
Network Interface Controller Drivers
Release 18.08.1

April 02, 2019

CONTENTS

1 Overview of Networking Drivers 1

2 Features Overview 4
2.1 Speed capabilities . 4
2.2 Link status . 4
2.3 Link status event . 4
2.4 Removal event . 5
2.5 Queue status event . 5
2.6 Rx interrupt . 5
2.7 Lock-free Tx queue . 5
2.8 Fast mbuf free . 6
2.9 Free Tx mbuf on demand . 6
2.10 Queue start/stop . 6
2.11 MTU update . 6
2.12 Jumbo frame . 6
2.13 Scattered Rx . 7
2.14 LRO . 7
2.15 TSO . 7
2.16 Promiscuous mode . 7
2.17 Allmulticast mode . 8
2.18 Unicast MAC filter . 8
2.19 Multicast MAC filter . 8
2.20 RSS hash . 8
2.21 Inner RSS . 8
2.22 RSS key update . 9
2.23 RSS reta update . 9
2.24 VMDq . 9
2.25 SR-IOV . 9
2.26 DCB . 9
2.27 VLAN filter . 10
2.28 Ethertype filter . 10
2.29 N-tuple filter . 10
2.30 SYN filter . 10
2.31 Tunnel filter . 10
2.32 Flexible filter . 11
2.33 Hash filter . 11
2.34 Flow director . 11
2.35 Flow control . 11
2.36 Flow API . 11

i

2.37 Rate limitation . 11
2.38 Traffic mirroring . 12
2.39 Inline crypto . 12
2.40 CRC offload . 12
2.41 VLAN offload . 12
2.42 QinQ offload . 13
2.43 L3 checksum offload . 13
2.44 L4 checksum offload . 13
2.45 Timestamp offload . 14
2.46 MACsec offload . 14
2.47 Inner L3 checksum . 14
2.48 Inner L4 checksum . 14
2.49 Packet type parsing . 14
2.50 Timesync . 15
2.51 Rx descriptor status . 15
2.52 Tx descriptor status . 15
2.53 Basic stats . 15
2.54 Extended stats . 16
2.55 Stats per queue . 16
2.56 FW version . 16
2.57 EEPROM dump . 16
2.58 Module EEPROM dump . 16
2.59 Registers dump . 17
2.60 LED . 17
2.61 Multiprocess aware . 17
2.62 BSD nic_uio . 17
2.63 Linux UIO . 17
2.64 Linux VFIO . 17
2.65 Other kdrv . 17
2.66 ARMv7 . 18
2.67 ARMv8 . 18
2.68 Power8 . 18
2.69 x86-32 . 18
2.70 x86-64 . 18
2.71 Usage doc . 18
2.72 Design doc . 18
2.73 Perf doc . 19
2.74 Runtime Rx queue setup . 19
2.75 Runtime Tx queue setup . 19
2.76 Other dev ops not represented by a Feature . 19

3 Compiling and testing a PMD for a NIC 20
3.1 Driver Compilation . 20
3.2 Running testpmd in Linux . 21

4 ARK Poll Mode Driver 23
4.1 Overview . 23
4.2 Device Parameters . 24
4.3 Data Path Interface . 24
4.4 Configuration Information . 24
4.5 Building DPDK . 25
4.6 Supported ARK RTL PCIe Instances . 25

ii

4.7 Supported Operating Systems . 25
4.8 Supported Features . 25
4.9 Unsupported Features . 26
4.10 Pre-Requisites . 26
4.11 Usage Example . 26

5 AVP Poll Mode Driver 27
5.1 Features and Limitations of the AVP PMD . 27
5.2 Prerequisites . 28
5.3 Launching a VM with an AVP type network attachment 28

6 AXGBE Poll Mode Driver 29
6.1 Supported Features . 29
6.2 Configuration Information . 29
6.3 Building DPDK . 30
6.4 Prerequisites and Pre-conditions . 30
6.5 Usage Example . 30

7 BNX2X Poll Mode Driver 31
7.1 Supported Features . 31
7.2 Non-supported Features . 31
7.3 Co-existence considerations . 31
7.4 Supported QLogic NICs . 32
7.5 Prerequisites . 32
7.6 Pre-Installation Configuration . 32
7.7 Driver compilation and testing . 32
7.8 SR-IOV: Prerequisites and sample Application Notes 32

8 BNXT Poll Mode Driver 35
8.1 Limitations . 35

9 CXGBE Poll Mode Driver 36
9.1 Features . 36
9.2 Limitations . 36
9.3 Supported Chelsio T5 NICs . 37
9.4 Supported Chelsio T6 NICs . 37
9.5 Supported SR-IOV Chelsio NICs . 37
9.6 Prerequisites . 37
9.7 Pre-Installation Configuration . 37
9.8 Driver compilation and testing . 38
9.9 Linux . 38
9.10 FreeBSD . 41
9.11 Sample Application Notes . 44

10 DPAA Poll Mode Driver 45
10.1 NXP DPAA (Data Path Acceleration Architecture - Gen 1) 45
10.2 DPAA DPDK - Poll Mode Driver Overview . 46
10.3 Whitelisting & Blacklisting . 47
10.4 Supported DPAA SoCs . 48
10.5 Prerequisites . 48
10.6 Pre-Installation Configuration . 49
10.7 Driver compilation and testing . 50

iii

10.8 Limitations . 50

11 DPAA2 Poll Mode Driver 52
11.1 NXP DPAA2 (Data Path Acceleration Architecture Gen2) 52
11.2 DPAA2 DPDK - Poll Mode Driver Overview . 56
11.3 Supported DPAA2 SoCs . 58
11.4 Prerequisites . 58
11.5 Pre-Installation Configuration . 59
11.6 Driver compilation and testing . 59
11.7 Enabling logs . 60
11.8 Whitelisting & Blacklisting . 60
11.9 Limitations . 60

12 Driver for VM Emulated Devices 61
12.1 Validated Hypervisors . 61
12.2 Recommended Guest Operating System in Virtual Machine 61
12.3 Setting Up a KVM Virtual Machine . 61
12.4 Known Limitations of Emulated Devices . 63

13 ENA Poll Mode Driver 64
13.1 Overview . 64
13.2 Management Interface . 64
13.3 Data Path Interface . 65
13.4 Configuration information . 65
13.5 Building DPDK . 66
13.6 Supported ENA adapters . 66
13.7 Supported Operating Systems . 66
13.8 Supported features . 66
13.9 Unsupported features . 66
13.10Prerequisites . 66
13.11Usage example . 67

14 ENIC Poll Mode Driver 68
14.1 How to obtain ENIC PMD integrated DPDK . 68
14.2 Configuration information . 68
14.3 Flow director support . 69
14.4 SR-IOV mode utilization . 70
14.5 Generic Flow API support . 71
14.6 Overlay Offload . 72
14.7 Ingress VLAN Rewrite . 73
14.8 Limitations . 73
14.9 How to build the suite . 74
14.10Supported Cisco VIC adapters . 75
14.11Supported Operating Systems . 75
14.12Supported features . 75
14.13Known bugs and unsupported features in this release 76
14.14Prerequisites . 76
14.15Additional Reference . 77
14.16Contact Information . 77

15 FM10K Poll Mode Driver 78
15.1 FTAG Based Forwarding of FM10K . 78

iv

15.2 Vector PMD for FM10K . 78
15.3 Limitations . 80

16 I40E Poll Mode Driver 82
16.1 Features . 82
16.2 Prerequisites . 83
16.3 Recommended Matching List . 83
16.4 Pre-Installation Configuration . 83
16.5 Driver compilation and testing . 85
16.6 SR-IOV: Prerequisites and sample Application Notes 85
16.7 Sample Application Notes . 86
16.8 Limitations or Known issues . 89
16.9 High Performance of Small Packets on 40GbE NIC 91
16.10Example of getting best performance with l3fwd example 91

17 IFCVF vDPA driver 94
17.1 Pre-Installation Configuration . 94
17.2 IFCVF vDPA Implementation . 94
17.3 Features . 95
17.4 Prerequisites . 95
17.5 Limitations . 95

18 IGB Poll Mode Driver 96
18.1 Features . 96
18.2 Limitations or Known issues . 96
18.3 Supported Chipsets and NICs . 96

19 IXGBE Driver 97
19.1 Vector PMD for IXGBE . 97
19.2 Application Programming Interface . 99
19.3 Sample Application Notes . 99
19.4 Limitations or Known issues . 99
19.5 Inline crypto processing support . 100
19.6 Virtual Function Port Representors . 100
19.7 Supported Chipsets and NICs . 101

20 Intel Virtual Function Driver 102
20.1 SR-IOV Mode Utilization in a DPDK Environment 102
20.2 Setting Up a KVM Virtual Machine Monitor . 108
20.3 DPDK SR-IOV PMD PF/VF Driver Usage Model 112
20.4 SR-IOV (PF/VF) Approach for Inter-VM Communication 112

21 KNI Poll Mode Driver 115
21.1 Usage . 115
21.2 Default interface configuration . 115
21.3 PMD arguments . 116
21.4 PMD log messages . 116
21.5 PMD testing . 116

22 LiquidIO VF Poll Mode Driver 118
22.1 Supported LiquidIO Adapters . 118
22.2 Pre-Installation Configuration . 118
22.3 SR-IOV: Prerequisites and Sample Application Notes 119

v

22.4 Limitations . 120

23 MLX4 poll mode driver library 121
23.1 Implementation details . 121
23.2 Configuration . 122
23.3 Limitations . 123
23.4 Prerequisites . 123
23.5 Supported NICs . 125
23.6 Quick Start Guide . 125
23.7 Performance tuning . 125
23.8 Usage example . 126

24 MLX5 poll mode driver 129
24.1 Implementation details . 129
24.2 Features . 129
24.3 Limitations . 130
24.4 Statistics . 131
24.5 Configuration . 132
24.6 Prerequisites . 136
24.7 Supported NICs . 138
24.8 Quick Start Guide on OFED . 138
24.9 Performance tuning . 139
24.10Notes for testpmd . 140
24.11Usage example . 141

25 MVPP2 Poll Mode Driver 143
25.1 Features . 143
25.2 Limitations . 144
25.3 Prerequisites . 144
25.4 Config File Options . 144
25.5 QoS Configuration . 145
25.6 Building DPDK . 147
25.7 Flow API . 147
25.8 Usage Example . 150

26 Netvsc poll mode driver 151
26.1 Features and Limitations of Hyper-V PMD . 151
26.2 Installation . 151
26.3 Prerequisites . 152

27 NFP poll mode driver library 153
27.1 Dependencies . 153
27.2 Building the software . 153
27.3 Driver compilation and testing . 154
27.4 Using the PF . 154
27.5 PF multiport support . 154
27.6 System configuration . 155

28 OCTEONTX Poll Mode driver 156
28.1 Features . 156
28.2 Supported OCTEONTX SoCs . 156
28.3 Unsupported features . 156

vi

28.4 Prerequisites . 157
28.5 Pre-Installation Configuration . 157
28.6 Initialization . 158
28.7 Limitations . 158

29 QEDE Poll Mode Driver 160
29.1 Supported Features . 160
29.2 Non-supported Features . 161
29.3 Co-existence considerations . 161
29.4 Supported QLogic Adapters . 161
29.5 Prerequisites . 161
29.6 Driver compilation and testing . 162
29.7 SR-IOV: Prerequisites and Sample Application Notes 162

30 Solarflare libefx-based Poll Mode Driver 165
30.1 Features . 165
30.2 Non-supported Features . 166
30.3 Limitations . 166
30.4 Tunnels support . 166
30.5 Flow API support . 167
30.6 Supported NICs . 168
30.7 Prerequisites . 168
30.8 Pre-Installation Configuration . 169

31 Soft NIC Poll Mode Driver 171
31.1 Flow . 171
31.2 Supported Operating Systems . 172
31.3 Build options . 172
31.4 Soft NIC PMD arguments . 172
31.5 Soft NIC testing . 172
31.6 Soft NIC Firmware . 174

32 SZEDATA2 poll mode driver library 175
32.1 Prerequisites . 175
32.2 Configuration . 176
32.3 Using the SZEDATA2 PMD . 176
32.4 NFB card architecture . 176
32.5 Limitations . 176
32.6 Example of usage . 177

33 Tun|Tap Poll Mode Driver 178
33.1 Flow API support . 179
33.2 Example . 180
33.3 RSS specifics . 181
33.4 Systems supporting flow API . 182

34 ThunderX NICVF Poll Mode Driver 183
34.1 Features . 183
34.2 Supported ThunderX SoCs . 183
34.3 Prerequisites . 184
34.4 Pre-Installation Configuration . 184
34.5 Driver compilation and testing . 184

vii

34.6 Linux . 184
34.7 Module params . 188
34.8 Limitations . 188

35 VDEV_NETVSC driver 189
35.1 Implementation details . 189
35.2 Build options . 190
35.3 Run-time parameters . 190

36 Poll Mode Driver for Emulated Virtio NIC 191
36.1 Virtio Implementation in DPDK . 191
36.2 Features and Limitations of virtio PMD . 191
36.3 Prerequisites . 192
36.4 Virtio with kni vhost Back End . 192
36.5 Virtio with qemu virtio Back End . 195
36.6 Virtio PMD Rx/Tx Callbacks . 196
36.7 Interrupt mode . 197
36.8 Virtio PMD arguments . 197

37 Poll Mode Driver that wraps vhost library 199
37.1 Vhost Implementation in DPDK . 199
37.2 Features and Limitations of vhost PMD . 199
37.3 Vhost PMD arguments . 199
37.4 Vhost PMD event handling . 200
37.5 Vhost PMD with testpmd application . 200

38 Poll Mode Driver for Paravirtual VMXNET3 NIC 201
38.1 VMXNET3 Implementation in the DPDK . 201
38.2 Features and Limitations of VMXNET3 PMD . 202
38.3 Prerequisites . 202
38.4 VMXNET3 with a Native NIC Connected to a vSwitch 203
38.5 VMXNET3 Chaining VMs Connected to a vSwitch 203

39 Libpcap and Ring Based Poll Mode Drivers 207
39.1 Using the Drivers from the EAL Command Line 207

40 Fail-safe poll mode driver library 212
40.1 Features . 212
40.2 Compilation option . 212
40.3 Using the Fail-safe PMD from the EAL command line 212
40.4 Using the Fail-safe PMD from an application . 214
40.5 Plug-in feature . 214
40.6 Plug-out feature . 214
40.7 Fail-safe glossary . 215

viii

CHAPTER

ONE

OVERVIEW OF NETWORKING DRIVERS

The networking drivers may be classified in two categories:

• physical for real devices

• virtual for emulated devices

Some physical devices may be shaped through a virtual layer as for SR-IOV. The interface
seen in the virtual environment is a VF (Virtual Function).

The ethdev layer exposes an API to use the networking functions of these devices. The bottom
half part of ethdev is implemented by the drivers. Thus some features may not be implemented.

There are more differences between drivers regarding some internal properties, portability or
even documentation availability. Most of these differences are summarized below.

More details about features can be found in Features Overview.

Table 1.1: [u’Features availability in networking drivers’]

Feature a f p a c k e t a r k a v f a v f v e c a v p a x g b e b n x 2 x b n x 2 x v f b n x t b o n d i n g c x g b e c x g b e v f d p a a d p a a 2 e 1 0 0 0 e n a e n i c f a i l s a f e f m 1 0 k f m 1 0 k v f i 4 0 e i 4 0 e v e c i 4 0 e v f i 4 0 e v f . . v e c i f c v f i g b i g b v f i x g b e i x g b e . . . v e c i x g b e v f i x g b e v f . v e c k n i l i q u i d i o m l x 4 m l x 5 m v p p 2 n e t v s c n f p n f p v f n u l l o c t e o n t x p c a p q e d e q e d e v f r i n g s f c _ e f x s o f t n i c s z e d a t a 2 t a p t h u n d e r x v d e v _ n e t v s c v h o s t v i r t i o v i r t i o . . v e c v m x n e t 3
Speed capabilities Y Y Y Y P P Y Y Y P P P P P P Y Y P Y Y Y P Y Y P Y Y Y Y Y Y P P Y P P P
Link status Y
Link status event Y
Removal event Y Y
Queue status event Y
Rx interrupt Y
Lock-free Tx queue Y
Fast mbuf free Y
Free Tx mbuf on demand Y Y
Queue start/stop Y P Y Y Y Y Y Y
Runtime Rx queue setup Y
Runtime Tx queue setup Y
MTU update Y
Jumbo frame Y
Scattered Rx Y
LRO Y Y Y Y Y Y Y Y
TSO Y
Promiscuous mode Y
Allmulticast mode Y
Unicast MAC filter Y P Y Y Y Y Y Y
Multicast MAC filter Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Continued on next page

1

Network Interface Controller Drivers, Release 18.08.1

Table 1.1 – continued from previous page
Feature a f p a c k e t a r k a v f a v f v e c a v p a x g b e b n x 2 x b n x 2 x v f b n x t b o n d i n g c x g b e c x g b e v f d p a a d p a a 2 e 1 0 0 0 e n a e n i c f a i l s a f e f m 1 0 k f m 1 0 k v f i 4 0 e i 4 0 e v e c i 4 0 e v f i 4 0 e v f . . v e c i f c v f i g b i g b v f i x g b e i x g b e . . . v e c i x g b e v f i x g b e v f . v e c k n i l i q u i d i o m l x 4 m l x 5 m v p p 2 n e t v s c n f p n f p v f n u l l o c t e o n t x p c a p q e d e q e d e v f r i n g s f c _ e f x s o f t n i c s z e d a t a 2 t a p t h u n d e r x v d e v _ n e t v s c v h o s t v i r t i o v i r t i o . . v e c v m x n e t 3
RSS hash Y
RSS key update Y
RSS reta update Y
Inner RSS Y Y
VMDq Y Y Y Y Y Y Y
SR-IOV Y Y Y Y Y Y Y Y Y Y Y Y Y Y
DCB Y Y Y Y Y
VLAN filter Y
Ethertype filter Y Y Y Y Y Y
N-tuple filter Y Y Y Y Y
SYN filter Y Y Y
Tunnel filter Y Y Y Y Y
Flexible filter Y
Hash filter Y Y Y Y
Flow director Y Y Y Y Y Y Y Y
Flow control Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Flow API Y Y Y Y Y Y Y Y Y Y
Rate limitation Y Y
Traffic mirroring Y Y Y Y
Inline crypto Y Y Y Y
CRC offload Y
VLAN offload Y P Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y P Y Y Y Y Y P P Y
QinQ offload Y Y Y Y Y Y Y
L3 checksum offload Y P Y
L4 checksum offload Y P Y
Timestamp offload Y
MACsec offload Y
Inner L3 checksum Y Y Y Y Y Y Y Y Y Y Y Y
Inner L4 checksum Y Y Y Y Y Y Y Y Y Y Y Y
Packet type parsing Y
Timesync Y Y Y Y Y Y
Rx descriptor status Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Tx descriptor status Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Basic stats Y
Extended stats Y
Stats per queue Y
FW version Y Y Y Y Y Y Y
EEPROM dump Y Y Y Y Y
Module EEPROM dump Y Y Y Y Y
Registers dump Y Y Y Y Y Y Y Y
LED Y
Multiprocess aware Y
BSD nic_uio Y
Linux UIO Y
Linux VFIO Y
Other kdrv Y Y Y Y Y
ARMv7 Y Y Y Y Y Y Y

Continued on next page

2

Network Interface Controller Drivers, Release 18.08.1

Table 1.1 – continued from previous page
Feature a f p a c k e t a r k a v f a v f v e c a v p a x g b e b n x 2 x b n x 2 x v f b n x t b o n d i n g c x g b e c x g b e v f d p a a d p a a 2 e 1 0 0 0 e n a e n i c f a i l s a f e f m 1 0 k f m 1 0 k v f i 4 0 e i 4 0 e v e c i 4 0 e v f i 4 0 e v f . . v e c i f c v f i g b i g b v f i x g b e i x g b e . . . v e c i x g b e v f i x g b e v f . v e c k n i l i q u i d i o m l x 4 m l x 5 m v p p 2 n e t v s c n f p n f p v f n u l l o c t e o n t x p c a p q e d e q e d e v f r i n g s f c _ e f x s o f t n i c s z e d a t a 2 t a p t h u n d e r x v d e v _ n e t v s c v h o s t v i r t i o v i r t i o . . v e c v m x n e t 3
ARMv8 Y
Power8 Y Y Y Y Y Y Y Y
x86-32 Y
x86-64 Y
Usage doc Y
Design doc
Perf doc

Note: Features marked with “P” are partially supported. Refer to the appropriate NIC guide
in the following sections for details.

3

CHAPTER

TWO

FEATURES OVERVIEW

This section explains the supported features that are listed in the Overview of Networking
Drivers.

As a guide to implementers it also shows the structs where the features are defined and the
APIs that can be use to get/set the values.

Following tags used for feature details, these are from driver point of view:

[uses] : Driver uses some kind of input from the application.

[implements] : Driver implements a functionality.

[provides] : Driver provides some kind of data to the application. It is possible to provide
data by implementing some function, but “provides” is used for cases where provided data
can’t be represented simply by a function.

[related] : Related API with that feature.

2.1 Speed capabilities

Supports getting the speed capabilities that the current device is capable of.

• [provides] rte_eth_dev_info: speed_capa:ETH_LINK_SPEED_*.

• [related] API: rte_eth_dev_info_get().

2.2 Link status

Supports getting the link speed, duplex mode and link state (up/down).

• [implements] eth_dev_ops: link_update.

• [implements] rte_eth_dev_data: dev_link.

• [related] API: rte_eth_link_get(), rte_eth_link_get_nowait().

2.3 Link status event

Supports Link Status Change interrupts.

• [uses] user config: dev_conf.intr_conf.lsc.

4

Network Interface Controller Drivers, Release 18.08.1

• [uses] rte_eth_dev_data: dev_flags:RTE_ETH_DEV_INTR_LSC.

• [uses] rte_eth_event_type: RTE_ETH_EVENT_INTR_LSC.

• [implements] rte_eth_dev_data: dev_link.

• [provides] rte_pci_driver.drv_flags: RTE_PCI_DRV_INTR_LSC.

• [related] API: rte_eth_link_get(), rte_eth_link_get_nowait().

2.4 Removal event

Supports device removal interrupts.

• [uses] user config: dev_conf.intr_conf.rmv.

• [uses] rte_eth_dev_data: dev_flags:RTE_ETH_DEV_INTR_RMV.

• [uses] rte_eth_event_type: RTE_ETH_EVENT_INTR_RMV.

• [provides] rte_pci_driver.drv_flags: RTE_PCI_DRV_INTR_RMV.

2.5 Queue status event

Supports queue enable/disable events.

• [uses] rte_eth_event_type: RTE_ETH_EVENT_QUEUE_STATE.

2.6 Rx interrupt

Supports Rx interrupts.

• [uses] user config: dev_conf.intr_conf.rxq.

• [implements] eth_dev_ops: rx_queue_intr_enable, rx_queue_intr_disable.

• [related] API: rte_eth_dev_rx_intr_enable(), rte_eth_dev_rx_intr_disable().

2.7 Lock-free Tx queue

If a PMD advertises DEV_TX_OFFLOAD_MT_LOCKFREE capable, multiple threads can in-
voke rte_eth_tx_burst() concurrently on the same Tx queue without SW lock.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_MT_LOCKFREE.

• [provides] rte_eth_dev_info: tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_MT_LOCKFREE.

• [related] API: rte_eth_tx_burst().

2.4. Removal event 5

Network Interface Controller Drivers, Release 18.08.1

2.8 Fast mbuf free

Supports optimization for fast release of mbufs following successful Tx. Requires that per
queue, all mbufs come from the same mempool and has refcnt = 1.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_MBUF_FAST_FREE.

• [provides] rte_eth_dev_info: tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_MBUF_FAST_FREE.

2.9 Free Tx mbuf on demand

Supports freeing consumed buffers on a Tx ring.

• [implements] eth_dev_ops: tx_done_cleanup.

• [related] API: rte_eth_tx_done_cleanup().

2.10 Queue start/stop

Supports starting/stopping a specific Rx/Tx queue of a port.

• [implements] eth_dev_ops: rx_queue_start, rx_queue_stop,
tx_queue_start, tx_queue_stop.

• [related] API: rte_eth_dev_rx_queue_start(), rte_eth_dev_rx_queue_stop(),
rte_eth_dev_tx_queue_start(), rte_eth_dev_tx_queue_stop().

2.11 MTU update

Supports updating port MTU.

• [implements] eth_dev_ops: mtu_set.

• [implements] rte_eth_dev_data: mtu.

• [provides] rte_eth_dev_info: max_rx_pktlen.

• [related] API: rte_eth_dev_set_mtu(), rte_eth_dev_get_mtu().

2.12 Jumbo frame

Supports Rx jumbo frames.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_JUMBO_FRAME.
dev_conf.rxmode.max_rx_pkt_len.

• [related] rte_eth_dev_info: max_rx_pktlen.

• [related] API: rte_eth_dev_set_mtu().

2.8. Fast mbuf free 6

Network Interface Controller Drivers, Release 18.08.1

2.13 Scattered Rx

Supports receiving segmented mbufs.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_SCATTER.

• [implements] datapath: Scattered Rx function.

• [implements] rte_eth_dev_data: scattered_rx.

• [provides] eth_dev_ops: rxq_info_get:scattered_rx.

• [related] eth_dev_ops: rx_pkt_burst.

2.14 LRO

Supports Large Receive Offload.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_TCP_LRO.

• [implements] datapath: LRO functionality.

• [implements] rte_eth_dev_data: lro.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_LRO, mbuf.tso_segsz.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_TCP_LRO.

2.15 TSO

Supports TCP Segmentation Offloading.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_TCP_TSO.

• [uses] rte_eth_desc_lim: nb_seg_max, nb_mtu_seg_max.

• [uses] mbuf: mbuf.ol_flags: PKT_TX_TCP_SEG, PKT_TX_IPV4, PKT_TX_IPV6,
PKT_TX_IP_CKSUM.

• [uses] mbuf: mbuf.tso_segsz, mbuf.l2_len, mbuf.l3_len, mbuf.l4_len.

• [implements] datapath: TSO functionality.

• [provides] rte_eth_dev_info: tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_TCP_TSO,DEV_TX_OFFLOAD_UDP_TSO.

2.16 Promiscuous mode

Supports enabling/disabling promiscuous mode for a port.

• [implements] eth_dev_ops: promiscuous_enable, promiscuous_disable.

• [implements] rte_eth_dev_data: promiscuous.

• [related] API: rte_eth_promiscuous_enable(), rte_eth_promiscuous_disable(),
rte_eth_promiscuous_get().

2.13. Scattered Rx 7

Network Interface Controller Drivers, Release 18.08.1

2.17 Allmulticast mode

Supports enabling/disabling receiving multicast frames.

• [implements] eth_dev_ops: allmulticast_enable, allmulticast_disable.

• [implements] rte_eth_dev_data: all_multicast.

• [related] API: rte_eth_allmulticast_enable(), rte_eth_allmulticast_disable(),
rte_eth_allmulticast_get().

2.18 Unicast MAC filter

Supports adding MAC addresses to enable whitelist filtering to accept packets.

• [implements] eth_dev_ops: mac_addr_set, mac_addr_add, mac_addr_remove.

• [implements] rte_eth_dev_data: mac_addrs.

• [related] API: rte_eth_dev_default_mac_addr_set(),
rte_eth_dev_mac_addr_add(), rte_eth_dev_mac_addr_remove(),
rte_eth_macaddr_get().

2.19 Multicast MAC filter

Supports setting multicast addresses to filter.

• [implements] eth_dev_ops: set_mc_addr_list.

• [related] API: rte_eth_dev_set_mc_addr_list().

2.20 RSS hash

Supports RSS hashing on RX.

• [uses] user config: dev_conf.rxmode.mq_mode = ETH_MQ_RX_RSS_FLAG.

• [uses] user config: dev_conf.rx_adv_conf.rss_conf.

• [provides] rte_eth_dev_info: flow_type_rss_offloads.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_RSS_HASH, mbuf.rss.

2.21 Inner RSS

Supports RX RSS hashing on Inner headers.

• [users] rte_flow_action_rss: level.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_RSS_HASH, mbuf.rss.

2.17. Allmulticast mode 8

Network Interface Controller Drivers, Release 18.08.1

2.22 RSS key update

Supports configuration of Receive Side Scaling (RSS) hash computation. Updating Receive
Side Scaling (RSS) hash key.

• [implements] eth_dev_ops: rss_hash_update, rss_hash_conf_get.

• [provides] rte_eth_dev_info: hash_key_size.

• [related] API: rte_eth_dev_rss_hash_update(), rte_eth_dev_rss_hash_conf_get().

2.23 RSS reta update

Supports updating Redirection Table of the Receive Side Scaling (RSS).

• [implements] eth_dev_ops: reta_update, reta_query.

• [provides] rte_eth_dev_info: reta_size.

• [related] API: rte_eth_dev_rss_reta_update(), rte_eth_dev_rss_reta_query().

2.24 VMDq

Supports Virtual Machine Device Queues (VMDq).

• [uses] user config: dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_FLAG.

• [uses] user config: dev_conf.rx_adv_conf.vmdq_dcb_conf.

• [uses] user config: dev_conf.rx_adv_conf.vmdq_rx_conf.

• [uses] user config: dev_conf.tx_adv_conf.vmdq_dcb_tx_conf.

• [uses] user config: dev_conf.tx_adv_conf.vmdq_tx_conf.

2.25 SR-IOV

Driver supports creating Virtual Functions.

• [implements] rte_eth_dev_data: sriov.

2.26 DCB

Supports Data Center Bridging (DCB).

• [uses] user config: dev_conf.rxmode.mq_mode = ETH_MQ_RX_DCB_FLAG.

• [uses] user config: dev_conf.rx_adv_conf.vmdq_dcb_conf.

• [uses] user config: dev_conf.rx_adv_conf.dcb_rx_conf.

• [uses] user config: dev_conf.tx_adv_conf.vmdq_dcb_tx_conf.

• [uses] user config: dev_conf.tx_adv_conf.vmdq_tx_conf.

2.22. RSS key update 9

Network Interface Controller Drivers, Release 18.08.1

• [implements] eth_dev_ops: get_dcb_info.

• [related] API: rte_eth_dev_get_dcb_info().

2.27 VLAN filter

Supports filtering of a VLAN Tag identifier.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_VLAN_FILTER.

• [implements] eth_dev_ops: vlan_filter_set.

• [related] API: rte_eth_dev_vlan_filter().

2.28 Ethertype filter

Supports filtering on Ethernet type.

• [implements] eth_dev_ops: filter_ctrl:RTE_ETH_FILTER_ETHERTYPE.

• [related] API: rte_eth_dev_filter_ctrl(), rte_eth_dev_filter_supported().

2.29 N-tuple filter

Supports filtering on N-tuple values.

• [implements] eth_dev_ops: filter_ctrl:RTE_ETH_FILTER_NTUPLE.

• [related] API: rte_eth_dev_filter_ctrl(), rte_eth_dev_filter_supported().

2.30 SYN filter

Supports TCP syn filtering.

• [implements] eth_dev_ops: filter_ctrl:RTE_ETH_FILTER_SYN.

• [related] API: rte_eth_dev_filter_ctrl(), rte_eth_dev_filter_supported().

2.31 Tunnel filter

Supports tunnel filtering.

• [implements] eth_dev_ops: filter_ctrl:RTE_ETH_FILTER_TUNNEL.

• [related] API: rte_eth_dev_filter_ctrl(), rte_eth_dev_filter_supported().

2.27. VLAN filter 10

Network Interface Controller Drivers, Release 18.08.1

2.32 Flexible filter

Supports a flexible (non-tuple or Ethertype) filter.

• [implements] eth_dev_ops: filter_ctrl:RTE_ETH_FILTER_FLEXIBLE.

• [related] API: rte_eth_dev_filter_ctrl(), rte_eth_dev_filter_supported().

2.33 Hash filter

Supports Hash filtering.

• [implements] eth_dev_ops: filter_ctrl:RTE_ETH_FILTER_HASH.

• [related] API: rte_eth_dev_filter_ctrl(), rte_eth_dev_filter_supported().

2.34 Flow director

Supports Flow Director style filtering to queues.

• [implements] eth_dev_ops: filter_ctrl:RTE_ETH_FILTER_FDIR.

• [provides] mbuf: mbuf.ol_flags: PKT_RX_FDIR, PKT_RX_FDIR_ID,
PKT_RX_FDIR_FLX.

• [related] API: rte_eth_dev_filter_ctrl(), rte_eth_dev_filter_supported().

2.35 Flow control

Supports configuring link flow control.

• [implements] eth_dev_ops: flow_ctrl_get, flow_ctrl_set,
priority_flow_ctrl_set.

• [related] API: rte_eth_dev_flow_ctrl_get(), rte_eth_dev_flow_ctrl_set(),
rte_eth_dev_priority_flow_ctrl_set().

2.36 Flow API

Supports the DPDK Flow API for generic filtering.

• [implements] eth_dev_ops: filter_ctrl:RTE_ETH_FILTER_GENERIC.

• [implements] rte_flow_ops: All.

2.37 Rate limitation

Supports Tx rate limitation for a queue.

• [implements] eth_dev_ops: set_queue_rate_limit.

2.32. Flexible filter 11

Network Interface Controller Drivers, Release 18.08.1

• [related] API: rte_eth_set_queue_rate_limit().

2.38 Traffic mirroring

Supports adding traffic mirroring rules.

• [implements] eth_dev_ops: mirror_rule_set, mirror_rule_reset.

• [related] API: rte_eth_mirror_rule_set(), rte_eth_mirror_rule_reset().

2.39 Inline crypto

Supports inline crypto processing (eg. inline IPsec). See Security library and PMD documen-
tation for more details.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_SECURITY,

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_SECURITY.

• [implements] rte_security_ops: session_create, session_update,
session_stats_get, session_destroy, set_pkt_metadata,
capabilities_get.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_SECURITY,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_SECURITY.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_SEC_OFFLOAD,
mbuf.ol_flags:PKT_TX_SEC_OFFLOAD, mbuf.ol_flags:PKT_RX_SEC_OFFLOAD_FAILED.

2.40 CRC offload

Supports CRC stripping by hardware.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_CRC_STRIP,DEV_RX_OFFLOAD_KEEP_CRC.

2.41 VLAN offload

Supports VLAN offload to hardware.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_VLAN_STRIP,DEV_RX_OFFLOAD_VLAN_FILTER,DEV_RX_OFFLOAD_VLAN_EXTEND.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_VLAN_INSERT.

• [uses] mbuf: mbuf.ol_flags:PKT_TX_VLAN, mbuf.vlan_tci.

• [implements] eth_dev_ops: vlan_offload_set.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_VLAN_STRIPPED, mbuf.vlan_tci.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_VLAN_STRIP,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_VLAN_INSERT.

• [related] API: rte_eth_dev_set_vlan_offload(),
rte_eth_dev_get_vlan_offload().

2.38. Traffic mirroring 12

Network Interface Controller Drivers, Release 18.08.1

2.42 QinQ offload

Supports QinQ (queue in queue) offload.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_QINQ_STRIP.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_QINQ_INSERT.

• [uses] mbuf: mbuf.ol_flags:PKT_TX_QINQ, mbuf.vlan_tci_outer.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_QINQ_STRIPPED, mbuf.vlan_tci,
mbuf.vlan_tci_outer.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_QINQ_STRIP,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_QINQ_INSERT.

2.43 L3 checksum offload

Supports L3 checksum offload.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_IPV4_CKSUM.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_IPV4_CKSUM.

• [uses] mbuf: mbuf.ol_flags:PKT_TX_IP_CKSUM,
mbuf.ol_flags:PKT_TX_IPV4 | PKT_TX_IPV6.

• [uses] mbuf: mbuf.l2_len, mbuf.l3_len.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_IP_CKSUM_UNKNOWN |
PKT_RX_IP_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_NONE.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_IPV4_CKSUM,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_IPV4_CKSUM.

2.44 L4 checksum offload

Supports L4 checksum offload.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_UDP_CKSUM,DEV_RX_OFFLOAD_TCP_CKSUM.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_UDP_CKSUM,DEV_TX_OFFLOAD_TCP_CKSUM,DEV_TX_OFFLOAD_SCTP_CKSUM.

• [uses] mbuf: mbuf.ol_flags:PKT_TX_IPV4 | PKT_TX_IPV6,
mbuf.ol_flags:PKT_TX_L4_NO_CKSUM | PKT_TX_TCP_CKSUM |
PKT_TX_SCTP_CKSUM | PKT_TX_UDP_CKSUM.

• [uses] mbuf: mbuf.l2_len, mbuf.l3_len.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_L4_CKSUM_UNKNOWN |
PKT_RX_L4_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_NONE.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_UDP_CKSUM,DEV_RX_OFFLOAD_TCP_CKSUM,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_UDP_CKSUM,DEV_TX_OFFLOAD_TCP_CKSUM,DEV_TX_OFFLOAD_SCTP_CKSUM.

2.42. QinQ offload 13

Network Interface Controller Drivers, Release 18.08.1

2.45 Timestamp offload

Supports Timestamp.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_TIMESTAMP.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_TIMESTAMP.

• [provides] mbuf: mbuf.timestamp.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:
DEV_RX_OFFLOAD_TIMESTAMP.

2.46 MACsec offload

Supports MACsec.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_MACSEC_STRIP.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_MACSEC_INSERT.

• [uses] mbuf: mbuf.ol_flags:PKT_TX_MACSEC.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_MACSEC_STRIP,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_MACSEC_INSERT.

2.47 Inner L3 checksum

Supports inner packet L3 checksum.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM.

• [uses] mbuf: mbuf.ol_flags:PKT_TX_IP_CKSUM,
mbuf.ol_flags:PKT_TX_IPV4 | PKT_TX_IPV6, mbuf.ol_flags:PKT_TX_OUTER_IP_CKSUM,
mbuf.ol_flags:PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6.

• [uses] mbuf: mbuf.outer_l2_len, mbuf.outer_l3_len.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_EIP_CKSUM_BAD.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM.

2.48 Inner L4 checksum

Supports inner packet L4 checksum.

2.49 Packet type parsing

Supports packet type parsing and returns a list of supported types.

2.45. Timestamp offload 14

Network Interface Controller Drivers, Release 18.08.1

• [implements] eth_dev_ops: dev_supported_ptypes_get.

• [related] API: rte_eth_dev_get_supported_ptypes().

2.50 Timesync

Supports IEEE1588/802.1AS timestamping.

• [implements] eth_dev_ops: timesync_enable, timesync_disable
timesync_read_rx_timestamp, timesync_read_tx_timestamp,
timesync_adjust_time, timesync_read_time, timesync_write_time.

• [related] API: rte_eth_timesync_enable(), rte_eth_timesync_disable(),
rte_eth_timesync_read_rx_timestamp(), rte_eth_timesync_read_tx_timestamp,
rte_eth_timesync_adjust_time(), rte_eth_timesync_read_time(),
rte_eth_timesync_write_time().

2.51 Rx descriptor status

Supports check the status of a Rx descriptor. When rx_descriptor_status is used, status
can be “Available”, “Done” or “Unavailable”. When rx_descriptor_done is used, status can
be “DD bit is set” or “DD bit is not set”.

• [implements] eth_dev_ops: rx_descriptor_status.

• [related] API: rte_eth_rx_descriptor_status().

• [implements] eth_dev_ops: rx_descriptor_done.

• [related] API: rte_eth_rx_descriptor_done().

2.52 Tx descriptor status

Supports checking the status of a Tx descriptor. Status can be “Full”, “Done” or “Unavailable.”

• [implements] eth_dev_ops: tx_descriptor_status.

• [related] API: rte_eth_tx_descriptor_status().

2.53 Basic stats

Support basic statistics such as: ipackets, opackets, ibytes, obytes, imissed, ierrors, oerrors,
rx_nombuf.

And per queue stats: q_ipackets, q_opackets, q_ibytes, q_obytes, q_errors.

These apply to all drivers.

• [implements] eth_dev_ops: stats_get, stats_reset.

• [related] API: rte_eth_stats_get, rte_eth_stats_reset().

2.50. Timesync 15

Network Interface Controller Drivers, Release 18.08.1

2.54 Extended stats

Supports Extended Statistics, changes from driver to driver.

• [implements] eth_dev_ops: xstats_get, xstats_reset, xstats_get_names.

• [implements] eth_dev_ops: xstats_get_by_id, xstats_get_names_by_id.

• [related] API: rte_eth_xstats_get(), rte_eth_xstats_reset(),
rte_eth_xstats_get_names, rte_eth_xstats_get_by_id(),
rte_eth_xstats_get_names_by_id(), rte_eth_xstats_get_id_by_name().

2.55 Stats per queue

Supports configuring per-queue stat counter mapping.

• [implements] eth_dev_ops: queue_stats_mapping_set.

• [related] API: rte_eth_dev_set_rx_queue_stats_mapping(),
rte_eth_dev_set_tx_queue_stats_mapping().

2.56 FW version

Supports getting device hardware firmware information.

• [implements] eth_dev_ops: fw_version_get.

• [related] API: rte_eth_dev_fw_version_get().

2.57 EEPROM dump

Supports getting/setting device eeprom data.

• [implements] eth_dev_ops: get_eeprom_length, get_eeprom, set_eeprom.

• [related] API: rte_eth_dev_get_eeprom_length(),
rte_eth_dev_get_eeprom(), rte_eth_dev_set_eeprom().

2.58 Module EEPROM dump

Supports getting information and data of plugin module eeprom.

• [implements] eth_dev_ops: get_module_info, get_module_eeprom.

• [related] API: rte_eth_dev_get_module_info(), rte_eth_dev_get_module_eeprom().

2.54. Extended stats 16

Network Interface Controller Drivers, Release 18.08.1

2.59 Registers dump

Supports retrieving device registers and registering attributes (number of registers and register
size).

• [implements] eth_dev_ops: get_reg.

• [related] API: rte_eth_dev_get_reg_info().

2.60 LED

Supports turning on/off a software controllable LED on a device.

• [implements] eth_dev_ops: dev_led_on, dev_led_off.

• [related] API: rte_eth_led_on(), rte_eth_led_off().

2.61 Multiprocess aware

Driver can be used for primary-secondary process model.

2.62 BSD nic_uio

BSD nic_uio module supported.

2.63 Linux UIO

Works with igb_uio kernel module.

• [provides] RTE_PMD_REGISTER_KMOD_DEP: igb_uio.

2.64 Linux VFIO

Works with vfio-pci kernel module.

• [provides] RTE_PMD_REGISTER_KMOD_DEP: vfio-pci.

2.65 Other kdrv

Kernel module other than above ones supported.

2.59. Registers dump 17

Network Interface Controller Drivers, Release 18.08.1

2.66 ARMv7

Support armv7 architecture.

Use defconfig_arm-armv7a-*-*.

2.67 ARMv8

Support armv8a (64bit) architecture.

Use defconfig_arm64-armv8a-*-*

2.68 Power8

Support PowerPC architecture.

Use defconfig_ppc_64-power8-*-*

2.69 x86-32

Support 32bits x86 architecture.

Use defconfig_x86_x32-native-*-* and defconfig_i686-native-*-*.

2.70 x86-64

Support 64bits x86 architecture.

Use defconfig_x86_64-native-*-*.

2.71 Usage doc

Documentation describes usage.

See doc/guides/nics/*.rst

2.72 Design doc

Documentation describes design.

See doc/guides/nics/*.rst.

2.66. ARMv7 18

Network Interface Controller Drivers, Release 18.08.1

2.73 Perf doc

Documentation describes performance values.

See dpdk.org/doc/perf/*.

2.74 Runtime Rx queue setup

Supports Rx queue setup after device started.

• [provides] rte_eth_dev_info: dev_capa:RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP.

• [related] API: rte_eth_dev_info_get().

2.75 Runtime Tx queue setup

Supports Tx queue setup after device started.

• [provides] rte_eth_dev_info: dev_capa:RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP.

• [related] API: rte_eth_dev_info_get().

2.76 Other dev ops not represented by a Feature

• rxq_info_get

• txq_info_get

• vlan_tpid_set

• vlan_strip_queue_set

• vlan_pvid_set

• rx_queue_count

• l2_tunnel_offload_set

• uc_hash_table_set

• uc_all_hash_table_set

• udp_tunnel_port_add

• udp_tunnel_port_del

• l2_tunnel_eth_type_conf

• l2_tunnel_offload_set

• tx_pkt_prepare

2.73. Perf doc 19

CHAPTER

THREE

COMPILING AND TESTING A PMD FOR A NIC

This section demonstrates how to compile and run a Poll Mode Driver (PMD) for the available
Network Interface Cards in DPDK using TestPMD.

TestPMD is one of the reference applications distributed with the DPDK. Its main purpose is to
forward packets between Ethernet ports on a network interface and as such is the best way to
test a PMD.

Refer to the testpmd application user guide for detailed information on how to build and run
testpmd.

3.1 Driver Compilation

To compile a PMD for a platform, run make with appropriate target as shown below. Use
“make” command in Linux and “gmake” in FreeBSD. This will also build testpmd.

To check available targets:

cd <DPDK-source-directory>
make showconfigs

Example output:

arm-armv7a-linuxapp-gcc
arm64-armv8a-linuxapp-gcc
arm64-dpaa2-linuxapp-gcc
arm64-thunderx-linuxapp-gcc
arm64-xgene1-linuxapp-gcc
i686-native-linuxapp-gcc
i686-native-linuxapp-icc
ppc_64-power8-linuxapp-gcc
x86_64-native-bsdapp-clang
x86_64-native-bsdapp-gcc
x86_64-native-linuxapp-clang
x86_64-native-linuxapp-gcc
x86_64-native-linuxapp-icc
x86_x32-native-linuxapp-gcc

To compile a PMD for Linux x86_64 gcc target, run the following “make” command:

make install T=x86_64-native-linuxapp-gcc

Use ARM (ThunderX, DPAA, X-Gene) or PowerPC target for respective platform.

For more information, refer to the Getting Started Guide for Linux or Getting Started Guide for
FreeBSD depending on your platform.

20

Network Interface Controller Drivers, Release 18.08.1

3.2 Running testpmd in Linux

This section demonstrates how to setup and run testpmd in Linux.

1. Mount huge pages:

mkdir /mnt/huge
mount -t hugetlbfs nodev /mnt/huge

2. Request huge pages:

Hugepage memory should be reserved as per application requirement. Check hugepage
size configured in the system and calculate the number of pages required.

To reserve 1024 pages of 2MB:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

Note: Check /proc/meminfo to find system hugepage size:
grep "Hugepagesize:" /proc/meminfo

Example output:

Hugepagesize: 2048 kB

3. Load igb_uio or vfio-pci driver:

modprobe uio
insmod ./x86_64-native-linuxapp-gcc/kmod/igb_uio.ko

or

modprobe vfio-pci

4. Setup VFIO permissions for regular users before binding to vfio-pci:

sudo chmod a+x /dev/vfio

sudo chmod 0666 /dev/vfio/*

5. Bind the adapters to igb_uio or vfio-pci loaded in the previous step:

./usertools/dpdk-devbind.py --bind igb_uio DEVICE1 DEVICE2 ...

Or setup VFIO permissions for regular users and then bind to vfio-pci:

./usertools/dpdk-devbind.py --bind vfio-pci DEVICE1 DEVICE2 ...

Note: DEVICE1, DEVICE2 are specified via PCI “domain:bus:slot.func” syntax or
“bus:slot.func” syntax.

6. Start testpmd with basic parameters:

./x86_64-native-linuxapp-gcc/app/testpmd -l 0-3 -n 4 -- -i

Successful execution will show initialization messages from EAL, PMD and testpmd ap-
plication. A prompt will be displayed at the end for user commands as interactive mode
(-i) is on.

testpmd>

Refer to the testpmd runtime functions for a list of available commands.

3.2. Running testpmd in Linux 21

Network Interface Controller Drivers, Release 18.08.1

Note: When testpmd is built with shared library, use option -d to load the dynamic
PMD for rte_eal_init.

3.2. Running testpmd in Linux 22

CHAPTER

FOUR

ARK POLL MODE DRIVER

The ARK PMD is a DPDK poll-mode driver for the Atomic Rules Arkville (ARK) family of de-
vices.

More information can be found at the Atomic Rules website.

