=) DPDK

DATA PLANE DEVELOPMENT KIT

Crypto Device Drivers
Release 20.02.1

May 18, 2020

CONTENTS

Crypto Device Supported Functionality Matrices 1
1.1 Supported Feature Flags e 2
1.2 Supported Cipher Algorithms 5
1.3 Supported Authentication Algorithms, 7
1.4 Supported AEAD Algorithms 8
1.5 Supported Asymmetric Algorithms oL L oL 9
AESN-NI Multi Buffer Crypto Poll Mode Driver 10
2.1 Features. e e e e 10
2.2 LAMItations v v e 11
23 Installation e e 11
2.4 Initialization e e e e e e e e e 12
25 EXtranotes e e e e e e 12
AES-NI GCM Crypto Poll Mode Driver 13
3.1 Features. o . e e e e e e e e e e 13
3.2 LIMItations o i e e e e e e e e e e e e e e e e 13
3.3 Installation L. e e e e e e 13
3.4 Initialization L e e e e e e e e e 14
ARMYvS Crypto Poll Mode Driver 15
4.1 FeatureS. o it e e e e e e e e e e e e e e e 15
4.2 Installation L. e e e e e 15
4.3 Initialization e e e e e e e e e e e e e 16
4.4 Limitations e e e e e e e e e e e e e e e e 16
NXP CAAM JOB RING (caam_jr) 17
5.1 Architecture L e e e 17
5.2 Implementation e e e e e e e e e e e e e e 17
53 Features. e e e e e e e e e 17
54 Supported DPAA SoCs e 18
5.5 LAMItations ot i e e e e e e e e e e e e e e e e e e e 18
5.6 PrerequiSites e e e e e e e e e e e 18
5.7 Pre-Installation Configuration 19
5.8 Imstallations. 19
5.9 Enablinglogs L 19
AMD CCP Poll Mode Driver 20
6.1 Features. e 20
6.2 Installation e e e 21

10

11

12

6.3 Initialization e e e e e e e e e
6.4 Limitations e e e e e e e e e e e e e

NXP DPAA2 CAAM (DPAA2_SEC)

7.1 Architecture o o i e e e e e e e e e e
7.2 Implementation e e e e
7.3 Features. e e e e e e e e
7.4 Supported DPAA2 SoCs e
7.5 Whitelisting & Blacklisting
7.6 Limitations L e e e e e e e e e
7T PrerequiSites e e e e e e e e e e e
7.8 Pre-Installation Configuration
7.9 Installations e e
7.10 Enabling logs e e e e e e

NXP DPAA CAAM (DPAA_SEC)

8.1 Architecture e e
8.2 Implementation e e e e e e e e e
8.3 Features. e e e e e e
8.4 Supported DPAA S0OCs o e e
8.5 Whitelisting & Blacklisting
8.6 Limitations L. e e e e e e e e
8.7 Prerequisites e e e e e e e e e e e e
8.8 Pre-Installation Configuration
8.9 Installations e e e e e e e e e
8.10 Enablinglogs e

KASUMI Crypto Poll Mode Driver

9.1 Features. e e e e e e e
0.2 LImitationsSt v i e e e e e e e e e e e e e e e e e e e
9.3 Installation e e e e e e e
9.4 Initialization e e e e e e e e e
9.5 Extranoteson KASUMIF9

Cavium OCTEON TX Crypto Poll Mode Driver

10.1 Supported Symmetric Crypto Algorithms
10.2 Supported Asymmetric Crypto Algorithms
10.3 Configflags. o . o e e e e e e e
104 Compilation e e e e e e
105 Execution o o o i i e e e e
10.6 Testing o o i e e e e e e e e e

Marvell OCTEON TX2 Crypto Poll Mode Driver

I1.1 Features. o i e e e e e e
11.2 Installation o . o e e e e e e e e e e
11.3 Initialization e e e e e e e e e
11.4 Debugging Options o v v v v i e e e e e e e e e e e e e
115 Testing o v v i e e e e e e e e

OpenSSL Crypto Poll Mode Driver
12.1 Features. e e
12.2 Installation e e e e e e e

22

23
23
23
24
25
25
25
25
26
26
26

27
27
27
27
28
28
28
29
29
29
29

30
30
30
30
31
31

33
33
34
34
34
35
35

36
36
37
37
38
38

39
39
40

12.3 Initialization e e e e e e e e e e 40

12,4 Limitations o vt v e 41
MVSAM Crypto Poll Mode Driver 42
13.1 Features. o o e e e e e e e 42
132 LAMItations o v ot e 43
13.3 Installation e e e e e e e 43
13.4 Initialization e e e e e e e e e e e e e 43
Marvell NITROX Crypto Poll Mode Driver 45
14.1 FeatureS. o o e e e e e 45
142 Limitations o o e e e e e e e e e e e e e e e 45
14.3 Installation e e e 45
14.4 Initialization e e e e e e e e e 46
Null Crypto Poll Mode Driver 47
15.1 Features. o e e e e e e 47
15.2 LimitationS v v o e e e e e e e e e e e e e 47
15.3 Installation e e e e e e e e e 47
15.4 Initialization e e e e 48
Cryptodev Scheduler Poll Mode Driver Library 49
16.1 Limitations o e e e e e e e e e e e e e e e e e 49
16.2 Installation e e e 50
16.3 Initialization e e 50
16.4 Cryptodev Scheduler Modes Overview 50
SNOW 3G Crypto Poll Mode Driver 53
17.1 FeatureS. o e e e e e 53
17.2 LImitations o o e e e e e e e e e e e e e e e e e e e 53
17.3 Installation e 53
17.4 Initialization e e e e e e e e e e e e e 54
Intel(R) QuickAssist (QAT) Crypto Poll Mode Driver 55
18.1 Symmetric Crypto Serviceon QAT 55
18.2 Asymmetric Crypto Serviceon QAT 57
18.3 Building PMDson QAT 58
Virtio Crypto Poll Mode Driver 67
19.1 FeatureS. o e e e e e 67
19.2 LIimitations o o e e e e e e e e e e e e e e e e 67
19.3 Virtio crypto PMD Rx/Tx Callbacks 67
19.4 Installation e e e e e e e e e e e 68
190.5 Tests e e 68
ZUC Crypto Poll Mode Driver 69
20.1 Features. o o i e e e e e e e e 69
20.2 LImitationsS v v v e e e e e e e e e e e e e e e e e 69
20.3 Installation e e e e 69
20.4 Initialization e e e e e e e e 70

Crypto Device Drivers, Release 20.02.1

CHAPTER
ONE

1.1 Supported Feature Flags

CRYPTO DEVICE SUPPORTED FUNCTIONALITY MATRICES

Table 1.1: Features availability in crypto drivers

Fea- | a
ture

D

BOOI

wn O

o 3|

< 3I~T o

I ®®o

—

Cc
C

Y

d

N T

d

O O T

o o v

k

a
s
u
m
[

30 » < 3

n
it
r
0
X

n
u
I

X +~353 00D —F0OO0

o]
ct
e
o]
nt
X
2

- »n 0w S5 ® T O

—

Q ws o> on

ir|u
ti | c

Sym-| Y
met-
ric

crypta

<O © 0|

=<

=

Asymr
met-
ric

crypta

Sym | Y
op-
era-
tion
chain-
ing

HW

cel-
er-
ated

Pro-

col
of-
fload

CPU | Y
SSE

APIT NZ

NZ

—

Cru X
AySuppo

X
rted

Feat

ure |

lags

CPU | Y
AVX2

MY T 7

7

Crypto Device Drivers, Release 20.02.1

Note:

“In Place SGL” feature flag stands for “In place Scatter-gather list”, which means that an input
buffer can consist of multiple segments, being the operation in-place (input address = output
address).

