4.9.12 set_sym_hash_ena_per_port

Set symmetric hash enable configuration per port to enable or disable:

set_sym_hash_ena_per_port (port_id) (enable|disable)

For example, to set symmetric hash enable configuration of port 1 to enable:

testpmd> set_sym_hash_ena_per_port 1 enable

4.9.13 get_hash_global_config

Get the global configurations of hash filters:

get_hash_global_config (port_id)

For example, to get the global configurations of hash filters of port 1:

testpmd> get_hash_global_config 1

4.9.14 set_hash_global_config

Set the global configurations of hash filters:

4.9. Filter Functions 46

Testpmd Application User Guide, Release 17.08.2

set_hash_global_config (port_id) (toeplitz|simple_xor|default) \
(ipv4|ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp|ipv4-other|ipv6|ipv6-frag| \
ipv6-tcp|ipv6-udp|ipv6-sctp|ipv6-other|l2_payload) \
(enable|disable)

For example, to enable simple_xor for flow type of ipv6 on port 2:

testpmd> set_hash_global_config 2 simple_xor ipv6 enable

4.9.15 set_hash_input_set

Set the input set for hash:

set_hash_input_set (port_id) (ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp| \
ipv4-other|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp|ipv6-other| \
l2_payload) (ovlan|ivlan|src-ipv4|dst-ipv4|src-ipv6|dst-ipv6|ipv4-tos| \
ipv4-proto|ipv6-tc|ipv6-next-header|udp-src-port|udp-dst-port| \
tcp-src-port|tcp-dst-port|sctp-src-port|sctp-dst-port|sctp-veri-tag| \
udp-key|gre-key|fld-1st|fld-2nd|fld-3rd|fld-4th|fld-5th|fld-6th|fld-7th| \
fld-8th|none) (select|add)

For example, to add source IP to hash input set for flow type of ipv4-udp on port 0:

testpmd> set_hash_input_set 0 ipv4-udp src-ipv4 add

4.9.16 set_fdir_input_set

The Flow Director filters can match the different fields for different type of packet, i.e. specific
input set on per flow type and the flexible payload. This command can be used to change input
set for each flow type.

Set the input set for flow director:

set_fdir_input_set (port_id) (ipv4-frag|ipv4-tcp|ipv4-udp|ipv4-sctp| \
ipv4-other|ipv6|ipv6-frag|ipv6-tcp|ipv6-udp|ipv6-sctp|ipv6-other| \
l2_payload) (ivlan|ethertype|src-ipv4|dst-ipv4|src-ipv6|dst-ipv6|ipv4-tos| \
ipv4-proto|ipv4-ttl|ipv6-tc|ipv6-next-header|ipv6-hop-limits| \
tudp-src-port|udp-dst-port|cp-src-port|tcp-dst-port|sctp-src-port| \
sctp-dst-port|sctp-veri-tag|none) (select|add)

For example to add source IP to FD input set for flow type of ipv4-udp on port 0:

testpmd> set_fdir_input_set 0 ipv4-udp src-ipv4 add

4.9.17 global_config

Set different GRE key length for input set:

global_config (port_id) gre-key-len (number in bytes)

For example to set GRE key length for input set to 4 bytes on port 0:

testpmd> global_config 0 gre-key-len 4

4.10 Flow rules management

Control of the generic flow API (rte_flow) is fully exposed through the flow command (valida-
tion, creation, destruction, queries and operation modes).

4.10. Flow rules management 47

Testpmd Application User Guide, Release 17.08.2

Considering rte_flow overlaps with all Filter Functions, using both features simultaneously may
cause undefined side-effects and is therefore not recommended.

4.10.1 flow syntax

Because the flow command uses dynamic tokens to handle the large number of possible flow
rules combinations, its behavior differs slightly from other commands, in particular:

• Pressing ? or the <tab> key displays contextual help for the current token, not that of the
entire command.

• Optional and repeated parameters are supported (provided they are listed in the contex-
tual help).

The first parameter stands for the operation mode. Possible operations and their general syntax
are described below. They are covered in detail in the following sections.