4.1 Overview

The Atomic Rules Arkville product is DPDK and AXI compliant product that marshals packets
across a PCIe conduit between host DPDK mbufs and FPGA AXI streams.

The ARK PMD, and the spirit of the overall Arkville product, has been to take the DPDK API/ABI
as a fixed specification; then implement much of the business logic in FPGA RTL circuits. The
approach of working backwards from the DPDK API/ABI and having the GPP host software
dictate, while the FPGA hardware copes, results in significant performance gains over a naive
implementation.

While this document describes the ARK PMD software, it is helpful to understand what the
FPGA hardware is and is not. The Arkville RTL component provides a single PCIe Physical
Function (PF) supporting some number of RX/Ingress and TX/Egress Queues. The ARK PMD
controls the Arkville core through a dedicated opaque Core BAR (CBAR). To allow users full
freedom for their own FPGA application IP, an independent FPGA Application BAR (ABAR) is
provided.

One popular way to imagine Arkville’s FPGA hardware aspect is as the FPGA PCIe-facing
side of a so-called Smart NIC. The Arkville core does not contain any MACs, and is link-speed
independent, as well as agnostic to the number of physical ports the application chooses to
use. The ARK driver exposes the familiar PMD interface to allow packet movement to and from
mbufs across multiple queues.

However FPGA RTL applications could contain a universe of added functionality that an Arkville
RTL core does not provide or can not anticipate. To allow for this expectation of user-defined
innovation, the ARK PMD provides a dynamic mechanism of adding capabilities without having
to modify the ARK PMD.

The ARK PMD is intended to support all instances of the Arkville RTL Core, regardless of
configuration, FPGA vendor, or target board. While specific capabilities such as number of
physical hardware queue-pairs are negotiated; the driver is designed to remain constant over
a broad and extendable feature set.

Intentionally, Arkville by itself DOES NOT provide common NIC capabilities such as offload
or receive-side scaling (RSS). These capabilities would be viewed as a gate-level “tax” on

23

http://atomicrules.com

Network Interface Controller Drivers, Release 18.08.1

Green-box FPGA applications that do not require such function. Instead, they can be added
as needed with essentially no overhead to the FPGA Application.

The ARK PMD also supports optional user extensions, through dynamic linking. The ARK
PMD user extensions are a feature of Arkville’s DPDK net/ark poll mode driver, allowing users
to add their own code to extend the net/ark functionality without having to make source code
changes to the driver. One motivation for this capability is that while DPDK provides a rich set of
functions to interact with NIC-like capabilities (e.g. MAC addresses and statistics), the Arkville
RTL IP does not include a MAC. Users can supply their own MAC or custom FPGA applications,
which may require control from the PMD. The user extension is the means providing the control
between the user’s FPGA application and the existing DPDK features via the PMD.

4.2 Device Parameters

The ARK PMD supports device parameters that are used for packet routing and for internal
packet generation and packet checking. This section describes the supported parameters.
These features are primarily used for diagnostics, testing, and performance verification un-
der the guidance of an Arkville specialist. The nominal use of Arkville does not require any
configuration using these parameters.

“Pkt_dir”

The Packet Director controls connectivity between Arkville’s internal hardware components.
The features of the Pkt_dir are only used for diagnostics and testing; it is not intended for
nominal use. The full set of features are not published at this level.

Format: Pkt_dir=0x00110F10

“Pkt_gen”

The packet generator parameter takes a file as its argument. The file contains configuration
parameters used internally for regression testing and are not intended to be published at this
level. The packet generator is an internal Arkville hardware component.

Format: Pkt_gen=./config/pg.conf

“Pkt_chkr”

The packet checker parameter takes a file as its argument. The file contains configuration
parameters used internally for regression testing and are not intended to be published at this
level. The packet checker is an internal Arkville hardware component.

Format: Pkt_chkr=./config/pc.conf

4.3 Data Path Interface

Ingress RX and Egress TX operation is by the nominal DPDK API . The driver supports single-
port, multi-queue for both RX and TX.

4.4 Configuration Information

DPDK Configuration Parameters

4.2. Device Parameters 24

Network Interface Controller Drivers, Release 18.08.1

The following configuration options are available for the ARK PMD:

• CONFIG_RTE_LIBRTE_ARK_PMD (default y): Enables or disables inclusion
of the ARK PMD driver in the DPDK compilation.

• CONFIG_RTE_LIBRTE_ARK_PAD_TX (default y): When enabled TX pack-
ets are padded to 60 bytes to support downstream MACS.

• CONFIG_RTE_LIBRTE_ARK_DEBUG_RX (default n): Enables or disables
debug logging and internal checking of RX ingress logic within the ARK PMD
driver.

• CONFIG_RTE_LIBRTE_ARK_DEBUG_TX (default n): Enables or disables
debug logging and internal checking of TX egress logic within the ARK PMD
driver.

• CONFIG_RTE_LIBRTE_ARK_DEBUG_STATS (default n): Enables or dis-
ables debug logging of detailed packet and performance statistics gathered
in the PMD and FPGA.

• CONFIG_RTE_LIBRTE_ARK_DEBUG_TRACE (default n): Enables or dis-
ables debug logging of detailed PMD events and status.

4.5 Building DPDK

See the DPDK Getting Started Guide for Linux for instructions on how to build DPDK.

By default the ARK PMD library will be built into the DPDK library.

For configuring and using UIO and VFIO frameworks, please also refer the documentation that
comes with DPDK suite.

4.6 Supported ARK RTL PCIe Instances

ARK PMD supports the following Arkville RTL PCIe instances including:

• 1d6c:100d - AR-ARKA-FX0 [Arkville 32B DPDK Data Mover]

• 1d6c:100e - AR-ARKA-FX1 [Arkville 64B DPDK Data Mover]

4.7 Supported Operating Systems

Any Linux distribution fulfilling the conditions described in System Requirements section of
the DPDK documentation or refer to DPDK Release Notes. ARM and PowerPC architectures
are not supported at this time.

4.8 Supported Features

• Dynamic ARK PMD extensions

• Multiple receive and transmit queues

4.5. Building DPDK 25

Network Interface Controller Drivers, Release 18.08.1

• Jumbo frames up to 9K

• Hardware Statistics

4.9 Unsupported Features

Features that may be part of, or become part of, the Arkville RTL IP that are not currently
supported or exposed by the ARK PMD include:

• PCIe SR-IOV Virtual Functions (VFs)

• Arkville’s Packet Generator Control and Status

• Arkville’s Packet Director Control and Status

• Arkville’s Packet Checker Control and Status

• Arkville’s Timebase Management

4.10 Pre-Requisites

1. Prepare the system as recommended by DPDK suite. This includes environment vari-
ables, hugepages configuration, tool-chains and configuration

2. Insert igb_uio kernel module using the command ‘modprobe igb_uio’

3. Bind the intended ARK device to igb_uio module

At this point the system should be ready to run DPDK applications. Once the application runs
to completion, the ARK PMD can be detached from igb_uio if necessary.

4.11 Usage Example

Follow instructions available in the document compiling and testing a PMD for a NIC to launch
testpmd with Atomic Rules ARK devices managed by librte_pmd_ark.

Example output:

[...]
EAL: PCI device 0000:01:00.0 on NUMA socket -1
EAL: probe driver: 1d6c:100e rte_ark_pmd
EAL: PCI memory mapped at 0x7f9b6c400000
PMD: eth_ark_dev_init(): Initializing 0:2:0.1
ARKP PMD CommitID: 378f3a67
Configuring Port 0 (socket 0)
Port 0: DC:3C:F6:00:00:01
Checking link statuses...
Port 0 Link Up - speed 100000 Mbps - full-duplex
Done
testpmd>

4.9. Unsupported Features 26

CHAPTER

FIVE

AVP POLL MODE DRIVER

The Accelerated Virtual Port (AVP) device is a shared memory based device only available
on virtualization platforms from Wind River Systems. The Wind River Systems virtualization
platform currently uses QEMU/KVM as its hypervisor and as such provides support for all of
the QEMU supported virtual and/or emulated devices (e.g., virtio, e1000, etc.). The platform
offers the virtio device type as the default device when launching a virtual machine or creating
a virtual machine port. The AVP device is a specialized device available to customers that
require increased throughput and decreased latency to meet the demands of their performance
focused applications.

The AVP driver binds to any AVP PCI devices that have been exported by the Wind River
Systems QEMU/KVM hypervisor. As a user of the DPDK driver API it supports a subset of
the full Ethernet device API to enable the application to use the standard device configuration
functions and packet receive/transmit functions.

These devices enable optimized packet throughput by bypassing QEMU and delivering packets
directly to the virtual switch via a shared memory mechanism. This provides DPDK applications
running in virtual machines with significantly improved throughput and latency over other device
types.

The AVP device implementation is integrated with the QEMU/KVM live-migration mechanism
to allow applications to seamlessly migrate from one hypervisor node to another with minimal
packet loss.

5.1 Features and Limitations of the AVP PMD

The AVP PMD driver provides the following functionality.

• Receive and transmit of both simple and chained mbuf packets,

• Chained mbufs may include up to 5 chained segments,

• Up to 8 receive and transmit queues per device,

• Only a single MAC address is supported,

• The MAC address cannot be modified,

• The maximum receive packet length is 9238 bytes,

• VLAN header stripping and inserting,

• Promiscuous mode

• VM live-migration

27

http://www.windriver.com/products/titanium-cloud/

Network Interface Controller Drivers, Release 18.08.1

• PCI hotplug insertion and removal

5.2 Prerequisites

The following prerequisites apply:

• A virtual machine running in a Wind River Systems virtualization environment and con-
figured with at least one neutron port defined with a vif-model set to “avp”.

5.3 Launching a VM with an AVP type network attachment

The following example will launch a VM with three network attachments. The first attachment
will have a default vif-model of “virtio”. The next two network attachments will have a vif-model
of “avp” and may be used with a DPDK application which is built to include the AVP PMD driver.

nova boot --flavor small --image my-image \
--nic net-id=${NETWORK1_UUID} \
--nic net-id=${NETWORK2_UUID},vif-model=avp \
--nic net-id=${NETWORK3_UUID},vif-model=avp \
--security-group default my-instance1

5.2. Prerequisites 28

CHAPTER

SIX

AXGBE POLL MODE DRIVER

The AXGBE poll mode driver library (librte_pmd_axgbe) implements support for AMD 10
Gbps family of adapters. It is compiled and tested in standard linux distro like Ubuntu.

Detailed information about SoCs that use these devices can be found here:

• AMD EPYC™ EMBEDDED 3000 family.

6.1 Supported Features

AXGBE PMD has support for:

• Base L2 features

• TSS (Transmit Side Scaling)

• Promiscuous mode

• Port statistics

• Multicast mode

• RSS (Receive Side Scaling)

• Checksum offload

• Jumbo Frame up to 9K

6.2 Configuration Information

The following options can be modified in the .config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_AXGBE_PMD (default y)

Toggle compilation of axgbe PMD.

• CONFIG_RTE_LIBRTE_AXGBE_PMD_DEBUG (default n)

Toggle display for PMD debug related messages.

29

https://www.amd.com/en/products/embedded-epyc-3000-series

Network Interface Controller Drivers, Release 18.08.1

6.3 Building DPDK

See the DPDK Getting Started Guide for Linux for instructions on how to build DPDK.

By default the AXGBE PMD library will be built into the DPDK library.

For configuring and using UIO frameworks, please also refer the documentation that comes
with DPDK suite.

6.4 Prerequisites and Pre-conditions

• Prepare the system as recommended by DPDK suite.

• Bind the intended AMD device to igb_uio or vfio-pci module.

Now system is ready to run DPDK application.

6.5 Usage Example

Refer to the document compiling and testing a PMD for a NIC for details.

Example output:

[...]
EAL: PCI device 0000:02:00.4 on NUMA socket 0
EAL: probe driver: 1022:1458 net_axgbe
Interactive-mode selected
USER1: create a new mbuf pool <mbuf_pool_socket_0>: n=171456, size=2176, socket=0
USER1: create a new mbuf pool <mbuf_pool_socket_1>: n=171456, size=2176, socket=1
USER1: create a new mbuf pool <mbuf_pool_socket_2>: n=171456, size=2176, socket=2
USER1: create a new mbuf pool <mbuf_pool_socket_3>: n=171456, size=2176, socket=3
Configuring Port 0 (socket 0)
Port 0: 00:00:1A:1C:6A:17
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

6.3. Building DPDK 30

CHAPTER

SEVEN

BNX2X POLL MODE DRIVER

The BNX2X poll mode driver library (librte_pmd_bnx2x) implements support for QLogic
578xx 10/20 Gbps family of adapters as well as their virtual functions (VF) in SR-IOV con-
text. It is supported on several standard Linux distros like Red Hat 7.x and SLES12 OS. It is
compile-tested under FreeBSD OS.

More information can be found at QLogic Corporation’s Official Website.

7.1 Supported Features

BNX2X PMD has support for:

• Base L2 features

• Unicast/multicast filtering

• Promiscuous mode

• Port hardware statistics

• SR-IOV VF

7.2 Non-supported Features

The features not yet supported include:

• TSS (Transmit Side Scaling)

• RSS (Receive Side Scaling)

• LRO/TSO offload

• Checksum offload

• SR-IOV PF

• Rx TX scatter gather

7.3 Co-existence considerations

• BCM578xx being a CNA can have both NIC and Storage personalities. However, coex-
istence with storage protocol drivers (cnic, bnx2fc and bnx2fi) is not supported on the

31

http://www.qlogic.com

Network Interface Controller Drivers, Release 18.08.1

same adapter. So storage personality has to be disabled on that adapter when used in
DPDK applications.

• For SR-IOV case, bnx2x PMD will be used to bind to SR-IOV VF device and Linux native
kernel driver (bnx2x) will be attached to SR-IOV PF.

7.4 Supported QLogic NICs

• 578xx

7.5 Prerequisites

• Requires firmware version 7.2.51.0. It is included in most of the standard Linux distros.
If it is not available visit linux-firmware git repository to get the required firmware.

7.6 Pre-Installation Configuration

7.6.1 Config File Options

The following options can be modified in the .config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_BNX2X_PMD (default n)

Toggle compilation of bnx2x driver. To use bnx2x PMD set this config parameter to ‘y’.
Also, in order for firmware binary to load user will need zlib devel package installed.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG_TX (default n)

Toggle display of transmit fast path run-time messages.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG_RX (default n)

Toggle display of receive fast path run-time messages.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG_PERIODIC (default n)

Toggle display of register reads and writes.

7.7 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

7.8 SR-IOV: Prerequisites and sample Application Notes

This section provides instructions to configure SR-IOV with Linux OS.

1. Verify SR-IOV and ARI capabilities are enabled on the adapter using lspci:

lspci -s <slot> -vvv

7.4. Supported QLogic NICs 32

https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/plain/bnx2x/bnx2x-e2-7.2.51.0.fw

Network Interface Controller Drivers, Release 18.08.1

Example output:

[...]
Capabilities: [1b8 v1] Alternative Routing-ID Interpretation (ARI)
[...]
Capabilities: [1c0 v1] Single Root I/O Virtualization (SR-IOV)
[...]
Kernel driver in use: igb_uio

2. Load the kernel module:

modprobe bnx2x

Example output:

systemd-udevd[4848]: renamed network interface eth0 to ens5f0
systemd-udevd[4848]: renamed network interface eth1 to ens5f1

3. Bring up the PF ports:

ifconfig ens5f0 up
ifconfig ens5f1 up

4. Create VF device(s):

Echo the number of VFs to be created into “sriov_numvfs” sysfs entry of the parent PF.

Example output:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

5. Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is: ip link set <PF iface>
vf <VF id> mac <macaddr>

Example output:

ip link set ens5f0 vf 0 mac 52:54:00:2f:9d:e8

6. PCI Passthrough:

The VF devices may be passed through to the guest VM using virt-manager or virsh etc.
bnx2x PMD should be used to bind the VF devices in the guest VM using the instructions
outlined in the Application notes below.

7. Running testpmd: (Supply --log-level="pmd.net.bnx2x.driver",7 to view in-
formational messages):

Follow instructions available in the document compiling and testing a PMD for a NIC to
run testpmd.

Example output:

[...]
EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 14e4:168e rte_bnx2x_pmd
EAL: PCI memory mapped at 0x7f14f6fe5000
EAL: PCI memory mapped at 0x7f14f67e5000
EAL: PCI memory mapped at 0x7f15fbd9b000
EAL: PCI device 0000:84:00.1 on NUMA socket 1
EAL: probe driver: 14e4:168e rte_bnx2x_pmd
EAL: PCI memory mapped at 0x7f14f5fe5000
EAL: PCI memory mapped at 0x7f14f57e5000
EAL: PCI memory mapped at 0x7f15fbd4f000
Interactive-mode selected
Configuring Port 0 (socket 0)

7.8. SR-IOV: Prerequisites and sample Application Notes 33

Network Interface Controller Drivers, Release 18.08.1

PMD: bnx2x_dev_tx_queue_setup(): fp[00] req_bd=512, thresh=512,
usable_bd=1020, total_bd=1024,

tx_pages=4
PMD: bnx2x_dev_rx_queue_setup(): fp[00] req_bd=128, thresh=0,

usable_bd=510, total_bd=512,
rx_pages=1, cq_pages=8

PMD: bnx2x_print_adapter_info():
[...]
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

7.8. SR-IOV: Prerequisites and sample Application Notes 34

CHAPTER

EIGHT

BNXT POLL MODE DRIVER

The bnxt poll mode library (librte_pmd_bnxt) implements support for:

• Broadcom NetXtreme-C®/NetXtreme-E®/NetXtreme-S® BCM5730X / BCM574XX /
BCM58000 family of Ethernet Network Controllers

These adapters support Standards compliant 10/25/50/100Gbps 30MPPS full-duplex
throughput.

Information about the NetXtreme family of adapters can be found in the NetXtreme®
Brand section of the Broadcom website.

• Broadcom StrataGX® BCM5871X Series of Communucations Processors

These ARM based processors target a broad range of networking applications including
virtual CPE (vCPE) and NFV appliances, 10G service routers and gateways, control
plane processing for Ethernet switches and network attached storage (NAS).

Information about the StrataGX family of adapters can be found in the StrataGX®
BCM5871X Series section of the Broadcom website.

8.1 Limitations

With the current driver, allocated mbufs must be large enough to hold the entire received frame.
If the mbufs are not large enough, the packets will be dropped. This is most limiting when jumbo
frames are used.

35

https://www.broadcom.com/products/ethernet-connectivity/controllers/
https://www.broadcom.com/products/ethernet-connectivity/controllers/
http://www.broadcom.com/
http://www.broadcom.com/products/enterprise-and-network-processors/processors/bcm58712
http://www.broadcom.com/products/enterprise-and-network-processors/processors/bcm58712
http://www.broadcom.com/

CHAPTER

NINE

CXGBE POLL MODE DRIVER

The CXGBE PMD (librte_pmd_cxgbe) provides poll mode driver support for Chelsio Termi-
nator 10/25/40/100 Gbps family of adapters. CXGBE PMD has support for the latest Linux
and FreeBSD operating systems.

CXGBEVF PMD provides poll mode driver support for SR-IOV Virtual functions and has sup-
port for the latest Linux operating systems.

More information can be found at Chelsio Communications Official Website.

9.1 Features

CXGBE and CXGBEVF PMD has support for:

• Multiple queues for TX and RX

• Receiver Side Steering (RSS) Receiver Side Steering (RSS) on IPv4, IPv6, IPv4-
TCP/UDP, IPv6-TCP/UDP. For 4-tuple, enabling ‘RSS on TCP’ and ‘RSS on TCP + UDP’
is supported.

• VLAN filtering

• Checksum offload

• Promiscuous mode

• All multicast mode

• Port hardware statistics

• Jumbo frames

• Flow API - Support for both Wildcard (LE-TCAM) and Exact (HASH) match filters.

9.2 Limitations

The Chelsio Terminator series of devices provide two/four ports but expose a single PCI bus
address, thus, librte_pmd_cxgbe registers itself as a PCI driver that allocates one Ethernet
device per detected port.

For this reason, one cannot whitelist/blacklist a single port without whitelisting/blacklisting the
other ports on the same device.

36

http://www.chelsio.com

Network Interface Controller Drivers, Release 18.08.1

9.3 Supported Chelsio T5 NICs

• 1G NICs: T502-BT

• 10G NICs: T520-BT, T520-CR, T520-LL-CR, T520-SO-CR, T540-CR

• 40G NICs: T580-CR, T580-LP-CR, T580-SO-CR

• Other T5 NICs: T522-CR

9.4 Supported Chelsio T6 NICs

• 25G NICs: T6425-CR, T6225-CR, T6225-LL-CR, T6225-SO-CR

• 100G NICs: T62100-CR, T62100-LP-CR, T62100-SO-CR

9.5 Supported SR-IOV Chelsio NICs

SR-IOV virtual functions are supported on all the Chelsio NICs listed in Supported Chelsio T5
NICs and Supported Chelsio T6 NICs.

9.6 Prerequisites

• Requires firmware version 1.17.14.0 and higher. Visit Chelsio Download Center to get
latest firmware bundled with the latest Chelsio Unified Wire package.

For Linux, installing and loading the latest cxgb4 kernel driver from the Chelsio Unified
Wire package should get you the latest firmware. More information can be obtained from
the User Guide that is bundled with the Chelsio Unified Wire package.

For FreeBSD, the latest firmware obtained from the Chelsio Unified Wire package must
be manually flashed via cxgbetool available in FreeBSD source repository.

Instructions on how to manually flash the firmware are given in section Linux Installation
for Linux and section FreeBSD Installation for FreeBSD.

9.7 Pre-Installation Configuration

9.7.1 Config File Options

The following options can be modified in the .config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_CXGBE_PMD (default y)

Toggle compilation of librte_pmd_cxgbe driver.

Note: This controls compilation of both CXGBE and CXGBEVF PMD.

9.3. Supported Chelsio T5 NICs 37

http://service.chelsio.com

Network Interface Controller Drivers, Release 18.08.1

• CONFIG_RTE_LIBRTE_CXGBE_DEBUG (default n)

Toggle display of generic debugging messages.

• CONFIG_RTE_LIBRTE_CXGBE_DEBUG_REG (default n)

Toggle display of registers related run-time check messages.

• CONFIG_RTE_LIBRTE_CXGBE_DEBUG_MBOX (default n)

Toggle display of firmware mailbox related run-time check messages.

• CONFIG_RTE_LIBRTE_CXGBE_DEBUG_TX (default n)

Toggle display of transmission data path run-time check messages.

• CONFIG_RTE_LIBRTE_CXGBE_DEBUG_RX (default n)

Toggle display of receiving data path run-time check messages.

• CONFIG_RTE_LIBRTE_CXGBE_TPUT (default y)

Toggle behaviour to prefer Throughput or Latency.

9.7.2 Runtime Options

The following devargs options can be enabled at runtime. They must be passed as part of
EAL arguments. For example,

testpmd -w 02:00.4,keep_ovlan=1 -- -i

• keep_ovlan (default 0)

Toggle behaviour to keep/strip outer VLAN in Q-in-Q packets. If enabled, the outer VLAN
tag is preserved in Q-in-Q packets. Otherwise, the outer VLAN tag is stripped in Q-in-Q
packets.

• force_link_up (default 0)

When set to 1, CXGBEVF PMD always forces link as up for all VFs on underlying Chelsio
NICs. This enables multiple VFs on the same NIC to send traffic to each other even when
the physical link is down.

9.8 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

9.9 Linux

9.9.1 Linux Installation

Steps to manually install the latest firmware from the downloaded Chelsio Unified Wire package
for Linux operating system are as follows:

1. Load the kernel module:

modprobe cxgb4

9.8. Driver compilation and testing 38

Network Interface Controller Drivers, Release 18.08.1

2. Use ifconfig to get the interface name assigned to Chelsio card:

ifconfig -a | grep "00:07:43"

Example output:

p1p1 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C0
p1p2 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C8

3. Install cxgbtool:

cd <path_to_uwire>/tools/cxgbtool
make install

4. Use cxgbtool to load the firmware config file onto the card:

cxgbtool p1p1 loadcfg <path_to_uwire>/src/network/firmware/t5-config.txt

5. Use cxgbtool to load the firmware image onto the card:

cxgbtool p1p1 loadfw <path_to_uwire>/src/network/firmware/t5fw-*.bin

6. Unload and reload the kernel module:

modprobe -r cxgb4
modprobe cxgb4

7. Verify with ethtool:

ethtool -i p1p1 | grep "firmware"

Example output:

firmware-version: 1.17.14.0, TP 0.1.4.9

9.9.2 Running testpmd

This section demonstrates how to launch testpmd with Chelsio devices managed by li-
brte_pmd_cxgbe in Linux operating system.

1. Load the kernel module:

modprobe cxgb4

2. Get the PCI bus addresses of the interfaces bound to cxgb4 driver:

dmesg | tail -2

Example output:

cxgb4 0000:02:00.4 p1p1: renamed from eth0
cxgb4 0000:02:00.4 p1p2: renamed from eth1

Note: Both the interfaces of a Chelsio 2-port adapter are bound to the same PCI bus
address.

3. Unload the kernel module:

modprobe -ar cxgb4 csiostor

4. Running testpmd

Follow instructions available in the document compiling and testing a PMD for a NIC to
run testpmd.

Note: Currently, CXGBE PMD only supports the binding of PF4 for Chelsio NICs.

9.9. Linux 39

Network Interface Controller Drivers, Release 18.08.1

Example output:

[...]
EAL: PCI device 0000:02:00.4 on NUMA socket -1
EAL: probe driver: 1425:5401 rte_cxgbe_pmd
EAL: PCI memory mapped at 0x7fd7c0200000
EAL: PCI memory mapped at 0x7fd77cdfd000
EAL: PCI memory mapped at 0x7fd7c10b7000
PMD: rte_cxgbe_pmd: fw: 1.17.14.0, TP: 0.1.4.9
PMD: rte_cxgbe_pmd: Coming up as MASTER: Initializing adapter
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:07:43:2D:EA:C0
Configuring Port 1 (socket 0)
Port 1: 00:07:43:2D:EA:C8
Checking link statuses...
PMD: rte_cxgbe_pmd: Port0: passive DA port module inserted
PMD: rte_cxgbe_pmd: Port1: passive DA port module inserted
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

Note: Flow control pause TX/RX is disabled by default and can be enabled via testpmd.
Refer section Enable/Disable Flow Control for more details.

9.9.3 Configuring SR-IOV Virtual Functions

This section demonstrates how to enable SR-IOV virtual functions on Chelsio NICs and demon-
strates how to run testpmd with SR-IOV virtual functions.

1. Load the kernel module:

modprobe cxgb4

2. Get the PCI bus addresses of the interfaces bound to cxgb4 driver:

dmesg | tail -2

Example output:

cxgb4 0000:02:00.4 p1p1: renamed from eth0
cxgb4 0000:02:00.4 p1p2: renamed from eth1

Note: Both the interfaces of a Chelsio 2-port adapter are bound to the same PCI bus
address.

3. Use ifconfig to get the interface name assigned to Chelsio card:

ifconfig -a | grep "00:07:43"

Example output:

p1p1 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C0
p1p2 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C8

4. Bring up the interfaces:

ifconfig p1p1 up
ifconfig p1p2 up

9.9. Linux 40

Network Interface Controller Drivers, Release 18.08.1

5. Instantiate SR-IOV Virtual Functions. PF0..3 can be used for SR-IOV VFs. Multiple VFs
can be instantiated on each of PF0..3. To instantiate one SR-IOV VF on each PF0 and
PF1:

echo 1 > /sys/bus/pci/devices/0000\:02\:00.0/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000\:02\:00.1/sriov_numvfs

6. Get the PCI bus addresses of the virtual functions:

lspci | grep -i "Chelsio" | grep -i "VF"

Example output:

02:01.0 Ethernet controller: Chelsio Communications Inc T540-CR Unified Wire Ethernet Controller [VF]
02:01.1 Ethernet controller: Chelsio Communications Inc T540-CR Unified Wire Ethernet Controller [VF]

7. Running testpmd

Follow instructions available in the document compiling and testing a PMD for a NIC to
bind virtual functions and run testpmd.

Example output:

[...]
EAL: PCI device 0000:02:01.0 on NUMA socket 0
EAL: probe driver: 1425:5803 net_cxgbevf
PMD: rte_cxgbe_pmd: Firmware version: 1.17.14.0
PMD: rte_cxgbe_pmd: TP Microcode version: 0.1.4.9
PMD: rte_cxgbe_pmd: Chelsio rev 0
PMD: rte_cxgbe_pmd: No bootstrap loaded
PMD: rte_cxgbe_pmd: No Expansion ROM loaded
PMD: rte_cxgbe_pmd: 0000:02:01.0 Chelsio rev 0 1G/10GBASE-SFP
EAL: PCI device 0000:02:01.1 on NUMA socket 0
EAL: probe driver: 1425:5803 net_cxgbevf
PMD: rte_cxgbe_pmd: Firmware version: 1.17.14.0
PMD: rte_cxgbe_pmd: TP Microcode version: 0.1.4.9
PMD: rte_cxgbe_pmd: Chelsio rev 0
PMD: rte_cxgbe_pmd: No bootstrap loaded
PMD: rte_cxgbe_pmd: No Expansion ROM loaded
PMD: rte_cxgbe_pmd: 0000:02:01.1 Chelsio rev 0 1G/10GBASE-SFP
Configuring Port 0 (socket 0)
Port 0: 06:44:29:44:40:00
Configuring Port 1 (socket 0)
Port 1: 06:44:29:44:40:10
Checking link statuses...
Done
testpmd>

9.10 FreeBSD

9.10.1 FreeBSD Installation

Steps to manually install the latest firmware from the downloaded Chelsio Unified Wire package
for FreeBSD operating system are as follows:

1. Load the kernel module:

kldload if_cxgbe

2. Use dmesg to get the t5nex instance assigned to the Chelsio card:

dmesg | grep "t5nex"

9.10. FreeBSD 41

Network Interface Controller Drivers, Release 18.08.1

Example output:

t5nex0: <Chelsio T520-CR> irq 16 at device 0.4 on pci2
cxl0: <port 0> on t5nex0
cxl1: <port 1> on t5nex0
t5nex0: PCIe x8, 2 ports, 14 MSI-X interrupts, 31 eq, 13 iq

In the example above, a Chelsio T520-CR card is bound to a t5nex0 instance.

3. Install cxgbetool from FreeBSD source repository:

cd <path_to_FreeBSD_source>/tools/tools/cxgbetool/
make && make install

4. Use cxgbetool to load the firmware image onto the card:

cxgbetool t5nex0 loadfw <path_to_uwire>/src/network/firmware/t5fw-*.bin

5. Unload and reload the kernel module:

kldunload if_cxgbe
kldload if_cxgbe

6. Verify with sysctl:

sysctl -a | grep "t5nex" | grep "firmware"

Example output:

dev.t5nex.0.firmware_version: 1.17.14.0

9.10.2 Running testpmd

This section demonstrates how to launch testpmd with Chelsio devices managed by li-
brte_pmd_cxgbe in FreeBSD operating system.

1. Change to DPDK source directory where the target has been compiled in section Driver
compilation and testing:

cd <DPDK-source-directory>

2. Copy the contigmem kernel module to /boot/kernel directory:

cp x86_64-native-bsdapp-clang/kmod/contigmem.ko /boot/kernel/

3. Add the following lines to /boot/loader.conf:

reserve 2 x 1G blocks of contiguous memory using contigmem driver
hw.contigmem.num_buffers=2
hw.contigmem.buffer_size=1073741824
load contigmem module during boot process
contigmem_load="YES"

The above lines load the contigmem kernel module during boot process and allocate 2 x
1G blocks of contiguous memory to be used for DPDK later on. This is to avoid issues
with potential memory fragmentation during later system up time, which may result in
failure of allocating the contiguous memory required for the contigmem kernel module.

4. Restart the system and ensure the contigmem module is loaded successfully:

reboot
kldstat | grep "contigmem"

Example output:

2 1 0xffffffff817f1000 3118 contigmem.ko

9.10. FreeBSD 42

Network Interface Controller Drivers, Release 18.08.1

5. Repeat step 1 to ensure that you are in the DPDK source directory.

6. Load the cxgbe kernel module:

kldload if_cxgbe

7. Get the PCI bus addresses of the interfaces bound to t5nex driver:

pciconf -l | grep "t5nex"

Example output:

t5nex0@pci0:2:0:4: class=0x020000 card=0x00001425 chip=0x54011425 rev=0x00

In the above example, the t5nex0 is bound to 2:0:4 bus address.

Note: Both the interfaces of a Chelsio 2-port adapter are bound to the same PCI bus
address.

8. Unload the kernel module:

kldunload if_cxgbe

9. Set the PCI bus addresses to hw.nic_uio.bdfs kernel environment parameter:

kenv hw.nic_uio.bdfs="2:0:4"

This automatically binds 2:0:4 to nic_uio kernel driver when it is loaded in the next step.

Note: Currently, CXGBE PMD only supports the binding of PF4 for Chelsio NICs.

10. Load nic_uio kernel driver:

kldload ./x86_64-native-bsdapp-clang/kmod/nic_uio.ko

11. Start testpmd with basic parameters:

./x86_64-native-bsdapp-clang/app/testpmd -l 0-3 -n 4 -w 0000:02:00.4 -- -i

Example output:

[...]
EAL: PCI device 0000:02:00.4 on NUMA socket 0
EAL: probe driver: 1425:5401 rte_cxgbe_pmd
EAL: PCI memory mapped at 0x8007ec000
EAL: PCI memory mapped at 0x842800000
EAL: PCI memory mapped at 0x80086c000
PMD: rte_cxgbe_pmd: fw: 1.17.14.0, TP: 0.1.4.9
PMD: rte_cxgbe_pmd: Coming up as MASTER: Initializing adapter
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:07:43:2D:EA:C0
Configuring Port 1 (socket 0)
Port 1: 00:07:43:2D:EA:C8
Checking link statuses...
PMD: rte_cxgbe_pmd: Port0: passive DA port module inserted
PMD: rte_cxgbe_pmd: Port1: passive DA port module inserted
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

Note: Flow control pause TX/RX is disabled by default and can be enabled via testpmd. Refer
section Enable/Disable Flow Control for more details.

9.10. FreeBSD 43

Network Interface Controller Drivers, Release 18.08.1

9.11 Sample Application Notes

9.11.1 Enable/Disable Flow Control

Flow control pause TX/RX is disabled by default and can be enabled via testpmd as follows:

testpmd> set flow_ctrl rx on tx on 0 0 0 0 mac_ctrl_frame_fwd off autoneg on 0
testpmd> set flow_ctrl rx on tx on 0 0 0 0 mac_ctrl_frame_fwd off autoneg on 1

To disable again, run:

testpmd> set flow_ctrl rx off tx off 0 0 0 0 mac_ctrl_frame_fwd off autoneg off 0
testpmd> set flow_ctrl rx off tx off 0 0 0 0 mac_ctrl_frame_fwd off autoneg off 1

9.11.2 Jumbo Mode

There are two ways to enable sending and receiving of jumbo frames via testpmd. One method
involves using the mtu command, which changes the mtu of an individual port without having
to stop the selected port. Another method involves stopping all the ports first and then running
max-pkt-len command to configure the mtu of all the ports with a single command.

• To configure each port individually, run the mtu command as follows:

testpmd> port config mtu 0 9000
testpmd> port config mtu 1 9000

• To configure all the ports at once, stop all the ports first and run the max-pkt-len command
as follows:

testpmd> port stop all
testpmd> port config all max-pkt-len 9000

9.11. Sample Application Notes 44

CHAPTER

TEN

DPAA POLL MODE DRIVER

The DPAA NIC PMD (librte_pmd_dpaa) provides poll mode driver support for the inbuilt NIC
found in the NXP DPAA SoC family.

More information can be found at NXP Official Website.

10.1 NXP DPAA (Data Path Acceleration Architecture - Gen 1)

This section provides an overview of the NXP DPAA architecture and how it is integrated into
the DPDK.

Contents summary

• DPAA overview

• DPAA driver architecture overview

10.1.1 DPAA Overview

Reference: FSL DPAA Architecture.

The QorIQ Data Path Acceleration Architecture (DPAA) is a set of hardware components on
specific QorIQ series multicore processors. This architecture provides the infrastructure to
support simplified sharing of networking interfaces and accelerators by multiple CPU cores,
and the accelerators themselves.

DPAA includes:

• Cores

• Network and packet I/O

• Hardware offload accelerators

• Infrastructure required to facilitate flow of packets between the components above

Infrastructure components are:

• The Queue Manager (QMan) is a hardware accelerator that manages frame queues.
It allows CPUs and other accelerators connected to the SoC datapath to enqueue and
dequeue ethernet frames, thus providing the infrastructure for data exchange among
CPUs and datapath accelerators.

45

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM
http://www.nxp.com/assets/documents/data/en/white-papers/QORIQDPAAWP.pdf

Network Interface Controller Drivers, Release 18.08.1

• The Buffer Manager (BMan) is a hardware buffer pool management block that allows
software and accelerators on the datapath to acquire and release buffers in order to build
frames.

Hardware accelerators are:

• SEC - Cryptographic accelerator

• PME - Pattern matching engine

The Network and packet I/O component:

• The Frame Manager (FMan) is a key component in the DPAA and makes use of the DPAA
infrastructure (QMan and BMan). FMan is responsible for packet distribution and policing.
Each frame can be parsed, classified and results may be attached to the frame. This
meta data can be used to select particular QMan queue, which the packet is forwarded
to.

10.2 DPAA DPDK - Poll Mode Driver Overview

This section provides an overview of the drivers for DPAA:

• Bus driver and associated “DPAA infrastructure” drivers

• Functional object drivers (such as Ethernet).

Brief description of each driver is provided in layout below as well as in the following sections.

+------------+
| DPDK DPAA |
| PMD |
+-----+------+

|
+-----+------+ +---------------+
: Ethernet :.......| DPDK DPAA |

. : (FMAN) : | Mempool driver|
. +---+---+----+ | (BMAN) |

. ^ | +-----+---------+
. | |<enqueue, .

. | | dequeue> .
. | | .

. +---+---V----+ .
.: Portal drv : .

. . : : .
. . +-----+------+ .

. . : QMAN : .
. . : Driver : .

+----+------+-------+ +-----+------+ .
| DPDK DPAA Bus | | .
| driver |....................|.....................
| /bus/dpaa | |
+-------------------+ |

|
========================== HARDWARE =====|========================

PHY
===|========================

In the above representation, solid lines represent components which interface with DPDK RTE
Framework and dotted lines represent DPAA internal components.

10.2. DPAA DPDK - Poll Mode Driver Overview 46

Network Interface Controller Drivers, Release 18.08.1

10.2.1 DPAA Bus driver

The DPAA bus driver is a rte_bus driver which scans the platform like bus. Key functions
include:

• Scanning and parsing the various objects and adding them to their respective device list.

• Performing probe for available drivers against each scanned device

• Creating necessary ethernet instance before passing control to the PMD

10.2.2 DPAA NIC Driver (PMD)

DPAA PMD is traditional DPDK PMD which provides necessary interface between RTE frame-
work and DPAA internal components/drivers.

• Once devices have been identified by DPAA Bus, each device is associated with the PMD

• PMD is responsible for implementing necessary glue layer between RTE APIs and lower
level QMan and FMan blocks. The Ethernet driver is bound to a FMAN port and imple-
ments the interfaces needed to connect the DPAA network interface to the network stack.
Each FMAN Port corresponds to a DPDK network interface.

Features

Features of the DPAA PMD are:

• Multiple queues for TX and RX

• Receive Side Scaling (RSS)

• Packet type information

• Checksum offload

• Promiscuous mode

10.2.3 DPAA Mempool Driver

DPAA has a hardware offloaded buffer pool manager, called BMan, or Buffer Manager.

• Using standard Mempools operations RTE API, the mempool driver interfaces with RTE
to service each mempool creation, deletion, buffer allocation and deallocation requests.

• Each FMAN instance has a BMan pool attached to it during initialization. Each Tx frame
can be automatically released by hardware, if allocated from this pool.

10.3 Whitelisting & Blacklisting

For blacklisting a DPAA device, following commands can be used.

<dpdk app> <EAL args> -b "dpaa_bus:fmX-macY" -- ...
e.g. "dpaa_bus:fm1-mac4"

10.3. Whitelisting & Blacklisting 47

Network Interface Controller Drivers, Release 18.08.1

10.4 Supported DPAA SoCs

• LS1043A/LS1023A

• LS1046A/LS1026A

10.5 Prerequisites

There are three main pre-requisities for executing DPAA PMD on a DPAA compatible board:

1. ARM 64 Tool Chain

For example, the *aarch64* Linaro Toolchain.

2. Linux Kernel

It can be obtained from NXP’s Github hosting.

3. Rootfile system

Any aarch64 supporting filesystem can be used. For example, Ubuntu 15.10 (Wily) or
16.04 LTS (Xenial) userland which can be obtained from here.

4. FMC Tool

Before any DPDK application can be executed, the Frame Manager Configuration Tool
(FMC) need to be executed to set the configurations of the queues. This includes the
queue state, RSS and other policies. This tool can be obtained from NXP (Freescale)
Public Git Repository.

This tool needs configuration files which are available in the DPDK Extra Scripts, de-
scribed below for DPDK usages.

As an alternative method, DPAA PMD can also be executed using images provided as part of
SDK from NXP. The SDK includes all the above prerequisites necessary to bring up a DPAA
board.

The following dependencies are not part of DPDK and must be installed separately:

• NXP Linux SDK

NXP Linux software development kit (SDK) includes support for family of QorIQ® ARM-
Architecture-based system on chip (SoC) processors and corresponding boards.

It includes the Linux board support packages (BSPs) for NXP SoCs, a fully operational
tool chain, kernel and board specific modules.

SDK and related information can be obtained from: NXP QorIQ SDK.

• DPDK Extra Scripts

DPAA based resources can be configured easily with the help of ready scripts as provided
in the DPDK Extra repository.

DPDK Extras Scripts.

Currently supported by DPDK:

• NXP SDK 2.0+.

10.4. Supported DPAA SoCs 48

https://releases.linaro.org/components/toolchain/binaries/6.4-2017.08/aarch64-linux-gnu/
https://github.com/qoriq-open-source/linux
http://cdimage.ubuntu.com/ubuntu-base/releases/16.04/release/ubuntu-base-16.04.1-base-arm64.tar.gz
https://github.com/qoriq-open-source/fmc
https://github.com/qoriq-open-source/fmc
http://www.nxp.com/products/software-and-tools/run-time-software/linux-sdk/linux-sdk-for-qoriq-processors:SDKLINUX
https://github.com/qoriq-open-source/dpdk-extras

Network Interface Controller Drivers, Release 18.08.1

• Supported architectures: arm64 LE.

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

Note: Some part of dpaa bus code (qbman and fman - library) routines are dual licensed
(BSD & GPLv2), however they are used as BSD in DPDK in userspace.

10.6 Pre-Installation Configuration

10.6.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_DPAA_BUS (default n)

By default it is enabled only for defconfig_arm64-dpaa-* config. Toggle compilation of the
librte_bus_dpaa driver.

• CONFIG_RTE_LIBRTE_DPAA_PMD (default n)

By default it is enabled only for defconfig_arm64-dpaa-* config. Toggle compilation of the
librte_pmd_dpaa driver.

• CONFIG_RTE_LIBRTE_DPAA_DEBUG_DRIVER (default n)

Toggles display of bus configurations and enables a debugging queue to fetch error
(Rx/Tx) packets to driver. By default, packets with errors (like wrong checksum) are
dropped by the hardware.

• CONFIG_RTE_LIBRTE_DPAA_HWDEBUG (default n)

Enables debugging of the Queue and Buffer Manager layer which interacts with the DPAA
hardware.

• CONFIG_RTE_MBUF_DEFAULT_MEMPOOL_OPS (default dpaa)

This is not a DPAA specific configuration - it is a generic RTE config. For optimal per-
formance and hardware utilization, it is expected that DPAA Mempool driver is used for
mempools. For that, this configuration needs to enabled.

10.6.2 Environment Variables

DPAA drivers uses the following environment variables to configure its state during application
initialization:

• DPAA_NUM_RX_QUEUES (default 1)

This defines the number of Rx queues configured for an application, per port. Hardware
would distribute across these many number of queues on Rx of packets. In case the
application is configured to use lesser number of queues than configured above, it might
result in packet loss (because of distribution).

• DPAA_PUSH_QUEUES_NUMBER (default 4)

10.6. Pre-Installation Configuration 49

Network Interface Controller Drivers, Release 18.08.1

This defines the number of High performance queues to be used for ethdev Rx. These
queues use one private HW portal per queue configured, so they are limited in the sys-
tem. The first configured ethdev queues will be automatically be assigned from the
these high perf PUSH queues. Any queue configuration beyond that will be standard
Rx queues. The application can choose to change their number if HW portals are lim-
ited. The valid values are from ‘0’ to ‘4’. The valuse shall be set to ‘0’ if the application
want to use eventdev with DPAA device.

10.7 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

1. Running testpmd:

Follow instructions available in the document compiling and testing a PMD for a NIC to
run testpmd.

Example output:

./arm64-dpaa-linuxapp-gcc/testpmd -c 0xff -n 1 \
-- -i --portmask=0x3 --nb-cores=1 --no-flush-rx

.....
EAL: Registered [pci] bus.
EAL: Registered [dpaa] bus.
EAL: Detected 4 lcore(s)
.....
EAL: dpaa: Bus scan completed
.....
Configuring Port 0 (socket 0)
Port 0: 00:00:00:00:00:01
Configuring Port 1 (socket 0)
Port 1: 00:00:00:00:00:02
.....
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

10.8 Limitations

10.8.1 Platform Requirement

DPAA drivers for DPDK can only work on NXP SoCs as listed in the Supported DPAA SoCs.

10.8.2 Maximum packet length

The DPAA SoC family support a maximum of a 10240 jumbo frame. The value is fixed and
cannot be changed. So, even when the rxmode.max_rx_pkt_len member of struct
rte_eth_conf is set to a value lower than 10240, frames up to 10240 bytes can still reach
the host interface.

10.7. Driver compilation and testing 50

Network Interface Controller Drivers, Release 18.08.1

10.8.3 Multiprocess Support

Current version of DPAA driver doesn’t support multi-process applications where I/O is per-
formed using secondary processes. This feature would be implemented in subsequent ver-
sions.

10.8. Limitations 51

CHAPTER

ELEVEN

DPAA2 POLL MODE DRIVER

The DPAA2 NIC PMD (librte_pmd_dpaa2) provides poll mode driver support for the inbuilt
NIC found in the NXP DPAA2 SoC family.

More information can be found at NXP Official Website.

11.1 NXP DPAA2 (Data Path Acceleration Architecture Gen2)

This section provides an overview of the NXP DPAA2 architecture and how it is integrated into
the DPDK.

Contents summary

• DPAA2 overview

• Overview of DPAA2 objects

• DPAA2 driver architecture overview

11.1.1 DPAA2 Overview

Reference: FSL MC BUS in Linux Kernel.

DPAA2 is a hardware architecture designed for high-speed network packet processing. DPAA2
consists of sophisticated mechanisms for processing Ethernet packets, queue management,
buffer management, autonomous L2 switching, virtual Ethernet bridging, and accelerator (e.g.
crypto) sharing.

A DPAA2 hardware component called the Management Complex (or MC) manages the DPAA2
hardware resources. The MC provides an object-based abstraction for software drivers to use
the DPAA2 hardware.

The MC uses DPAA2 hardware resources such as queues, buffer pools, and network ports
to create functional objects/devices such as network interfaces, an L2 switch, or accelerator
instances.

The MC provides memory-mapped I/O command interfaces (MC portals) which DPAA2 soft-
ware drivers use to operate on DPAA2 objects:

The diagram below shows an overview of the DPAA2 resource management architecture:

+--------------------------------------+
| OS |
| DPAA2 drivers |
| | |

52

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM
https://www.kernel.org/doc/readme/drivers-staging-fsl-mc-README.txt

Network Interface Controller Drivers, Release 18.08.1

+-----------------------------|--------+
|
| (create,discover,connect
| config,use,destroy)
|

DPAA2 |
+------------------------| mc portal |-+
| | |
| +- - - - - - - - - - - - -V- - -+ |
	Management Complex (MC)	
+- - - - - - - - - - - - - - - -+		
Hardware Hardware		
Resources Objects		
--------- -------		
-queues -DPRC		
-buffer pools -DPMCP		
-Eth MACs/ports -DPIO		
-network interface -DPNI		
profiles -DPMAC		
-queue portals -DPBP		
-MC portals ...		
...		
+--------------------------------------+

The MC mediates operations such as create, discover, connect, configuration, and destroy.
Fast-path operations on data, such as packet transmit/receive, are not mediated by the MC
and are done directly using memory mapped regions in DPIO objects.

