
DPDK Tools User Guides
Release 17.11.10

Feb 27, 2020

CONTENTS

1 dpdk-procinfo Application 1
1.1 Running the Application . 1

2 dpdk-pdump Application 2
2.1 Running the Application . 2
2.2 Example . 4

3 dpdk-pmdinfo Application 5
3.1 Running the Application . 5

4 dpdk-devbind Application 6
4.1 Running the Application . 6
4.2 OPTIONS . 6
4.3 Examples . 7

5 dpdk-test-crypto-perf Application 8
5.1 Limitations . 8
5.2 Compiling the Application . 8
5.3 Running the Application . 9
5.4 Examples . 14

6 dpdk-test-eventdev Application 15
6.1 Compiling the Application . 15
6.2 Running the Application . 15
6.3 Eventdev Tests . 17

i

CHAPTER

ONE

DPDK-PROCINFO APPLICATION

The dpdk-procinfo application is a Data Plane Development Kit (DPDK) application that runs as
a DPDK secondary process and is capable of retrieving port statistics, resetting port statistics
and printing DPDK memory information. This application extends the original functionality that
was supported by dump_cfg.

1.1 Running the Application

The application has a number of command line options:

./$(RTE_TARGET)/app/dpdk-procinfo -- -m | [-p PORTMASK] [--stats | --xstats |
--stats-reset | --xstats-reset]

1.1.1 Parameters

-p PORTMASK: Hexadecimal bitmask of ports to configure.

–stats The stats parameter controls the printing of generic port statistics. If no port mask is
specified stats are printed for all DPDK ports.

–xstats The xstats parameter controls the printing of extended port statistics. If no port mask
is specified xstats are printed for all DPDK ports.

–stats-reset The stats-reset parameter controls the resetting of generic port statistics. If no
port mask is specified, the generic stats are reset for all DPDK ports.

–xstats-reset The xstats-reset parameter controls the resetting of extended port statistics. If
no port mask is specified xstats are reset for all DPDK ports.

-m: Print DPDK memory information.

1

CHAPTER

TWO

DPDK-PDUMP APPLICATION

The dpdk-pdump tool is a Data Plane Development Kit (DPDK) tool that runs as a DPDK
secondary process and is capable of enabling packet capture on dpdk ports.

Note:

• The dpdk-pdump tool can only be used in conjunction with a primary appli-
cation which has the packet capture framework initialized already. In dpdk,
only the testpmd is modified to initialize packet capture framework, other
applications remain untouched. So, if the dpdk-pdump tool has to be used
with any application other than the testpmd, user needs to explicitly modify
that application to call packet capture framework initialization code. Refer
app/test-pmd/testpmd.c code to see how this is done.

• The dpdk-pdump tool depends on libpcap based PMD which is disabled by
default in the build configuration files, owing to an external dependency on
the libpcap development files which must be installed on the board. Once the
libpcap development files are installed, the libpcap based PMD can be enabled
by setting CONFIG_RTE_LIBRTE_PMD_PCAP=y and recompiling the DPDK.

2.1 Running the Application

The tool has a number of command line options:

./build/app/dpdk-pdump --
--pdump '(port=<port id> | device_id=<pci id or vdev name>),

(queue=<queue_id>),
(rx-dev=<iface or pcap file> |
tx-dev=<iface or pcap file>),

[ring-size=<ring size>],
[mbuf-size=<mbuf data size>],
[total-num-mbufs=<number of mbufs>]'

[--server-socket-path=<server socket dir>]
[--client-socket-path=<client socket dir>]

The --pdump command line option is mandatory and it takes various sub arguments which
are described in below section.

Note:

• Parameters inside the parentheses represents mandatory parameters.

2

DPDK Tools User Guides, Release 17.11.10

• Parameters inside the square brackets represents optional parameters.

• Multiple instances of --pdump can be passed to capture packets on different
port and queue combinations.

The --server-socket-path command line option is optional. This represents the server
socket directory. If no value is passed default values are used i.e. /var/run/.dpdk/ for root
users and ~/.dpdk/ for non root users.

The --client-socket-path command line option is optional. This represents the client
socket directory. If no value is passed default values are used i.e. /var/run/.dpdk/ for root
users and ~/.dpdk/ for non root users.

2.1.1 The --pdump parameters

port: Port id of the eth device on which packets should be captured.

device_id: PCI address (or) name of the eth device on which packets should be captured.

