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CHAPTER
ONE

DPDK CODING STYLE

1.1 Description

This document specifies the preferred style for source files in the DPDK source tree. It is based
on the Linux Kernel coding guidelines and the FreeBSD 7.2 Kernel Developer's Manual (see
man style(9)), but was heavily modified for the needs of the DPDK.

1.2 General Guidelines

The rules and guidelines given in this document cannot cover every situation, so the following
general guidelines should be used as a fallback:

» The code style should be consistent within each individual file.

+ In the case of creating new files, the style should be consistent within each file in a given
directory or module.

» The primary reason for coding standards is to increase code readability and comprehen-
sibility, therefore always use whatever option will make the code easiest to read.

Line length is recommended to be not more than 80 characters, including comments. [Tab stop
size should be assumed to be 8-characters wide].

Note: The above is recommendation, and not a hard limit. However, it is expected that the
recommendations should be followed in all but the rarest situations.

1.3 C Comment Style

1.3.1 Usual Comments

These comments should be used in normal cases. To document a public API, a doxygen-like
format must be used: refer to Doxygen Guidelines.

/ *
* VERY important single-line comments look like this.

*/

/* Most single-line comments look like this. */
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/%

* Multi-

line comments look 1like this. Make them real sentences. Fill

* them so they look like real paragraphs.

*/

1.3.2 License Header

Each file should begin with a special comment containing the appropriate copyright and license

for the file.

Generally this is the BSD License, except for code for Linux Kernel modules.

After any copyright header, a blank line should be left before any other contents, e.g. include
statements in a C file.

1.4 C Preprocessor Directives

1.4.1 Header Includes

In DPDK sources, the include files should be ordered as following:

1. libc includes (system includes first)
2. DPDK EAL includes

3. DPDK misc libraries includes

4. application-specific includes

Include files from the local application directory are included using quotes, while includes from
other paths are included using angle brackets: “<>".

Example:

#include
#include

#include

#include
#include

#include

<stdio.h>
<stdlib.h>

<rte_eal.h>

<rte_ring.h>
<rte_mempool.h>

"application.h"

1.4.2 Header File Guards

Headers should be protected against multiple inclusion with the usual:

#ifndef FILE H_
#define _FILE H_

/+ Code x/

#endif /x _FILE H x/

1.4. C Preprocessor Directives 2
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1.4.3 Macros

Do not #define or declare names except with the standard DPDK prefix: RTE_. This is to
ensure there are no collisions with definitions in the application itself.

The names of “unsafe” macros (ones that have side effects), and the names of macros for
manifest constants, are all in uppercase.

The expansions of expression-like macros are either a single token or have outer parentheses.
If a macro is an inline expansion of a function, the function name is all in lowercase and the
macro has the same name all in uppercase. If the macro encapsulates a compound statement,
enclose it in a do-while loop, so that it can be used safely in if statements. Any final statement-
terminating semicolon should be supplied by the macro invocation rather than the macro, to
make parsing easier for pretty-printers and editors.

For example:
#define MACRO(x, y) do { \
variable = (x) + (y); \
(y) += 2; \

} while(0)

Note: Wherever possible, enums and inline functions should be preferred to macros, since
they provide additional degrees of type-safety and can allow compilers to emit extra warnings
about unsafe code.

1.4.4 Conditional Compilation

* When code is conditionally compiled using #ifdef or #if, a comment may be added
following the matching #endif or #else to permit the reader to easily discern where
conditionally compiled code regions end.

» This comment should be used only for (subjectively) long regions, regions greater than 20
lines, or where a series of nested #1ifdef‘s may be confusing to the reader. Exceptions
may be made for cases where code is conditionally not compiled for the purposes of
lint(1), or other tools, even though the uncompiled region may be small.

» The comment should be separated from the #endif or #else by a single space.
 For short conditionally compiled regions, a closing comment should not be used.

» The comment for #endi f should match the expression used in the corresponding #1 f
or #ifdef.

* The comment for #e1se and #e11 £ should match the inverse of the expression(s) used
in the preceding #1if and/or #elif statements.

+ In the comments, the subexpression defined (F0OO0) is abbreviated as “FOQO”. For the
purposes of comments, #ifndef FOOistreatedas #if !defined (FOO).

#ifdef KTRACE

#include <sys/ktrace.h>
#endif

#ifdef COMPAT 43
/+ A large region here, or other conditional code. #*/
#else /+ !COMPAT 43 x/

1.4. C Preprocessor Directives 3
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/% Or here. x*/
#endif /* COMPAT 43 x/

#ifndef COMPAT_ 43

/+ Yet another large region here, or other conditional code. #*/
#else /% COMPAT 43 x/

/% Or here. */

#endif /+ !COMPAT 43 x/

Note: Conditional compilation should be used only when absolutely necessary, as it increases
the number of target binaries that need to be built and tested.

1.5 C Types

1.5.1 Integers

For fixed/minimum-size integer values, the project uses the form uintXX_t (from stdint.h) in-
stead of older BSD-style integer identifiers of the form u_intXX _t.

1.5.2 Enumerations

» Enumeration values are all uppercase.

enum enumtype { ONE, TWO } et;

* Enum types should be used in preference to macros #defining a set of (sequential) val-
ues.

* Enum types should be prefixed with rte_ and the elements by a suitable prefix [gener-
ally starting RTE_<enum>_ - where <enum> is a shortname for the enum type] to avoid
namespace collisions.

1.5.3 Bitfields

The developer should group bitfields that are included in the same integer, as follows:

struct grehdr {
uintlé_t rec:3,

srr:1,
seq:1,
key:1,
routing:1,
csum: 1,
version:3,
reserved:4,
ack:1;

V2 4

1.5. C Types 4
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1.5.4 Variable Declarations

In declarations, do not put any whitespace between asterisks and adjacent tokens, except for
tokens that are identifiers related to types. (These identifiers are the names of basic types, type
qualifiers, and typedef-names other than the one being declared.) Separate these identifiers
from asterisks using a single space.

For example:
int xx; /* no space after asterisk */
int * const x; /x space after asterisk when using a type qualifier x/

All externally-visible variables should have an rte_ prefix in the name to avoid names-
pace collisions.

Do not use uppercase letters - either in the form of ALL_UPPERCASE, or CamelCase -
in variable names. Lower-case letters and underscores only.

1.5.5 Structure Declarations

In general, when declaring variables in new structures, declare them sorted by use, then
by size (largest to smallest), and then in alphabetical order. Sorting by use means that
commonly used variables are used together and that the structure layout makes logical
sense. Ordering by size then ensures that as little padding is added to the structure as
possible.

For existing structures, additions to structures should be added to the end so for back-
ward compatibility reasons.

Each structure element gets its own line.

Try to make the structure readable by aligning the member names using spaces as shown
below.

Names following extremely long types, which therefore cannot be easily aligned with the
rest, should be separated by a single space.

struct foo {

}i

struct foo *next; /% List of active foo. */

struct mumble amumble; /* Comment for mumble. x/

int bar; /+ Try to align the comments. x/
struct verylongtypename *baz; /* Won't fit with other members */

Major structures should be declared at the top of the file in which they are used, or in
separate header files if they are used in multiple source files.

Use of the structures should be by separate variable declarations and those declarations
must be extern if they are declared in a header file.

Externally visible structure definitions should have the structure name prefixed by rte_
to avoid namespace collisions.

1.5.6 Queues

Use queue(8) macros rather than rolling your own lists, whenever possible. Thus, the previous
example would be better written:

1.5. C Types 5
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#include <sys/queue.h>

struct foo {

LIST_ENTRY (foo) 1link; /* Use queue macros for foo lists. */
struct mumble amumble; /% Comment for mumble. x/
int bar; /* Try to align the comments. #*/
struct verylongtypename *baz; /* Won't fit with other members x/
}i
LIST_HEAD(, foo) foohead; /* Head of global foo list. #*/

DPDK also provides an optimized way to store elements in lockless rings. This should be used
in all data-path code, when there are several consumer and/or producers to avoid locking for
concurrent access.

1.5.7 Typedefs

Avoid using typedefs for structure types.

For example, use:

struct my_struct_type {
V2 4
}i

struct my_struct_type my_var;

rather than:

typedef struct my_struct_type {
Jr .. xS/
} my_struct_type;

my_struct_type my_var

Typedefs are problematic because they do not properly hide their underlying type; for example,
you need to know if the typedef is the structure itself, as shown above, or a pointer to the
structure. In addition, they must be declared exactly once, whereas an incomplete structure
type can be mentioned as many times as necessary. Typedefs are difficult to use in stand-
alone header files. The header that defines the typedef must be included before the header
that uses it, or by the header that uses it (which causes namespace pollution), or there must
be a back-door mechanism for obtaining the typedef.

Note that #defines used instead of typedefs also are problematic (since they do not propa-
gate the pointer type correctly due to direct text replacement). For example, #define pint
int = does not work as expected, while typedef int *pint does work. As stated when
discussing macros, typedefs should be preferred to macros in cases like this.

When convention requires a typedef; make its name match the struct tag. Avoid typedefs
ending in _t, except as specified in Standard C or by POSIX.

Note: It is recommended to use typedefs to define function pointer types, for reasons of code
readability. This is especially true when the function type is used as a parameter to another
function.

For example:
J ok

* Definition of a remote launch function.

1.5. C Types 6
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*/
typedef int (lcore_function_t) (void »);

/% launch a function of lcore_function_ t type =*/
int rte_eal_remote_launch(lcore_function_t *£f, wvoid =*arg, unsigned slave_id);

1.6 C Indentation

1.6.1 General

* Indentation is a hard tab, that is, a tab character, not a sequence of spaces,

Note: Global whitespace rule in DPDK, use tabs for indentation, spaces for alignment.

» Do not put any spaces before a tab for indentation.

* If you have to wrap a long statement, put the operator at the end of the line, and indent
again.

» For control statements (if, while, etc.), continuation it is recommended that the next line
be indented by two tabs, rather than one, to prevent confusion as to whether the second
line of the control statement forms part of the statement body or not. Alternatively, the
line continuation may use additional spaces to line up to an appropriately point on the
preceding line, for example, to align to an opening brace.