11.1.2 Overview of DPAA2 Objects

The section provides a brief overview of some key DPAA2 objects. A simple scenario is de-
scribed illustrating the objects involved in creating a network interfaces.

DPRC (Datapath Resource Container)

A DPRC is a container object that holds all the other types of DPAA2 objects. In
the example diagram below there are 8 objects of 5 types (DPMCP, DPIO, DPBP,
DPNI, and DPMAC) in the container.

+---+
| DPRC |
| |
| +-------+ +-------+ +-------+ +-------+ +-------+ |
| | DPMCP | | DPIO | | DPBP | | DPNI | | DPMAC | |
| +-------+ +-------+ +-------+ +---+---+ +---+---+ |
| | DPMCP | | DPIO | |
| +-------+ +-------+ |
| | DPMCP | |
| +-------+ |
| |
+---+

From the point of view of an OS, a DPRC behaves similar to a plug and play bus, like PCI.
DPRC commands can be used to enumerate the contents of the DPRC, discover the hardware
objects present (including mappable regions and interrupts).

11.1. NXP DPAA2 (Data Path Acceleration Architecture Gen2) 53

Network Interface Controller Drivers, Release 18.08.1

DPRC.1 (bus)
|
+--+--------+-------+-------+-------+

| | | | |
DPMCP.1 DPIO.1 DPBP.1 DPNI.1 DPMAC.1
DPMCP.2 DPIO.2
DPMCP.3

Hardware objects can be created and destroyed dynamically, providing the ability to hot
plug/unplug objects in and out of the DPRC.

A DPRC has a mappable MMIO region (an MC portal) that can be used to send MC commands.
It has an interrupt for status events (like hotplug).

All objects in a container share the same hardware “isolation context”. This means that with
respect to an IOMMU the isolation granularity is at the DPRC (container) level, not at the
individual object level.

DPRCs can be defined statically and populated with objects via a config file passed to the MC
when firmware starts it. There is also a Linux user space tool called “restool” that can be used
to create/destroy containers and objects dynamically.

11.1.3 DPAA2 Objects for an Ethernet Network Interface

A typical Ethernet NIC is monolithic– the NIC device contains TX/RX queuing mechanisms,
configuration mechanisms, buffer management, physical ports, and interrupts. DPAA2 uses a
more granular approach utilizing multiple hardware objects. Each object provides specialized
functions. Groups of these objects are used by software to provide Ethernet network interface
functionality. This approach provides efficient use of finite hardware resources, flexibility, and
performance advantages.

The diagram below shows the objects needed for a simple network interface configuration on
a system with 2 CPUs.

+---+---+ +---+---+
CPU0 CPU1

+---+---+ +---+---+
| |

+---+---+ +---+---+
DPIO DPIO

+---+---+ +---+---+
\ /
\ /
\ /

+---+---+
DPNI --- DPBP,DPMCP

+---+---+
|
|

+---+---+
DPMAC

+---+---+
|

port/PHY

Below the objects are described. For each object a brief description is provided along with a
summary of the kinds of operations the object supports and a summary of key resources of
the object (MMIO regions and IRQs).

11.1. NXP DPAA2 (Data Path Acceleration Architecture Gen2) 54

Network Interface Controller Drivers, Release 18.08.1

DPMAC (Datapath Ethernet MAC): represents an Ethernet MAC, a hardware device that con-
nects to an Ethernet PHY and allows physical transmission and reception of Ethernet frames.

• MMIO regions: none

• IRQs: DPNI link change

• commands: set link up/down, link config, get stats, IRQ config, enable, reset

DPNI (Datapath Network Interface): contains TX/RX queues, network interface configuration,
and RX buffer pool configuration mechanisms. The TX/RX queues are in memory and are
identified by queue number.

• MMIO regions: none

• IRQs: link state

• commands: port config, offload config, queue config, parse/classify config, IRQ config,
enable, reset

DPIO (Datapath I/O): provides interfaces to enqueue and dequeue packets and do hardware
buffer pool management operations. The DPAA2 architecture separates the mechanism to
access queues (the DPIO object) from the queues themselves. The DPIO provides an MMIO
interface to enqueue/dequeue packets. To enqueue something a descriptor is written to the
DPIO MMIO region, which includes the target queue number. There will typically be one DPIO
assigned to each CPU. This allows all CPUs to simultaneously perform enqueue/dequeued
operations. DPIOs are expected to be shared by different DPAA2 drivers.

• MMIO regions: queue operations, buffer management

• IRQs: data availability, congestion notification, buffer pool depletion

• commands: IRQ config, enable, reset

DPBP (Datapath Buffer Pool): represents a hardware buffer pool.

• MMIO regions: none

• IRQs: none

• commands: enable, reset

DPMCP (Datapath MC Portal): provides an MC command portal. Used by drivers to send
commands to the MC to manage objects.

• MMIO regions: MC command portal

• IRQs: command completion

• commands: IRQ config, enable, reset

11.1.4 Object Connections

Some objects have explicit relationships that must be configured:

• DPNI <–> DPMAC

• DPNI <–> DPNI

• DPNI <–> L2-switch-port

11.1. NXP DPAA2 (Data Path Acceleration Architecture Gen2) 55

Network Interface Controller Drivers, Release 18.08.1

A DPNI must be connected to something such as a DPMAC, another DPNI, or L2 switch port.
The DPNI connection is made via a DPRC command.

+-------+ +-------+
| DPNI | | DPMAC |
+---+---+ +---+---+

| |
+==========+

• DPNI <–> DPBP

A network interface requires a ‘buffer pool’ (DPBP object) which provides a list of pointers to
memory where received Ethernet data is to be copied. The Ethernet driver configures the
DPBPs associated with the network interface.

11.1.5 Interrupts

All interrupts generated by DPAA2 objects are message interrupts. At the hardware level mes-
sage interrupts generated by devices will normally have 3 components– 1) a non-spoofable
‘device-id’ expressed on the hardware bus, 2) an address, 3) a data value.

In the case of DPAA2 devices/objects, all objects in the same container/DPRC share the same
‘device-id’. For ARM-based SoC this is the same as the stream ID.

11.2 DPAA2 DPDK - Poll Mode Driver Overview

This section provides an overview of the drivers for DPAA2– 1) the bus driver and associated
“DPAA2 infrastructure” drivers and 2) functional object drivers (such as Ethernet).

As described previously, a DPRC is a container that holds the other types of DPAA2 objects. It
is functionally similar to a plug-and-play bus controller.

Each object in the DPRC is a Linux “device” and is bound to a driver. The diagram below shows
the dpaa2 drivers involved in a networking scenario and the objects bound to each driver. A
brief description of each driver follows.

A brief description of each driver is provided below.

11.2.1 DPAA2 bus driver

The DPAA2 bus driver is a rte_bus driver which scans the fsl-mc bus. Key functions include:

• Reading the container and setting up vfio group

• Scanning and parsing the various MC objects and adding them to their respective device
list.

Additionally, it also provides the object driver for generic MC objects.

11.2.2 DPIO driver

The DPIO driver is bound to DPIO objects and provides services that allow other drivers such
as the Ethernet driver to enqueue and dequeue data for their respective objects. Key services
include:

11.2. DPAA2 DPDK - Poll Mode Driver Overview 56

Network Interface Controller Drivers, Release 18.08.1

• Data availability notifications

• Hardware queuing operations (enqueue and dequeue of data)

• Hardware buffer pool management

To transmit a packet the Ethernet driver puts data on a queue and invokes a DPIO API. For
receive, the Ethernet driver registers a data availability notification callback. To dequeue a
packet a DPIO API is used.

There is typically one DPIO object per physical CPU for optimum performance, allowing differ-
ent CPUs to simultaneously enqueue and dequeue data.

The DPIO driver operates on behalf of all DPAA2 drivers active – Ethernet, crypto, compres-
sion, etc.

11.2.3 DPBP based Mempool driver

The DPBP driver is bound to a DPBP objects and provides sevices to create a hardware
offloaded packet buffer mempool.

11.2.4 DPAA2 NIC Driver

The Ethernet driver is bound to a DPNI and implements the kernel interfaces needed to connect
the DPAA2 network interface to the network stack.

Each DPNI corresponds to a DPDK network interface.

Features

Features of the DPAA2 PMD are:

• Multiple queues for TX and RX

• Receive Side Scaling (RSS)

• MAC/VLAN filtering

• Packet type information

• Checksum offload

• Promiscuous mode

• Multicast mode

• Port hardware statistics

• Jumbo frames

• Link flow control

• Scattered and gather for TX and RX

11.2. DPAA2 DPDK - Poll Mode Driver Overview 57

Network Interface Controller Drivers, Release 18.08.1

11.3 Supported DPAA2 SoCs

• LS2080A/LS2040A

• LS2084A/LS2044A

• LS2088A/LS2048A

• LS1088A/LS1048A

11.4 Prerequisites

There are three main pre-requisities for executing DPAA2 PMD on a DPAA2 compatible board:

1. ARM 64 Tool Chain

For example, the *aarch64* Linaro Toolchain.

2. Linux Kernel

It can be obtained from NXP’s Github hosting.

3. Rootfile system

Any aarch64 supporting filesystem can be used. For example, Ubuntu 15.10 (Wily) or
16.04 LTS (Xenial) userland which can be obtained from here.

As an alternative method, DPAA2 PMD can also be executed using images provided as part of
SDK from NXP. The SDK includes all the above prerequisites necessary to bring up a DPAA2
board.

The following dependencies are not part of DPDK and must be installed separately:

• NXP Linux SDK

NXP Linux software development kit (SDK) includes support for family of QorIQ® ARM-
Architecture-based system on chip (SoC) processors and corresponding boards.

It includes the Linux board support packages (BSPs) for NXP SoCs, a fully operational
tool chain, kernel and board specific modules.

SDK and related information can be obtained from: NXP QorIQ SDK.

• DPDK Extra Scripts

DPAA2 based resources can be configured easily with the help of ready scripts as pro-
vided in the DPDK Extra repository.

DPDK Extras Scripts.

Currently supported by DPDK:

• NXP SDK 17.08+.

• MC Firmware version 10.3.1 and higher.

• Supported architectures: arm64 LE.

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

11.3. Supported DPAA2 SoCs 58

https://releases.linaro.org/components/toolchain/binaries/6.4-2017.08/aarch64-linux-gnu/
https://github.com/qoriq-open-source/linux
http://cdimage.ubuntu.com/ubuntu-base/releases/16.04/release/ubuntu-base-16.04.1-base-arm64.tar.gz
http://www.nxp.com/products/software-and-tools/run-time-software/linux-sdk/linux-sdk-for-qoriq-processors:SDKLINUX
https://github.com/qoriq-open-source/dpdk-extras

Network Interface Controller Drivers, Release 18.08.1

Note: Some part of fslmc bus code (mc flib - object library) routines are dual licensed (BSD &
GPLv2), however they are used as BSD in DPDK in userspace.

11.5 Pre-Installation Configuration

11.5.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_FSLMC_BUS (default n)

By default it is enabled only for defconfig_arm64-dpaa2-* config. Toggle compilation of
the librte_bus_fslmc driver.

• CONFIG_RTE_LIBRTE_DPAA2_PMD (default n)

By default it is enabled only for defconfig_arm64-dpaa2-* config. Toggle compilation of
the librte_pmd_dpaa2 driver.

• CONFIG_RTE_LIBRTE_DPAA2_DEBUG_DRIVER (default n)

Toggle display of debugging messages/logic

• CONFIG_RTE_LIBRTE_DPAA2_USE_PHYS_IOVA (default y)

Toggle to use physical address vs virtual address for hardware accelerators.

11.6 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

1. Running testpmd:

Follow instructions available in the document compiling and testing a PMD for a NIC to
run testpmd.

Example output:

./testpmd -c 0xff -n 1 -- -i --portmask=0x3 --nb-cores=1 --no-flush-rx

.....
EAL: Registered [pci] bus.
EAL: Registered [fslmc] bus.
EAL: Detected 8 lcore(s)
EAL: Probing VFIO support...
EAL: VFIO support initialized
.....
PMD: DPAA2: Processing Container = dprc.2
EAL: fslmc: DPRC contains = 51 devices
EAL: fslmc: Bus scan completed
.....
Configuring Port 0 (socket 0)
Port 0: 00:00:00:00:00:01
Configuring Port 1 (socket 0)
Port 1: 00:00:00:00:00:02

11.5. Pre-Installation Configuration 59

Network Interface Controller Drivers, Release 18.08.1

.....
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

11.7 Enabling logs

For enabling logging for DPAA2 PMD, following log-level prefix can be used:

<dpdk app> <EAL args> --log-level=bus.fslmc:<level> -- ...

Using bus.fslmc as log matching criteria, all FSLMC bus logs can be enabled which are
lower than logging level.

Or

<dpdk app> <EAL args> --log-level=pmd.net.dpaa2:<level> -- ...

Using pmd.net.dpaa2 as log matching criteria, all PMD logs can be enabled which are lower
than logging level.

11.8 Whitelisting & Blacklisting

For blacklisting a DPAA2 device, following commands can be used.

<dpdk app> <EAL args> -b "fslmc:dpni.x" -- ...

Where x is the device object id as configured in resource container.

11.9 Limitations

11.9.1 Platform Requirement

DPAA2 drivers for DPDK can only work on NXP SoCs as listed in the Supported DPAA2
SoCs.

11.9.2 Maximum packet length

The DPAA2 SoC family support a maximum of a 10240 jumbo frame. The value is fixed
and cannot be changed. So, even when the rxmode.max_rx_pkt_len member of struct
rte_eth_conf is set to a value lower than 10240, frames up to 10240 bytes can still reach
the host interface.

11.9.3 Other Limitations

• RSS hash key cannot be modified.

• RSS RETA cannot be configured.

• Secondary process packet I/O is not supported.

11.7. Enabling logs 60

CHAPTER

TWELVE

DRIVER FOR VM EMULATED DEVICES

The DPDK EM poll mode driver supports the following emulated devices:

• qemu-kvm emulated Intel® 82540EM Gigabit Ethernet Controller (qemu e1000 device)

• VMware* emulated Intel® 82545EM Gigabit Ethernet Controller

• VMware emulated Intel® 8274L Gigabit Ethernet Controller.

12.1 Validated Hypervisors

The validated hypervisors are:

• KVM (Kernel Virtual Machine) with Qemu, version 0.14.0

• KVM (Kernel Virtual Machine) with Qemu, version 0.15.1

• VMware ESXi 5.0, Update 1

12.2 Recommended Guest Operating System in Virtual Machine

The recommended guest operating system in a virtualized environment is:

• Fedora* 18 (64-bit)

For supported kernel versions, refer to the DPDK Release Notes.

12.3 Setting Up a KVM Virtual Machine

The following describes a target environment:

• Host Operating System: Fedora 14

• Hypervisor: KVM (Kernel Virtual Machine) with Qemu version, 0.14.0

• Guest Operating System: Fedora 14

• Linux Kernel Version: Refer to the DPDK Getting Started Guide

• Target Applications: testpmd

The setup procedure is as follows:

61

Network Interface Controller Drivers, Release 18.08.1

1. Download qemu-kvm-0.14.0 from http://sourceforge.net/projects/kvm/files/qemu-kvm/
and install it in the Host OS using the following steps:

When using a recent kernel (2.6.25+) with kvm modules included:

tar xzf qemu-kvm-release.tar.gz cd qemu-kvm-release
./configure --prefix=/usr/local/kvm
make
sudo make install
sudo /sbin/modprobe kvm-intel

When using an older kernel or a kernel from a distribution without the kvm modules, you
must download (from the same link), compile and install the modules yourself:

tar xjf kvm-kmod-release.tar.bz2
cd kvm-kmod-release
./configure
make
sudo make install
sudo /sbin/modprobe kvm-intel

Note that qemu-kvm installs in the /usr/local/bin directory.

For more details about KVM configuration and usage, please refer to: http://www.linux-
kvm.org/page/HOWTO1.

2. Create a Virtual Machine and install Fedora 14 on the Virtual Machine. This is referred
to as the Guest Operating System (Guest OS).

3. Start the Virtual Machine with at least one emulated e1000 device.

Note: The Qemu provides several choices for the emulated network device backend.
Most commonly used is a TAP networking backend that uses a TAP networking device in
the host. For more information about Qemu supported networking backends and different
options for configuring networking at Qemu, please refer to:

— http://www.linux-kvm.org/page/Networking

— http://wiki.qemu.org/Documentation/Networking

— http://qemu.weilnetz.de/qemu-doc.html

For example, to start a VM with two emulated e1000 devices, issue the following com-
mand:

/usr/local/kvm/bin/qemu-system-x86_64 -cpu host -smp 4 -hda qemu1.raw -m 1024
-net nic,model=e1000,vlan=1,macaddr=DE:AD:1E:00:00:01
-net tap,vlan=1,ifname=tapvm01,script=no,downscript=no
-net nic,model=e1000,vlan=2,macaddr=DE:AD:1E:00:00:02
-net tap,vlan=2,ifname=tapvm02,script=no,downscript=no

where:

— -m = memory to assign

— -smp = number of smp cores

— -hda = virtual disk image

This command starts a new virtual machine with two emulated 82540EM devices, backed
up with two TAP networking host interfaces, tapvm01 and tapvm02.

ip tuntap show
tapvm01: tap
tapvm02: tap

12.3. Setting Up a KVM Virtual Machine 62

http://sourceforge.net/projects/kvm/files/qemu-kvm/
http://www.linux-kvm.org/page/HOWTO1
http://www.linux-kvm.org/page/HOWTO1
http://www.linux-kvm.org/page/Networking
http://wiki.qemu.org/Documentation/Networking
http://qemu.weilnetz.de/qemu-doc.html

Network Interface Controller Drivers, Release 18.08.1

4. Configure your TAP networking interfaces using ip/ifconfig tools.

5. Log in to the guest OS and check that the expected emulated devices exist:

lspci -d 8086:100e
00:04.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 03)
00:05.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 03)

6. Install the DPDK and run testpmd.

12.4 Known Limitations of Emulated Devices

The following are known limitations:

1. The Qemu e1000 RX path does not support multiple descriptors/buffers per packet.
Therefore, rte_mbuf should be big enough to hold the whole packet. For example, to
allow testpmd to receive jumbo frames, use the following:

testpmd [options] – –mbuf-size=<your-max-packet-size>

2. Qemu e1000 does not validate the checksum of incoming packets.

3. Qemu e1000 only supports one interrupt source, so link and Rx interrupt should be ex-
clusive.

4. Qemu e1000 does not support interrupt auto-clear, application should disable interrupt
immediately when woken up.

12.4. Known Limitations of Emulated Devices 63

CHAPTER

THIRTEEN

ENA POLL MODE DRIVER

The ENA PMD is a DPDK poll-mode driver for the Amazon Elastic Network Adapter (ENA)
family.

13.1 Overview

The ENA driver exposes a lightweight management interface with a minimal set of memory
mapped registers and an extendable command set through an Admin Queue.

The driver supports a wide range of ENA adapters, is link-speed independent (i.e., the same
driver is used for 10GbE, 25GbE, 40GbE, etc.), and it negotiates and supports an extendable
feature set.

ENA adapters allow high speed and low overhead Ethernet traffic processing by providing a
dedicated Tx/Rx queue pair per CPU core.

The ENA driver supports industry standard TCP/IP offload features such as checksum offload
and TCP transmit segmentation offload (TSO).

Receive-side scaling (RSS) is supported for multi-core scaling.

Some of the ENA devices support a working mode called Low-latency Queue (LLQ), which
saves several more microseconds.

13.2 Management Interface

ENA management interface is exposed by means of:

• Device Registers

• Admin Queue (AQ) and Admin Completion Queue (ACQ)

ENA device memory-mapped PCIe space for registers (MMIO registers) are accessed only
during driver initialization and are not involved in further normal device operation.

AQ is used for submitting management commands, and the results/responses are reported
asynchronously through ACQ.

ENA introduces a very small set of management commands with room for vendor-specific
extensions. Most of the management operations are framed in a generic Get/Set feature com-
mand.

The following admin queue commands are supported:

64

Network Interface Controller Drivers, Release 18.08.1

• Create I/O submission queue

• Create I/O completion queue

• Destroy I/O submission queue

• Destroy I/O completion queue

• Get feature

• Set feature

• Get statistics

Refer to ena_admin_defs.h for the list of supported Get/Set Feature properties.

13.3 Data Path Interface

I/O operations are based on Tx and Rx Submission Queues (Tx SQ and Rx SQ correspond-
ingly). Each SQ has a completion queue (CQ) associated with it.

The SQs and CQs are implemented as descriptor rings in contiguous physical memory.

Refer to ena_eth_io_defs.h for the detailed structure of the descriptor

The driver supports multi-queue for both Tx and Rx.

13.4 Configuration information

DPDK Configuration Parameters

The following configuration options are available for the ENA PMD:

• CONFIG_RTE_LIBRTE_ENA_PMD (default y): Enables or disables inclusion
of the ENA PMD driver in the DPDK compilation.

• CONFIG_RTE_LIBRTE_ENA_DEBUG_RX (default n): Enables or disables
debug logging of RX logic within the ENA PMD driver.

• CONFIG_RTE_LIBRTE_ENA_DEBUG_TX (default n): Enables or disables
debug logging of TX logic within the ENA PMD driver.

• CONFIG_RTE_LIBRTE_ENA_COM_DEBUG (default n): Enables or disables
debug logging of low level tx/rx logic in ena_com(base) within the ENA PMD
driver.

ENA Configuration Parameters

• Number of Queues

This is the requested number of queues upon initialization, however, the actual number
of receive and transmit queues to be created will be the minimum between the maximal
number supported by the device and number of queues requested.

• Size of Queues

This is the requested size of receive/transmit queues, while the actual size will be the
minimum between the requested size and the maximal receive/transmit supported by the
device.

13.3. Data Path Interface 65

Network Interface Controller Drivers, Release 18.08.1

13.5 Building DPDK

See the DPDK Getting Started Guide for Linux for instructions on how to build DPDK.

By default the ENA PMD library will be built into the DPDK library.

For configuring and using UIO and VFIO frameworks, please also refer the documentation that
comes with DPDK suite.

13.6 Supported ENA adapters

Current ENA PMD supports the following ENA adapters including:

• 1d0f:ec20 - ENA VF

• 1d0f:ec21 - ENA VF with LLQ support

13.7 Supported Operating Systems

Any Linux distribution fulfilling the conditions described in System Requirements section of
the DPDK documentation or refer to DPDK Release Notes.

13.8 Supported features

• Jumbo frames up to 9K

• Port Hardware Statistics

• IPv4/TCP/UDP checksum offload

• TSO offload

• Multiple receive and transmit queues

• RSS

• Low Latency Queue for Tx

13.9 Unsupported features

The features supported by the device and not yet supported by this PMD include:

• Asynchronous Event Notification Queue (AENQ)

13.10 Prerequisites

1. Prepare the system as recommended by DPDK suite. This includes environment vari-
ables, hugepages configuration, tool-chains and configuration.

2. ENA PMD can operate with vfio-pci or igb_uio driver.

13.5. Building DPDK 66

Network Interface Controller Drivers, Release 18.08.1

3. Insert vfio-pci or igb_uio kernel module using the command modprobe vfio-pci
or modprobe igb_uio respectively.

4. For vfio-pci users only: Please make sure that IOMMU is enabled in your system, or
use vfio driver in noiommu mode:

echo 1 > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode

5. Bind the intended ENA device to vfio-pci or igb_uio module.

At this point the system should be ready to run DPDK applications. Once the application runs
to completion, the ENA can be detached from igb_uio if necessary.

13.11 Usage example

Follow instructions available in the document compiling and testing a PMD for a NIC to launch
testpmd with Amazon ENA devices managed by librte_pmd_ena.

Example output:

[...]
EAL: PCI device 0000:02:00.1 on NUMA socket -1
EAL: probe driver: 1d0f:ec20 rte_ena_pmd
EAL: PCI memory mapped at 0x7f9b6c400000
PMD: eth_ena_dev_init(): Initializing 0:2:0.1
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:00:00:11:00:01
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

13.11. Usage example 67

CHAPTER

FOURTEEN

ENIC POLL MODE DRIVER

ENIC PMD is the DPDK poll-mode driver for the Cisco System Inc. VIC Ethernet NICs. These
adapters are also referred to as vNICs below. If you are running or would like to run DPDK soft-
ware applications on Cisco UCS servers using Cisco VIC adapters the following documentation
is relevant.

14.1 How to obtain ENIC PMD integrated DPDK

ENIC PMD support is integrated into the DPDK suite. dpdk-<version>.tar.gz should be down-
loaded from http://core.dpdk.org/download/

14.2 Configuration information

• DPDK Configuration Parameters

The following configuration options are available for the ENIC PMD:

– CONFIG_RTE_LIBRTE_ENIC_PMD (default y): Enables or disables inclusion of
the ENIC PMD driver in the DPDK compilation.

• vNIC Configuration Parameters

– Number of Queues

The maximum number of receive queues (RQs), work queues (WQs) and comple-
tion queues (CQs) are configurable on a per vNIC basis through the Cisco UCS
Manager (CIMC or UCSM).

These values should be configured as follows:

* The number of WQs should be greater or equal to the value of the expected
nb_tx_q parameter in the call to rte_eth_dev_configure()

* The number of RQs configured in the vNIC should be greater or equal
to twice the value of the expected nb_rx_q parameter in the call to
rte_eth_dev_configure(). With the addition of Rx scatter, a pair of RQs on the
vnic is needed for each receive queue used by DPDK, even if Rx scatter is not
being used. Having a vNIC with only 1 RQ is not a valid configuration, and will
fail with an error message.

* The number of CQs should set so that there is one CQ for each WQ, and one
CQ for each pair of RQs.

68

http://core.dpdk.org/download/

Network Interface Controller Drivers, Release 18.08.1

For example: If the application requires 3 Rx queues, and 3 Tx queues, the vNIC
should be configured to have at least 3 WQs, 6 RQs (3 pairs), and 6 CQs (3 for use
by WQs + 3 for use by the 3 pairs of RQs).

– Size of Queues

Likewise, the number of receive and transmit descriptors are configurable on a
per-vNIC basis via the UCS Manager and should be greater than or equal to
the nb_rx_desc and nb_tx_desc parameters expected to be used in the calls to
rte_eth_rx_queue_setup() and rte_eth_tx_queue_setup() respectively. An applica-
tion requesting more than the set size will be limited to that size.

Unless there is a lack of resources due to creating many vNICs, it is recommended
that the WQ and RQ sizes be set to the maximum. This gives the application the
greatest amount of flexibility in its queue configuration.

* Note: Since the introduction of Rx scatter, for performance reasons, this PMD
uses two RQs on the vNIC per receive queue in DPDK. One RQ holds descrip-
tors for the start of a packet, and the second RQ holds the descriptors for the
rest of the fragments of a packet. This means that the nb_rx_desc parameter to
rte_eth_rx_queue_setup() can be a greater than 4096. The exact amount will
depend on the size of the mbufs being used for receives, and the MTU size.

For example: If the mbuf size is 2048, and the MTU is 9000, then receiving a
full size packet will take 5 descriptors, 1 from the start-of-packet queue, and 4
from the second queue. Assuming that the RQ size was set to the maximum
of 4096, then the application can specify up to 1024 + 4096 as the nb_rx_desc
parameter to rte_eth_rx_queue_setup().

– Interrupts

At least one interrupt per vNIC interface should be configured in the UCS manager
regardless of the number receive/transmit queues. The ENIC PMD uses this inter-
rupt to get information about link status and errors in the fast path.

In addition to the interrupt for link status and errors, when using Rx queue interrupts,
increase the number of configured interrupts so that there is at least one interrupt
for each Rx queue. For example, if the app uses 3 Rx queues and wants to use
per-queue interrupts, configure 4 (3 + 1) interrupts.

– Receive Side Scaling

In order to fully utilize RSS in DPDK, enable all RSS related settings in CIMC or
UCSM. These include the following items listed under Receive Side Scaling: TCP,
IPv4, TCP-IPv4, IPv6, TCP-IPv6, IPv6 Extension, TCP-IPv6 Extension.

14.3 Flow director support

Advanced filtering support was added to 1300 series VIC firmware starting with version 2.0.13
for C-series UCS servers and version 3.1.2 for UCSM managed blade servers. In order to
enable advanced filtering the ‘Advanced filter’ radio button should be enabled via CIMC or
UCSM followed by a reboot of the server.

With advanced filters, perfect matching of all fields of IPv4, IPv6 headers as well as TCP, UDP
and SCTP L4 headers is available through flow director. Masking of these fields for partial

14.3. Flow director support 69

Network Interface Controller Drivers, Release 18.08.1

match is also supported.

Without advanced filter support, the flow director is limited to IPv4 perfect filtering of the 5-tuple
with no masking of fields supported.

14.4 SR-IOV mode utilization

UCS blade servers configured with dynamic vNIC connection policies in UCSM are capa-
ble of supporting SR-IOV. SR-IOV virtual functions (VFs) are specialized vNICs, distinct from
regular Ethernet vNICs. These VFs can be directly assigned to virtual machines (VMs) as
‘passthrough’ devices.

In UCS, SR-IOV VFs require the use of the Cisco Virtual Machine Fabric Extender (VM-FEX),
which gives the VM a dedicated interface on the Fabric Interconnect (FI). Layer 2 switching is
done at the FI. This may eliminate the requirement for software switching on the host to route
intra-host VM traffic.

Please refer to Creating a Dynamic vNIC Connection Policy for information on configuring SR-
IOV adapter policies and port profiles using UCSM.

Once the policies are in place and the host OS is rebooted, VFs should be visible on the host,
E.g.:

lspci | grep Cisco | grep Ethernet
0d:00.0 Ethernet controller: Cisco Systems Inc VIC Ethernet NIC (rev a2)
0d:00.1 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.2 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.3 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.4 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.5 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.6 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.7 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)

Enable Intel IOMMU on the host and install KVM and libvirt, and reboot again as required.
Then, using libvirt, create a VM instance with an assigned device. Below is an example
interface block (part of the domain configuration XML) that adds the host VF 0d:00:01
to the VM. profileid=’pp-vlan-25’ indicates the port profile that has been configured in
UCSM.

<interface type='hostdev' managed='yes'>
<mac address='52:54:00:ac:ff:b6'/>
<driver name='vfio'/>
<source>

<address type='pci' domain='0x0000' bus='0x0d' slot='0x00' function='0x1'/>
</source>
<virtualport type='802.1Qbh'>

<parameters profileid='pp-vlan-25'/>
</virtualport>

</interface>

Alternatively, the configuration can be done in a separate file using the network keyword.
These methods are described in the libvirt documentation for Network XML format.

When the VM instance is started, libvirt will bind the host VF to vfio, complete provisioning on
the FI and bring up the link.

Note: It is not possible to use a VF directly from the host because it is not fully provisioned
until libvirt brings up the VM that it is assigned to.

14.4. SR-IOV mode utilization 70

http://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/sw/vm_fex/vmware/gui/config_guide/b_GUI_VMware_VM-FEX_UCSM_Configuration_Guide/b_GUI_VMware_VM-FEX_UCSM_Configuration_Guide_chapter_010.html#task_433E01651F69464783A68E66DA8A47A5
https://libvirt.org/formatnetwork.html

Network Interface Controller Drivers, Release 18.08.1

In the VM instance, the VF will now be visible. E.g., here the VF 00:04.0 is seen on the VM
instance and should be available for binding to a DPDK.

lspci | grep Ether
00:04.0 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)

Follow the normal DPDK install procedure, binding the VF to either igb_uio or vfio in non-
IOMMU mode.

In the VM, the kernel enic driver may be automatically bound to the VF during boot. Unbinding
it currently hangs due to a known issue with the driver. To work around the issue, blacklist the
enic module as follows. Please see Limitations for limitations in the use of SR-IOV.

cat /etc/modprobe.d/enic.conf
blacklist enic

dracut --force

Note: Passthrough does not require SR-IOV. If VM-FEX is not desired, the user may create
as many regular vNICs as necessary and assign them to VMs as passthrough devices. Since
these vNICs are not SR-IOV VFs, using them as passthrough devices do not require libvirt,
port profiles, and VM-FEX.

14.5 Generic Flow API support

Generic Flow API is supported. The baseline support is:

• 1200 series VICs

5-tuple exact flow support for 1200 series adapters. This allows:

– Attributes: ingress

– Items: ipv4, ipv6, udp, tcp (must exactly match src/dst IP addresses and ports and
all must be specified)

– Actions: queue and void

– Selectors: ‘is’

• 1300 and later series VICS with advanced filters disabled

With advanced filters disabled, an IPv4 or IPv6 item must be specified in the pattern.

– Attributes: ingress

– Items: eth, ipv4, ipv6, udp, tcp, vxlan, inner eth, ipv4, ipv6, udp, tcp

– Actions: queue and void

– Selectors: ‘is’, ‘spec’ and ‘mask’. ‘last’ is not supported

– In total, up to 64 bytes of mask is allowed across all headers

• 1300 and later series VICS with advanced filters enabled

– Attributes: ingress

– Items: eth, ipv4, ipv6, udp, tcp, vxlan, inner eth, ipv4, ipv6, udp, tcp

14.5. Generic Flow API support 71

Network Interface Controller Drivers, Release 18.08.1

– Actions: queue, mark, drop, flag and void

– Selectors: ‘is’, ‘spec’ and ‘mask’. ‘last’ is not supported

– In total, up to 64 bytes of mask is allowed across all headers

More features may be added in future firmware and new versions of the VIC. Please refer to
the release notes.

14.6 Overlay Offload

Recent hardware models support overlay offload. When enabled, the NIC performs the fol-
lowing operations for VXLAN, NVGRE, and GENEVE packets. In all cases, inner and outer
packets can be IPv4 or IPv6.

• TSO for VXLAN and GENEVE packets.

Hardware supports NVGRE TSO, but DPDK currently has no NVGRE offload flags.

• Tx checksum offloads.

The NIC fills in IPv4/UDP/TCP checksums for both inner and outer packets.

• Rx checksum offloads.

The NIC validates IPv4/UDP/TCP checksums of both inner and outer packets. Good
checksum flags (e.g. PKT_RX_L4_CKSUM_GOOD) indicate that the inner packet has the
correct checksum, and if applicable, the outer packet also has the correct checksum.
Bad checksum flags (e.g. PKT_RX_L4_CKSUM_BAD) indicate that the inner and/or outer
packets have invalid checksum values.

• Inner Rx packet type classification

PMD sets inner L3/L4 packet types (e.g. RTE_PTYPE_INNER_L4_TCP), and
RTE_PTYPE_TUNNEL_GRENAT to indicate that the packet is tunneled. PMD does not
set L3/L4 packet types for outer packets.

• Inner RSS

RSS hash calculation, therefore queue selection, is done on inner packets.

In order to enable overlay offload, the ‘Enable VXLAN’ box should be checked via CIMC or
UCSM followed by a reboot of the server. When PMD successfully enables overlay offload, it
prints the following message on the console.

Overlay offload is enabled

By default, PMD enables overlay offload if hardware supports it. To disable it, set devargs
parameter disable-overlay=1. For example:

-w 12:00.0,disable-overlay=1

By default, the NIC uses 4789 as the VXLAN port. The user may change it through
rte_eth_dev_udp_tunnel_port_{add,delete}. However, as the current NIC has a sin-
gle VXLAN port number, the user cannot configure multiple port numbers.

14.6. Overlay Offload 72

Network Interface Controller Drivers, Release 18.08.1

14.7 Ingress VLAN Rewrite

VIC adapters can tag, untag, or modify the VLAN headers of ingress packets. The ingress
VLAN rewrite mode controls this behavior. By default, it is set to pass-through, where the
NIC does not modify the VLAN header in any way so that the application can see the original
header. This mode is sufficient for many applications, but may not be suitable for others. Such
applications may change the mode by setting devargs parameter ig-vlan-rewrite to one
of the following.

• pass: Pass-through mode. The NIC does not modify the VLAN header. This is the
default mode.

• priority: Priority-tag default VLAN mode. If the ingress packet is tagged with the
default VLAN, the NIC replaces its VLAN header with the priority tag (VLAN ID 0).

• trunk: Default trunk mode. The NIC tags untagged ingress packets with the default
VLAN. Tagged ingress packets are not modified. To the application, every packet appears
as tagged.

• untag: Untag default VLAN mode. If the ingress packet is tagged with the default VLAN,
the NIC removes or untags its VLAN header so that the application sees an untagged
packet. As a result, the default VLAN becomes untagged. This mode can be useful for
applications such as OVS-DPDK performance benchmarks that utilize only the default
VLAN and want to see only untagged packets.

14.8 Limitations

• VLAN 0 Priority Tagging

If a vNIC is configured in TRUNK mode by the UCS manager, the adapter will priority tag
egress packets according to 802.1Q if they were not already VLAN tagged by software.
If the adapter is connected to a properly configured switch, there will be no unexpected
behavior.

In test setups where an Ethernet port of a Cisco adapter in TRUNK mode is connected
point-to-point to another adapter port or connected though a router instead of a switch,
all ingress packets will be VLAN tagged. Programs such as l3fwd may not account for
VLAN tags in packets and may misbehave. One solution is to enable VLAN stripping on
ingress so the VLAN tag is removed from the packet and put into the mbuf->vlan_tci field.
Here is an example of how to accomplish this:

vlan_offload = rte_eth_dev_get_vlan_offload(port);
vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
rte_eth_dev_set_vlan_offload(port, vlan_offload);

Another alternative is modify the adapter’s ingress VLAN rewrite mode so that packets with
the default VLAN tag are stripped by the adapter and presented to DPDK as untagged pack-
ets. In this case mbuf->vlan_tci and the PKT_RX_VLAN and PKT_RX_VLAN_STRIPPED
mbuf flags would not be set. This mode is enabled with the devargs parameter
ig-vlan-rewrite=untag. For example:

-w 12:00.0,ig-vlan-rewrite=untag

• Limited flow director support on 1200 series and 1300 series Cisco VIC adapters with old
firmware. Please see Flow director support .

14.7. Ingress VLAN Rewrite 73

Network Interface Controller Drivers, Release 18.08.1

• Flow director features are not supported on generation 1 Cisco VIC adapters (M81KR
and P81E)

• SR-IOV

– KVM hypervisor support only. VMware has not been tested.

– Requires VM-FEX, and so is only available on UCS managed servers connected to
Fabric Interconnects. It is not on standalone C-Series servers.

– VF devices are not usable directly from the host. They can only be used as assigned
devices on VM instances.

– Currently, unbind of the ENIC kernel mode driver ‘enic.ko’ on the VM instance may
hang. As a workaround, enic.ko should be blacklisted or removed from the boot
process.

– pci_generic cannot be used as the uio module in the VM. igb_uio or vfio in non-
IOMMU mode can be used.

– The number of RQs in UCSM dynamic vNIC configurations must be at least 2.

– The number of SR-IOV devices is limited to 256. Components on target system
might limit this number to fewer than 256.

• Flow API

– The number of filters that can be specified with the Generic Flow API is dependent
on how many header fields are being masked. Use ‘flow create’ in a loop to de-
termine how many filters your VIC will support (not more than 1000 for 1300 series
VICs). Filters are checked for matching in the order they were added. Since there
currently is no grouping or priority support, ‘catch-all’ filters should be added last.

• Statistics

– rx_good_bytes (ibytes) always includes VLAN header (4B) and CRC bytes (4B).
This behavior applies to 1300 and older series VIC adapters. 1400 series VICs do
not count CRC bytes, and count VLAN header only when VLAN stripping is disabled.

– When the NIC drops a packet because the Rx queue has no free buffers,
rx_good_bytes still increments by 4B if the packet is not VLAN tagged or VLAN
stripping is disabled, or by 8B if the packet is VLAN tagged and stripping is enabled.
This behavior applies to 1300 and older series VIC adapters. 1400 series VICs do
not increment this byte counter when packets are dropped.

• RSS Hashing

– Hardware enables and disables UDP and TCP RSS hashing together. The driver
cannot control UDP and TCP hashing individually.

14.9 How to build the suite

The build instructions for the DPDK suite should be followed. By default the ENIC PMD library
will be built into the DPDK library.

Refer to the document compiling and testing a PMD for a NIC for details.

14.9. How to build the suite 74

Network Interface Controller Drivers, Release 18.08.1

For configuring and using UIO and VFIO frameworks, please refer to the documentation that
comes with DPDK suite.

14.10 Supported Cisco VIC adapters

ENIC PMD supports all recent generations of Cisco VIC adapters including:

• VIC 1200 series

• VIC 1300 series

• VIC 1400 series

14.11 Supported Operating Systems

Any Linux distribution fulfilling the conditions described in Dependencies section of DPDK doc-
umentation.

14.12 Supported features

• Unicast, multicast and broadcast transmission and reception

• Receive queue polling

• Port Hardware Statistics

• Hardware VLAN acceleration

• IP checksum offload

• Receive side VLAN stripping

• Multiple receive and transmit queues

• Flow Director ADD, UPDATE, DELETE, STATS operation support IPv4 and IPv6

• Promiscuous mode

• Setting RX VLAN (supported via UCSM/CIMC only)

• VLAN filtering (supported via UCSM/CIMC only)

• Execution of application by unprivileged system users

• IPV4, IPV6 and TCP RSS hashing

• UDP RSS hashing (1400 series and later adapters)

• Scattered Rx

• MTU update

• SR-IOV on UCS managed servers connected to Fabric Interconnects

• Flow API

• Overlay offload

14.10. Supported Cisco VIC adapters 75

Network Interface Controller Drivers, Release 18.08.1

– Rx/Tx checksum offloads for VXLAN, NVGRE, GENEVE

– TSO for VXLAN and GENEVE packets

– Inner RSS

14.13 Known bugs and unsupported features in this release

• Signature or flex byte based flow direction

• Drop feature of flow direction

• VLAN based flow direction

• Non-IPV4 flow direction

• Setting of extended VLAN

• MTU update only works if Scattered Rx mode is disabled

• Maximum receive packet length is ignored if Scattered Rx mode is used

14.14 Prerequisites

• Prepare the system as recommended by DPDK suite. This includes environment vari-
ables, hugepages configuration, tool-chains and configuration.

• Insert vfio-pci kernel module using the command ‘modprobe vfio-pci’ if the user wants to
use VFIO framework.

• Insert uio kernel module using the command ‘modprobe uio’ if the user wants to use UIO
framework.

• DPDK suite should be configured based on the user’s decision to use VFIO or UIO frame-
work.

• If the vNIC device(s) to be used is bound to the kernel mode Ethernet driver use ‘ip’
to bring the interface down. The dpdk-devbind.py tool can then be used to unbind the
device’s bus id from the ENIC kernel mode driver.

• Bind the intended vNIC to vfio-pci in case the user wants ENIC PMD to use VFIO frame-
work using dpdk-devbind.py.

• Bind the intended vNIC to igb_uio in case the user wants ENIC PMD to use UIO frame-
work using dpdk-devbind.py.

At this point the system should be ready to run DPDK applications. Once the application runs
to completion, the vNIC can be detached from vfio-pci or igb_uio if necessary.

Root privilege is required to bind and unbind vNICs to/from VFIO/UIO. VFIO framework helps
an unprivileged user to run the applications. For an unprivileged user to run the applications
on DPDK and ENIC PMD, it may be necessary to increase the maximum locked memory of
the user. The following command could be used to do this.

sudo sh -c "ulimit -l <value in Kilo Bytes>"

14.13. Known bugs and unsupported features in this release 76

Network Interface Controller Drivers, Release 18.08.1

The value depends on the memory configuration of the application, DPDK and PMD. Typically,
the limit has to be raised to higher than 2GB. e.g., 2621440

The compilation of any unused drivers can be disabled using the configuration file in config/
directory (e.g., config/common_linuxapp). This would help in bringing down the time taken for
building the libraries and the initialization time of the application.

14.15 Additional Reference

• https://www.cisco.com/c/en/us/products/servers-unified-computing/index.html

• https://www.cisco.com/c/en/us/products/interfaces-modules/unified-computing-system-
adapters/index.html

14.16 Contact Information

Any questions or bugs should be reported to DPDK community and to the ENIC PMD main-
tainers:

• John Daley <johndale@cisco.com>

• Hyong Youb Kim <hyonkim@cisco.com>

14.15. Additional Reference 77

https://www.cisco.com/c/en/us/products/servers-unified-computing/index.html
https://www.cisco.com/c/en/us/products/interfaces-modules/unified-computing-system-adapters/index.html
https://www.cisco.com/c/en/us/products/interfaces-modules/unified-computing-system-adapters/index.html
mailto:johndale@cisco.com
mailto:hyonkim@cisco.com

CHAPTER

FIFTEEN

FM10K POLL MODE DRIVER

The FM10K poll mode driver library provides support for the Intel FM10000 (FM10K) family of
40GbE/100GbE adapters.

15.1 FTAG Based Forwarding of FM10K

FTAG Based Forwarding is a unique feature of FM10K. The FM10K family of NICs support
the addition of a Fabric Tag (FTAG) to carry special information. The FTAG is placed at the
beginning of the frame, it contains information such as where the packet comes from and goes,
and the vlan tag. In FTAG based forwarding mode, the switch logic forwards packets according
to glort (global resource tag) information, rather than the mac and vlan table. Currently this
feature works only on PF.

To enable this feature, the user should pass a devargs parameter to the eal like “-w 84:00.0,en-
able_ftag=1”, and the application should make sure an appropriate FTAG is inserted for every
frame on TX side.

15.2 Vector PMD for FM10K

Vector PMD (vPMD) uses Intel® SIMD instructions to optimize packet I/O. It improves
load/store bandwidth efficiency of L1 data cache by using a wider SSE/AVX ‘’register (1)’‘.
The wider register gives space to hold multiple packet buffers so as to save on the number of
instructions when bulk processing packets.

There is no change to the PMD API. The RX/TX handlers are the only two entries for vPMD
packet I/O. They are transparently registered at runtime RX/TX execution if all required condi-
tions are met.

1. To date, only an SSE version of FM10K vPMD is available. To ensure that vPMD is in the
binary code, set CONFIG_RTE_LIBRTE_FM10K_INC_VECTOR=y in the configure file.

Some constraints apply as pre-conditions for specific optimizations on bulk packet transfers.
The following sections explain RX and TX constraints in the vPMD.

78

Network Interface Controller Drivers, Release 18.08.1

15.2.1 RX Constraints

Prerequisites and Pre-conditions

For Vector RX it is assumed that the number of descriptor rings will be a power of 2. With this
pre-condition, the ring pointer can easily scroll back to the head after hitting the tail without
a conditional check. In addition Vector RX can use this assumption to do a bit mask using
ring_size - 1.

Features not Supported by Vector RX PMD

Some features are not supported when trying to increase the throughput in vPMD. They are:

• IEEE1588

• Flow director

• Header split

• RX checksum offload

Other features are supported using optional MACRO configuration. They include:

• HW VLAN strip

• L3/L4 packet type

To enable via RX_OLFLAGS use RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE=y.

To guarantee the constraint, the following capabilities in dev_conf.rxmode.offloads will
be checked:

• DEV_RX_OFFLOAD_VLAN_EXTEND

• DEV_RX_OFFLOAD_CHECKSUM

• DEV_RX_OFFLOAD_HEADER_SPLIT

• fdir_conf->mode

RX Burst Size

As vPMD is focused on high throughput, it processes 4 packets at a time. So it assumes that
the RX burst should be greater than 4 packets per burst. It returns zero if using nb_pkt < 4 in
the receive handler. If nb_pkt is not a multiple of 4, a floor alignment will be applied.

15.2.2 TX Constraint

Features not Supported by TX Vector PMD

TX vPMD only works when offloads is set to 0

This means that it does not support any TX offload.

15.2. Vector PMD for FM10K 79

Network Interface Controller Drivers, Release 18.08.1

15.3 Limitations

15.3.1 Switch manager

The Intel FM10000 family of NICs integrate a hardware switch and multiple host interfaces.
The FM10000 PMD driver only manages host interfaces. For the switch component another
switch driver has to be loaded prior to to the FM10000 PMD driver. The switch driver can be
acquired from Intel support. Only Testpoint is validated with DPDK, the latest version that has
been validated with DPDK is 4.1.6.