Note:

• As of now the dpdk-pdump tool cannot capture the packets of virtual devices
in the primary process due to a bug in the ethdev library. Due to this bug, in
a multi process context, when the primary and secondary have different ports
set, then the secondary process (here the dpdk-pdump tool) overwrites the
rte_eth_devices[] entries of the primary process.

queue: Queue id of the eth device on which packets should be captured. The user can pass
a queue value of * to enable packet capture on all queues of the eth device.

rx-dev: Can be either a pcap file name or any Linux iface.

tx-dev: Can be either a pcap file name or any Linux iface.

Note:

• To receive ingress packets only, rx-dev should be passed.

• To receive egress packets only, tx-dev should be passed.

• To receive ingress and egress packets separately rx-dev and tx-dev should
both be passed with the different file names or the Linux iface names.

• To receive ingress and egress packets together, rx-dev and tx-dev should
both be passed with the same file name or the same Linux iface name.

ring-size: Size of the ring. This value is used internally for ring creation. The ring will be
used to enqueue the packets from the primary application to the secondary. This is an optional
parameter with default size 16384.

mbuf-size: Size of the mbuf data. This is used internally for mempool creation. Ideally this
value must be same as the primary application’s mempool’s mbuf data size which is used for
packet RX. This is an optional parameter with default size 2176.

2.1. Running the Application 3

DPDK Tools User Guides, Release 17.11.10

total-num-mbufs: Total number mbufs in mempool. This is used internally for mempool
creation. This is an optional parameter with default value 65535.

2.2 Example

$ sudo ./build/app/dpdk-pdump -- --pdump 'port=0,queue=*,rx-dev=/tmp/rx.pcap'

2.2. Example 4

CHAPTER

THREE

DPDK-PMDINFO APPLICATION

The dpdk-pmdinfo tool is a Data Plane Development Kit (DPDK) utility that can dump a
PMDs hardware support info.

3.1 Running the Application

The tool has a number of command line options:

dpdk-pmdinfo [-hrtp] [-d <pci id file] <elf-file>

-h, --help Show a short help message and exit
-r, --raw Dump as raw json strings
-d FILE, --pcidb=FILE Specify a pci database to get vendor names from
-t, --table Output information on hw support as a hex table
-p, --plugindir Scan dpdk for autoload plugins

Note:

• Parameters inside the square brackets represents optional parameters.

5

CHAPTER

FOUR

DPDK-DEVBIND APPLICATION

The dpdk-devbind tool is a Data Plane Development Kit (DPDK) utility that helps binding
and unbinding devices from specific drivers. As well as checking their status in that regard.

4.1 Running the Application

The tool has a number of command line options:

dpdk-devbind [options] DEVICE1 DEVICE2

4.2 OPTIONS

• --help,--usage

Display usage information and quit

• -s,--status

Print the current status of all known network interfaces. For each device, it
displays the PCI domain, bus, slot and function, along with a text description
of the device. Depending upon whether the device is being used by a ker-
nel driver, the igb_uio driver, or no driver, other relevant information will be
displayed: - the Linux interface name e.g. if=eth0 - the driver being used
e.g. drv=igb_uio - any suitable drivers not currently using that device e.g.
unused=igb_uio NOTE: if this flag is passed along with a bind/unbind op-
tion, the status display will always occur after the other operations have taken
place.

• -b driver,--bind=driver

Select the driver to use or “none” to unbind the device

• -u,--unbind

Unbind a device (Equivalent to -b none)

• --force

By default, devices which are used by Linux - as indicated by having routes
in the routing table - cannot be modified. Using the --force flag overrides
this behavior, allowing active links to be forcibly unbound. WARNING: This can
lead to loss of network connection and should be used with caution.

6

DPDK Tools User Guides, Release 17.11.10

Warning: Due to the way VFIO works, there are certain limitations to which devices can
be used with VFIO. Mainly it comes down to how IOMMU groups work. Any Virtual Function
device can be used with VFIO on its own, but physical devices will require either all ports
bound to VFIO, or some of them bound to VFIO while others not being bound to anything
at all.

If your device is behind a PCI-to-PCI bridge, the bridge will then be part of the IOMMU
group in which your device is in. Therefore, the bridge driver should also be unbound from
the bridge PCI device for VFIO to work with devices behind the bridge.

Warning: While any user can run the dpdk-devbind.py script to view the status of the
network ports, binding or unbinding network ports requires root privileges.

