
DPDK Tools User Guides
Release 18.11.11

Jan 20, 2021

CONTENTS

1 dpdk-procinfo Application 1
1.1 Running the Application . 1
1.2 Limitations . 1

2 dpdk-pdump Application 3
2.1 Running the Application . 3
2.2 Example . 4

3 dpdk-pmdinfo Application 5
3.1 Running the Application . 5

4 dpdk-devbind Application 6
4.1 Running the Application . 6
4.2 OPTIONS . 6
4.3 Examples . 7

5 dpdk-test-bbdev Application 8
5.1 Compiling the Application . 8
5.2 Running the Application . 8
5.3 Running Tests . 11
5.4 Test Vector files . 12

6 dpdk-test-crypto-perf Application 17
6.1 Limitations . 17
6.2 Compiling the Application . 17
6.3 Running the Application . 18
6.4 Examples . 23

7 dpdk-test-eventdev Application 25
7.1 Compiling the Application . 25
7.2 Running the Application . 25
7.3 Eventdev Tests . 27

i

CHAPTER

ONE

DPDK-PROCINFO APPLICATION

The dpdk-procinfo application is a Data Plane Development Kit (DPDK) application that runs as
a DPDK secondary process and is capable of retrieving port statistics, resetting port statistics
and printing DPDK memory information. This application extends the original functionality that
was supported by dump_cfg.

1.1 Running the Application

The application has a number of command line options:

./$(RTE_TARGET)/app/dpdk-procinfo -- -m | [-p PORTMASK] [--stats | --xstats |
--stats-reset | --xstats-reset]

1.1.1 Parameters

-p PORTMASK: Hexadecimal bitmask of ports to configure.

–stats The stats parameter controls the printing of generic port statistics. If no port mask is
specified stats are printed for all DPDK ports.

–xstats The xstats parameter controls the printing of extended port statistics. If no port mask
is specified xstats are printed for all DPDK ports.

–stats-reset The stats-reset parameter controls the resetting of generic port statistics. If no
port mask is specified, the generic stats are reset for all DPDK ports.

–xstats-reset The xstats-reset parameter controls the resetting of extended port statistics. If
no port mask is specified xstats are reset for all DPDK ports.

-m: Print DPDK memory information.

1.2 Limitations

• dpdk-procinfo should run alongside primary process with same DPDK version.

• When running dpdk-procinfo with shared library mode, it is required to pass the same
NIC PMD libraries as used for the primary application. Any mismatch in PMD library
arguments can lead to undefined behavior and results affecting primary application too.

• Stats retrieval using dpdk-procinfo is not supported for virtual devices like PCAP and
TAP.

1

DPDK Tools User Guides, Release 18.11.11

• Since default DPDK EAL arguments for dpdk-procinfo are -c1,-n4 &
--proc-type=secondary, It is not expected that the user passes any EAL ar-
guments.

1.2. Limitations 2

CHAPTER

TWO

DPDK-PDUMP APPLICATION

The dpdk-pdump tool is a Data Plane Development Kit (DPDK) tool that runs as a DPDK
secondary process and is capable of enabling packet capture on dpdk ports.

Note:

• The dpdk-pdump tool can only be used in conjunction with a primary appli-
cation which has the packet capture framework initialized already. In dpdk,
only the testpmd is modified to initialize packet capture framework, other
applications remain untouched. So, if the dpdk-pdump tool has to be used
with any application other than the testpmd, user needs to explicitly modify
that application to call packet capture framework initialization code. Refer
app/test-pmd/testpmd.c code to see how this is done.

• The dpdk-pdump tool depends on libpcap based PMD which is disabled by
default in the build configuration files, owing to an external dependency on
the libpcap development files which must be installed on the board. Once the
libpcap development files are installed, the libpcap based PMD can be enabled
by setting CONFIG_RTE_LIBRTE_PMD_PCAP=y and recompiling the DPDK.

2.1 Running the Application

The tool has a number of command line options:

./build/app/dpdk-pdump --
--pdump '(port=<port id> | device_id=<pci id or vdev name>),

(queue=<queue_id>),
(rx-dev=<iface or pcap file> |
tx-dev=<iface or pcap file>),

[ring-size=<ring size>],
[mbuf-size=<mbuf data size>],
[total-num-mbufs=<number of mbufs>]'

The --pdump command line option is mandatory and it takes various sub arguments which
are described in below section.

Note:

• Parameters inside the parentheses represents mandatory parameters.

• Parameters inside the square brackets represents optional parameters.

3

DPDK Tools User Guides, Release 18.11.11

• Multiple instances of --pdump can be passed to capture packets on different
port and queue combinations.

2.1.1 The --pdump parameters

port: Port id of the eth device on which packets should be captured.

device_id: PCI address (or) name of the eth device on which packets should be captured.

Note:

• As of now the dpdk-pdump tool cannot capture the packets of virtual devices
in the primary process due to a bug in the ethdev library. Due to this bug, in
a multi process context, when the primary and secondary have different ports
set, then the secondary process (here the dpdk-pdump tool) overwrites the
rte_eth_devices[] entries of the primary process.

queue: Queue id of the eth device on which packets should be captured. The user can pass
a queue value of * to enable packet capture on all queues of the eth device.

rx-dev: Can be either a pcap file name or any Linux iface.

tx-dev: Can be either a pcap file name or any Linux iface.

Note:

• To receive ingress packets only, rx-dev should be passed.

• To receive egress packets only, tx-dev should be passed.

• To receive ingress and egress packets separately rx-dev and tx-dev should
both be passed with the different file names or the Linux iface names.

• To receive ingress and egress packets together, rx-dev and tx-dev should
both be passed with the same file name or the same Linux iface name.

ring-size: Size of the ring. This value is used internally for ring creation. The ring will be
used to enqueue the packets from the primary application to the secondary. This is an optional
parameter with default size 16384.

mbuf-size: Size of the mbuf data. This is used internally for mempool creation. Ideally this
value must be same as the primary application’s mempool’s mbuf data size which is used for
packet RX. This is an optional parameter with default size 2176.

total-num-mbufs: Total number mbufs in mempool. This is used internally for mempool
creation. This is an optional parameter with default value 65535.

2.2 Example

$ sudo ./build/app/dpdk-pdump -- --pdump 'port=0,queue=*,rx-dev=/tmp/rx.pcap'

2.2. Example 4

CHAPTER

THREE

DPDK-PMDINFO APPLICATION

The dpdk-pmdinfo tool is a Data Plane Development Kit (DPDK) utility that can dump a
PMDs hardware support info.

3.1 Running the Application

The tool has a number of command line options:

dpdk-pmdinfo [-hrtp] [-d <pci id file] <elf-file>

-h, --help Show a short help message and exit
-r, --raw Dump as raw json strings
-d FILE, --pcidb=FILE Specify a pci database to get vendor names from
-t, --table Output information on hw support as a hex table
-p, --plugindir Scan dpdk for autoload plugins

Note:

• Parameters inside the square brackets represents optional parameters.

5

CHAPTER

FOUR

DPDK-DEVBIND APPLICATION

The dpdk-devbind tool is a Data Plane Development Kit (DPDK) utility that helps binding
and unbinding devices from specific drivers. As well as checking their status in that regard.

4.1 Running the Application

The tool has a number of command line options:

dpdk-devbind [options] DEVICE1 DEVICE2

4.2 OPTIONS

• --help,--usage

Display usage information and quit

• -s,--status

Print the current status of all known network interfaces. For each device, it
displays the PCI domain, bus, slot and function, along with a text description
of the device. Depending upon whether the device is being used by a ker-
nel driver, the igb_uio driver, or no driver, other relevant information will be
displayed: - the Linux interface name e.g. if=eth0 - the driver being used
e.g. drv=igb_uio - any suitable drivers not currently using that device e.g.
unused=igb_uio NOTE: if this flag is passed along with a bind/unbind op-
tion, the status display will always occur after the other operations have taken
place.