15.3.2 Support for Switch Restart

For FM10000 multi host based design a DPDK app running in the VM or host needs to be
aware of the switch’s state since it may undergo a quit-restart. When the switch goes down
the DPDK app will receive a LSC event indicating link status down, and the app should stop
the worker threads that are polling on the Rx/Tx queues. When switch comes up, a LSC event
indicating LINK_UP is sent to the app, which can then restart the FM10000 port to resume
network processing.

15.3.3 CRC striping

The FM10000 family of NICs strip the CRC for every packets coming into the host interface.
So, CRC will be stripped even when DEV_RX_OFFLOAD_CRC_STRIP in rxmode.offloads
is NOT set in struct rte_eth_conf.

15.3.4 Maximum packet length

The FM10000 family of NICS support a maximum of a 15K jumbo frame. The value is fixed
and cannot be changed. So, even when the rxmode.max_rx_pkt_len member of struct
rte_eth_conf is set to a value lower than 15364, frames up to 15364 bytes can still reach
the host interface.

15.3.5 Statistic Polling Frequency

The FM10000 NICs expose a set of statistics via the PCI BARs. These statistics are read
from the hardware registers when rte_eth_stats_get() or rte_eth_xstats_get() is
called. The packet counting registers are 32 bits while the byte counting registers are 48 bits.
As a result, the statistics must be polled regularly in order to ensure the consistency of the
returned reads.

Given the PCIe Gen3 x8, about 50Gbps of traffic can occur. With 64 byte packets this gives
almost 100 million packets/second, causing 32 bit integer overflow after approx 40 seconds.
To ensure these overflows are detected and accounted for in the statistics, it is necessary to
read statistic regularly. It is suggested to read stats every 20 seconds, which will ensure the
statistics are accurate.

15.3. Limitations 80

Network Interface Controller Drivers, Release 18.08.1

15.3.6 Interrupt mode

The FM10000 family of NICS need one separate interrupt for mailbox. So only drivers which
support multiple interrupt vectors e.g. vfio-pci can work for fm10k interrupt mode.

15.3. Limitations 81

CHAPTER

SIXTEEN

I40E POLL MODE DRIVER

The i40e PMD (librte_pmd_i40e) provides poll mode driver support for 10/25/40 Gbps
Intel® Ethernet 700 Series Network Adapters based on the Intel Ethernet Controller
X710/XL710/XXV710 and Intel Ethernet Connection X722 (only support part of features).

16.1 Features

Features of the i40e PMD are:

• Multiple queues for TX and RX

• Receiver Side Scaling (RSS)

• MAC/VLAN filtering

• Packet type information

• Flow director

• Cloud filter

• Checksum offload

• VLAN/QinQ stripping and inserting

• TSO offload

• Promiscuous mode

• Multicast mode

• Port hardware statistics

• Jumbo frames

• Link state information

• Link flow control

• Mirror on port, VLAN and VSI

• Interrupt mode for RX

• Scattered and gather for TX and RX

• Vector Poll mode driver

• DCB

82

Network Interface Controller Drivers, Release 18.08.1

• VMDQ

• SR-IOV VF

• Hot plug

• IEEE1588/802.1AS timestamping

• VF Daemon (VFD) - EXPERIMENTAL

• Dynamic Device Personalization (DDP)

• Queue region configuration

• Virtual Function Port Representors

16.2 Prerequisites

• Identifying your adapter using Intel Support and get the latest NVM/FW images.

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

• To get better performance on Intel platforms, please follow the “How to get best perfor-
mance with NICs on Intel platforms” section of the Getting Started Guide for Linux.

• Upgrade the NVM/FW version following the Intel® Ethernet NVM Update Tool Quick Us-
age Guide for Linux and Intel® Ethernet NVM Update Tool: Quick Usage Guide for EFI if
needed.

16.3 Recommended Matching List

It is highly recommended to upgrade the i40e kernel driver and firmware to avoid the compat-
ibility issues with i40e PMD. Here is the suggested matching list which has been tested and
verified. The detailed information can refer to chapter Tested Platforms/Tested NICs in release
notes.

DPDK version Kernel driver version Firmware version
18.05 2.4.6 6.01
18.02 2.4.3 6.01
17.11 2.1.26 6.01
17.08 2.0.19 6.01
17.05 1.5.23 5.05
17.02 1.5.23 5.05
16.11 1.5.23 5.05
16.07 1.4.25 5.04
16.04 1.4.25 5.02

16.4 Pre-Installation Configuration

16.4.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging
options may affect system performance.

16.2. Prerequisites 83

http://www.intel.com/support
https://www-ssl.intel.com/content/www/us/en/embedded/products/networking/nvm-update-tool-quick-linux-usage-guide.html
https://www-ssl.intel.com/content/www/us/en/embedded/products/networking/nvm-update-tool-quick-linux-usage-guide.html
https://www.intel.com/content/www/us/en/embedded/products/networking/nvm-update-tool-quick-efi-usage-guide.html

Network Interface Controller Drivers, Release 18.08.1

• CONFIG_RTE_LIBRTE_I40E_PMD (default y)

Toggle compilation of the librte_pmd_i40e driver.

• CONFIG_RTE_LIBRTE_I40E_DEBUG_* (default n)

Toggle display of generic debugging messages.

• CONFIG_RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC (default y)

Toggle bulk allocation for RX.

• CONFIG_RTE_LIBRTE_I40E_INC_VECTOR (default n)

Toggle the use of Vector PMD instead of normal RX/TX path. To enable vPMD for RX,
bulk allocation for Rx must be allowed.

• CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC (default n)

Toggle to use a 16-byte RX descriptor, by default the RX descriptor is 32 byte.

• CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_PF (default 64)

Number of queues reserved for PF.

• CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM (default 4)

Number of queues reserved for each VMDQ Pool.

16.4.2 Runtime Config Options

• Number of Queues per VF (default 4)

The number of queue per VF is determined by its host PF. If the PCI address of an i40e
PF is aaaa:bb.cc, the number of queues per VF can be configured with EAL parameter
like -w aaaa:bb.cc,queue-num-per-vf=n. The value n can be 1, 2, 4, 8 or 16. If no such
parameter is configured, the number of queues per VF is 4 by default.

• Support multiple driver (default disable)

There was a multiple driver support issue during use of 700 series Ethernet Adapter
with both Linux kernel and DPDK PMD. To fix this issue, devargs parameter
support-multi-driver is introduced, for example:

-w 84:00.0,support-multi-driver=1

With the above configuration, DPDK PMD will not change global registers, and will switch
PF interrupt from IntN to Int0 to avoid interrupt conflict between DPDK and Linux Kernel.

• Support VF Port Representor (default not enabled)

The i40e PF PMD supports the creation of VF port representors for the control and mon-
itoring of i40e virtual function devices. Each port representor corresponds to a single
virtual function of that device. Using the devargs option representor the user can
specify which virtual functions to create port representors for on initialization of the PF
PMD by passing the VF IDs of the VFs which are required.:

-w DBDF,representor=[0,1,4]

Currently hot-plugging of representor ports is not supported so all required representors
must be specified on the creation of the PF.

16.4. Pre-Installation Configuration 84

Network Interface Controller Drivers, Release 18.08.1

16.4.3 Vector RX Pre-conditions

For Vector RX it is assumed that the number of descriptor rings will be a power of 2. With this
pre-condition, the ring pointer can easily scroll back to the head after hitting the tail without
a conditional check. In addition Vector RX can use this assumption to do a bit mask using
ring_size - 1.

16.5 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

16.6 SR-IOV: Prerequisites and sample Application Notes

1. Load the kernel module:

modprobe i40e

Check the output in dmesg:

i40e 0000:83:00.1 ens802f0: renamed from eth0

2. Bring up the PF ports:

ifconfig ens802f0 up

3. Create VF device(s):

Echo the number of VFs to be created into the sriov_numvfs sysfs entry of the parent
PF.

Example:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

4. Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:

ip link set <PF netdev id> vf <VF id> mac <macaddr>

Example:

ip link set ens802f0 vf 0 mac a0:b0:c0:d0:e0:f0

5. Assign VF to VM, and bring up the VM. Please see the documentation for the
I40E/IXGBE/IGB Virtual Function Driver.

6. Running testpmd:

Follow instructions available in the document compiling and testing a PMD for a NIC to
run testpmd.

Example output:

...
EAL: PCI device 0000:83:00.0 on NUMA socket 1
EAL: probe driver: 8086:1572 rte_i40e_pmd
EAL: PCI memory mapped at 0x7f7f80000000
EAL: PCI memory mapped at 0x7f7f80800000
PMD: eth_i40e_dev_init(): FW 5.0 API 1.5 NVM 05.00.02 eetrack 8000208a
Interactive-mode selected

16.5. Driver compilation and testing 85

Network Interface Controller Drivers, Release 18.08.1

Configuring Port 0 (socket 0)
...

PMD: i40e_dev_rx_queue_setup(): Rx Burst Bulk Alloc Preconditions are
satisfied.Rx Burst Bulk Alloc function will be used on port=0, queue=0.

...
Port 0: 68:05:CA:26:85:84
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done

testpmd>

16.7 Sample Application Notes

16.7.1 Vlan filter

Vlan filter only works when Promiscuous mode is off.

To start testpmd, and add vlan 10 to port 0:

./app/testpmd -l 0-15 -n 4 -- -i --forward-mode=mac

...

testpmd> set promisc 0 off
testpmd> rx_vlan add 10 0

16.7.2 Flow Director

The Flow Director works in receive mode to identify specific flows or sets of flows and route
them to specific queues. The Flow Director filters can match the different fields for different
type of packet: flow type, specific input set per flow type and the flexible payload.

The default input set of each flow type is:

ipv4-other : src_ip_address, dst_ip_address
ipv4-frag : src_ip_address, dst_ip_address
ipv4-tcp : src_ip_address, dst_ip_address, src_port, dst_port
ipv4-udp : src_ip_address, dst_ip_address, src_port, dst_port
ipv4-sctp : src_ip_address, dst_ip_address, src_port, dst_port,

verification_tag
ipv6-other : src_ip_address, dst_ip_address
ipv6-frag : src_ip_address, dst_ip_address
ipv6-tcp : src_ip_address, dst_ip_address, src_port, dst_port
ipv6-udp : src_ip_address, dst_ip_address, src_port, dst_port
ipv6-sctp : src_ip_address, dst_ip_address, src_port, dst_port,

verification_tag
l2_payload : ether_type

The flex payload is selected from offset 0 to 15 of packet’s payload by default, while it is masked
out from matching.

Start testpmd with --disable-rss and --pkt-filter-mode=perfect:

./app/testpmd -l 0-15 -n 4 -- -i --disable-rss --pkt-filter-mode=perfect \
--rxq=8 --txq=8 --nb-cores=8 --nb-ports=1

16.7. Sample Application Notes 86

Network Interface Controller Drivers, Release 18.08.1

Add a rule to direct ipv4-udp packet whose dst_ip=2.2.2.5, src_ip=2.2.2.3,
src_port=32, dst_port=32 to queue 1:

testpmd> flow_director_filter 0 mode IP add flow ipv4-udp \
src 2.2.2.3 32 dst 2.2.2.5 32 vlan 0 flexbytes () \
fwd pf queue 1 fd_id 1

Check the flow director status:

testpmd> show port fdir 0

######################## FDIR infos for port 0 ####################
MODE: PERFECT
SUPPORTED FLOW TYPE: ipv4-frag ipv4-tcp ipv4-udp ipv4-sctp ipv4-other

ipv6-frag ipv6-tcp ipv6-udp ipv6-sctp ipv6-other
l2_payload

FLEX PAYLOAD INFO:
max_len: 16 payload_limit: 480
payload_unit: 2 payload_seg: 3
bitmask_unit: 2 bitmask_num: 2
MASK:

vlan_tci: 0x0000,
src_ipv4: 0x00000000,
dst_ipv4: 0x00000000,
src_port: 0x0000,
dst_port: 0x0000
src_ipv6: 0x00000000,0x00000000,0x00000000,0x00000000,
dst_ipv6: 0x00000000,0x00000000,0x00000000,0x00000000

FLEX PAYLOAD SRC OFFSET:
L2_PAYLOAD: 0 1 2 3 4 5 6 ...
L3_PAYLOAD: 0 1 2 3 4 5 6 ...
L4_PAYLOAD: 0 1 2 3 4 5 6 ...

FLEX MASK CFG:
ipv4-udp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-tcp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-sctp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-other: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-frag: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-udp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-tcp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-sctp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-other: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-frag: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
l2_payload: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

guarant_count: 1 best_count: 0
guarant_space: 512 best_space: 7168
collision: 0 free: 0
maxhash: 0 maxlen: 0
add: 0 remove: 0
f_add: 0 f_remove: 0

Delete all flow director rules on a port:

testpmd> flush_flow_director 0

16.7.3 Floating VEB

The Intel® Ethernet 700 Series support a feature called “Floating VEB”.

A Virtual Ethernet Bridge (VEB) is an IEEE Edge Virtual Bridging (EVB) term for functionality
that allows local switching between virtual endpoints within a physical endpoint and also with
an external bridge/network.

16.7. Sample Application Notes 87

Network Interface Controller Drivers, Release 18.08.1

A “Floating” VEB doesn’t have an uplink connection to the outside world so all switching is
done internally and remains within the host. As such, this feature provides security benefits.

In addition, a Floating VEB overcomes a limitation of normal VEBs where they cannot forward
packets when the physical link is down. Floating VEBs don’t need to connect to the NIC port
so they can still forward traffic from VF to VF even when the physical link is down.

Therefore, with this feature enabled VFs can be limited to communicating with each other but
not an outside network, and they can do so even when there is no physical uplink on the
associated NIC port.

To enable this feature, the user should pass a devargs parameter to the EAL, for example:

-w 84:00.0,enable_floating_veb=1

In this configuration the PMD will use the floating VEB feature for all the VFs created by this
PF device.

Alternatively, the user can specify which VFs need to connect to this floating VEB using the
floating_veb_list argument:

-w 84:00.0,enable_floating_veb=1,floating_veb_list=1;3-4

In this example VF1, VF3 and VF4 connect to the floating VEB, while other VFs connect to the
normal VEB.

The current implementation only supports one floating VEB and one regular VEB. VFs can
connect to a floating VEB or a regular VEB according to the configuration passed on the EAL
command line.

The floating VEB functionality requires a NIC firmware version of 5.0 or greater.

16.7.4 Dynamic Device Personalization (DDP)

The Intel® Ethernet 700 Series except for the Intel Ethernet Connection X722 support a fea-
ture called “Dynamic Device Personalization (DDP)”, which is used to configure hardware by
downloading a profile to support protocols/filters which are not supported by default. The DDP
functionality requires a NIC firmware version of 6.0 or greater.

Current implementation supports GTP-C/GTP-U/PPPoE/PPPoL2TP, steering can be used with
rte_flow API.

Load a profile which supports GTP and store backup profile:

testpmd> ddp add 0 ./gtp.pkgo,./backup.pkgo

Delete a GTP profile and restore backup profile:

testpmd> ddp del 0 ./backup.pkgo

Get loaded DDP package info list:

testpmd> ddp get list 0

Display information about a GTP profile:

testpmd> ddp get info ./gtp.pkgo

16.7. Sample Application Notes 88

Network Interface Controller Drivers, Release 18.08.1

16.7.5 Input set configuration

Input set for any PCTYPE can be configured with user defined configuration, For example, to
use only 48bit prefix for IPv6 src address for IPv6 TCP RSS:

testpmd> port config 0 pctype 43 hash_inset clear all
testpmd> port config 0 pctype 43 hash_inset set field 13
testpmd> port config 0 pctype 43 hash_inset set field 14
testpmd> port config 0 pctype 43 hash_inset set field 15

16.7.6 Queue region configuration

The Intel® Ethernet 700 Series supports a feature of queue regions configuration for RSS in
the PF, so that different traffic classes or different packet classification types can be separated
to different queues in different queue regions. There is an API for configuration of queue re-
gions in RSS with a command line. It can parse the parameters of the region index, queue
number, queue start index, user priority, traffic classes and so on. Depending on commands
from the command line, it will call i40e private APIs and start the process of setting or flush-
ing the queue region configuration. As this feature is specific for i40e only private APIs are
used. These new test_pmd commands are as shown below. For details please refer to
../testpmd_app_ug/index.

testpmd> set port (port_id) queue-region region_id (value) \
queue_start_index (value) queue_num (value)

testpmd> set port (port_id) queue-region region_id (value) flowtype (value)
testpmd> set port (port_id) queue-region UP (value) region_id (value)
testpmd> set port (port_id) queue-region flush (on|off)
testpmd> show port (port_id) queue-region

16.8 Limitations or Known issues

16.8.1 MPLS packet classification

For firmware versions prior to 5.0, MPLS packets are not recognized by the NIC. The L2 Pay-
load flow type in flow director can be used to classify MPLS packet by using a command in
testpmd like:

testpmd> flow_director_filter 0 mode IP add flow l2_payload ether 0x8847
flexbytes () fwd pf queue <N> fd_id <M>

With the NIC firmware version 5.0 or greater, some limited MPLS support is added: Native
MPLS (MPLS in Ethernet) skip is implemented, while no new packet type, no classification or
offload are possible. With this change, L2 Payload flow type in flow director cannot be used to
classify MPLS packet as with previous firmware versions. Meanwhile, the Ethertype filter can
be used to classify MPLS packet by using a command in testpmd like:

testpmd> ethertype_filter 0 add mac_ignr 00:00:00:00:00:00 ethertype
0x8847 fwd queue <M>

16.8.2 16 Byte RX Descriptor setting on DPDK VF

Currently the VF’s RX descriptor mode is decided by PF. There’s no PF-VF interface for VF to
request the RX descriptor mode, also no interface to notify VF its own RX descriptor mode.

16.8. Limitations or Known issues 89

Network Interface Controller Drivers, Release 18.08.1

For all available versions of the i40e driver, these drivers don’t support 16 byte RX descrip-
tor. If the Linux i40e kernel driver is used as host driver, while DPDK i40e PMD is used as
the VF driver, DPDK cannot choose 16 byte receive descriptor. The reason is that the RX
descriptor is already set to 32 byte by the i40e kernel driver. That is to say, user should keep
CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC=n in config file. In the future, if the Linux
i40e driver supports 16 byte RX descriptor, user should make sure the DPDK VF uses the
same RX descriptor mode, 16 byte or 32 byte, as the PF driver.

The same rule for DPDK PF + DPDK VF. The PF and VF should use the same RX descriptor
mode. Or the VF RX will not work.

16.8.3 Receive packets with Ethertype 0x88A8

Due to the FW limitation, PF can receive packets with Ethertype 0x88A8 only when floating
VEB is disabled.

16.8.4 Incorrect Rx statistics when packet is oversize

When a packet is over maximum frame size, the packet is dropped. However, the Rx statistics,
when calling rte_eth_stats_get incorrectly shows it as received.

16.8.5 VF & TC max bandwidth setting

The per VF max bandwidth and per TC max bandwidth cannot be enabled in parallel. The
behavior is different when handling per VF and per TC max bandwidth setting. When enabling
per VF max bandwidth, SW will check if per TC max bandwidth is enabled. If so, return failure.
When enabling per TC max bandwidth, SW will check if per VF max bandwidth is enabled. If
so, disable per VF max bandwidth and continue with per TC max bandwidth setting.

16.8.6 TC TX scheduling mode setting

There’re 2 TX scheduling modes for TCs, round robin and strict priority mode. If a TC is set
to strict priority mode, it can consume unlimited bandwidth. It means if APP has set the max
bandwidth for that TC, it comes to no effect. It’s suggested to set the strict priority mode for a
TC that is latency sensitive but no consuming much bandwidth.

16.8.7 VF performance is impacted by PCI extended tag setting

To reach maximum NIC performance in the VF the PCI extended tag must be enabled. The
DPDK i40e PF driver will set this feature during initialization, but the kernel PF driver does not.
So when running traffic on a VF which is managed by the kernel PF driver, a significant NIC
performance downgrade has been observed (for 64 byte packets, there is about 25% line-rate
downgrade for a 25GbE device and about 35% for a 40GbE device).

For kernel version >= 4.11, the kernel’s PCI driver will enable the extended tag if it detects that
the device supports it. So by default, this is not an issue. For kernels <= 4.11 or when the PCI
extended tag is disabled it can be enabled using the steps below.

1. Get the current value of the PCI configure register:

16.8. Limitations or Known issues 90

Network Interface Controller Drivers, Release 18.08.1

setpci -s <XX:XX.X> a8.w

2. Set bit 8:

value = value | 0x100

3. Set the PCI configure register with new value:

setpci -s <XX:XX.X> a8.w=<value>

16.8.8 Vlan strip of VF

The VF vlan strip function is only supported in the i40e kernel driver >= 2.1.26.

16.8.9 DCB function

DCB works only when RSS is enabled.

16.8.10 Global configuration warning

I40E PMD will set some global registers to enable some function or set some configure. Then
when using different ports of the same NIC with Linux kernel and DPDK, the port with Linux ker-
nel will be impacted by the port with DPDK. For example, register I40E_GL_SWT_L2TAGCTRL
is used to control L2 tag, i40e PMD uses I40E_GL_SWT_L2TAGCTRL to set vlan TPID. If set-
ting TPID in port A with DPDK, then the configuration will also impact port B in the NIC with
kernel driver, which don’t want to use the TPID. So PMD reports warning to clarify what is
changed by writing global register.

16.9 High Performance of Small Packets on 40GbE NIC

As there might be firmware fixes for performance enhancement in latest version of firmware
image, the firmware update might be needed for getting high performance. Check the Intel sup-
port website for the latest firmware updates. Users should consult the release notes specific
to a DPDK release to identify the validated firmware version for a NIC using the i40e driver.

16.9.1 Use 16 Bytes RX Descriptor Size

As i40e PMD supports both 16 and 32 bytes RX descriptor sizes, and 16 bytes
size can provide helps to high performance of small packets. Configuration of
CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC in config files can be changed to use 16
bytes size RX descriptors.

16.10 Example of getting best performance with l3fwd example

The following is an example of running the DPDK l3fwd sample application to get high per-
formance with a server with Intel Xeon processors and Intel Ethernet CNA XL710.

The example scenario is to get best performance with two Intel Ethernet CNA XL710 40GbE
ports. See Fig. 16.1 for the performance test setup.

16.9. High Performance of Small Packets on 40GbE NIC 91

Network Interface Controller Drivers, Release 18.08.1

Traffic Generator

Dest MAC: Port 0
Dest IP: 2.1.1.1
Src IP: Random

Port A

Dest MAC: Port 1
Dest IP: 1.1.1.1
Src IP: Random

Port B

Intel XL 710
40G Ethernet

Port 0

Flow 2

Flow 1

Port X

Intel XL 710
40G Ethernet

Port 1

Port X

Port 0 to Port 1
Port 1 to Port 0

Forwarding

IA Platform
(Socket 1)

Fig. 16.1: Performance Test Setup

1. Add two Intel Ethernet CNA XL710 to the platform, and use one port per card to get best
performance. The reason for using two NICs is to overcome a PCIe v3.0 limitation since it
cannot provide 80GbE bandwidth for two 40GbE ports, but two different PCIe v3.0 x8 slot
can. Refer to the sample NICs output above, then we can select 82:00.0 and 85:00.0
as test ports:

82:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]

2. Connect the ports to the traffic generator. For high speed testing, it’s best to use a
hardware traffic generator.

3. Check the PCI devices numa node (socket id) and get the cores number on the exact
socket id. In this case, 82:00.0 and 85:00.0 are both in socket 1, and the cores on
socket 1 in the referenced platform are 18-35 and 54-71. Note: Don’t use 2 logical cores
on the same core (e.g core18 has 2 logical cores, core18 and core54), instead, use 2
logical cores from different cores (e.g core18 and core19).

4. Bind these two ports to igb_uio.

5. As to Intel Ethernet CNA XL710 40GbE port, we need at least two queue pairs to achieve
best performance, then two queues per port will be required, and each queue pair will
need a dedicated CPU core for receiving/transmitting packets.

6. The DPDK sample application l3fwd will be used for performance testing, with using
two ports for bi-directional forwarding. Compile the l3fwd sample with the default lpm
mode.

7. The command line of running l3fwd would be something like the following:

./l3fwd -l 18-21 -n 4 -w 82:00.0 -w 85:00.0 \
-- -p 0x3 --config '(0,0,18),(0,1,19),(1,0,20),(1,1,21)'

16.10. Example of getting best performance with l3fwd example 92

Network Interface Controller Drivers, Release 18.08.1

This means that the application uses core 18 for port 0, queue pair 0 forwarding, core 19
for port 0, queue pair 1 forwarding, core 20 for port 1, queue pair 0 forwarding, and core
21 for port 1, queue pair 1 forwarding.

8. Configure the traffic at a traffic generator.

• Start creating a stream on packet generator.

• Set the Ethernet II type to 0x0800.

16.10. Example of getting best performance with l3fwd example 93

CHAPTER

SEVENTEEN

IFCVF VDPA DRIVER

The IFCVF vDPA (vhost data path acceleration) driver provides support for the Intel FPGA
100G VF (IFCVF). IFCVF’s datapath is virtio ring compatible, it works as a HW vhost backend
which can send/receive packets to/from virtio directly by DMA. Besides, it supports dirty page
logging and device state report/restore, this driver enables its vDPA functionality.

17.1 Pre-Installation Configuration

17.1.1 Config File Options

The following option can be modified in the config file.

• CONFIG_RTE_LIBRTE_IFCVF_VDPA_PMD (default y for linux)

Toggle compilation of the librte_ifcvf_vdpa driver.

17.2 IFCVF vDPA Implementation

IFCVF’s vendor ID and device ID are same as that of virtio net pci device, with its specific
subsystem vendor ID and device ID. To let the device be probed by IFCVF driver, adding
“vdpa=1” parameter helps to specify that this device is to be used in vDPA mode, rather than
polling mode, virtio pmd will skip when it detects this message.

Different VF devices serve different virtio frontends which are in different VMs, so each VF
needs to have its own DMA address translation service. During the driver probe a new con-
tainer is created for this device, with this container vDPA driver can program DMA remapping
table with the VM’s memory region information.

17.2.1 Key IFCVF vDPA driver ops

• ifcvf_dev_config: Enable VF data path with virtio information provided by vhost lib, in-
cluding IOMMU programming to enable VF DMA to VM’s memory, VFIO interrupt setup
to route HW interrupt to virtio driver, create notify relay thread to translate virtio driver’s
kick to a MMIO write onto HW, HW queues configuration.

This function gets called to set up HW data path backend when virtio driver in VM gets
ready.

94

Network Interface Controller Drivers, Release 18.08.1

• ifcvf_dev_close: Revoke all the setup in ifcvf_dev_config.

This function gets called when virtio driver stops device in VM.

17.2.2 To create a vhost port with IFC VF

• Create a vhost socket and assign a VF’s device ID to this socket via vhost API. When
QEMU vhost connection gets ready, the assigned VF will get configured automatically.

17.3 Features

Features of the IFCVF driver are:

• Compatibility with virtio 0.95 and 1.0.

17.4 Prerequisites

• Platform with IOMMU feature. IFC VF needs address translation service to Rx/Tx directly
with virtio driver in VM.

17.5 Limitations

17.5.1 Dependency on vfio-pci

vDPA driver needs to setup VF MSIX interrupts, each queue’s interrupt vector is mapped to
a callfd associated with a virtio ring. Currently only vfio-pci allows multiple interrupts, so the
IFCVF driver is dependent on vfio-pci.

17.5.2 Live Migration with VIRTIO_NET_F_GUEST_ANNOUNCE

IFC VF doesn’t support RARP packet generation, virtio frontend supporting VIR-
TIO_NET_F_GUEST_ANNOUNCE feature can help to do that.

17.3. Features 95

CHAPTER

EIGHTEEN

IGB POLL MODE DRIVER

The IGB PMD (librte_pmd_e1000) provides poll mode driver support for Intel 1GbE nics.

18.1 Features

Features of the IGB PMD are:

• Multiple queues for TX and RX

• Receiver Side Scaling (RSS)

• MAC/VLAN filtering

• Packet type information

• Double VLAN

• IEEE 1588

• TSO offload

• Checksum offload

• TCP segmentation offload

• Jumbo frames supported

18.2 Limitations or Known issues

18.3 Supported Chipsets and NICs

• Intel 82576EB 10 Gigabit Ethernet Controller

• Intel 82580EB 10 Gigabit Ethernet Controller

• Intel 82580DB 10 Gigabit Ethernet Controller

• Intel Ethernet Controller I210

• Intel Ethernet Controller I350

96

CHAPTER

NINETEEN

IXGBE DRIVER

19.1 Vector PMD for IXGBE

Vector PMD uses Intel® SIMD instructions to optimize packet I/O. It improves load/store band-
width efficiency of L1 data cache by using a wider SSE/AVX register 1 (1). The wider register
gives space to hold multiple packet buffers so as to save instruction number when processing
bulk of packets.

There is no change to PMD API. The RX/TX handler are the only two entries for vPMD packet
I/O. They are transparently registered at runtime RX/TX execution if all condition checks pass.

1. To date, only an SSE version of IX GBE vPMD is available. To ensure that vPMD is in
the binary code, ensure that the option CONFIG_RTE_IXGBE_INC_VECTOR=y is in the
configure file.

Some constraints apply as pre-conditions for specific optimizations on bulk packet transfers.
The following sections explain RX and TX constraints in the vPMD.

19.1.1 RX Constraints

Prerequisites and Pre-conditions

The following prerequisites apply:

• To enable vPMD to work for RX, bulk allocation for Rx must be allowed.

Ensure that the following pre-conditions are satisfied:

• rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST

• rxq->rx_free_thresh < rxq->nb_rx_desc

• (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0

• rxq->nb_rx_desc < (IXGBE_MAX_RING_DESC - RTE_PMD_IXGBE_RX_MAX_BURST)

These conditions are checked in the code.

Scattered packets are not supported in this mode. If an incoming packet is greater than the
maximum acceptable length of one “mbuf” data size (by default, the size is 2 KB), vPMD for
RX would be disabled.

By default, IXGBE_MAX_RING_DESC is set to 4096 and
RTE_PMD_IXGBE_RX_MAX_BURST is set to 32.

97

Network Interface Controller Drivers, Release 18.08.1

Feature not Supported by RX Vector PMD

Some features are not supported when trying to increase the throughput in vPMD. They are:

• IEEE1588

• FDIR

• Header split

• RX checksum off load

Other features are supported using optional MACRO configuration. They include:

• HW VLAN strip

• HW extend dual VLAN

To guarantee the constraint, capabilities in dev_conf.rxmode.offloads will be checked:

• DEV_RX_OFFLOAD_VLAN_STRIP

• DEV_RX_OFFLOAD_VLAN_EXTEND

• DEV_RX_OFFLOAD_CHECKSUM

• DEV_RX_OFFLOAD_HEADER_SPLIT

• dev_conf

fdir_conf->mode will also be checked.

RX Burst Size

As vPMD is focused on high throughput, it assumes that the RX burst size is equal to or greater
than 32 per burst. It returns zero if using nb_pkt < 32 as the expected packet number in the
receive handler.

19.1.2 TX Constraint

Prerequisite

The only prerequisite is related to tx_rs_thresh. The tx_rs_thresh value must be
greater than or equal to RTE_PMD_IXGBE_TX_MAX_BURST, but less or equal to
RTE_IXGBE_TX_MAX_FREE_BUF_SZ. Consequently, by default the tx_rs_thresh value is
in the range 32 to 64.

Feature not Supported by TX Vector PMD

TX vPMD only works when offloads is set to 0

This means that it does not support any TX offload.

19.1. Vector PMD for IXGBE 98

Network Interface Controller Drivers, Release 18.08.1

19.2 Application Programming Interface

In DPDK release v16.11 an API for ixgbe specific functions has been added to the ixgbe PMD.
The declarations for the API functions are in the header rte_pmd_ixgbe.h.

19.3 Sample Application Notes

19.3.1 l3fwd

When running l3fwd with vPMD, there is one thing to note. In the configuration, ensure that
DEV_RX_OFFLOAD_CHECKSUM in port_conf.rxmode.offloads is NOT set. Otherwise, by
default, RX vPMD is disabled.

19.3.2 load_balancer

As in the case of l3fwd, to enable vPMD, do NOT set DEV_RX_OFFLOAD_CHECKSUM
in port_conf.rxmode.offloads. In addition, for improved performance, use -bsz
“(32,32),(64,64),(32,32)” in load_balancer to avoid using the default burst size of 144.

19.4 Limitations or Known issues

19.4.1 Malicious Driver Detection not Supported

The Intel x550 series NICs support a feature called MDD (Malicious Driver Detection) which
checks the behavior of the VF driver. If this feature is enabled, the VF must use the advanced
context descriptor correctly and set the CC (Check Context) bit. DPDK PF doesn’t support
MDD, but kernel PF does. We may hit problem in this scenario kernel PF + DPDK VF. If
user enables MDD in kernel PF, DPDK VF will not work. Because kernel PF thinks the VF is
malicious. But actually it’s not. The only reason is the VF doesn’t act as MDD required. There’s
significant performance impact to support MDD. DPDK should check if the advanced context
descriptor should be set and set it. And DPDK has to ask the info about the header length from
the upper layer, because parsing the packet itself is not acceptable. So, it’s too expensive to
support MDD. When using kernel PF + DPDK VF on x550, please make sure to use a kernel
PF driver that disables MDD or can disable MDD.

Some kernel drivers already disable MDD by default while some kernels can use the command
insmod ixgbe.ko MDD=0,0 to disable MDD. Each “0” in the command refers to a port. For
example, if there are 6 ixgbe ports, the command should be changed to insmod ixgbe.ko
MDD=0,0,0,0,0,0.

19.4.2 Statistics

The statistics of ixgbe hardware must be polled regularly in order for it to remain consistent.
Running a DPDK application without polling the statistics will cause registers on hardware to
count to the maximum value, and “stick” at that value.

In order to avoid statistic registers every reaching the maximum value, read the statistics from
the hardware using rte_eth_stats_get() or rte_eth_xstats_get().

19.2. Application Programming Interface 99

Network Interface Controller Drivers, Release 18.08.1

The maximum time between statistics polls that ensures consistent results can be calculated
as follows:

max_read_interval = UINT_MAX / max_packets_per_second
max_read_interval = 4294967295 / 14880952
max_read_interval = 288.6218096127183 (seconds)
max_read_interval = ~4 mins 48 sec.

In order to ensure valid results, it is recommended to poll every 4 minutes.

19.4.3 MTU setting

Although the user can set the MTU separately on PF and VF ports, the ixgbe NIC only supports
one global MTU per physical port. So when the user sets different MTUs on PF and VF ports
in one physical port, the real MTU for all these PF and VF ports is the largest value set. This
behavior is based on the kernel driver behavior.

19.4.4 VF MAC address setting

On ixgbe, the concept of “pool” can be used for different things depending on the mode. In
VMDq mode, “pool” means a VMDq pool. In IOV mode, “pool” means a VF.

There is no RTE API to add a VF’s MAC address from the PF. On ixgbe, the
rte_eth_dev_mac_addr_add() function can be used to add a VF’s MAC address, as a
workaround.

19.5 Inline crypto processing support

Inline IPsec processing is supported for RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO
mode for ESP packets only:

• ESP authentication only: AES-128-GMAC (128-bit key)

• ESP encryption and authentication: AES-128-GCM (128-bit key)

IPsec Security Gateway Sample Application supports inline IPsec processing for ixgbe PMD.

For more details see the IPsec Security Gateway Sample Application and Security library doc-
umentation.

19.6 Virtual Function Port Representors

The IXGBE PF PMD supports the creation of VF port representors for the control and moni-
toring of IXGBE virtual function devices. Each port representor corresponds to a single virtual
function of that device. Using the devargs option representor the user can specify which
virtual functions to create port representors for on initialization of the PF PMD by passing the
VF IDs of the VFs which are required.:

-w DBDF,representor=[0,1,4]

Currently hot-plugging of representor ports is not supported so all required representors must
be specified on the creation of the PF.

19.5. Inline crypto processing support 100

Network Interface Controller Drivers, Release 18.08.1

19.7 Supported Chipsets and NICs

• Intel 82599EB 10 Gigabit Ethernet Controller

• Intel 82598EB 10 Gigabit Ethernet Controller

• Intel 82599ES 10 Gigabit Ethernet Controller

• Intel 82599EN 10 Gigabit Ethernet Controller

• Intel Ethernet Controller X540-AT2

• Intel Ethernet Controller X550-BT2

• Intel Ethernet Controller X550-AT2

• Intel Ethernet Controller X550-AT

• Intel Ethernet Converged Network Adapter X520-SR1

• Intel Ethernet Converged Network Adapter X520-SR2

• Intel Ethernet Converged Network Adapter X520-LR1

• Intel Ethernet Converged Network Adapter X520-DA1

• Intel Ethernet Converged Network Adapter X520-DA2

• Intel Ethernet Converged Network Adapter X520-DA4

• Intel Ethernet Converged Network Adapter X520-QDA1

• Intel Ethernet Converged Network Adapter X520-T2

• Intel 10 Gigabit AF DA Dual Port Server Adapter

• Intel 10 Gigabit AT Server Adapter

• Intel 10 Gigabit AT2 Server Adapter

• Intel 10 Gigabit CX4 Dual Port Server Adapter

• Intel 10 Gigabit XF LR Server Adapter

• Intel 10 Gigabit XF SR Dual Port Server Adapter

• Intel 10 Gigabit XF SR Server Adapter

• Intel Ethernet Converged Network Adapter X540-T1

• Intel Ethernet Converged Network Adapter X540-T2

• Intel Ethernet Converged Network Adapter X550-T1

• Intel Ethernet Converged Network Adapter X550-T2

19.7. Supported Chipsets and NICs 101

CHAPTER

TWENTY

INTEL VIRTUAL FUNCTION DRIVER

Supported Intel® Ethernet Controllers (see the DPDK Release Notes for details) support the
following modes of operation in a virtualized environment:

• SR-IOV mode: Involves direct assignment of part of the port resources to different guest
operating systems using the PCI-SIG Single Root I/O Virtualization (SR IOV) standard,
also known as “native mode” or “pass-through” mode. In this chapter, this mode is re-
ferred to as IOV mode.

• VMDq mode: Involves central management of the networking resources by an IO Virtual
Machine (IOVM) or a Virtual Machine Monitor (VMM), also known as software switch
acceleration mode. In this chapter, this mode is referred to as the Next Generation VMDq
mode.

20.1 SR-IOV Mode Utilization in a DPDK Environment

The DPDK uses the SR-IOV feature for hardware-based I/O sharing in IOV mode. Therefore,
it is possible to partition SR-IOV capability on Ethernet controller NIC resources logically and
expose them to a virtual machine as a separate PCI function called a “Virtual Function”. Refer
to Fig. 20.1.

Therefore, a NIC is logically distributed among multiple virtual machines (as shown in Fig.
20.1), while still having global data in common to share with the Physical Function and other
Virtual Functions. The DPDK fm10kvf, i40evf, igbvf or ixgbevf as a Poll Mode Driver (PMD)
serves for the Intel® 82576 Gigabit Ethernet Controller, Intel® Ethernet Controller I350 family,
Intel® 82599 10 Gigabit Ethernet Controller NIC, Intel® Fortville 10/40 Gigabit Ethernet Con-
troller NIC’s virtual PCI function, or PCIe host-interface of the Intel Ethernet Switch FM10000
Series. Meanwhile the DPDK Poll Mode Driver (PMD) also supports “Physical Function” of
such NIC’s on the host.

The DPDK PF/VF Poll Mode Driver (PMD) supports the Layer 2 switch on Intel® 82576 Gigabit
Ethernet Controller, Intel® Ethernet Controller I350 family, Intel® 82599 10 Gigabit Ethernet
Controller, and Intel® Fortville 10/40 Gigabit Ethernet Controller NICs so that guest can choose
it for inter virtual machine traffic in SR-IOV mode.

For more detail on SR-IOV, please refer to the following documents:

• SR-IOV provides hardware based I/O sharing

• PCI-SIG-Single Root I/O Virtualization Support on IA

• Scalable I/O Virtualized Servers

102

http://www.intel.com/network/connectivity/solutions/vmdc.htm
http://www.intel.com/content/www/us/en/pci-express/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.html
http://www.intel.com/content/www/us/en/virtualization/server-virtualization/scalable-i-o-virtualized-servers-paper.html

Network Interface Controller Drivers, Release 18.08.1

Fig. 20.1: Virtualization for a Single Port NIC in SR-IOV Mode

20.1. SR-IOV Mode Utilization in a DPDK Environment 103

Network Interface Controller Drivers, Release 18.08.1

20.1.1 Physical and Virtual Function Infrastructure

The following describes the Physical Function and Virtual Functions infrastructure for the sup-
ported Ethernet Controller NICs.

Virtual Functions operate under the respective Physical Function on the same NIC Port and
therefore have no access to the global NIC resources that are shared between other functions
for the same NIC port.

A Virtual Function has basic access to the queue resources and control structures of the
queues assigned to it. For global resource access, a Virtual Function has to send a request to
the Physical Function for that port, and the Physical Function operates on the global resources
on behalf of the Virtual Function. For this out-of-band communication, an SR-IOV enabled NIC
provides a memory buffer for each Virtual Function, which is called a “Mailbox”.

Intel® Ethernet Adaptive Virtual Function

Adaptive Virtual Function (AVF) is a SR-IOV Virtual Function with the same device id
(8086:1889) on different Intel Ethernet Controller. AVF Driver is VF driver which supports
for all future Intel devices without requiring a VM update. And since this happens to be an
adaptive VF driver, every new drop of the VF driver would add more and more advanced fea-
tures that can be turned on in the VM if the underlying HW device supports those advanced
features based on a device agnostic way without ever compromising on the base functionality.
AVF provides generic hardware interface and interface between AVF driver and a compliant
PF driver is specified.

Intel products starting Ethernet Controller 700 Series to support Adaptive Virtual Function.

The way to generate Virtual Function is like normal, and the resource of VF assignment de-
pends on the NIC Infrastructure.

For more detail on SR-IOV, please refer to the following documents:

• Intel® AVF HAS

Note: To use DPDK AVF PMD on Intel® 700 Series Ethernet Controller, the device
id (0x1889) need to specified during device assignment in hypervisor. Take qemu for
example, the device assignment should carry the AVF device id (0x1889) like -device
vfio-pci,x-pci-device-id=0x1889,host=03:0a.0.

The PCIE host-interface of Intel Ethernet Switch FM10000 Series VF infrastructure

In a virtualized environment, the programmer can enable a maximum of 64 Virtual Functions
(VF) globally per PCIE host-interface of the Intel Ethernet Switch FM10000 Series device.
Each VF can have a maximum of 16 queue pairs. The Physical Function in host could be only
configured by the Linux* fm10k driver (in the case of the Linux Kernel-based Virtual Machine
[KVM]), DPDK PMD PF driver doesn’t support it yet.

For example,

• Using Linux* fm10k driver:

rmmod fm10k (To remove the fm10k module)
insmod fm0k.ko max_vfs=2,2 (To enable two Virtual Functions per port)

20.1. SR-IOV Mode Utilization in a DPDK Environment 104

https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ethernet-adaptive-virtual-function-hardware-spec.pdf

Network Interface Controller Drivers, Release 18.08.1

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for
a dual-port NIC. When you enable the four Virtual Functions with the above command, the four
enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence
starting from 0 to 3. However:

• Virtual Functions 0 and 2 belong to Physical Function 0

• Virtual Functions 1 and 3 belong to Physical Function 1

Note: The above is an important consideration to take into account when targeting specific
packets to a selected port.

Intel® X710/XL710 Gigabit Ethernet Controller VF Infrastructure

In a virtualized environment, the programmer can enable a maximum of 128
Virtual Functions (VF) globally per Intel® X710/XL710 Gigabit Ethernet Controller
NIC device. The number of queue pairs of each VF can be configured by
CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VF in config file. The Physical Function
in host could be either configured by the Linux* i40e driver (in the case of the Linux Kernel-
based Virtual Machine [KVM]) or by DPDK PMD PF driver. When using both DPDK PMD
PF/VF drivers, the whole NIC will be taken over by DPDK based application.

For example,

• Using Linux* i40e driver:

rmmod i40e (To remove the i40e module)
insmod i40e.ko max_vfs=2,2 (To enable two Virtual Functions per port)

• Using the DPDK PMD PF i40e driver:

Kernel Params: iommu=pt, intel_iommu=on

modprobe uio
insmod igb_uio
./dpdk-devbind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific PCI device)

Launch the DPDK testpmd/example or your own host daemon application using the
DPDK PMD library.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for
a dual-port NIC. When you enable the four Virtual Functions with the above command, the four
enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence
starting from 0 to 3. However:

• Virtual Functions 0 and 2 belong to Physical Function 0

• Virtual Functions 1 and 3 belong to Physical Function 1

Note: The above is an important consideration to take into account when targeting specific
packets to a selected port.

For Intel® X710/XL710 Gigabit Ethernet Controller, queues are in pairs. One queue pair means
one receive queue and one transmit queue. The default number of queue pairs per VF is 4,
and can be 16 in maximum.

20.1. SR-IOV Mode Utilization in a DPDK Environment 105

Network Interface Controller Drivers, Release 18.08.1

Intel® 82599 10 Gigabit Ethernet Controller VF Infrastructure

The programmer can enable a maximum of 63 Virtual Functions and there must be one Phys-
ical Function per Intel® 82599 10 Gigabit Ethernet Controller NIC port. The reason for this is
that the device allows for a maximum of 128 queues per port and a virtual/physical function
has to have at least one queue pair (RX/TX). The current implementation of the DPDK ixgbevf
driver supports a single queue pair (RX/TX) per Virtual Function. The Physical Function in host
could be either configured by the Linux* ixgbe driver (in the case of the Linux Kernel-based Vir-
tual Machine [KVM]) or by DPDK PMD PF driver. When using both DPDK PMD PF/VF drivers,
the whole NIC will be taken over by DPDK based application.

For example,

• Using Linux* ixgbe driver:

rmmod ixgbe (To remove the ixgbe module)
insmod ixgbe max_vfs=2,2 (To enable two Virtual Functions per port)

• Using the DPDK PMD PF ixgbe driver:

Kernel Params: iommu=pt, intel_iommu=on

modprobe uio
insmod igb_uio
./dpdk-devbind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific PCI device)

Launch the DPDK testpmd/example or your own host daemon application using the
DPDK PMD library.

• Using the DPDK PMD PF ixgbe driver to enable VF RSS:

Same steps as above to install the modules of uio, igb_uio, specify max_vfs for PCI
device, and launch the DPDK testpmd/example or your own host daemon application
using the DPDK PMD library.

The available queue number (at most 4) per VF depends on the total number of pool,
which is determined by the max number of VF at PF initialization stage and the number
of queue specified in config:

– If the max number of VFs (max_vfs) is set in the range of 1 to 32:

If the number of Rx queues is specified as 4 (--rxq=4 in testpmd), then there are
totally 32 pools (ETH_32_POOLS), and each VF could have 4 Rx queues;

If the number of Rx queues is specified as 2 (--rxq=2 in testpmd), then there are
totally 32 pools (ETH_32_POOLS), and each VF could have 2 Rx queues;

– If the max number of VFs (max_vfs) is in the range of 33 to 64:

If the number of Rx queues in specified as 4 (--rxq=4 in testpmd), then error
message is expected as rxq is not correct at this case;

If the number of rxq is 2 (--rxq=2 in testpmd), then there is totally 64 pools
(ETH_64_POOLS), and each VF have 2 Rx queues;

On host, to enable VF RSS functionality, rx mq mode should be set as
ETH_MQ_RX_VMDQ_RSS or ETH_MQ_RX_RSS mode, and SRIOV mode should be
activated (max_vfs >= 1). It also needs config VF RSS information like hash function,
RSS key, RSS key length.