Note: As with all style guidelines, code should match style already in use in an existing file.

while (really_long_variable_name_1 == really_long_variable_name_2 &&
var3 == vard) { /* confusing to read as */
X =y + z; /* control stmt body lines up with second line of x/
a=>b + c; /% control statement itself if single indent used #*/
}
if (really_long_variable_name_1 == really_long_variable_name_2 &&
var3 == vard){ /* two tabs used */
X =y + z; /% statement body no longer lines up #*/

a=>b + ¢c;

z = a + really + long + statement + that + needs +
two + lines + gets + indented + on + the +
second + and + subsequent + lines;

* Do not add whitespace at the end of a line.

* Do not add whitespace or a blank line at the end of a file.

1.6.2 Control Statements and Loops

* Include a space after keywords (if, while, for, return, switch).

» Do not use braces ({ and }) for control statements with zero or just a single statement,
unless that statement is more than a single line in which case the braces are permitted.

1.6. C Indentation 7
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for (p = buf; xp != "\0'; ++p)
; /% nothing */
for (;;)
stmt;
for (;;) |
z = a + really + long + statement + that + needs +
two + lines + gets + indented + on + the +
second + and + subsequent + lines;
}
for (;;) {
if (cond)
stmt;
}
if (val != NULL)
val = realloc(val, newsize);

 Parts of a for loop may be left empty.

for (; cnt < 15; cnt++) {
stmtl;
stmt2;

}

+ Closing and opening braces go on the same line as the else keyword.

» Braces that are not necessary should be left out.

if (test)
stmt;
else if (bar) {
stmt;
stmt;
} else
stmt;

1.6.3 Function Calls

» Do not use spaces after function names.
+ Commas should have a space after them.

* No spaces after ( or [ or preceding the ] or ) characters.

error = function(al, a2);
if (error != 0)
exit (error);

1.6.4 Operators

» Unary operators do not require spaces, binary operators do.

» Do not use parentheses unless they are required for precedence or unless the statement
is confusing without them. However, remember that other people may be more easily
confused than you.

1.6.5 Exit

Exits should be 0 on success, or 1 on failure.

1.6. C Indentation 8
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exit (0); /
* Avoid obvious comments such as
* "Exit 0 on success."

*/

1.6.6 Local Variables

+ Variables should be declared at the start of a block of code rather than in the middle. The
exception to this is when the variable is const in which case the declaration must be at
the point of first use/assignment.

» When declaring variables in functions, multiple variables per line are OK. However, if
multiple declarations would cause the line to exceed a reasonable line length, begin a
new set of declarations on the next line rather than using a line continuation.

» Be careful to not obfuscate the code by initializing variables in the declarations, only the
last variable on a line should be initialized. If multiple variables are to be initialized when
defined, put one per line.

* Do not use function calls in initializers, except for const variables.

int 1 = 0, j =0, k = 0; /% bad, too many initializer #*/

char a = 0; /+ OK, one variable per line with initializer =*/
char b = 0;

float x, y = 0.0; /+ OK, only last variable has initializer =/

1.6.7 Casts and sizeof

+ Casts and sizeof statements are not followed by a space.

» Always write sizeof statements with parenthesis. The redundant parenthesis rules do not
apply to sizeof(var) instances.

1.7 C Function Definition, Declaration and Use

1.7.1 Prototypes
* It is recommended (and generally required by the compiler) that all non-static functions
are prototyped somewhere.

» Functions local to one source module should be declared static, and should not be pro-
totyped unless absolutely necessary.

» Functions used from other parts of code (external API) must be prototyped in the relevant
include file.

» Function prototypes should be listed in a logical order, preferably alphabetical unless
there is a compelling reason to use a different ordering.

» Functions that are used locally in more than one module go into a separate header file,
for example, “extern.h”.

1.7. C Function Definition, Declaration and Use 9
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* Do not use the P macro.

Functions that are part of an external API should be documented using Doxygen-like
comments above declarations. See Doxygen Guidelines for details.

Functions that are part of the external APl must have an rte_ prefix on the function
name.

» Do not use uppercase letters - either in the form of ALL_UPPERCASE, or CamelCase -
in function names. Lower-case letters and underscores only.

* When prototyping functions, associate names with parameter types, for example:

void functionl (int fd); /* good */
void function2 (int); /* bad */

+ Short function prototypes should be contained on a single line. Longer prototypes, e.g.
those with many parameters, can be split across multiple lines. The second and subse-
quent lines should be further indented as for line statement continuations as described
in the previous section.

static char xfunctionl (int _arg, const char x_arg2,
struct foo *_arg3,
struct bar »_arg4,
struct baz *_argh);

static void usage (void);

Note: Unlike function definitions, the function prototypes do not need to place the function
return type on a separate line.

1.7.2 Definitions

+ The function type should be on a line by itself preceding the function.

» The opening brace of the function body should be on a line by itself.

static char =
function (int al, int a2, float fl, int a4)

{

» Do not declare functions inside other functions. ANSI C states that such declarations
have file scope regardless of the nesting of the declaration. Hiding file declarations in
what appears to be a local scope is undesirable and will elicit complaints from a good
compiler.

+ Old-style (K&R) function declaration should not be used, use ANSI function declarations
instead as shown below.

» Long argument lists should be wrapped as described above in the function prototypes

section.
/%
* All major routines should have a comment briefly describing what
* they do. The comment before the "main" routine should describe
* what the program does.
*/
int

main (int argc, char xargv([])

{

1.7. C Function Definition, Declaration and Use 10
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char xep;
long num;
int ch;

1.8 C Statement Style and Conventions

1.8.1 NULL Pointers

» NULL is the preferred null pointer constant. Use NULL instead of (type =)0 or (type
*) NULL, except where the compiler does not know the destination type e.g. for variadic
args to a function.

» Test pointers against NULL, for example, use:

if (p == NULL) /x Good, compare pointer to NULL x/

if (!p) /# Bad, using ! on pointer */

» Do not use ! for tests unless it is a boolean, for example, use:

if (xp == '\0') /# check character against (char)0 */

1.8.2 Return Value

» Functions which create objects, or allocate memory, should return pointer types, and
NULL on error. The error type should be indicated may setting the variable rte_errno
appropriately.

» Functions which work on bursts of packets, such as RX-like or TX-like functions, should
return the number of packets handled.

+ Other functions returning int should generally behave like system calls: returning O on
success and -1 on error, setting rte_errno to indicate the specific type of error.

* Where already standard in a given library, the alternative error approach may be used
where the negative value is not -1 but is instead -errno if relevant, for example,
-EINVAL. Note, however, to allow consistency across functions returning integer or
pointer types, the previous approach is preferred for any new libraries.

 For functions where no error is possible, the function type should be void not int.

* Routines returning void = should not have their return values cast to any pointer type.
(Typecasting can prevent the compiler from warning about missing prototypes as any
implicit definition of a function returns int, which, unlike void =, needs a typecast to
assign to a pointer variable.)

Note: The above rule about not typecasting void * applies to malloc, as well as to DPDK
functions.

» Values in return statements should not be enclosed in parentheses.

1.8. C Statement Style and Conventions 11
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1.8.3 Logging and Errors

In the DPDK environment, use the logging interface provided:

/* register log types for this application #*/
int my_logtypel = rte_log_register ("myapp.logl");
int my_logtype2 = rte_log_register ("myapp.log2");

/* set global log level to INFO x/
rte_log_set_global_level (RTE_LOG_INFO) ;

/+ only display messages higher than NOTICE for logZ2 (default
+ 1s DEBUG) */
rte_log_set_level (my_logtype2, RTE_LOG_NOTICE);

/% enable all PMD logs (whose identifier string starts with "pmd") =*/
rte_log_set_level_regexp ("pmd.*", RTE_LOG_DEBUG) ;

/% log in debug level x/

rte_log_set_global_level (RTE_LOG_DEBUG) ;

RTE_LOG (DEBUG, my_logtypel, "this is a debug level message\n");

RTE_LOG (INFO, my_logtypel, "this is a info level message\n");

RTE_LOG (WARNING, my_logtypel, "this is a warning level message\n");

RTE_LOG (WARNING, my_logtype2, "this is a debug level message (not displayed)\n");

/% log in info level */
rte_log_set_global_level (RTE_LOG_INFO);
RTE_LOG (DEBUG, my_logtypel, "debug level message (not displayed)\n");

1.8.4 Branch Prediction

* When a test is done in a critical zone (called often or in a data path) the code can use
the 1ikely () andunlikely () macros to indicate the expected, or preferred fast path.
They are expanded as a compiler builtin and allow the developer to indicate if the branch
is likely to be taken or not. Example:

#include <rte branch_prediction.h>

if (likely(x > 1))
do_stuff ();

Note: The use of 1ikely () and unlikely () should only be done in performance critical
paths, and only when there is a clearly preferred path, or a measured performance increase
gained from doing so. These macros should be avoided in non-performance-critical code.

1.8.5 Static Variables and Functions
« All functions and variables that are local to a file must be declared as stat ic because it
can often help the compiler to do some optimizations (such as, inlining the code).

« Functions that should be inlined should to be declared as static inline and can be
defined in a .c or a .hfile.

Note: Static functions defined in a header file must be declared as static inline in order
to prevent compiler warnings about the function being unused.

1.8. C Statement Style and Conventions 12
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1.8.6 Const Attribute

The const attribute should be used as often as possible when a variable is read-only.

1.8.7 Inline ASM in C code

The asmand volatile keywords do not have underscores. The AT&T syntax should be used.
Input and output operands should be named to avoid confusion, as shown in the following
example:

asm volatile ("outb %[val], %[port]"

[port] "dN" (port),
[val]l "a" (val));

1.8.8 Control Statements

» Forever loops are done with for statements, not while statements.

» Elements in a switch statement that cascade should have a FALLTHROUGH comment.

For example:

switch (ch) { /% Indent the switch. x/

case 'a': /+ Don't indent the case. */
aflag = 1; /% Indent case body one tab. #*/
/+ FALLTHROUGH */

case 'b':
bflag = 1;
break;

case '?':

default:
usage () ;

/* NOTREACHED %/

1.9 Python Code

All Python code should work with Python 2.7+ and 3.2+ and be compliant with PEP8 (Style
Guide for Python Code).

The pep8 tool can be used for testing compliance with the guidelines.

1.9. Python Code 13
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CHAPTER
TWO

DESIGN

2.1 Environment or Architecture-specific Sources

In DPDK and DPDK applications, some code is specific to an architecture (i686, x86_64) or
to an executive environment (bsdapp or linuxapp) and so on. As far as is possible, all such
instances of architecture or env-specific code should be provided via standard APls in the EAL.