“OO0P SGL In SGL Out” feature flag stands for “Out-of-place Scatter-gather list Input, Scatter-
gather list Output”, which means pmd supports different scatter-gather styled input and output
buffers (i.e. both can consists of multiple segments).

“OO0P SGL In LB Out” feature flag stands for “Out-of-place Scatter-gather list Input, Linear
Buffers Output”, which means PMD supports input from scatter-gathered styled buffers, out-
putting linear buffers (i.e. single segment).

“OO0P LB In SGL Out” feature flag stands for “Out-of-place Linear Buffers Input, Scatter-gather
list Output”, which means PMD supports input from linear buffer, outputting scatter-gathered
styled buffers.

“OO0P LB In LB Out” feature flag stands for “Out-of-place Linear Buffers Input, Linear Buffers
Output”, which means that Out-of-place operation is supported, with linear input and output
buffers.

“RSA PRIV OP KEY EXP” feature flag means PMD support RSA private key operation (Sign
and Decrypt) using exponent key type only.

“RSA PRIV OP KEY QT” feature flag means PMD support RSA private key operation (Sign and
Decrypt) using quintuple (crt) type key only.

“Digest encrypted” feature flag means PMD support hash-cipher cases, where generated digest is
appended to and encrypted with the data.

1.1. Supported Feature Flags 3

Crypto Device Drivers, Release 20.02.1

1.1. Supported Feature Flags 4

Crypto Device Drivers, Release 20.02.1

1.2 Supported Cipher Algorithms

Table 1.2: Cipher algorithms in crypto drivers

c |d d
C

Y
p |a
a
2

C-|a |a
phen e s
al- [ni
go- ni
rithm g ¢

mi|n|n|o |0
v |it|lu |ct]ct
s |r |Il|e |e
a|o O | o
m | X n | nt
tx | X
2

o O

ir|u
ti | c

3
o 3| » O
<3~ ®
= 3o ™0
o)
oo
OO0 ®”w| OO
—“3c oo x
—»w » 5 ®T O
—
Q Ws o0 >Sn»
o

NULL Y Y|Y |Y Y
AES Y |[Y|Y | Y|Y |Y Y

CBC
(128

AES Y Y |Y|Y |Y Y |Y Y |Y |[Y|Y Y
CBC
(192

AES Y Y |Y|Y |Y Y | Y Y |Y |[Y|Y Y
CBC
(256

AES Y Y
ECB
(128

AES Y Y
ECB
(192

AES Y Y
ECB
(256

AES Y Y |[Y|Y |Y Y Y |Y |Y |Y
CTR
(128

AES Y Y |Y|Y |Y Y Y |Y |[Y |Y
CTR
(192

AES Y Y [Y|Y |Y Y Y |Y |Y |Y
CTR
(256

AES Y | Y Y
XTS
(128

AES
XTS
(192

AES Y | Y Y
XTS
(256

AES Y Y

DOC

SIS

11511’1 Supported Cipher Algorithms 5
3DES Y Y |Y |Y Y Y Y |Y Y | Y

CBC

Crypto Device Drivers, Release 20.02.1

1.2. Supported Cipher Algorithms 6

Crypto Device Drivers, Release 20.02.1

1.3 Supported Authentication Algorithms

Table 1.3: Authentication algorithms in crypto drivers

Au- |la |a |a|c |c |d |d |k | m|n|n|o |o |0 |q]|s |V |z
then-| e e |r |a|c |p p |a |v [itlu |c |ct|p |a |n [ir|u
tica- | s s 'mja |p |a a [s [s |r |[II]t e |e |t |o |ti]c
ton | ni |ni|v |m a a |u|aj|o e |o |n w |0
al- 18 |_ 2 _m|m|Xx o |nt]|s 3
go- | g m jr _ s i n [x |s g
rithm| c b s e t 12 |1

m e |c X

c

NULL Y Y |Y |Y Y
MD5 Y Y |[Y |Y
MD5 Y Y |Y |Y Y Y Y |Y |Y|Y
HMAC
SHA1 Y Y Y Y |Y |Y
SHA1 Y |Y| Y |Y|Y |Y Y |Y Y |Y |Y|Y Y
HMAC
SHA224 Y Y Y Y |Y |Y
SHA?224 Y Y |Y |Y Y Y |Y Y |Y |Y|Y
HMAC
SHA?256 Y Y Y Y |[Y |Y
SHA?256 Y [Y|Y|Y|Y Y Y |Y Y |[Y |Y|Y
HMAC
SHA384 Y Y Y Y |Y |Y
SHA384 Y Y |Y |Y Y Y Y |Y |[Y|Y
HMAC
SHAS5|12 Y Y Y Y |Y |Y
SHAS5(12 Y Y |Y |Y Y Y Y |Y |Y|Y
HMAC
AES Y Y
XCB(
MAC
AES | Y Y Y Y |Y |Y|Y
GMAC
SNOW3G Y |Y Y |Y Y |Y
UIA2
KA- Y Y |Y Y
SUMI
F9
ZUC Y Y Y |Y Y Y
EIA3
AES Y Y Y
CMAC
(128)
AES Y
CMAC
(192)
AES Y
1.(3 é%ﬂapported Authenticatign Algorithms 7
SHA3 224 Y
SHA3 224 Y

Crypto Device Drivers, Release 20.02.1

1.4 Supported AEAD Algorithms

Table 1.4: AEAD algorithms in crypto drivers

AEADn |a |a |[c |[¢c |d |d |k | m|n|n |0 |O |O |Qq|S |V |z
a- les|e |r |a|c |p |p |a]|v |itju |ct|lct|p |a |n |ir]u
go-/ni|s |mj|a |pla |a |s |s |r |Il]e |e |e |t |o |ti]cC
rithm _ ni (v |m a a uilai o O |0 n w | o
gc|_ |8 | _ 2 | _ |m|m|X n | nt|s 3

m |m jr _s|s |i tx | x |s g

b ec|e 2 |1
c

AES| Y |Y Y |Y|Y |Y Y Y |Y |Y|Y

GCM

(128

AES|Y |Y Y |Y|Y |Y Y Y |Y |Y|Y

GCM

(192

AES|Y |Y Y |Y|Y |Y Y Y |Y |Y|Y

GCM

(256

AES Y Y |Y

CCM

(128

AES Y |'Y

CCM

(192

AES Y |Y

CCM

(256

1.4. Supported AEAD Algorithms 8

Crypto Device Drivers, Release 20.02.1

1.5 Supported Asymmetric Algorithms

Table 1.5: Asymmetric algorithms in crypto drivers

Asym-a |a |a |c |[c |d |d |[K {m|n |n |0 |0 |O|Qq|S |V |z
met- | e e |r |a|c |p p |a |v |[itlu |ct|lct|p |a |n |ir]u
ric |s s |mja |p |a a |[s |[s |r |Il|le |e |e |t |o |ti]|c
al- ni |nifv |m a a |ujajo o |0 n w |0
go- | _ | _ |8 |_ 2 _|m|m|Xx n |nt|s 3
rithm| g m jr _ s i tx | x |s g

c b S e 2 |1

m e c

c

RSA Y |Y |[Y|Y
DSA Y
Mod- Y |Y |[Y|Y
ular
Ex-
po-
nen-
tia-
tion
Mod- Y |Y
ular
In-
ver-
sion
Diffie- Y
hellmpn
ECDSA Y |Y
ECPM Y |Y

