=) DPDK

DATA PLANE DEVELOPMENT KIT

Rawdev Drivers
Release 18.11.11

Jan 20, 2021

CONTENTS

1 NXP DPAA2 CMDIF Driver 2
1.1 Features e 2
1.2 Supported DPAA2 SOCS o o e e e 2
1.3 Prerequisites 2
1.4 Pre-Installation Configuration 3
1.5 Enablinglogs. e 3
1.6 Initialization. L 3

2 NXP DPAA2 QDMA Driver 4
21 Features 4
2.2 Supported DPAA2S0Cs o o e 4
2.3 Prerequisites e 4
2.4 Pre-Installation Configuration L. 5
25 Enablinglogs. e 5
2.6 Initialization. L 5

3 IFPGA Rawdev Driver 6
3.1 Implementationdetails, 6
3.2 Buildoptions e 7
3.3 Run-time parameters e 7

Rawdev Drivers, Release 18.11.11

The following are a list of raw device PMDs, which can be used from an application through
rawdev API.

CONTENTS 1

CHAPTER
ONE

NXP DPAA2 CMDIF DRIVER

The DPAA2 CMDIF is an implementation of the rawdev API, that provides communication
between the GPP and AIOP (Firmware). This is achieved via using the DPCI devices exposed
by MC for GPP <—> AIOP interaction.

More information can be found at NXP Official Website.

1.1 Features

The DPAA2 CMDIF implements following features in the rawdev API;
+ Getting the object ID of the device (DPCI) using attributes
+ 1/O to and from the AIOP device using DPCI

1.2 Supported DPAA2 SoCs

* LS2084A/LS2044A
* LS2088A/LS2048A
* LS1088A/LS1048A

1.3 Prerequisites

See ../platform/dpaa?2 for setup information
Currently supported by DPDK:
* NXP SDK 18.09+.
* MC Firmware version 10.10.0 and higher.
» Supported architectures: arm64 LE.

* Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

Note: Some part of fsimc bus code (mc flib - object library) routines are dual licensed (BSD &
GPLv2).

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM

Rawdev Drivers, Release 18.11.11

1.4 Pre-Installation Configuration

1.4.1 Config File Options

The following options can be modified in the config file.
* CONFIG_RTE_LIBRTE_PMD_DPAA2_CMDIF_RAWDEV (default y)

Toggle compilation of the 1rte_pmd_dpaa2_cmdif driver.

1.5 Enabling logs

For enabling logs, use the following EAL parameter:

./your_cmdif_application <EAL args> —--log-level=pmd.raw.dpaa2.cmdif,<level>

Using pmd. raw.dpaa2.cmdif as log matching criteria, all Event PMD logs can be enabled
which are lower than logging level.

1.5.1 Driver Compilation

To compile the DPAA2 CMDIF PMD for Linux arm64 gcc target, run the following make com-
mand:

cd <DPDK-source-directory>
make config T=arm64-dpaaZ2-linuxapp-gcc install

1.6 Initialization

The DPAA2 CMDIF is exposed as a vdev device which consists of dpci devices. On EAL initial-
ization, dpci devices will be probed and then vdev device can be created from the application
code by

* Invoking rte_vdev_init ("dpaa2_dpci™") from the application

* Using ——vdev="dpaa2_dpci" in the EAL options, which will call rte_vdev_init() inter-
nally

Example:
./your_cmdif_application <EAL args> —--vdev="dpaa2_dpci"
1.6.1 Platform Requirement

DPAA2 drivers for DPDK can only work on NXP SoCs as listed in the Supported DPAA2
SoCs.

1.4. Pre-Installation Configuration 3

CHAPTER
TWO

NXP DPAA2 QDMA DRIVER

The DPAA2 QDMA is an implementation of the rawdev API, that provide means to initiate a
DMA transaction from CPU. The initiated DMA is performed without CPU being involved in the
actual DMA transaction. This is achieved via using the DPDMAI device exposed by MC.

More information can be found at NXP Official Website.

2.1 Features

The DPAA2 QDMA implements following features in the rawdev API;

» Supports issuing DMA of data within memory without hogging CPU while performing
DMA operation.

» Supports configuring to optionally get status of the DMA translation on per DMA operation
basis.

2.2 Supported DPAA2 SoCs

* LX2160A

* LS2084A/LS2044A
* LS2088A/LS2048A
* LS1088A/LS1048A

2.3 Prerequisites

See ../platform/dpaa?2 for setup information
Currently supported by DPDK:
* NXP SDK 18.09+.
* MC Firmware version 10.10.0 and higher.
» Supported architectures: arm64 LE.

 Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM

Rawdev Drivers, Release 18.11.11

Note: Some part of fsimc bus code (mc flib - object library) routines are dual licensed (BSD &
GPLv2).

2.4 Pre-Installation Configuration

2.4.1 Config File Options

The following options can be modified in the config file.
* CONFIG_RTE_LIBRTE_PMD_DPAA2_ QDMA_RAWDEV (default y)

Toggle compilation of the 1rte_pmd_dpaa2_gdma driver.