4.3 Examples

To display current device status:

dpdk-devbind --status

To bind eth1 from the current driver and move to use igb_uio:

dpdk-devbind --bind=igb_uio eth1

To unbind 0000:01:00.0 from using any driver:

dpdk-devbind -u 0000:01:00.0

To bind 0000:02:00.0 and 0000:02:00.1 to the ixgbe kernel driver:

dpdk-devbind -b ixgbe 02:00.0 02:00.1

To check status of all network ports, assign one to the igb_uio driver and check status again:

Check the status of the available devices.
dpdk-devbind --status
Network devices using DPDK-compatible driver
==
<none>

Network devices using kernel driver
===================================
0000:0a:00.0 '82599ES 10-Gigabit' if=eth2 drv=ixgbe unused=

Bind the device to igb_uio.
sudo dpdk-devbind -b igb_uio 0000:0a:00.0

Recheck the status of the devices.
dpdk-devbind --status
Network devices using DPDK-compatible driver
==
0000:0a:00.0 '82599ES 10-Gigabit' drv=igb_uio unused=

4.3. Examples 7

CHAPTER

FIVE

DPDK-TEST-CRYPTO-PERF APPLICATION

The dpdk-test-crypto-perf tool is a Data Plane Development Kit (DPDK) utility that al-
lows measuring performance parameters of PMDs available in the crypto tree. There are
available two measurement types: throughput and latency. User can use multiply cores to run
tests on but only one type of crypto PMD can be measured during single application execution.
Cipher parameters, type of device, type of operation and chain mode have to be specified in
the command line as application parameters. These parameters are checked using device
capabilities structure.

5.1 Limitations

On hardware devices the cycle-count doesn’t always represent the actual offload cost. The
cycle-count only represents the offload cost when the hardware accelerator is not fully loaded,
when loaded the cpu cycles freed up by the offload are still consumed by the test tool and
included in the cycle-count. These cycles are consumed by retries and inefficient API calls
enqueuing and dequeuing smaller bursts than specified by the cmdline parameter. This results
in a larger cycle-count measurement and should not be interpreted as an offload cost mea-
surement. Using “pmd-cyclecount” mode will give a better idea of actual costs of hardware
acceleration.

On hardware devices the throughput measurement is not necessarily the maximum possible
for the device, e.g. it may be necessary to use multiple cores to keep the hardware accelerator
fully loaded and so measure maximum throughput.

5.2 Compiling the Application

Step 1: PMD setting

The dpdk-test-crypto-perf tool depends on crypto device drivers PMD which are dis-
abled by default in the build configuration file common_base. The crypto device drivers PMD
which should be tested can be enabled by setting:

CONFIG_RTE_LIBRTE_PMD_<name>=y

Setting example for open ssl PMD:

CONFIG_RTE_LIBRTE_PMD_OPENSSL=y

Step 2: Linearization setting

It is possible linearized input segmented packets just before crypto operation for devices which
doesn’t support scatter-gather, and allows to measure performance also for this use case.

8

DPDK Tools User Guides, Release 17.11.10

To set on the linearization options add below definition to the cperf_ops.h file:

#define CPERF_LINEARIZATION_ENABLE

Step 3: Build the application

Execute the dpdk-setup.sh script to build the DPDK library together with the
dpdk-test-crypto-perf applcation.

Initially, the user must select a DPDK target to choose the correct target type and compiler
options to use when building the libraries. The user must have all libraries, modules, updates
and compilers installed in the system prior to this, as described in the earlier chapters in this
Getting Started Guide.

5.3 Running the Application

The tool application has a number of command line options:

dpdk-test-crypto-perf [EAL Options] -- [Application Options]

5.3.1 EAL Options

The following are the EAL command-line options that can be used in conjunction with the
dpdk-test-crypto-perf applcation. See the DPDK Getting Started Guides for more infor-
mation on these options.

• -c <COREMASK> or -l <CORELIST>

Set the hexadecimal bitmask of the cores to run on. The corelist is a list cores
to use.

• -w <PCI>

Add a PCI device in white list.

• --vdev <driver><id>

Add a virtual device.

5.3.2 Appication Options

The following are the appication command-line options:

• --ptest type

Set test type, where type is one of the following:

throughput
latency
verify
pmd-cyclecount

• --silent

Disable options dump.

• --pool-sz <n>

Set the number of mbufs to be allocated in the mbuf pool.