1.5. Supported Asymmetric Algorithms 9

CHAPTER
TWO

AESN-NI MULTI BUFFER CRYPTO POLL MODE DRIVER

The AESNI MB PMD (librte_pmd_aesni_mb) provides poll mode crypto driver support for utilizing
Intel multi buffer library, see the white paper Fast Multi-buffer IPsec Implementations on Intel® Archi-
tecture Processors.

The AES-NI MB PMD has current only been tested on Fedora 21 64-bit with gcc.

2.1 Features

AESNI MB PMD has support for:
Cipher algorithms:

* RTE_CRYPTO_CIPHER_AES128_CBC

* RTE_CRYPTO_CIPHER_AES192_CBC

* RTE_CRYPTO_CIPHER_AES256_CBC

* RTE_CRYPTO_CIPHER_AES128_CTR

* RTE_CRYPTO_CIPHER_AES192_CTR

* RTE_CRYPTO_CIPHER_AES256_CTR

* RTE_CRYPTO_CIPHER_AES_DOCSISBPI

* RTE_CRYPTO_CIPHER_DES_CBC

* RTE_CRYPTO_CIPHER_3DES_CBC

* RTE_CRYPTO_CIPHER_DES_DOCSISBPI
Hash algorithms:
RTE_CRYPTO_HASH_MDS5_HMAC
RTE_CRYPTO_HASH_SHA1_HMAC
RTE_CRYPTO_HASH_SHA224_HMAC
RTE_CRYPTO_HASH_SHA256_HMAC
RTE_CRYPTO_HASH_SHA384_HMAC
RTE_CRYPTO_HASH_SHA512_HMAC
RTE_CRYPTO_HASH_AES_XCBC_HMAC

10

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-multi-buffer-ipsec-implementations-ia-processors-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-multi-buffer-ipsec-implementations-ia-processors-paper.pdf

Crypto Device Drivers, Release 20.02.1

* RTE_CRYPTO_HASH_AES_CMAC

* RTE_CRYPTO_HASH_AES_GMAC

* RTE_CRYPTO_HASH_SHA1

* RTE_CRYPTO_HASH_SHA224

* RTE_CRYPTO_HASH_SHA256

* RTE_CRYPTO_HASH_SHA384

* RTE_CRYPTO_HASH_SHAS512
AEAD algorithms:

* RTE_CRYPTO_AEAD_AES_CCM

* RTE_CRYPTO_AEAD_AES_GCM

2.2 Limitations

* Chained mbufs are not supported.

2.3 Installation

To build DPDK with the AESNI_MB_PMD the user is required to download the multi-buffer li-
brary from here and compile it on their user system before building DPDK. The latest version of
the library supported by this PMD is v0.53, which can be downloaded from https://github.com/Olorg/
intel-ipsec-mb/archive/v0.53.zip.

make
make install

Note: Compilation of the Multi-Buffer library is broken when GCC < 5.0, if library <= v0.53. If a
lower GCC version than 5.0, the workaround proposed by the following link should be used: https:
//github.com/intel/intel-ipsec-mb/issues/40.

As a reference, the following table shows a mapping between the past DPDK versions and the Multi-
Buffer library version supported by them:

Table 2.1: DPDK and Multi-Buffer library ver-
sion compatibility

DPDK version | Multi-buffer library version

22-16.11 0.43-0.44
17.02 0.44
17.05 - 17.08 0.45-0.48
17.11 0.47-0.48
18.02 0.48

18.05 - 19.02 0.49 - 0.52
19.05 - 19.08 0.52
19.11+ 0.52-0.53

2.2. Limitations 11

https://github.com/01org/intel-ipsec-mb
https://github.com/01org/intel-ipsec-mb/archive/v0.53.zip
https://github.com/01org/intel-ipsec-mb/archive/v0.53.zip
https://github.com/intel/intel-ipsec-mb/issues/40
https://github.com/intel/intel-ipsec-mb/issues/40

Crypto Device Drivers, Release 20.02.1

2.4 Initialization

In order to enable this virtual crypto PMD, user must:

* Build the multi buffer library (explained in Installation section).

* Set CONFIG_RTE_LIBRTE_PMD_AESNI_MB-=y in config/common_base.
To use the PMD in an application, user must:

 Call rte_vdev_init(“crypto_aesni_mb”) within the application.

* Use —vdev="crypto_aesni_mb” in the EAL options, which will call rte_vdev_init() internally.
The following parameters (all optional) can be provided in the previous two calls:

 socket_id: Specify the socket where the memory for the device is going to be allocated (by default,
socket_id will be the socket where the core that is creating the PMD is running on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).
* max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./12fwd-crypto -1 1 -n 4 —-vdev="crypto_aesni_mb, socket_id=0,max_nb_sessions=128" \
-—— -p 1 —-—-cdev SW —--chain CIPHER_HASH --cipher_algo "aes-cbc" —--auth_algo "shal-hmac"

2.5 Extra notes

For AES Counter mode (AES-CTR), the library supports two different sizes for Initialization Vector
av):

* 12 bytes: used mainly for IPsec, as it requires 12 bytes from the user, which internally are ap-
pended the counter block (4 bytes), which is set to 1 for the first block (no padding required from
the user)

* 16 bytes: when passing 16 bytes, the library will take them and use the last 4 bytes as the initial
counter block for the first block.

2.4. Initialization 12

CHAPTER
THREE

AES-NI GCM CRYPTO POLL MODE DRIVER

The AES-NI GCM PMD (librte_pmd_aesni_gem) provides poll mode crypto driver support for uti-
lizing Intel multi buffer library (see AES-NI Multi-buffer PMD documentation to learn more about it,
including installation).

The AES-NI GCM PMD supports synchronous mode of operation with
rte_cryptodev_sym_cpu_crypto_process function call for both AES-GCM and GMAC,
however GMAC support is limited to one segment per operation. Please refer to rte_crypto
programmer’s guide for more detail.

3.1 Features

AESNI GCM PMD has support for:
Authentication algorithms:

* RTE_CRYPTO_AUTH_AES_GMAC
AEAD algorithms:

* RTE_CRYPTO_AEAD_AES_GCM

3.2 Limitations

* In out-of-place operations, chained destination mbufs are not supported.

* Chained mbufs are only supported by RTE_CRYPTO_AEAD_AES_GCM algorithm, not
RTE_CRYPTO_AUTH_AES_GMAC.

* Cipher only is not supported.