By convention, a file is common if it is not located in a directory indicating that it is specific. For
instance, a file located in a subdir of “x86_64" directory is specific to this architecture. A file
located in a subdir of “linuxapp” is specific to this execution environment.

Note: Code in DPDK libraries and applications should be generic. The correct location for
architecture or executive environment specific code is in the EAL.

When absolutely necessary, there are several ways to handle specific code:

* Use a #ifdef with the CONFIG option in the C code. This can be done when the
differences are small and they can be embedded in the same C file:

#ifdef RTE_ARCH _I686
toto();

#else

titi();

#endif

» Use the CONFIG option in the Makefile. This is done when the differences are more
significant. In this case, the code is split into two separate files that are architecture or
environment specific. This should only apply inside the EAL library.

Note: As in the linux kernel, the CONF1G_ prefix is not used in C code. This is only needed in
Makefiles or shell scripts.

2.1.1 Per Architecture Sources

The following config options can be used:
* CONFIG_RTE_ARCH is a string that contains the name of the architecture.

* CONFIG_RTE_ARCH_ 1686, CONFIG_RTE_ARCH_X86_64,
CONFIG_RTE_ARCH_X86_64_32 or CONFIG_RTE_ARCH_PPC_64 are defined only if
we are building for those architectures.

14
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2.1.2 Per Execution Environment Sources

The following config options can be used:

* CONFIG_RTE_EXEC_ENV is a string that contains the name of the executive environ-
ment.

* CONFIG_RTE_EXEC_ENV_BSDAPP Or CONFIG_RTE_EXEC_ENV_LINUXAPP are defined
only if we are building for this execution environment.

2.2 Library Statistics

2.2.1 Description

This document describes the guidelines for DPDK library-level statistics counter support. This
includes guidelines for turning library statistics on and off and requirements for preventing ABI
changes when implementing statistics.

2.2.2 Mechanism to allow the application to turn library statistics on and off

Each library that maintains statistics counters should provide a single build time flag that de-
cides whether the statistics counter collection is enabled or not. This flag should be exposed as
a variable within the DPDK configuration file. When this flag is set, all the counters supported
by current library are collected for all the instances of every object type provided by the library.
When this flag is cleared, none of the counters supported by the current library are collected
for any instance of any object type provided by the library:

# DPDK file config/common_linuxapp, config/common_bsdapp, etc.
CONFIG_RTE_<LIBRARY_NAME>_ STATS_COLLECT=y/n

The default value for this DPDK configuration file variable (either “yes” or “no”) is decided by
each library.

2.2.3 Prevention of ABI changes due to library statistics support

The layout of data structures and prototype of functions that are part of the library API should
not be affected by whether the collection of statistics counters is turned on or off for the current
library. In practical terms, this means that space should always be allocated in the API data
structures for statistics counters and the statistics related API functions are always built into the
code, regardless of whether the statistics counter collection is turned on or off for the current
library.

When the collection of statistics counters for the current library is turned off, the counters
retrieved through the statistics related API functions should have a default value of zero.

2.2.4 Motivation to allow the application to turn library statistics on and off

It is highly recommended that each library provides statistics counters to allow an applica-
tion to monitor the library-level run-time events. Typical counters are: number of packets
received/dropped/transmitted, number of buffers allocated/freed, number of occurrences for
specific events, etc.
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Contributor’s Guidelines, Release 17.11.10

However, the resources consumed for library-level statistics counter collection have to be spent
out of the application budget and the counters collected by some libraries might not be rele-
vant to the current application. In order to avoid any unwanted waste of resources and/or
performance impacts, the application should decide at build time whether the collection of
library-level statistics counters should be turned on or off for each library individually.

Library-level statistics counters can be relevant or not for specific applications:

» For Application A, counters maintained by Library X are always relevant and the applica-
tion needs to use them to implement certain features, such as traffic accounting, logging,
application-level statistics, etc. In this case, the application requires that collection of
statistics counters for Library X is always turned on.

 For Application B, counters maintained by Library X are only useful during the application
debug stage and are not relevant once debug phase is over. In this case, the application
may decide to turn on the collection of Library X statistics counters during the debug
phase and at a later stage turn them off.

» For Application C, counters maintained by Library X are not relevant at all. It might be
that the application maintains its own set of statistics counters that monitor a different set
of run-time events (e.g. number of connection requests, number of active users, etc). It
might also be that the application uses multiple libraries (Library X, Library Y, etc) and it
is interested in the statistics counters of Library Y, but not in those of Library X. In this
case, the application may decide to turn the collection of statistics counters off for Library
X and on for Library Y.

The statistics collection consumes a certain amount of CPU resources (cycles, cache band-
width, memory bandwidth, etc) that depends on:

» Number of libraries used by the current application that have statistics counters collection
turned on.

* Number of statistics counters maintained by each library per object type instance (e.g.
per port, table, pipeline, thread, etc).

* Number of instances created for each object type supported by each library.

« Complexity of the statistics logic collection for each counter: when only some occur-
rences of a specific event are valid, additional logic is typically needed to decide whether
the current occurrence of the event should be counted or not. For example, in the event
of packet reception, when only TCP packets with destination port within a certain range
should be recorded, conditional branches are usually required. When processing a burst
of packets that have been validated for header integrity, counting the number of bits set
in a bitmask might be needed.

2.3 PF and VF Considerations

The primary goal of DPDK is to provide a userspace dataplane. Managing VFs from a PF
driver is a control plane feature and developers should generally rely on the Linux Kernel for
that.

Developers should work with the Linux Kernel community to get the required functionality up-
stream. PF functionality should only be added to DPDK for testing and prototyping purposes
while the kernel work is ongoing. It should also be marked with an “EXPERIMENTAL’ tag. If
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the functionality isn’t upstreamable then a case can be made to maintain the PF functionality
in DPDK without the EXPERIMENTAL tag.

2.3. PF and VF Considerations 17



CHAPTER
THREE

MANAGING ABI UPDATES

3.1 Description

This document details some methods for handling ABI management in the DPDK. Note this
document is not exhaustive, in that C library versioning is flexible allowing multiple methods to
achieve various goals, but it will provide the user with some introductory methods

3.2 General Guidelines

1. Whenever possible, ABI should be preserved
2. Libraries or APls marked in experimental state may change without constraint.

3. New APIs will be marked as experimental for at least one release to allow any issues
found by users of the new API to be fixed quickly

4. The addition of symbols is generally not problematic
5. The modification of symbols can generally be managed with versioning

6. The removal of symbols generally is an ABI break and requires bumping of the
LIBABIVER macro

7. Updates to the minimum hardware requirements, which drop support for hardware which
was previously supported, should be treated as an ABI change.

3.3 What is an ABI

An ABI (Application Binary Interface) is the set of runtime interfaces exposed by a library. It is
similar to an API (Application Programming Interface) but is the result of compilation. It is also
effectively cloned when applications link to dynamic libraries. That is to say when an applica-
tion is compiled to link against dynamic libraries, it is assumed that the ABI remains constant
between the time the application is compiled/linked, and the time that it runs. Therefore, in the
case of dynamic linking, it is critical that an ABI is preserved, or (when modified), done in such
a way that the application is unable to behave improperly or in an unexpected fashion.
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3.4 The DPDK ABI policy

ABI versions are set at the time of major release labeling, and the ABI may change multiple
times, without warning, between the last release label and the HEAD label of the git tree.

APls marked as experimental are not considered part of the ABI and may change without
warning at any time. Since changes to APIs are most likely immediately after their introduction,
as users begin to take advantage of those new APIs and start finding issues with them, new
DPDK APIs will be automatically marked as experimental to allow for a period of stabiliza-
tion before they become part of a tracked ABI.

ABI versions, once released, are available until such time as their deprecation has been noted
in the Release Notes for at least one major release cycle. For example consider the case
where the ABI for DPDK 2.0 has been shipped and then a decision is made to modify it during
the development of DPDK 2.1. The decision will be recorded in the Release Notes for the
DPDK 2.1 release and the modification will be made available in the DPDK 2.2 release.

ABI versions may be deprecated in whole or in part as needed by a given update.

Some ABI changes may be too significant to reasonably maintain multiple versions. In those
cases ABI's may be updated without backward compatibility being provided. The requirements
for doing so are:

1. At least 3 acknowledgments of the need to do so must be made on the dpdk.org mailing
list.

» The acknowledgment of the maintainer of the component is mandatory, or if no
maintainer is available for the component, the tree/sub-tree maintainer for that com-
ponent must acknowledge the ABI change instead.

* It is also recommended that acknowledgments from different “areas of interest” be
sought for each deprecation, for example: from NIC vendors, CPU vendors, end-
users, etc.

2. The changes (including an alternative map file) must be gated with the RTE_NEXT_ABT
option, and provided with a deprecation notice at the same time. It will become the default
ABI in the next release.

3. A full deprecation cycle, as explained above, must be made to offer downstream con-
sumers sufficient warning of the change.

4. At the beginning of the next release cycle, every RTE_NEXT_ABI conditions will be re-
moved, the LIBABIVER variable in the makefile(s) where the ABI is changed will be
incremented, and the map files will be updated.

Note that the above process for ABI deprecation should not be undertaken lightly. ABI stability
is extremely important for downstream consumers of the DPDK, especially when distributed in
shared object form. Every effort should be made to preserve the ABI whenever possible. The
ABI should only be changed for significant reasons, such as performance enhancements. ABI
breakage due to changes such as reorganizing public structure fields for aesthetic or readability
purposes should be avoided.

Note: Updates to the minimum hardware requirements, which drop support for hardware
which was previously supported, should be treated as an ABI change, and follow the relevant
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deprecation policy procedures as above: 3 acks and announcement at least one release in
advance.

3.5 Examples of Deprecation Notices

The following are some examples of ABI deprecation notices which would be added to the
Release Notes:

» The Macro #RTE_FO0O is deprecated and will be removed with version 2.0, to be replaced
with the inline function rte_foo ().

» The function rte_mbuf_grok () has been updated to include a new parameter in ver-
sion 2.0. Backwards compatibility will be maintained for this function until the release of
version 2.1

* The members of struct rte_foo have been reorganized in release 2.0 for perfor-
mance reasons. Existing binary applications will have backwards compatibility in release
2.0, while newly built binaries will need to reference the new structure variant struct
rte_foo2. Compatibility will be removed in release 2.2, and all applications will require
updating and rebuilding to the new structure at that time, which will be renamed to the
original struct rte_foo.