20.1. SR-IOV Mode Utilization in a DPDK Environment 106

Network Interface Controller Drivers, Release 18.08.1

Note: The limitation for VF RSS on Intel® 82599 10 Gigabit Ethernet Controller is: The hash
and key are shared among PF and all VF, the RETA table with 128 entries is also shared among
PF and all VF; So it could not to provide a method to query the hash and reta content per VF
on guest, while, if possible, please query them on host for the shared RETA information.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for
a dual-port NIC. When you enable the four Virtual Functions with the above command, the four
enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence
starting from 0 to 3. However:

• Virtual Functions 0 and 2 belong to Physical Function 0

• Virtual Functions 1 and 3 belong to Physical Function 1

Note: The above is an important consideration to take into account when targeting specific
packets to a selected port.

Intel® 82576 Gigabit Ethernet Controller and Intel® Ethernet Controller I350 Family VF
Infrastructure

In a virtualized environment, an Intel® 82576 Gigabit Ethernet Controller serves up to eight
virtual machines (VMs). The controller has 16 TX and 16 RX queues. They are generally
referred to (or thought of) as queue pairs (one TX and one RX queue). This gives the controller
16 queue pairs.

A pool is a group of queue pairs for assignment to the same VF, used for transmit and receive
operations. The controller has eight pools, with each pool containing two queue pairs, that is,
two TX and two RX queues assigned to each VF.

In a virtualized environment, an Intel® Ethernet Controller I350 family device serves up to eight
virtual machines (VMs) per port. The eight queues can be accessed by eight different VMs if
configured correctly (the i350 has 4x1GbE ports each with 8T X and 8 RX queues), that means,
one Transmit and one Receive queue assigned to each VF.

For example,

• Using Linux* igb driver:

rmmod igb (To remove the igb module)
insmod igb max_vfs=2,2 (To enable two Virtual Functions per port)

• Using DPDK PMD PF igb driver:

Kernel Params: iommu=pt, intel_iommu=on modprobe uio

insmod igb_uio
./dpdk-devbind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific pci device)

Launch DPDK testpmd/example or your own host daemon application using the DPDK
PMD library.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for
a four-port NIC. When you enable the four Virtual Functions with the above command, the four
enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence,
starting from 0 to 7. However:

20.1. SR-IOV Mode Utilization in a DPDK Environment 107

Network Interface Controller Drivers, Release 18.08.1

• Virtual Functions 0 and 4 belong to Physical Function 0

• Virtual Functions 1 and 5 belong to Physical Function 1

• Virtual Functions 2 and 6 belong to Physical Function 2

• Virtual Functions 3 and 7 belong to Physical Function 3

Note: The above is an important consideration to take into account when targeting specific
packets to a selected port.

20.1.2 Validated Hypervisors

The validated hypervisor is:

• KVM (Kernel Virtual Machine) with Qemu, version 0.14.0

However, the hypervisor is bypassed to configure the Virtual Function devices using the Mail-
box interface, the solution is hypervisor-agnostic. Xen* and VMware* (when SR- IOV is sup-
ported) will also be able to support the DPDK with Virtual Function driver support.

20.1.3 Expected Guest Operating System in Virtual Machine

The expected guest operating systems in a virtualized environment are:

• Fedora* 14 (64-bit)

• Ubuntu* 10.04 (64-bit)

For supported kernel versions, refer to the DPDK Release Notes.

20.2 Setting Up a KVM Virtual Machine Monitor

The following describes a target environment:

• Host Operating System: Fedora 14

• Hypervisor: KVM (Kernel Virtual Machine) with Qemu version 0.14.0

• Guest Operating System: Fedora 14

• Linux Kernel Version: Refer to the DPDK Getting Started Guide

• Target Applications: l2fwd, l3fwd-vf

The setup procedure is as follows:

1. Before booting the Host OS, open BIOS setup and enable Intel® VT features.

2. While booting the Host OS kernel, pass the intel_iommu=on kernel command line ar-
gument using GRUB. When using DPDK PF driver on host, pass the iommu=pt kernel
command line argument in GRUB.

3. Download qemu-kvm-0.14.0 from http://sourceforge.net/projects/kvm/files/qemu-kvm/
and install it in the Host OS using the following steps:

When using a recent kernel (2.6.25+) with kvm modules included:

20.2. Setting Up a KVM Virtual Machine Monitor 108

http://sourceforge.net/projects/kvm/files/qemu-kvm/

Network Interface Controller Drivers, Release 18.08.1

tar xzf qemu-kvm-release.tar.gz
cd qemu-kvm-release
./configure --prefix=/usr/local/kvm
make
sudo make install
sudo /sbin/modprobe kvm-intel

When using an older kernel, or a kernel from a distribution without the kvm modules, you
must download (from the same link), compile and install the modules yourself:

tar xjf kvm-kmod-release.tar.bz2
cd kvm-kmod-release
./configure
make
sudo make install
sudo /sbin/modprobe kvm-intel

qemu-kvm installs in the /usr/local/bin directory.

For more details about KVM configuration and usage, please refer to:

http://www.linux-kvm.org/page/HOWTO1.

4. Create a Virtual Machine and install Fedora 14 on the Virtual Machine. This is referred
to as the Guest Operating System (Guest OS).

5. Download and install the latest ixgbe driver from:

http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=14687

6. In the Host OS

When using Linux kernel ixgbe driver, unload the Linux ixgbe driver and reload it with the
max_vfs=2,2 argument:

rmmod ixgbe
modprobe ixgbe max_vfs=2,2

When using DPDK PMD PF driver, insert DPDK kernel module igb_uio and set the num-
ber of VF by sysfs max_vfs:

modprobe uio
insmod igb_uio
./dpdk-devbind.py -b igb_uio 02:00.0 02:00.1 0e:00.0 0e:00.1
echo 2 > /sys/bus/pci/devices/0000\:02\:00.0/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:02\:00.1/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:0e\:00.0/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:0e\:00.1/max_vfs

Note: You need to explicitly specify number of vfs for each port, for example, in the
command above, it creates two vfs for the first two ixgbe ports.

Let say we have a machine with four physical ixgbe ports:

0000:02:00.0

0000:02:00.1

0000:0e:00.0

0000:0e:00.1

The command above creates two vfs for device 0000:02:00.0:

20.2. Setting Up a KVM Virtual Machine Monitor 109

http://www.linux-kvm.org/page/HOWTO1
http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=14687

Network Interface Controller Drivers, Release 18.08.1

ls -alrt /sys/bus/pci/devices/0000\:02\:00.0/virt*
lrwxrwxrwx. 1 root root 0 Apr 13 05:40 /sys/bus/pci/devices/0000:02:00.0/virtfn1 -> ../0000:02:10.2
lrwxrwxrwx. 1 root root 0 Apr 13 05:40 /sys/bus/pci/devices/0000:02:00.0/virtfn0 -> ../0000:02:10.0

It also creates two vfs for device 0000:02:00.1:

ls -alrt /sys/bus/pci/devices/0000\:02\:00.1/virt*
lrwxrwxrwx. 1 root root 0 Apr 13 05:51 /sys/bus/pci/devices/0000:02:00.1/virtfn1 -> ../0000:02:10.3
lrwxrwxrwx. 1 root root 0 Apr 13 05:51 /sys/bus/pci/devices/0000:02:00.1/virtfn0 -> ../0000:02:10.1

7. List the PCI devices connected and notice that the Host OS shows two Physical Functions
(traditional ports) and four Virtual Functions (two for each port). This is the result of the
previous step.

8. Insert the pci_stub module to hold the PCI devices that are freed from
the default driver using the following command (see http://www.linux-
kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM Section 4 for more in-
formation):

sudo /sbin/modprobe pci-stub

Unbind the default driver from the PCI devices representing the Virtual Functions. A
script to perform this action is as follows:

echo "8086 10ed" > /sys/bus/pci/drivers/pci-stub/new_id
echo 0000:08:10.0 > /sys/bus/pci/devices/0000:08:10.0/driver/unbind
echo 0000:08:10.0 > /sys/bus/pci/drivers/pci-stub/bind

where, 0000:08:10.0 belongs to the Virtual Function visible in the Host OS.

9. Now, start the Virtual Machine by running the following command:

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -smp 4 -boot c -hda lucid.qcow2 -device pci-assign,host=08:10.0

where:

— -m = memory to assign

—-smp = number of smp cores

— -boot = boot option

—-hda = virtual disk image

— -device = device to attach

Note: — The pci-assign,host=08:10.0 value indicates that you want to attach a PCI
device to a Virtual Machine and the respective (Bus:Device.Function) numbers should
be passed for the Virtual Function to be attached.

— qemu-kvm-0.14.0 allows a maximum of four PCI devices assigned to a VM, but this
is qemu-kvm version dependent since qemu-kvm-0.14.1 allows a maximum of five PCI
devices.

— qemu-system-x86_64 also has a -cpu command line option that is used to select the
cpu_model to emulate in a Virtual Machine. Therefore, it can be used as:

/usr/local/kvm/bin/qemu-system-x86_64 -cpu ?

(to list all available cpu_models)

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -cpu host -smp 4 -boot c -hda lucid.qcow2 -device pci-assign,host=08:10.0

(to use the same cpu_model equivalent to the host cpu)

20.2. Setting Up a KVM Virtual Machine Monitor 110

http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM
http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM

Network Interface Controller Drivers, Release 18.08.1

For more information, please refer to: http://wiki.qemu.org/Features/CPUModels.

10. If use vfio-pci to pass through device instead of pci-assign, steps 8 and 9 need to be
updated to bind device to vfio-pci and replace pci-assign with vfio-pci when start virtual
machine.

sudo /sbin/modprobe vfio-pci

echo "8086 10ed" > /sys/bus/pci/drivers/vfio-pci/new_id
echo 0000:08:10.0 > /sys/bus/pci/devices/0000:08:10.0/driver/unbind
echo 0000:08:10.0 > /sys/bus/pci/drivers/vfio-pci/bind

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -smp 4 -boot c -hda lucid.qcow2 -device vfio-pci,host=08:10.0

11. Install and run DPDK host app to take over the Physical Function. Eg.

make install T=x86_64-native-linuxapp-gcc
./x86_64-native-linuxapp-gcc/app/testpmd -l 0-3 -n 4 -- -i

12. Finally, access the Guest OS using vncviewer with the localhost:5900 port and check the
lspci command output in the Guest OS. The virtual functions will be listed as available for
use.

13. Configure and install the DPDK with an x86_64-native-linuxapp-gcc configuration on the
Guest OS as normal, that is, there is no change to the normal installation procedure.

make config T=x86_64-native-linuxapp-gcc O=x86_64-native-linuxapp-gcc
cd x86_64-native-linuxapp-gcc
make

Note: If you are unable to compile the DPDK and you are getting “error: CPU you selected
does not support x86-64 instruction set”, power off the Guest OS and start the virtual machine
with the correct -cpu option in the qemu- system-x86_64 command as shown in step 9. You
must select the best x86_64 cpu_model to emulate or you can select host option if available.

Note: Run the DPDK l2fwd sample application in the Guest OS with Hugepages enabled. For
the expected benchmark performance, you must pin the cores from the Guest OS to the Host
OS (taskset can be used to do this) and you must also look at the PCI Bus layout on the board
to ensure you are not running the traffic over the QPI Interface.

Note:

• The Virtual Machine Manager (the Fedora package name is virt-manager) is a utility
for virtual machine management that can also be used to create, start, stop and delete
virtual machines. If this option is used, step 2 and 6 in the instructions provided will be
different.

• virsh, a command line utility for virtual machine management, can also be used to bind
and unbind devices to a virtual machine in Ubuntu. If this option is used, step 6 in the
instructions provided will be different.

• The Virtual Machine Monitor (see Fig. 20.2) is equivalent to a Host OS with KVM installed
as described in the instructions.

20.2. Setting Up a KVM Virtual Machine Monitor 111

http://wiki.qemu.org/Features/CPUModels

Network Interface Controller Drivers, Release 18.08.1

Fig. 20.2: Performance Benchmark Setup

20.3 DPDK SR-IOV PMD PF/VF Driver Usage Model

20.3.1 Fast Host-based Packet Processing

Software Defined Network (SDN) trends are demanding fast host-based packet handling. In a
virtualization environment, the DPDK VF PMD driver performs the same throughput result as
a non-VT native environment.

With such host instance fast packet processing, lots of services such as filtering, QoS, DPI can
be offloaded on the host fast path.

Fig. 20.3 shows the scenario where some VMs directly communicate externally via a VFs,
while others connect to a virtual switch and share the same uplink bandwidth.

20.4 SR-IOV (PF/VF) Approach for Inter-VM Communication

Inter-VM data communication is one of the traffic bottle necks in virtualization platforms. SR-
IOV device assignment helps a VM to attach the real device, taking advantage of the bridge in
the NIC. So VF-to-VF traffic within the same physical port (VM0<->VM1) have hardware accel-
eration. However, when VF crosses physical ports (VM0<->VM2), there is no such hardware
bridge. In this case, the DPDK PMD PF driver provides host forwarding between such VMs.

Fig. 20.4 shows an example. In this case an update of the MAC address lookup tables in both
the NIC and host DPDK application is required.

In the NIC, writing the destination of a MAC address belongs to another cross device VM to
the PF specific pool. So when a packet comes in, its destination MAC address will match and
forward to the host DPDK PMD application.

In the host DPDK application, the behavior is similar to L2 forwarding, that is, the packet is

20.3. DPDK SR-IOV PMD PF/VF Driver Usage Model 112

Network Interface Controller Drivers, Release 18.08.1

Fig. 20.3: Fast Host-based Packet Processing

forwarded to the correct PF pool. The SR-IOV NIC switch forwards the packet to a specific VM
according to the MAC destination address which belongs to the destination VF on the VM.

20.4. SR-IOV (PF/VF) Approach for Inter-VM Communication 113

Network Interface Controller Drivers, Release 18.08.1

Fig. 20.4: Inter-VM Communication

20.4. SR-IOV (PF/VF) Approach for Inter-VM Communication 114

CHAPTER

TWENTYONE

KNI POLL MODE DRIVER

KNI PMD is wrapper to the librte_kni library.

This PMD enables using KNI without having a KNI specific application, any forwarding appli-
cation can use PMD interface for KNI.

Sending packets to any DPDK controlled interface or sending to the Linux networking stack will
be transparent to the DPDK application.

To create a KNI device net_kni# device name should be used, and this will create kni#
Linux virtual network interface.

There is no physical device backend for the virtual KNI device.

Packets sent to the KNI Linux interface will be received by the DPDK application, and DPDK
application may forward packets to a physical NIC or to a virtual device (like another KNI
interface or PCAP interface).

To forward any traffic from physical NIC to the Linux networking stack, an application should
control a physical port and create one virtual KNI port, and forward between two.

Using this PMD requires KNI kernel module be inserted.

21.1 Usage

EAL --vdev argument can be used to create KNI device instance, like:

testpmd --vdev=net_kni0 --vdev=net_kn1 -- -i

Above command will create kni0 and kni1 Linux network interfaces, those interfaces can be
controlled by standard Linux tools.

When testpmd forwarding starts, any packets sent to kni0 interface forwarded to the kni1
interface and vice versa.

There is no hard limit on number of interfaces that can be created.

21.2 Default interface configuration

librte_kni can create Linux network interfaces with different features, feature set controlled
by a configuration struct, and KNI PMD uses a fixed configuration:

115

Network Interface Controller Drivers, Release 18.08.1

Interface name: kni#
force bind kernel thread to a core : NO
mbuf size: MAX_PACKET_SZ

KNI control path is not supported with the PMD, since there is no physical backend device by
default.

21.3 PMD arguments

no_request_thread, by default PMD creates a phtread for each KNI interface to handle
Linux network interface control commands, like ifconfig kni0 up

With no_request_thread option, pthread is not created and control commands not handled
by PMD.

By default request thread is enabled. And this argument should not be used most of the time,
unless this PMD used with customized DPDK application to handle requests itself.

Argument usage:

testpmd --vdev "net_kni0,no_request_thread=1" -- -i

21.4 PMD log messages

If KNI kernel module (rte_kni.ko) not inserted, following error log printed:

"KNI: KNI subsystem has not been initialized. Invoke rte_kni_init() first"

21.5 PMD testing

It is possible to test PMD quickly using KNI kernel module loopback feature:

• Insert KNI kernel module with loopback support:

insmod build/kmod/rte_kni.ko lo_mode=lo_mode_fifo_skb

• Start testpmd with no physical device but two KNI virtual devices:

./testpmd --vdev net_kni0 --vdev net_kni1 -- -i

...
Configuring Port 0 (socket 0)
KNI: pci: 00:00:00 c580:b8
Port 0: 1A:4A:5B:7C:A2:8C
Configuring Port 1 (socket 0)
KNI: pci: 00:00:00 600:b9
Port 1: AE:95:21:07:93:DD
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

• Observe Linux interfaces

$ ifconfig kni0 && ifconfig kni1
kni0: flags=4098<BROADCAST,MULTICAST> mtu 1500

ether ae:8e:79:8e:9b:c8 txqueuelen 1000 (Ethernet)

21.3. PMD arguments 116

Network Interface Controller Drivers, Release 18.08.1

RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

kni1: flags=4098<BROADCAST,MULTICAST> mtu 1500
ether 9e:76:43:53:3e:9b txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

• Start forwarding with tx_first:

testpmd> start tx_first

• Quit and check forwarding stats:

testpmd> quit
Telling cores to stop...
Waiting for lcores to finish...

---------------------- Forward statistics for port 0 ----------------------
RX-packets: 35637905 RX-dropped: 0 RX-total: 35637905
TX-packets: 35637947 TX-dropped: 0 TX-total: 35637947
--

---------------------- Forward statistics for port 1 ----------------------
RX-packets: 35637915 RX-dropped: 0 RX-total: 35637915
TX-packets: 35637937 TX-dropped: 0 TX-total: 35637937
--

+++++++++++++++ Accumulated forward statistics for all ports+++++++++++++++
RX-packets: 71275820 RX-dropped: 0 RX-total: 71275820
TX-packets: 71275884 TX-dropped: 0 TX-total: 71275884
++

21.5. PMD testing 117

CHAPTER

TWENTYTWO

LIQUIDIO VF POLL MODE DRIVER

The LiquidIO VF PMD library (librte_pmd_lio) provides poll mode driver support for Cavium
LiquidIO® II server adapter VFs. PF management and VF creation can be done using kernel
driver.

More information can be found at Cavium Official Website.

22.1 Supported LiquidIO Adapters

• LiquidIO II CN2350 210SV/225SV

• LiquidIO II CN2350 210SVPT

• LiquidIO II CN2360 210SV/225SV

• LiquidIO II CN2360 210SVPT

22.2 Pre-Installation Configuration

The following options can be modified in the config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_LIO_PMD (default y)

Toggle compilation of LiquidIO PMD.

• CONFIG_RTE_LIBRTE_LIO_DEBUG_RX (default n)

Toggle display of receive fast path run-time messages.

• CONFIG_RTE_LIBRTE_LIO_DEBUG_TX (default n)

Toggle display of transmit fast path run-time messages.

• CONFIG_RTE_LIBRTE_LIO_DEBUG_MBOX (default n)

Toggle display of mailbox messages.

• CONFIG_RTE_LIBRTE_LIO_DEBUG_REGS (default n)

Toggle display of register reads and writes.

118

http://cavium.com/LiquidIO_Adapters.html

Network Interface Controller Drivers, Release 18.08.1

22.3 SR-IOV: Prerequisites and Sample Application Notes

This section provides instructions to configure SR-IOV with Linux OS.

1. Verify SR-IOV and ARI capabilities are enabled on the adapter using lspci:

lspci -s <slot> -vvv

Example output:

[...]
Capabilities: [148 v1] Alternative Routing-ID Interpretation (ARI)
[...]
Capabilities: [178 v1] Single Root I/O Virtualization (SR-IOV)
[...]
Kernel driver in use: LiquidIO

2. Load the kernel module:

modprobe liquidio

3. Bring up the PF ports:

ifconfig p4p1 up
ifconfig p4p2 up

4. Change PF MTU if required:

ifconfig p4p1 mtu 9000
ifconfig p4p2 mtu 9000

5. Create VF device(s):

Echo number of VFs to be created into "sriov_numvfs" sysfs entry of the parent PF.

echo 1 > /sys/bus/pci/devices/0000:03:00.0/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000:03:00.1/sriov_numvfs

6. Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:

ip link set <PF iface> vf <VF id> mac <macaddr>

Example output:

ip link set p4p1 vf 0 mac F2:A8:1B:5E:B4:66

7. Assign VF(s) to VM.

The VF devices may be passed through to the guest VM using qemu or virt-manager or
virsh etc.

Example qemu guest launch command:

./qemu-system-x86_64 -name lio-vm -machine accel=kvm \
-cpu host -m 4096 -smp 4 \
-drive file=<disk_file>,if=none,id=disk1,format=<type> \
-device virtio-blk-pci,scsi=off,drive=disk1,id=virtio-disk1,bootindex=1 \
-device vfio-pci,host=03:00.3 -device vfio-pci,host=03:08.3

8. Running testpmd

Refer to the document compiling and testing a PMD for a NIC to run testpmd application.

Note: Use igb_uio instead of vfio-pci in VM.

22.3. SR-IOV: Prerequisites and Sample Application Notes 119

Network Interface Controller Drivers, Release 18.08.1

Example output:

[...]
EAL: PCI device 0000:03:00.3 on NUMA socket 0
EAL: probe driver: 177d:9712 net_liovf
EAL: using IOMMU type 1 (Type 1)
PMD: net_liovf[03:00.3]INFO: DEVICE : CN23XX VF
EAL: PCI device 0000:03:08.3 on NUMA socket 0
EAL: probe driver: 177d:9712 net_liovf
PMD: net_liovf[03:08.3]INFO: DEVICE : CN23XX VF
Interactive-mode selected
USER1: create a new mbuf pool <mbuf_pool_socket_0>: n=171456, size=2176, socket=0
Configuring Port 0 (socket 0)
PMD: net_liovf[03:00.3]INFO: Starting port 0
Port 0: F2:A8:1B:5E:B4:66
Configuring Port 1 (socket 0)
PMD: net_liovf[03:08.3]INFO: Starting port 1
Port 1: 32:76:CC:EE:56:D7
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

9. Enabling VF promiscuous mode

One VF per PF can be marked as trusted for promiscuous mode.

ip link set dev <PF iface> vf <VF id> trust on

22.4 Limitations

22.4.1 VF MTU

VF MTU is limited by PF MTU. Raise PF value before configuring VF for larger packet size.

22.4.2 VLAN offload

Tx VLAN insertion is not supported and consequently VLAN offload feature is marked partial.

22.4.3 Ring size

Number of descriptors for Rx/Tx ring should be in the range 128 to 512.

22.4.4 CRC striping

LiquidIO adapters strip ethernet FCS of every packet coming to the host interface.

22.4. Limitations 120

CHAPTER

TWENTYTHREE

MLX4 POLL MODE DRIVER LIBRARY

The MLX4 poll mode driver library (librte_pmd_mlx4) implements support for Mellanox
ConnectX-3 and Mellanox ConnectX-3 Pro 10/40 Gbps adapters as well as their virtual func-
tions (VF) in SR-IOV context.

Information and documentation about this family of adapters can be found on the Mellanox
website. Help is also provided by the Mellanox community.

There is also a section dedicated to this poll mode driver.

Note: Due to external dependencies, this driver is disabled by default. It must be enabled
manually by setting CONFIG_RTE_LIBRTE_MLX4_PMD=y and recompiling DPDK.

23.1 Implementation details

Most Mellanox ConnectX-3 devices provide two ports but expose a single PCI bus address,
thus unlike most drivers, librte_pmd_mlx4 registers itself as a PCI driver that allocates one
Ethernet device per detected port.

For this reason, one cannot white/blacklist a single port without also white/blacklisting the oth-
ers on the same device.

Besides its dependency on libibverbs (that implies libmlx4 and associated kernel support), li-
brte_pmd_mlx4 relies heavily on system calls for control operations such as querying/updating
the MTU and flow control parameters.

For security reasons and robustness, this driver only deals with virtual memory addresses. The
way resources allocations are handled by the kernel combined with hardware specifications
that allow it to handle virtual memory addresses directly ensure that DPDK applications cannot
access random physical memory (or memory that does not belong to the current process).

This capability allows the PMD to coexist with kernel network interfaces which remain func-
tional, although they stop receiving unicast packets as long as they share the same MAC
address.

Compiling librte_pmd_mlx4 causes DPDK to be linked against libibverbs.

121

http://www.mellanox.com
http://www.mellanox.com
http://community.mellanox.com/welcome
http://www.mellanox.com/page/products_dyn?product_family=209&mtag=pmd_for_dpdk

Network Interface Controller Drivers, Release 18.08.1

23.2 Configuration

23.2.1 Compilation options

These options can be modified in the .config file.

• CONFIG_RTE_LIBRTE_MLX4_PMD (default n)

Toggle compilation of librte_pmd_mlx4 itself.

• CONFIG_RTE_LIBRTE_MLX4_DLOPEN_DEPS (default n)

Build PMD with additional code to make it loadable without hard dependencies on libib-
verbs nor libmlx4, which may not be installed on the target system.

In this mode, their presence is still required for it to run properly, how-
ever their absence won’t prevent a DPDK application from starting (with
CONFIG_RTE_BUILD_SHARED_LIB disabled) and they won’t show up as missing
with ldd(1).

It works by moving these dependencies to a purpose-built rdma-core “glue” plug-
in which must either be installed in a directory whose name is based on
CONFIG_RTE_EAL_PMD_PATH suffixed with -glue if set, or in a standard location for
the dynamic linker (e.g. /lib) if left to the default empty string ("").

This option has no performance impact.

• CONFIG_RTE_LIBRTE_MLX4_DEBUG (default n)

Toggle debugging code and stricter compilation flags. Enabling this option adds addi-
tional run-time checks and debugging messages at the cost of lower performance.

23.2.2 Environment variables

• MLX4_GLUE_PATH

A list of directories in which to search for the rdma-core “glue” plug-in, separated by
colons or semi-colons.

Only matters when compiled with CONFIG_RTE_LIBRTE_MLX4_DLOPEN_DEPS en-
abled and most useful when CONFIG_RTE_EAL_PMD_PATH is also set, since
LD_LIBRARY_PATH has no effect in this case.

23.2.3 Run-time configuration

• librte_pmd_mlx4 brings kernel network interfaces up during initialization because it is
affected by their state. Forcing them down prevents packets reception.

• ethtool operations on related kernel interfaces also affect the PMD.

• port parameter [int]

This parameter provides a physical port to probe and can be specified multiple times for
additional ports. All ports are probed by default if left unspecified.

23.2. Configuration 122

Network Interface Controller Drivers, Release 18.08.1

23.2.4 Kernel module parameters

The mlx4_core kernel module has several parameters that affect the behavior and/or the per-
formance of librte_pmd_mlx4. Some of them are described below.

• num_vfs (integer or triplet, optionally prefixed by device address strings)

Create the given number of VFs on the specified devices.

• log_num_mgm_entry_size (integer)

Device-managed flow steering (DMFS) is required by DPDK applications. It is enabled
by using a negative value, the last four bits of which have a special meaning.

– -1: force device-managed flow steering (DMFS).

– -7: configure optimized steering mode to improve performance with the following
limitation: VLAN filtering is not supported with this mode. This is the recommended
mode in case VLAN filter is not needed.

23.3 Limitations

• CRC stripping is supported by default and always reported as “true”. The ability to en-
able/disable CRC stripping requires OFED version 4.3-1.5.0.0 and above or rdma-core
version v18 and above.

• TSO (Transmit Segmentation Offload) is supported in OFED version 4.4 and above.

23.4 Prerequisites

This driver relies on external libraries and kernel drivers for resources allocations and initial-
ization. The following dependencies are not part of DPDK and must be installed separately:

• libibverbs (provided by rdma-core package)

User space verbs framework used by librte_pmd_mlx4. This library provides a generic
interface between the kernel and low-level user space drivers such as libmlx4.

It allows slow and privileged operations (context initialization, hardware resources allo-
cations) to be managed by the kernel and fast operations to never leave user space.

• libmlx4 (provided by rdma-core package)

Low-level user space driver library for Mellanox ConnectX-3 devices, it is automatically
loaded by libibverbs.

This library basically implements send/receive calls to the hardware queues.

• Kernel modules

They provide the kernel-side verbs API and low level device drivers that manage actual
hardware initialization and resources sharing with user space processes.

Unlike most other PMDs, these modules must remain loaded and bound to their devices:

– mlx4_core: hardware driver managing Mellanox ConnectX-3 devices.

– mlx4_en: Ethernet device driver that provides kernel network interfaces.

23.3. Limitations 123

Network Interface Controller Drivers, Release 18.08.1

– mlx4_ib: InifiniBand device driver.

– ib_uverbs: user space driver for verbs (entry point for libibverbs).

• Firmware update

Mellanox OFED releases include firmware updates for ConnectX-3 adapters.

Because each release provides new features, these updates must be applied to match
the kernel modules and libraries they come with.

Note: Both libraries are BSD and GPL licensed. Linux kernel modules are GPL licensed.

Depending on system constraints and user preferences either RDMA core library with a recent
enough Linux kernel release (recommended) or Mellanox OFED, which provides compatibility
with older releases.

23.4.1 Current RDMA core package and Linux kernel (recommended)

• Minimal Linux kernel version: 4.14.

• Minimal RDMA core version: v15 (see RDMA core installation documentation).

23.4.2 Mellanox OFED as a fallback

• Mellanox OFED version: 4.3, 4.4.

• firmware version: 2.42.5000 and above.

Note: Several versions of Mellanox OFED are available. Installing the version this DPDK
release was developed and tested against is strongly recommended. Please check the pre-
requisites.

Installing Mellanox OFED

1. Download latest Mellanox OFED.

2. Install the required libraries and kernel modules either by installing only the required set,
or by installing the entire Mellanox OFED:

For bare metal use:

./mlnxofedinstall --dpdk --upstream-libs

For SR-IOV hypervisors use:

./mlnxofedinstall --dpdk --upstream-libs --enable-sriov --hypervisor

For SR-IOV virtual machine use:

./mlnxofedinstall --dpdk --upstream-libs --guest

3. Verify the firmware is the correct one:

ibv_devinfo

4. Set all ports links to Ethernet, follow instructions on the screen:

23.4. Prerequisites 124

https://raw.githubusercontent.com/linux-rdma/rdma-core/master/README.md
http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux_sw_drivers

Network Interface Controller Drivers, Release 18.08.1

connectx_port_config

5. Continue with section 2 of the Quick Start Guide.

23.5 Supported NICs

• Mellanox(R) ConnectX(R)-3 Pro 40G MCX354A-FCC_Ax (2*40G)

23.6 Quick Start Guide

1. Set all ports links to Ethernet

PCI=<NIC PCI address>
echo eth > "/sys/bus/pci/devices/$PCI/mlx4_port0"
echo eth > "/sys/bus/pci/devices/$PCI/mlx4_port1"

Note: If using Mellanox OFED one can permanently set the port link to Ethernet using
connectx_port_config tool provided by it. Mellanox OFED as a fallback :

2. In case of bare metal or hypervisor, configure optimized steering mode by adding the
following line to /etc/modprobe.d/mlx4_core.conf:

options mlx4_core log_num_mgm_entry_size=-7

Note: If VLAN filtering is used, set log_num_mgm_entry_size=-1. Performance degra-
dation can occur on this case.

3. Restart the driver:

/etc/init.d/openibd restart

or:

service openibd restart

4. Compile DPDK and you are ready to go. See instructions on Development Kit Build
System

23.7 Performance tuning

1. Verify the optimized steering mode is configured:

cat /sys/module/mlx4_core/parameters/log_num_mgm_entry_size

2. Use the CPU near local NUMA node to which the PCIe adapter is connected, for better
performance. For VMs, verify that the right CPU and NUMA node are pinned according
to the above. Run:

lstopo-no-graphics

to identify the NUMA node to which the PCIe adapter is connected.

3. If more than one adapter is used, and root complex capabilities allow to put both adapters
on the same NUMA node without PCI bandwidth degradation, it is recommended to

23.5. Supported NICs 125

Network Interface Controller Drivers, Release 18.08.1

locate both adapters on the same NUMA node. This in order to forward packets from
one to the other without NUMA performance penalty.

4. Disable pause frames:

ethtool -A <netdev> rx off tx off

5. Verify IO non-posted prefetch is disabled by default. This can be checked via the BIOS
configuration. Please contact you server provider for more information about the settings.

Note: On some machines, depends on the machine integrator, it is beneficial to set the PCI
max read request parameter to 1K. This can be done in the following way:

To query the read request size use:

setpci -s <NIC PCI address> 68.w

If the output is different than 3XXX, set it by:

setpci -s <NIC PCI address> 68.w=3XXX

The XXX can be different on different systems. Make sure to configure according to the setpci
output.

6. To minimize overhead of searching Memory Regions:

• ‘–socket-mem’ is recommended to pin memory by predictable amount.

• Configure per-lcore cache when creating Mempools for packet buffer.

• Refrain from dynamically allocating/freeing memory in run-time.

23.8 Usage example

This section demonstrates how to launch testpmd with Mellanox ConnectX-3 devices man-
aged by librte_pmd_mlx4.

1. Load the kernel modules:

modprobe -a ib_uverbs mlx4_en mlx4_core mlx4_ib

Alternatively if MLNX_OFED is fully installed, the following script can be run:

/etc/init.d/openibd restart

Note: User space I/O kernel modules (uio and igb_uio) are not used and do not have to
be loaded.

2. Make sure Ethernet interfaces are in working order and linked to kernel verbs. Related
sysfs entries should be present:

ls -d /sys/class/net/*/device/infiniband_verbs/uverbs* | cut -d / -f 5

Example output:

eth2
eth3
eth4
eth5

3. Optionally, retrieve their PCI bus addresses for whitelisting:

23.8. Usage example 126

Network Interface Controller Drivers, Release 18.08.1

{
for intf in eth2 eth3 eth4 eth5;
do

(cd "/sys/class/net/${intf}/device/" && pwd -P);
done;

} |
sed -n 's,.*/\(.*\),-w \1,p'

Example output:

-w 0000:83:00.0
-w 0000:83:00.0
-w 0000:84:00.0
-w 0000:84:00.0

Note: There are only two distinct PCI bus addresses because the Mellanox ConnectX-3
adapters installed on this system are dual port.

4. Request huge pages:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

5. Start testpmd with basic parameters:

testpmd -l 8-15 -n 4 -w 0000:83:00.0 -w 0000:84:00.0 -- --rxq=2 --txq=2 -i

Example output:

[...]
EAL: PCI device 0000:83:00.0 on NUMA socket 1
EAL: probe driver: 15b3:1007 librte_pmd_mlx4
PMD: librte_pmd_mlx4: PCI information matches, using device "mlx4_0" (VF: false)
PMD: librte_pmd_mlx4: 2 port(s) detected
PMD: librte_pmd_mlx4: port 1 MAC address is 00:02:c9:b5:b7:50
PMD: librte_pmd_mlx4: port 2 MAC address is 00:02:c9:b5:b7:51
EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 15b3:1007 librte_pmd_mlx4
PMD: librte_pmd_mlx4: PCI information matches, using device "mlx4_1" (VF: false)
PMD: librte_pmd_mlx4: 2 port(s) detected
PMD: librte_pmd_mlx4: port 1 MAC address is 00:02:c9:b5:ba:b0
PMD: librte_pmd_mlx4: port 2 MAC address is 00:02:c9:b5:ba:b1
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: librte_pmd_mlx4: 0x867d60: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867d60: RX queues number update: 0 -> 2
Port 0: 00:02:C9:B5:B7:50
Configuring Port 1 (socket 0)
PMD: librte_pmd_mlx4: 0x867da0: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867da0: RX queues number update: 0 -> 2
Port 1: 00:02:C9:B5:B7:51
Configuring Port 2 (socket 0)
PMD: librte_pmd_mlx4: 0x867de0: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867de0: RX queues number update: 0 -> 2
Port 2: 00:02:C9:B5:BA:B0
Configuring Port 3 (socket 0)
PMD: librte_pmd_mlx4: 0x867e20: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867e20: RX queues number update: 0 -> 2
Port 3: 00:02:C9:B5:BA:B1
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex
Port 3 Link Up - speed 40000 Mbps - full-duplex

23.8. Usage example 127

Network Interface Controller Drivers, Release 18.08.1

Done
testpmd>

23.8. Usage example 128

CHAPTER

TWENTYFOUR

MLX5 POLL MODE DRIVER

The MLX5 poll mode driver library (librte_pmd_mlx5) provides support for Mellanox
ConnectX-4, Mellanox ConnectX-4 Lx , Mellanox ConnectX-5 and Mellanox Bluefield fam-
ilies of 10/25/40/50/100 Gb/s adapters as well as their virtual functions (VF) in SR-IOV context.

Information and documentation about these adapters can be found on the Mellanox website.
Help is also provided by the Mellanox community.

There is also a section dedicated to this poll mode driver.

Note: Due to external dependencies, this driver is disabled by default. It must be enabled
manually by setting CONFIG_RTE_LIBRTE_MLX5_PMD=y and recompiling DPDK.

24.1 Implementation details

Besides its dependency on libibverbs (that implies libmlx5 and associated kernel support), li-
brte_pmd_mlx5 relies heavily on system calls for control operations such as querying/updating
the MTU and flow control parameters.

For security reasons and robustness, this driver only deals with virtual memory addresses. The
way resources allocations are handled by the kernel combined with hardware specifications
that allow it to handle virtual memory addresses directly ensure that DPDK applications cannot
access random physical memory (or memory that does not belong to the current process).

This capability allows the PMD to coexist with kernel network interfaces which remain func-
tional, although they stop receiving unicast packets as long as they share the same MAC
address. This means legacy linux control tools (for example: ethtool, ifconfig and more) can
operate on the same network interfaces that owned by the DPDK application.

Enabling librte_pmd_mlx5 causes DPDK applications to be linked against libibverbs.

24.2 Features

• Multi arch support: x86_64, POWER8, ARMv8, i686.

• Multiple TX and RX queues.

• Support for scattered TX and RX frames.

• IPv4, IPv6, TCPv4, TCPv6, UDPv4 and UDPv6 RSS on any number of queues.

• Several RSS hash keys, one for each flow type.

129

http://www.mellanox.com
http://community.mellanox.com/welcome
http://www.mellanox.com/page/products_dyn?product_family=209&mtag=pmd_for_dpdk

Network Interface Controller Drivers, Release 18.08.1

• Configurable RETA table.

• Support for multiple MAC addresses.

• VLAN filtering.

• RX VLAN stripping.

• TX VLAN insertion.

• RX CRC stripping configuration.

• Promiscuous mode.

• Multicast promiscuous mode.

• Hardware checksum offloads.

• Flow director (RTE_FDIR_MODE_PERFECT, RTE_FDIR_MODE_PERFECT_MAC_VLAN
and RTE_ETH_FDIR_REJECT).

• Flow API.

• Multiple process.

• KVM and VMware ESX SR-IOV modes are supported.

• RSS hash result is supported.

• Hardware TSO for generic IP or UDP tunnel, including VXLAN and GRE.

• Hardware checksum Tx offload for generic IP or UDP tunnel, including VXLAN and GRE.

• RX interrupts.

• Statistics query including Basic, Extended and per queue.

• Rx HW timestamp.

• Tunnel types: VXLAN, L3 VXLAN, VXLAN-GPE, GRE, MPLSoGRE, MPLSoUDP.

• Tunnel HW offloads: packet type, inner/outer RSS, IP and UDP checksum verification.

24.3 Limitations

• For secondary process:

– Forked secondary process not supported.

– All mempools must be initialized before rte_eth_dev_start().

• Flow pattern without any specific vlan will match for vlan packets as well:

When VLAN spec is not specified in the pattern, the matching rule will be created with
VLAN as a wild card. Meaning, the flow rule:

flow create 0 ingress pattern eth / vlan vid is 3 / ipv4 / end ...

Will only match vlan packets with vid=3. and the flow rules:

flow create 0 ingress pattern eth / ipv4 / end ...

Or:

flow create 0 ingress pattern eth / vlan / ipv4 / end ...

24.3. Limitations 130

Network Interface Controller Drivers, Release 18.08.1

Will match any ipv4 packet (VLAN included).

• A multi segment packet must have less than 6 segments in case the Tx burst function
is set to multi-packet send or Enhanced multi-packet send. Otherwise it must have less
than 50 segments.

• Count action for RTE flow is only supported in Mellanox OFED.

• Flows with a VXLAN Network Identifier equal (or ends to be equal) to 0 are not supported.

• VXLAN TSO and checksum offloads are not supported on VM.

• L3 VXLAN and VXLAN-GPE tunnels cannot be supported together with MPLSoGRE and
MPLSoUDP.

• VF: flow rules created on VF devices can only match traffic targeted at the configured
MAC addresses (see rte_eth_dev_mac_addr_add()).

Note: MAC addresses not already present in the bridge table of the associated kernel network
device will be added and cleaned up by the PMD when closing the device. In case of ungraceful
program termination, some entries may remain present and should be removed manually by
other means.

• When Multi-Packet Rx queue is configured (mprq_en), a Rx packet can be externally
attached to a user-provided mbuf with having EXT_ATTACHED_MBUF in ol_flags. As
the mempool for the external buffer is managed by PMD, all the Rx mbufs must be freed
before the device is closed. Otherwise, the mempool of the external buffers will be freed
by PMD and the application which still holds the external buffers may be corrupted.

• If Multi-Packet Rx queue is configured (mprq_en) and Rx CQE compression is enabled
(rxq_cqe_comp_en) at the same time, RSS hash result is not fully supported. Some
Rx packets may not have PKT_RX_RSS_HASH.

24.4 Statistics

MLX5 supports various of methods to report statistics:

Port statistics can be queried using rte_eth_stats_get(). The port statistics are through
SW only and counts the number of packets received or sent successfully by the PMD.

Extended statistics can be queried using rte_eth_xstats_get(). The extended statistics
expose a wider set of counters counted by the device. The extended port statistics counts the
number of packets received or sent successfully by the port. As Mellanox NICs are using the
Bifurcated Linux Driver those counters counts also packet received or sent by the Linux kernel.
The counters with _phy suffix counts the total events on the physical port, therefore not valid
for VF.

Finally per-flow statistics can by queried using rte_flow_query when attaching a count
action for specific flow. The flow counter counts the number of packets received successfully
by the port and match the specific flow.

24.4. Statistics 131

Network Interface Controller Drivers, Release 18.08.1

24.5 Configuration

24.5.1 Compilation options

These options can be modified in the .config file.

• CONFIG_RTE_LIBRTE_MLX5_PMD (default n)

Toggle compilation of librte_pmd_mlx5 itself.

• CONFIG_RTE_LIBRTE_MLX5_DLOPEN_DEPS (default n)

Build PMD with additional code to make it loadable without hard dependencies on libib-
verbs nor libmlx5, which may not be installed on the target system.

In this mode, their presence is still required for it to run properly, how-
ever their absence won’t prevent a DPDK application from starting (with
CONFIG_RTE_BUILD_SHARED_LIB disabled) and they won’t show up as missing
with ldd(1).

It works by moving these dependencies to a purpose-built rdma-core “glue” plug-
in which must either be installed in a directory whose name is based on
CONFIG_RTE_EAL_PMD_PATH suffixed with -glue if set, or in a standard location for
the dynamic linker (e.g. /lib) if left to the default empty string ("").

This option has no performance impact.

• CONFIG_RTE_LIBRTE_MLX5_DEBUG (default n)

Toggle debugging code and stricter compilation flags. Enabling this option adds addi-
tional run-time checks and debugging messages at the cost of lower performance.

24.5.2 Environment variables

• MLX5_GLUE_PATH

A list of directories in which to search for the rdma-core “glue” plug-in, separated by
colons or semi-colons.

Only matters when compiled with CONFIG_RTE_LIBRTE_MLX5_DLOPEN_DEPS en-
abled and most useful when CONFIG_RTE_EAL_PMD_PATH is also set, since
LD_LIBRARY_PATH has no effect in this case.

• MLX5_PMD_ENABLE_PADDING

Enables HW packet padding in PCI bus transactions.

When packet size is cache aligned and CRC stripping is enabled, 4 fewer bytes are
written to the PCI bus. Enabling padding makes such packets aligned again.

In cases where PCI bandwidth is the bottleneck, padding can improve performance by
10%.

This is disabled by default since this can also decrease performance for unaligned packet
sizes.

• MLX5_SHUT_UP_BF

Configures HW Tx doorbell register as IO-mapped.

24.5. Configuration 132

Network Interface Controller Drivers, Release 18.08.1

By default, the HW Tx doorbell is configured as a write-combining register. The register
would be flushed to HW usually when the write-combining buffer becomes full, but it
depends on CPU design.

Except for vectorized Tx burst routines, a write memory barrier is enforced after updating
the register so that the update can be immediately visible to HW.

When vectorized Tx burst is called, the barrier is set only if the burst size is not aligned to
MLX5_VPMD_TX_MAX_BURST. However, setting this environmental variable will bring
better latency even though the maximum throughput can slightly decline.

24.5.3 Run-time configuration

• librte_pmd_mlx5 brings kernel network interfaces up during initialization because it is
affected by their state. Forcing them down prevents packets reception.

• ethtool operations on related kernel interfaces also affect the PMD.

• rxq_cqe_comp_en parameter [int]

A nonzero value enables the compression of CQE on RX side. This feature allows to
save PCI bandwidth and improve performance. Enabled by default.

Supported on:

– x86_64 with ConnectX-4, ConnectX-4 LX, ConnectX-5 and Bluefield.

– POWER8 and ARMv8 with ConnectX-4 LX, ConnectX-5 and Bluefield.

• mprq_en parameter [int]

A nonzero value enables configuring Multi-Packet Rx queues. Rx queue is configured as
Multi-Packet RQ if the total number of Rx queues is rxqs_min_mprq or more and Rx
scatter isn’t configured. Disabled by default.

Multi-Packet Rx Queue (MPRQ a.k.a Striding RQ) can further save PCIe bandwidth by
posting a single large buffer for multiple packets. Instead of posting a buffers per a
packet, one large buffer is posted in order to receive multiple packets on the buffer. A
MPRQ buffer consists of multiple fixed-size strides and each stride receives one packet.
MPRQ can improve throughput for small-packet tarffic.

When MPRQ is enabled, max_rx_pkt_len can be larger than the size of user-provided
mbuf even if DEV_RX_OFFLOAD_SCATTER isn’t enabled. PMD will configure large
stride size enough to accommodate max_rx_pkt_len as long as device allows. Note
that this can waste system memory compared to enabling Rx scatter and multi-segment
packet.

• mprq_log_stride_num parameter [int]

Log 2 of the number of strides for Multi-Packet Rx queue. Configuring more strides can
reduce PCIe tarffic further. If configured value is not in the range of device capability,
the default value will be set with a warning message. The default value is 4 which is 16
strides per a buffer, valid only if mprq_en is set.

The size of Rx queue should be bigger than the number of strides.

• mprq_max_memcpy_len parameter [int]

24.5. Configuration 133

Network Interface Controller Drivers, Release 18.08.1

The maximum length of packet to memcpy in case of Multi-Packet Rx queue. Rx packet
is mem-copied to a user-provided mbuf if the size of Rx packet is less than or equal
to this parameter. Otherwise, PMD will attach the Rx packet to the mbuf by exter-
nal buffer attachment - rte_pktmbuf_attach_extbuf(). A mempool for external
buffers will be allocated and managed by PMD. If Rx packet is externally attached,
ol_flags field of the mbuf will have EXT_ATTACHED_MBUF and this flag must be pre-
served. RTE_MBUF_HAS_EXTBUF() checks the flag. The default value is 128, valid only
if mprq_en is set.

• rxqs_min_mprq parameter [int]

Configure Rx queues as Multi-Packet RQ if the total number of Rx queues is greater or
equal to this value. The default value is 12, valid only if mprq_en is set.

• txq_inline parameter [int]

Amount of data to be inlined during TX operations. Improves latency. Can improve
PPS performance when PCI back pressure is detected and may be useful for scenarios
involving heavy traffic on many queues.

Because additional software logic is necessary to handle this mode, this option should
be used with care, as it can lower performance when back pressure is not expected.

• txqs_min_inline parameter [int]

Enable inline send only when the number of TX queues is greater or equal to this value.

This option should be used in combination with txq_inline above.

On ConnectX-4, ConnectX-4 LX, ConnectX-5 and Bluefield without Enhanced MPW:

– Disabled by default.

