=) DPDK

DATA PLANE DEVELOPMENT KIT

Crypto Device Drivers
Release 2.2.0

January 16, 2016



1

AESN-NI Multi Buffer Crytpo Poll Mode Driver

1.1
1.2
1.3

Features . . . . . . . . . . . ... ...
Limitations . . . . . . . . . . . .. ... ...
Installation . . . ... ... ... .. . . ... ...

Quick Assist Crypto Poll Mode Driver

2.1
2.2
2.3
2.4
2.5
2.6

Features . ... ...... ... ... ... ....
Limitations . . . . ... ... ... ... ... ...
Installation . . ... ... ...... ... .....
Installation using 01.org QAT driver . . . ... ..
Installation using kernel.org driver . . . . . .. ..

Binding the available VFs to the DPDK UIO driver

CONTENTS




CHAPTER
ONE

AESN-NI MULTI BUFFER CRYTPO POLL MODE DRIVER

The AESNI MB PMD (librte_pmd_aesni_mb) provides poll mode crypto driver support for
utilizing Intel multi buffer library, see the white paper Fast Multi-buffer IPsec Implementations
on Intel® Architecture Processors.

The AES-NI MB PMD has current only been tested on Fedora 21 64-bit with gcc.

1.1 Features

AESNI MB PMD has support for:
Cipher algorithms:
« RTE_CRYPTO_SYM_CIPHER_AES128_CBC
+ RTE_CRYPTO_SYM_CIPHER_AES256_CBC
« RTE_CRYPTO_SYM_CIPHER_AES512_CBC
Hash algorithms:
* RTE_CRYPTO_SYM_HASH_SHA1_HMAC
* RTE_CRYPTO_SYM_HASH_SHA256_HMAC
« RTE_CRYPTO_SYM_HASH_SHA512_HMAC

1.2 Limitations

» Chained mbufs are not supported.

* Hash only is not supported.

+ Cipher only is not supported.

» Only in-place is currently supported (destination address is the same as source address).

* Only supports session-oriented API implementation (session-less APIs are not sup-
ported).

* Not performance tuned.



https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-paper.html?wapkw=multi+buffer
https://www-ssl.intel.com/content/www/us/en/intelligent-systems/intel-technology/fast-multi-buffer-ipsec-implementations-ia-processors-paper.html?wapkw=multi+buffer

Crypto Device Drivers, Release 2.2.0

1.3 Installation

To build DPDK with the AESNI_MB_PMD the user is required to download the mult- buffer
library from here and compile it on their user system before building DPDK. When building
the multi-buffer library it is necessary to have YASM package installed and also requires the
overriding of YASM path when building, as a path is hard coded in the Makefile of the release
package.

make YASM=/usr/bin/yasm
The environmental variable AESNI_MULTI_BUFFER_LIB_PATH must be exported with

the path where you extracted and built the multi buffer library and finally set CON-
FIG_RTE_LIBRTE_PMD_AESNI_MB=y in config/common_linuxapp.

1.3. Installation 2


https://downloadcenter.intel.com/download/22972

CHAPTER
TWO

QUICK ASSIST CRYPTO POLL MODE DRIVER

The QAT PMD provides poll mode crypto driver support for Intel QuickAssist Technology
DH895xxC hardware accelerator.

The QAT PMD has been tested on Fedora 21 64-bit with gcc and on the 4.3 kernel.org Linux
kernel.

2.1 Features

The QAT PMD has support for:
Cipher algorithms:
* RTE_CRYPTO_SYM_CIPHER_AES128_CBC
* RTE_CRYPTO_SYM_CIPHER_AES192_CBC
* RTE_CRYPTO_SYM_CIPHER_AES256_CBC
Hash algorithms:
* RTE_CRYPTO_AUTH_SHA1_HMAC
* RTE_CRYPTO_AUTH_SHA256_HMAC
* RTE_CRYPTO_AUTH_SHA512_HMAC

* RTE_CRYPTO_AUTH_AES_XCBC_MAC

2.2 Limitations

» Chained mbufs are not supported.

» Hash only is not supported.

+ Cipher only is not supported.

* Only in-place is currently supported (destination address is the same as source address).

» Only supports the session-oriented APl implementation (session-less APIs are not sup-
ported).

* Not performance tuned.




Crypto Device Drivers, Release 2.2.0

2.3 Installation

To use the DPDK QAT PMD an SRIOV-enabled QAT kernel driver is required. The VF devices
exposed by this driver will be used by QAT PMD.

If you are running on kernel 4.3 or greater, see instructions for Installation using kernel.org
driver below. If you are on a kernel earlier than 4.3, see Installation using 01.org QAT driver.

2.4 Installation using 01.org QAT driver

Download the latest QuickAssist Technology Driver from 01.org Consult the Getting Started
Guide at the same URL for further information.