« Significant ABI changes are planned for the 1ibrte_dostuff library. The upcoming
release 2.0 will not contain these changes, but release 2.1 will, and no backwards com-
patibility is planned due to the extensive nature of these changes. Binaries using this
library built prior to version 2.1 will require updating and recompilation.

3.6 Versioning Macros

When a symbol is exported from a library to provide an API, it also provides a calling convention
(ABI) that is embodied in its name, return type and arguments. Occasionally that function may
need to change to accommodate new functionality or behavior. When that occurs, it is desirable
to allow for backward compatibility for a time with older binaries that are dynamically linked to
the DPDK.

To support backward compatibility the 1ib/librte_compat/rte_compat.h header file
provides macros to use when updating exported functions. These macros are used in con-
junction with the rte_<library>_version.map file for a given library to allow multiple ver-
sions of a symbol to exist in a shared library so that older binaries need not be immediately
recompiled.

The macros exported are:

* VERSION_SYMBOL (b, e, n): Creates a symbol version table entry binding versioned
symbol b@DPDK_n to the internal function be.

* BIND_DEFAULT_SYMBOL (b, e, n) : Creates a symbol version entry instructing the linker
to bind references to symbol b to the internal symbol be.

* MAP_STATIC_SYMBOL (f, p): Declare the prototype £, and map it to the fully qualified
function p, so that if a symbol becomes versioned, it can still be mapped back to the
public symbol name.
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3.7 Setting a Major ABI version

Downstreams might want to provide different DPDK releases at the same time to support
multiple consumers of DPDK linked against older and newer sonames.

Also due to the interdependencies that DPDK libraries can have applications might end up with
an executable space in which multiple versions of a library are mapped by Id.so.

Think of LibA that got an ABI bump and LibB that did not get an ABI bump but is depending on
LibA.

Note: Application -> LibA.old -> LibB.new -> LibA.new

That is a conflict which can be avoided by setting CONFIG_RTE_MAJOR_ABI. If set, the value
of CONFIG_RTE_MAJOR_ABT overwrites all - otherwise per library - versions defined in the li-
braries LIBABIVER. An example might be CONFIG_RTE_MAJOR_ABI=16.11 which will make
all libraries 1ibrte<?>.s0.16.11 instead of librte<?>.so.<LIBABIVER>.

3.8 Examples of ABI Macro use

3.8.1 Updating a public API

Assume we have a function as follows
/%

* Create an acl context object for apps to
* manipulate
*/
struct rte_acl_ctx =
rte_acl_create(const struct rte_acl_param xparam)

{

}

Assume that struct rte_acl_ctx is a private structure, and that a developer wishes to enhance
the acl api so that a debugging flag can be enabled on a per-context basis. This requires an
addition to the structure (which, being private, is safe), but it also requires modifying the code
as follows
J/ *
* Create an acl context object for apps to
* manipulate
*/
struct rte_acl_ctx =«

rte_acl_create (const struct rte_acl_param xparam, int debug)

{

}

Note also that, being a public function, the header file prototype must also be changed, as
must all the call sites, to reflect the new ABI footprint. We will maintain previous ABI versions
that are accessible only to previously compiled binaries

The addition of a parameter to the function is ABI breaking as the function is public, and existing
application may use it in its current form. However, the compatibility macros in DPDK allow a
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developer to use symbol versioning so that multiple functions can be mapped to the same
public symbol based on when an application was linked to it. To see how this is done, we start
with the requisite libraries version map file. Initially the version map file for the acl library looks
like this

DPDK_2.0 {
global:

rte_acl_add_rules;
rte_acl_build;
rte_acl_classify;
rte_acl_classify_alg;
rte_acl_classify_scalar;
rte_acl_create;
rte_acl_dump;
rte_acl_find_existing;
rte_acl_free;
rte_acl_ipvédvlan_add_rules;
rte_acl_ipvé4vlan_build;
rte_acl_list_dump;
rte_acl_reset;
rte_acl_reset_rules;
rte_acl_set_ctx_classify;

local: x;
}i

This file needs to be modified as follows

DPDK_2.0 {
global:

rte_acl_add_rules;
rte_acl_build;
rte_acl_classify;
rte_acl_classify_alg;
rte_acl_classify_scalar;
rte_acl_create;
rte_acl_dump;
rte_acl_find_existing;
rte_acl_free;
rte_acl_ipvédvlan_add_rules;
rte_acl_ipvé4vlan_build;
rte_acl_list_dump;
rte_acl_reset;
rte_acl_reset_rules;
rte_acl_set_ctx_classify;

local: x;
}i

DPDK_2.1 {
global:
rte_acl_create;

} DPDK_2.0;

The addition of the new block tells the linker that a new version node is available (DPDK_2.1),
which contains the symbol rte_acl_create, and inherits the symbols from the DPDK_2.0 node.
This list is directly translated into a list of exported symbols when DPDK is compiled as a
shared library
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Next, we need to specify in the code which function map to the rte_acl_create symbol at which
versions. First, at the site of the initial symbol definition, we need to update the function so that
it is uniquely named, and not in conflict with the public symbol name

struct rte_acl_ctx =
—-rte_acl_create(const struct rte_acl_param xparam)
+rte_acl_create_v20 (const struct rte_acl_param *param)
{

size_t sz;

struct rte_acl_ctx xctx;

Note that the base name of the symbol was kept intact, as this is conducive to the macros
used for versioning symbols. That is our next step, mapping this new symbol name to the initial
symbol name at version node 2.0. Immediately after the function, we add this line of code

VERSION_SYMBOL (rte_acl_create, _v20, 2.0);

Remembering to also add the rte_compat.h header to the requisite ¢ file where these
changes are being made. The above macro instructs the linker to create a new symbol
rte_acl_create@DPDK_2.0, which matches the symbol created in older builds, but now
points to the above newly named function. We have now mapped the original rte_acl_create
symbol to the original function (but with a new name)

Next, we need to create the 2.1 version of the symbol. We create a new function name, with a
different suffix, and implement it appropriately

struct rte_acl_ctx =
rte_acl_create_v2l (const struct rte_acl_param xparam, int debug);
{

struct rte_acl_ctx *ctx = rte_acl_create_v20 (param);
ctx—->debug = debug;

return ctx;

}

This code serves as our new API call. Its the same as our old call, but adds the new parameter
in place. Next we need to map this function to the symbol rte_acl_create@DPDK_2.1. To
do this, we modify the public prototype of the call in the header file, adding the macro there to
inform all including applications, that on re-link, the default rte_acl_create symbol should point
to this function. Note that we could do this by simply naming the function above rte_acl_create,
and the linker would chose the most recent version tag to apply in the version script, but we
can also do this in the header file

struct rte_acl_ctx =«

—-rte_acl_create(const struct rte_acl_param *param);
+rte_acl_create (const struct rte_acl_param xparam, int debug);
+BIND_DEFAULT_SYMBOL (rte_acl_create, _v21, 2.1);

The BIND_DEFAULT_SYMBOL macro explicitly tells applications that include this header, to
link to the rte_acl_create_v21 function and apply the DPDK_2.1 version node to it. This method
is more explicit and flexible than just re-implementing the exact symbol name, and allows for
other features (such as linking to the old symbol version by default, when the new ABI is to be
opt-in for a period.

One last thing we need to do. Note that we’ve taken what was a public symbol, and duplicated
it into two uniquely and differently named symbols. We’ve then mapped each of those back to
the public symbol rte_acl_create with different version tags. This only applies to dynamic
linking, as static linking has no notion of versioning. That leaves this code in a position of no
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longer having a symbol simply named rte_acl_create and a static build will fail on that
missing symbol.

To correct this, we can simply map a function of our choosing back to the public symbol in
the static build with the MAP_STATIC_SYMBOL macro. Generally the assumption is that the
most recent version of the symbol is the one you want to map. So, back in the C file where,
immediately after rte_acl_create_v21 is defined, we add this

struct rte_acl_ctx =*
rte_acl_create_v2l (const struct rte_acl_param *param, int debug)

{

}
MAP_STATIC_SYMBOL (struct rte_acl_ctx *rte_acl_create(const struct rte_acl_param *param, int dek

That tells the compiler that, when building a static library, any calls to the symbol
rte_acl_create should be linkedto rte_acl_create_v21

That’s it, on the next shared library rebuild, there will be two versions of rte_acl_create, an old
DPDK_2.0 version, used by previously built applications, and a new DPDK_2.1 version, used
by future built applications.

3.8.2 Deprecating part of a public API

Lets assume that you've done the above update, and after a few releases have passed you
decide you would like to retire the old version of the function. After having gone through the
ABI deprecation announcement process, removal is easy. Start by removing the symbol from
the requisite version map file:

DPDK_2.0 {
global:

rte_acl_add_rules;
rte_acl_build;
rte_acl_classify;
rte_acl_classify_alg;
rte_acl_classify_scalar;
rte_acl_dump;

- rte_acl_create
rte_acl_find_existing;
rte_acl_free;
rte_acl_ipv4dvlan_add_rules;
rte_acl_ipvédvlan_build;
rte_acl_list_dump;
rte_acl_reset;
rte_acl_reset_rules;
rte_acl_set_ctx_classify;

local: «x;
}i

DPDK_2.1 {
global:
rte_acl_create;
} DPDK_2.0;

Next remove the corresponding versioned export.

~VERSION_SYMBOL (rte_acl_create, _v20, 2.0);

3.8. Examples of ABI Macro use 24



Contributor’s Guidelines, Release 17.11.10

Note that the internal function definition could also be removed, but its used in our example by
the newer version _v21, so we leave it in place. This is a coding style choice.

Lastly, we need to bump the LIBABIVER number for this library in the Makefile to indicate to
applications doing dynamic linking that this is a later, and possibly incompatible library version:

—LIBABIVER :
+LIBABIVER :

1

3.8.3 Deprecating an entire ABI version

While removing a symbol from and ABI may be useful, it is often more practical to remove an
entire version node at once. If a version node completely specifies an API, then removing part
of it, typically makes it incomplete. In those cases it is better to remove the entire node

To do this, start by modifying the version map file, such that all symbols from the node to be
removed are merged into the next node in the map

In the case of our map above, it would transform to look as follows

DPDK_2.1 {
global:

rte_acl_add_rules;
rte_acl_build;
rte_acl_classify;
rte_acl_classify_alg;
rte_acl_classify_scalar;
rte_acl_dump;
rte_acl_create
rte_acl_find_existing;
rte_acl_free;
rte_acl_ipvédvlan_add_rules;
rte_acl_ipvédvlan_build;
rte_acl_list_dump;
rte_acl_reset;
rte_acl_reset_rules;
rte_acl_set_ctx_classify;

local: x;
}i
Then any uses of BIND_DEFAULT_SYMBOL that pointed to the old node should be updated
to point to the new version node in any header files for all affected symbols.