– In case txq_inline is set recommendation is 4.

On ConnectX-5 and Bluefield with Enhanced MPW:

– Set to 8 by default.

• txq_mpw_en parameter [int]

A nonzero value enables multi-packet send (MPS) for ConnectX-4 Lx and enhanced
multi-packet send (Enhanced MPS) for ConnectX-5 and Bluefield. MPS allows the TX
burst function to pack up multiple packets in a single descriptor session in order to save
PCI bandwidth and improve performance at the cost of a slightly higher CPU usage.
When txq_inline is set along with txq_mpw_en, TX burst function tries to copy entire
packet data on to TX descriptor instead of including pointer of packet only if there is
enough room remained in the descriptor. txq_inline sets per-descriptor space for
either pointers or inlined packets. In addition, Enhanced MPS supports hybrid mode -
mixing inlined packets and pointers in the same descriptor.

This option cannot be used with certain offloads such as DEV_TX_OFFLOAD_TCP_TSO,
DEV_TX_OFFLOAD_VXLAN_TNL_TSO, DEV_TX_OFFLOAD_GRE_TNL_TSO,
DEV_TX_OFFLOAD_VLAN_INSERT. When those offloads are requested the MPS
send function will not be used.

It is currently only supported on the ConnectX-4 Lx, ConnectX-5 and Bluefield families
of adapters. On ConnectX-4 Lx the MPW is considered un-secure hence disabled by
default. Users which enable the MPW should be aware that application which provides
incorrect mbuf descriptors in the Tx burst can lead to serious errors in the host including,

24.5. Configuration 134

Network Interface Controller Drivers, Release 18.08.1

on some cases, NIC to get stuck. On ConnectX-5 and Bluefield the MPW is secure and
enabled by default.

• txq_mpw_hdr_dseg_en parameter [int]

A nonzero value enables including two pointers in the first block of TX descriptor. This
can be used to lessen CPU load for memory copy.

Effective only when Enhanced MPS is supported. Disabled by default.

• txq_max_inline_len parameter [int]

Maximum size of packet to be inlined. This limits the size of packet to be inlined. If
the size of a packet is larger than configured value, the packet isn’t inlined even though
there’s enough space remained in the descriptor. Instead, the packet is included with
pointer.

Effective only when Enhanced MPS is supported. The default value is 256.

• tx_vec_en parameter [int]

A nonzero value enables Tx vector on ConnectX-5 and Bluefield NICs if the number of
global Tx queues on the port is lesser than MLX5_VPMD_MIN_TXQS.

This option cannot be used with certain offloads such as DEV_TX_OFFLOAD_TCP_TSO,
DEV_TX_OFFLOAD_VXLAN_TNL_TSO, DEV_TX_OFFLOAD_GRE_TNL_TSO,
DEV_TX_OFFLOAD_VLAN_INSERT. When those offloads are requested the MPS
send function will not be used.

Enabled by default on ConnectX-5 and Bluefield.

• rx_vec_en parameter [int]

A nonzero value enables Rx vector if the port is not configured in multi-segment otherwise
this parameter is ignored.

Enabled by default.

• vf_nl_en parameter [int]

A nonzero value enables Netlink requests from the VF to add/remove MAC addresses
or/and enable/disable promiscuous/all multicast on the Netdevice. Otherwise the relevant
configuration must be run with Linux iproute2 tools. This is a prerequisite to receive this
kind of traffic.

Enabled by default, valid only on VF devices ignored otherwise.

• l3_vxlan_en parameter [int]

A nonzero value allows L3 VXLAN and VXLAN-GPE flow creation. To enable L3 VXLAN
or VXLAN-GPE, users has to configure firmware and enable this parameter. This is a
prerequisite to receive this kind of traffic.

Disabled by default.

• representor parameter [list]

This parameter can be used to instantiate DPDK Ethernet devices from existing port (or
VF) representors configured on the device.

It is a standard parameter whose format is described in ether-
net_device_standard_device_arguments.

24.5. Configuration 135

Network Interface Controller Drivers, Release 18.08.1

For instance, to probe port representors 0 through 2:

representor=[0-2]

24.5.4 Firmware configuration

• L3 VXLAN and VXLAN-GPE destination UDP port

mlxconfig -d <mst device> set IP_OVER_VXLAN_EN=1
mlxconfig -d <mst device> set IP_OVER_VXLAN_PORT=<udp dport>

Verify configurations are set:

mlxconfig -d <mst device> query | grep IP_OVER_VXLAN
IP_OVER_VXLAN_EN True(1)
IP_OVER_VXLAN_PORT <udp dport>

24.6 Prerequisites

This driver relies on external libraries and kernel drivers for resources allocations and initial-
ization. The following dependencies are not part of DPDK and must be installed separately:

• libibverbs

User space Verbs framework used by librte_pmd_mlx5. This library provides a generic
interface between the kernel and low-level user space drivers such as libmlx5.

It allows slow and privileged operations (context initialization, hardware resources allo-
cations) to be managed by the kernel and fast operations to never leave user space.

• libmlx5

Low-level user space driver library for Mellanox ConnectX-4/ConnectX-5/Bluefield de-
vices, it is automatically loaded by libibverbs.

This library basically implements send/receive calls to the hardware queues.

• libmnl

Minimalistic Netlink library mainly relied on to manage E-Switch flow rules (i.e. those with
the “transfer” attribute and typically involving port representors).

• Kernel modules

They provide the kernel-side Verbs API and low level device drivers that manage actual
hardware initialization and resources sharing with user space processes.

Unlike most other PMDs, these modules must remain loaded and bound to their devices:

– mlx5_core: hardware driver managing Mellanox ConnectX-4/ConnectX-5/Bluefield
devices and related Ethernet kernel network devices.

– mlx5_ib: InifiniBand device driver.

– ib_uverbs: user space driver for Verbs (entry point for libibverbs).

• Firmware update

Mellanox OFED releases include firmware updates for ConnectX-4/ConnectX-5/Bluefield
adapters.

24.6. Prerequisites 136

Network Interface Controller Drivers, Release 18.08.1

Because each release provides new features, these updates must be applied to match
the kernel modules and libraries they come with.

Note: Both libraries are BSD and GPL licensed. Linux kernel modules are GPL licensed.

24.6.1 Installation

Either RDMA Core library with a recent enough Linux kernel release (recommended) or Mel-
lanox OFED, which provides compatibility with older releases.

RMDA Core with Linux Kernel

• Minimal kernel version : v4.14 or the most recent 4.14-rc (see Linux installation docu-
mentation)

• Minimal rdma-core version: v15+ commit 0c5f5765213a (“Merge pull request #227 from
yishaih/tm”) (see RDMA Core installation documentation)

• When building for i686 use:

– rdma-core version 18.0 or above built with 32bit support.

– Kernel version 4.14.41 or above.

Mellanox OFED

• Mellanox OFED version: 4.3, 4.4.

• firmware version:

– ConnectX-4: 12.21.1000 and above.

– ConnectX-4 Lx: 14.21.1000 and above.

– ConnectX-5: 16.21.1000 and above.

– ConnectX-5 Ex: 16.21.1000 and above.

– Bluefield: 18.99.3950 and above.

While these libraries and kernel modules are available on OpenFabrics Alliance’s website and
provided by package managers on most distributions, this PMD requires Ethernet extensions
that may not be supported at the moment (this is a work in progress).

Mellanox OFED includes the necessary support and should be used in the meantime. For
DPDK, only libibverbs, libmlx5, mlnx-ofed-kernel packages and firmware updates are required
from that distribution.

Note: Several versions of Mellanox OFED are available. Installing the version this DPDK
release was developed and tested against is strongly recommended. Please check the pre-
requisites.

24.6. Prerequisites 137

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git/plain/Documentation/admin-guide/README.rst
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git/plain/Documentation/admin-guide/README.rst
https://raw.githubusercontent.com/linux-rdma/rdma-core/master/README.md
https://www.openfabrics.org/
http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux

Network Interface Controller Drivers, Release 18.08.1

Libmnl

Minimal version for libmnl is 1.0.3.

As a dependency of the iproute2 suite, this library is often installed by default. It is otherwise
readily available through standard system packages.

Its development headers must be installed in order to compile this PMD. These packages are
usually named libmnl-dev or libmnl-devel depending on the Linux distribution.

24.7 Supported NICs

• Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

• Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

• Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

• Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

• Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT (1x40G)

• Mellanox(R) ConnectX(R)-4 40G MCX413A-BCAT (1x40G)

• Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

• Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT (1x50G)

• Mellanox(R) ConnectX(R)-4 50G MCX413A-GCAT (1x50G)

• Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

• Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT (2x50G)

• Mellanox(R) ConnectX(R)-4 50G MCX416A-BCAT (2x50G)

• Mellanox(R) ConnectX(R)-4 50G MCX416A-GCAT (2x50G)

• Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

• Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

• Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)

• Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

• Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

• Mellanox(R) ConnectX(R)-5 Ex EN 100G MCX516A-CDAT (2x100G)

24.8 Quick Start Guide on OFED

1. Download latest Mellanox OFED. For more info check the prerequisites.

2. Install the required libraries and kernel modules either by installing only the required set,
or by installing the entire Mellanox OFED:

./mlnxofedinstall --upstream-libs --dpdk

3. Verify the firmware is the correct one:

24.7. Supported NICs 138

Network Interface Controller Drivers, Release 18.08.1

ibv_devinfo

4. Verify all ports links are set to Ethernet:

mlxconfig -d <mst device> query | grep LINK_TYPE
LINK_TYPE_P1 ETH(2)
LINK_TYPE_P2 ETH(2)

Link types may have to be configured to Ethernet:

mlxconfig -d <mst device> set LINK_TYPE_P1/2=1/2/3

* LINK_TYPE_P1=<1|2|3> , 1=Infiniband 2=Ethernet 3=VPI(auto-sense)

For hypervisors verify SR-IOV is enabled on the NIC:

mlxconfig -d <mst device> query | grep SRIOV_EN
SRIOV_EN True(1)

If needed, set enable the set the relevant fields:

mlxconfig -d <mst device> set SRIOV_EN=1 NUM_OF_VFS=16
mlxfwreset -d <mst device> reset

5. Restart the driver:

/etc/init.d/openibd restart

or:

service openibd restart

If link type was changed, firmware must be reset as well:

mlxfwreset -d <mst device> reset

For hypervisors, after reset write the sysfs number of virtual functions needed for the PF.

To dynamically instantiate a given number of virtual functions (VFs):

echo [num_vfs] > /sys/class/infiniband/mlx5_0/device/sriov_numvfs

6. Compile DPDK and you are ready to go. See instructions on Development Kit Build
System

24.9 Performance tuning

1. Configure aggressive CQE Zipping for maximum performance:

mlxconfig -d <mst device> s CQE_COMPRESSION=1

To set it back to the default CQE Zipping mode use:

mlxconfig -d <mst device> s CQE_COMPRESSION=0

2. In case of virtualization:

• Make sure that hypervisor kernel is 3.16 or newer.

• Configure boot with iommu=pt.

• Use 1G huge pages.

• Make sure to allocate a VM on huge pages.

• Make sure to set CPU pinning.

24.9. Performance tuning 139

Network Interface Controller Drivers, Release 18.08.1

3. Use the CPU near local NUMA node to which the PCIe adapter is connected, for better
performance. For VMs, verify that the right CPU and NUMA node are pinned according
to the above. Run:

lstopo-no-graphics

to identify the NUMA node to which the PCIe adapter is connected.

4. If more than one adapter is used, and root complex capabilities allow to put both adapters
on the same NUMA node without PCI bandwidth degradation, it is recommended to
locate both adapters on the same NUMA node. This in order to forward packets from
one to the other without NUMA performance penalty.

5. Disable pause frames:

ethtool -A <netdev> rx off tx off

6. Verify IO non-posted prefetch is disabled by default. This can be checked via the BIOS
configuration. Please contact you server provider for more information about the settings.

Note: On some machines, depends on the machine integrator, it is beneficial to set the PCI
max read request parameter to 1K. This can be done in the following way:

To query the read request size use:

setpci -s <NIC PCI address> 68.w

If the output is different than 3XXX, set it by:

setpci -s <NIC PCI address> 68.w=3XXX

The XXX can be different on different systems. Make sure to configure according to the setpci
output.

7. To minimize overhead of searching Memory Regions:

• ‘–socket-mem’ is recommended to pin memory by predictable amount.

• Configure per-lcore cache when creating Mempools for packet buffer.

• Refrain from dynamically allocating/freeing memory in run-time.

24.10 Notes for testpmd

Compared to librte_pmd_mlx4 that implements a single RSS configuration per port, li-
brte_pmd_mlx5 supports per-protocol RSS configuration.

Since testpmd defaults to IP RSS mode and there is currently no command-line parameter
to enable additional protocols (UDP and TCP as well as IP), the following commands must be
entered from its CLI to get the same behavior as librte_pmd_mlx4:

> port stop all
> port config all rss all
> port start all

24.10. Notes for testpmd 140

Network Interface Controller Drivers, Release 18.08.1

24.11 Usage example

This section demonstrates how to launch testpmd with Mellanox ConnectX-4/ConnectX-
5/Bluefield devices managed by librte_pmd_mlx5.

1. Load the kernel modules:

modprobe -a ib_uverbs mlx5_core mlx5_ib

Alternatively if MLNX_OFED is fully installed, the following script can be run:

/etc/init.d/openibd restart

Note: User space I/O kernel modules (uio and igb_uio) are not used and do not have to
be loaded.

2. Make sure Ethernet interfaces are in working order and linked to kernel verbs. Related
sysfs entries should be present:

ls -d /sys/class/net/*/device/infiniband_verbs/uverbs* | cut -d / -f 5

Example output:

eth30
eth31
eth32
eth33

3. Optionally, retrieve their PCI bus addresses for whitelisting:

{
for intf in eth2 eth3 eth4 eth5;
do

(cd "/sys/class/net/${intf}/device/" && pwd -P);
done;

} |
sed -n 's,.*/\(.*\),-w \1,p'

Example output:

-w 0000:05:00.1
-w 0000:06:00.0
-w 0000:06:00.1
-w 0000:05:00.0

4. Request huge pages:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

5. Start testpmd with basic parameters:

testpmd -l 8-15 -n 4 -w 05:00.0 -w 05:00.1 -w 06:00.0 -w 06:00.1 -- --rxq=2 --txq=2 -i

Example output:

[...]
EAL: PCI device 0000:05:00.0 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_0" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fe
EAL: PCI device 0000:05:00.1 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_1" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected

24.11. Usage example 141

Network Interface Controller Drivers, Release 18.08.1

PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:ff
EAL: PCI device 0000:06:00.0 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_2" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fa
EAL: PCI device 0000:06:00.1 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_3" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fb
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: librte_pmd_mlx5: 0x8cba80: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8cba80: RX queues number update: 0 -> 2
Port 0: E4:1D:2D:E7:0C:FE
Configuring Port 1 (socket 0)
PMD: librte_pmd_mlx5: 0x8ccac8: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8ccac8: RX queues number update: 0 -> 2
Port 1: E4:1D:2D:E7:0C:FF
Configuring Port 2 (socket 0)
PMD: librte_pmd_mlx5: 0x8cdb10: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8cdb10: RX queues number update: 0 -> 2
Port 2: E4:1D:2D:E7:0C:FA
Configuring Port 3 (socket 0)
PMD: librte_pmd_mlx5: 0x8ceb58: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8ceb58: RX queues number update: 0 -> 2
Port 3: E4:1D:2D:E7:0C:FB
Checking link statuses...
Port 0 Link Up - speed 40000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex
Port 3 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

24.11. Usage example 142

CHAPTER

TWENTYFIVE

MVPP2 POLL MODE DRIVER

The MVPP2 PMD (librte_pmd_mvpp2) provides poll mode driver support for the Marvell PPv2
(Packet Processor v2) 1/10 Gbps adapter.

Detailed information about SoCs that use PPv2 can be obtained here:

• https://www.marvell.com/embedded-processors/armada-70xx/

• https://www.marvell.com/embedded-processors/armada-80xx/

Note: Due to external dependencies, this driver is disabled by default. It must be enabled
manually by setting relevant configuration option manually. Please refer to Config File Options
section for further details.

25.1 Features

Features of the MVPP2 PMD are:

• Speed capabilities

• Link status

• Queue start/stop

• MTU update

• Jumbo frame

• Promiscuous mode

• Allmulticast mode

• Unicast MAC filter

• Multicast MAC filter

• RSS hash

• VLAN filter

• CRC offload

• L3 checksum offload

• L4 checksum offload

• Packet type parsing

143

https://www.marvell.com/embedded-processors/armada-70xx/
https://www.marvell.com/embedded-processors/armada-80xx/

Network Interface Controller Drivers, Release 18.08.1

• Basic stats

• Extended stats

• QoS

• RX flow control

• TX queue start/stop

25.2 Limitations

• Number of lcores is limited to 9 by MUSDK internal design. If more lcores need to be
allocated, locking will have to be considered. Number of available lcores can be changed
via MRVL_MUSDK_HIFS_RESERVED define in mrvl_ethdev.c source file.

• Flushing vlans added for filtering is not possible due to MUSDK missing functionality.
Current workaround is to reset board so that PPv2 has a chance to start in a sane state.

25.3 Prerequisites

• Custom Linux Kernel sources

git clone https://github.com/MarvellEmbeddedProcessors/linux-marvell.git -b linux-4.4.52-armada-17.10

• Out of tree mvpp2x_sysfs kernel module sources

git clone https://github.com/MarvellEmbeddedProcessors/mvpp2x-marvell.git -b mvpp2x-armada-17.10

• MUSDK (Marvell User-Space SDK) sources

git clone https://github.com/MarvellEmbeddedProcessors/musdk-marvell.git -b musdk-armada-17.10

MUSDK is a light-weight library that provides direct access to Marvell’s PPv2 (Packet
Processor v2). Alternatively prebuilt MUSDK library can be requested from Marvell Ex-
tranet. Once approval has been granted, library can be found by typing musdk in the
search box.

To get better understanding of the library one can consult documentation available in the
doc top level directory of the MUSDK sources.

MUSDK must be configured with the following features:

--enable-bpool-dma=64

• DPDK environment

Follow the DPDK Getting Started Guide for Linux to setup DPDK environment.

25.4 Config File Options

The following options can be modified in the config file.

• CONFIG_RTE_LIBRTE_MVPP2_PMD (default n)

Toggle compilation of the librte mvpp2 driver.

25.2. Limitations 144

https://extranet.marvell.com
https://extranet.marvell.com

Network Interface Controller Drivers, Release 18.08.1

25.5 QoS Configuration

QoS configuration is done through external configuration file. Path to the file must be given as
cfg in driver’s vdev parameter list.

25.5.1 Configuration syntax

[port <portnum> default]
default_tc = <default_tc>
mapping_priority = <mapping_priority>
policer_enable = <policer_enable>
token_unit = <token_unit>
color = <color_mode>
cir = <cir>
ebs = <ebs>
cbs = <cbs>

rate_limit_enable = <rate_limit_enable>
rate_limit = <rate_limit>
burst_size = <burst_size>

[port <portnum> tc <traffic_class>]
rxq = <rx_queue_list>
pcp = <pcp_list>
dscp = <dscp_list>
default_color = <default_color>

[port <portnum> tc <traffic_class>]
rxq = <rx_queue_list>
pcp = <pcp_list>
dscp = <dscp_list>

[port <portnum> txq <txqnum>]
sched_mode = <sched_mode>
wrr_weight = <wrr_weight>

rate_limit_enable = <rate_limit_enable>
rate_limit = <rate_limit>
burst_size = <burst_size>

Where:

• <portnum>: DPDK Port number (0..n).

• <default_tc>: Default traffic class (e.g. 0)

• <mapping_priority>: QoS priority for mapping (ip, vlan, ip/vlan or vlan/ip).

• <traffic_class>: Traffic Class to be configured.

• <rx_queue_list>: List of DPDK RX queues (e.g. 0 1 3-4)

• <pcp_list>: List of PCP values to handle in particular TC (e.g. 0 1 3-4 7).

• <dscp_list>: List of DSCP values to handle in particular TC (e.g. 0-12 32-48 63).

• <policer_enable>: Enable ingress policer.

• <token_unit>: Policer token unit (bytes or packets).

• <color_mode>: Policer color mode (aware or blind).

25.5. QoS Configuration 145

Network Interface Controller Drivers, Release 18.08.1

• <cir>: Committed information rate in unit of kilo bits per second (data rate) or packets
per second.

• <cbs>: Committed burst size in unit of kilo bytes or number of packets.

• <ebs>: Excess burst size in unit of kilo bytes or number of packets.

• <default_color>: Default color for specific tc.

• <rate_limit_enable>: Enables per port or per txq rate limiting.

• <rate_limit>: Committed information rate, in kilo bits per second.

• <burst_size>: Committed burst size, in kilo bytes.

• <sched_mode>: Egress scheduler mode (wrr or sp).

• <wrr_weight>: Txq weight.

Setting PCP/DSCP values for the default TC is not required. All PCP/DSCP values not as-
signed explicitly to particular TC will be handled by the default TC.

Configuration file example

[port 0 default]
default_tc = 0
mapping_priority = ip

rate_limit_enable = 1
rate_limit = 1000
burst_size = 2000

[port 0 tc 0]
rxq = 0 1

[port 0 txq 0]
sched_mode = wrr
wrr_weight = 10

[port 0 txq 1]
sched_mode = wrr
wrr_weight = 100

[port 0 txq 2]
sched_mode = sp

[port 0 tc 1]
rxq = 2
pcp = 5 6 7
dscp = 26-38

[port 1 default]
default_tc = 0
mapping_priority = vlan/ip

policer_enable = 1
token_unit = bytes
color = blind
cir = 100000
ebs = 64
cbs = 64

[port 1 tc 0]

25.5. QoS Configuration 146

Network Interface Controller Drivers, Release 18.08.1

rxq = 0
dscp = 10

[port 1 tc 1]
rxq = 1
dscp = 11-20

[port 1 tc 2]
rxq = 2
dscp = 30

[port 1 txq 0]
rate_limit_enable = 1
rate_limit = 10000
burst_size = 2000

Usage example

./testpmd --vdev=eth_mvpp2,iface=eth0,iface=eth2,cfg=/home/user/mrvl.conf \
-c 7 -- -i -a --disable-hw-vlan-strip --rxq=3 --txq=3

25.6 Building DPDK

Driver needs precompiled MUSDK library during compilation.

export CROSS_COMPILE=<toolchain>/bin/aarch64-linux-gnu-
./bootstrap
./configure --host=aarch64-linux-gnu --enable-bpool-dma=64
make install

MUSDK will be installed to usr/local under current directory. For the detailed build instructions
please consult doc/musdk_get_started.txt.

Before the DPDK build process the environmental variable LIBMUSDK_PATH with the path to
the MUSDK installation directory needs to be exported.

export LIBMUSDK_PATH=<musdk>/usr/local
export CROSS=aarch64-linux-gnu-
make config T=arm64-armv8a-linuxapp-gcc
sed -ri 's,(MVPP2_PMD=)n,\1y,' build/.config
make

25.7 Flow API

PPv2 offers packet classification capabilities via classifier engine which can be configured via
generic flow API offered by DPDK.

25.7.1 Supported flow actions

Following flow action items are supported by the driver:

• DROP

• QUEUE

25.6. Building DPDK 147

Network Interface Controller Drivers, Release 18.08.1

25.7.2 Supported flow items

Following flow items and their respective fields are supported by the driver:

• ETH

– source MAC

– destination MAC

– ethertype

• VLAN

– PCP

– VID

• IPV4

– DSCP

– protocol

– source address

– destination address

• IPV6

– flow label

– next header

– source address

– destination address

• UDP

– source port

– destination port

• TCP

– source port

– destination port

25.7.3 Classifier match engine

Classifier has an internal match engine which can be configured to operate in either exact or
maskable mode.

Mode is selected upon creation of the first unique flow rule as follows:

• maskable, if key size is up to 8 bytes.

• exact, otherwise, i.e for keys bigger than 8 bytes.

25.7. Flow API 148

Network Interface Controller Drivers, Release 18.08.1

Where the key size equals the number of bytes of all fields specified in the flow items.

Table 25.1: Examples of key size calculation

Flow pattern Key size in
bytes

Used
engine

ETH (destination MAC) / VLAN (VID) 6 + 2 = 8 Maskable
VLAN (VID) / IPV4 (source address) 2 + 4 = 6 Maskable
TCP (source port, destination port) 2 + 2 = 4 Maskable
VLAN (priority) / IPV4 (source address) 1 + 4 = 5 Maskable
IPV4 (destination address) / UDP (source port, destination
port)

6 + 2 + 2 = 10 Exact

VLAN (VID) / IPV6 (flow label, destination address) 2 + 3 + 16 = 21 Exact
IPV4 (DSCP, source address, destination address) 1 + 4 + 4 = 9 Exact
IPV6 (flow label, source address, destination address) 3 + 16 + 16 =

35
Exact

From the user perspective maskable mode means that masks specified via flow rules are
respected. In case of exact match mode, masks which do not provide exact matching (all bits
masked) are ignored.

If the flow matches more than one classifier rule the first (with the lowest index) matched takes
precedence.

25.7.4 Flow rules usage example

Before proceeding run testpmd user application:

./testpmd --vdev=eth_mvpp2,iface=eth0,iface=eth2 -c 3 -- -i --p 3 -a --disable-hw-vlan-strip

Example #1

testpmd> flow create 0 ingress pattern eth src is 10:11:12:13:14:15 / end actions drop / end

In this case key size is 6 bytes thus maskable type is selected. Testpmd will set mask to
ff:ff:ff:ff:ff:ff i.e traffic explicitly matching above rule will be dropped.

Example #2

testpmd> flow create 0 ingress pattern ipv4 src spec 10.10.10.0 src mask 255.255.255.0 / tcp src spec 0x10 src mask 0x10 / end action drop / end

In this case key size is 8 bytes thus maskable type is selected. Flows which have IPv4 source
addresses ranging from 10.10.10.0 to 10.10.10.255 and tcp source port set to 16 will be
dropped.

Example #3

testpmd> flow create 0 ingress pattern vlan vid spec 0x10 vid mask 0x10 / ipv4 src spec 10.10.1.1 src mask 255.255.0.0 dst spec 11.11.11.1 dst mask 255.255.255.0 / end actions drop / end

In this case key size is 10 bytes thus exact type is selected. Even though each item has partial
mask set, masks will be ignored. As a result only flows with VID set to 16 and IPv4 source and
destination addresses set to 10.10.1.1 and 11.11.11.1 respectively will be dropped.

25.7. Flow API 149

Network Interface Controller Drivers, Release 18.08.1

25.7.5 Limitations

Following limitations need to be taken into account while creating flow rules:

• For IPv4 exact match type the key size must be up to 12 bytes.

• For IPv6 exact match type the key size must be up to 36 bytes.

• Following fields cannot be partially masked (all masks are treated as if they were exact):

– ETH: ethertype

– VLAN: PCP, VID

– IPv4: protocol

– IPv6: next header

– TCP/UDP: source port, destination port

• Only one classifier table can be created thus all rules in the table have to match table
format. Table format is set during creation of the first unique flow rule.

• Up to 5 fields can be specified per flow rule.

• Up to 20 flow rules can be added.

For additional information about classifier please consult
doc/musdk_cls_user_guide.txt.

25.8 Usage Example

MVPP2 PMD requires extra out of tree kernel modules to function properly.
musdk_uio and mv_pp_uio sources are part of the MUSDK. Please consult
doc/musdk_get_started.txt for the detailed build instructions. For mvpp2x_sysfs
please consult Documentation/pp22_sysfs.txt for the detailed build instructions.

insmod musdk_uio.ko
insmod mv_pp_uio.ko
insmod mvpp2x_sysfs.ko

Additionally interfaces used by DPDK application need to be put up:

ip link set eth0 up
ip link set eth2 up

In order to run testpmd example application following command can be used:

./testpmd --vdev=eth_mvpp2,iface=eth0,iface=eth2 -c 7 -- \
--burst=128 --txd=2048 --rxd=1024 --rxq=2 --txq=2 --nb-cores=2 \
-i -a --rss-udp

25.8. Usage Example 150

CHAPTER

TWENTYSIX

NETVSC POLL MODE DRIVER

The Netvsc Poll Mode driver (PMD) provides support for the paravirtualized network device
for Microsoft Hyper-V. It can be used with Window Server 2008/2012/2016, Windows 10. The
device offers multi-queue support (if kernel and host support it), checksum and segmentation
offloads.

26.1 Features and Limitations of Hyper-V PMD

In this release, the hyper PMD driver provides the basic functionality of packet reception and
transmission.

• It supports merge-able buffers per packet when receiving packets and scattered buffer
per packet when transmitting packets. The packet size supported is from 64 to 65536.

• The PMD supports multicast packets and promiscuous mode subject to restrictions on
the host. In order to this to work, the guest network configuration on Hyper-V must be
configured to allow MAC address spoofing.

• The device has only a single MAC address. Hyper-V driver does not support MAC or
VLAN filtering because the Hyper-V host does not support it.

• VLAN tags are always stripped and presented in mbuf tci field.

• The Hyper-V driver does not use or support Link State or Rx interrupt.

• The maximum number of queues is limited by the host (currently 64). When used with
4.16 kernel only a single queue is available.

Note: This driver is intended for use with Hyper-V only and is not recommended for use on
Azure because accelerated Networking (SR-IOV) is not supported.

On Azure, use the VDEV_NETVSC driver which automatically configures the necessary TAP
and failsave drivers.

26.2 Installation

The Netvsc PMD is a standalone driver, similar to virtio and vmxnet3. Using Netvsc PMD
requires that the associated VMBUS device be bound to the userspace I/O device driver for
Hyper-V (uio_hv_generic). By default, all netvsc devices will be bound to the Linux kernel
driver; in order to use netvsc PMD the device must first be overridden.

151

Network Interface Controller Drivers, Release 18.08.1

The first step is to identify the network device to override. VMBUS uses Universal Unique
Identifiers (UUID) to identify devices on the bus similar to how PCI uses Domain:Bus:Function.
The UUID associated with a Linux kernel network device can be determined by looking at the
sysfs information. To find the UUID for eth1 and store it in a shell variable:

DEV_UUID=$(basename $(readlink /sys/class/net/eth1/device))

There are several possible ways to assign the uio device driver for a device. The easiest way
(but only on 4.18 or later) is to use the driverctl Device Driver control utility to override the
normal kernel device.

driverctl -b vmbus set-override $DEV_UUID uio_hv_generic

Any settings done with driverctl are by default persistent and will be reapplied on reboot.

On older kernels, the same effect can be had by manual sysfs bind and unbind operations:

NET_UUID="f8615163-df3e-46c5-913f-f2d2f965ed0e"
modprobe uio_hv_generic
echo $NET_UUID > /sys/bus/vmbus/drivers/uio_hv_generic/new_id
echo $DEV_UUID > /sys/bus/vmbus/drivers/hv_netvsc/unbind
echo $DEV_UUID > /sys/bus/vmbus/drivers/uio_hv_generic/bind

Note: The dpkd-devbind.py script can not be used since it only handles PCI devices.

26.3 Prerequisites

The following prerequisites apply:

• Linux kernel support for UIO on vmbus is done with the uio_hv_generic driver. Full sup-
port of multiple queues requires the 4.17 kernel. It is possible to use the netvsc PMD
with 4.16 kernel but it is limited to a single queue.

26.3. Prerequisites 152

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://gitlab.com/driverctl/driverctl

CHAPTER

TWENTYSEVEN

NFP POLL MODE DRIVER LIBRARY

Netronome’s sixth generation of flow processors pack 216 programmable cores and over 100
hardware accelerators that uniquely combine packet, flow, security and content processing in
a single device that scales up to 400-Gb/s.

This document explains how to use DPDK with the Netronome Poll Mode Driver (PMD) sup-
porting Netronome’s Network Flow Processor 6xxx (NFP-6xxx) and Netronome’s Flow Proces-
sor 4xxx (NFP-4xxx).

NFP is a SRIOV capable device and the PMD driver supports the physical function (PF) and
the virtual functions (VFs).

27.1 Dependencies

Before using the Netronome’s DPDK PMD some NFP configuration, which is not related to
DPDK, is required. The system requires installation of Netronome’s BSP (Board Support
Package) along with a specific NFP firmware application. Netronome’s NSP ABI version
should be 0.20 or higher.

If you have a NFP device you should already have the code and documentation for this config-
uration. Contact support@netronome.com to obtain the latest available firmware.

The NFP Linux netdev kernel driver for VFs has been a part of the vanilla kernel since kernel
version 4.5, and support for the PF since kernel version 4.11. Support for older kernels can
be obtained on Github at https://github.com/Netronome/nfp-drv-kmods along with the build
instructions.

NFP PMD needs to be used along with UIO igb_uio or VFIO (vfio-pci) Linux kernel driver.

27.2 Building the software

Netronome’s PMD code is provided in the drivers/net/nfp directory. Although NFP PMD has
Netronome´s BSP dependencies, it is possible to compile it along with other DPDK PMDs even
if no BSP was installed previously. Of course, a DPDK app will require such a BSP installed
for using the NFP PMD, along with a specific NFP firmware application.

Default PMD configuration is at the common_linuxapp configuration file:

• CONFIG_RTE_LIBRTE_NFP_PMD=y

Once the DPDK is built all the DPDK apps and examples include support for the NFP PMD.

153

Network Interface Controller Drivers, Release 18.08.1

27.3 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

27.4 Using the PF

NFP PMD supports using the NFP PF as another DPDK port, but it does not have any func-
tionality for controlling VFs. In fact, it is not possible to use the PMD with the VFs if the PF is
being used by DPDK, that is, with the NFP PF bound to igb_uio or vfio-pci kernel drivers.
Future DPDK versions will have a PMD able to work with the PF and VFs at the same time and
with the PF implementing VF management along with other PF-only functionalities/offloads.

The PMD PF has extra work to do which will delay the DPDK app initialization like uploading
the firmware and configure the Link state properly when starting or stopping a PF port. Since
DPDK 18.05 the firmware upload happens when a PF is initialized, which was not always true
with older DPDK versions.

Depending on the Netronome product installed in the system, firmware files should be available
under /lib/firmware/netronome. DPDK PMD supporting the PF looks for a firmware file
in this order:

1. First try to find a firmware image specific for this device using the NFP serial number:

serial-00-15-4d-12-20-65-10-ff.nffw

2. Then try the PCI name:

pci-0000:04:00.0.nffw

3. Finally try the card type and media:

nic_AMDA0099-0001_2x25.nffw

Netronome’s software packages install firmware files under /lib/firmware/netronome to
support all the Netronome’s SmartNICs and different firmware applications. This is usually
done using file names based on SmartNIC type and media and with a directory per firmware
application. Options 1 and 2 for firmware filenames allow more than one SmartNIC, same type
of SmartNIC or different ones, and to upload a different firmware to each SmartNIC.

27.5 PF multiport support

Some NFP cards support several physical ports with just one single PCI device. The DPDK
core is designed with a 1:1 relationship between PCI devices and DPDK ports, so NFP PMD
PF support requires handling the multiport case specifically. During NFP PF initialization, the
PMD will extract the information about the number of PF ports from the firmware and will create
as many DPDK ports as needed.

Because the unusual relationship between a single PCI device and several DPDK ports, there
are some limitations when using more than one PF DPDK port: there is no support for RX
interrupts and it is not possible either to use those PF ports with the device hotplug functionality.

27.3. Driver compilation and testing 154

Network Interface Controller Drivers, Release 18.08.1

27.6 System configuration

1. Enable SR-IOV on the NFP device: The current NFP PMD supports the PF and the VFs
on a NFP device. However, it is not possible to work with both at the same time because
the VFs require the PF being bound to the NFP PF Linux netdev driver. Make sure you
are working with a kernel with NFP PF support or get the drivers from the above Github
repository and follow the instructions for building and installing it.

VFs need to be enabled before they can be used with the PMD. Before enabling the VFs it
is useful to obtain information about the current NFP PCI device detected by the system:

lspci -d19ee:

Now, for example, configure two virtual functions on a NFP-6xxx device whose PCI sys-
tem identity is “0000:03:00.0”:

echo 2 > /sys/bus/pci/devices/0000:03:00.0/sriov_numvfs

The result of this command may be shown using lspci again:

lspci -d19ee: -k

Two new PCI devices should appear in the output of the above command. The -k option
shows the device driver, if any, that devices are bound to. Depending on the modules
loaded at this point the new PCI devices may be bound to nfp_netvf driver.

27.6. System configuration 155

CHAPTER

TWENTYEIGHT

OCTEONTX POLL MODE DRIVER

The OCTEONTX ETHDEV PMD (librte_pmd_octeontx) provides poll mode ethdev driver
support for the inbuilt network device found in the Cavium OCTEONTX SoC family as well
as their virtual functions (VF) in SR-IOV context.

More information can be found at Cavium, Inc Official Website.

28.1 Features

Features of the OCTEONTX Ethdev PMD are:

• Packet type information

• Promiscuous mode

• Port hardware statistics

• Jumbo frames

• Link state information

• SR-IOV VF

• Multiple queues for TX

• Lock-free Tx queue

• HW offloaded ethdev Rx queue to eventdev event queue packet injection

28.2 Supported OCTEONTX SoCs

• CN83xx

28.3 Unsupported features

The features supported by the device and not yet supported by this PMD include:

• Receive Side Scaling (RSS)

• Scattered and gather for TX and RX

• Ingress classification support

156

http://www.cavium.com/OCTEON-TX_ARM_Processors.html

Network Interface Controller Drivers, Release 18.08.1

• Egress hierarchical scheduling, traffic shaping, and marking

28.4 Prerequisites

See ../platform/octeontx for setup information.

28.5 Pre-Installation Configuration

28.5.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_OCTEONTX_PMD (default y)

Toggle compilation of the librte_pmd_octeontx driver.

28.5.2 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

To compile the OCTEONTX PMD for Linux arm64 gcc target, run the following make command:

cd <DPDK-source-directory>
make config T=arm64-thunderx-linuxapp-gcc install

1. Running testpmd:

Follow instructions available in the document compiling and testing a PMD for a NIC to
run testpmd.

Example output:

./arm64-thunderx-linuxapp-gcc/app/testpmd -c 700 \
--base-virtaddr=0x100000000000 \
--mbuf-pool-ops-name="octeontx_fpavf" \
--vdev='event_octeontx' \
--vdev='eth_octeontx,nr_port=2' \
-- --rxq=1 --txq=1 --nb-core=2 \
--total-num-mbufs=16384 -i

.....
EAL: Detected 24 lcore(s)
EAL: Probing VFIO support...
EAL: VFIO support initialized
.....
EAL: PCI device 0000:07:00.1 on NUMA socket 0
EAL: probe driver: 177d:a04b octeontx_ssovf
.....
EAL: PCI device 0001:02:00.7 on NUMA socket 0
EAL: probe driver: 177d:a0dd octeontx_pkivf
.....
EAL: PCI device 0001:03:01.0 on NUMA socket 0
EAL: probe driver: 177d:a049 octeontx_pkovf
.....
PMD: octeontx_probe(): created ethdev eth_octeontx for port 0
PMD: octeontx_probe(): created ethdev eth_octeontx for port 1
.....

28.4. Prerequisites 157

Network Interface Controller Drivers, Release 18.08.1

Configuring Port 0 (socket 0)
Port 0: 00:0F:B7:11:94:46
Configuring Port 1 (socket 0)
Port 1: 00:0F:B7:11:94:47
.....
Checking link statuses...
Port 0 Link Up - speed 40000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Done
testpmd>

28.6 Initialization

The octeontx ethdev pmd is exposed as a vdev device which consists of a set of PKI and PKO
PCIe VF devices. On EAL initialization, PKI/PKO PCIe VF devices will be probed and then the
vdev device can be created from the application code, or from the EAL command line based
on the number of probed/bound PKI/PKO PCIe VF device to DPDK by

• Invoking rte_vdev_init("eth_octeontx") from the application

• Using --vdev="eth_octeontx" in the EAL options, which will call rte_vdev_init() in-
ternally

28.6.1 Device arguments

Each ethdev port is mapped to a physical port(LMAC), Application can specify the number of
interesting ports with nr_ports argument.

28.6.2 Dependency

eth_octeontx pmd is depend on event_octeontx eventdev device and
octeontx_fpavf external mempool handler.

Example:

./your_dpdk_application --mbuf-pool-ops-name="octeontx_fpavf" \
--vdev='event_octeontx' \
--vdev="eth_octeontx,nr_port=2"

28.7 Limitations

28.7.1 octeontx_fpavf external mempool handler dependency

The OCTEONTX SoC family NIC has inbuilt HW assisted external mempool manager. This
driver will only work with octeontx_fpavf external mempool handler as it is the most perfor-
mance effective way for packet allocation and Tx buffer recycling on OCTEONTX SoC platform.

28.7.2 CRC striping

The OCTEONTX SoC family NICs strip the CRC for every packets coming into the host inter-
face irrespective of the offload configuration.

28.6. Initialization 158

Network Interface Controller Drivers, Release 18.08.1

28.7.3 Maximum packet length

The OCTEONTX SoC family NICs support a maximum of a 32K jumbo frame. The value is
fixed and cannot be changed. So, even when the rxmode.max_rx_pkt_len member of
struct rte_eth_conf is set to a value lower than 32k, frames up to 32k bytes can still
reach the host interface.

28.7. Limitations 159

CHAPTER

TWENTYNINE

QEDE POLL MODE DRIVER

The QEDE poll mode driver library (librte_pmd_qede) implements support for QLogic
FastLinQ QL4xxxx 10G/25G/40G/50G/100G Intelligent Ethernet Adapters (IEA) and Con-
verged Network Adapters (CNA) family of adapters as well as SR-IOV virtual functions (VF).
It is supported on several standard Linux distros like RHEL7.x, SLES12.x and Ubuntu. It is
compile-tested under FreeBSD OS.

More information can be found at QLogic Corporation’s Website.

29.1 Supported Features

• Unicast/Multicast filtering

• Promiscuous mode

• Allmulti mode

• Port hardware statistics

• Jumbo frames

• Multiple MAC address

• MTU change

• Default pause flow control

• Multiprocess aware

• Scatter-Gather

• Multiple Rx/Tx queues

• RSS (with RETA/hash table/key)

• TSS

• Stateless checksum offloads (IPv4/IPv6/TCP/UDP)

• LRO/TSO

• VLAN offload - Filtering and stripping

• N-tuple filter and flow director (limited support)

• NPAR (NIC Partitioning)

• SR-IOV VF

160

http://www.qlogic.com

Network Interface Controller Drivers, Release 18.08.1

• GRE Tunneling offload

• GENEVE Tunneling offload

• VXLAN Tunneling offload

• MPLSoUDP Tx Tunneling offload

29.2 Non-supported Features

• SR-IOV PF

29.3 Co-existence considerations

• QLogic FastLinQ QL4xxxx CNAs can have both NIC and Storage personalities. However,
coexistence with storage protocol drivers (qedi and qedf) is not supported on the same
adapter. So storage personality has to be disabled on that adapter when used in DPDK
applications.

• For SR-IOV case, qede PMD will be used to bind to SR-IOV VF device and Linux native
kernel driver (qede) will be attached to SR-IOV PF.

29.4 Supported QLogic Adapters

• QLogic FastLinQ QL4xxxx 10G/25G/40G/50G/100G Intelligent Ethernet Adapters (IEA)
and Converged Network Adapters (CNA)

29.5 Prerequisites

• Requires storm firmware version 8.33.12.0. Firmware may be available
inbox in certain newer Linux distros under the standard directory E.g.
/lib/firmware/qed/qed_init_values-8.33.12.0.bin. If the required
firmware files are not available then download it from linux-firmware git repository
or QLogic Driver Download Center. To download firmware file from QLogic website,
select adapter category, model and DPDK Poll Mode Driver.

• Requires the NIC be updated minimally with 8.30.x.x Management firmware(MFW) ver-
sion supported for that NIC. It is highly recommended that the NIC be updated with the
latest available management firmware version to get latest feature set. Management
Firmware and Firmware Upgrade Utility for Cavium FastLinQ(r) branded adapters can be
downloaded from Driver Download Center. For downloading Firmware Upgrade Utility,
select NIC category, model and Linux distro. To update the management firmware, refer
to the instructions in the Firmware Upgrade Utility Readme document. For OEM branded
adapters please follow the instruction provided by the OEM to update the Management
Firmware on the NIC.

• SR-IOV requires Linux PF driver version 8.20.x.x or higher. If the required PF driver is
not available then download it from QLogic Driver Download Center. For downloading PF
driver, select adapter category, model and Linux distro.

29.2. Non-supported Features 161

http://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/qed
http://driverdownloads.qlogic.com/QLogicDriverDownloads_UI/DefaultNewSearch.aspx
http://driverdownloads.qlogic.com/QLogicDriverDownloads_UI/DefaultNewSearch.aspx
http://driverdownloads.qlogic.com/QLogicDriverDownloads_UI/DefaultNewSearch.aspx

Network Interface Controller Drivers, Release 18.08.1

29.5.1 Performance note

• For better performance, it is recommended to use 4K or higher RX/TX rings.

29.5.2 Config File Options

The following options can be modified in the .config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_QEDE_PMD (default y)

Toggle compilation of QEDE PMD driver.

• CONFIG_RTE_LIBRTE_QEDE_DEBUG_TX (default n)

Toggle display of transmit fast path run-time messages.

• CONFIG_RTE_LIBRTE_QEDE_DEBUG_RX (default n)

Toggle display of receive fast path run-time messages.

• CONFIG_RTE_LIBRTE_QEDE_FW (default “”)

Gives absolute path of firmware file. Eg: "/lib/firmware/qed/qed_init_values-8.33.12.0.bin"
Empty string indicates driver will pick up the firmware file from the default loca-
tion /lib/firmware/qed. CAUTION this option is more for custom firmware, it is not
recommended for use under normal condition.

29.6 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

29.7 SR-IOV: Prerequisites and Sample Application Notes

This section provides instructions to configure SR-IOV with Linux OS.

Note: librte_pmd_qede will be used to bind to SR-IOV VF device and Linux native kernel driver
(qede) will function as SR-IOV PF driver. Requires PF driver to be 8.20.x.x or higher.

1. Verify SR-IOV and ARI capability is enabled on the adapter using lspci:

lspci -s <slot> -vvv

Example output:

[...]
Capabilities: [1b8 v1] Alternative Routing-ID Interpretation (ARI)
[...]
Capabilities: [1c0 v1] Single Root I/O Virtualization (SR-IOV)
[...]
Kernel driver in use: igb_uio

2. Load the kernel module:

modprobe qede

Example output:

29.6. Driver compilation and testing 162

Network Interface Controller Drivers, Release 18.08.1

systemd-udevd[4848]: renamed network interface eth0 to ens5f0
systemd-udevd[4848]: renamed network interface eth1 to ens5f1

3. Bring up the PF ports:

ifconfig ens5f0 up
ifconfig ens5f1 up

4. Create VF device(s):

Echo the number of VFs to be created into "sriov_numvfs" sysfs entry of the parent
PF.

Example output:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

5. Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:

ip link set <PF iface> vf <VF id> mac <macaddr>

Example output:

ip link set ens5f0 vf 0 mac 52:54:00:2f:9d:e8

6. PCI Passthrough:

The VF devices may be passed through to the guest VM using virt-manager or virsh.
QEDE PMD should be used to bind the VF devices in the guest VM using the instructions
from Driver compilation and testing section above.

7. Running testpmd (Supply --log-level="pmd.net.qede.driver:info to view in-
formational messages):

Refer to the document compiling and testing a PMD for a NIC to run testpmd application.

Example output:

testpmd -l 0,4-11 -n 4 -- -i --nb-cores=8 --portmask=0xf --rxd=4096 \
--txd=4096 --txfreet=4068 --enable-rx-cksum --rxq=4 --txq=4 \
--rss-ip --rss-udp

[...]

EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 1077:1634 rte_qede_pmd
EAL: Not managed by a supported kernel driver, skipped
EAL: PCI device 0000:84:00.1 on NUMA socket 1
EAL: probe driver: 1077:1634 rte_qede_pmd
EAL: Not managed by a supported kernel driver, skipped
EAL: PCI device 0000:88:00.0 on NUMA socket 1
EAL: probe driver: 1077:1656 rte_qede_pmd
EAL: PCI memory mapped at 0x7f738b200000
EAL: PCI memory mapped at 0x7f738b280000
EAL: PCI memory mapped at 0x7f738b300000
PMD: Chip details : BB1
PMD: Driver version : QEDE PMD 8.7.9.0_1.0.0
PMD: Firmware version : 8.7.7.0
PMD: Management firmware version : 8.7.8.0
PMD: Firmware file : /lib/firmware/qed/qed_init_values_zipped-8.7.7.0.bin
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_common_dev_init:macaddr \

00:0e:1e:d2:09:9c
[...]

