
Getting Started Guide for FreeBSD
Release 19.02.0

February 02, 2019

CONTENTS

1 Introduction 1
1.1 Documentation Roadmap . 1

2 Installing DPDK from the Ports Collection 3
2.1 Installing the DPDK FreeBSD Port . 3
2.2 Compiling and Running the Example Applications 3

3 Compiling the DPDK Target from Source 6
3.1 System Requirements . 6
3.2 Install the DPDK and Browse Sources . 7
3.3 Installation of the DPDK Target Environments 7
3.4 Browsing the Installed DPDK Environment Target 8
3.5 Loading the DPDK contigmem Module . 8
3.6 Loading the DPDK nic_uio Module . 9

4 Compiling and Running Sample Applications 11
4.1 Compiling a Sample Application . 11
4.2 Running a Sample Application . 12
4.3 Running DPDK Applications Without Root Privileges 13

5 EAL parameters 14
5.1 Common EAL parameters . 14
5.2 FreeBSD-specific EAL parameters . 16

i

CHAPTER

ONE

INTRODUCTION

This document contains instructions for installing and configuring the Data Plane Development
Kit (DPDK) software. It is designed to get customers up and running quickly and describes
how to compile and run a DPDK application in a FreeBSD application (bsdapp) environment,
without going deeply into detail.

For a comprehensive guide to installing and using FreeBSD, the following handbook is available
from the FreeBSD Documentation Project: FreeBSD Handbook.

Note: The DPDK is now available as part of the FreeBSD ports collection. Installing via the
ports collection infrastructure is now the recommended way to install the DPDK on FreeBSD,
and is documented in the next chapter, Installing DPDK from the Ports Collection.

1.1 Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

• Release Notes : Provides release-specific information, including supported features,
limitations, fixed issues, known issues and so on. Also, provides the answers to frequently
asked questions in FAQ format.

• Getting Started Guide (this document): Describes how to install and configure the
DPDK; designed to get users up and running quickly with the software.

• Programmer’s Guide: Describes:

– The software architecture and how to use it (through examples), specifically in a
Linux* application (linuxapp) environment

– The content of the DPDK, the build system (including the commands that can be
used in the root DPDK Makefile to build the development kit and an application) and
guidelines for porting an application

– Optimizations used in the software and those that should be considered for new
development

A glossary of terms is also provided.

• API Reference: Provides detailed information about DPDK functions, data structures
and other programming constructs.

1

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html

Getting Started Guide for FreeBSD, Release 19.02.0

• Sample Applications User Guide: Describes a set of sample applications. Each chap-
ter describes a sample application that showcases specific functionality and provides
instructions on how to compile, run and use the sample application.

1.1. Documentation Roadmap 2

CHAPTER

TWO

INSTALLING DPDK FROM THE PORTS COLLECTION

The easiest way to get up and running with the DPDK on FreeBSD is to install it from the ports
collection. Details of getting and using the ports collection are documented in the FreeBSD
Handbook.

Note: Testing has been performed using FreeBSD 10.0-RELEASE (x86_64) and requires the
installation of the kernel sources, which should be included during the installation of FreeBSD.

2.1 Installing the DPDK FreeBSD Port

On a system with the ports collection installed in /usr/ports, the DPDK can be installed
using the commands:

cd /usr/ports/net/dpdk

make install

After the installation of the DPDK port, instructions will be printed on how to install the kernel
modules required to use the DPDK. A more complete version of these instructions can be
found in the sections Loading the DPDK contigmem Module and Loading the DPDK nic_uio
Module. Normally, lines like those below would be added to the file /boot/loader.conf.

Reserve 2 x 1G blocks of contiguous memory using contigmem driver:
hw.contigmem.num_buffers=2
hw.contigmem.buffer_size=1073741824
contigmem_load="YES"

Identify NIC devices for DPDK apps to use and load nic_uio driver:
hw.nic_uio.bdfs="2:0:0,2:0:1"
nic_uio_load="YES"

2.2 Compiling and Running the Example Applications

When the DPDK has been installed from the ports collection it installs its example
applications in /usr/local/share/dpdk/examples - also accessible via symlink as
/usr/local/share/examples/dpdk. These examples can be compiled and run as de-
scribed in Compiling and Running Sample Applications. In this case, the required environmen-
tal variables should be set as below:

• RTE_SDK=/usr/local/share/dpdk

• RTE_TARGET=x86_64-native-bsdapp-clang

3

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/index.html

Getting Started Guide for FreeBSD, Release 19.02.0

Note: To install a copy of the DPDK compiled using gcc, please download the official DPDK
package from http://core.dpdk.org/download/ and install manually using the instructions given
in the next chapter, Compiling the DPDK Target from Source

An example application can therefore be copied to a user’s home directory and compiled and
run as below:

export RTE_SDK=/usr/local/share/dpdk

export RTE_TARGET=x86_64-native-bsdapp-clang

cp -r /usr/local/share/dpdk/examples/helloworld .

cd helloworld/

gmake
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

sudo ./build/helloworld -l 0-3 -n 2

EAL: Contigmem driver has 2 buffers, each of size 1GB
EAL: Sysctl reports 8 cpus
EAL: Detected lcore 0
EAL: Detected lcore 1
EAL: Detected lcore 2
EAL: Detected lcore 3
EAL: Support maximum 64 logical core(s) by configuration.
EAL: Detected 4 lcore(s)
EAL: Setting up physically contiguous memory...
EAL: Mapped memory segment 1 @ 0x802400000: len 1073741824
EAL: Mapped memory segment 2 @ 0x842400000: len 1073741824
EAL: WARNING: clock_gettime cannot use CLOCK_MONOTONIC_RAW and HPET

is not available - clock timings may be less accurate.
EAL: TSC frequency is ~3569023 KHz
EAL: PCI scan found 24 devices
EAL: Master core 0 is ready (tid=0x802006400)
EAL: Core 1 is ready (tid=0x802006800)
EAL: Core 3 is ready (tid=0x802007000)
EAL: Core 2 is ready (tid=0x802006c00)
EAL: PCI device 0000:01:00.0 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x80074a000
EAL: PCI memory mapped at 0x8007ca000
EAL: PCI device 0000:01:00.1 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x8007ce000
EAL: PCI memory mapped at 0x80084e000
EAL: PCI device 0000:02:00.0 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x800852000
EAL: PCI memory mapped at 0x8008d2000
EAL: PCI device 0000:02:00.1 on NUMA socket 0
EAL: probe driver: 8086:10fb rte_ixgbe_pmd
EAL: PCI memory mapped at 0x801b3f000
EAL: PCI memory mapped at 0x8008d6000
hello from core 1
hello from core 2
hello from core 3

2.2. Compiling and Running the Example Applications 4

http://core.dpdk.org/download/

Getting Started Guide for FreeBSD, Release 19.02.0

hello from core 0

Note: To run a DPDK process as a non-root user, adjust the permissions on the
/dev/contigmem and /dev/uio device nodes as described in section Running DPDK
Applications Without Root Privileges

Note: For an explanation of the command-line parameters that can be passed to an DPDK
application, see section Running a Sample Application.

2.2. Compiling and Running the Example Applications 5

CHAPTER

THREE

COMPILING THE DPDK TARGET FROM SOURCE

3.1 System Requirements

The DPDK and its applications require the GNU make system (gmake) to build on FreeBSD.
Optionally, gcc may also be used in place of clang to build the DPDK, in which case it too
must be installed prior to compiling the DPDK. The installation of these tools is covered in this
section.

Compiling the DPDK requires the FreeBSD kernel sources, which should be included during
the installation of FreeBSD on the development platform. The DPDK also requires the use of
FreeBSD ports to compile and function.

To use the FreeBSD ports system, it is required to update and extract the FreeBSD ports tree
by issuing the following commands:

portsnap fetch
portsnap extract

If the environment requires proxies for external communication, these can be set using:

setenv http_proxy <my_proxy_host>:<port>
setenv ftp_proxy <my_proxy_host>:<port>

The FreeBSD ports below need to be installed prior to building the DPDK. In general these can
be installed using the following set of commands:

cd /usr/ports/<port_location>

make config-recursive

make install

make clean

Each port location can be found using:

whereis <port_name>

The ports required and their locations are as follows:

• dialog4ports: /usr/ports/ports-mgmt/dialog4ports

• GNU make(gmake): /usr/ports/devel/gmake

• coreutils: /usr/ports/sysutils/coreutils

For compiling and using the DPDK with gcc, the compiler must be installed from the ports
collection:

6

Getting Started Guide for FreeBSD, Release 19.02.0

• gcc: version 4.9 is recommended /usr/ports/lang/gcc49. Ensure that CPU_OPTS
is selected (default is OFF).