3.3 Installation

To build DPDK with the AESNI_GCM_PMD the user is required to download the multi-buffer library
from here and compile it on their user system before building DPDK. The latest version of the library
supported by this PMD is v(0.53, which can be downloaded in https://github.com/01org/intel-ipsec-mb/
archive/v0.53.zip.

make
make install

13

https://github.com/01org/intel-ipsec-mb
https://github.com/01org/intel-ipsec-mb/archive/v0.53.zip
https://github.com/01org/intel-ipsec-mb/archive/v0.53.zip

Crypto Device Drivers, Release 20.02.1

Note: Compilation of the Multi-Buffer library is broken when GCC < 5.0, if library <= v0.53. If a
lower GCC version than 5.0, the workaround proposed by the following link should be used: https:
//github.com/intel/intel-ipsec-mb/issues/40.

As a reference, the following table shows a mapping between the past DPDK versions and the external
crypto libraries supported by them:

Table 3.1: DPDK and external crypto library version
compatibility

DPDK version | Crypto library version

16.04 - 16.11 Multi-buffer library 0.43 - 0.44
17.02 - 17.05 ISA-L Crypto v2.18

17.08 - 18.02 Multi-buffer library 0.46 - 0.48
18.05 - 19.02 Multi-buffer library 0.49 - 0.52
19.05+ Multi-buffer library 0.52 - 0.53

3.4 Initialization

In order to enable this virtual crypto PMD, user must:

* Build the multi buffer library (explained in Installation section).

* Set CONFIG_RTE_LIBRTE_PMD_AESNI_GCM-=y in config/common_base.
To use the PMD in an application, user must:

 Call rte_vdev_init(“crypto_aesni_gcm’) within the application.

* Use —vdev="crypto_aesni_gcm” in the EAL options, which will call rte_vdev_init() internally.
The following parameters (all optional) can be provided in the previous two calls:

 socket_id: Specify the socket where the memory for the device is going to be allocated (by default,
socket_id will be the socket where the core that is creating the PMD is running on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).
* max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./12fwd-crypto -1 1 -n 4 —-vdev="crypto_aesni_gcm, socket_id=0,max_nb_sessions=128" \
-—— —-p 1 —-—cdev SW —--chain AEAD --aead_algo "aes-gcm"

3.4. Initialization 14

https://github.com/intel/intel-ipsec-mb/issues/40
https://github.com/intel/intel-ipsec-mb/issues/40

CHAPTER
FOUR

ARMVS8 CRYPTO POLL MODE DRIVER

This code provides the initial implementation of the ARMvS crypto PMD. The driver uses ARMvVS cryp-
tographic extensions to process chained crypto operations in an optimized way. The core functionality
is provided by a low-level library, written in the assembly code.

4.1 Features

ARMVvS Crypto PMD has support for the following algorithm pairs:
Supported cipher algorithms:

e RTE_CRYPTO_CIPHER_AES_CBC
Supported authentication algorithms:

e RTE_CRYPTO_AUTH_SHA1l_HMAC

e RTE_CRYPTO_AUTH_SHA256_HMAC

4.2 Installation

In order to enable this virtual crypto PMD, user must:
* Download AArch64 crypto library source code from here

e Export the environmental variable ARMV8_CRYPTO_LIB_PATH with the path to
AArché64cryptolib library.

* Build the library by invoking:
make —-C SARMVS8_CRYPTO_LIB_PATH/

* Set CONFIG_RTE_LIBRTE_PMD_ARMVSE_CRYPTO=y in config/defconfig_arm64-armv8a-
linux-gcc

The corresponding device can be created only if the following features are supported by the CPU:
e RTE_CPUFLAG_AES
* RTE_CPUFLAG_SHA1
e RTE_CPUFLAG_SHA2

e RTE_CPUFLAG_NEON

15

https://github.com/ARM-software/AArch64cryptolib

Crypto Device Drivers, Release 20.02.1

4.3 Initialization

User can use app/test application to check how to use this PMD and to verify crypto processing.

Test name is cryptodev_sw_armv§8_autotest.

4.4 Limitations

* Maximum number of sessions is 2048.

* Only chained operations are supported.

* AES-128-CBC is the only supported cipher variant.
 Cipher input data has to be a multiple of 16 bytes.

* Digest input data has to be a multiple of 8 bytes.

4.3. Initialization

16

CHAPTER
FIVE

NXP CAAM JOB RING (CAAM_JR)

The caam_jr PMD provides poll mode crypto driver support for NXP SEC 4.x+ (CAAM) hardware
accelerator. More information is available at:

NXP Cryptographic Acceleration Technology.

5.1 Architecture

SEC is the SOC’s security engine, which serves as NXP’s latest cryptographic acceleration and offload-
ing hardware. It combines functions previously implemented in separate modules to create a modular
and scalable acceleration and assurance engine. It also implements block encryption algorithms, stream
cipher algorithms, hashing algorithms, public key algorithms, run-time integrity checking, and a hard-
ware random number generator. SEC performs higher-level cryptographic operations than previous NXP
cryptographic accelerators. This provides significant improvement to system level performance.

SEC HW accelerator above 4.x+ version are also known as CAAM.

caam_jr PMD is one of DPAA drivers which uses uio interface to interact with Linux kernel for configure
and destroy the device instance (ring).

5.2 Implementation

SEC provides platform assurance by working with SecMon, which is a companion logic block that
tracks the security state of the SOC. SEC is programmed by means of descriptors (not to be confused
with frame descriptors (FDs)) that indicate the operations to be performed and link to the message and
associated data. SEC incorporates two DMA engines to fetch the descriptors, read the message data, and
write the results of the operations. The DMA engine provides a scatter/gather capability so that SEC
can read and write data scattered in memory. SEC may be configured by means of software for dynamic
changes in byte ordering. The default configuration for this version of SEC is little-endian mode.

Note that one physical Job Ring represent one caam_jr device.

5.3 Features

The CAAM_JR PMD has support for:
Cipher algorithms:

e RTE_CRYPTO_CIPHER_3DES_CBC

17

https://www.nxp.com/applications/solutions/internet-of-things/secure-things/network-security-technology/cryptographic-acceleration-technology:NETWORK_SECURITY_CRYPTOG

Crypto Device Drivers, Release 20.02.1

RTE_CRYPTO_CIPHER_AES128_CBC
RTE_CRYPTO_CIPHER_AES192_CBC
RTE_CRYPTO_CIPHER_AES256_CBC
RTE_CRYPTO_CIPHER_AES128_CTR
RTE_CRYPTO_CIPHER_AES192_CTR

RTE_CRYPTO_CIPHER_AES256_CTR

Hash algorithms:

RTE_CRYPTO_AUTH_SHA1l_HMAC

RTE_CRYPTO_AUTH_SHA224_HMAC
RTE_CRYPTO_AUTH_SHA256_HMAC
RTE_CRYPTO_AUTH_SHA384_HMAC
RTE_CRYPTO_AUTH_SHA512_HMAC

RTE_CRYPTO_AUTH_MD5_HMAC

AEAD algorithms:

5.4

5.5

5.6

RTE_CRYPTO_AEAD_AES_GCM

Supported DPAA SoCs

LS1046A/LS1026A
LS1043A/LS1023A
LS1028A
LS1012A

Limitations

Hash followed by Cipher mode is not supported

Only supports the session-oriented API implementation (session-less APIs are not supported).