• Check whether a flow rule can be created:

flow validate {port_id}
[group {group_id}] [priority {level}] [ingress] [egress]
pattern {item} [/ {item} [...]] / end
actions {action} [/ {action} [...]] / end

• Create a flow rule:

flow create {port_id}
[group {group_id}] [priority {level}] [ingress] [egress]
pattern {item} [/ {item} [...]] / end
actions {action} [/ {action} [...]] / end

• Destroy specific flow rules:

flow destroy {port_id} rule {rule_id} [...]

• Destroy all flow rules:

flow flush {port_id}

• Query an existing flow rule:

flow query {port_id} {rule_id} {action}

• List existing flow rules sorted by priority, filtered by group identifiers:

flow list {port_id} [group {group_id}] [...]

• Restrict ingress traffic to the defined flow rules:

flow isolate {port_id} {boolean}

4.10.2 Validating flow rules

flow validate reports whether a flow rule would be accepted by the underlying device in
its current state but stops short of creating it. It is bound to rte_flow_validate():

flow validate {port_id}
[group {group_id}] [priority {level}] [ingress] [egress]
pattern {item} [/ {item} [...]] / end
actions {action} [/ {action} [...]] / end

If successful, it will show:

4.10. Flow rules management 48

Testpmd Application User Guide, Release 17.08.2

Flow rule validated

Otherwise it will show an error message of the form:

Caught error type [...] ([...]): [...]

This command uses the same parameters as flow create, their format is described in Cre-
ating flow rules.

Check whether redirecting any Ethernet packet received on port 0 to RX queue index 6 is
supported:

testpmd> flow validate 0 ingress pattern eth / end
actions queue index 6 / end

Flow rule validated
testpmd>

Port 0 does not support TCPv6 rules:

testpmd> flow validate 0 ingress pattern eth / ipv6 / tcp / end
actions drop / end

Caught error type 9 (specific pattern item): Invalid argument
testpmd>

4.10.3 Creating flow rules

flow create validates and creates the specified flow rule. It is bound to
rte_flow_create():

flow create {port_id}
[group {group_id}] [priority {level}] [ingress] [egress]
pattern {item} [/ {item} [...]] / end
actions {action} [/ {action} [...]] / end

If successful, it will return a flow rule ID usable with other commands:

Flow rule #[...] created

Otherwise it will show an error message of the form:

Caught error type [...] ([...]): [...]

Parameters describe in the following order:

• Attributes (group, priority, ingress, egress tokens).

• A matching pattern, starting with the pattern token and terminated by an end pattern
item.

• Actions, starting with the actions token and terminated by an end action.

These translate directly to rte_flow objects provided as-is to the underlying functions.

The shortest valid definition only comprises mandatory tokens:

testpmd> flow create 0 pattern end actions end

Note that PMDs may refuse rules that essentially do nothing such as this one.

All unspecified object values are automatically initialized to 0.

4.10. Flow rules management 49

Testpmd Application User Guide, Release 17.08.2

Attributes

These tokens affect flow rule attributes (struct rte_flow_attr) and are specified before
the pattern token.

• group {group id}: priority group.

• priority {level}: priority level within group.

• ingress: rule applies to ingress traffic.

• egress: rule applies to egress traffic.

Each instance of an attribute specified several times overrides the previous value as shown
below (group 4 is used):

testpmd> flow create 0 group 42 group 24 group 4 [...]

Note that once enabled, ingress and egress cannot be disabled.

While not specifying a direction is an error, some rules may allow both simultaneously.

Most rules affect RX therefore contain the ingress token:

testpmd> flow create 0 ingress pattern [...]

Matching pattern

A matching pattern starts after the pattern token. It is made of pattern items and is termi-
nated by a mandatory end item.

Items are named after their type (RTE_FLOW_ITEM_TYPE_ from enum
rte_flow_item_type).

The / token is used as a separator between pattern items as shown below:

testpmd> flow create 0 ingress pattern eth / ipv4 / udp / end [...]