~-BIND_DEFAULT_SYMBOL (rte_acl_create, _v20, 2.0);
+BIND_DEFAULT_SYMBOL (rte_acl_create, _v21, 2.1);

Lastly, any VERSION_SYMBOL macros that point to the old version node should be removed,
taking care to keep, where need old code in place to support newer versions of the symbol.

3.9 Running the ABI Validator

The devtools directory in the DPDK source tree contains a utility program,
validate-abi.sh, for validating the DPDK ABI based on the Linux ABI Compliance
Checker.

This has a dependency on the abi-compliance-checker and and abi-dumper ulilities
which can be installed via a package manager. For example:
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sudo yum install abi-compliance-checker
sudo yum install abi-dumper

The syntax of the validate—-abi. sh utility is:

./devtools/validate—abi.sh <REV1> <REV2> <TARGET>

Where REV1 and REV2 are valid gitrevisions(7) https://www.kernel.org/pub/software/scm/git/
docs/gitrevisions.html on the local repo and target is the usual DPDK compilation target.

For example:

# Check between the previous and latest commit:
./devtools/validate-abi.sh HEAD~1 HEAD x86_64-native-linuxapp—-gcc

# Check between two tags:
./devtools/validate-abi.sh v2.0.0 v2.1.0 x86_64-native-linuxapp—-gcc

# Check between git master and local topic-branch "vhost-hacking":
./devtools/validate-abi.sh master vhost-hacking x86_64-native-linuxapp-gcc

After the validation script completes (it can take a while since it need to compile both tags) it
will create compatibility reports in the . /compat_report directory. Listed incompatibilities
can be found as follows:

grep -lr Incompatible compat_reports/
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CHAPTER
FOUR

DPDK DOCUMENTATION GUIDELINES

This document outlines the guidelines for writing the DPDK Guides and APl documentation in
RST and Doxygen format.

It also explains the structure of the DPDK documentation and shows how to build the Html and
PDF versions of the documents.

4.1 Structure of the Documentation

The DPDK source code repository contains input files to build the API documentation and User
Guides.

The main directories that contain files related to documentation are shown below:

|-— librte_acl

|-— librte_cfgfile
|-— librte_cmdline
|-— librte_compat
|-— librte_eal

| == ...

|-— api

+-- guides
| -— freebsd_gsg
|-— linux_gsg
|-— prog_guide
| -— sample_app_ug
|-— guidelines
| -— testpmd_app_ug
|-— rel_notes
|-— nics

The APl documentation is built from Doxygen comments in the header files. These files
are mainly in the 1ib/librte_x directories although some of the Poll Mode Drivers in
drivers/net are also documented with Doxygen.

The configuration files that are used to control the Doxygen output are in the doc/api direc-
tory.

The user guides such as The Programmers Guide and the FreeBSD and Linux Getting Started
Guides are generated from RST markup text files using the Sphinx Documentation Generator.

27


http://www.doxygen.nl
http://sphinx-doc.org

Contributor’s Guidelines, Release 17.11.10

These files are included in the doc/guides/ directory. The output is controlled by the
doc/guides/conf.py file.

4.2 Role of the Documentation

The following items outline the roles of the different parts of the documentation and when they
need to be updated or added to by the developer.

* Release Notes

The Release Notes document which features have been added in the current and previ-
ous releases of DPDK and highlight any known issues. The Releases Notes also contain
notifications of features that will change ABI compatibility in the next major release.

Developers should include updates to the Release Notes with patch sets that relate to
any of the following sections:

New Features

Resolved Issues (see below)
Known Issues
API Changes
— ABI Changes

— Shared Library Versions

Resolved Issues should only include issues from previous releases that have been re-
solved in the current release. Issues that are introduced and then fixed within a release
cycle do not have to be included here.

Refer to the Release Notes from the previous DPDK release for the correct format of
each section.

+ APl documentation

The API documentation explains how to use the public DPDK functions. The API index
page shows the generated APl documentation with related groups of functions.

The APl documentation should be updated via Doxygen comments when new functions
are added.

* Getting Started Guides

The Getting Started Guides show how to install and configure DPDK and how to run
DPDK based applications on different OSes.

A Getting Started Guide should be added when DPDK is ported to a new OS.
* The Programmers Guide

The Programmers Guide explains how the APl components of DPDK such as the EAL,
Memzone, Rings and the Hash Library work. It also explains how some higher level
functionality such as Packet Distributor, Packet Framework and KNI work. It also shows
the build system and explains how to add applications.

The Programmers Guide should be expanded when new functionality is added to DPDK.
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» App Guides
The app guides document the DPDK applications in the app directory such as testpmd.
The app guides should be updated if functionality is changed or added.

» Sample App Guides

The sample app guides document the DPDK example applications in the examples di-
rectory. Generally they demonstrate a major feature such as L2 or L3 Forwarding, Multi
Process or Power Management. They explain the purpose of the sample application,
how to run it and step through some of the code to explain the major functionality.

A new sample application should be accompanied by a new sample app guide. The
guide for the Skeleton Forwarding app is a good starting reference.

* Network Interface Controller Drivers

The NIC Drivers document explains the features of the individual Poll Mode Drivers, such
as software requirements, configuration and initialization.

New documentation should be added for new Poll Mode Drivers.
* Guidelines
The guideline documents record community process, expectations and design directions.

They can be extended, amended or discussed by submitting a patch and getting com-
munity approval.

4.3 Building the Documentation

4.3.1 Dependencies

The following dependencies must be installed to build the documentation:
» Doxygen.
» Sphinx (also called python-sphinx).
 TexLive (at least TexLive-core and the extra Latex support).
* Inkscape.

Doxygen generates documentation from commented source code. It can be installed as fol-
lows:

# Ubuntu/Debian.
sudo apt-get -y install doxygen

# Red Hat/Fedora.
sudo dnf -y install doxygen

Sphinx is a Python documentation tool for converting RST files to Html or to PDF (via LaTeX).
For full support with figure and table captioning the latest version of Sphinx can be installed as
follows:

# Ubuntu/Debian.

sudo apt—-get -y install python-pip

sudo pip install --upgrade sphinx

sudo pip install —--upgrade sphinx_rtd_theme
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# Red Hat/Fedora.

sudo dnf -y install python-pip

sudo pip install --upgrade sphinx

sudo pip install --upgrade sphinx_rtd_theme

For further information on getting started with Sphinx see the Sphinx Getting Started.

Note: To get full support for Figure and Table numbering it is best to install Sphinx 1.3.1 or
later.

Inkscape is a vector based graphics program which is used to create SVG images and also to
convert SVG images to PDF images. It can be installed as follows:

# Ubuntu/Debian.
sudo apt—-get -y install inkscape

# Red Hat/Fedora.
sudo dnf -y install inkscape

TexLive is an installation package for Tex/LaTeX. It is used to generate the PDF versions of the
documentation. The main required packages can be installed as follows:

# Ubuntu/Debian.
sudo apt-get -y install texlive-latex-extra

# Red Hat/Fedora, selective install.
sudo dnf -y install texlive-collection-latexextra

Latexmk is a perl script for running LaTeX for resolving cross references, and it also runs
auxiliary programs like bibtex, makeindex if necessary, and dvips. It has also a number of
other useful capabilities (see man 1 latexmk).

# Ubuntu/Debian.
sudo apt-get -y install latexmk

# Red Hat/Fedora.
sudo dnf -y install latexmk

4.3.2 Build commands
The documentation is built using the standard DPDK build system. Some examples are shown
below:

» Generate all the documentation targets:

make doc

» Generate the Doxygen API documentation in Html:

make doc-api-html

* Generate the guides documentation in Html:

make doc-guides-html

» Generate the guides documentation in Pdf:

make doc-guides-pdf

The output of these commands is generated in the bui1d directory:
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build/doc
|-— html
| |-— api
| +-— guides
|
+-— pdf
+-— guides

Note: Make sure to fix any Sphinx or Doxygen warnings when adding or updating documen-
tation.

The documentation output files can be removed as follows:

make doc-clean

4.4 Document Guidelines

Here are some guidelines in relation to the style of the documentation:

» Document the obvious as well as the obscure since it won’t always be obvious to the
reader. For example an instruction like “Set up 64 2MB Hugepages” is better when fol-
lowed by a sample commandline or a link to the appropriate section of the documentation.

» Use American English spellings throughout. This can be checked using the aspell
utility:

aspell —--lang=en_US --check doc/guides/sample_app_ug/mydoc.rst

4.5 RST Guidelines

The RST (reStructuredText) format is a plain text markup format that can be converted to Html,
PDF or other formats. It is most closely associated with Python but it can be used to document
any language. It is used in DPDK to document everything apart from the API.

The Sphinx documentation contains a very useful RST Primer which is a good place to learn
the minimal set of syntax required to format a document.

The official reStructuredText website contains the specification for the RST format and also
examples of how to use it. However, for most developers the RST Primer is a better resource.

The most common guidelines for writing RST text are detailed in the Documenting Python
guidelines. The additional guidelines below reiterate or expand upon those guidelines.

4.5.1 Line Length

* Lines in sentences should be less than 80 characters and wrapped at words. Multiple
sentences which are not separated by a blank line are joined automatically into para-
graphs.

+ Lines in literal blocks must be less than 80 characters since they are not wrapped by the
document formatters and can exceed the page width in PDF documents.

Long literal command lines can be shown wrapped with backslashes. For example:
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testpmd -1 2-3 -n 4 \
—--vdev=virtio_user0, path=/dev/vhost—-net, queues=2, queue_size=1024 \
-— -1 —-txgflags=0x0 --disable-hw-vlan —--enable-lro \
——enable-rx-cksum —--txg=2 --rxg=2 --rxd=1024 --txd=1024

4.5.2 Whitespace

+ Standard RST indentation is 3 spaces. Code can be indented 4 spaces, especially if it is
copied from source files.

No tabs. Convert tabs in embedded code to 4 or 8 spaces.

No trailing whitespace.

Add 2 blank lines before each section header.

Add 1 blank line after each section header.

Add 1 blank line between each line of a list.