5.3. Running the Application 9

DPDK Tools User Guides, Release 17.11.10

• --total-ops <n>

Set the number of total operations performed.

• --burst-sz <n>

Set the number of packets per burst.

This can be set as:

– Single value (i.e. --burst-sz 16)

– Range of values, using the following structure min:inc:max, where
min is minimum size, inc is the increment size and max is the maxi-
mum size (i.e. --burst-sz 16:2:32)

– List of values, up to 32 values, separated in commas (i.e. --burst-sz
16,24,32)

• --buffer-sz <n>

Set the size of single packet (plaintext or ciphertext in it).

This can be set as:

– Single value (i.e. --buffer-sz 16)

– Range of values, using the following structure min:inc:max, where
min is minimum size, inc is the increment size and max is the maxi-
mum size (i.e. --buffer-sz 16:2:32)

– List of values, up to 32 values, separated in commas (i.e.
--buffer-sz 32,64,128)

• --segment-sz <n>

Set the size of the segment to use, for Scatter Gather List testing. By default,
it is set to the size of the maximum buffer size, including the digest size, so a
single segment is created.

• --devtype <name>

Set device type, where name is one of the following:

crypto_null
crypto_aesni_mb
crypto_aesni_gcm
crypto_openssl
crypto_qat
crypto_snow3g
crypto_kasumi
crypto_zuc
crypto_dpaa_sec
crypto_dpaa2_sec
crypto_armv8
crypto_scheduler
crypto_mrvl

• --optype <name>

Set operation type, where name is one of the following:

cipher-only
auth-only
cipher-then-auth

5.3. Running the Application 10

DPDK Tools User Guides, Release 17.11.10

auth-then-cipher
aead

For GCM/CCM algorithms you should use aead flag.

• --sessionless

Enable session-less crypto operations mode.

• --out-of-place

Enable out-of-place crypto operations mode.

• --test-file <name>

Set test vector file path. See the Test Vector File chapter.

• --test-name <name>

Set specific test name section in the test vector file.

• --cipher-algo <name>

Set cipher algorithm name, where name is one of the following:

3des-cbc
3des-ecb
3des-ctr
aes-cbc
aes-ctr
aes-ecb
aes-f8
aes-xts
arc4
null
kasumi-f8
snow3g-uea2
zuc-eea3

• --cipher-op <mode>

Set cipher operation mode, where mode is one of the following:

encrypt
decrypt

• --cipher-key-sz <n>

Set the size of cipher key.

• --cipher-iv-sz <n>

Set the size of cipher iv.

• --auth-algo <name>

Set authentication algorithm name, where name is one of the following:

3des-cbc
aes-cbc-mac
aes-cmac
aes-gmac
aes-xcbc-mac
md5
md5-hmac
sha1
sha1-hmac

5.3. Running the Application 11

DPDK Tools User Guides, Release 17.11.10

sha2-224
sha2-224-hmac
sha2-256
sha2-256-hmac
sha2-384
sha2-384-hmac
sha2-512
sha2-512-hmac
kasumi-f9
snow3g-uia2
zuc-eia3

• --auth-op <mode>

Set authentication operation mode, where mode is one of the following:

verify
generate

• --auth-key-sz <n>

Set the size of authentication key.

• --auth-iv-sz <n>

Set the size of auth iv.

• --aead-algo <name>

Set AEAD algorithm name, where name is one of the following:

aes-ccm
aes-gcm

• --aead-op <mode>

Set AEAD operation mode, where mode is one of the following:

encrypt
decrypt

• --aead-key-sz <n>

Set the size of AEAD key.

• --aead-iv-sz <n>

Set the size of AEAD iv.

• --aead-aad-sz <n>

Set the size of AEAD aad.

• --digest-sz <n>

Set the size of digest.

• --desc-nb <n>

Set number of descriptors for each crypto device.

• --pmd-cyclecount-delay-ms <n>

Add a delay (in milliseconds) between enqueue and dequeue in pmd-
cyclecount benchmarking mode (useful when benchmarking hardware accel-
eration).

5.3. Running the Application 12

DPDK Tools User Guides, Release 17.11.10

• --csv-friendly

Enable test result output CSV friendly rather than human friendly.

5.3.3 Test Vector File

The test vector file is a text file contain information about test vectors. The file is made of the
sections. The first section doesn’t have header. It contain global information used in each
test variant vectors - typically information about plaintext, ciphertext, cipher key, aut key, initial
vector. All other sections begin header. The sections contain particular information typically
digest.