• -b driver,--bind=driver

Select the driver to use or “none” to unbind the device

• -u,--unbind

Unbind a device (Equivalent to -b none)

• --force

By default, devices which are used by Linux - as indicated by having routes
in the routing table - cannot be modified. Using the --force flag overrides
this behavior, allowing active links to be forcibly unbound. WARNING: This can
lead to loss of network connection and should be used with caution.

6

DPDK Tools User Guides, Release 18.11.11

Warning: Due to the way VFIO works, there are certain limitations to which devices can
be used with VFIO. Mainly it comes down to how IOMMU groups work. Any Virtual Function
device can be used with VFIO on its own, but physical devices will require either all ports
bound to VFIO, or some of them bound to VFIO while others not being bound to anything
at all.

If your device is behind a PCI-to-PCI bridge, the bridge will then be part of the IOMMU
group in which your device is in. Therefore, the bridge driver should also be unbound from
the bridge PCI device for VFIO to work with devices behind the bridge.

Warning: While any user can run the dpdk-devbind.py script to view the status of the
network ports, binding or unbinding network ports requires root privileges.

4.3 Examples

To display current device status:

dpdk-devbind --status

To bind eth1 from the current driver and move to use igb_uio:

dpdk-devbind --bind=igb_uio eth1

To unbind 0000:01:00.0 from using any driver:

dpdk-devbind -u 0000:01:00.0

To bind 0000:02:00.0 and 0000:02:00.1 to the ixgbe kernel driver:

dpdk-devbind -b ixgbe 02:00.0 02:00.1

To check status of all network ports, assign one to the igb_uio driver and check status again:

Check the status of the available devices.
dpdk-devbind --status
Network devices using DPDK-compatible driver
==
<none>

Network devices using kernel driver
===================================
0000:0a:00.0 '82599ES 10-Gigabit' if=eth2 drv=ixgbe unused=

Bind the device to igb_uio.
sudo dpdk-devbind -b igb_uio 0000:0a:00.0

Recheck the status of the devices.
dpdk-devbind --status
Network devices using DPDK-compatible driver
==
0000:0a:00.0 '82599ES 10-Gigabit' drv=igb_uio unused=

4.3. Examples 7

CHAPTER

FIVE

DPDK-TEST-BBDEV APPLICATION

The dpdk-test-bbdev tool is a Data Plane Development Kit (DPDK) utility that allows mea-
suring performance parameters of PMDs available in the bbdev framework. Tests available
for execution are: latency, throughput, validation and sanity tests. Execution of tests can be
customized using various parameters passed to a python running script.

5.1 Compiling the Application

Step 1: PMD setting

The dpdk-test-bbdev tool depends on crypto device drivers PMD which are disabled by
default in the build configuration file common_base. The bbdevice drivers PMD which should
be tested can be enabled by setting

CONFIG_RTE_LIBRTE_PMD_<name>=y

Setting example for (baseband_turbo_sw) PMD

CONFIG_RTE_LIBRTE_PMD_BBDEV_TURBO_SW=y

Step 2: Build the application

Execute the dpdk-setup.sh script to build the DPDK library together with the
dpdk-test-bbdev application.

Initially, the user must select a DPDK target to choose the correct target type and compiler
options to use when building the libraries. The user must have all libraries, modules, updates
and compilers installed in the system prior to this, as described in the earlier chapters in this
Getting Started Guide.

5.2 Running the Application

The tool application has a number of command line options:

python test-bbdev.py [-h] [-p TESTAPP_PATH] [-e EAL_PARAMS] [-t TIMEOUT]
[-c TEST_CASE [TEST_CASE ...]]
[-v TEST_VECTOR [TEST_VECTOR...]] [-n NUM_OPS]
[-b BURST_SIZE [BURST_SIZE ...]] [-l NUM_LCORES]

5.2.1 command-line Options

The following are the command-line options:

8

DPDK Tools User Guides, Release 18.11.11

-h,--help Shows help message and exit.

-p TESTAPP_PATH,--testapp_path TESTAPP_PATH Indicates the path to the bbdev
test app. If not specified path is set based on $RTE_SDK environment variable con-
catenated with “/build/app/testbbdev ”.

-e EAL_PARAMS,--eal_params EAL_PARAMS Specifies EAL arguments which are
passed to the test app. For more details, refer to DPDK documentation at
../linux_gsg/linux_eal_parameters.

-t TIMEOUT,--timeout TIMEOUT Specifies timeout in seconds. If not specified timeout is
set to 300 seconds.

-c TEST_CASE [TEST_CASE ...],--test_cases TEST_CASE [TEST_CASE ...]
Defines test cases to run. If not specified all available tests are run.

Example usage:

./test-bbdev.py -c validation Runs validation test suite

./test-bbdev.py -c latency throughput Runs latency and throughput test
suites

-v TEST_VECTOR [TEST_VECTOR ...],--test_vector TEST_VECTOR [TEST_VECTOR ...]
Specifies paths to the test vector files. If not specified path is set based on $RTE_SDK
environment variable concatenated with “/app/test-bbdev/test_vectors/bbdev_null.data”
and indicates default data file.

Example usage:

./test-bbdev.py -v app/test-bbdev/test_vectors/turbo_dec_test1.data
Fills vector based on turbo_dec_test1.data file and runs all tests

./test-bbdev.py -v turbo_dec_test1.data turbo_enc_test2.data
The bbdev test app is executed twice. First time vector is filled based on
turbo_dec_test1.data file and second time based on turb_enc_test2.data file. For
both executions all tests are run.

-n NUM_OPS,--num_ops NUM_OPS Specifies number of operations to process on device. If
not specified num_ops is set to 32 operations.

-l NUM_LCORES,--num_lcores NUM_LCORES Specifies number of lcores to run. If not
specified num_lcores is set according to value from RTE configuration (EAL coremask)

-b BURST_SIZE [BURST_SIZE ...],--burst-size BURST_SIZE [BURST_SIZE ...]
Specifies operations enqueue/dequeue burst size. If not specified burst_size is set to
32. Maximum is 512.

5.2.2 Test Cases

There are 6 main test cases that can be executed using testbbdev tool:

• Sanity checks [-c unittest]

– Performs sanity checks on BBDEV interface, validating basic functionality

• Validation tests [-c validation]

– Performs full operation of enqueue and dequeue

5.2. Running the Application 9

DPDK Tools User Guides, Release 18.11.11

– Compares the dequeued data buffer with a expected values in the test vector
(TV) being used

– Fails if any dequeued value does not match the data in the TV

• Offload Cost measurement [-c offload]

– Measures the CPU cycles consumed from the receipt of a user enqueue until it
is put on the device queue

– The test measures 4 metrics

1. SW Enq Offload Cost : Software only enqueue offload cost, the cycle
counts and time (us) from the point the enqueue API is called until the
point the operation is put on the accelerator queue.

2. Acc Enq Offload Cost : The cycle count and time (us) from the point the
operation is put on the accelerator queue until the return from enqueue.

3. SW Deq Offload Cost : Software dequeue cost, the cycle counts and time
(us) consumed to dequeue one operation.

4. Empty Queue Enq Offload Cost : The cycle count and time (us) consumed
to dequeue from an empty queue.

• Latency measurement [-c latency]

– Measures the time consumed from the first enqueue until the first appearance
of a dequeued result

– This measurement represents the full latency of a bbdev operation (encode or
decode) to execute

• Poll-mode Throughput measurement [-c throughput]

– Performs full operation of enqueue and dequeue

– Executes in poll mode

– Measures the achieved throughput on a subset or all available CPU cores

– Dequeued data is not validated against expected values stored in TV

– Results are printed in million operations per second and million bits per second

• Interrupt-mode Throughput [-c interrupt]

– Similar to Throughput test case, but using interrupts. No polling.