When running the make config-recursive command, a dialog may be presented to the user.
For the installation of the DPDK, the default options were used.

Note: To avoid multiple dialogs being presented to the user during make install, it is advisable
before running the make install command to re-run the make config-recursive command until
no more dialogs are seen.

3.2 Install the DPDK and Browse Sources

First, uncompress the archive and move to the DPDK source directory:

unzip DPDK-<version>.zip
cd DPDK-<version>

The DPDK is composed of several directories:

• lib: Source code of DPDK libraries

• app: Source code of DPDK applications (automatic tests)

• examples: Source code of DPDK applications

• config, buildtools, mk: Framework-related makefiles, scripts and configuration

3.3 Installation of the DPDK Target Environments

The format of a DPDK target is:

ARCH-MACHINE-EXECENV-TOOLCHAIN

Where:

• ARCH is: x86_64

• MACHINE is: native

• EXECENV is: bsdapp

• TOOLCHAIN is: gcc | clang

The configuration files for the DPDK targets can be found in the DPDK/config directory in the
form of:

defconfig_ARCH-MACHINE-EXECENV-TOOLCHAIN

Note: Configuration files are provided with the RTE_MACHINE optimization level set. Within
the configuration files, the RTE_MACHINE configuration value is set to native, which means that
the compiled software is tuned for the platform on which it is built. For more information on this
setting, and its possible values, see the DPDK Programmers Guide.

To make the target, use gmake install T=<target>.

For example to compile for FreeBSD use:

3.2. Install the DPDK and Browse Sources 7

Getting Started Guide for FreeBSD, Release 19.02.0

gmake install T=x86_64-native-bsdapp-clang

Note: If the compiler binary to be used does not correspond to that given in the TOOLCHAIN
part of the target, the compiler command may need to be explicitly specified. For example,
if compiling for gcc, where the gcc binary is called gcc4.9, the command would need to be
gmake install T=<target> CC=gcc4.9.

3.4 Browsing the Installed DPDK Environment Target

Once a target is created, it contains all the libraries and header files for the DPDK environment
that are required to build customer applications. In addition, the test and testpmd applications
are built under the build/app directory, which may be used for testing. A kmod directory is also
present that contains the kernel modules to install.

3.5 Loading the DPDK contigmem Module

To run a DPDK application, physically contiguous memory is required. In the absence of non-
transparent superpages, the included sources for the contigmem kernel module provides the
ability to present contiguous blocks of memory for the DPDK to use. The contigmem module
must be loaded into the running kernel before any DPDK is run. The module is found in the
kmod sub-directory of the DPDK target directory.

The amount of physically contiguous memory along with the number of physically contiguous
blocks to be reserved by the module can be set at runtime prior to module loading using:

kenv hw.contigmem.num_buffers=n
kenv hw.contigmem.buffer_size=m

The kernel environment variables can also be specified during boot by placing the following in
/boot/loader.conf:

hw.contigmem.num_buffers=n hw.contigmem.buffer_size=m

The variables can be inspected using the following command:

sysctl -a hw.contigmem

Where n is the number of blocks and m is the size in bytes of each area of contiguous memory.
A default of two buffers of size 1073741824 bytes (1 Gigabyte) each is set during module load
if they are not specified in the environment.

The module can then be loaded using kldload (assuming that the current directory is the DPDK
target directory):

kldload ./kmod/contigmem.ko

It is advisable to include the loading of the contigmem module during the boot process to
avoid issues with potential memory fragmentation during later system up time. This can be
achieved by copying the module to the /boot/kernel/ directory and placing the following
into /boot/loader.conf:

contigmem_load="YES"

Note: The contigmem_load directive should be placed after any definitions of

3.4. Browsing the Installed DPDK Environment Target 8

Getting Started Guide for FreeBSD, Release 19.02.0

hw.contigmem.num_buffers and hw.contigmem.buffer_size if the default values are
not to be used.

An error such as:

kldload: can't load ./x86_64-native-bsdapp-gcc/kmod/contigmem.ko:
Exec format error

is generally attributed to not having enough contiguous memory available and can be verified
via dmesg or /var/log/messages:

kernel: contigmalloc failed for buffer <n>

To avoid this error, reduce the number of buffers or the buffer size.