Format of the file:

Each line beginig with sign ‘#’ contain comment and it is ignored by parser:

<comment>

Header line is just name in square bracket:

[<section name>]

Data line contain information tocken then sign ‘=’ and a string of bytes in C byte array format:

<tocken> = <C byte array>

Tockens list:

• plaintext

Original plaintext to be crypted.

• ciphertext

Encrypted plaintext string.

• cipher_key

Key used in cipher operation.

• auth_key

Key used in auth operation.

• cipher_iv

Cipher Initial Vector.

• auth_iv

Auth Initial Vector.

• aad

Additional data.

• digest

Digest string.

5.3. Running the Application 13

DPDK Tools User Guides, Release 17.11.10

5.4 Examples

Call application for performance throughput test of single Aesni MB PMD for cipher encryption
aes-cbc and auth generation sha1-hmac, one million operations, burst size 32, packet size 64:

dpdk-test-crypto-perf -l 6-7 --vdev crypto_aesni_mb -w 0000:00:00.0 --
--ptest throughput --devtype crypto_aesni_mb --optype cipher-then-auth
--cipher-algo aes-cbc --cipher-op encrypt --cipher-key-sz 16 --auth-algo
sha1-hmac --auth-op generate --auth-key-sz 64 --digest-sz 12
--total-ops 10000000 --burst-sz 32 --buffer-sz 64

Call application for performance latency test of two Aesni MB PMD executed on two cores for
cipher encryption aes-cbc, ten operations in silent mode:

dpdk-test-crypto-perf -l 4-7 --vdev crypto_aesni_mb1
--vdev crypto_aesni_mb2 -w 0000:00:00.0 -- --devtype crypto_aesni_mb
--cipher-algo aes-cbc --cipher-key-sz 16 --cipher-iv-sz 16
--cipher-op encrypt --optype cipher-only --silent
--ptest latency --total-ops 10

Call application for verification test of single open ssl PMD for cipher encryption aes-
gcm and auth generation aes-gcm,ten operations in silent mode, test vector provide in file
“test_aes_gcm.data” with packet verification:

dpdk-test-crypto-perf -l 4-7 --vdev crypto_openssl -w 0000:00:00.0 --
--devtype crypto_openssl --aead-algo aes-gcm --aead-key-sz 16
--aead-iv-sz 16 --aead-op encrypt --aead-aad-sz 16 --digest-sz 16
--optype aead --silent --ptest verify --total-ops 10
--test-file test_aes_gcm.data

Test vector file for cipher algorithm aes cbc 256 with authorization sha:

Global Section
plaintext =
0xff, 0xca, 0xfb, 0xf1, 0x38, 0x20, 0x2f, 0x7b, 0x24, 0x98, 0x26, 0x7d, 0x1d, 0x9f, 0xb3, 0x93,
0xd9, 0xef, 0xbd, 0xad, 0x4e, 0x40, 0xbd, 0x60, 0xe9, 0x48, 0x59, 0x90, 0x67, 0xd7, 0x2b, 0x7b,
0x8a, 0xe0, 0x4d, 0xb0, 0x70, 0x38, 0xcc, 0x48, 0x61, 0x7d, 0xee, 0xd6, 0x35, 0x49, 0xae, 0xb4,
0xaf, 0x6b, 0xdd, 0xe6, 0x21, 0xc0, 0x60, 0xce, 0x0a, 0xf4, 0x1c, 0x2e, 0x1c, 0x8d, 0xe8, 0x7b
ciphertext =
0x77, 0xF9, 0xF7, 0x7A, 0xA3, 0xCB, 0x68, 0x1A, 0x11, 0x70, 0xD8, 0x7A, 0xB6, 0xE2, 0x37, 0x7E,
0xD1, 0x57, 0x1C, 0x8E, 0x85, 0xD8, 0x08, 0xBF, 0x57, 0x1F, 0x21, 0x6C, 0xAD, 0xAD, 0x47, 0x1E,
0x0D, 0x6B, 0x79, 0x39, 0x15, 0x4E, 0x5B, 0x59, 0x2D, 0x76, 0x87, 0xA6, 0xD6, 0x47, 0x8F, 0x82,
0xB8, 0x51, 0x91, 0x32, 0x60, 0xCB, 0x97, 0xDE, 0xBE, 0xF0, 0xAD, 0xFC, 0x23, 0x2E, 0x22, 0x02
cipher_key =
0xE4, 0x23, 0x33, 0x8A, 0x35, 0x64, 0x61, 0xE2, 0x49, 0x03, 0xDD, 0xC6, 0xB8, 0xCA, 0x55, 0x7A,
0xd0, 0xe7, 0x4b, 0xfb, 0x5d, 0xe5, 0x0c, 0xe7, 0x6f, 0x21, 0xb5, 0x52, 0x2a, 0xbb, 0xc7, 0xf7
auth_key =
0xaf, 0x96, 0x42, 0xf1, 0x8c, 0x50, 0xdc, 0x67, 0x1a, 0x43, 0x47, 0x62, 0xc7, 0x04, 0xab, 0x05,
0xf5, 0x0c, 0xe7, 0xa2, 0xa6, 0x23, 0xd5, 0x3d, 0x95, 0xd8, 0xcd, 0x86, 0x79, 0xf5, 0x01, 0x47,
0x4f, 0xf9, 0x1d, 0x9d, 0x36, 0xf7, 0x68, 0x1a, 0x64, 0x44, 0x58, 0x5d, 0xe5, 0x81, 0x15, 0x2a,
0x41, 0xe4, 0x0e, 0xaa, 0x1f, 0x04, 0x21, 0xff, 0x2c, 0xf3, 0x73, 0x2b, 0x48, 0x1e, 0xd2, 0xf7
cipher_iv =
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
Section sha 1 hmac buff 32
[sha1_hmac_buff_32]
digest =
0x36, 0xCA, 0x49, 0x6A, 0xE3, 0x54, 0xD8, 0x4F, 0x0B, 0x76, 0xD8, 0xAA, 0x78, 0xEB, 0x9D, 0x65,
0x2C, 0xCA, 0x1F, 0x97
Section sha 256 hmac buff 32
[sha256_hmac_buff_32]
digest =
0x1C, 0xB2, 0x3D, 0xD1, 0xF9, 0xC7, 0x6C, 0x49, 0x2E, 0xDA, 0x94, 0x8B, 0xF1, 0xCF, 0x96, 0x43,
0x67, 0x50, 0x39, 0x76, 0xB5, 0xA1, 0xCE, 0xA1, 0xD7, 0x77, 0x10, 0x07, 0x43, 0x37, 0x05, 0xB4

5.4. Examples 14

CHAPTER

SIX

DPDK-TEST-EVENTDEV APPLICATION

The dpdk-test-eventdev tool is a Data Plane Development Kit (DPDK) application that al-
lows exercising various eventdev use cases. This application has a generic framework to add
new eventdev based test cases to verify functionality and measure the performance parame-
ters of DPDK eventdev devices.

6.1 Compiling the Application

Build the application

Execute the dpdk-setup.sh script to build the DPDK library together with the
dpdk-test-eventdev application.

Initially, the user must select a DPDK target to choose the correct target type and compiler
options to use when building the libraries. The user must have all libraries, modules, updates
and compilers installed in the system prior to this, as described in the earlier chapters in this
Getting Started Guide.

6.2 Running the Application

The application has a number of command line options:

dpdk-test-eventdev [EAL Options] -- [application options]

6.2.1 EAL Options

The following are the EAL command-line options that can be used in conjunction with the
dpdk-test-eventdev application. See the DPDK Getting Started Guides for more informa-
tion on these options.

• -c <COREMASK> or -l <CORELIST>

Set the hexadecimal bitmask of the cores to run on. The corelist is a list of
cores to use.

• --vdev <driver><id>

Add a virtual eventdev device.

15

DPDK Tools User Guides, Release 17.11.10

6.2.2 Application Options

The following are the application command-line options:

• --verbose

Set verbose level. Default is 1. Value > 1 displays more details.

• --dev <n>

Set the device id of the event device.

• --test <name>

Set test name, where name is one of the following:

order_queue
order_atq
perf_queue
perf_atq

• --socket_id <n>

Set the socket id of the application resources.

• --pool-sz <n>

Set the number of mbufs to be allocated from the mempool.

• --plcores <CORELIST>

Set the list of cores to be used as producers.

• --wlcores <CORELIST>

Set the list of cores to be used as workers.