4.5.3 Section Headers

 Section headers should use the following underline formats:

Level 1 Heading

Level 2 Heading

AAAAAAAAAAAAAAA

Level 4 headings should be used sparingly.

The underlines should match the length of the text.

In general, the heading should be less than 80 characters, for conciseness.

As noted above:
— Add 2 blank lines before each section header.

— Add 1 blank line after each section header.

4.5.4 Lists

* Bullet lists should be formatted with a leading » as follows:

* Item one.

+ Item two is a long line that is wrapped and then indented to match
the start of the previous line.
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* One space character between the bullet and the text is preferred.

* Numbered lists can be formatted with a leading number but the preference is to use #.
which will give automatic numbering. This is more convenient when adding or removing
items:

#. Item one.

#. Item two is a long line that is wrapped and then indented to match
the start of the previous line.

#. Item three.

» Definition lists can be written with or without a bullet:

* Item one.
Some text about item one.
* Item two.

Some text about item two.

« All lists, and sub-lists, must be separated from the preceding text by a blank line. This is
a syntax requirement.

« All list items should be separated by a blank line for readability.

4.5.5 Code and Literal block sections
* Inline text that is required to be rendered with a fixed width font should be enclosed in
backquotes like this: “text”, so that it appears like this: text.

* Fixed width, literal blocks of texts should be indented at least 3 spaces and prefixed with
: : like this:

Here is some fixed width text::

0x0001 0x0001 OxOOFF OxOOFF

* ltis also possible to specify an encoding for a literal block usingthe .. code-block::
directive so that syntax highlighting can be applied. Examples of supported highlighting
are:

. code-block:: console
. code-block:: c

.. code-block:: python
. code-block:: diff
. code-block:: none

That can be applied as follows:

. code-block:: c
#include<stdio.h>
int main() {
printf ("Hello World\n");

return 0;
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Which would be rendered as:

#include<stdio.h>
int main () {
printf ("Hello World\n");

return O;

}
» The default encoding for a literal block using the simplified : : directive is none.

 Lines in literal blocks must be less than 80 characters since they can exceed the page
width when converted to PDF documentation. For long literal lines that exceed that limit
try to wrap the text at sensible locations. For example a long command line could be
documented like this and still work if copied directly from the docs:

build/app/testpmd -1 0-2 -n3 —--vdev=net_pcap0, iface=eth0 \
—-—-vdev=net_pcapl, iface=ethl \
—-— -1 —-nb-cores=2 --nb-ports=2 \

—-—total-num-mbufs=2048

» Long lines that cannot be wrapped, such as application output, should be truncated to be
less than 80 characters.

4.5.6 Images

+ All images should be in SVG scalar graphics format. They should be true SVG XML files
and should not include binary formats embedded in a SVG wrapper.

The DPDK documentation contains some legacy images in PNG format. These will be
converted to SVG in time.

* Inkscape is the recommended graphics editor for creating the images. Use some
of the older images in doc/guides/prog_guide/img/ as a template, for example
mbufl.svg Or ring-enqueuel. svg.

The SVG images should include a copyright notice, as an XML comment.

Images in the documentation should be formatted as follows:

— The image should be preceded by a label in the format .. _figure_XxXxx: with
a leading underscore and where xxXX is a unique descriptive name.

— Images should be included using the .. figure:: directive and the file type
should be set to x (not . svg). This allows the format of the image to be changed if
required, without updating the documentation.

— Images must have a caption as part of the .. figure: : directive.
» Here is an example of the previous three guidelines:
. _figure_mempool:
. figure:: img/mempool.*
A mempool in memory with its associated ring.

* Images can then be linked to using the :numref: directive:

The mempool layout is shown in :numref: figure_mempool’ .
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This would be rendered as: The mempool layout is shown in Fig 6.3.

Note: The :numref: directive requires Sphinx 1.3.1 or later. With earlier versions it will
still be rendered as a link but won’t have an automatically generated number.

» The caption of the image can be generated, with a link, using the : ref : directive:
:ref:’ figure_mempool”

This would be rendered as: A mempool in memory with its associated ring.

4.5.7 Tables

» RST tables should be used sparingly. They are hard to format and to edit, they are often
rendered incorrectly in PDF format, and the same information can usually be shown just
as clearly with a definition or bullet list.

» Tables in the documentation should be formatted as follows:

— The table should be preceded by a label in the format .. _table_xxxx: with a
leading underscore and where xxXX is a unique descriptive name.

— Tables should be included usingthe .. table:: directive and must have a cap-
tion.

» Here is an example of the previous two guidelines:

. _table_gos_pipes:

. table:: Sample configuration for QOS pipes.

o o o +
| Header 1 | Header 2 | Header 3 |
| | \ |
+ + + +
| Text | Text | Text |
o o o +
| [ \ |
o o o +

» Tables can be linked to using the :numref: and :ref: directives, as shown in the
previous section for images. For example:

The QOS configuration is shown in :numref: table_gos_pipes’ .

+ Tables should not include merged cells since they are not supported by the PDF renderer.

4.5.8 Hyperlinks

» Links to external websites can be plain URLs. The following is rendered as http://dpdk.
org:
http://dpdk.org
» They can contain alternative text. The following is rendered as Check out DPDK:

*Check out DPDK <http://dpdk.org>"_

* An internal link can be generated by placing labels in the document with the format . .
_label_name.
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» The following links to the top of this section: Hyperlinks:

. _links:

Hyperlinks

* The following links to the top of this section: :ref: links’ :

Note: The label must have a leading underscore but the reference to it must omit it. This is a
frequent cause of errors and warnings.

» The use of a label is preferred since it works across files and will still work if the header
text changes.

4.6 Doxygen Guidelines

The DPDK APl is documented using Doxygen comment annotations in the header files. Doxy-
gen is a very powerful tool, it is extremely configurable and with a little effort can be used to
create expressive documents. See the Doxygen website for full details on how to use it.

The following are some guidelines for use of Doxygen in the DPDK API documentation:

* New libraries that are documented with Doxygen should be added to the Doxygen con-
figuration file: doc/api/doxy-api.conf. Itis only required to add the directory that
contains the files. It isn’t necessary to explicitly name each file since the configuration
matches all rte_«.h files in the directory.

» Use proper capitalization and punctuation in the Doxygen comments since they will be-
come sentences in the documentation. This in particular applies to single line comments,
which is the case the is most often forgotten.

» Use @ style Doxygen commands instead of \ style commands.

» Add a general description of each library at the head of the main header files:

VAT
* @file
* RTE Mempool.

* A memory pool is an allocator of fixed-size object. It is
* identified by its name, and uses a ring to store free objects.

*/
» Document the purpose of a function, the parameters used and the return value:
VT

* Attach a new Ethernet device specified by arguments.

*

* @param devargs

* A pointer to a strings array describing the new device

* to be attached. The strings should be a pci address like
"0000:01:00.0° or ##virtual#+ device name like “net_pcapO’.

*

* @param port_id
* A pointer to a port identifier actually attached.

* @return
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* 0 on success and port_id is filled, negative on error.
*/
int rte_eth_dev_attach(const char xdevargs, uint8_t «*port_id);

Doxygen supports Markdown style syntax such as bold, italics, fixed width text and lists.
For example the second line in the devargs parameter in the previous example will be
rendered as:

The strings should be a pci address like 0000:01:00.0 or virtual device
name like net_pcap0.

Use - instead of « for lists within the Doxygen comment since the latter can get confused
with the comment delimiter.

Add an empty line between the function description, the @params and @return for
readability.

Place the @params description on separate line and indent it by 2 spaces. (It would be
better to use no indentation since this is more common and also because checkpatch
complains about leading whitespace in comments. However this is the convention used
in the existing DPDK code.)

Documented functions can be linked to simply by adding () to the function name:

VAT
* The functions exported by the application Ethernet API to setup
* a device designated by its port identifier must be invoked in

3%

the following order:

* - rte_eth _dev_configure ()
* - rte_eth_tx_queue_setup ()
* - rte_eth_rx_queue_setup ()
* - rte_eth dev_start ()

*/

In the APl documentation the functions will be rendered as links, see the online section
of the rte_ethdev.h docs that contains the above text.

The @see keyword can be used to create a see also link to another file or library. This
directive should be placed on one line at the bottom of the documentation section.

/% *

*
*

* Some text that references mempools.
*

* @see eal_memzone.c

*/

Doxygen supports two types of comments for documenting variables, constants and
members: prefix and postfix:

/#++ This 1s a prefix comment. x/
#define RTE_FOO_ERROR 0x023.

#define RTE_BAR ERROR 0x024. /%*< This 1is a postfix comment. */

Postfix comments are preferred for struct members and constants if they can be docu-
mented in the same way:

struct rte_eth_stats {
uint64_t ipackets; /##< Total number of received packets. #*/
uint64_t opackets; /##< Total number of transmitted packets.*/
uint64_t ibytes; /++< Total number of received bytes. */
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uint64_t obytes; /*%< Total number of transmitted bytes. #*/

uint64_t imissed; /##< Total of RX missed packets. */

uint64_t ibadcrc; /#**< Total of RX packets with CRC error. =/

uint64_t ibadlen; /#*#*< Total of RX packets with bad length. */
}

Note: postfix comments should be aligned with spaces not tabs in accordance with the
DPDK Coding Style.

+ If a single comment type can’t be used, due to line length limitations then prefix comments
should be preferred. For example this section of the code contains prefix comments,
postfix comments on the same line and postfix comments on a separate line:

/*+ Number of elements in the elt_pa array. =*/

uint32_t pg_num __rte_cache_aligned;
uint32_t pg_shift; /#*#< LOG2 of the physical pages. x/
uintptr_t pg_mask; /#*#< Physical page mask value. */

uintptr_t elt_va_start;

/#+#+< Virtual address of the first mempool object. =*/

uintptr_t elt_va_end;

/**< Virtual address of the <size + 1> mempool object. #*/
phys_addr_t elt_pa[MEMPOOL_PG_NUM_DEFAULT];

/#*#< Array of physical page addresses for the mempool buffer. x/

This doesn’t have an effect on the rendered documentation but it is confusing for the
developer reading the code. It this case it would be clearer to use prefix comments

throughout:
/#++ Number of elements in the elt_pa array. */
uint32_t pg_num __rte_cache_aligned;
/*+ LOG2 of the physical pages. */
uint32_t pg_shift;

/*% Physical page mask value. x/

uintptr_t pg_mask;

/#++ Virtual address of the first mempool object. =*/

uintptr_t elt_va_start;

/*+ Virtual address of the <size + 1> mempool object. =*/
uintptr_t elt_va_end;

/#*+ Array of physical page addresses for the mempool buffer. */
phys_addr_t elt_pa[MEMPOOL_PG_NUM_DEFAULT] ;

+ Check for Doxygen warnings in new code by checking the APl documentation build:
make doc-api-html >/dev/null

» Read the rendered section of the documentation that you have added for correctness,
clarity and consistency with the surrounding text.
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CHAPTER
FIVE

CONTRIBUTING CODE TO DPDK

This document outlines the guidelines for submitting code to DPDK.