3.6 Loading the DPDK nic_uio Module

After loading the contigmem module, the nic_uio module must also be loaded into the run-
ning kernel prior to running any DPDK application. This module must be loaded using the
kldload command as shown below (assuming that the current directory is the DPDK target
directory).

kldload ./kmod/nic_uio.ko

Note: If the ports to be used are currently bound to a existing kernel driver then the
hw.nic_uio.bdfs sysctl value will need to be set before loading the module. Setting
this value is described in the next section below.

Currently loaded modules can be seen by using the kldstat command and a module can be
removed from the running kernel by using kldunload <module_name>.

To load the module during boot, copy the nic_uio module to /boot/kernel and place the
following into /boot/loader.conf:

nic_uio_load="YES"

Note: nic_uio_load="YES" must appear after the contigmem_load directive, if it exists.

By default, the nic_uio module will take ownership of network ports if they are recognized
DPDK devices and are not owned by another module. However, since the FreeBSD kernel
includes support, either built-in, or via a separate driver module, for most network card devices,
it is likely that the ports to be used are already bound to a driver other than nic_uio. The
following sub-section describe how to query and modify the device ownership of the ports to
be used by DPDK applications.

3.6.1 Binding Network Ports to the nic_uio Module

Device ownership can be viewed using the pciconf -l command. The example below shows
four Intel® 82599 network ports under if_ixgbe module ownership.

pciconf -l
ix0@pci0:1:0:0: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix1@pci0:1:0:1: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix2@pci0:2:0:0: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00
ix3@pci0:2:0:1: class=0x020000 card=0x00038086 chip=0x10fb8086 rev=0x01 hdr=0x00

3.6. Loading the DPDK nic_uio Module 9

Getting Started Guide for FreeBSD, Release 19.02.0

The first column constitutes three components:

1. Device name: ixN

2. Unit name: pci0

3. Selector (Bus:Device:Function): 1:0:0

Where no driver is associated with a device, the device name will be none.

By default, the FreeBSD kernel will include built-in drivers for the most common devices; a
kernel rebuild would normally be required to either remove the drivers or configure them as
loadable modules.

To avoid building a custom kernel, the nic_uio module can detach a network port from its
current device driver. This is achieved by setting the hw.nic_uio.bdfs kernel environment
variable prior to loading nic_uio, as follows:

hw.nic_uio.bdfs="b:d:f,b:d:f,..."

Where a comma separated list of selectors is set, the list must not contain any whitespace.

For example to re-bind ix2@pci0:2:0:0 and ix3@pci0:2:0:1 to the nic_uio module
upon loading, use the following command:

kenv hw.nic_uio.bdfs="2:0:0,2:0:1"

The variable can also be specified during boot by placing the following into
/boot/loader.conf, before the previously-described nic_uio_load line - as shown:

hw.nic_uio.bdfs="2:0:0,2:0:1"
nic_uio_load="YES"

3.6.2 Binding Network Ports Back to their Original Kernel Driver

If the original driver for a network port has been compiled into the kernel, it is necessary to
reboot FreeBSD to restore the original device binding. Before doing so, update or remove the
hw.nic_uio.bdfs in /boot/loader.conf.

If rebinding to a driver that is a loadable module, the network port binding can be reset without
rebooting. To do so, unload both the target kernel module and the nic_uio module, modify
or clear the hw.nic_uio.bdfs kernel environment (kenv) value, and reload the two drivers -
first the original kernel driver, and then the nic_uio driver. Note: the latter does not need
to be reloaded unless there are ports that are still to be bound to it.

Example commands to perform these steps are shown below:

kldunload nic_uio
kldunload <original_driver>

To clear the value completely:
kenv -u hw.nic_uio.bdfs

To update the list of ports to bind:
kenv hw.nic_uio.bdfs="b:d:f,b:d:f,..."

kldload <original_driver>

kldload nic_uio # optional

3.6. Loading the DPDK nic_uio Module 10

CHAPTER

FOUR

COMPILING AND RUNNING SAMPLE APPLICATIONS

The chapter describes how to compile and run applications in a DPDK environment. It also
provides a pointer to where sample applications are stored.

4.1 Compiling a Sample Application

Once a DPDK target environment directory has been created (such as
x86_64-native-bsdapp-clang), it contains all libraries and header files required to
build an application.