• --stlist <type_list>

Set the scheduled type of each stage where type_list size determines the
number of stages used in the test application. Each type_list member can be
one of the following:

P or p : Parallel schedule type
O or o : Ordered schedule type
A or a : Atomic schedule type

Application expects the type_list in comma separated form (i.e. --stlist
o,a,a,a)

• --nb_flows <n>

Set the number of flows to produce.

• --nb_pkts <n>

Set the number of packets to produce. 0 implies no limit.

• --worker_deq_depth <n>

Set the dequeue depth of the worker.

• --fwd_latency

Perform forward latency measurement.

• --queue_priority

6.2. Running the Application 16

DPDK Tools User Guides, Release 17.11.10

Enable queue priority.

6.3 Eventdev Tests

6.3.1 ORDER_QUEUE Test

This is a functional test case that aims at testing the following:

1. Verify the ingress order maintenance.

2. Verify the exclusive(atomic) access to given atomic flow per eventdev port.

Table 6.1: Order queue test eventdev configuration.

Items Value Comments
1 nb_queues 2 q0(ordered), q1(atomic)
2 nb_producers 1
3 nb_workers >= 1
4 nb_ports nb_workers + 1 Workers use port 0 to port n-1. Producer uses port n

test: order_queue

producer_flow_seq

producer maintains per flow sequence number

flow 0 flow 1 flow 2 flow n

producer0

ordered queue 0 atomic queue 1

worker 0

port n+1

worker 1 worker 2 worker n

port 0 port 1 port 2 port n

expected_flow_seq

per flow expected sequence number

flow 0 flow 1 flow 2 flow n

enqueue ordered flow(step 1)

produce ordered flows(step 0)
dequeue_ordered_flow(step 2)

change to atomic flow and enqueue(step 3)

dequeue_atomic_flow (step 4)

Fig. 6.1: order queue test operation.

The order queue test configures the eventdev with two queues and an event producer to inject
the events to q0(ordered) queue. Both q0(ordered) and q1(atomic) are linked to all the workers.

The event producer maintains a sequence number per flow and injects the events to the or-
dered queue. The worker receives the events from ordered queue and forwards to atomic
queue. Since the events from an ordered queue can be processed in parallel on the different
workers, the ingress order of events might have changed on the downstream atomic queue
enqueue. On enqueue to the atomic queue, the eventdev PMD driver reorders the event to the
original ingress order(i.e producer ingress order).

When the event is dequeued from the atomic queue by the worker, this test verifies the ex-
pected sequence number of associated event per flow by comparing the free running expected
sequence number per flow.

6.3. Eventdev Tests 17

DPDK Tools User Guides, Release 17.11.10

Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--nb_flows
--nb_pkts
--worker_deq_depth

Example

Example command to run order queue test:

sudo build/app/dpdk-test-eventdev --vdev=event_sw0 -- \
--test=order_queue --plcores 1 --wlcores 2,3

6.3.2 ORDER_ATQ Test

This test verifies the same aspects of order_queue test, the difference is the number of
queues used, this test operates on a single all types queue(atq) instead of two different
queues for ordered and atomic.

Table 6.2: Order all types queue test eventdev configuration.

Items Value Comments
1 nb_queues 1 q0(all types queue)
2 nb_producers 1
3 nb_workers >= 1
4 nb_ports nb_workers + 1 Workers use port 0 to port n-1.Producer uses port n.

test: order_atq(all types queue)

producer_flow_seq

producer maintains per flow sequence number

flow 0 flow 1 flow 2 flow n

producer0

all_types_queue0

worker 0

port n+1

worker 1 worker 2 worker n

port 0 port 1 port 2 port n

expected_flow_seq

per flow expected sequence number

flow 0 flow 1 flow 2 flow n

dequeue_ordered_flow(step 2)

enqueue ordered flow(step 1)

produce ordered flows(step 0)

change to atomic flow and enqueue(step 3)

dequeue_atomic_flow (step 4)

Fig. 6.2: order all types queue test operation.

6.3. Eventdev Tests 18

DPDK Tools User Guides, Release 17.11.10

Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--nb_flows
--nb_pkts
--worker_deq_depth

Example

Example command to run order all types queue test:

sudo build/app/dpdk-test-eventdev --vdev=event_octeontx -- \
--test=order_atq --plcores 1 --wlcores 2,3

6.3.3 PERF_QUEUE Test

This is a performance test case that aims at testing the following:

1. Measure the number of events can be processed in a second.

2. Measure the latency to forward an event.

Table 6.3: Perf queue test eventdev configuration.