The steps below assume you are:
+ Building on a platform with one DH8 95xCC device.
» Using package gatmux.1.2.3.0-34.tgz.
* On Fedora21 kernel 3.17.4-301.fc21.x86_64.
In the BIOS ensure that SRIOV is enabled and VT-d is disabled.
Uninstall any existing QAT driver, for example by running:
* ./installer.sh uninstall in the directory where originally installed.

* Or rmmod gat_dh895xcc; rmmod intel_gat.
Build and install the SRIOV-enabled QAT driver:

mkdir /QAT

cd /QAT

# copy gatmux.1.2.3.0-34.tgz to this location
tar zxof gatmux.1.2.3.0-34.tgz

export ICP_WITHOUT_IOMMU=1
./installer.sh install QAT1.6 host

You can use cat /proc/icp_dh895xcc_dev0/version to confirm the driver is correctly
installed. You can use 1spci -d:443 to confirm the bdf of the 32 VF devices are available
per DH895xCC device.

To complete the installation - follow instructions in Binding the available VFs to the DPDK UIO
driver.

Note: If using a later kernel and the build fails with an error relating to strict_stroul not
being available apply the following patch:

/OAT/QAT1.6/quickassist/utilities/downloader/Target_CoreLibs/uclo/include/linux/uclo_platform.r

+ #if LINUX_VERSION_CODE >= KERNEL_VERSION (3,18,5)

+ #define STR_TO_64 (str, base, num, endPtr) {endPtr=NULL; if (kstrtoul((str), (base), (num))) ¢

+ #else
#if LINUX_VERSION_CODE >= KERNEL_VERSION (2,6, 38)

#define STR_TO_64 (str, base, num, endPtr) {endPtr=NULL; if (strict_strtoull((str), (base), (nun
#else
#if LINUX_VERSION_CODE >= KERNEL_VERSION (2, 6,25)
#define STR_TO_64 (str, base, num, endPtr) {endPtr=NULL; strict_strtoll((str), (base), (num));}
#else
#define STR_TO_64 (str, base, num, endPtr) \

do { \

2.3. Installation 4


https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches

Crypto Device Drivers, Release 2.2.0

if (str([0] == '-") \
{ \
% (num) = —(simple_strtoull ((str+l), & (endPtr), (base))); \
}else { \
* (num) = simple_strtoull ((str), & (endPtr), (base)); \
} \
} while (0)
+ #endif
#endif
#endif

If the build fails due to missing header files you may need to do following:
* sudo yum install zlib-devel
* sudo yum install openssl-devel
If the build or install fails due to mismatching kernel sources you may need to do the following:
* sudo yum install kernel-headers-‘uname -r‘'
* sudo yum install kernel-src-‘uname -r‘'

* sudo yum install kernel-devel-‘uname -r‘

2.5 Installation using kernel.org driver

Assuming you are running on at least a 4.3 kernel, you can use the stock kernel.org QAT driver
to start the QAT hardware.

The steps below assume you are:
* Running DPDK on a platform with one DH8 95xCC device.
» On a kernel at least version 4.3.

In BIOS ensure that SRIOV is enabled and VT-d is disabled.

Ensure the QAT driver is loaded on your system, by executing:

lsmod | grep gat

You should see the following output:

gat_dh895xcc 5626 0
intel_gat 82336 1 gat_dh895xcc

Next, you need to expose the VFs using the sysfs file system.
First find the bdf of the DH895xCC device:

lspci -d : 435
You should see output similar to:

03:00.0 Co-processor: Intel Corporation Coleto Creek PCIe Endpoint

Using the sysfs, enable the VFs:

echo 32 > /sys/bus/pci/drivers/dh895xcc/0000\:03\:00.0/sriov_numvfs
If you get an error, it’s likely you're using a QAT kernel driver earlier than kernel 4.3.

To verify that the VFs are available for use - use 1spci —d:443 to confirm the bdf of the 32
VF devices are available per DH895xCC device.

2.5. Installation using kernel.org driver 5



Crypto Device Drivers, Release 2.2.0

To complete the installation - follow instructions in Binding the available VFs to the DPDK UIO
driver.

2.6 Binding the available VFs to the DPDK UIO driver

The unbind command below assumes bdfs of 03:01.00-03:04.07, if yours are different
adjust the unbind command below:

cd SRTE_SDK
modprobe uio
insmod ./build/kmod/igb_uio.ko

for device in $(seq 1 4); do \
for fn in $(seq 0 7); do \
echo -n 0000:03:0S${device}.S${fn} > \
/sys/bus/pci/devices/0000\:03\:0${device}.${fn}/driver/unbind; \
done; \
done

echo "8086 0443" > /sys/bus/pci/drivers/igb_uio/new_id

You can use 1spci -vvd:443 to confirm that all devices are now in use by igb_uio kernel
driver.

2.6. Binding the available VFs to the DPDK UIO driver 6



	AESN-NI Multi Buffer Crytpo Poll Mode Driver
	Features
	Limitations
	Installation

	Quick Assist Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Installation using 01.org QAT driver
	Installation using kernel.org driver
	Binding the available VFs to the DPDK UIO driver