The DPDK development process is modelled (loosely) on the Linux Kernel development model
so it is worth reading the Linux kernel guide on submitting patches: How to Get Your Change
Into the Linux Kernel. The rationale for many of the DPDK guidelines is explained in greater
detail in the kernel guidelines.

5.1 The DPDK Development Process

The DPDK development process has the following features:
» The code is hosted in a public git repository.
» There is a mailing list where developers submit patches.
» There are maintainers for hierarchical components.

» Patches are reviewed publicly on the mailing list.

Successfully reviewed patches are merged to the repository.

» Patches should be sent to the target repository or sub-tree, see below.

All sub-repositories are merged into main repository for —rc1 and -rc2 versions of the
release.

+ After the —rc2 release all patches should target the main repository.

The mailing list for DPDK development is dev@dpdk.org. Contributors will need to register for
the mailing list in order to submit patches. It is also worth registering for the DPDK Patchwork

The development process requires some familiarity with the git version control system. Refer
to the Pro Git Book for further information.

5.2 Maintainers and Sub-trees

The DPDK maintenance hierarchy is divided into a main repository dpdk and sub-repositories
dpdk—next—x*.

There are maintainers for the trees and for components within the tree.

Trees and maintainers are listed in the MAINTAINERS file. For example:
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Crypto Drivers

M: Some Name <some.name@email.com>
B: Another Name <another.name@email.com>
T: git://dpdk.org/next/dpdk-next-crypto

Intel AES-NI GCM PMD

M: Some One <some.one@email.com>

F: drivers/crypto/aesni_gcm/

F: doc/guides/cryptodevs/aesni_gcm.rst

Where:

* Mis a tree or component maintainer.

* Bis a tree backup maintainer.

* T is a repository tree.

* F is a maintained file or directory.
Additional details are given in the MAINTAINERS file.
The role of the component maintainers is to:

» Review patches for the component or delegate the review. The review should be done,
ideally, within 1 week of submission to the mailing list.

* Add an acked-by to patches, or patchsets, that are ready for committing to a tree.
* Reply to questions asked about the component.

Component maintainers can be added or removed by submitting a patch to the MAINTAINERS
file. Maintainers should have demonstrated a reasonable level of contributions or reviews to
the component area. The maintainer should be confirmed by an ack from an established
contributor. There can be more than one component maintainer if desired.

The role of the tree maintainers is to:

* Maintain the overall quality of their tree. This can entail additional review, compilation
checks or other tests deemed necessary by the maintainer.

« Commit patches that have been reviewed by component maintainers and/or other contrib-
utors. The tree maintainer should determine if patches have been reviewed sufficiently.

» Ensure that patches are reviewed in a timely manner.
* Prepare the tree for integration.

» Ensure that there is a designated back-up maintainer and coordinate a handover for
periods where the tree maintainer can’t perform their role.

Tree maintainers can be added or removed by submitting a patch to the MAINTAINERS file. The
proposer should justify the need for a new sub-tree and should have demonstrated a sufficient
level of contributions in the area or to a similar area. The maintainer should be confirmed by an
ack from an existing tree maintainer. Disagreements on trees or maintainers can be brought
to the Technical Board.

The backup maintainer for the master tree should be selected from the existing sub-tree main-
tainers from the project. The backup maintainer for a sub-tree should be selected from among
the component maintainers within that sub-tree.
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5.3 Getting the Source Code

The source code can be cloned using either of the following:
main repository:

git clone git://dpdk.org/dpdk
git clone http://dpdk.org/git/dpdk

sub-repositories (list):

git clone git://dpdk.org/next/dpdk—next—x*
git clone http://dpdk.org/git/next/dpdk-next—x*

5.4 Make your Changes

Make your planned changes in the cloned dpdk repo. Here are some guidelines and require-
ments:

 Follow the DPDK Coding Style guidelines.
+ If you add new files or directories you should add your name to the MAINTAINERS file.

» New external functions should be added to the local version.map file. See the Guide-
lines for ABI policy and versioning. New external functions should also be added in
alphabetical order.

* Important changes will require an addition to the release notes in
doc/guides/rel_notes/. See the Release Notes section of the Documenta-
tion Guidelines for details.

+ Test the compilation works with different targets, compilers and options, see Checking
Compilation.

» Don’t break compilation between commits with forward dependencies in a patchset. Each
commit should compile on its own to allow for git bisect and continuous integration
testing.

» Add tests to the the app/test unit test framework where possible.

» Add documentation, if relevant, in the form of Doxygen comments or a User Guide in
RST format. See the Documentation Guidelines.

Once the changes have been made you should commit them to your local repo.

For small changes, that do not require specific explanations, it is better to keep things together
in the same patch. Larger changes that require different explanations should be separated into
logical patches in a patchset. A good way of thinking about whether a patch should be split is
to consider whether the change could be applied without dependencies as a backport.

As a guide to how patches should be structured run git log on similar files.

5.5 Commit Messages: Subject Line

The first, summary, line of the git commit message becomes the subject line of the patch email.
Here are some guidelines for the summary line:
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» The summary line must capture the area and the impact of the change.
» The summary line should be around 50 characters.
» The summary line should be lowercase apart from acronyms.

* It should be prefixed with the component name (use git log to check existing compo-
nents). For example:

ixgbe: fix offload config option name
config: increase max queues per port
» Use the imperative of the verb (like instructions to the code base).

» Don’t add a period/full stop to the subject line or you will end up two in the patch name:
dpdk_description. .patch.

The actual email subject line should be prefixed by [PATCH] and the version, if greater
than v1, for example: PATCH v2. The is generally added by git send-email or git
format-patch, see below.

If you are submitting an RFC draft of a feature you can use [RFC] instead of [PATCH]. An
RFC patch doesn’t have to be complete. It is intended as a way of getting early feedback.

5.6 Commit Messages: Body

Here are some guidelines for the body of a commit message:

» The body of the message should describe the issue being fixed or the feature being
added. It is important to provide enough information to allow a reviewer to understand
the purpose of the patch.

» When the change is obvious the body can be blank, apart from the signoff.

» The commit message must end with a Signed-off-by: line which is added using:

git commit --signoff # or -s

The purpose of the signoff is explained in the Developer’s Certificate of Origin section of
the Linux kernel guidelines.

Note: All developers must ensure that they have read and understood the Developer’s
Certificate of Origin section of the documentation prior to applying the signoff and sub-
mitting a patch.

» The signoff must be a real name and not an alias or nickname. More than one signoff is
allowed.

» The text of the commit message should be wrapped at 72 characters.

* When fixing a regression, it is required to reference the id of the commit which introduced
the bug, and put the original author of that commit on CC. You can generate the required
lines using the following git alias, which prints the commit SHA and the author of the
original code:

git config alias.fixline "log -1 --abbrev=12 —--format='Fixes: %$h (\"%s\")%nCc:
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The output of git fixline <SHA> mustthen be added to the commit message:

doc: fix some parameter description
Update the docs, fixing description of some parameter.

Fixes: abcdefghl234 ("doc: add some parameter")
Cc: author@example.com

Signed-off-by: Alex Smith <alex.smith@example.com>

» When fixing an error or warning it is useful to add the error message and instructions on
how to reproduce it.

 Use correct capitalization, punctuation and spelling.

In addition to the Signed-of f-by: name the commit messages can also have tags for who
reported, suggested, tested and reviewed the patch being posted. Please refer to the Tested,
Acked and Reviewed by section.

5.7 Creating Patches

It is possible to send patches directly from git but for new contributors it is recommended to
generate the patches with git format-patch and then when everything looks okay, and the
patches have been checked, to send them with git send-email.

Here are some examples of using git format-patch to generate patches:

# Generate a patch from the last commit.
git format-patch -1

# Generate a patch from the last 3 commits.
git format-patch -3

# Generate the patches in a directory.
git format-patch -3 -o ~/patch/

# Add a cover letter to explain a patchset.
git format-patch -3 -o ~/patch/ —--cover-letter

# Add a prefix with a version number.
git format-patch -3 -o ~/patch/ -v 2

Cover letters are useful for explaining a patchset and help to generate a logical threading to
the patches. Smaller notes can be put inline in the patch after the ——- separator, for example:

Subject: [PATCH] fmlOk/base: add FM10420 device ids

Add the device ID for Boulder Rapids and Atwood Channel to enable
drivers to support those devices.

Signed-off-by: Alex Smith <alex.smith@example.com>

ADD NOTES HERE.

drivers/net/fml0k/base/fml0k_api.c | 6 ++++++
drivers/net/fml0k/base/fml0k_type.h | 6 ++++++
2 files changed, 12 insertions (+)
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Version 2 and later of a patchset should also include a short log of the changes so the reviewer
knows what has changed. This can be added to the cover letter or the annotations. For
example:

v3:
* Fixed issued with version.map.

v2:

* Added i40e support.

* Renamed ethdev functions from rte_eth_ieeel5888_x () to rte_eth_timesync_=x* ()
since 802.1AS can be supported through the same interfaces.

5.8 Checking the Patches

Patches should be checked for formatting and syntax issues using the checkpatches.sh
script in the devtools directory of the DPDK repo. This uses the Linux kernel development
tool checkpatch.pl which can be obtained by cloning, and periodically, updating the Linux
kernel sources.

The path to the original Linux script must be set in the environment variable
DPDK_CHECKPATCH_PATH. This, and any other configuration variables required by the de-
velopment tools, are loaded from the following files, in order of preference:

.develconfig
~/.config/dpdk/devel.config
/etc/dpdk/devel.config.

Once the environment variable the script can be run as follows:

devtools/checkpatches.sh ~/patch/

The script usage is:

checkpatches.sh [-h] [-g] [-v] [patchl [patch2] ...]]"
Where:
* —h: help, usage.
» —q: quiet. Don’t output anything for files without issues.
« —v: verbose.
* patchX: path to one or more patches.
Then the git logs should be checked using the check-git-1log. sh script.