Prerequisites

caam_jr driver has following dependencies are not part of DPDK and must be installed separately:

NXP Linux SDK

NXP Linux software development kit (SDK) includes support for the family of QorIQ® ARM-
Architecture-based system on chip (SoC) processors and corresponding boards.

It includes the Linux board support packages (BSPs) for NXP SoCs, a fully operational tool chain,
kernel and board specific modules.

5.4. Supported DPAA SoCs 18

Crypto Device Drivers, Release 20.02.1

SDK and related information can be obtained from: NXP QorlQ SDK.
Currently supported by DPDK:
* NXP SDK 18.09+.
* Supported architectures: arm64 LE.
* Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

5.7 Pre-Installation Configuration

5.7.1 Config File Options

The following options can be modified in the config file to enable caam_jr PMD.
Please note that enabling debugging options may affect system performance.

* CONFIG_RTE_LIBRTE_PMD_CAAM_JR (default n) By default it is only enabled in com-
mon_linux config. Toggle compilation of the 1ibrte_pmd_caam_jr driver.

* CONFIG_RTE_LIBRTE_PMD_CAAM_ JR_BE (default n) By default it is disabled. It can be
used when the underlying hardware supports the CAAM in BE mode. LS1043A, LS1046A and
LS1012A support CAAM in BE mode. LS1028A supports CAAM in LE mode.

5.8 Installations

To compile the caam_jr PMD for Linux arm64 gcc target, run the following make command:

cd <DPDK-source-directory>
make config T=arm64-armv8a-linux—gcc install

5.9 Enabling logs

For enabling logs, use the following EAL parameter:

./your_crypto_application <EAL args> —--log-level=pmd.crypto.caam,<level>

5.7. Pre-Installation Configuration 19

http://www.nxp.com/products/software-and-tools/run-time-software/linux-sdk/linux-sdk-for-qoriq-processors:SDKLINUX

CHAPTER
SIX

AMD CCP POLL MODE DRIVER

This code provides the initial implementation of the ccp poll mode driver. The CCP poll mode driver
library (librte_pmd_ccp) implements support for AMD’s cryptographic co-processor (CCP). The CCP
PMD is a virtual crypto poll mode driver which schedules crypto operations to one or more available
CCP hardware engines on the platform. The CCP PMD provides poll mode crypto driver support for the

following hardware accelerator devices:

(0x1456)
(0x1468)

AMD Cryptographic Co-processor
AMD Cryptographic Co-processor

6.1 Features

CCP crypto PMD has support for:
Cipher algorithms:
e RTE_CRYPTO_CIPHER_AES_CBC
e RTE_CRYPTO_CIPHER_AES_ECB
e RTE_CRYPTO_CIPHER_AES_CTR
e RTE_CRYPTO_CIPHER_3DES_CBC
Hash algorithms:
e RTE_CRYPTO_AUTH_SHA1
e RTE_CRYPTO_AUTH_SHAI1_HMAC
e RTE_CRYPTO_AUTH SHA224
e RTE_CRYPTO_AUTH_SHA224_HMAC
* RTE_CRYPTO_AUTH_SHA256
¢ RTE_CRYPTO_AUTH_SHA256_HMAC
e RTE_CRYPTO_AUTH_SHA384
* RTE_CRYPTO_AUTH_SHA384_HMAC
e RTE_CRYPTO_AUTH_ SHAS512
e RTE_CRYPTO_AUTH_SHAS512_HMAC
e RTE_CRYPTO_AUTH_MD5_HMAC

e RTE_CRYPTO_AUTH_AES_CMAC

20

Crypto Device Drivers, Release 20.02.1

e RTE_CRYPTO_AUTH_SHA3_224
e RTE_CRYPTO_AUTH_SHA3_224_HMAC
e RTE_CRYPTO_AUTH_SHA3_256
e RTE_CRYPTO_AUTH_SHA3_256_HMAC
e RTE_CRYPTO_AUTH_SHA3_384
e RTE_CRYPTO_AUTH_SHA3_384_HMAC
e RTE_CRYPTO_AUTH_ SHA3_512
e RTE_CRYPTO_AUTH_SHA3_512_HMAC
AEAD algorithms:

e RTE_CRYPTO_AEAD_AES_GCM

6.2 Installation

To compile ccp PMD, it has to be enabled in the config/common_base file and openssl packages have to
be installed in the build environment.

* CONFIG_RTE_LIBRTE_PMD_CCP=y
For Ubuntu 16.04 LTS use below to install openssl in the build system:
sudo apt—-get install openssl

This code was verified on Ubuntu 16.04.

6.3 Initialization

Bind the CCP devices to DPDK UIO driver module before running the CCP PMD stack. e.g. for the
0x1456 device:

cd to the top-level DPDK directory

modprobe uio

insmod ./build/kmod/igb_uio.ko

echo "1022 1456" > /sys/bus/pci/drivers/igb_uio/new_id

Another way to bind the CCP devices to DPDK UIO driver is by using the dpdk—-devbind. py script.
The following command assumes BFD as 0000:09:00.2:

cd to the top-level DPDK directory
./usertools/dpdk-devbind.py -b igb_uio 0000:09:00.2

In order to enable the ccp crypto PMD, user must set CONFIG_RTE_LIBRTE_PMD_CCP=y in con-
fig/common_base.

To use the PMD in an application, user must:
* Call rte_vdev_init(“crypto_ccp”) within the application.
* Use —vdev="crypto_ccp” in the EAL options, which will call rte_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

6.2. Installation 21

Crypto Device Drivers, Release 20.02.1

» socket_id: Specify the socket where the memory for the device is going to be allocated. (by
default, socket_id will be the socket where the core that is creating the PMD is running on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device.
* max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).
* ccp_auth_opt: Specify authentication operations to perform on CPU using openssl APIs.

To validate ccp pmd, 12fwd-crypto example can be used with following command:

sudo ./build/l12fwd-crypto -1 1 -n 4 —--vdev "crypto_ccp" -- -p 0x1

——chain CIPHER_HASH —--cipher_op ENCRYPT —--cipher_algo aes-cbc

——cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f

——cipher_iv 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:ff

——auth_op GENERATE --auth_algo shal-hmac

--auth_key 11:11:11:11:11:11:211:11:11:11:12:12:11:11:2121:121:121:11:11:2121:11:11
:11.11:117:11:21:121:22:221:2121:21:12:221:12:22:212:12:21:12:22:212:12:11:12:11:11
:11:11:2121:121:11:121:212:12:12:12:221:2121:2121:12:12:11:11

The CCP PMD also supports computing authentication over CPU with cipher offloaded to CCP. To
enable this feature, pass an additional argument as ccp_auth_opt=1 to —vdev parameters as following:

sudo ./build/l12fwd-crypto -1 1 -n 4 —--vdev "crypto_ccp,ccp_auth_opt=1" -- —-p 0x1
——chain CIPHER_HASH --cipher_op ENCRYPT --cipher_algo aes-cbc

——cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f

——cipher_iv 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:ff

——auth_op GENERATE --auth_algo shal-hmac

--auth_key 11:11:11:11:11:11:11:11:11:121:211:11:121:11:11:211:121:12:11:11:11:11
:11:121:2121:121:11:21:212:212:221:12:21:12:212:22:12:22:121:212:2121:12:12:11:11:11:11
:11:11:127:121:11:11:212:12:12:11:211:22:121:12:12:11:11

6.4 Limitations

* Chained mbufs are not supported.