2.5 Enabling logs

For enabling logs, use the following EAL parameter:

./your_qgdma_application <EAL args> --log-level=pmd.raw.dpaa2.qgdma,<level>

Using pmd. raw.dpaa2.gdma as log matching criteria, all Event PMD logs can be enabled
which are lower than logging level.

2.5.1 Driver Compilation

To compile the DPAA2 QDMA PMD for Linux arm64 gcc target, run the following make com-
mand:

cd <DPDK-source-directory>
make config T=arm64-dpaaz2-linuxapp-gcc install

2.6 Initialization

The DPAA2 QDMA is exposed as a vdev device which consists of dpdmai devices. On EAL
initialization, dpdmai devices will be probed and populated into the rawdevices. The rawdev ID
of the device can be obtained using

* Invoking rte_rawdev_get_dev_id ("dpdmai.x") from the application where x is the
object ID of the DPDMAI object created by MC. Use can use this index for further rawdev
function calls.

2.6.1 Platform Requirement

DPAA2 drivers for DPDK can only work on NXP SoCs as listed in the Supported DPAA2
SoCs.

2.4. Pre-Installation Configuration 5

CHAPTER
THREE

IFPGA RAWDEYV DRIVER

FPGA is used more and more widely in Cloud and NFV, one primary reason is that FPGA not
only provides ASIC performance but also it's more flexible than ASIC.

FPGA uses Partial Reconfigure (PR) Parts of Bit Stream to achieve its flexibility. That means
one FPGA Device Bit Stream is divided into many Parts of Bit Stream(each Part of Bit Stream
is defined as AFU-Accelerated Function Unit), and each AFU is a hardware acceleration unit
which can be dynamically reloaded respectively.

By PR (Partial Reconfiguration) AFUs, one FPGA resources can be time-shared by different
users. FPGA hot upgrade and fault tolerance can be provided easily.

The SW IFPGA Rawdev Driver (ifpga_rawdev) provides a Rawdev driver that utilizes Intel
FPGA Software Stack OPAE(Open Programmable Acceleration Engine) for FPGA manage-
ment.

3.1 Implementation details

Each instance of IFPGA Rawdev Driver is probed by Intel FpgaDev. In coordination with OPAE
share code IFPGA Rawdev Driver provides common FPGA management ops for FPGA opera-
tion, OPAE provides all following operations: - FPGA PR (Partial Reconfiguration) management
- FPGA AFUs Identifying - FPGA Thermal Management - FPGA Power Management - FPGA
Performance reporting - FPGA Remote Debug

All configuration parameters are taken by vdev_ifpga_cfg driver. Besides configuration,
vdev_ifpga_cfg driver also hot plugs in IFPGA Bus.

All of the AFUs of one FPGA may share same PCI| BDF and AFUs scan depend on IFPGA
Rawdev Driver so IFPGA Bus takes AFU device scan and AFU drivers probe. All AFU device
driver bind to AFU device by its UUID (Universally Unique Identifier).

To avoid unnecessary code duplication and ensure maximum performance, handling of AFU
devices is left to different PMDs; all the design as summarized by the following block diagram:

e +
| Application (s) |
—— e +
\
\
e it e +
| DPDK Framework (APIs) |
Fommmm s | === S | === +
/ \ |
/ \ |
o + —————— Vo + o +

Rawdev Drivers, Release 18.11.11

| Eth PMD | Crypto PMD | \ |
fomm - I + \ |
\ \ \ |
\ \ \ |
R B et + - R et + | IFPGA |
| Eth AFU Dev | |Crypto AFU Dev | | Rawdev Driver

= T + | (OPAE Share Code) |
\ \ \ |
| | Rawdev | |
o ' ' + Ops \ |
| IFPGA Bus | ——————— > | |
o S ——— + o +

| |

Hot-plugin —->| |

I |
Fom R + o e —— +
| vdev_ifpga_cfg driver | | Intel FpgaDev |
i + o +

3.2 Build options

* CONFIG_RTE_LIBRTE_IFPGA_BUS (default y)
Toggle compilation of IFPGA Bus library.
* CONFIG_RTE_LIBRTE_IFPGA_RAWDEV (default y)

Toggle compilation of the i fpga_rawdev driver.

3.3 Run-time parameters

This driver is invoked automatically in systems added with Intel FPGA, but PR and IFPGA Bus
scan is triggered by command line using ——vdev 'ifpga_rawdev_cfg EAL option.

The following device parameters are supported:
* ifpga [string]

Provide a specific Intel FPGA device PCI BDF. Can be provided multiple times for addi-
tional instances.

* port [int]

Each FPGA can provide many channels to PR AFU by software, each channels is iden-
tified by this parameter.

* afu_bts [string]

If null, the AFU Bit Stream has been PR in FPGA, if not forces PR and identifies AFU Bit
Stream file.

3.2. Build options 7

	NXP DPAA2 CMDIF Driver
	Features
	Supported DPAA2 SoCs
	Prerequisites
	Pre-Installation Configuration
	Enabling logs
	Initialization

	NXP DPAA2 QDMA Driver
	Features
	Supported DPAA2 SoCs
	Prerequisites
	Pre-Installation Configuration
	Enabling logs
	Initialization

	IFPGA Rawdev Driver
	Implementation details
	Build options
	Run-time parameters