The script usage is:

check-git-log.sh [range]

Where the range is a git 1log option.

5.9 Checking Compilation

Compilation of patches and changes should be tested using the the test-build. sh scriptin
the devtools directory of the DPDK repo:

devtools/test-build.sh x86_64-native-linuxapp-gcc+next+shared
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The script usage is:
test-build.sh [-h] [-3X] [-s] [configl [config2] ...]]
Where:
* —h: help, usage.
* —jX: use X parallel jobs in “make”.
* —s: short test with only first config and without examples/doc.
* config: default config name plus config switches delimited with a + sign.

Examples of configs are:

x86_64-native-linuxapp-gcc
x86_64-native-linuxapp-gcc+next+shared
x86_64-native-linuxapp-clang+shared

The builds can be modified via the following environmental variables:
* DPDK_BUILD_TEST_CONFIGS (target1+optioni+option2 target2)
* DPDK_DEP_CFLAGS
* DPDK_DEP_LDFLAGS
* DPDK_DEP_PCAP (y/[n])
* DPDK_NOTIFY (notify-send)

These can be set from the command line or in the config files shown above in the Checking
the Patches.

The recommended configurations and options to test compilation prior to submitting patches
are:

x86_64-native-linuxapp-gcc+shared+next
x86_64-native-linuxapp-clang+shared
i686-native-linuxapp-gcc

export DPDK_DEP_ZLIB=y
export DPDK_DEP_PCAP=y
export DPDK_DEP_SSL=y

5.10 Sending Patches

Patches should be sent to the mailing list using git send-email. You can configure an
external SMTP with something like the following:
[sendemail]
smtpuser = name@domain.com
smtpserver = smtp.domain.com

smtpserverport = 465
smtpencryption = ssl

See the Git send-email documentation for more details.

The patches should be sent to dev@dpdk.org. If the patches are a change to existing files
then you should send them TO the maintainer(s) and CC dev@dpdk.org. The appropriate
maintainer can be found in the MAINTAINERS file:

git send-email --to maintainer@some.org —--cc dev@dpdk.org 000x.patch
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Script get-maintainer.sh can be used to select maintainers automatically:

git send-email --to-cmd ./devtools/get-maintainer.sh --cc dev@dpdk.org 000*.patch

New additions can be sent without a maintainer:

git send-email --to dev@dpdk.org 000x.patch
You can test the emails by sending it to yourself or with the ——dry-run option.

If the patch is in relation to a previous email thread you can add it to the same thread using the
Message ID:

git send-email --to dev@dpdk.org —--in-reply-to <1234-fool@bar.com> 000x.patch

The Message ID can be found in the raw text of emails or at the top of each Patchwork patch,
for example. Shallow threading (-—thread --no-chain-reply-to)is preferred for a patch
series.

Once submitted your patches will appear on the mailing list and in Patchwork.

Experienced committers may send patches directly with git send-email without the git
format-patch step. The options ——annotate and confirm = always are recommended
for checking patches before sending.

5.11 The Review Process

Patches are reviewed by the community, relying on the experience and collaboration of the
members to double-check each other’s work. There are a number of ways to indicate that you
have checked a patch on the mailing list.

5.11.1 Tested, Acked and Reviewed by
To indicate that you have interacted with a patch on the mailing list you should respond to the
patch in an email with one of the following tags:

* Reviewed-by:

» Acked-by:

» Tested-by:

Reported-by:

Suggested-by:
The tag should be on a separate line as follows:

tag-here: Name Surname <email@address.com>

Each of these tags has a specific meaning. In general, the DPDK community follows the kernel
usage of the tags. A short summary of the meanings of each tag is given here for reference:

Reviewed-by: is a strong statement that the patch is an appropriate state for merging without
any remaining serious technical issues. Reviews from community members who are known to
understand the subject area and to perform thorough reviews will increase the likelihood of the
patch getting merged.

Acked-by: is a record that the person named was not directly involved in the preparation of
the patch but wishes to signify and record their acceptance and approval of it.
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Tested-by: indicates that the patch has been successfully tested (in some environment) by
the person named.

Reported-by: is used to acknowledge person who found or reported the bug.

Suggested-by: indicates that the patch idea was suggested by the named person.

5.11.2 Steps to getting your patch merged

The more work you put into the previous steps the easier it will be to get a patch accepted.
The general cycle for patch review and acceptance is:

1.

o

10.

11.

Submit the patch.

2. Check the automatic test reports in the coming hours.
3.
4

. Fix the review comments and submit a v n+1 patchset:

Wait for review comments. While you are waiting review some other patches.

git format-patch -3 -v 2
Update Patchwork to mark your previous patches as “Superseded”.

If the patch is deemed suitable for merging by the relevant maintainer(s) or other devel-
opers they will ack the patch with an email that includes something like:

Acked-by: Alex Smith <alex.smith@example.com>

Note: When acking patches please remove as much of the text of the patch email as
possible. It is generally best to delete everything after the signed-off-by: line.

. Having the patch Reviewed-by: and/or Tested-by: will also help the patch to be

accepted.

If the patch isn’t deemed suitable based on being out of scope or conflicting with existing
functionality it may receive a nack. In this case you will need to make a more convincing
technical argument in favor of your patches.

In addition a patch will not be accepted if it doesn’t address comments from a previous
version with fixes or valid arguments.

It is the responsibility of a maintainer to ensure that patches are reviewed and to provide
an ack or nack of those patches as appropriate.

Once a patch has been acked by the relevant maintainer, reviewers may still comment on
it for a further two weeks. After that time, the patch should be merged into the relevant
git tree for the next release. Additional notes and restrictions:

» Patches should be acked by a maintainer at least two days before the release merge
deadline, in order to make that release.

» For patches acked with less than two weeks to go to the merge deadline, all addi-
tional comments should be made no later than two days before the merge deadline.

+ After the appropriate time for additional feedback has passed, if the patch has not
yet been merged to the relevant tree by the committer, it should be treated as though
it had, in that any additional changes needed to it must be addressed by a follow-on
patch, rather than rework of the original.
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« Trivial patches may be merged sooner than described above at the tree committer’s
discretion.
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CHAPTER
SIX

DPDK STABLE RELEASES AND LONG TERM SUPPORT

This section sets out the guidelines for the DPDK Stable Releases and the DPDK Long Term
Support releases (LTS).

6.1 Introduction

The purpose of the DPDK Stable Releases is to maintain releases of DPDK with backported
fixes over an extended period of time. This provides downstream consumers of DPDK with a
stable target on which to base applications or packages.

The Long Term Support release (LTS) is a designation applied to a Stable Release to indicate
longer term support.

6.2 Stable Releases

Any major release of DPDK can be designated as a Stable Release if a maintainer volunteers
to maintain it.

A Stable Release is used to backport fixes from an N release back to an N-1 release, for
example, from 16.11 to 16.07.

The duration of a stable is one complete release cycle (3 months). It can be longer, up to 1
year, if a maintainer continues to support the stable branch, or if users supply backported fixes,
however the explicit commitment should be for one release cycle.

The release cadence is determined by the maintainer based on the number of bugfixes and the
criticality of the bugs. Releases should be coordinated with the validation engineers to ensure
that a tagged release has been tested.

6.3 LTS Release

A stable release can be designated as an LTS release based on community agreement and a
commitment from a maintainer. The current policy is that each year’s November release will
be maintained as an LTS for 2 years.

The current DPDK LTS releases are 16.11 and 17.11.

It is anticipated that there will be at least 4 releases per year of the LTS or approximately 1
every 3 months. However, the cadence can be shorter or longer depending on the number and
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criticality of the backported fixes. Releases should be coordinated with the validation engineers
to ensure that a tagged release has been tested.

6.4 What changes should be backported

Backporting should be limited to bug fixes.

Features should not be backported to stable releases. It may be acceptable, in limited cases,
to back port features for the LTS release where:

» There is a justifiable use case (for example a new PMD).
» The change is non-invasive.
» The work of preparing the backport is done by the proposer.

» There is support within the community.

6.5 The Stable Mailing List

The Stable and LTS release are coordinated on the stable@dpdk.org mailing list.

All fix patches to the master branch that are candidates for backporting should also be CCed
to the stable@dpdk.org mailing list.

6.6 Releasing

A Stable Release will be released by:
» Tagging the release with YY.MM.n (year, month, number).
» Uploading a tarball of the release to dpdk.org.
« Sending an announcement to the announce@dpdk.org list.

Stable releases are available on the dpdk.org download page.

6.7 ABI

The Stable Release should not be seen as a way of breaking or circumventing the DPDK ABI
policy.
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CHAPTER
SEVEN

PATCH CHEATSHEET
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”@ DPDK PATCH SUBMIT

DATA PLANE DEVELOPMENT KIT C H EATS H E ET v1.0 /

N
( N <)
Commit Pre-Checks Bugfix?
+ Signed-off-by: + Fixes: line
+ Suggested-by: + Include warning/error
+ Reported-by: + How to reproduce
+ Tested-by:
N Comm}t messag? Patch Pre-Checks
+ Previous Acks
h _| + Rebase to git
Compile Pre-Checks + Checkpatch
+ build gcc icc clang + ABI breakage .
+ build 32 and 64 bits + Update version.map
+ make test doc + Maintainers file
+ make examples + Doxygen
+ make shared-lib + Release notes
+ library ABI version + Documentation
Git send-email Mailing List
+ Cover lettgr + Acked-by:
+ Patch vers%on ( eg: —YZ ) + Tested-by:
+ Patch version annotations + Reviewed-by:
+ Send --to maintainer x Nack (refuse patch)
+ Send --cc dev@dpdk.org
+ Send --in-reply-to <message ID>
( git format-patch -[N] // creates .patch files for final review
git send-email *.patch --annotate --to <maintainer> |
--cc dev@dpdk.org [ --cc other@participants.com
--cover-letter -v[N] --in-reply-to <message ID> ]
& =

N
Suggestions / Updates?
harry.van.haaren@intel.com

*k The version.map function names must be in alphabetical order.
sk New header files must get a new page in the API docs.
skkk Available from patchwork, or email header. Reply to Cover letters.

*x Previous Acks only when fixing typos, rebased, or checkpatch issues. [

Fig. 7.1: Cheat sheet for submitting patches to dev@dpdk.org
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