* MD5_HMAC is supported only for CPU based authentication.

6.4. Limitations 22

CHAPTER
SEVEN

NXP DPAA2 CAAM (DPAA2_SEC)

The DPAA2_SEC PMD provides poll mode crypto driver support for NXP DPAA2 CAAM hardware
accelerator.

7.1 Architecture

SEC is the SOC’s security engine, which serves as NXP’s latest cryptographic acceleration and offload-
ing hardware. It combines functions previously implemented in separate modules to create a modular
and scalable acceleration and assurance engine. It also implements block encryption algorithms, stream
cipher algorithms, hashing algorithms, public key algorithms, run-time integrity checking, and a hard-
ware random number generator. SEC performs higher-level cryptographic operations than previous NXP
cryptographic accelerators. This provides significant improvement to system level performance.

DPAA2_SEC is one of the hardware resource in DPAA2 Architecture. More information on DPAA2
Architecture is described in dpaa2_overview.

DPAA2_SEC PMD is one of DPAA?2 drivers which interacts with Management Complex (MC) portal
to access the hardware object - DPSECI. The MC provides access to create, discover, connect, configure
and destroy dpseci objects in DPAA2_SEC PMD.

DPAA2_SEC PMD also uses some of the other hardware resources like buffer pools, queues, queue
portals to store and to enqueue/dequeue data to the hardware SEC.

DPSECI objects are detected by PMD using a resource container called DPRC (like in dpaa2_overview).

For example:

DPRC.1 (bus)

s fomm fo— o pom +

\ | \ \ | \
DPMCP.1 DPIO.1 DPBP.1 DPNI.1 DPMAC.1 DPSECI.1
DPMCP.2 DPIO.2 DPNI.2 DPMAC.2 DPSECI.2
DPMCP. 3

7.2 Implementation

SEC provides platform assurance by working with SecMon, which is a companion logic block that
tracks the security state of the SOC. SEC is programmed by means of descriptors (not to be confused
with frame descriptors (FDs)) that indicate the operations to be performed and link to the message and
associated data. SEC incorporates two DMA engines to fetch the descriptors, read the message data, and
write the results of the operations. The DMA engine provides a scatter/gather capability so that SEC

23

Crypto Device Drivers, Release 20.02.1

can read and write data scattered in memory. SEC may be configured by means of software for dynamic

changes in byte ordering. The default configuration for this version of SEC is little-endian mode.

A block diagram similar to dpaa2 NIC is shown below to show where DPAA2_SEC fits in the DPAA2

Bus model
o +
| DPDK DPAA2_ SEC |
[PMD [
o + o +
| MC SEC object |....... | Mempool |
| (DPSECI) | | (DPBP) |
o ————— + - o +
» |
| | <enqueue,
| | dequeue>
\ |
tom—t Vo4
.| DPIO driver|
| (DPIO) |
- fo— = +
| QOBMAN |
. . | Driver |
Fom fo— + o et
| dpaa2 bus | |
| VEIO £SImMC—DUS | ittt ittt it teeeee]l ittt ettt e e e e e ettt eeeenn
\ \ \
\ /bus/fslmc | \
o +
\
= = HARDWARE = | == ==
DPIO

DPSECI-—--DPBP

7.3 Features

The DPAA2_SEC PMD has support for:
Cipher algorithms:

e RTE_CRYPTO_CIPHER_3DES_CBC

RTE_CRYPTO_CIPHER_AES128_CBC

RTE_CRYPTO_CIPHER_AES192_CBC

RTE_CRYPTO_CIPHER_AES256_CBC

RTE_CRYPTO_CIPHER_AES128_CTR

RTE_CRYPTO_CIPHER_AES192_CTR
e RTE_CRYPTO_CIPHER_AES256_CTR
Hash algorithms:
e RTE_CRYPTO_AUTH_SHA1l_HMAC

e RTE_CRYPTO_AUTH_SHA224_HMAC

7.3. Features

24

Crypto Device Drivers, Release 20.02.1

e RTE_CRYPTO_AUTH_SHA256_HMAC

e RTE_CRYPTO_AUTH_SHA384_HMAC

* RTE_CRYPTO_AUTH_SHA512_HMAC

* RTE_CRYPTO_AUTH_MD5_HMAC
AEAD algorithms:

e RTE_CRYPTO_AEAD_AES_GCM

7.4 Supported DPAA2 SoCs

LS2160A

LS2084A/LS2044A
LS2088A/LS2048A
LS1088A/LS1048A

7.5 Whitelisting & Blacklisting

For blacklisting a DPAA2 SEC device, following commands can be used.

<dpdk app> <EAL args> -b "fslmc:dpseci.x" —-

Where x is the device object id as configured in resource container.

7.6 Limitations

* Hash followed by Cipher mode is not supported

* Only supports the session-oriented API implementation (session-less APIs are not supported).

7.7 Prerequisites

DPAA2_SEC driver has similar pre-requisites as described in dpaa2_overview. The following depen-
dencies are not part of DPDK and must be installed separately:

See ../platform/dpaa2 for setup information
Currently supported by DPDK:
* NXP SDK 19.09+.
* MC Firmware version 10.18.0 and higher.
* Supported architectures: arm64 LE.

* Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

7.4. Supported DPAA2 SoCs 25

Crypto Device Drivers, Release 20.02.1

7.8 Pre-Installation Configuration

7.8.1 Config File Options

Basic DPAA2 config file options are described in dpaa2_overview. In addition to those, the following
options can be modified in the config file to enable DPAA2_SEC PMD.

Please note that enabling debugging options may affect system performance.

* CONFIG_RTE_LIBRTE_PMD_DPAA2_SEC (default n) By default it is only enabled in
defconfig_arm64-dpaa-* config. Toggle compilation of the 1ibrte_pmd_dpaa2_sec driver.

7.9 Installations

To compile the DPAA2_SEC PMD for Linux arm64 gcc target, run the following make command:

cd <DPDK-source-directory>
make config T=arm64-dpaa-linux-gcc install

7.10 Enabling logs

For enabling logs, use the following EAL parameter:

./your_crypto_application <EAL args> —--log-level=pmd.crypto.dpaa2:<level>

Using crypto.dpaaZ2 as log matching criteria, all Crypto PMD logs can be enabled which are lower
than logging level.

7.8. Pre-Installation Configuration 26

CHAPTER
EIGHT

NXP DPAA CAAM (DPAA_SEC)

The DPAA_SEC PMD provides poll mode crypto driver support for NXP DPAA CAAM hardware
accelerator.