Note that protocol items like these must be stacked from lowest to highest layer to make sense.
For instance, the following rule is either invalid or unlikely to match any packet:

testpmd> flow create 0 ingress pattern eth / udp / ipv4 / end [...]

More information on these restrictions can be found in the rte_flow documentation.

Several items support additional specification structures, for example ipv4 allows specifying
source and destination addresses as follows:

testpmd> flow create 0 ingress pattern eth / ipv4 src is 10.1.1.1
dst is 10.2.0.0 / end [...]

This rule matches all IPv4 traffic with the specified properties.

In this example, src and dst are field names of the underlying struct
rte_flow_item_ipv4 object. All item properties can be specified in a similar fashion.

The is token means that the subsequent value must be matched exactly, and assigns spec
and mask fields in struct rte_flow_item accordingly. Possible assignment tokens are:

• is: match value perfectly (with full bit-mask).

• spec: match value according to configured bit-mask.

• last: specify upper bound to establish a range.

4.10. Flow rules management 50

Testpmd Application User Guide, Release 17.08.2

• mask: specify bit-mask with relevant bits set to one.

• prefix: generate bit-mask from a prefix length.

These yield identical results:

ipv4 src is 10.1.1.1

ipv4 src spec 10.1.1.1 src mask 255.255.255.255

ipv4 src spec 10.1.1.1 src prefix 32

ipv4 src is 10.1.1.1 src last 10.1.1.1 # range with a single value

ipv4 src is 10.1.1.1 src last 0 # 0 disables range

Inclusive ranges can be defined with last:

ipv4 src is 10.1.1.1 src last 10.2.3.4 # 10.1.1.1 to 10.2.3.4

Note that mask affects both spec and last:

ipv4 src is 10.1.1.1 src last 10.2.3.4 src mask 255.255.0.0
matches 10.1.0.0 to 10.2.255.255

Properties can be modified multiple times:

ipv4 src is 10.1.1.1 src is 10.1.2.3 src is 10.2.3.4 # matches 10.2.3.4

ipv4 src is 10.1.1.1 src prefix 24 src prefix 16 # matches 10.1.0.0/16

Pattern items

This section lists supported pattern items and their attributes, if any.

• end: end list of pattern items.

• void: no-op pattern item.

• invert: perform actions when pattern does not match.

• any: match any protocol for the current layer.

– num {unsigned}: number of layers covered.

• pf: match packets addressed to the physical function.

• vf: match packets addressed to a virtual function ID.

– id {unsigned}: destination VF ID.

• port: device-specific physical port index to use.

– index {unsigned}: physical port index.

• raw: match an arbitrary byte string.

– relative {boolean}: look for pattern after the previous item.

– search {boolean}: search pattern from offset (see also limit).

– offset {integer}: absolute or relative offset for pattern.

– limit {unsigned}: search area limit for start of pattern.

– pattern {string}: byte string to look for.

• eth: match Ethernet header.

4.10. Flow rules management 51

Testpmd Application User Guide, Release 17.08.2

– dst {MAC-48}: destination MAC.

– src {MAC-48}: source MAC.

– type {unsigned}: EtherType.

• vlan: match 802.1Q/ad VLAN tag.

– tpid {unsigned}: tag protocol identifier.

– tci {unsigned}: tag control information.

– pcp {unsigned}: priority code point.

– dei {unsigned}: drop eligible indicator.

– vid {unsigned}: VLAN identifier.

• ipv4: match IPv4 header.

– tos {unsigned}: type of service.

– ttl {unsigned}: time to live.

– proto {unsigned}: next protocol ID.

– src {ipv4 address}: source address.

– dst {ipv4 address}: destination address.

• ipv6: match IPv6 header.

– tc {unsigned}: traffic class.

– flow {unsigned}: flow label.

– proto {unsigned}: protocol (next header).

– hop {unsigned}: hop limit.

– src {ipv6 address}: source address.

– dst {ipv6 address}: destination address.

• icmp: match ICMP header.

– type {unsigned}: ICMP packet type.

– code {unsigned}: ICMP packet code.

• udp: match UDP header.