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 0 num_desc 4096 \

29.7. SR-IOV: Prerequisites and Sample Application Notes 163

Network Interface Controller Drivers, Release 18.08.1

tx_free_thresh 4068 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 1 num_desc 4096 \

tx_free_thresh 4068 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 2 num_desc 4096 \

tx_free_thresh 4068 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 3 num_desc 4096 \

tx_free_thresh 4068 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 0 num_desc 4096 \

rx_buf_size=2148 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 1 num_desc 4096 \

rx_buf_size=2148 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 2 num_desc 4096 \

rx_buf_size=2148 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 3 num_desc 4096 \

rx_buf_size=2148 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_dev_start:port 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_dev_start:link status: down

[...]
Checking link statuses...
Port 0 Link Up - speed 25000 Mbps - full-duplex
Port 1 Link Up - speed 25000 Mbps - full-duplex
Port 2 Link Up - speed 25000 Mbps - full-duplex
Port 3 Link Up - speed 25000 Mbps - full-duplex
Done
testpmd>

29.7. SR-IOV: Prerequisites and Sample Application Notes 164

CHAPTER

THIRTY

SOLARFLARE LIBEFX-BASED POLL MODE DRIVER

The SFC EFX PMD (librte_pmd_sfc_efx) provides poll mode driver support for Solarflare
SFN7xxx and SFN8xxx family of 10/40 Gbps adapters and Solarflare XtremeScale X2xxx
family of 10/25/40/50/100 Gbps adapters. SFC EFX PMD has support for the latest Linux and
FreeBSD operating systems.

More information can be found at Solarflare Communications website.

30.1 Features

SFC EFX PMD has support for:

• Multiple transmit and receive queues

• Link state information including link status change interrupt

• IPv4/IPv6 TCP/UDP transmit checksum offload

• Inner IPv4/IPv6 TCP/UDP transmit checksum offload

• Port hardware statistics

• Extended statistics (see Solarflare Server Adapter User’s Guide for the statistics descrip-
tion)

• Basic flow control

• MTU update

• Jumbo frames up to 9K

• Promiscuous mode

• Allmulticast mode

• TCP segmentation offload (TSO)

• Multicast MAC filter

• IPv4/IPv6 TCP/UDP receive checksum offload

• Inner IPv4/IPv6 TCP/UDP receive checksum offload

• Received packet type information

• Receive side scaling (RSS)

• RSS hash

165

http://solarflare.com

Network Interface Controller Drivers, Release 18.08.1

• Scattered Rx DMA for packet that are larger that a single Rx descriptor

• Deferred receive and transmit queue start

• Transmit VLAN insertion (if running firmware variant supports it)

• Flow API

• Loopback

30.2 Non-supported Features

The features not yet supported include:

• Receive queue interupts

• Priority-based flow control

• Configurable RX CRC stripping (always stripped)

• Header split on receive

• VLAN filtering

• VLAN stripping

• LRO

30.3 Limitations

Due to requirements on receive buffer alignment and usage of the receive buffer for the aux-
iliary packet information provided by the NIC up to extra 269 (14 bytes prefix plus up to 255
bytes for end padding) bytes may be required in the receive buffer. It should be taken into
account when mbuf pool for receive is created.

30.3.1 Equal stride super-buffer mode

When the receive queue uses equal stride super-buffer DMA mode, one HW Rx descriptor
carries many Rx buffers which contiguously follow each other with some stride (equal to total
size of rte_mbuf as mempool object). Each Rx buffer is an independent rte_mbuf. However
dedicated mempool manager must be used when mempool for the Rx queue is created. The
manager must support dequeue of the contiguous block of objects and provide mempool info
API to get the block size.

Another limitation of a equal stride super-buffer mode, imposed by the firmware, is that it allows
for a single RSS context.

30.4 Tunnels support

NVGRE, VXLAN and GENEVE tunnels are supported on SFN8xxx and X2xxx family adapters
with full-feature firmware variant running. sfboot should be used to configure NIC to run full-
feature firmware variant. See Solarflare Server Adapter User’s Guide for details.

30.2. Non-supported Features 166

Network Interface Controller Drivers, Release 18.08.1

SFN8xxx and X2xxx family adapters provide either inner or outer packet classes. If adapter
firmware advertises support for tunnels then the PMD configures the hardware to report inner
classes, and outer classes are not reported in received packets. However, for VXLAN and
GENEVE tunnels the PMD does report UDP as the outer layer 4 packet type.

SFN8xxx and X2xxx family adapters report GENEVE packets as VXLAN. If UDP ports are
configured for only one tunnel type then it is safe to treat VXLAN packet type indication as the
corresponding UDP tunnel type.

30.5 Flow API support

Supported attributes:

• Ingress

Supported pattern items:

• VOID

• ETH (exact match of source/destination addresses, individual/group match of destina-
tion address, EtherType in the outer frame and exact match of destination addresses,
individual/group match of destination address in the inner frame)

• VLAN (exact match of VID, double-tagging is supported)

• IPV4 (exact match of source/destination addresses, IP transport protocol)

• IPV6 (exact match of source/destination addresses, IP transport protocol)

• TCP (exact match of source/destination ports)

• UDP (exact match of source/destination ports)

• VXLAN (exact match of VXLAN network identifier)

• GENEVE (exact match of virtual network identifier, only Ethernet (0x6558) protocol type
is supported)

• NVGRE (exact match of virtual subnet ID)

Supported actions:

• VOID

• QUEUE

• RSS

• DROP

• FLAG (supported only with ef10_essb Rx datapath)

• MARK (supported only with ef10_essb Rx datapath)

Validating flow rules depends on the firmware variant.

30.5.1 Ethernet destinaton individual/group match

Ethernet item supports I/G matching, if only the corresponding bit is set in the mask of des-
tination address. If destinaton address in the spec is multicast, it matches all multicast (and

30.5. Flow API support 167

Network Interface Controller Drivers, Release 18.08.1

broadcast) packets, oherwise it matches unicast packets that are not filtered by other flow
rules.

30.5.2 Exceptions to flow rules

There is a list of exceptional flow rule patterns which will not be accepted by the PMD. A pattern
will be rejected if at least one of the conditions is met:

• Filtering by IPv4 or IPv6 EtherType without pattern items of internet layer and above.

• The last item is IPV4 or IPV6, and it’s empty.

• Filtering by TCP or UDP IP transport protocol without pattern items of transport layer and
above.

• The last item is TCP or UDP, and it’s empty.

30.6 Supported NICs

• Solarflare XtremeScale Adapters:

– Solarflare X2522 Dual Port SFP28 10/25GbE Adapter

• Solarflare Flareon [Ultra] Server Adapters:

– Solarflare SFN8522 Dual Port SFP+ Server Adapter

– Solarflare SFN8522M Dual Port SFP+ Server Adapter

– Solarflare SFN8042 Dual Port QSFP+ Server Adapter

– Solarflare SFN8542 Dual Port QSFP+ Server Adapter

– Solarflare SFN8722 Dual Port SFP+ OCP Server Adapter

– Solarflare SFN7002F Dual Port SFP+ Server Adapter

– Solarflare SFN7004F Quad Port SFP+ Server Adapter

– Solarflare SFN7042Q Dual Port QSFP+ Server Adapter

– Solarflare SFN7122F Dual Port SFP+ Server Adapter

– Solarflare SFN7124F Quad Port SFP+ Server Adapter

– Solarflare SFN7142Q Dual Port QSFP+ Server Adapter

– Solarflare SFN7322F Precision Time Synchronization Server Adapter

30.7 Prerequisites

• Requires firmware version:

– SFN7xxx: 4.7.1.1001 or higher

– SFN8xxx: 6.0.2.1004 or higher

30.6. Supported NICs 168

Network Interface Controller Drivers, Release 18.08.1

Visit Solarflare Support Downloads to get Solarflare Utilities (either Linux or FreeBSD) with
the latest firmware. Follow instructions from Solarflare Server Adapter User’s Guide to update
firmware and configure the adapter.

30.8 Pre-Installation Configuration

30.8.1 Config File Options

The following options can be modified in the .config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_SFC_EFX_PMD (default y)

Enable compilation of Solarflare libefx-based poll-mode driver.

• CONFIG_RTE_LIBRTE_SFC_EFX_DEBUG (default n)

Enable compilation of the extra run-time consistency checks.

30.8.2 Per-Device Parameters

The following per-device parameters can be passed via EAL PCI device whitelist option like
“-w 02:00.0,arg1=value1,...”.

Case-insensitive 1/y/yes/on or 0/n/no/off may be used to specify boolean parameters value.

• rx_datapath [auto|efx|ef10|ef10_esps] (default auto)

Choose receive datapath implementation. auto allows the driver itself to make a choice
based on firmware features available and required by the datapath implementation.
efx chooses libefx-based datapath which supports Rx scatter. ef10 chooses EF10
(SFN7xxx, SFN8xxx, X2xxx) native datapath which is more efficient than libefx-based
and provides richer packet type classification, but lacks Rx scatter support. ef10_esps
chooses SFNX2xxx equal stride packed stream datapath which may be used on DPDK
firmware variant only (see notes about its limitations above).

• tx_datapath [auto|efx|ef10|ef10_simple] (default auto)

Choose transmit datapath implementation. auto allows the driver itself to make a choice
based on firmware features available and required by the datapath implementation. efx
chooses libefx-based datapath which supports VLAN insertion (full-feature firmware vari-
ant only), TSO and multi-segment mbufs. Mbuf segments may come from different
mempools, and mbuf reference counters are treated responsibly. ef10 chooses EF10
(SFN7xxx, SFN8xxx, X2xxx) native datapath which is more efficient than libefx-based
but has no VLAN insertion and TSO support yet. Mbuf segments may come from dif-
ferent mempools, and mbuf reference counters are treated responsibly. ef10_simple
chooses EF10 (SFN7xxx, SFN8xxx, X2xxx) native datapath which is even more faster
then ef10 but does not support multi-segment mbufs, disallows multiple mempools and
neglects mbuf reference counters.

• perf_profile [auto|throughput|low-latency] (default throughput)

Choose hardware tunning to be optimized for either throughput or low-latency. auto
allows NIC firmware to make a choice based on installed licences and firmware variant
configured using sfboot.

30.8. Pre-Installation Configuration 169

https://support.solarflare.com

Network Interface Controller Drivers, Release 18.08.1

• stats_update_period_ms [long] (default 1000)

Adjust period in milliseconds to update port hardware statistics. The accepted range is 0
to 65535. The value of 0 may be used to disable periodic statistics update. One should
note that it’s only possible to set an arbitrary value on SFN8xxx and X2xxx provided that
firmware version is 6.2.1.1033 or higher, otherwise any positive value will select a fixed
update period of 1000 milliseconds

• fw_variant [dont-care|full-feature|ultra-low-latency| capture-packed-stream|dpdk] (de-
fault dont-care)

Choose the preferred firmware variant to use. In order for the selected option to have
an effect, the sfboot utility must be configured with the auto firmware-variant option.
The preferred firmware variant applies to all ports on the NIC. dont-care ensures that
the driver can attach to an unprivileged function. The datapath firmware type to use
is controlled by the sfboot utility. full-feature chooses full featured firmware. ultra-
low-latency chooses firmware with fewer features but lower latency. capture-packed-
stream chooses firmware for SolarCapture packed stream mode. dpdk chooses DPDK
firmware with equal stride super-buffer Rx mode for higher Rx packet rate and packet
marks support and firmware subvariant without checksumming on transmit for higher Tx
packet rate if checksumming is not required.

• rxd_wait_timeout_ns [long] (default 200 us)

Adjust timeout in nanoseconds to head-of-line block to wait for Rx descriptors. The ac-
cepted range is 0 to 400 ms. Flow control should be enabled to make it work. The value
of 0 disables it and packets are dropped immediately. When a packet is dropped because
of no Rx descriptors, rx_nodesc_drop_cnt counter grows. The feature is supported
only by the DPDK firmware variant when equal stride super-buffer Rx mode is used.

30.8.3 Dynamic Logging Parameters

One may leverage EAL option “–log-level” to change default levels for the log types supported
by the driver. The option is used with an argument typically consisting of two parts separated
by a colon.

Level value is the last part which takes a symbolic name (or integer). Log type is the former
part which may shell match syntax. Depending on the choice of the expression, the given log
level may be used either for some specific log type or for a subset of types.

SFC EFX PMD provides the following log types available for control:

• pmd.net.sfc.driver (default level is notice)

Affects driver-wide messages unrelated to any particular devices.

• pmd.net.sfc.main (default level is notice)

Matches a subset of per-port log types registered during runtime. A full name for
a particular type may be obtained by appending a dot and a PCI device identifier
(XXXX:XX:XX.X) to the prefix.

• pmd.net.sfc.mcdi (default level is notice)

Extra logging of the communication with the NIC’s management CPU. The format of the
log is consumed by the Solarflare netlogdecode cross-platform tool. May be managed
per-port, as explained above.

30.8. Pre-Installation Configuration 170

CHAPTER

THIRTYONE

SOFT NIC POLL MODE DRIVER

The Soft NIC allows building custom NIC pipelines in software. The Soft NIC pipeline is DIY
and reconfigurable through firmware (DPDK Packet Framework script).

The Soft NIC leverages the DPDK Packet Framework libraries (librte_port, librte_table and
librte_pipeline) to make it modular, flexible and extensible with new functionality. Please refer
to DPDK Programmer’s Guide, Chapter Packet Framework and DPDK Sample Application
User Guide, Chapter IP Pipeline Application for more details.

The Soft NIC is configured through the standard DPDK ethdev API (ethdev, flow, QoS, secu-
rity). The internal framework is not externally visible.

Key benefits:

• Can be used to augment missing features to HW NICs.

• Allows consumption of advanced DPDK features without application redesign.

• Allows out-of-the-box performance boost of DPDK consumers applications simply
by instantiating this type of Ethernet device.

31.1 Flow

• Device creation: Each Soft NIC instance is a virtual device.

• Device start: The Soft NIC firmware script is executed every time the device is
started. The firmware script typically creates several internal objects, such as: mem-
ory pools, SW queues, traffic manager, action profiles, pipelines, etc.

• Device stop: All the internal objects that were previously created by the firmware script
during device start are now destroyed.

• Device run: Each Soft NIC device needs one or several CPU cores to run. The
firmware script maps each internal pipeline to a CPU core. Multiple pipelines can be
mapped to the same CPU core. In order for a given pipeline assigned to CPU core X to
run, the application needs to periodically call on CPU core X the rte_pmd_softnic_run()
function for the current Soft NIC device.

• Application run: The application reads packets from the Soft NIC device RX queues
and writes packets to the Soft NIC device TX queues.

171

Network Interface Controller Drivers, Release 18.08.1

31.2 Supported Operating Systems

Any Linux distribution fulfilling the conditions described in System Requirements section of
the DPDK documentation or refer to DPDK Release Notes.

31.3 Build options

The default PMD configuration available in the common_linuxapp configuration file:

CONFIG_RTE_LIBRTE_PMD_SOFTNIC=y

Once the DPDK is built, all the DPDK applications include support for the Soft NIC PMD.

31.4 Soft NIC PMD arguments

The user can specify below arguments in EAL --vdev options to create the Soft NIC device
instance:

–vdev “net_softnic0,firmware=firmware.cli,conn_port=8086”

1. firmware: path to the firmware script used for Soft NIC configuration. The example
“firmware” script is provided at drivers/net/softnic/. (Optional: No, Default = NA)

2. conn_port: tcp connection port (non-zero value) used by remote client (for examples-
telnet, netcat, etc.) to connect and configure Soft NIC device in run-time. (Optional: yes,
Default value: 0, no connection with external client)

3. cpu_id: numa node id. (Optional: yes, Default value: 0)

4. tm_n_queues: number of traffic manager’s scheduler queues. The traffic manager is
based on DPDK librte_sched library. (Optional: yes, Default value: 65,536 queues)

5. tm_qsize0: size of scheduler queue 0 per traffic class of the pipes/subscribers. (Op-
tional: yes, Default: 64)

6. tm_qsize1: size of scheduler queue 1 per traffic class of the pipes/subscribers. (Op-
tional: yes, Default: 64)

7. tm_qsize2: size of scheduler queue 2 per traffic class of the pipes/subscribers. (Op-
tional: yes, Default: 64)

8. tm_qsize3: size of scheduler queue 3 per traffic class of the pipes/subscribers. (Op-
tional: yes, Default: 64)

31.5 Soft NIC testing

• Run testpmd application in Soft NIC forwarding mode with loopback feature enabled on
Soft NIC port:

./testpmd -c 0x3 --vdev 'net_softnic0,firmware=<script path>/firmware.cli,cpu_id=0,conn_port=8086' -- -i
--forward-mode=softnic --portmask=0x2

31.2. Supported Operating Systems 172

Network Interface Controller Drivers, Release 18.08.1

...
Interactive-mode selected
Set softnic packet forwarding mode
...
Configuring Port 0 (socket 0)
Port 0: 90:E2:BA:37:9D:DC
Configuring Port 1 (socket 0)

; SPDX-License-Identifier: BSD-3-Clause
; Copyright(c) 2018 Intel Corporation

link LINK dev 0000:02:00.0

pipeline RX period 10 offset_port_id 0
pipeline RX port in bsz 32 link LINK rxq 0
pipeline RX port out bsz 32 swq RXQ0
pipeline RX table match stub
pipeline RX port in 0 table 0

pipeline TX period 10 offset_port_id 0
pipeline TX port in bsz 32 swq TXQ0
pipeline TX port out bsz 32 link LINK txq 0
pipeline TX table match stub
pipeline TX port in 0 table 0

thread 1 pipeline RX enable
thread 1 pipeline TX enable
Port 1: 00:00:00:00:00:00
Checking link statuses...
Done
testpmd>

• Start forwarding

testpmd> start
softnic packet forwarding - ports=1 - cores=1 - streams=1 - NUMA support enabled, MP over anonymous pages disabled
Logical Core 1 (socket 0) forwards packets on 1 streams:
RX P=2/Q=0 (socket 0) -> TX P=2/Q=0 (socket 0) peer=02:00:00:00:00:02

softnic packet forwarding packets/burst=32
nb forwarding cores=1 - nb forwarding ports=1
port 0: RX queue number: 1 Tx queue number: 1
Rx offloads=0x1000 Tx offloads=0x0
RX queue: 0
RX desc=512 - RX free threshold=32
RX threshold registers: pthresh=8 hthresh=8 wthresh=0
RX Offloads=0x0
TX queue: 0
TX desc=512 - TX free threshold=32
TX threshold registers: pthresh=32 hthresh=0 wthresh=0
TX offloads=0x0 - TX RS bit threshold=32
port 1: RX queue number: 1 Tx queue number: 1
Rx offloads=0x0 Tx offloads=0x0
RX queue: 0
RX desc=0 - RX free threshold=0
RX threshold registers: pthresh=0 hthresh=0 wthresh=0
RX Offloads=0x0
TX queue: 0
TX desc=0 - TX free threshold=0
TX threshold registers: pthresh=0 hthresh=0 wthresh=0
TX offloads=0x0 - TX RS bit threshold=0

• Start remote client (e.g. telnet) to communicate with the softnic device:

31.5. Soft NIC testing 173

Network Interface Controller Drivers, Release 18.08.1

$ telnet 127.0.0.1 8086
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.

Welcome to Soft NIC!

softnic>

• Add/update Soft NIC pipeline table match-action entries from telnet client:

softnic> pipeline RX table 0 rule add match default action fwd port 0
softnic> pipeline TX table 0 rule add match default action fwd port 0

31.6 Soft NIC Firmware

The Soft NIC firmware, for example- softnic/firmware.cli, consists of following CLI commands
for creating and managing software based NIC pipelines. For more details, please refer to CLI
command description provided in softnic/rte_eth_softnic_cli.c.

• Physical port for packets send/receive:

link LINK dev 0000:02:00.0

• Pipeline create:

pipeline RX period 10 offset_port_id 0 (Soft NIC rx-path pipeline)
pipeline TX period 10 offset_port_id 0 (Soft NIC tx-path pipeline)

• Pipeline input/output port create

pipeline RX port in bsz 32 link LINK rxq 0 (Soft NIC rx pipeline input port)
pipeline RX port out bsz 32 swq RXQ0 (Soft NIC rx pipeline output port)
pipeline TX port in bsz 32 swq TXQ0 (Soft NIC tx pipeline input port)
pipeline TX port out bsz 32 link LINK txq 0 (Soft NIC tx pipeline output port)

• Pipeline table create

pipeline RX table match stub (Soft NIC rx pipeline match-action table)
pipeline TX table match stub (Soft NIC tx pipeline match-action table)

• Pipeline input port connection with table

pipeline RX port in 0 table 0 (Soft NIC rx pipeline input port 0 connection with table 0)
pipeline TX port in 0 table 0 (Soft NIC tx pipeline input port 0 connection with table 0)

• Pipeline table match-action rules add

pipeline RX table 0 rule add match default action fwd port 0 (Soft NIC rx pipeline table 0 rule)
pipeline TX table 0 rule add match default action fwd port 0 (Soft NIC tx pipeline table 0 rule)

• Enable pipeline on CPU thread

thread 1 pipeline RX enable (Soft NIC rx pipeline enable on cpu thread id 1)
thread 1 pipeline TX enable (Soft NIC tx pipeline enable on cpu thread id 1)

31.6. Soft NIC Firmware 174

CHAPTER

THIRTYTWO

SZEDATA2 POLL MODE DRIVER LIBRARY

The SZEDATA2 poll mode driver library implements support for the Netcope FPGA Boards
(NFB-*), FPGA-based programmable NICs. The SZEDATA2 PMD uses interface provided by
the libsze2 library to communicate with the NFB cards over the sze2 layer.

More information about the NFB cards and used technology (Netcope Development Kit) can
be found on the Netcope Technologies website.

Note: This driver has external dependencies. Therefore it is disabled in default configuration
files. It can be enabled by setting CONFIG_RTE_LIBRTE_PMD_SZEDATA2=y and recompiling.

Note: Currently the driver is supported only on x86_64 architectures. Only x86_64 versions
of the external libraries are provided.

32.1 Prerequisites

This PMD requires kernel modules which are responsible for initialization and allocation of
resources needed for sze2 layer function. Communication between PMD and kernel modules
is mediated by libsze2 library. These kernel modules and library are not part of DPDK and
must be installed separately:

• libsze2 library

The library provides API for initialization of sze2 transfers, receiving and transmitting data
segments.

• Kernel modules

– combo6core

– combov3

– szedata2

– szedata2_cv3 or szedata2_cv3_fdt

Kernel modules manage initialization of hardware, allocation and sharing of resources
for user space applications.

Information about getting the dependencies can be found here.

175

http://www.netcope.com/en/products/fpga-boards
http://www.netcope.com/en/products/fpga-development-kit
http://www.netcope.com/
http://www.netcope.com/en/company/community-support/dpdk-libsze2

Network Interface Controller Drivers, Release 18.08.1

32.1.1 Versions of the packages

The minimum version of the provided packages:

• for DPDK from 18.05: 4.4.1

• for DPDK up to 18.02 (including): 3.0.5

32.2 Configuration

These configuration options can be modified before compilation in the .config file:

• CONFIG_RTE_LIBRTE_PMD_SZEDATA2 default value: n

Value y enables compilation of szedata2 PMD.

32.3 Using the SZEDATA2 PMD

From DPDK version 16.04 the type of SZEDATA2 PMD is changed to PMD_PDEV. SZEDATA2
device is automatically recognized during EAL initialization. No special command line options
are needed.

Kernel modules have to be loaded before running the DPDK application.

32.4 NFB card architecture

The NFB cards are multi-port multi-queue cards, where (generally) data from any Ethernet port
may be sent to any queue. They were historically represented in DPDK as a single port.

However, the new NFB-200G2QL card employs an addon cable which allows to connect it to
two physical PCI-E slots at the same time (see the diagram below). This is done to allow 200
Gbps of traffic to be transferred through the PCI-E bus (note that a single PCI-E 3.0 x16 slot
provides only 125 Gbps theoretical throughput).

Since each slot may be connected to a different CPU and therefore to a different NUMA node,
the card is represented as two ports in DPDK (each with half of the queues), which allows
DPDK to work with data from the individual queues on the right NUMA node.

32.5 Limitations

The SZEDATA2 PMD does not support operations related to Ethernet ports (link_up,
link_down, set_mac_address, etc.).

NFB cards employ multiple Ethernet ports. Until now, Ethernet port-related operations were
performed on all of them (since the whole card was represented as a single port). With NFB-
200G2QL card, this is no longer viable (see above).

Since there is no fixed mapping between the queues and Ethernet ports, and since a single
card can be represented as two ports in DPDK, there is no way of telling which (if any) physical
ports should be associated with individual ports in DPDK.

32.2. Configuration 176

Network Interface Controller Drivers, Release 18.08.1

ETH 0

ETH 1
NFB-200G2QL card

PCI-E master slot PCI-E slave slot

Q
U

E
U

E
 0

Q
U

E
U

E
 1

5

Q
U

E
U

E
 1

6

Q
U

E
U

E
 3

1

CPU 0 CPU 1

Fig. 32.1: NFB-200G2QL high-level diagram

32.6 Example of usage

Read packets from 0. and 1. receive channel and write them to 0. and 1. transmit channel:

$RTE_TARGET/app/testpmd -l 0-3 -n 2 \
-- --port-topology=chained --rxq=2 --txq=2 --nb-cores=2 -i -a

Example output:

[...]
EAL: PCI device 0000:06:00.0 on NUMA socket -1
EAL: probe driver: 1b26:c1c1 rte_szedata2_pmd
PMD: Initializing szedata2 device (0000:06:00.0)
PMD: SZEDATA2 path: /dev/szedataII0
PMD: Available DMA channels RX: 8 TX: 8
PMD: resource0 phys_addr = 0xe8000000 len = 134217728 virt addr = 7f48f8000000
PMD: szedata2 device (0000:06:00.0) successfully initialized
Interactive-mode selected
Auto-start selected
Configuring Port 0 (socket 0)
Port 0: 00:11:17:00:00:00
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
Start automatic packet forwarding

io packet forwarding - CRC stripping disabled - packets/burst=32
nb forwarding cores=2 - nb forwarding ports=1
RX queues=2 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=0 hthresh=0 wthresh=0
TX queues=2 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=0 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0

testpmd>

32.6. Example of usage 177

CHAPTER

THIRTYTHREE

TUN|TAP POLL MODE DRIVER

The rte_eth_tap.c PMD creates a device using TAP interfaces on the local host. The PMD
allows for DPDK and the host to communicate using a raw device interface on the host and in
the DPDK application.

The device created is a TAP device, which sends/receives packet in a raw format with a L2
header. The usage for a TAP PMD is for connectivity to the local host using a TAP interface.
When the TAP PMD is initialized it will create a number of tap devices in the host accessed via
ifconfig -a or ip command. The commands can be used to assign and query the virtual
like device.

These TAP interfaces can be used with Wireshark or tcpdump or Pktgen-DPDK along with be-
ing able to be used as a network connection to the DPDK application. The method enable one
or more interfaces is to use the --vdev=net_tap0 option on the DPDK application command
line. Each --vdev=net_tap1 option given will create an interface named dtap0, dtap1, and
so on.

The interface name can be changed by adding the iface=foo0, for example:

--vdev=net_tap0,iface=foo0 --vdev=net_tap1,iface=foo1, ...

Normally the PMD will generate a random MAC address, but when testing or with a static
configuration the developer may need a fixed MAC address style. Using the option mac=fixed
you can create a fixed known MAC address:

--vdev=net_tap0,mac=fixed

The MAC address will have a fixed value with the last octet incrementing by one
for each interface string containing mac=fixed. The MAC address is formatted as
00:’d’:’t’:’a’:’p’:[00-FF]. Convert the characters to hex and you get the actual MAC address:
00:64:74:61:70:[00-FF].

–vdev=net_tap0,mac=”00:64:74:61:70:11”

The MAC address will have a user value passed as string. The MAC address is in format
with delimeter :. The string is byte converted to hex and you get the actual MAC address:
00:64:74:61:70:11.

It is possible to specify a remote netdevice to capture packets from by adding remote=foo1,
for example:

--vdev=net_tap,iface=tap0,remote=foo1

If a remote is set, the tap MAC address will be set to match the remote one just after netdevice
creation. Using TC rules, traffic from the remote netdevice will be redirected to the tap. If the
tap is in promiscuous mode, then all packets will be redirected. In allmulti mode, all multicast
packets will be redirected.

178

Network Interface Controller Drivers, Release 18.08.1

Using the remote feature is especially useful for capturing traffic from a netdevice that has no
support in the DPDK. It is possible to add explicit rte_flow rules on the tap PMD to capture
specific traffic (see next section for examples).

After the DPDK application is started you can send and receive packets on the interface using
the standard rx_burst/tx_burst APIs in DPDK. From the host point of view you can use any
host tool like tcpdump, Wireshark, ping, Pktgen and others to communicate with the DPDK
application. The DPDK application may not understand network protocols like IPv4/6, UDP or
TCP unless the application has been written to understand these protocols.

If you need the interface as a real network interface meaning running and has a valid IP address
then you can do this with the following commands:

sudo ip link set dtap0 up; sudo ip addr add 192.168.0.250/24 dev dtap0
sudo ip link set dtap1 up; sudo ip addr add 192.168.1.250/24 dev dtap1

Please change the IP addresses as you see fit.

If routing is enabled on the host you can also communicate with the DPDK App over the internet
via a standard socket layer application as long as you account for the protocol handing in the
application.

If you have a Network Stack in your DPDK application or something like it you can utilize that
stack to handle the network protocols. Plus you would be able to address the interface using
an IP address assigned to the internal interface.

The TUN PMD allows user to create a TUN device on host. The PMD allows user to trans-
mit and receive packets via DPDK API calls with L3 header and payload. The devices in
host can be accessed via ifconfig or ip command. TUN interfaces are passed to DPDK
rte_eal_init arguments as --vdev=net_tunX, where X stands for unique id, example:

--vdev=net_tun0 --vdev=net_tun1,iface=foo1, ...

Unlike TAP PMD, TUN PMD does not support user arguments as MAC or remote user options.
Default interface name is dtunX, where X stands for unique id.

33.1 Flow API support

The tap PMD supports major flow API pattern items and actions, when running on linux kernels
above 4.2 (“Flower” classifier required). The kernel support can be checked with this command:

zcat /proc/config.gz | (grep 'CLS_FLOWER=' || echo 'not supported') |
tee -a /dev/stderr | grep -q '=m' &&
lsmod | (grep cls_flower || echo 'try modprobe cls_flower')

Supported items:

• eth: src and dst (with variable masks), and eth_type (0xffff mask).

• vlan: vid, pcp, but not eid. (requires kernel 4.9)

• ipv4/6: src and dst (with variable masks), and ip_proto (0xffff mask).

• udp/tcp: src and dst port (0xffff) mask.

Supported actions:

• DROP

• QUEUE

33.1. Flow API support 179

Network Interface Controller Drivers, Release 18.08.1

• PASSTHRU

• RSS (requires kernel 4.9)

It is generally not possible to provide a “last” item. However, if the “last” item, once masked, is
identical to the masked spec, then it is supported.

Only IPv4/6 and MAC addresses can use a variable mask. All other items need a full mask
(exact match).

As rules are translated to TC, it is possible to show them with something like:

tc -s filter show dev tap1 parent 1:

33.1.1 Examples of testpmd flow rules

Drop packets for destination IP 192.168.0.1:

testpmd> flow create 0 priority 1 ingress pattern eth / ipv4 dst is 1.1.1.1 \
/ end actions drop / end

Ensure packets from a given MAC address are received on a queue 2:

testpmd> flow create 0 priority 2 ingress pattern eth src is 06:05:04:03:02:01 \
/ end actions queue index 2 / end

Drop UDP packets in vlan 3:

testpmd> flow create 0 priority 3 ingress pattern eth / vlan vid is 3 / \
ipv4 proto is 17 / end actions drop / end

Distribute IPv4 TCP packets using RSS to a given MAC address over queues 0-3:

testpmd> flow create 0 priority 4 ingress pattern eth dst is 0a:0b:0c:0d:0e:0f \
/ ipv4 / tcp / end actions rss queues 0 1 2 3 end / end

33.2 Example

The following is a simple example of using the TAP PMD with the Pktgen packet generator. It
requires that the socat utility is installed on the test system.

Build DPDK, then pull down Pktgen and build pktgen using the DPDK SDK/Target used to build
the dpdk you pulled down.

Run pktgen from the pktgen directory in a terminal with a commandline like the following:

sudo ./app/app/x86_64-native-linuxapp-gcc/app/pktgen -l 1-5 -n 4 \
--proc-type auto --log-level debug --socket-mem 512,512 --file-prefix pg \
--vdev=net_tap0 --vdev=net_tap1 -b 05:00.0 -b 05:00.1 \
-b 04:00.0 -b 04:00.1 -b 04:00.2 -b 04:00.3 \
-b 81:00.0 -b 81:00.1 -b 81:00.2 -b 81:00.3 \
-b 82:00.0 -b 83:00.0 -- -T -P -m [2:3].0 -m [4:5].1 \
-f themes/black-yellow.theme

Verify with ifconfig -a command in a different xterm window, should have a dtap0 and
dtap1 interfaces created.

Next set the links for the two interfaces to up via the commands below:

sudo ip link set dtap0 up; sudo ip addr add 192.168.0.250/24 dev dtap0
sudo ip link set dtap1 up; sudo ip addr add 192.168.1.250/24 dev dtap1

33.2. Example 180

Network Interface Controller Drivers, Release 18.08.1

Then use socat to create a loopback for the two interfaces:

sudo socat interface:dtap0 interface:dtap1

Then on the Pktgen command line interface you can start sending packets using the com-
mands start 0 and start 1 or you can start both at the same time with start all. The
command str is an alias for start all and stp is an alias for stop all.

While running you should see the 64 byte counters increasing to verify the traffic is being
looped back. You can use set all size XXX to change the size of the packets after you
stop the traffic. Use pktgen help command to see a list of all commands. You can also use
the -f option to load commands at startup in command line or Lua script in pktgen.

33.3 RSS specifics

Packet distribution in TAP is done by the kernel which has a default distribution. This feature
is adding RSS distribution based on eBPF code. The default eBPF code calculates RSS hash
based on Toeplitz algorithm for a fixed RSS key. It is calculated on fixed packet offsets. For IPv4
and IPv6 it is calculated over src/dst addresses (8 or 32 bytes for IPv4 or IPv6 respectively)
and src/dst TCP/UDP ports (4 bytes).

The RSS algorithm is written in file tap_bpf_program.c which does not take part in TAP
PMD compilation. Instead this file is compiled in advance to eBPF object file. The eBPF
object file is then parsed and translated into eBPF byte code in the format of C arrays of eBPF
instructions. The C array of eBPF instructions is part of TAP PMD tree and is taking part in
TAP PMD compilation. At run time the C arrays are uploaded to the kernel via BPF system
calls and the RSS hash is calculated by the kernel.

It is possible to support different RSS hash algorithms by updating file tap_bpf_program.c
In order to add a new RSS hash algorithm follow these steps:

1. Write the new RSS implementation in file tap_bpf_program.c

BPF programs which are uploaded to the kernel correspond to C functions under different ELF
sections.

2. Install LLVM library and clang compiler versions 3.7 and above

3. Compile tap_bpf_program.c via LLVM into an object file:

clang -O2 -emit-llvm -c tap_bpf_program.c -o - | llc -march=bpf \
-filetype=obj -o <tap_bpf_program.o>

4. Use a tool that receives two parameters: an eBPF object file and a section name, and prints
out the section as a C array of eBPF instructions. Embed the C array in your TAP PMD tree.

The C arrays are uploaded to the kernel using BPF system calls.

tc (traffic control) is a well known user space utility program used to configure the Linux ker-
nel packet scheduler. It is usually packaged as part of the iproute2 package. Since com-
mit 11c39b5e9 (“tc: add eBPF support to f_bpf”) tc can be used to uploads eBPF code to
the kernel and can be patched in order to print the C arrays of eBPF instructions just be-
fore calling the BPF system call. Please refer to iproute2 package file lib/bpf.c function
bpf_prog_load().

An example utility for eBPF instruction generation in the format of C arrays will be added in
next releases

33.3. RSS specifics 181

Network Interface Controller Drivers, Release 18.08.1

TAP reports on supported RSS functions as part of dev_infos_get callback: ETH_RSS_IP,
ETH_RSS_UDP and ETH_RSS_TCP. Known limitation: TAP supports all of the above hash
functions together and not in partial combinations.

33.4 Systems supporting flow API

• “tc flower” classifier requires linux kernel above 4.2

• eBPF/RSS requires linux kernel above 4.9

RH7.3 No flow rule support
RH7.4 No RSS action support
RH7.5 No RSS action support
SLES 15, kernel 4.12 No limitation
Azure Ubuntu 16.04, kernel 4.13 No limitation

33.4. Systems supporting flow API 182

CHAPTER

THIRTYFOUR

THUNDERX NICVF POLL MODE DRIVER

The ThunderX NICVF PMD (librte_pmd_thunderx_nicvf) provides poll mode driver support
for the inbuilt NIC found in the Cavium ThunderX SoC family as well as their virtual functions
(VF) in SR-IOV context.

More information can be found at Cavium, Inc Official Website.

34.1 Features

Features of the ThunderX PMD are:

• Multiple queues for TX and RX

• Receive Side Scaling (RSS)

• Packet type information

• Checksum offload

• Promiscuous mode

• Multicast mode

• Port hardware statistics

• Jumbo frames

• Link state information

• Scattered and gather for TX and RX

• VLAN stripping

• SR-IOV VF

• NUMA support

• Multi queue set support (up to 96 queues (12 queue sets)) per port

• Skip data bytes

34.2 Supported ThunderX SoCs

• CN88xx

• CN81xx

183

http://www.cavium.com/ThunderX_ARM_Processors.html

Network Interface Controller Drivers, Release 18.08.1

• CN83xx

34.3 Prerequisites

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

34.4 Pre-Installation Configuration

34.4.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_THUNDERX_NICVF_PMD (default y)

Toggle compilation of the librte_pmd_thunderx_nicvf driver.

• CONFIG_RTE_LIBRTE_THUNDERX_NICVF_DEBUG_RX (default n)

Toggle asserts of receive fast path.

• CONFIG_RTE_LIBRTE_THUNDERX_NICVF_DEBUG_TX (default n)

Toggle asserts of transmit fast path.

34.5 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

To compile the ThunderX NICVF PMD for Linux arm64 gcc, use arm64-thunderx-linuxapp-gcc
as target.

34.6 Linux

34.6.1 SR-IOV: Prerequisites and sample Application Notes

Current ThunderX NIC PF/VF kernel modules maps each physical Ethernet port automatically
to virtual function (VF) and presented them as PCIe-like SR-IOV device. This section provides
instructions to configure SR-IOV with Linux OS.

1. Verify PF devices capabilities using lspci:

lspci -vvv

Example output:

0002:01:00.0 Ethernet controller: Cavium Networks Device a01e (rev 01)
...
Capabilities: [100 v1] Alternative Routing-ID Interpretation (ARI)
...
Capabilities: [180 v1] Single Root I/O Virtualization (SR-IOV)
...

34.3. Prerequisites 184

Network Interface Controller Drivers, Release 18.08.1

Kernel driver in use: thunder-nic
...

Note: Unless thunder-nic driver is in use make sure your kernel config includes
CONFIG_THUNDER_NIC_PF setting.

2. Verify VF devices capabilities and drivers using lspci:

lspci -vvv

Example output:

0002:01:00.1 Ethernet controller: Cavium Networks Device 0011 (rev 01)
...
Capabilities: [100 v1] Alternative Routing-ID Interpretation (ARI)
...
Kernel driver in use: thunder-nicvf
...

0002:01:00.2 Ethernet controller: Cavium Networks Device 0011 (rev 01)
...
Capabilities: [100 v1] Alternative Routing-ID Interpretation (ARI)
...
Kernel driver in use: thunder-nicvf
...

Note: Unless thunder-nicvf driver is in use make sure your kernel config includes
CONFIG_THUNDER_NIC_VF setting.

3. Pass VF device to VM context (PCIe Passthrough):

The VF devices may be passed through to the guest VM using qemu or virt-manager or
virsh etc.

Example qemu guest launch command:

sudo qemu-system-aarch64 -name vm1 \
-machine virt,gic_version=3,accel=kvm,usb=off \
-cpu host -m 4096 \
-smp 4,sockets=1,cores=8,threads=1 \
-nographic -nodefaults \
-kernel <kernel image> \
-append "root=/dev/vda console=ttyAMA0 rw hugepagesz=512M hugepages=3" \
-device vfio-pci,host=0002:01:00.1 \
-drive file=<rootfs.ext3>,if=none,id=disk1,format=raw \
-device virtio-blk-device,scsi=off,drive=disk1,id=virtio-disk1,bootindex=1 \
-netdev tap,id=net0,ifname=tap0,script=/etc/qemu-ifup_thunder \
-device virtio-net-device,netdev=net0 \
-serial stdio \
-mem-path /dev/huge

4. Enable VFIO-NOIOMMU mode (optional):

echo 1 > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode

Note: VFIO-NOIOMMU is required only when running in VM context and should not be
enabled otherwise.

5. Running testpmd:

34.6. Linux 185

Network Interface Controller Drivers, Release 18.08.1

Follow instructions available in the document compiling and testing a PMD for a NIC to
run testpmd.

Example output:

./arm64-thunderx-linuxapp-gcc/app/testpmd -l 0-3 -n 4 -w 0002:01:00.2 \
-- -i --no-flush-rx \
--port-topology=loop

...

PMD: rte_nicvf_pmd_init(): librte_pmd_thunderx nicvf version 1.0

...
EAL: probe driver: 177d:11 rte_nicvf_pmd
EAL: using IOMMU type 1 (Type 1)
EAL: PCI memory mapped at 0x3ffade50000
EAL: Trying to map BAR 4 that contains the MSI-X table.

Trying offsets: 0x40000000000:0x0000, 0x10000:0x1f0000
EAL: PCI memory mapped at 0x3ffadc60000
PMD: nicvf_eth_dev_init(): nicvf: device (177d:11) 2:1:0:2
PMD: nicvf_eth_dev_init(): node=0 vf=1 mode=tns-bypass sqs=false

loopback_supported=true
PMD: nicvf_eth_dev_init(): Port 0 (177d:11) mac=a6:c6:d9:17:78:01
Interactive-mode selected
Configuring Port 0 (socket 0)
...

PMD: nicvf_dev_configure(): Configured ethdev port0 hwcap=0x0
Port 0: A6:C6:D9:17:78:01
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

34.6.2 Multiple Queue Set per DPDK port configuration

There are two types of VFs:

• Primary VF

• Secondary VF

Each port consists of a primary VF and n secondary VF(s). Each VF provides 8 Tx/Rx queues
to a port. When a given port is configured to use more than 8 queues, it requires one (or more)
secondary VF. Each secondary VF adds 8 additional queues to the queue set.

During PMD driver initialization, the primary VF’s are enumerated by checking the specific flag
(see sqs message in DPDK boot log - sqs indicates secondary queue set). They are at the
beginning of VF list (the remain ones are secondary VF’s).

The primary VFs are used as master queue sets. Secondary VFs provide additional queue
sets for primary ones. If a port is configured for more then 8 queues than it will request for
additional queues from secondary VFs.

Secondary VFs cannot be shared between primary VFs.

Primary VFs are present on the beginning of the ‘Network devices using kernel driver’ list,
secondary VFs are on the remaining on the remaining part of the list.

Note: The VNIC driver in the multiqueue setup works differently than other drivers

34.6. Linux 186

Network Interface Controller Drivers, Release 18.08.1

like ixgbe. We need to bind separately each specific queue set device with the
usertools/dpdk-devbind.py utility.

Note: Depending on the hardware used, the kernel driver sets a threshold vf_id.
VFs that try to attached with an id below or equal to this boundary are considered
primary VFs. VFs that try to attach with an id above this boundary are considered
secondary VFs.

34.6.3 Example device binding

If a system has three interfaces, a total of 18 VF devices will be created on a non-NUMA
machine.

Note: NUMA systems have 12 VFs per port and non-NUMA 6 VFs per port.

usertools/dpdk-devbind.py --status

Network devices using DPDK-compatible driver
==
<none>

Network devices using kernel driver
===================================
0000:01:10.0 'Device a026' if= drv=thunder-BGX unused=vfio-pci,uio_pci_generic
0000:01:10.1 'Device a026' if= drv=thunder-BGX unused=vfio-pci,uio_pci_generic
0002:01:00.0 'Device a01e' if= drv=thunder-nic unused=vfio-pci,uio_pci_generic
0002:01:00.1 'Device 0011' if=eth0 drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:00.2 'Device 0011' if=eth1 drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:00.3 'Device 0011' if=eth2 drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:00.4 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:00.5 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:00.6 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:00.7 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.0 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.1 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.2 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.3 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.4 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.5 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.6 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.7 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:02.0 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:02.1 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:02.2 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic

Other network devices
=====================
0002:00:03.0 'Device a01f' unused=vfio-pci,uio_pci_generic

We want to bind two physical interfaces with 24 queues each device, we attach two primary VFs
and four secondary queues. In our example we choose two 10G interfaces eth1 (0002:01:00.2)
and eth2 (0002:01:00.3). We will choose four secondary queue sets from the ending of the list
(0002:01:01.7-0002:01:02.2).

1. Bind two primary VFs to the vfio-pci driver:

usertools/dpdk-devbind.py -b vfio-pci 0002:01:00.2

34.6. Linux 187

Network Interface Controller Drivers, Release 18.08.1

usertools/dpdk-devbind.py -b vfio-pci 0002:01:00.3

2. Bind four primary VFs to the vfio-pci driver:

usertools/dpdk-devbind.py -b vfio-pci 0002:01:01.7
usertools/dpdk-devbind.py -b vfio-pci 0002:01:02.0
usertools/dpdk-devbind.py -b vfio-pci 0002:01:02.1
usertools/dpdk-devbind.py -b vfio-pci 0002:01:02.2

The nicvf thunderx driver will make use of attached secondary VFs automatically during the
interface configuration stage.

34.7 Module params

34.7.1 skip_data_bytes

This feature is used to create a hole between HEADROOM and actual data. Size of hole is
specified in bytes as module param(“skip_data_bytes”) to pmd. This scheme is useful when
application would like to insert vlan header without disturbing HEADROOM.

Example:

-w 0002:01:00.2,skip_data_bytes=8

34.8 Limitations

34.8.1 CRC striping

The ThunderX SoC family NICs strip the CRC for every packets coming into the host interface
irrespective of the offload configuration.

34.8.2 Maximum packet length

The ThunderX SoC family NICs support a maximum of a 9K jumbo frame. The value is fixed
and cannot be changed. So, even when the rxmode.max_rx_pkt_len member of struct
rte_eth_conf is set to a value lower than 9200, frames up to 9200 bytes can still reach the
host interface.

34.8.3 Maximum packet segments

The ThunderX SoC family NICs support up to 12 segments per packet when working in scat-
ter/gather mode. So, setting MTU will result with EINVAL when the frame size does not fit in
the maximum number of segments.

34.8.4 skip_data_bytes

Maximum limit of skip_data_bytes is 128 bytes and number of bytes should be multiple of 8.

34.7. Module params 188

CHAPTER

THIRTYFIVE

VDEV_NETVSC DRIVER

The VDEV_NETVSC driver (librte_pmd_vdev_netvsc) provides support for NetVSC interfaces
and associated SR-IOV virtual function (VF) devices found in Linux virtual machines running
on Microsoft Hyper-V (including Azure) platforms.

35.1 Implementation details

Each instance of this driver effectively needs to drive two devices: the NetVSC interface proper
and its SR-IOV VF (referred to as “physical” from this point on) counterpart sharing the same
MAC address.

Physical devices are part of the host system and cannot be maintained during VM migration.
From a VM standpoint they appear as hot-plug devices that come and go without prior notice.