8.1 Architecture

SEC is the SOC’s security engine, which serves as NXP’s latest cryptographic acceleration and offload-
ing hardware. It combines functions previously implemented in separate modules to create a modular
and scalable acceleration and assurance engine. It also implements block encryption algorithms, stream
cipher algorithms, hashing algorithms, public key algorithms, run-time integrity checking, and a hard-
ware random number generator. SEC performs higher-level cryptographic operations than previous NXP
cryptographic accelerators. This provides significant improvement to system level performance.

DPAA_SEC is one of the hardware resource in DPAA Architecture. More information on DPAA Archi-
tecture is described in dpaa_overview.

DPAA_SEC PMD is one of DPAA drivers which interacts with QBMAN to create, configure and destroy
the device instance using queue pair with CAAM portal.

DPAA_SEC PMD also uses some of the other hardware resources like buffer pools, queues, queue
portals to store and to enqueue/dequeue data to the hardware SEC.

8.2 Implementation

SEC provides platform assurance by working with SecMon, which is a companion logic block that
tracks the security state of the SOC. SEC is programmed by means of descriptors (not to be confused
with frame descriptors (FDs)) that indicate the operations to be performed and link to the message and
associated data. SEC incorporates two DMA engines to fetch the descriptors, read the message data, and
write the results of the operations. The DMA engine provides a scatter/gather capability so that SEC
can read and write data scattered in memory. SEC may be configured by means of software for dynamic
changes in byte ordering. The default configuration for this version of SEC is little-endian mode.

8.3 Features

The DPAA PMD has support for:
Cipher algorithms:

e RTE_CRYPTO_CIPHER_3DES_CBC

27

Crypto Device Drivers, Release 20.02.1

¢ RTE_CRYPTO_CIPHER_AES128_CBC
e RTE_CRYPTO_CIPHER_AES192_CBC
* RTE_CRYPTO_CIPHER_AES256_CBC
¢ RTE_CRYPTO_CIPHER_AES128_CTR
e RTE_CRYPTO_CIPHER_AES192_CTR
e RTE_CRYPTO_CIPHER_AES256_CTR
¢ RTE_CRYPTO_CIPHER_SNOW3G_UEAZ2
e RTE_CRYPTO_CIPHER_ZUC_EEA3
Hash algorithms:
e RTE_CRYPTO_AUTH_SHAI1_HMAC
e RTE_CRYPTO_AUTH_SHA224_HMAC
* RTE_CRYPTO_AUTH_SHA256_HMAC
* RTE_CRYPTO_AUTH_SHA384_HMAC
e RTE_CRYPTO_AUTH_SHAS512_HMAC
e RTE_CRYPTO_AUTH_SNOW3G_UIA2
e RTE_CRYPTO_AUTH_MD5_HMAC
e RTE_CRYPTO_AUTH_ZUC_EIA3
AEAD algorithms:

e RTE_CRYPTO_AEAD_AES_GCM

8.4 Supported DPAA SoCs

* LS1046A/LS1026A
* LS1043A/LS1023A

8.5 Whitelisting & Blacklisting

For blacklisting a DPAA device, following commands can be used.

<dpdk app> <EAL args> -b "dpaa:dpaa_sec-X" —-- ...
e.g. "dpaa:dpaa_sec—-1"

or to disable all 4 SEC devices
-b "dpaa:dpaa_sec-1" -b "dpaa:dpaa_sec-2" -b "dpaa:dpaa_sec-3" -b "dpaa:dpaa_sec—4"

8.6 Limitations

» Hash followed by Cipher mode is not supported

* Only supports the session-oriented API implementation (session-less APIs are not supported).

8.4. Supported DPAA SoCs 28

Crypto Device Drivers, Release 20.02.1

8.7 Prerequisites

DPAA_SEC driver has similar pre-requisites as described in dpaa_overview.
See ../platform/dpaa for setup information

* Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

8.8 Pre-Installation Configuration

8.8.1 Config File Options

Basic DPAA config file options are described in dpaa_overview. In addition to those, the following
options can be modified in the config file to enable DPAA_SEC PMD.

Please note that enabling debugging options may affect system performance.

* CONFIG_RTE_LIBRTE_PMD_DPAA_SEC (default n) By default it is only enabled in
defconfig_arm64-dpaa-* config. Toggle compilation of the 1ibrte_pmd_dpaa_sec driver.

8.9 Installations

To compile the DPAA_SEC PMD for Linux arm64 gcc target, run the following make command:

cd <DPDK-source-directory>
make config T=armé64-dpaa-linux—-gcc install

8.10 Enabling logs

For enabling logs, use the following EAL parameter:

./your_crypto_application <EAL args> —--log-level=pmd.crypto.dpaa:<level>

Using pmd . crypto.dpaa as log matching criteria, all Crypto PMD logs can be enabled which are
lower than logging level.

8.7. Prerequisites 29

CHAPTER
NINE

KASUMI CRYPTO POLL MODE DRIVER

The KASUMI PMD (librte_pmd_kasumi) provides poll mode crypto driver support for utilizing Intel
IPSec Multi-buffer library which implements F8 and F9 functions for KASUMI UEA1 cipher and UIA1
hash algorithms.

9.1 Features

KASUMI PMD has support for:
Cipher algorithm:

* RTE_CRYPTO_CIPHER_KASUMI_F8
Authentication algorithm:

* RTE_CRYPTO_AUTH_KASUMI_F9

9.2 Limitations

* Chained mbufs are not supported.
* KASUMI(F9) supported only if hash offset and length field is byte-aligned.

* In-place bit-level operations for KASUMI(F8) are not supported (if length and/or offset of data to
be ciphered is not byte-aligned).

9.3 Installation

To build DPDK with the KASUMI_PMD the user is required to download the multi-buffer library from
here and compile it on their user system before building DPDK. The latest version of the library sup-
ported by this PMD is v0.53, which can be downloaded from https://github.com/01org/intel-ipsec-mb/
archive/v0.53.zip.

After downloading the library, the user needs to unpack and compile it on their system before building
DPDK:

make
make install

30

https://github.com/01org/intel-ipsec-mb
https://github.com/01org/intel-ipsec-mb
https://github.com/01org/intel-ipsec-mb
https://github.com/01org/intel-ipsec-mb/archive/v0.53.zip
https://github.com/01org/intel-ipsec-mb/archive/v0.53.zip

Crypto Device Drivers, Release 20.02.1

Note: Compilation of the Multi-Buffer library is broken when GCC < 5.0, if library <= v0.53. If a
lower GCC version than 5.0, the workaround proposed by the following link should be used: https:
//github.com/intel/intel-ipsec-mb/issues/40.

As a reference, the following table shows a mapping between the past DPDK versions and the external
crypto libraries supported by them:

Table 9.1: DPDK and external crypto library
version compatibility

DPDK version | Crypto library version
16.11 - 19.11 LibSSO KASUMI
20.02+ Multi-buffer library 0.53

9.4 Initialization

In order to enable this virtual crypto PMD, user must:
* Build the multi buffer library (explained in Installation section).

¢ Build DPDK as follows:

make config T=x86_64-native-linux—gcc
sed -1 's, \ (CONFIG_RTE_LIBRTE_PMD_KASUMI\)=n,\1=y,' build/.config
make

To use the PMD in an application, user must:

 Call rte_vdev_init(“crypto_kasumi”’) within the application.