5.2.3 Parameter Globbing

Thanks to the globbing functionality in python test-bbdev.py script allows to run tests with dif-
ferent set of vector files without giving all of them explicitly.

Example usage:

./test-bbdev.py -v app/test-bbdev/test_vectors/turbo_<enc/dec>_c<c>_k<k>_r<r>_e<e>_<extra-info>.data

It runs all tests with following vectors:

• bbdev_null.data

• turbo_dec_c1_k6144_r0_e34560_sbd_negllr.data

5.2. Running the Application 10

DPDK Tools User Guides, Release 18.11.11

• turbo_enc_c1_k40_r0_e1196_rm.data

• turbo_enc_c2_k5952_r0_e17868_crc24b.data

• turbo_dec_c1_k40_r0_e17280_sbd_negllr.data

• turbo_dec_c1_k6144_r0_e34560_sbd_posllr.data

• turbo_enc_c1_k40_r0_e272_rm.data

• turbo_enc_c3_k4800_r2_e14412_crc24b.data

• turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_high_snr.data

• turbo_dec_c2_k3136_r0_e4920_sbd_negllr_crc24b.data

• turbo_enc_c1_k6144_r0_e120_rm_rvidx.data

• turbo_enc_c4_k4800_r2_e14412_crc24b.data

• turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_low_snr.data

• turbo_dec_c2_k3136_r0_e4920_sbd_negllr.data

• turbo_enc_c1_k6144_r0_e18444.data

• turbo_dec_c1_k6144_r0_e34560_negllr.data

• turbo_enc_c1_k40_r0_e1190_rm.data

• turbo_enc_c1_k6144_r0_e18448_crc24a.data

• turbo_dec_c1_k6144_r0_e34560_posllr.data

• turbo_enc_c1_k40_r0_e1194_rm.data

• turbo_enc_c1_k6144_r0_e32256_crc24b_rm.data

./test-bbdev.py -v app/test-bbdev/turbo_*_default.data

It runs all tests with “default” vectors.

• turbo_dec_default.data is a soft link to turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_high_snr.data

• turbo_enc_default.data is a soft link to turbo_enc_c1_k6144_r0_e32256_crc24b_rm.data

5.3 Running Tests

Shortened tree of isg_cid-wireless_dpdk_ae with dpdk compiled for x86_64-native-linuxapp-icc
target:

|-- app
|-- test-bbdev

|-- test_vectors
|-- bbdev_null.data
|-- turbo_dec_c1_k6144_r0_e34560_sbd_negllr.data
|-- turbo_enc_c1_k40_r0_e1196_rm.data
|-- turbo_enc_c2_k5952_r0_e17868_crc24b.data
|-- turbo_dec_c1_k40_r0_e17280_sbd_negllr.data
|-- turbo_dec_c1_k6144_r0_e34560_sbd_posllr.data
|-- turbo_enc_c1_k40_r0_e272_rm.data
|-- turbo_enc_c3_k4800_r2_e14412_crc24b.data
|-- turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_high_snr.data
|-- turbo_dec_c2_k3136_r0_e4920_sbd_negllr_crc24b.data

5.3. Running Tests 11

DPDK Tools User Guides, Release 18.11.11

|-- turbo_enc_c1_k6144_r0_e120_rm_rvidx.data
|-- turbo_enc_c4_k4800_r2_e14412_crc24b.data
|-- turbo_dec_c1_k6144_r0_e10376_crc24b_sbd_negllr_low_snr.data
|-- turbo_dec_c2_k3136_r0_e4920_sbd_negllr.data
|-- turbo_enc_c1_k6144_r0_e18444.data
|-- turbo_dec_c1_k6144_r0_e34560_negllr.data
|-- turbo_enc_c1_k40_r0_e1190_rm.data
|-- turbo_enc_c1_k6144_r0_e18448_crc24a.data
|-- turbo_dec_c1_k6144_r0_e34560_posllr.data
|-- turbo_enc_c1_k40_r0_e1194_rm.data
|-- turbo_enc_c1_k6144_r0_e32256_crc24b_rm.data

|-- x86_64-native-linuxapp-icc
|-- app

|-- testbbdev

5.3.1 All bbdev devices

./test-bbdev.py -p ../../x86_64-native-linuxapp-icc/app/testbbdev
-v turbo_dec_default.data

It runs all available tests using the test vector filled based on turbo_dec_default.data file. By
default number of operations to process on device is set to 32, timeout is set to 300s and
operations enqueue/dequeue burst size is set to 32. Moreover a bbdev (baseband_null) device
will be created.

5.3.2 baseband turbo_sw device

./test-bbdev.py -p ../../x86_64-native-linuxapp-icc/app/testbbdev
-e="--vdev=baseband_turbo_sw" -t 120 -c validation
-v ./test_vectors/turbo_* -n 64 -b 8 32

It runs validation test for each vector file that matches the given pattern. Number of operations
to process on device is set to 64 and operations timeout is set to 120s and enqueue/dequeue
burst size is set to 8 and to 32. Moreover a bbdev (baseband_turbo_sw) device will be created.

5.3.3 bbdev null device

Executing bbdev null device with bbdev_null.data helps in measuring the overhead introduced
by the bbdev framework.

./test-bbdev.py -e="--vdev=baseband_null0"
-v ./test_vectors/bbdev_null.data

Note:

baseband_null device does not have to be defined explicitly as it is created by default.

5.4 Test Vector files

Test Vector files contain the data which is used to set turbo decoder/encoder param-
eters and buffers for validation purpose. New test vector files should be stored in
app/test-bbdev/test_vectors/ directory. Detailed description of the syntax of the test
vector files is in the following section.

5.4. Test Vector files 12

DPDK Tools User Guides, Release 18.11.11

5.4.1 Basic principles for test vector files

Line started with # is treated as a comment and is ignored.

If variable is a chain of values, values should be separated by a comma. If assignment is split
into several lines, each line (except the last one) has to be ended with a comma. There is no
comma after last value in last line. Correct assignment should look like the following:

variable =
value, value, value, value,
value, value

In case where variable is a single value correct assignment looks like the following:

variable =
value

Length of chain variable is calculated by parser. Can not be defined explicitly.

Variable op_type has to be defined as a first variable in file. It specifies what type of operations
will be executed. For decoder op_type has to be set to RTE_BBDEV_OP_TURBO_DEC and for
encoder to RTE_BBDEV_OP_TURBO_ENC.

Full details of the meaning and valid values for the below fields are documented in
rte_bbdev_op.h

5.4.2 Turbo decoder test vectors template

For turbo decoder it has to be always set to RTE_BBDEV_OP_TURBO_DEC

op_type =
RTE_BBDEV_OP_TURBO_DEC

Chain of uint32_t values. Note that it is possible to define more than one input/output entries
which will result in chaining two or more data structures for segmented Transport Blocks

input0 =
0x00000000, 0x7f817f00, 0x7f7f8100, 0x817f8100, 0x81008100, 0x7f818100, 0x81817f00, 0x7f818100,
0x81007f00, 0x7f818100, 0x817f8100, 0x81817f00, 0x81008100, 0x817f7f00, 0x7f7f8100, 0x81817f00

Chain of uint32_t values

input1 =
0x7f7f0000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000

Chain of uint32_t values

input2 =
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000

Chain of uint32_t values

hard_output0 =
0xa7d6732e

Chain of uint32_t values

hard_output1 =
0xa61

Chain of uint32_t values

5.4. Test Vector files 13

DPDK Tools User Guides, Release 18.11.11

soft_output0 =
0x817f817f, 0x7f817f7f, 0x81818181, 0x817f7f81, 0x7f818181, 0x8181817f, 0x817f817f, 0x8181817f