When the physical device is present, egress and most of the ingress traffic flows through it; only
multicasts and other hypervisor control still flow through NetVSC. Otherwise, NetVSC acts as
a fallback for all traffic.

To avoid unnecessary code duplication and ensure maximum performance, handling of phys-
ical devices is left to their original PMDs; this virtual device driver (also known as vdev) man-
ages other PMDs as summarized by the following block diagram:

.------------------.
| DPDK application |
`--------+---------'

|
.------+------.
| DPDK ethdev |
`------+------' Control

| |
.------------+------------. v .--------------------.
| failsafe PMD +---------+ vdev_netvsc driver |
`--+-------------------+--' `--------------------'

| |
||.........
| : | :

.----+----. : .----+----. :
| tap PMD | : | any PMD | :
`----+----' : `----+----' : <-- Hot-pluggable

| : | :
.------+-------. : .-----+-----. :
| NetVSC-based | : | SR-IOV VF | :
| netdevice | : | device | :
`--------------' : `-----------' :

:.................:

189

https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-hyper-v

Network Interface Controller Drivers, Release 18.08.1

This driver implementation may be temporary and should be improved or removed either when
hot-plug will be fully supported in EAL and bus drivers or when a new NetVSC driver will be
integrated.

35.2 Build options

• CONFIG_RTE_LIBRTE_VDEV_NETVSC_PMD (default y)

Toggle compilation of this driver.

35.3 Run-time parameters

This driver is invoked automatically in Hyper-V VM systems unless the user invoked it by com-
mand line using --vdev=net_vdev_netvsc EAL option.

The following device parameters are supported:

• iface [string]

Provide a specific NetVSC interface (netdevice) name to attach this driver to. Can be
provided multiple times for additional instances.

• mac [string]

Same as iface except a suitable NetVSC interface is located using its MAC address.

• force [int]

If nonzero, forces the use of specified interfaces even if not detected as NetVSC.

• ignore [int]

If nonzero, ignores the driver running (actually used to disable the auto-detection in
Hyper-V VM).

Note: Not specifying either iface or mac makes this driver attach itself to all unrouted
NetVSC interfaces found on the system. Specifying the device makes this driver attach itself
to the device regardless the device routes.

35.2. Build options 190

CHAPTER

THIRTYSIX

POLL MODE DRIVER FOR EMULATED VIRTIO NIC

Virtio is a para-virtualization framework initiated by IBM, and supported by KVM hypervisor.
In the Data Plane Development Kit (DPDK), we provide a virtio Poll Mode Driver (PMD) as a
software solution, comparing to SRIOV hardware solution,

for fast guest VM to guest VM communication and guest VM to host communication.

Vhost is a kernel acceleration module for virtio qemu backend. The DPDK extends kni to
support vhost raw socket interface, which enables vhost to directly read/ write packets from/to
a physical port. With this enhancement, virtio could achieve quite promising performance.

For basic qemu-KVM installation and other Intel EM poll mode driver in guest VM, please refer
to Chapter “Driver for VM Emulated Devices”.

In this chapter, we will demonstrate usage of virtio PMD driver with two backends, standard
qemu vhost back end and vhost kni back end.

36.1 Virtio Implementation in DPDK

For details about the virtio spec, refer to Virtio PCI Card Specification written by Rusty Russell.

As a PMD, virtio provides packet reception and transmission callbacks virtio_recv_pkts and
virtio_xmit_pkts.

In virtio_recv_pkts, index in range [vq->vq_used_cons_idx , vq->vq_ring.used->idx) in vring is
available for virtio to burst out.

In virtio_xmit_pkts, same index range in vring is available for virtio to clean. Virtio will enqueue
to be transmitted packets into vring, advance the vq->vq_ring.avail->idx, and then notify the
host back end if necessary.

36.2 Features and Limitations of virtio PMD

In this release, the virtio PMD driver provides the basic functionality of packet reception and
transmission.

• It supports merge-able buffers per packet when receiving packets and scattered buffer
per packet when transmitting packets. The packet size supported is from 64 to 1518.

• It supports multicast packets and promiscuous mode.

191

Network Interface Controller Drivers, Release 18.08.1

• The descriptor number for the Rx/Tx queue is hard-coded to be 256 by qemu 2.7 and
below. If given a different descriptor number by the upper application, the virtio PMD
generates a warning and fall back to the hard-coded value. Rx queue size can be con-
figurable and up to 1024 since qemu 2.8 and above. Rx queue size is 256 by default. Tx
queue size is still hard-coded to be 256.

• Features of mac/vlan filter are supported, negotiation with vhost/backend are needed to
support them. When backend can’t support vlan filter, virtio app on guest should not
enable vlan filter in order to make sure the virtio port is configured correctly. E.g. do not
specify ‘–enable-hw-vlan’ in testpmd command line.

• “RTE_PKTMBUF_HEADROOM” should be defined no less than “sizeof(struct vir-
tio_net_hdr_mrg_rxbuf)”, which is 12 bytes when mergeable or “VIRTIO_F_VERSION_1”
is set. no less than “sizeof(struct virtio_net_hdr)”, which is 10 bytes, when using non-
mergeable.

• Virtio does not support runtime configuration.

• Virtio supports Link State interrupt.

• Virtio supports Rx interrupt (so far, only support 1:1 mapping for queue/interrupt).

• Virtio supports software vlan stripping and inserting.

• Virtio supports using port IO to get PCI resource when uio/igb_uio module is not avail-
able.

36.3 Prerequisites

The following prerequisites apply:

• In the BIOS, turn VT-x and VT-d on

• Linux kernel with KVM module; vhost module loaded and ioeventfd supported. Qemu
standard backend without vhost support isn’t tested, and probably isn’t supported.

36.4 Virtio with kni vhost Back End

This section demonstrates kni vhost back end example setup for Phy-VM Communication.

Host2VM communication example

1. Load the kni kernel module:

insmod rte_kni.ko

Other basic DPDK preparations like hugepage enabling, uio port binding are not listed
here. Please refer to the DPDK Getting Started Guide for detailed instructions.

2. Launch the kni user application:

examples/kni/build/app/kni -l 0-3 -n 4 -- -p 0x1 -P --config="(0,1,3)"

This command generates one network device vEth0 for physical port. If specify more
physical ports, the generated network device will be vEth1, vEth2, and so on.

36.3. Prerequisites 192

Network Interface Controller Drivers, Release 18.08.1

Fig. 36.1: Host2VM Communication Example Using kni vhost Back End

36.4. Virtio with kni vhost Back End 193

Network Interface Controller Drivers, Release 18.08.1

For each physical port, kni creates two user threads. One thread loops to fetch packets
from the physical NIC port into the kni receive queue. The other user thread loops to
send packets in the kni transmit queue.

For each physical port, kni also creates a kernel thread that retrieves packets from the kni
receive queue, place them onto kni’s raw socket’s queue and wake up the vhost kernel
thread to exchange packets with the virtio virt queue.

For more details about kni, please refer to kni.

3. Enable the kni raw socket functionality for the specified physical NIC port, get the gener-
ated file descriptor and set it in the qemu command line parameter. Always remember to
set ioeventfd_on and vhost_on.

Example:

echo 1 > /sys/class/net/vEth0/sock_en
fd=`cat /sys/class/net/vEth0/sock_fd`
exec qemu-system-x86_64 -enable-kvm -cpu host \
-m 2048 -smp 4 -name dpdk-test1-vm1 \
-drive file=/data/DPDKVMS/dpdk-vm.img \
-netdev tap, fd=$fd,id=mynet_kni, script=no,vhost=on \
-device virtio-net-pci,netdev=mynet_kni,bus=pci.0,addr=0x3,ioeventfd=on \
-vnc:1 -daemonize

In the above example, virtio port 0 in the guest VM will be associated with vEth0, which
in turns corresponds to a physical port, which means received packets come from vEth0,
and transmitted packets is sent to vEth0.

4. In the guest, bind the virtio device to the uio_pci_generic kernel module and start the
forwarding application. When the virtio port in guest bursts Rx, it is getting packets from
the raw socket’s receive queue. When the virtio port bursts Tx, it is sending packet to the
tx_q.

modprobe uio
echo 512 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
modprobe uio_pci_generic
python usertools/dpdk-devbind.py -b uio_pci_generic 00:03.0

We use testpmd as the forwarding application in this example.

Fig. 36.2: Running testpmd

5. Use IXIA packet generator to inject a packet stream into the KNI physical port.

The packet reception and transmission flow path is:

IXIA packet generator->82599 PF->KNI Rx queue->KNI raw socket queue->Guest VM
virtio port 0 Rx burst->Guest VM virtio port 0 Tx burst-> KNI Tx queue ->82599 PF->

36.4. Virtio with kni vhost Back End 194

Network Interface Controller Drivers, Release 18.08.1

IXIA packet generator

36.5 Virtio with qemu virtio Back End

Fig. 36.3: Host2VM Communication Example Using qemu vhost Back End

qemu-system-x86_64 -enable-kvm -cpu host -m 2048 -smp 2 -mem-path /dev/
hugepages -mem-prealloc
-drive file=/data/DPDKVMS/dpdk-vm1
-netdev tap,id=vm1_p1,ifname=tap0,script=no,vhost=on
-device virtio-net-pci,netdev=vm1_p1,bus=pci.0,addr=0x3,ioeventfd=on
-device pci-assign,host=04:10.1 \

In this example, the packet reception flow path is:

IXIA packet generator->82599 PF->Linux Bridge->TAP0’s socket queue-> Guest
VM virtio port 0 Rx burst-> Guest VM 82599 VF port1 Tx burst-> IXIA packet gen-
erator

The packet transmission flow is:

IXIA packet generator-> Guest VM 82599 VF port1 Rx burst-> Guest VM virtio port
0 Tx burst-> tap -> Linux Bridge->82599 PF-> IXIA packet generator

36.5. Virtio with qemu virtio Back End 195

Network Interface Controller Drivers, Release 18.08.1

36.6 Virtio PMD Rx/Tx Callbacks

Virtio driver has 4 Rx callbacks and 3 Tx callbacks.

Rx callbacks:

1. virtio_recv_pkts: Regular version without mergeable Rx buffer support.

2. virtio_recv_mergeable_pkts: Regular version with mergeable Rx buffer support.

3. virtio_recv_pkts_vec: Vector version without mergeable Rx buffer support, also
fixes the available ring indexes and uses vector instructions to optimize performance.

4. virtio_recv_mergeable_pkts_inorder: In-order version with mergeable Rx
buffer support.

Tx callbacks:

1. virtio_xmit_pkts: Regular version.

2. virtio_xmit_pkts_simple: Vector version fixes the available ring indexes to opti-
mize performance.

3. virtio_xmit_pkts_inorder: In-order version.

By default, the non-vector callbacks are used:

• For Rx: If mergeable Rx buffers is disabled then virtio_recv_pkts is used; otherwise
virtio_recv_mergeable_pkts.

• For Tx: virtio_xmit_pkts.

Vector callbacks will be used when:

• txmode.offloads is set to 0x0, which implies:

– Single segment is specified.

– No offload support is needed.

• Mergeable Rx buffers is disabled.

The corresponding callbacks are:

• For Rx: virtio_recv_pkts_vec.

• For Tx: virtio_xmit_pkts_simple.

Example of using the vector version of the virtio poll mode driver in testpmd:

testpmd -l 0-2 -n 4 -- -i --tx-offloads=0x0 --rxq=1 --txq=1 --nb-cores=1

In-order callbacks only work on simulated virtio user vdev.

• For Rx: If mergeable Rx buffers is enabled and in-order is enabled then
virtio_xmit_pkts_inorder is used.

• For Tx: If in-order is enabled then virtio_xmit_pkts_inorder is used.

36.6. Virtio PMD Rx/Tx Callbacks 196

Network Interface Controller Drivers, Release 18.08.1

36.7 Interrupt mode

There are three kinds of interrupts from a virtio device over PCI bus: config interrupt, Rx
interrupts, and Tx interrupts. Config interrupt is used for notification of device configuration
changes, especially link status (lsc). Interrupt mode is translated into Rx interrupts in the
context of DPDK.

Note: Virtio PMD already has support for receiving lsc from qemu when the link status
changes, especially when vhost user disconnects. However, it fails to do that if the VM is
created by qemu 2.6.2 or below, since the capability to detect vhost user disconnection is
introduced in qemu 2.7.0.

36.7.1 Prerequisites for Rx interrupts

To support Rx interrupts, #. Check if guest kernel supports VFIO-NOIOMMU:

Linux started to support VFIO-NOIOMMU since 4.8.0. Make sure the guest kernel
is compiled with:

CONFIG_VFIO_NOIOMMU=y

1. Properly set msix vectors when starting VM:

Enable multi-queue when starting VM, and specify msix vectors in qemu cmd-
line. (N+1) is the minimum, and (2N+2) is mostly recommended.

$(QEMU) ... -device virtio-net-pci,mq=on,vectors=2N+2 ...

2. In VM, insert vfio module in NOIOMMU mode:

modprobe vfio enable_unsafe_noiommu_mode=1
modprobe vfio-pci

3. In VM, bind the virtio device with vfio-pci:

python usertools/dpdk-devbind.py -b vfio-pci 00:03.0

36.7.2 Example

Here we use l3fwd-power as an example to show how to get started.

Example:

$ l3fwd-power -l 0-1 -- -p 1 -P --config="(0,0,1)" \
--no-numa --parse-ptype

36.8 Virtio PMD arguments

The user can specify below argument in devargs.

1. vdpa:

A virtio device could also be driven by vDPA (vhost data path acceleration) driver, and
works as a HW vhost backend. This argument is used to specify a virtio device needs to
work in vDPA mode. (Default: 0 (disabled))

36.7. Interrupt mode 197

Network Interface Controller Drivers, Release 18.08.1

2. mrg_rxbuf:

It is used to enable virtio device mergeable Rx buffer feature. (Default: 1 (en-
abled))

3. in_order:

It is used to enable virtio device in-order feature. (Default: 1 (enabled))

36.8. Virtio PMD arguments 198

CHAPTER

THIRTYSEVEN

POLL MODE DRIVER THAT WRAPS VHOST LIBRARY

This PMD is a thin wrapper of the DPDK vhost library. The user can handle virtqueues as one
of normal DPDK port.

37.1 Vhost Implementation in DPDK

Please refer to Chapter “Vhost Library” of DPDK Programmer’s Guide to know detail of vhost.

37.2 Features and Limitations of vhost PMD

Currently, the vhost PMD provides the basic functionality of packet reception, transmission and
event handling.

• It has multiple queues support.

• It supports RTE_ETH_EVENT_INTR_LSC and RTE_ETH_EVENT_QUEUE_STATE events.

• It supports Port Hotplug functionality.

• Don’t need to stop RX/TX, when the user wants to stop a guest or a virtio-net driver on
guest.

37.3 Vhost PMD arguments

The user can specify below arguments in –vdev option.

1. iface:

It is used to specify a path to connect to a QEMU virtio-net device.

2. queues:

It is used to specify the number of queues virtio-net device has. (Default: 1)

3. iommu-support:

It is used to enable iommu support in vhost library. (Default: 0 (disabled))

199

Network Interface Controller Drivers, Release 18.08.1

37.4 Vhost PMD event handling

This section describes how to handle vhost PMD events.

The user can register an event callback handler with
rte_eth_dev_callback_register(). The registered callback handler will be invoked
with one of below event types.

1. RTE_ETH_EVENT_INTR_LSC:

It means link status of the port was changed.

2. RTE_ETH_EVENT_QUEUE_STATE:

It means some of queue statuses were changed. Call
rte_eth_vhost_get_queue_event() in the callback handler. Because chang-
ing multiple statuses may occur only one event, call the function repeatedly as long as it
doesn’t return negative value.

37.5 Vhost PMD with testpmd application

This section demonstrates vhost PMD with testpmd DPDK sample application.

1. Launch the testpmd with vhost PMD:

./testpmd -l 0-3 -n 4 --vdev 'net_vhost0,iface=/tmp/sock0,queues=1' -- -i

Other basic DPDK preparations like hugepage enabling here. Please refer to the DPDK
Getting Started Guide for detailed instructions.

2. Launch the QEMU:

qemu-system-x86_64 <snip>
-chardev socket,id=chr0,path=/tmp/sock0 \
-netdev vhost-user,id=net0,chardev=chr0,vhostforce,queues=1 \
-device virtio-net-pci,netdev=net0

This command attaches one virtio-net device to QEMU guest. After initialization pro-
cesses between QEMU and DPDK vhost library are done, status of the port will be linked
up.

37.4. Vhost PMD event handling 200

CHAPTER

THIRTYEIGHT

POLL MODE DRIVER FOR PARAVIRTUAL VMXNET3 NIC

The VMXNET3 adapter is the next generation of a paravirtualized NIC, introduced by VMware*
ESXi. It is designed for performance, offers all the features available in VMXNET2, and adds
several new features such as, multi-queue support (also known as Receive Side Scaling, RSS),
IPv6 offloads, and MSI/MSI-X interrupt delivery. One can use the same device in a DPDK
application with VMXNET3 PMD introduced in DPDK API.

In this chapter, two setups with the use of the VMXNET3 PMD are demonstrated:

1. Vmxnet3 with a native NIC connected to a vSwitch

2. Vmxnet3 chaining VMs connected to a vSwitch

38.1 VMXNET3 Implementation in the DPDK

For details on the VMXNET3 device, refer to the VMXNET3 driver’s vmxnet3 directory and
support manual from VMware*.

For performance details, refer to the following link from VMware:

http://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf

As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks,
vmxnet3_recv_pkts and vmxnet3_xmit_pkts.

The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest
address space and it is solely responsible to free that memory when not needed. The packet
buffers and features to be supported are made available to hypervisor via VMXNET3 PCI
configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs,
and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch
in the TX case.

The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that
of the other PMDs available in the DPDK API. The driver pre-allocates the packet buffers and
loads the command ring descriptors in advance. The hypervisor fills those packet buffers on
packet arrival and write completion ring descriptors, which are eventually pulled by the PMD.
After reception, the DPDK application frees the descriptors and loads new packet buffers for
the coming packets. The interrupts are disabled and there is no notification required. This
keeps performance up on the RX side, even though the device provides a notification feature.

In the transmit routine, the DPDK application fills packet buffer pointers in the descriptors of
the command ring and notifies the hypervisor. In response the hypervisor takes packets and
passes them to the vSwitch, It writes into the completion descriptors ring. The rings are read

201

http://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf

Network Interface Controller Drivers, Release 18.08.1

by the PMD in the next transmit routine call and the buffers and descriptors are freed from
memory.

38.2 Features and Limitations of VMXNET3 PMD

In release 1.6.0, the VMXNET3 PMD provides the basic functionality of packet reception and
transmission. There are several options available for filtering packets at VMXNET3 device level
including:

1. MAC Address based filtering:

• Unicast, Broadcast, All Multicast modes - SUPPORTED BY DEFAULT

• Multicast with Multicast Filter table - NOT SUPPORTED

• Promiscuous mode - SUPPORTED

• RSS based load balancing between queues - SUPPORTED

2. VLAN filtering:

• VLAN tag based filtering without load balancing - SUPPORTED

Note:

• Release 1.6.0 does not support separate headers and body receive cmd_ring and hence,
multiple segment buffers are not supported. Only cmd_ring_0 is used for packet buffers,
one for each descriptor.

• Receive and transmit of scattered packets is not supported.

• Multicast with Multicast Filter table is not supported.

38.3 Prerequisites

The following prerequisites apply:

• Before starting a VM, a VMXNET3 interface to a VM through VMware vSphere Client
must be assigned. This is shown in the figure below.

Note: Depending on the Virtual Machine type, the VMware vSphere Client shows Ethernet
adaptors while adding an Ethernet device. Ensure that the VM type used offers a VMXNET3
device. Refer to the VMware documentation for a listed of VMs.

Note: Follow the DPDK Getting Started Guide to setup the basic DPDK environment.

Note: Follow the DPDK Sample Application’s User Guide, L2 Forwarding/L3 Forwarding and
TestPMD for instructions on how to run a DPDK application using an assigned VMXNET3
device.

38.2. Features and Limitations of VMXNET3 PMD 202

Network Interface Controller Drivers, Release 18.08.1

Fig. 38.1: Assigning a VMXNET3 interface to a VM using VMware vSphere Client

38.4 VMXNET3 with a Native NIC Connected to a vSwitch

This section describes an example setup for Phy-vSwitch-VM-Phy communication.

Note: Other instructions on preparing to use DPDK such as, hugepage enabling, uio port
binding are not listed here. Please refer to DPDK Getting Started Guide and DPDK Sample
Application’s User Guide for detailed instructions.

The packet reception and transmission flow path is:

Packet generator -> 82576
-> VMware ESXi vSwitch
-> VMXNET3 device
-> Guest VM VMXNET3 port 0 rx burst
-> Guest VM 82599 VF port 0 tx burst
-> 82599 VF
-> Packet generator

38.5 VMXNET3 Chaining VMs Connected to a vSwitch

The following figure shows an example VM-to-VM communication over a Phy-VM-vSwitch-VM-
Phy communication channel.

Note: When using the L2 Forwarding or L3 Forwarding applications, a destination MAC
address needs to be written in packets to hit the other VM’s VMXNET3 interface.

In this example, the packet flow path is:

Packet generator -> 82599 VF
-> Guest VM 82599 port 0 rx burst
-> Guest VM VMXNET3 port 1 tx burst
-> VMXNET3 device
-> VMware ESXi vSwitch
-> VMXNET3 device
-> Guest VM VMXNET3 port 0 rx burst

38.4. VMXNET3 with a Native NIC Connected to a vSwitch 203

Network Interface Controller Drivers, Release 18.08.1

Fig. 38.2: VMXNET3 with a Native NIC Connected to a vSwitch

38.5. VMXNET3 Chaining VMs Connected to a vSwitch 204

Network Interface Controller Drivers, Release 18.08.1

Fig. 38.3: VMXNET3 Chaining VMs Connected to a vSwitch

38.5. VMXNET3 Chaining VMs Connected to a vSwitch 205

Network Interface Controller Drivers, Release 18.08.1

-> Guest VM 82599 VF port 1 tx burst
-> 82599 VF
-> Packet generator

38.5. VMXNET3 Chaining VMs Connected to a vSwitch 206

CHAPTER

THIRTYNINE

LIBPCAP AND RING BASED POLL MODE DRIVERS

In addition to Poll Mode Drivers (PMDs) for physical and virtual hardware, the DPDK also
includes pure-software PMDs, two of these drivers are:

• A libpcap -based PMD (librte_pmd_pcap) that reads and writes packets using libpcap, -
both from files on disk, as well as from physical NIC devices using standard Linux kernel
drivers.

• A ring-based PMD (librte_pmd_ring) that allows a set of software FIFOs (that is, rte_ring)
to be accessed using the PMD APIs, as though they were physical NICs.

Note: The libpcap -based PMD is disabled by default in the build configuration files, owing
to an external dependency on the libpcap development files which must be installed on the
board. Once the libpcap development files are installed, the library can be enabled by setting
CONFIG_RTE_LIBRTE_PMD_PCAP=y and recompiling the DPDK.

39.1 Using the Drivers from the EAL Command Line

For ease of use, the DPDK EAL also has been extended to allow pseudo-Ethernet devices,
using one or more of these drivers, to be created at application startup time during EAL initial-
ization.

To do so, the –vdev= parameter must be passed to the EAL. This takes take options to allow
ring and pcap-based Ethernet to be allocated and used transparently by the application. This
can be used, for example, for testing on a virtual machine where there are no Ethernet ports.

39.1.1 Libpcap-based PMD

Pcap-based devices can be created using the virtual device –vdev option. The device name
must start with the net_pcap prefix followed by numbers or letters. The name is unique for
each device. Each device can have multiple stream options and multiple devices can be used.
Multiple device definitions can be arranged using multiple –vdev. Device name and stream
options must be separated by commas as shown below:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,stream_opt0=..,stream_opt1=..' \
--vdev='net_pcap1,stream_opt0=..'

207

Network Interface Controller Drivers, Release 18.08.1

Device Streams

Multiple ways of stream definitions can be assessed and combined as long as the following
two rules are respected:

• A device is provided with two different streams - reception and transmission.

• A device is provided with one network interface name used for reading and writing pack-
ets.

The different stream types are:

• rx_pcap: Defines a reception stream based on a pcap file. The driver reads each packet
within the given pcap file as if it was receiving it from the wire. The value is a path to a
valid pcap file.

rx_pcap=/path/to/file.pcap

• tx_pcap: Defines a transmission stream based on a pcap file. The driver writes each
received packet to the given pcap file. The value is a path to a pcap file. The file is
overwritten if it already exists and it is created if it does not.

tx_pcap=/path/to/file.pcap

• rx_iface: Defines a reception stream based on a network interface name. The driver
reads packets from the given interface using the Linux kernel driver for that interface.
The driver captures both the incoming and outgoing packets on that interface. The value
is an interface name.

rx_iface=eth0

• rx_iface_in: Defines a reception stream based on a network interface name. The driver
reads packets from the given interface using the Linux kernel driver for that interface.
The driver captures only the incoming packets on that interface. The value is an interface
name.

rx_iface_in=eth0

• tx_iface: Defines a transmission stream based on a network interface name. The driver
sends packets to the given interface using the Linux kernel driver for that interface. The
value is an interface name.

tx_iface=eth0

• iface: Defines a device mapping a network interface. The driver both reads and writes
packets from and to the given interface. The value is an interface name.

iface=eth0

Examples of Usage

Read packets from one pcap file and write them to another:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_pcap=file_rx.pcap,tx_pcap=file_tx.pcap' \
-- --port-topology=chained

Read packets from a network interface and write them to a pcap file:

39.1. Using the Drivers from the EAL Command Line 208

Network Interface Controller Drivers, Release 18.08.1

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_iface=eth0,tx_pcap=file_tx.pcap' \
-- --port-topology=chained

Read packets from a pcap file and write them to a network interface:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_pcap=file_rx.pcap,tx_iface=eth1' \
-- --port-topology=chained

Forward packets through two network interfaces:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,iface=eth0' --vdev='net_pcap1;iface=eth1'

Enable 2 tx queues on a network interface:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_iface=eth1,tx_iface=eth1,tx_iface=eth1' \
-- --txq 2

Read only incoming packets from a network interface and write them back to the same network
interface:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_iface_in=eth1,tx_iface=eth1'

Using libpcap-based PMD with the testpmd Application

One of the first things that testpmd does before starting to forward packets is to flush the RX
streams by reading the first 512 packets on every RX stream and discarding them. When using
a libpcap-based PMD this behavior can be turned off using the following command line option:

--no-flush-rx

It is also available in the runtime command line:

set flush_rx on/off

It is useful for the case where the rx_pcap is being used and no packets are meant to be
discarded. Otherwise, the first 512 packets from the input pcap file will be discarded by the RX
flushing operation.

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_pcap=file_rx.pcap,tx_pcap=file_tx.pcap' \
-- --port-topology=chained --no-flush-rx

Note: The network interface provided to the PMD should be up. The PMD will return an
error if interface is down, and the PMD itself won’t change the status of the external network
interface.

39.1.2 Rings-based PMD

To run a DPDK application on a machine without any Ethernet devices, a pair of ring-based
rte_ethdevs can be used as below. The device names passed to the –vdev option must start
with net_ring and take no additional parameters. Multiple devices may be specified, separated
by commas.

39.1. Using the Drivers from the EAL Command Line 209

Network Interface Controller Drivers, Release 18.08.1

./testpmd -l 1-3 -n 4 --vdev=net_ring0 --vdev=net_ring1 -- -i
EAL: Detected lcore 1 as core 1 on socket 0
...

Interactive-mode selected
Configuring Port 0 (socket 0)
Configuring Port 1 (socket 0)
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done

testpmd> start tx_first
io packet forwarding - CRC stripping disabled - packets/burst=16
nb forwarding cores=1 - nb forwarding ports=2
RX queues=1 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=8 hthresh=8 wthresh=4
TX queues=1 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=36 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0

testpmd> stop
Telling cores to stop...
Waiting for lcores to finish...

+++++++++++++++ Accumulated forward statistics for allports++++++++++
RX-packets: 462384736 RX-dropped: 0 RX-total: 462384736
TX-packets: 462384768 TX-dropped: 0 TX-total: 462384768
+++

Done.

39.1.3 Using the Poll Mode Driver from an Application

Both drivers can provide similar APIs to allow the user to create a PMD, that is, rte_ethdev
structure, instances at run-time in the end-application, for example, using rte_eth_from_rings()
or rte_eth_from_pcaps() APIs. For the rings-based PMD, this functionality could be used, for
example, to allow data exchange between cores using rings to be done in exactly the same
way as sending or receiving packets from an Ethernet device. For the libpcap-based PMD, it
allows an application to open one or more pcap files and use these as a source of packet input
to the application.

Usage Examples

To create two pseudo-Ethernet ports where all traffic sent to a port is looped back for reception
on the same port (error handling omitted for clarity):

#define RING_SIZE 256
#define NUM_RINGS 2

39.1. Using the Drivers from the EAL Command Line 210

Network Interface Controller Drivers, Release 18.08.1

#define SOCKET0 0

struct rte_ring *ring[NUM_RINGS];
int port0, port1;

ring[0] = rte_ring_create("R0", RING_SIZE, SOCKET0, RING_F_SP_ENQ|RING_F_SC_DEQ);
ring[1] = rte_ring_create("R1", RING_SIZE, SOCKET0, RING_F_SP_ENQ|RING_F_SC_DEQ);

/* create two ethdev's */

port0 = rte_eth_from_rings("net_ring0", ring, NUM_RINGS, ring, NUM_RINGS, SOCKET0);
port1 = rte_eth_from_rings("net_ring1", ring, NUM_RINGS, ring, NUM_RINGS, SOCKET0);

To create two pseudo-Ethernet ports where the traffic is switched between them, that is, traffic
sent to port 0 is read back from port 1 and vice-versa, the final two lines could be changed as
below:

port0 = rte_eth_from_rings("net_ring0", &ring[0], 1, &ring[1], 1, SOCKET0);
port1 = rte_eth_from_rings("net_ring1", &ring[1], 1, &ring[0], 1, SOCKET0);

This type of configuration could be useful in a pipeline model, for example, where one may
want to have inter-core communication using pseudo Ethernet devices rather than raw rings,
for reasons of API consistency.

Enqueuing and dequeuing items from an rte_ring using the rings-based PMD may be slower
than using the native rings API. This is because DPDK Ethernet drivers make use of func-
tion pointers to call the appropriate enqueue or dequeue functions, while the rte_ring specific
functions are direct function calls in the code and are often inlined by the compiler.

Once an ethdev has been created, for either a ring or a pcap-based PMD, it should
be configured and started in the same way as a regular Ethernet device, that is, by
calling rte_eth_dev_configure() to set the number of receive and transmit queues,
then calling rte_eth_rx_queue_setup() / tx_queue_setup() for each of those queues
and finally calling rte_eth_dev_start() to allow transmission and reception of pack-
ets to begin.

39.1. Using the Drivers from the EAL Command Line 211

CHAPTER

FORTY

FAIL-SAFE POLL MODE DRIVER LIBRARY

The Fail-safe poll mode driver library (librte_pmd_failsafe) is a virtual device that allows us-
ing any device supporting hotplug (sudden device removal and plugging on its bus), without
modifying other components relying on such device (application, other PMDs).

Additionally to the Seamless Hotplug feature, the Fail-safe PMD offers the ability to redirect
operations to secondary devices when the primary has been removed from the system.

Note: The library is enabled by default. You can enable it or disable it manually by setting the
CONFIG_RTE_LIBRTE_PMD_FAILSAFE configuration option.

40.1 Features

The Fail-safe PMD only supports a limited set of features. If you plan to use a device under-
neath the Fail-safe PMD with a specific feature, this feature must be supported by the Fail-safe
PMD to avoid throwing any error.

A notable exception is the device removal feature. The fail-safe PMD being a virtual device, it
cannot currently be removed in the sense of a specific bus hotplug, like for PCI for example.
It will however enable this feature for its sub-device automatically, detecting those that are
capable and register the relevant callback for such event.

Check the feature matrix for the complete set of supported features.

40.2 Compilation option

This option can be modified in the $RTE_TARGET/build/.config file.

• CONFIG_RTE_LIBRTE_PMD_FAILSAFE (default y)

Toggle compiling librte_pmd_failsafe.

40.3 Using the Fail-safe PMD from the EAL command line

The Fail-safe PMD can be used like most other DPDK virtual devices, by passing a --vdev
parameter to the EAL when starting the application. The device name must start with the
net_failsafe prefix, followed by numbers or letters. This name must be unique for each device.
Each fail-safe instance must have at least one sub-device, up to RTE_MAX_ETHPORTS-1.

212

Network Interface Controller Drivers, Release 18.08.1

A sub-device can be any legal DPDK device, including possibly another fail-safe instance.

40.3.1 Fail-safe command line parameters

• dev(<iface>) parameter

This parameter allows the user to define a sub-device. The <iface> part of this param-
eter must be a valid device definition. It could be the argument provided to any -w device
specification or the argument that would be given to a --vdev parameter (including a
fail-safe). Enclosing the device definition within parenthesis here allows using additional
sub-device parameters if need be. They will be passed on to the sub-device.

Note: In case of whitelist sub-device probed by EAL, fail-safe PMD will take the device as is,
which means that EAL device options are taken in this case. When trying to use a PCI device
automatically probed in blacklist mode, the syntax for the fail-safe must be with the full PCI id:
Domain:Bus:Device.Function. See the usage example section.

• exec(<shell command>) parameter

This parameter allows the user to provide a command to the fail-safe PMD to execute and
define a sub-device. It is done within a regular shell context. The first line of its output
is read by the fail-safe PMD and otherwise interpreted as if passed by the regular dev
parameter. Any other line is discarded. If the command fail or output an incorrect string,
the sub-device is not initialized. All commas within the shell command are replaced by
spaces before executing the command. This helps using scripts to specify devices.

• fd(<file descriptor number>) parameter

This parameter reads a device definition from an arbitrary file descriptor number in
<iface> format as described above.

The file descriptor is read in non-blocking mode and is never closed in order to take only
the last line into account (unlike exec()) at every probe attempt.

• mac parameter [MAC address]

This parameter allows the user to set a default MAC address to the fail-safe and all of
its sub-devices. If no default mac address is provided, the fail-safe PMD will read the
MAC address of the first of its sub-device to be successfully probed and use it as its
default MAC address, trying to set it to all of its other sub-devices. If no sub-device was
successfully probed at initialization, then a random MAC address is generated, that will
be subsequently applied to all sub-device once they are probed.

• hotplug_poll parameter [UINT64] (default 2000)

This parameter allows the user to configure the amount of time in milliseconds between
two slave upkeep round.

40.3.2 Usage example

This section shows some example of using testpmd with a fail-safe PMD.

1. To build a PMD and configure DPDK, refer to the document compiling and testing a PMD
for a NIC.

40.3. Using the Fail-safe PMD from the EAL command line 213

Network Interface Controller Drivers, Release 18.08.1

2. Start testpmd. The slave device should be blacklisted from normal EAL operations to
avoid probing it twice when in PCI blacklist mode.

$RTE_TARGET/build/app/testpmd -c 0xff -n 4 \
--vdev 'net_failsafe0,mac=de:ad:be:ef:01:02,dev(84:00.0),dev(net_ring0)' \
-b 84:00.0 -b 00:04.0 -- -i

If the slave device being used is not blacklisted, it will be probed by the EAL first. When
the fail-safe then tries to initialize it the probe operation fails.

Note that PCI blacklist mode is the default PCI operating mode.

3. Alternatively, it can be used alongside any other device in whitelist mode.

$RTE_TARGET/build/app/testpmd -c 0xff -n 4 \
--vdev 'net_failsafe0,mac=de:ad:be:ef:01:02,dev(84:00.0),dev(net_ring0)' \
-w 81:00.0 -- -i

4. Start testpmd using a flexible device definition

$RTE_TARGET/build/app/testpmd -c 0xff -n 4 --no-pci \
--vdev='net_failsafe0,exec(echo 84:00.0)' -- -i

5. Start testpmd, automatically probing the device 84:00.0 and using it with the fail-safe.

$RTE_TARGET/build/app/testpmd -c 0xff -n 4 \
--vdev 'net_failsafe0,dev(0000:84:00.0),dev(net_ring0)' -- -i

40.4 Using the Fail-safe PMD from an application

This driver strives to be as seamless as possible to existing applications, in order to propose
the hotplug functionality in the easiest way possible.

Care must be taken, however, to respect the ether API concerning device access, and in
particular, using the RTE_ETH_FOREACH_DEV macro to iterate over ethernet devices, instead
of directly accessing them or by writing one’s own device iterator.

40.5 Plug-in feature

A sub-device can be defined without existing on the system when the fail-safe PMD is initial-
ized. Upon probing this device, the fail-safe PMD will detect its absence and postpone its use.
It will then register for a periodic check on any missing sub-device.

During this time, the fail-safe PMD can be used normally, configured and told to emit and
receive packets. It will store any applied configuration, and try to apply it upon the probing of
its missing sub-device. After this configuration pass, the new sub-device will be synchronized
with other sub-devices, i.e. be started if the fail-safe PMD has been started by the user before.

40.6 Plug-out feature

A sub-device supporting the device removal event can be removed from its bus at any time.
The fail-safe PMD will register a callback for such event and react accordingly. It will try to
safely stop, close and uninit the sub-device having emitted this event, allowing it to free its
eventual resources.

40.4. Using the Fail-safe PMD from an application 214

Network Interface Controller Drivers, Release 18.08.1

40.7 Fail-safe glossary

Fallback device [Secondary device] The fail-safe will fail-over onto this device when the pre-
ferred device is absent.

Preferred device [Primary device] The first declared sub-device in the fail-safe parameters.
When this device is plugged, it is always used as emitting device. It is the main sub-
device and is used as target for configuration operations if there is any ambiguity.

Upkeep round Periodical process when slaves are serviced. Each devices having a state
different to that of the fail-safe device itself, is synchronized with it. Additionally, each
slave having the remove flag set are cleaned-up.

Slave In the context of the fail-safe PMD, synonymous to sub-device.

Sub-device A device being utilized by the fail-safe PMD. This is another PMD running under-
neath the fail-safe PMD. Any sub-device can disappear at any time. The fail-safe will
ensure that the device removal happens gracefully.

Figures

Fig. 20.1 Virtualization for a Single Port NIC in SR-IOV Mode

Fig. 20.2 Performance Benchmark Setup

Fig. 20.3 Fast Host-based Packet Processing

Fig. 20.4 Inter-VM Communication

Fig. 36.1 Host2VM Communication Example Using kni vhost Back End

Fig. 36.3 Host2VM Communication Example Using qemu vhost Back End

Fig. 38.1 Assigning a VMXNET3 interface to a VM using VMware vSphere Client

Fig. 38.2 VMXNET3 with a Native NIC Connected to a vSwitch

Fig. 38.3 VMXNET3 Chaining VMs Connected to a vSwitch

40.7. Fail-safe glossary 215

	Overview of Networking Drivers
	Features Overview
	Speed capabilities
	Link status
	Link status event
	Removal event
	Queue status event
	Rx interrupt
	Lock-free Tx queue
	Fast mbuf free
	Free Tx mbuf on demand
	Queue start/stop
	MTU update
	Jumbo frame
	Scattered Rx
	LRO
	TSO
	Promiscuous mode
	Allmulticast mode
	Unicast MAC filter
	Multicast MAC filter
	RSS hash
	Inner RSS
	RSS key update
	RSS reta update
	VMDq
	SR-IOV
	DCB
	VLAN filter
	Ethertype filter
	N-tuple filter
	SYN filter
	Tunnel filter
	Flexible filter
	Hash filter
	Flow director
	Flow control
	Flow API
	Rate limitation
	Traffic mirroring
	Inline crypto
	CRC offload
	VLAN offload
	QinQ offload
	L3 checksum offload
	L4 checksum offload
	Timestamp offload
	MACsec offload
	Inner L3 checksum
	Inner L4 checksum
	Packet type parsing
	Timesync
	Rx descriptor status
	Tx descriptor status
	Basic stats
	Extended stats
	Stats per queue
	FW version
	EEPROM dump
	Module EEPROM dump
	Registers dump
	LED
	Multiprocess aware
	BSD nic_uio
	Linux UIO
	Linux VFIO
	Other kdrv
	ARMv7
	ARMv8
	Power8
	x86-32
	x86-64
	Usage doc
	Design doc
	Perf doc
	Runtime Rx queue setup
	Runtime Tx queue setup
	Other dev ops not represented by a Feature

	Compiling and testing a PMD for a NIC
	Driver Compilation
	Running testpmd in Linux

	ARK Poll Mode Driver
	Overview
	Device Parameters
	Data Path Interface
	Configuration Information
	Building DPDK
	Supported ARK RTL PCIe Instances
	Supported Operating Systems
	Supported Features
	Unsupported Features
	Pre-Requisites
	Usage Example

	AVP Poll Mode Driver
	Features and Limitations of the AVP PMD
	Prerequisites
	Launching a VM with an AVP type network attachment

	AXGBE Poll Mode Driver
	Supported Features
	Configuration Information
	Building DPDK
	Prerequisites and Pre-conditions
	Usage Example

	BNX2X Poll Mode Driver
	Supported Features
	Non-supported Features
	Co-existence considerations
	Supported QLogic NICs
	Prerequisites
	Pre-Installation Configuration
	Driver compilation and testing
	SR-IOV: Prerequisites and sample Application Notes

	BNXT Poll Mode Driver
	Limitations

	CXGBE Poll Mode Driver
	Features
	Limitations
	Supported Chelsio T5 NICs
	Supported Chelsio T6 NICs
	Supported SR-IOV Chelsio NICs
	Prerequisites
	Pre-Installation Configuration
	Driver compilation and testing
	Linux
	FreeBSD
	Sample Application Notes

	DPAA Poll Mode Driver
	NXP DPAA (Data Path Acceleration Architecture - Gen 1)
	DPAA DPDK - Poll Mode Driver Overview
	Whitelisting & Blacklisting
	Supported DPAA SoCs
	Prerequisites
	Pre-Installation Configuration
	Driver compilation and testing
	Limitations

	DPAA2 Poll Mode Driver
	NXP DPAA2 (Data Path Acceleration Architecture Gen2)
	DPAA2 DPDK - Poll Mode Driver Overview
	Supported DPAA2 SoCs
	Prerequisites
	Pre-Installation Configuration
	Driver compilation and testing
	Enabling logs
	Whitelisting & Blacklisting
	Limitations

	Driver for VM Emulated Devices
	Validated Hypervisors
	Recommended Guest Operating System in Virtual Machine
	Setting Up a KVM Virtual Machine
	Known Limitations of Emulated Devices

	ENA Poll Mode Driver
	Overview
	Management Interface
	Data Path Interface
	Configuration information
	Building DPDK
	Supported ENA adapters
	Supported Operating Systems
	Supported features
	Unsupported features
	Prerequisites
	Usage example

	ENIC Poll Mode Driver
	How to obtain ENIC PMD integrated DPDK
	Configuration information
	Flow director support
	SR-IOV mode utilization
	Generic Flow API support
	Overlay Offload
	Ingress VLAN Rewrite
	Limitations
	How to build the suite
	Supported Cisco VIC adapters
	Supported Operating Systems
	Supported features
	Known bugs and unsupported features in this release
	Prerequisites
	Additional Reference
	Contact Information

	FM10K Poll Mode Driver
	FTAG Based Forwarding of FM10K
	Vector PMD for FM10K
	Limitations

	I40E Poll Mode Driver
	Features
	Prerequisites
	Recommended Matching List
	Pre-Installation Configuration
	Driver compilation and testing
	SR-IOV: Prerequisites and sample Application Notes
	Sample Application Notes
	Limitations or Known issues
	High Performance of Small Packets on 40GbE NIC
	Example of getting best performance with l3fwd example

	IFCVF vDPA driver
	Pre-Installation Configuration
	IFCVF vDPA Implementation
	Features
	Prerequisites
	Limitations

	IGB Poll Mode Driver
	Features
	Limitations or Known issues
	Supported Chipsets and NICs

	IXGBE Driver
	Vector PMD for IXGBE
	Application Programming Interface
	Sample Application Notes
	Limitations or Known issues
	Inline crypto processing support
	Virtual Function Port Representors
	Supported Chipsets and NICs

	Intel Virtual Function Driver
	SR-IOV Mode Utilization in a DPDK Environment
	Setting Up a KVM Virtual Machine Monitor
	DPDK SR-IOV PMD PF/VF Driver Usage Model
	SR-IOV (PF/VF) Approach for Inter-VM Communication

	KNI Poll Mode Driver
	Usage
	Default interface configuration
	PMD arguments
	PMD log messages
	PMD testing

	LiquidIO VF Poll Mode Driver
	Supported LiquidIO Adapters
	Pre-Installation Configuration
	SR-IOV: Prerequisites and Sample Application Notes
	Limitations

	MLX4 poll mode driver library
	Implementation details
	Configuration
	Limitations
	Prerequisites
	Supported NICs
	Quick Start Guide
	Performance tuning
	Usage example

	MLX5 poll mode driver
	Implementation details
	Features
	Limitations
	Statistics
	Configuration
	Prerequisites
	Supported NICs
	Quick Start Guide on OFED
	Performance tuning
	Notes for testpmd
	Usage example

	MVPP2 Poll Mode Driver
	Features
	Limitations
	Prerequisites
	Config File Options
	QoS Configuration
	Building DPDK
	Flow API
	Usage Example

	Netvsc poll mode driver
	Features and Limitations of Hyper-V PMD
	Installation
	Prerequisites

	NFP poll mode driver library
	Dependencies
	Building the software
	Driver compilation and testing
	Using the PF
	PF multiport support
	System configuration

	OCTEONTX Poll Mode driver
	Features
	Supported OCTEONTX SoCs
	Unsupported features
	Prerequisites
	Pre-Installation Configuration
	Initialization
	Limitations

	QEDE Poll Mode Driver
	Supported Features
	Non-supported Features
	Co-existence considerations
	Supported QLogic Adapters
	Prerequisites
	Driver compilation and testing
	SR-IOV: Prerequisites and Sample Application Notes

	Solarflare libefx-based Poll Mode Driver
	Features
	Non-supported Features
	Limitations
	Tunnels support
	Flow API support
	Supported NICs
	Prerequisites
	Pre-Installation Configuration

	Soft NIC Poll Mode Driver
	Flow
	Supported Operating Systems
	Build options
	Soft NIC PMD arguments
	Soft NIC testing
	Soft NIC Firmware

	SZEDATA2 poll mode driver library
	Prerequisites
	Configuration
	Using the SZEDATA2 PMD
	NFB card architecture
	Limitations
	Example of usage

	Tun|Tap Poll Mode Driver
	Flow API support
	Example
	RSS specifics
	Systems supporting flow API

	ThunderX NICVF Poll Mode Driver
	Features
	Supported ThunderX SoCs
	Prerequisites
	Pre-Installation Configuration
	Driver compilation and testing
	Linux
	Module params
	Limitations

	VDEV_NETVSC driver
	Implementation details
	Build options
	Run-time parameters

	Poll Mode Driver for Emulated Virtio NIC
	Virtio Implementation in DPDK
	Features and Limitations of virtio PMD
	Prerequisites
	Virtio with kni vhost Back End
	Virtio with qemu virtio Back End
	Virtio PMD Rx/Tx Callbacks
	Interrupt mode
	Virtio PMD arguments

	Poll Mode Driver that wraps vhost library
	Vhost Implementation in DPDK
	Features and Limitations of vhost PMD
	Vhost PMD arguments
	Vhost PMD event handling
	Vhost PMD with testpmd application

	Poll Mode Driver for Paravirtual VMXNET3 NIC
	VMXNET3 Implementation in the DPDK
	Features and Limitations of VMXNET3 PMD
	Prerequisites
	VMXNET3 with a Native NIC Connected to a vSwitch
	VMXNET3 Chaining VMs Connected to a vSwitch

	Libpcap and Ring Based Poll Mode Drivers
	Using the Drivers from the EAL Command Line

	Fail-safe poll mode driver library
	Features
	Compilation option
	Using the Fail-safe PMD from the EAL command line
	Using the Fail-safe PMD from an application
	Plug-in feature
	Plug-out feature
	Fail-safe glossary