When compiling an application in the FreeBSD environment on the DPDK, the following vari-
ables must be exported:

• RTE_SDK - Points to the DPDK installation directory.

• RTE_TARGET - Points to the DPDK target environment directory. For FreeBSD, this is the
x86_64-native-bsdapp-clang or x86_64-native-bsdapp-gcc directory.

The following is an example of creating the helloworld application, which runs in the DPDK
FreeBSD environment. While the example demonstrates compiling using gcc version 4.9,
compiling with clang will be similar, except that the CC= parameter can probably be omitted.
The helloworld example may be found in the ${RTE_SDK}/examples directory.

The directory contains the main.c file. This file, when combined with the libraries in the
DPDK target environment, calls the various functions to initialize the DPDK environment, then
launches an entry point (dispatch application) for each core to be utilized. By default, the binary
is generated in the build directory.

setenv RTE_SDK /home/user/DPDK
cd $(RTE_SDK)
cd examples/helloworld/
setenv RTE_SDK $HOME/DPDK
setenv RTE_TARGET x86_64-native-bsdapp-gcc

gmake CC=gcc49
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

ls build/app
helloworld helloworld.map

Note: In the above example, helloworld was in the directory structure of the DPDK. How-
ever, it could have been located outside the directory structure to keep the DPDK structure

11

Getting Started Guide for FreeBSD, Release 19.02.0

intact. In the following case, the helloworld application is copied to a new directory as a
new starting point.

setenv RTE_SDK /home/user/DPDK
cp -r $(RTE_SDK)/examples/helloworld my_rte_app
cd my_rte_app/
setenv RTE_TARGET x86_64-native-bsdapp-gcc

gmake CC=gcc49
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

4.2 Running a Sample Application

1. The contigmem and nic_uio modules must be set up prior to running an application.

2. Any ports to be used by the application must be already bound to the nic_uio module,
as described in section Binding Network Ports to the nic_uio Module, prior to running the
application. The application is linked with the DPDK target environment’s Environment
Abstraction Layer (EAL) library, which provides some options that are generic to every
DPDK application.

The following is the list of options that can be given to the EAL:

./rte-app -l CORELIST [-n NUM] [-b <domain:bus:devid.func>] \
[-r NUM] [-v] [--proc-type <primary|secondary|auto>]

Note: EAL has a common interface between all operating systems and is based on the Linux
notation for PCI devices. For example, a FreeBSD device selector of pci0:2:0:1 is referred
to as 02:00.1 in EAL.

The EAL options for FreeBSD are as follows:

• -c COREMASK or -l CORELIST: A hexadecimal bit mask of the cores to run on. Note
that core numbering can change between platforms and should be determined before-
hand. The corelist is a list of cores to use instead of a core mask.

• -n NUM: Number of memory channels per processor socket.

• -b <domain:bus:devid.func>: Blacklisting of ports; prevent EAL from using speci-
fied PCI device (multiple -b options are allowed).

• --use-device: Use the specified Ethernet device(s) only. Use comma-separate
[domain:]bus:devid.func values. Cannot be used with -b option.

• -r NUM: Number of memory ranks.

• -v: Display version information on startup.

• --proc-type: The type of process instance.

• -m MB: Memory to allocate from hugepages, regardless of processor socket.

Other options, specific to Linux and are not supported under FreeBSD are as follows:

• socket-mem: Memory to allocate from hugepages on specific sockets.

4.2. Running a Sample Application 12

Getting Started Guide for FreeBSD, Release 19.02.0

• --huge-dir: The directory where hugetlbfs is mounted.

• mbuf-pool-ops-name: Pool ops name for mbuf to use.

• --file-prefix: The prefix text used for hugepage filenames.

The -c or -l option is mandatory; the others are optional.

Copy the DPDK application binary to your target, then run the application as follows (assuming
the platform has four memory channels, and that cores 0-3 are present and are to be used for
running the application):

./helloworld -l 0-3 -n 4

Note: The --proc-type and --file-prefix EAL options are used for running multiple
DPDK processes. See the “Multi-process Sample Application” chapter in the DPDK Sample
Applications User Guide and the DPDK Programmers Guide for more details.