Chain of uint32_t values

soft_output1 =
0x817f7f81, 0x7f7f7f81, 0x7f7f8181

uint32_t value

e =
44

uint16_t value

k =
40

uint8_t value

rv_index =
0

uint8_t value

iter_max =
8

uint8_t value

iter_min =
4

uint8_t value

expected_iter_count =
8

uint8_t value

ext_scale =
15

uint8_t value

num_maps =
0

Chain of flags for turbo decoder operation. Following flags can be used:

• RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE

• RTE_BBDEV_TURBO_CRC_TYPE_24B

• RTE_BBDEV_TURBO_EQUALIZER

• RTE_BBDEV_TURBO_SOFT_OUT_SATURATE

• RTE_BBDEV_TURBO_HALF_ITERATION_EVEN

• RTE_BBDEV_TURBO_CONTINUE_CRC_MATCH

• RTE_BBDEV_TURBO_SOFT_OUTPUT

• RTE_BBDEV_TURBO_EARLY_TERMINATION

• RTE_BBDEV_TURBO_DEC_INTERRUPTS

• RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN

5.4. Test Vector files 14

DPDK Tools User Guides, Release 18.11.11

• RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN

• RTE_BBDEV_TURBO_POS_LLR_1_BIT_SOFT_OUT

• RTE_BBDEV_TURBO_NEG_LLR_1_BIT_SOFT_OUT

• RTE_BBDEV_TURBO_MAP_DEC

Example:

op_flags =
RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE, RTE_BBDEV_TURBO_EQUALIZER,
RTE_BBDEV_TURBO_SOFT_OUTPUT

Chain of operation statuses that are expected after operation is performed. Following statuses
can be used:

• DMA

• FCW

• CRC

• OK

OK means no errors are expected. Cannot be used with other values.

expected_status =
FCW, CRC

5.4.3 Turbo encoder test vectors template

For turbo encoder it has to be always set to RTE_BBDEV_OP_TURBO_ENC

op_type =
RTE_BBDEV_OP_TURBO_ENC

Chain of uint32_t values

input0 =
0x11d2bcac, 0x4d

Chain of uint32_t values

output0 =
0xd2399179, 0x640eb999, 0x2cbaf577, 0xaf224ae2, 0x9d139927, 0xe6909b29,
0xa25b7f47, 0x2aa224ce, 0x79f2

uint32_t value

e =
272

uint16_t value

k =
40

uint16_t value

ncb =
192

uint8_t value

rv_index =
0

5.4. Test Vector files 15

DPDK Tools User Guides, Release 18.11.11

Chain of flags for turbo encoder operation. Following flags can be used:

• RTE_BBDEV_TURBO_RV_INDEX_BYPASS

• RTE_BBDEV_TURBO_RATE_MATCH

• RTE_BBDEV_TURBO_CRC_24B_ATTACH

• RTE_BBDEV_TURBO_CRC_24A_ATTACH

• RTE_BBDEV_TURBO_ENC_SCATTER_GATHER

RTE_BBDEV_TURBO_ENC_SCATTER_GATHER is used to indicate the parser to force the input
data to be memory split and formed as a segmented mbuf.

op_flags =
RTE_BBDEV_TURBO_RATE_MATCH

Chain of operation statuses that are expected after operation is performed. Following statuses
can be used:

• DMA

• FCW

• OK

OK means no errors are expected. Cannot be used with other values.

expected_status =
OK

5.4. Test Vector files 16

CHAPTER

SIX

DPDK-TEST-CRYPTO-PERF APPLICATION

The dpdk-test-crypto-perf tool is a Data Plane Development Kit (DPDK) utility that al-
lows measuring performance parameters of PMDs available in the crypto tree. There are
available two measurement types: throughput and latency. User can use multiply cores to run
tests on but only one type of crypto PMD can be measured during single application execution.
Cipher parameters, type of device, type of operation and chain mode have to be specified in
the command line as application parameters. These parameters are checked using device
capabilities structure.

6.1 Limitations

On hardware devices the cycle-count doesn’t always represent the actual offload cost. The
cycle-count only represents the offload cost when the hardware accelerator is not fully loaded,
when loaded the cpu cycles freed up by the offload are still consumed by the test tool and
included in the cycle-count. These cycles are consumed by retries and inefficient API calls
enqueuing and dequeuing smaller bursts than specified by the cmdline parameter. This results
in a larger cycle-count measurement and should not be interpreted as an offload cost mea-
surement. Using “pmd-cyclecount” mode will give a better idea of actual costs of hardware
acceleration.

On hardware devices the throughput measurement is not necessarily the maximum possible
for the device, e.g. it may be necessary to use multiple cores to keep the hardware accelerator
fully loaded and so measure maximum throughput.

6.2 Compiling the Application

Step 1: PMD setting

The dpdk-test-crypto-perf tool depends on crypto device drivers PMD which are dis-
abled by default in the build configuration file common_base. The crypto device drivers PMD
which should be tested can be enabled by setting:

CONFIG_RTE_LIBRTE_PMD_<name>=y

Setting example for open ssl PMD:

CONFIG_RTE_LIBRTE_PMD_OPENSSL=y

Step 2: Linearization setting

It is possible linearized input segmented packets just before crypto operation for devices which
doesn’t support scatter-gather, and allows to measure performance also for this use case.

17

DPDK Tools User Guides, Release 18.11.11

To set on the linearization options add below definition to the cperf_ops.h file:

#define CPERF_LINEARIZATION_ENABLE

Step 3: Build the application

Execute the dpdk-setup.sh script to build the DPDK library together with the
dpdk-test-crypto-perf application.

Initially, the user must select a DPDK target to choose the correct target type and compiler
options to use when building the libraries. The user must have all libraries, modules, updates
and compilers installed in the system prior to this, as described in the earlier chapters in this
Getting Started Guide.

6.3 Running the Application

The tool application has a number of command line options:

dpdk-test-crypto-perf [EAL Options] -- [Application Options]

6.3.1 EAL Options

The following are the EAL command-line options that can be used in conjunction with the
dpdk-test-crypto-perf application. See the DPDK Getting Started Guides for more in-
formation on these options.

• -c <COREMASK> or -l <CORELIST>

Set the hexadecimal bitmask of the cores to run on. The corelist is a list cores
to use.

• -w <PCI>

Add a PCI device in white list.

• --vdev <driver><id>

Add a virtual device.

6.3.2 Application Options

The following are the application command-line options:

• --ptest type

Set test type, where type is one of the following:

throughput
latency
verify
pmd-cyclecount

• --silent

Disable options dump.

• --pool-sz <n>

Set the number of mbufs to be allocated in the mbuf pool.

6.3. Running the Application 18

DPDK Tools User Guides, Release 18.11.11

• --total-ops <n>

Set the number of total operations performed.

• --burst-sz <n>

Set the number of packets per burst.

This can be set as:

– Single value (i.e. --burst-sz 16)

– Range of values, using the following structure min:inc:max, where
min is minimum size, inc is the increment size and max is the maxi-
mum size (i.e. --burst-sz 16:2:32)

– List of values, up to 32 values, separated in commas (i.e. --burst-sz
16,24,32)

• --buffer-sz <n>

Set the size of single packet (plaintext or ciphertext in it).

This can be set as:

– Single value (i.e. --buffer-sz 16)

– Range of values, using the following structure min:inc:max, where
min is minimum size, inc is the increment size and max is the maxi-
mum size (i.e. --buffer-sz 16:2:32)

– List of values, up to 32 values, separated in commas (i.e.
--buffer-sz 32,64,128)

• --imix <n>

Set the distribution of packet sizes.

A list of weights must be passed, containing the same number of items than
buffer-sz, so each item in this list will be the weight of the packet size on the
same position in the buffer-sz parameter (a list have to be passed in that pa-
rameter).