– src {unsigned}: UDP source port.

– dst {unsigned}: UDP destination port.

• tcp: match TCP header.

– src {unsigned}: TCP source port.

– dst {unsigned}: TCP destination port.

• sctp: match SCTP header.

– src {unsigned}: SCTP source port.

– dst {unsigned}: SCTP destination port.

4.10. Flow rules management 52

Testpmd Application User Guide, Release 17.08.2

– tag {unsigned}: validation tag.

– cksum {unsigned}: checksum.

• vxlan: match VXLAN header.

– vni {unsigned}: VXLAN identifier.

• e_tag: match IEEE 802.1BR E-Tag header.

– grp_ecid_b {unsigned}: GRP and E-CID base.

• nvgre: match NVGRE header.

– tni {unsigned}: virtual subnet ID.

• mpls: match MPLS header.

– label {unsigned}: MPLS label.

• gre: match GRE header.

– protocol {unsigned}: protocol type.

• fuzzy: fuzzy pattern match, expect faster than default.

– thresh {unsigned}: accuracy threshold.

Actions list

A list of actions starts after the actions token in the same fashion as Matching pattern; actions
are separated by / tokens and the list is terminated by a mandatory end action.

Actions are named after their type (RTE_FLOW_ACTION_TYPE_ from enum
rte_flow_action_type).

Dropping all incoming UDPv4 packets can be expressed as follows:

testpmd> flow create 0 ingress pattern eth / ipv4 / udp / end
actions drop / end

Several actions have configurable properties which must be specified when there is no valid
default value. For example, queue requires a target queue index.

This rule redirects incoming UDPv4 traffic to queue index 6:

testpmd> flow create 0 ingress pattern eth / ipv4 / udp / end
actions queue index 6 / end

While this one could be rejected by PMDs (unspecified queue index):

testpmd> flow create 0 ingress pattern eth / ipv4 / udp / end
actions queue / end

As defined by rte_flow, the list is not ordered, all actions of a given rule are performed simulta-
neously. These are equivalent:

queue index 6 / void / mark id 42 / end

void / mark id 42 / queue index 6 / end

All actions in a list should have different types, otherwise only the last action of a given type is
taken into account:

queue index 4 / queue index 5 / queue index 6 / end # will use queue 6

4.10. Flow rules management 53

Testpmd Application User Guide, Release 17.08.2

drop / drop / drop / end # drop is performed only once

mark id 42 / queue index 3 / mark id 24 / end # mark will be 24

Considering they are performed simultaneously, opposite and overlapping actions can some-
times be combined when the end result is unambiguous:

drop / queue index 6 / end # drop has no effect

drop / dup index 6 / end # same as above

queue index 6 / rss queues 6 7 8 / end # queue has no effect

drop / passthru / end # drop has no effect

Note that PMDs may still refuse such combinations.

Actions

This section lists supported actions and their attributes, if any.

• end: end list of actions.

• void: no-op action.

• passthru: let subsequent rule process matched packets.

• mark: attach 32 bit value to packets.

– id {unsigned}: 32 bit value to return with packets.

• flag: flag packets.

• queue: assign packets to a given queue index.

– index {unsigned}: queue index to use.

• drop: drop packets (note: passthru has priority).

• count: enable counters for this rule.

• dup: duplicate packets to a given queue index.

– index {unsigned}: queue index to duplicate packets to.

• rss: spread packets among several queues.

– queues [{unsigned} [...]] end: queue indices to use.

• pf: redirect packets to physical device function.

• vf: redirect packets to virtual device function.

– original {boolean}: use original VF ID if possible.

– id {unsigned}: VF ID to redirect packets to.

4.10.4 Destroying flow rules

flow destroy destroys one or more rules from their rule ID (as returned by flow create),
this command calls rte_flow_destroy() as many times as necessary:

flow destroy {port_id} rule {rule_id} [...]