4.3 Running DPDK Applications Without Root Privileges

Although applications using the DPDK use network ports and other hardware resources di-
rectly, with a number of small permission adjustments, it is possible to run these applications
as a user other than “root”. To do so, the ownership, or permissions, on the following file sys-
tem objects should be adjusted to ensure that the user account being used to run the DPDK
application has access to them:

• The userspace-io device files in /dev, for example, /dev/uio0, /dev/uio1, and so on

• The userspace contiguous memory device: /dev/contigmem

Note: Please refer to the DPDK Release Notes for supported applications.

4.3. Running DPDK Applications Without Root Privileges 13

CHAPTER

FIVE

EAL PARAMETERS

This document contains a list of all EAL parameters. These parameters can be used by any
DPDK application running on FreeBSD.

5.1 Common EAL parameters

The following EAL parameters are common to all platforms supported by DPDK.

5.1.1 Lcore-related options

• -c <core mask>

Set the hexadecimal bitmask of the cores to run on.

• -l <core list>

List of cores to run on

The argument format is <c1>[-c2][,c3[-c4],...] where c1, c2, etc are core in-
dexes between 0 and 128.

• --lcores <core map>

Map lcore set to physical cpu set

The argument format is:

<lcores[@cpus]>[<,lcores[@cpus]>...]

Lcore and CPU lists are grouped by (and) Within the group. The - character is used
as a range separator and , is used as a single number separator. The grouping () can
be omitted for single element group. The @ can be omitted if cpus and lcores have the
same value.

Note: At a given instance only one core option --lcores, -l or -c can be used.

• --master-lcore <core ID>

Core ID that is used as master.

• -s <service core mask>

Hexadecimal bitmask of cores to be used as service cores.

14

Getting Started Guide for FreeBSD, Release 19.02.0

5.1.2 Device-related options

• -b, --pci-blacklist <[domain:]bus:devid.func>

Blacklist a PCI device to prevent EAL from using it. Multiple -b options are allowed.

Note: PCI blacklist cannot be used with -w option.

• -w, --pci-whitelist <[domain:]bus:devid.func>

Add a PCI device in white list.

Note: PCI whitelist cannot be used with -b option.

• --vdev <device arguments>

Add a virtual device using the format:

<driver><id>[,key=val, ...]

For example:

--vdev 'net_pcap0,rx_pcap=input.pcap,tx_pcap=output.pcap'

• -d <path to shared object or directory>

Load external drivers. An argument can be a single shared object file, or a directory
containing multiple driver shared objects. Multiple -d options are allowed.

• --no-pci

Disable PCI bus.

5.1.3 Multiprocessing-related options

• --proc-type <primary|secondary|auto>

Set the type of the current process.

5.1.4 Memory-related options

• -n <number of channels>

Set the number of memory channels to use.

• -r <number of ranks>

Set the number of memory ranks (auto-detected by default).

• -m <megabytes>

Amount of memory to preallocate at startup.

• --in-memory

Do not create any shared data structures and run entirely in memory. Implies
--no-shconf and (if applicable) --huge-unlink.

5.1. Common EAL parameters 15

Getting Started Guide for FreeBSD, Release 19.02.0

• --iova-mode <pa|va>

Force IOVA mode to a specific value.

5.1.5 Debugging options

• --no-shconf

No shared files created (implies no secondary process support).

• --no-huge

Use anonymous memory instead of hugepages (implies no secondary process support).

• --log-level <type:val>

Specify log level for a specific component. For example:

--log-level eal:8

Can be specified multiple times.

5.1.6 Other options

• -h, --help

Display help message listing all EAL parameters.

• -v

Display the version information on startup.

• mbuf-pool-ops-name:

Pool ops name for mbuf to use.

5.2 FreeBSD-specific EAL parameters

There are currently no FreeBSD-specific EAL command-line parameters available.

5.2. FreeBSD-specific EAL parameters 16

	Introduction
	Documentation Roadmap

	Installing DPDK from the Ports Collection
	Installing the DPDK FreeBSD Port
	Compiling and Running the Example Applications

	Compiling the DPDK Target from Source
	System Requirements
	Install the DPDK and Browse Sources
	Installation of the DPDK Target Environments
	Browsing the Installed DPDK Environment Target
	Loading the DPDK contigmem Module
	Loading the DPDK nic_uio Module

	Compiling and Running Sample Applications
	Compiling a Sample Application
	Running a Sample Application
	Running DPDK Applications Without Root Privileges

	EAL parameters
	Common EAL parameters
	FreeBSD-specific EAL parameters