Example:

To test a distribution of 20% packets of 64 bytes, 40% packets of 100 bytes
and 40% packets of 256 bytes, the command line would be: --buffer-sz
64,100,256 --imix 20,40,40. Note that the weights do not have to be
percentages, so using --imix 1,2,2 would result in the same distribution

• --segment-sz <n>

Set the size of the segment to use, for Scatter Gather List testing. By default,
it is set to the size of the maximum buffer size, including the digest size, so a
single segment is created.

• --devtype <name>

Set device type, where name is one of the following:

crypto_null
crypto_aesni_mb
crypto_aesni_gcm

6.3. Running the Application 19

DPDK Tools User Guides, Release 18.11.11

crypto_openssl
crypto_qat
crypto_snow3g
crypto_kasumi
crypto_zuc
crypto_dpaa_sec
crypto_dpaa2_sec
crypto_armv8
crypto_scheduler
crypto_mvsam

• --optype <name>

Set operation type, where name is one of the following:

cipher-only
auth-only
cipher-then-auth
auth-then-cipher
aead

For GCM/CCM algorithms you should use aead flag.

• --sessionless

Enable session-less crypto operations mode.

• --out-of-place

Enable out-of-place crypto operations mode.

• --test-file <name>

Set test vector file path. See the Test Vector File chapter.

• --test-name <name>

Set specific test name section in the test vector file.

• --cipher-algo <name>

Set cipher algorithm name, where name is one of the following:

3des-cbc
3des-ecb
3des-ctr
aes-cbc
aes-ctr
aes-ecb
aes-f8
aes-xts
arc4
null
kasumi-f8
snow3g-uea2
zuc-eea3

• --cipher-op <mode>

Set cipher operation mode, where mode is one of the following:

encrypt
decrypt

• --cipher-key-sz <n>

Set the size of cipher key.

6.3. Running the Application 20

DPDK Tools User Guides, Release 18.11.11

• --cipher-iv-sz <n>

Set the size of cipher iv.

• --auth-algo <name>

Set authentication algorithm name, where name is one of the following:

3des-cbc
aes-cbc-mac
aes-cmac
aes-gmac
aes-xcbc-mac
md5
md5-hmac
sha1
sha1-hmac
sha2-224
sha2-224-hmac
sha2-256
sha2-256-hmac
sha2-384
sha2-384-hmac
sha2-512
sha2-512-hmac
kasumi-f9
snow3g-uia2
zuc-eia3

• --auth-op <mode>

Set authentication operation mode, where mode is one of the following:

verify
generate

• --auth-key-sz <n>

Set the size of authentication key.

• --auth-iv-sz <n>

Set the size of auth iv.

• --aead-algo <name>

Set AEAD algorithm name, where name is one of the following:

aes-ccm
aes-gcm

• --aead-op <mode>

Set AEAD operation mode, where mode is one of the following:

encrypt
decrypt

• --aead-key-sz <n>

Set the size of AEAD key.

• --aead-iv-sz <n>

Set the size of AEAD iv.

• --aead-aad-sz <n>

6.3. Running the Application 21

DPDK Tools User Guides, Release 18.11.11

Set the size of AEAD aad.

• --digest-sz <n>

Set the size of digest.

• --desc-nb <n>

Set number of descriptors for each crypto device.

• --pmd-cyclecount-delay-ms <n>

Add a delay (in milliseconds) between enqueue and dequeue in pmd-
cyclecount benchmarking mode (useful when benchmarking hardware accel-
eration).

• --csv-friendly

Enable test result output CSV friendly rather than human friendly.

6.3.3 Test Vector File

The test vector file is a text file contain information about test vectors. The file is made of the
sections. The first section doesn’t have header. It contain global information used in each
test variant vectors - typically information about plaintext, ciphertext, cipher key, auth key, initial
vector. All other sections begin header. The sections contain particular information typically
digest.

Format of the file:

Each line beginning with sign ‘#’ contain comment and it is ignored by parser:

<comment>

Header line is just name in square bracket:

[<section name>]

Data line contain information token then sign ‘=’ and a string of bytes in C byte array format:

<token> = <C byte array>

Tokens list:

• plaintext

Original plaintext to be encrypted.

• ciphertext

Encrypted plaintext string.

• cipher_key

Key used in cipher operation.

• auth_key

Key used in auth operation.

• cipher_iv

Cipher Initial Vector.

• auth_iv

6.3. Running the Application 22

DPDK Tools User Guides, Release 18.11.11

Auth Initial Vector.

• aad

Additional data.

• digest

Digest string.

6.4 Examples

Call application for performance throughput test of single Aesni MB PMD for cipher encryption
aes-cbc and auth generation sha1-hmac, one million operations, burst size 32, packet size 64:

dpdk-test-crypto-perf -l 6-7 --vdev crypto_aesni_mb -w 0000:00:00.0 --
--ptest throughput --devtype crypto_aesni_mb --optype cipher-then-auth
--cipher-algo aes-cbc --cipher-op encrypt --cipher-key-sz 16 --auth-algo
sha1-hmac --auth-op generate --auth-key-sz 64 --digest-sz 12
--total-ops 10000000 --burst-sz 32 --buffer-sz 64

Call application for performance latency test of two Aesni MB PMD executed on two cores for
cipher encryption aes-cbc, ten operations in silent mode:

dpdk-test-crypto-perf -l 4-7 --vdev crypto_aesni_mb1
--vdev crypto_aesni_mb2 -w 0000:00:00.0 -- --devtype crypto_aesni_mb
--cipher-algo aes-cbc --cipher-key-sz 16 --cipher-iv-sz 16
--cipher-op encrypt --optype cipher-only --silent
--ptest latency --total-ops 10

Call application for verification test of single open ssl PMD for cipher encryption aes-
gcm and auth generation aes-gcm,ten operations in silent mode, test vector provide in file
“test_aes_gcm.data” with packet verification:

dpdk-test-crypto-perf -l 4-7 --vdev crypto_openssl -w 0000:00:00.0 --
--devtype crypto_openssl --aead-algo aes-gcm --aead-key-sz 16
--aead-iv-sz 16 --aead-op encrypt --aead-aad-sz 16 --digest-sz 16
--optype aead --silent --ptest verify --total-ops 10
--test-file test_aes_gcm.data

Test vector file for cipher algorithm aes cbc 256 with authorization sha:

Global Section
plaintext =
0xff, 0xca, 0xfb, 0xf1, 0x38, 0x20, 0x2f, 0x7b, 0x24, 0x98, 0x26, 0x7d, 0x1d, 0x9f, 0xb3, 0x93,
0xd9, 0xef, 0xbd, 0xad, 0x4e, 0x40, 0xbd, 0x60, 0xe9, 0x48, 0x59, 0x90, 0x67, 0xd7, 0x2b, 0x7b,
0x8a, 0xe0, 0x4d, 0xb0, 0x70, 0x38, 0xcc, 0x48, 0x61, 0x7d, 0xee, 0xd6, 0x35, 0x49, 0xae, 0xb4,
0xaf, 0x6b, 0xdd, 0xe6, 0x21, 0xc0, 0x60, 0xce, 0x0a, 0xf4, 0x1c, 0x2e, 0x1c, 0x8d, 0xe8, 0x7b
ciphertext =
0x77, 0xF9, 0xF7, 0x7A, 0xA3, 0xCB, 0x68, 0x1A, 0x11, 0x70, 0xD8, 0x7A, 0xB6, 0xE2, 0x37, 0x7E,
0xD1, 0x57, 0x1C, 0x8E, 0x85, 0xD8, 0x08, 0xBF, 0x57, 0x1F, 0x21, 0x6C, 0xAD, 0xAD, 0x47, 0x1E,
0x0D, 0x6B, 0x79, 0x39, 0x15, 0x4E, 0x5B, 0x59, 0x2D, 0x76, 0x87, 0xA6, 0xD6, 0x47, 0x8F, 0x82,
0xB8, 0x51, 0x91, 0x32, 0x60, 0xCB, 0x97, 0xDE, 0xBE, 0xF0, 0xAD, 0xFC, 0x23, 0x2E, 0x22, 0x02
cipher_key =
0xE4, 0x23, 0x33, 0x8A, 0x35, 0x64, 0x61, 0xE2, 0x49, 0x03, 0xDD, 0xC6, 0xB8, 0xCA, 0x55, 0x7A,
0xd0, 0xe7, 0x4b, 0xfb, 0x5d, 0xe5, 0x0c, 0xe7, 0x6f, 0x21, 0xb5, 0x52, 0x2a, 0xbb, 0xc7, 0xf7
auth_key =
0xaf, 0x96, 0x42, 0xf1, 0x8c, 0x50, 0xdc, 0x67, 0x1a, 0x43, 0x47, 0x62, 0xc7, 0x04, 0xab, 0x05,
0xf5, 0x0c, 0xe7, 0xa2, 0xa6, 0x23, 0xd5, 0x3d, 0x95, 0xd8, 0xcd, 0x86, 0x79, 0xf5, 0x01, 0x47,
0x4f, 0xf9, 0x1d, 0x9d, 0x36, 0xf7, 0x68, 0x1a, 0x64, 0x44, 0x58, 0x5d, 0xe5, 0x81, 0x15, 0x2a,
0x41, 0xe4, 0x0e, 0xaa, 0x1f, 0x04, 0x21, 0xff, 0x2c, 0xf3, 0x73, 0x2b, 0x48, 0x1e, 0xd2, 0xf7
cipher_iv =

6.4. Examples 23

DPDK Tools User Guides, Release 18.11.11

0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
Section sha 1 hmac buff 32
[sha1_hmac_buff_32]
digest =
0x36, 0xCA, 0x49, 0x6A, 0xE3, 0x54, 0xD8, 0x4F, 0x0B, 0x76, 0xD8, 0xAA, 0x78, 0xEB, 0x9D, 0x65,
0x2C, 0xCA, 0x1F, 0x97
Section sha 256 hmac buff 32
[sha256_hmac_buff_32]
digest =
0x1C, 0xB2, 0x3D, 0xD1, 0xF9, 0xC7, 0x6C, 0x49, 0x2E, 0xDA, 0x94, 0x8B, 0xF1, 0xCF, 0x96, 0x43,
0x67, 0x50, 0x39, 0x76, 0xB5, 0xA1, 0xCE, 0xA1, 0xD7, 0x77, 0x10, 0x07, 0x43, 0x37, 0x05, 0xB4

6.4. Examples 24

CHAPTER

SEVEN

DPDK-TEST-EVENTDEV APPLICATION

The dpdk-test-eventdev tool is a Data Plane Development Kit (DPDK) application that al-
lows exercising various eventdev use cases. This application has a generic framework to add
new eventdev based test cases to verify functionality and measure the performance parame-
ters of DPDK eventdev devices.

7.1 Compiling the Application

Build the application

Execute the dpdk-setup.sh script to build the DPDK library together with the
dpdk-test-eventdev application.

Initially, the user must select a DPDK target to choose the correct target type and compiler
options to use when building the libraries. The user must have all libraries, modules, updates
and compilers installed in the system prior to this, as described in the earlier chapters in this
Getting Started Guide.

7.2 Running the Application

The application has a number of command line options:

dpdk-test-eventdev [EAL Options] -- [application options]

7.2.1 EAL Options

The following are the EAL command-line options that can be used in conjunction with the
dpdk-test-eventdev application. See the DPDK Getting Started Guides for more informa-
tion on these options.

• -c <COREMASK> or -l <CORELIST>

Set the hexadecimal bitmask of the cores to run on. The corelist is a list of
cores to use.

• --vdev <driver><id>

Add a virtual eventdev device.

25

DPDK Tools User Guides, Release 18.11.11

7.2.2 Application Options

The following are the application command-line options:

• --verbose

Set verbose level. Default is 1. Value > 1 displays more details.

• --dev <n>

Set the device id of the event device.

• --test <name>

Set test name, where name is one of the following:

order_queue
order_atq
perf_queue
perf_atq
pipeline_atq
pipeline_queue

• --socket_id <n>

Set the socket id of the application resources.

• --pool-sz <n>

Set the number of mbufs to be allocated from the mempool.

• --plcores <CORELIST>

Set the list of cores to be used as producers.

• --wlcores <CORELIST>

Set the list of cores to be used as workers.

• --stlist <type_list>

Set the scheduled type of each stage where type_list size determines the
number of stages used in the test application. Each type_list member can be
one of the following:

P or p : Parallel schedule type
O or o : Ordered schedule type
A or a : Atomic schedule type

Application expects the type_list in comma separated form (i.e. --stlist
o,a,a,a)

• --nb_flows <n>

Set the number of flows to produce.

• --nb_pkts <n>

Set the number of packets to produce. 0 implies no limit.

• --worker_deq_depth <n>

Set the dequeue depth of the worker.

• --fwd_latency

7.2. Running the Application 26

DPDK Tools User Guides, Release 18.11.11

Perform forward latency measurement.

• --queue_priority

Enable queue priority.

• --prod_type_ethdev

Use ethernet device as producer.

• --prod_type_timerdev

Use event timer adapter as producer.

• --prod_type_timerdev_burst

Use burst mode event timer adapter as producer.

• --timer_tick_nsec

Used to dictate number of nano seconds between bucket traversal of the event
timer adapter. Refer rte_event_timer_adapter_conf.

• --max_tmo_nsec

Used to configure event timer adapter max arm timeout in nano seconds.

• --expiry_nsec

Dictate the number of nano seconds after which the event timer expires.

• --nb_timers

Number of event timers each producer core will generate.

• --nb_timer_adptrs

Number of event timer adapters to be used. Each adapter is used in round
robin manner by the producer cores.

7.3 Eventdev Tests

7.3.1 ORDER_QUEUE Test

This is a functional test case that aims at testing the following:

1. Verify the ingress order maintenance.

2. Verify the exclusive(atomic) access to given atomic flow per eventdev port.

Table 7.1: Order queue test eventdev configuration.

Items Value Comments
1 nb_queues 2 q0(ordered), q1(atomic)
2 nb_producers 1
3 nb_workers >= 1
4 nb_ports nb_workers + 1 Workers use port 0 to port n-1. Producer uses port n

The order queue test configures the eventdev with two queues and an event producer to inject
the events to q0(ordered) queue. Both q0(ordered) and q1(atomic) are linked to all the workers.

7.3. Eventdev Tests 27

DPDK Tools User Guides, Release 18.11.11

test: order_queue

producer_flow_seq

producer maintains per flow sequence number

flow 0 flow 1 flow 2 flow n

producer0

ordered queue 0 atomic queue 1

worker 0

port n+1

worker 1 worker 2 worker n

port 0 port 1 port 2 port n

expected_flow_seq

per flow expected sequence number

flow 0 flow 1 flow 2 flow n

enqueue ordered flow(step 1)

produce ordered flows(step 0)
dequeue_ordered_flow(step 2)

change to atomic flow and enqueue(step 3)

dequeue_atomic_flow (step 4)

Fig. 7.1: order queue test operation.

The event producer maintains a sequence number per flow and injects the events to the or-
dered queue. The worker receives the events from ordered queue and forwards to atomic
queue. Since the events from an ordered queue can be processed in parallel on the different
workers, the ingress order of events might have changed on the downstream atomic queue
enqueue. On enqueue to the atomic queue, the eventdev PMD driver reorders the event to the
original ingress order(i.e producer ingress order).

When the event is dequeued from the atomic queue by the worker, this test verifies the ex-
pected sequence number of associated event per flow by comparing the free running expected
sequence number per flow.

Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--nb_flows
--nb_pkts
--worker_deq_depth

Example

Example command to run order queue test:

sudo build/app/dpdk-test-eventdev --vdev=event_sw0 -- \
--test=order_queue --plcores 1 --wlcores 2,3

7.3. Eventdev Tests 28

DPDK Tools User Guides, Release 18.11.11

7.3.2 ORDER_ATQ Test

This test verifies the same aspects of order_queue test, the difference is the number of
queues used, this test operates on a single all types queue(atq) instead of two different
queues for ordered and atomic.

Table 7.2: Order all types queue test eventdev configuration.

Items Value Comments
1 nb_queues 1 q0(all types queue)
2 nb_producers 1
3 nb_workers >= 1
4 nb_ports nb_workers + 1 Workers use port 0 to port n-1.Producer uses port n.

test: order_atq(all types queue)

producer_flow_seq

producer maintains per flow sequence number

flow 0 flow 1 flow 2 flow n

producer0

all_types_queue0

worker 0

port n+1

worker 1 worker 2 worker n

port 0 port 1 port 2 port n

expected_flow_seq

per flow expected sequence number

flow 0 flow 1 flow 2 flow n

dequeue_ordered_flow(step 2)

enqueue ordered flow(step 1)

produce ordered flows(step 0)

change to atomic flow and enqueue(step 3)

dequeue_atomic_flow (step 4)

Fig. 7.2: order all types queue test operation.

Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--nb_flows
--nb_pkts
--worker_deq_depth

Example

Example command to run order all types queue test:

sudo build/app/dpdk-test-eventdev --vdev=event_octeontx -- \
--test=order_atq --plcores 1 --wlcores 2,3

7.3. Eventdev Tests 29

DPDK Tools User Guides, Release 18.11.11

7.3.3 PERF_QUEUE Test

This is a performance test case that aims at testing the following:

1. Measure the number of events can be processed in a second.

2. Measure the latency to forward an event.

Table 7.3: Perf queue test eventdev configuration.

Items Value Comments
1 nb_queues nb_producers *

nb_stages
Queues will be configured based on the user
requested sched type list(–stlist)

2 nb_producers>= 1 Selected through –plcores command line argument.
3 nb_workers >= 1 Selected through –wlcores command line argument
4 nb_ports nb_workers +

nb_producers
Workers use port 0 to port n-1. Producers use port n
to port p

worker 0

worker 1

worker n

port 0

port 1

port n

producer 0

q0 q1 q2 qs-1

port n+1

test: perf_queue

producer 1

qs qs+1 qs+2 q2s-1

port n+2

producer m

q2s q2s+1 q2s+2 q3s-1

port n+m

total queues = number of stages * number of producers

All workers are linked to all queues

Fig. 7.3: perf queue test operation.

The perf queue test configures the eventdev with Q queues and P ports, where Q and P
is a function of the number of workers, the number of producers and number of stages as
mentioned in Table 7.3.

The user can choose the number of workers, the number of producers and number of stages
through the --wlcores, --plcores and the --stlist application command line arguments
respectively.

The producer(s) injects the events to eventdev based the first stage sched type list requested
by the user through --stlist the command line argument.

7.3. Eventdev Tests 30

DPDK Tools User Guides, Release 18.11.11

Based on the number of stages to process(selected through --stlist), The application for-
wards the event to next upstream queue and terminates when it reaches the last stage in the
pipeline. On event termination, application increments the number events processed and print
periodically in one second to get the number of events processed in one second.

When --fwd_latency command line option selected, the application inserts the timestamp
in the event on the first stage and then on termination, it updates the number of cycles to
forward a packet. The application uses this value to compute the average latency to a forward
packet.

When --prod_type_ethdev command line option is selected, the application uses the
probed ethernet devices as producers by configuring them as Rx adapters instead of using
synthetic producers.

Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--stlist
--nb_flows
--nb_pkts
--worker_deq_depth
--fwd_latency
--queue_priority
--prod_type_ethdev
--prod_type_timerdev_burst
--prod_type_timerdev
--timer_tick_nsec
--max_tmo_nsec
--expiry_nsec
--nb_timers
--nb_timer_adptrs

Example

Example command to run perf queue test:

sudo build/app/dpdk-test-eventdev -c 0xf -s 0x1 --vdev=event_sw0 -- \
--test=perf_queue --plcores=2 --wlcore=3 --stlist=p --nb_pkts=0

Example command to run perf queue test with ethernet ports:

sudo build/app/dpdk-test-eventdev --vdev=event_sw0 -- \
--test=perf_queue --plcores=2 --wlcore=3 --stlist=p --prod_type_ethdev

Example command to run perf queue test with event timer adapter:

sudo build/app/dpdk-test-eventdev --vdev="event_octeontx" -- \
--wlcores 4 --plcores 12 --test perf_queue --stlist=a \
--prod_type_timerdev --fwd_latency

7.3. Eventdev Tests 31

DPDK Tools User Guides, Release 18.11.11

7.3.4 PERF_ATQ Test

This is a performance test case that aims at testing the following with all types queue
eventdev scheme.

1. Measure the number of events can be processed in a second.

2. Measure the latency to forward an event.

Table 7.4: Perf all types queue test eventdev configuration.

Items Value Comments
1 nb_queues nb_producers Queues will be configured based on the user

requested sched type list(–stlist)
2 nb_producers>= 1 Selected through –plcores command line argument.
3 nb_workers >= 1 Selected through –wlcores command line argument
4 nb_ports nb_workers +

nb_producers
Workers use port 0 to port n-1. Producers use port n
to port p

worker 0

worker 1

worker n

port 0

port 1

port n

producer 0

port n+1

test: perf_atq(all types queues)

producer 1

port n+2

producer m

port n+m

total queues = number of producers

All workers are linked to all queues

all types queue 0

all types queue 1

all types queue n

stage 0

stage 1

stage n

Fig. 7.4: perf all types queue test operation.

The all types queues(atq) perf test configures the eventdev with Q queues and P ports,
where Q and P is a function of the number of workers and number of producers as mentioned
in Table 7.4.

The atq queue test functions as same as perf_queue test. The difference is, It uses, all
type queue scheme instead of separate queues for each stage and thus reduces the num-
ber of queues required to realize the use case and enables flow pinning as the event does not
move to the next queue.

7.3. Eventdev Tests 32

DPDK Tools User Guides, Release 18.11.11

Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--plcores
--wlcores
--stlist
--nb_flows
--nb_pkts
--worker_deq_depth
--fwd_latency
--prod_type_ethdev
--prod_type_timerdev_burst
--prod_type_timerdev
--timer_tick_nsec
--max_tmo_nsec
--expiry_nsec
--nb_timers
--nb_timer_adptrs

Example

Example command to run perf all types queue test:

sudo build/app/dpdk-test-eventdev --vdev=event_octeontx -- \
--test=perf_atq --plcores=2 --wlcore=3 --stlist=p --nb_pkts=0

Example command to run perf all types queue test with event timer adapter:

sudo build/app/dpdk-test-eventdev --vdev="event_octeontx" -- \
--wlcores 4 --plcores 12 --test perf_atq --verbose 20 \
--stlist=a --prod_type_timerdev --fwd_latency

7.3.5 PIPELINE_QUEUE Test

This is a pipeline test case that aims at testing the following:

1. Measure the end-to-end performance of an event dev with a ethernet dev.

2. Maintain packet ordering from Rx to Tx.

7.3. Eventdev Tests 33

DPDK Tools User Guides, Release 18.11.11

Table 7.5: Pipeline queue test eventdev configuration.

Items Value Comments
1 nb_queues(nb_producers *

nb_stages) +
nb_producers

Queues will be configured based on the user requested
sched type list(–stlist) At the last stage of the schedule list
the event is enqueued onto per port unique queue which is
then Transmitted.