Items Value Comments
1 nb_queues nb_producers *

nb_stages
Queues will be configured based on the user
requested sched type list(–stlist)

2 nb_producers>= 1 Selected through –plcores command line argument.
3 nb_workers >= 1 Selected through –wlcores command line argument
4 nb_ports nb_workers +

nb_producers
Workers use port 0 to port n-1. Producers use port n
to port p

The perf queue test configures the eventdev with Q queues and P ports, where Q and P
is a function of the number of workers, the number of producers and number of stages as
mentioned in Table 6.3.

The user can choose the number of workers, the number of producers and number of stages
through the --wlcores, --plcores and the --stlist application command line arguments
respectively.

The producer(s) injects the events to eventdev based the first stage sched type list requested
by the user through --stlist the command line argument.

Based on the number of stages to process(selected through --stlist), The application for-
wards the event to next upstream queue and terminates when it reaches the last stage in the
pipeline. On event termination, application increments the number events processed and print
periodically in one second to get the number of events processed in one second.

6.3. Eventdev Tests 19

DPDK Tools User Guides, Release 17.11.10

worker 0

worker 1

worker n

port 0

port 1

port n

producer 0

q0 q1 q2 qs-1

port n+1

test: perf_queue

producer 1

qs qs+1 qs+2 q2s-1

port n+2

producer m

q2s q2s+1 q2s+2 q3s-1

port n+m

total queues = number of stages * number of producers

All workers are linked to all queues

Fig. 6.3: perf queue test operation.

When --fwd_latency command line option selected, the application inserts the timestamp
in the event on the first stage and then on termination, it updates the number of cycles to
forward a packet. The application uses this value to compute the average latency to a forward
packet.

Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--stlist
--nb_flows
--nb_pkts
--worker_deq_depth
--fwd_latency
--queue_priority

Example

Example command to run perf queue test:

sudo build/app/dpdk-test-eventdev -c 0xf -s 0x1 --vdev=event_sw0 -- \
--test=perf_queue --plcores=2 --wlcore=3 --stlist=p --nb_pkts=0

6.3. Eventdev Tests 20

DPDK Tools User Guides, Release 17.11.10

6.3.4 PERF_ATQ Test

This is a performance test case that aims at testing the following with all types queue
eventdev scheme.

1. Measure the number of events can be processed in a second.

2. Measure the latency to forward an event.

Table 6.4: Perf all types queue test eventdev configuration.

Items Value Comments
1 nb_queues nb_producers Queues will be configured based on the user

requested sched type list(–stlist)
2 nb_producers>= 1 Selected through –plcores command line argument.
3 nb_workers >= 1 Selected through –wlcores command line argument
4 nb_ports nb_workers +

nb_producers
Workers use port 0 to port n-1. Producers use port n
to port p

worker 0

worker 1

worker n

port 0

port 1

port n

producer 0

port n+1

test: perf_atq(all types queues)

producer 1

port n+2

producer m

port n+m

total queues = number of producers

All workers are linked to all queues

all types queue 0

all types queue 1

all types queue n

stage 0

stage 1

stage n

Fig. 6.4: perf all types queue test operation.

The all types queues(atq) perf test configures the eventdev with Q queues and P ports,
where Q and P is a function of the number of workers and number of producers as mentioned
in Table 6.4.

The atq queue test functions as same as perf_queue test. The difference is, It uses, all
type queue scheme instead of separate queues for each stage and thus reduces the num-
ber of queues required to realize the use case and enables flow pinning as the event does not
move to the next queue.

6.3. Eventdev Tests 21

DPDK Tools User Guides, Release 17.11.10

Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--stlist
--nb_flows
--nb_pkts
--worker_deq_depth
--fwd_latency

Example

Example command to run perf all types queue test:

sudo build/app/dpdk-test-eventdev --vdev=event_octeontx -- \
--test=perf_atq --plcores=2 --wlcore=3 --stlist=p --nb_pkts=0

6.3. Eventdev Tests 22

	dpdk-procinfo Application
	Running the Application

	dpdk-pdump Application
	Running the Application
	Example

	dpdk-pmdinfo Application
	Running the Application

	dpdk-devbind Application
	Running the Application
	OPTIONS
	Examples

	dpdk-test-crypto-perf Application
	Limitations
	Compiling the Application
	Running the Application
	Examples

	dpdk-test-eventdev Application
	Compiling the Application
	Running the Application
	Eventdev Tests