If successful, it will show:

4.10. Flow rules management 54

Testpmd Application User Guide, Release 17.08.2

Flow rule #[...] destroyed

It does not report anything for rule IDs that do not exist. The usual error message is shown
when a rule cannot be destroyed:

Caught error type [...] ([...]): [...]

flow flush destroys all rules on a device and does not take extra arguments. It is bound to
rte_flow_flush():

flow flush {port_id}

Any errors are reported as above.

Creating several rules and destroying them:

testpmd> flow create 0 ingress pattern eth / ipv6 / end
actions queue index 2 / end

Flow rule #0 created
testpmd> flow create 0 ingress pattern eth / ipv4 / end

actions queue index 3 / end
Flow rule #1 created
testpmd> flow destroy 0 rule 0 rule 1
Flow rule #1 destroyed
Flow rule #0 destroyed
testpmd>

The same result can be achieved using flow flush:

testpmd> flow create 0 ingress pattern eth / ipv6 / end
actions queue index 2 / end

Flow rule #0 created
testpmd> flow create 0 ingress pattern eth / ipv4 / end

actions queue index 3 / end
Flow rule #1 created
testpmd> flow flush 0
testpmd>

Non-existent rule IDs are ignored:

testpmd> flow create 0 ingress pattern eth / ipv6 / end
actions queue index 2 / end

Flow rule #0 created
testpmd> flow create 0 ingress pattern eth / ipv4 / end

actions queue index 3 / end
Flow rule #1 created
testpmd> flow destroy 0 rule 42 rule 10 rule 2
testpmd>
testpmd> flow destroy 0 rule 0
Flow rule #0 destroyed
testpmd>

4.10.5 Querying flow rules

flow query queries a specific action of a flow rule having that ability. Such actions collect
information that can be reported using this command. It is bound to rte_flow_query():

flow query {port_id} {rule_id} {action}

If successful, it will display either the retrieved data for known actions or the following message:

Cannot display result for action type [...] ([...])

Otherwise, it will complain either that the rule does not exist or that some error occurred:

4.10. Flow rules management 55

Testpmd Application User Guide, Release 17.08.2

Flow rule #[...] not found

Caught error type [...] ([...]): [...]

Currently only the count action is supported. This action reports the number of packets that
hit the flow rule and the total number of bytes. Its output has the following format:

count:
hits_set: [...] # whether "hits" contains a valid value
bytes_set: [...] # whether "bytes" contains a valid value
hits: [...] # number of packets
bytes: [...] # number of bytes

Querying counters for TCPv6 packets redirected to queue 6:

testpmd> flow create 0 ingress pattern eth / ipv6 / tcp / end
actions queue index 6 / count / end

Flow rule #4 created
testpmd> flow query 0 4 count
count:
hits_set: 1
bytes_set: 0
hits: 386446
bytes: 0

testpmd>

4.10.6 Listing flow rules

flow list lists existing flow rules sorted by priority and optionally filtered by group identifiers:

flow list {port_id} [group {group_id}] [...]

This command only fails with the following message if the device does not exist:

Invalid port [...]

Output consists of a header line followed by a short description of each flow rule, one per line.
There is no output at all when no flow rules are configured on the device:

ID Group Prio Attr Rule
[...] [...] [...] [...] [...]

Attr column flags:

• i for ingress.

• e for egress.

Creating several flow rules and listing them:

testpmd> flow create 0 ingress pattern eth / ipv4 / end
actions queue index 6 / end

Flow rule #0 created
testpmd> flow create 0 ingress pattern eth / ipv6 / end

actions queue index 2 / end
Flow rule #1 created
testpmd> flow create 0 priority 5 ingress pattern eth / ipv4 / udp / end

actions rss queues 6 7 8 end / end
Flow rule #2 created
testpmd> flow list 0
ID Group Prio Attr Rule
0 0 0 i- ETH IPV4 => QUEUE
1 0 0 i- ETH IPV6 => QUEUE
2 0 5 i- ETH IPV4 UDP => RSS
testpmd>