2 nb_producers>= 1 Producers will be configured based on the number of
detected ethernet devices. Each ethdev will be configured
as an Rx adapter.

3 nb_workers>= 1 Selected through –wlcores command line argument
4 nb_portsnb_workers +

(nb_produces *
2)

Workers use port 0 to port n. Producers use port n+1 to
port n+m, depending on the Rx adapter capability.
Consumers use port n+m+1 to port n+o depending on the
Tx adapter capability.

producer 0

q0 q1 qs-1

port n+1

test: pipeline_queue

producer 1

qs qs+1 q2s-1

port n+2

producer m-1

q2s q2s+1 q3s-1

port n+m

total queues = (number of stages * number of ethernet dev) + number of ethernet dev

All workers are linked to all stage queues

eth port 1
 Rxq 0

eth port q
 Rxq 0

eth port 0
 Rxq 0

Event eth
Rx adptr 0

Event eth
Rx adptr 1

Event eth
Rx adptr q

worker 0

worker 1

worker n

port 0

port 1

port n

eth port 1
 Txq 0

eth port 0
 Txq 0

eth port q
 Txq 0

(Tx Generic)

port n+m+1

Single link
port n+m+2

port n+o

Single link

Single link

Tx adapter

producer 0

q0 q1 qs-2

port n+1

test: pipeline_queue

producer 1

qs qs+1 q2s-2

port n+2

producer m-1

q2s q2s+1 q3s-2

port n+m

total queues = (number of stages * number of ethernet dev) + number of ethernet dev

eth port 1
 Rxq 0

eth port q
 Rxq 0

eth port 0
 Rxq 0

Event eth
Rx adptr 0

Event eth
Rx adptr 1

Event eth
Rx adptr q

worker 0

worker 1

worker n

port 0

port 1

port n

eth port 1
 Txq 0

eth port 0
 Txq 0

eth port q
 Txq 0

qs-1

q2s-1

q3s-1

Atomic Q

Atomic Q

Atomic Q

Stage0 Q Stage1 Q Stage2 Q

(Internal port)

All workers are linked to all queues

Fig. 7.5: pipeline queue test operation.

7.3. Eventdev Tests 34

DPDK Tools User Guides, Release 18.11.11

The pipeline queue test configures the eventdev with Q queues and P ports, where Q and
P is a function of the number of workers, the number of producers and number of stages as
mentioned in Table 7.5.

The user can choose the number of workers and number of stages through the --wlcores
and the --stlist application command line arguments respectively.

The number of producers depends on the number of ethernet devices detected and each
ethernet device is configured as a event_eth_rx_adapter that acts as a producer.

The producer(s) injects the events to eventdev based the first stage sched type list requested
by the user through --stlist the command line argument.

Based on the number of stages to process(selected through --stlist), The application for-
wards the event to next upstream queue and when it reaches the last stage in the pipeline if
the event type is atomic it is enqueued onto ethdev Tx queue else to maintain ordering the
event type is set to atomic and enqueued onto the last stage queue.

If the ethdev and eventdev pair have RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT
capability then the worker cores enqueue the packets to the eventdev directly using
rte_event_eth_tx_adapter_enqueue else the worker cores enqueue the packet onto
the SINGLE_LINK_QUEUE that is managed by the Tx adapter. The Tx adapter dequeues the
packet and transmits it.

On packet Tx, application increments the number events processed and print periodically in
one second to get the number of events processed in one second.

Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--wlcores
--stlist
--worker_deq_depth
--prod_type_ethdev

Note:

• The --prod_type_ethdev is mandatory for running this test.

Example

Example command to run pipeline queue test:

sudo build/app/dpdk-test-eventdev -c 0xf -s 0x8 --vdev=event_sw0 -- \
--test=pipeline_queue --wlcore=1 --prod_type_ethdev --stlist=a

7.3. Eventdev Tests 35

DPDK Tools User Guides, Release 18.11.11

7.3.6 PIPELINE_ATQ Test

This is a pipeline test case that aims at testing the following with all types queue eventdev
scheme.

1. Measure the end-to-end performance of an event dev with a ethernet dev.

2. Maintain packet ordering from Rx to Tx.

Table 7.6: Pipeline atq test eventdev configuration.

Items Value Comments
1 nb_queuesnb_producers

+ x
Queues will be configured based on the user requested sched
type list(–stlist) where x = nb_producers in generic pipeline
and 0 if all the ethdev being used have Internal port capability

2 nb_producers>= 1 Producers will be configured based on the number of detected
ethernet devices. Each ethdev will be configured as an Rx
adapter.

3 nb_workers>= 1 Selected through –wlcores command line argument
4 nb_portsnb_workers +

nb_producers
+ x

Workers use port 0 to port n. Producers use port n+1 to port
n+m, depending on the Rx adapter capability. x =
nb_producers in generic pipeline and 0 if all the ethdev being
used have Internal port capability. Consumers may use port
n+m+1 to port n+o depending on the Tx adapter capability.

worker 0

worker 1

worker n

port 0

port 1

port n

producer 0

q0

port n+1

test: pipeline_atq

producer 1

qs

port n+2

producer m-1

q2s

port n+m

total queues = 2 * number of ethernet dev

All workers are linked to all stage queues

eth port 1
 Rxq 0

eth port q
 Rxq 0

eth port 0
 Rxq 0

Event eth
Rx adptr 0

Event eth
Rx adptr 1

Event eth
Rx adptr q

(Tx Generic)

eth port 1
 Txq 0

eth port 0
 Txq 0

eth port q
 Txq 0

port n+m+1

Single link
port n+m+2

port n+o

Single link

Single link

Tx adapter

q3

q4

q5

The pipeline atq test configures the eventdev with Q queues and P ports, where Q and P
is a function of the number of workers, the number of producers and number of stages as
mentioned in Table 7.6.

The atq queue test functions as same as pipeline_queue test. The difference is, It uses,
all type queue scheme instead of separate queues for each stage and thus reduces the

7.3. Eventdev Tests 36

DPDK Tools User Guides, Release 18.11.11

worker 0

worker 1

worker n

port 0

port 1

port n

producer 0

q0

port n+1

test: pipeline_atq

producer 1

qs

port n+2

producer m-1

q2s

port n+m

total queues = number of ethernet dev

All workers are linked to all queues

eth port 1
 Rxq 0

eth port q
 Rxq 0

eth port 0
 Rxq 0

eth port 1
 Txq 0

eth port 0
 Txq 0

eth port q
 Txq 0

Event eth
Rx adptr 0

Event eth
Rx adptr 1

Event eth
Rx adptr q

(Internal port)

Fig. 7.6: pipeline atq test operation.

number of queues required to realize the use case.

Application options

Supported application command line options are following:

--verbose
--dev
--test
--socket_id
--pool_sz
--wlcores
--stlist
--worker_deq_depth
--prod_type_ethdev

Note:

• The --prod_type_ethdev is mandatory for running this test.

Example

Example command to run pipeline queue test:

sudo build/app/dpdk-test-eventdev -c 0xf -s 0x8 --vdev=event_sw0 -- \
--test=pipeline_atq --wlcore=1 --prod_type_ethdev --stlist=a

7.3. Eventdev Tests 37

	dpdk-procinfo Application
	Running the Application
	Limitations

	dpdk-pdump Application
	Running the Application
	Example

	dpdk-pmdinfo Application
	Running the Application

	dpdk-devbind Application
	Running the Application
	OPTIONS
	Examples

	dpdk-test-bbdev Application
	Compiling the Application
	Running the Application
	Running Tests
	Test Vector files

	dpdk-test-crypto-perf Application
	Limitations
	Compiling the Application
	Running the Application
	Examples

	dpdk-test-eventdev Application
	Compiling the Application
	Running the Application
	Eventdev Tests