4.10. Flow rules management 56

Testpmd Application User Guide, Release 17.08.2

Rules are sorted by priority (i.e. group ID first, then priority level):

testpmd> flow list 1
ID Group Prio Attr Rule
0 0 0 i- ETH => COUNT
6 0 500 i- ETH IPV6 TCP => DROP COUNT
5 0 1000 i- ETH IPV6 ICMP => QUEUE
1 24 0 i- ETH IPV4 UDP => QUEUE
4 24 10 i- ETH IPV4 TCP => DROP
3 24 20 i- ETH IPV4 => DROP
2 24 42 i- ETH IPV4 UDP => QUEUE
7 63 0 i- ETH IPV6 UDP VXLAN => MARK QUEUE
testpmd>

Output can be limited to specific groups:

testpmd> flow list 1 group 0 group 63
ID Group Prio Attr Rule
0 0 0 i- ETH => COUNT
6 0 500 i- ETH IPV6 TCP => DROP COUNT
5 0 1000 i- ETH IPV6 ICMP => QUEUE
7 63 0 i- ETH IPV6 UDP VXLAN => MARK QUEUE
testpmd>

4.10.7 Toggling isolated mode

flow isolate can be used to tell the underlying PMD that ingress traffic must only be in-
jected from the defined flow rules; that no default traffic is expected outside those rules and the
driver is free to assign more resources to handle them. It is bound to rte_flow_isolate():

flow isolate {port_id} {boolean}

If successful, enabling or disabling isolated mode shows either:

Ingress traffic on port [...]
is now restricted to the defined flow rules

Or:

Ingress traffic on port [...]
is not restricted anymore to the defined flow rules

Otherwise, in case of error:

Caught error type [...] ([...]): [...]

Mainly due to its side effects, PMDs supporting this mode may not have the ability to toggle it
more than once without reinitializing affected ports first (e.g. by exiting testpmd).

Enabling isolated mode:

testpmd> flow isolate 0 true
Ingress traffic on port 0 is now restricted to the defined flow rules
testpmd>

Disabling isolated mode:

testpmd> flow isolate 0 false
Ingress traffic on port 0 is not restricted anymore to the defined flow rules
testpmd>

4.10. Flow rules management 57

Testpmd Application User Guide, Release 17.08.2

4.10.8 Sample QinQ flow rules

Before creating QinQ rule(s) the following commands should be issued to enable QinQ:

testpmd> port stop 0
testpmd> vlan set qinq on 0

The above command sets the inner and outer TPID’s to 0x8100.

To change the TPID’s the following commands should be used:

testpmd> vlan set outer tpid 0xa100 0
testpmd> vlan set inner tpid 0x9100 0
testpmd> port start 0

Validate and create a QinQ rule on port 0 to steer traffic to a VF queue in a VM.

testpmd> flow validate 0 ingress pattern eth / vlan tci is 123 /
vlan tci is 456 / end actions vf id 1 / queue index 0 / end

Flow rule #0 validated

testpmd> flow create 0 ingress pattern eth / vlan tci is 4 /
vlan tci is 456 / end actions vf id 123 / queue index 0 / end

Flow rule #0 created

testpmd> flow list 0
ID Group Prio Attr Rule
0 0 0 i- ETH VLAN VLAN=>VF QUEUE

Validate and create a QinQ rule on port 0 to steer traffic to a queue on the host.

testpmd> flow validate 0 ingress pattern eth / vlan tci is 321 /
vlan tci is 654 / end actions pf / queue index 0 / end

Flow rule #1 validated

testpmd> flow create 0 ingress pattern eth / vlan tci is 321 /
vlan tci is 654 / end actions pf / queue index 1 / end

Flow rule #1 created

testpmd> flow list 0
ID Group Prio Attr Rule
0 0 0 i- ETH VLAN VLAN=>VF QUEUE
1 0 0 i- ETH VLAN VLAN=>PF QUEUE

4.10. Flow rules management 58

	Introduction
	Compiling the Application
	Running the Application
	EAL Command-line Options
	Testpmd Command-line Options

	Testpmd Runtime Functions
	Help Functions
	Command File Functions
	Control Functions
	Display Functions
	Configuration Functions
	Port Functions
	Link Bonding Functions
	Register Functions
	Filter Functions
	Flow rules management