* Use —vdev="crypto_kasumi” in the EAL options, which will call rte_vdev_init() internally.
The following parameters (all optional) can be provided in the previous two calls:

 socket_id: Specify the socket where the memory for the device is going to be allocated (by default,
socket_id will be the socket where the core that is creating the PMD is running on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).
* max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./12fwd-crypto -1 1 -n 4 —-vdev="crypto_kasumi, socket_id=0,max_nb_sessions=128" \
-— -p 1 —-cdev SW —--chain CIPHER_ONLY --cipher_algo "kasumi-£f8"

9.5 Extra notes on KASUMI F9

When using KASUMI F9 authentication algorithm, the input buffer must be constructed according to the
3GPP KASUMI specifications (section 4.4, page 13): http://cryptome.org/3gpp/35201-900.pdf. Input
buffer has to have COUNT (4 bytes), FRESH (4 bytes), MESSAGE and DIRECTION (1 bit) concate-
nated. After the DIRECTION bit, a single ‘1’ bit is appended, followed by between 0 and 7 ‘0’ bits, so
that the total length of the buffer is multiple of 8 bits. Note that the actual message can be any length,
specified in bits.

9.4. Initialization 31

https://github.com/intel/intel-ipsec-mb/issues/40
https://github.com/intel/intel-ipsec-mb/issues/40
http://cryptome.org/3gpp/35201-900.pdf

Crypto Device Drivers, Release 20.02.1

Once this buffer is passed this way, when creating the crypto operation, length of data to authenticate
(op.sym.auth.data.length) must be the length of all the items described above, including the padding at

the end. Also, offset of data to authenticate (op.sym.auth.data.offset) must be such that points at the start
of the COUNT bytes.

9.5. Extra notes on KASUMI F9 32

CHAPTER
TEN

CAVIUM OCTEON TX CRYPTO POLL MODE DRIVER

The OCTEON TX crypto poll mode driver provides support for offloading cryptographic operations to
cryptographic accelerator units on OCTEON TX ® family of processors (CN8XXX). The OCTEON
TX crypto poll mode driver enqueues the crypto request to this accelerator and dequeues the response
once the operation is completed.

10.1 Supported Symmetric Crypto Algorithms

10.1.1 Cipher Algorithms

e RTE_CRYPTO_CIPHER_NULL

* RTE_CRYPTO_CIPHER_3DES_CBC

e RTE_CRYPTO_CIPHER_3DES_ECB

e RTE_CRYPTO_CIPHER_AES_CBC

e RTE_CRYPTO_CIPHER_AES_CTR

e RTE_CRYPTO_CIPHER_AES_XTS

e RTE_CRYPTO_CIPHER_DES_CBC

e RTE_CRYPTO_CIPHER_KASUMI_F8

e RTE_CRYPTO_CIPHER_SNOW3G_UEA2

e RTE_CRYPTO_CIPHER_ZUC_EEA3

10.1.2 Hash Algorithms

e RTE_CRYPTO_AUTH_NULL

e RTE_CRYPTO_AUTH_AES_GMAC
e RTE_CRYPTO_AUTH_KASUMI_F9
e RTE_CRYPTO_AUTH_MD5

e RTE_CRYPTO_AUTH_MD5_HMAC
e RTE_CRYPTO_AUTH_SHA1

e RTE_CRYPTO_AUTH_SHAI1_HMAC

33

Crypto Device Drivers, Release 20.02.1

e RTE_CRYPTO_AUTH_SHA224
e RTE_CRYPTO_AUTH_SHA224_HMAC
e RTE_CRYPTO_AUTH_SHA256
* RTE_CRYPTO_AUTH_SHA256_HMAC
* RTE_CRYPTO_AUTH_SHA384
e RTE_CRYPTO_AUTH_SHA384_HMAC
e RTE_CRYPTO_AUTH_SHAS512
e RTE_CRYPTO_AUTH_SHA512_HMAC
* RTE_CRYPTO_AUTH_SNOW3G_UIA2

* RTE_CRYPTO_AUTH_ZUC_EIA3

10.1.3 AEAD Algorithms

e RTE_CRYPTO_AEAD AES_GCM

10.2 Supported Asymmetric Crypto Algorithms

e RTE_CRYPTO_ASYM XFORM_RSA

e RTE_CRYPTO_ASYM XFORM_MODEX

10.3 Config flags

For compiling the OCTEON TX crypto poll mode driver, please check if the CON-
FIG_RTE_LIBRTE_PMD_OCTEONTX_CRYPTO setting is set to y in config/common_base file.

e CONFIG_RTE_LIBRTE_PMD_OCTEONTX_CRYPTO=y

10.4 Compilation

The OCTEON TX crypto poll mode driver can be compiled either natively on OCTEON TX ® board
or cross-compiled on an x86 based platform.

Refer ../platform/octeontx for details about setting up the platform and building DPDK applications.

Note: OCTEON TX crypto PF driver needs microcode to be available at /lib/firmware/ directory. Refer
SDK documents for further information.

SDK and related information can be obtained from: Cavium support site.

10.2. Supported Asymmetric Crypto Algorithms 34

https://support.cavium.com/

Crypto Device Drivers, Release 20.02.1

10.5 Execution

The number of crypto VFs to be enabled can be controlled by setting sysfs entry, sriov_numyvfs, for the
corresponding PF driver.

echo <num_vfs> > /sys/bus/pci/devices/<dev_bus_id>/sriov_numvfs
The device bus ID, dev_bus_id, to be used in the above step can be found out by using dpdk-devbind.py

script. The OCTEON TX crypto PF device need to be identified and the corresponding device number
can be used to tune various PF properties.

Once the required VFs are enabled, dpdk-devbind.py script can be used to identify the VFs. To be
accessible from DPDK, VFs need to be bound to vfio-pci driver:

cd <dpdk directory>
./usertools/dpdk-devbind.py -u <vf device no>
./usertools/dpdk-devbind.py -b vfio-pci <vf device no>

Appropriate huge page need to be setup in order to run the DPDK example applications.

echo 8 > /sys/kernel/mm/hugepages/hugepages—-524288kB/nr_hugepages
mkdir /mnt/huge
mount -t hugetlbfs nodev /mnt/huge

Example applications can now be executed with crypto operations offloaded to OCTEON TX crypto
PMD.

./build/ipsec-secgw --log-level=8 -c Oxff -- -P -p 0x3 -u 0x2 --config
"(1,0,0),(0,0,0)" —-f epl.cfg

10.6 Testing

The symmetric crypto operations on OCTEON TX crypto PMD may be verified by running the test
application:

./test
RTE>>cryptodev_octeontx_autotest

The asymmetric crypto operations on OCTEON TX crypto PMD may be verified by running the test
application:

./test
RTE>>cryptodev_octeontx_asym_autotest

10.5. Execution 35

CHAPTER
ELEVEN

MARVELL OCTEON TX2 CRYPTO POLL MODE DRIVER

The OCTEON TX2 crypto poll mode driver provides support for offloading cryptographic operations to
cryptographic accelerator units on the OCTEON TX2 © family of processors (CN9XXX).

More information about OCTEON TX2 SoCs may be obtained from https://www.marvell.com

11.1 Features

The OCTEON TX2 crypto PMD has support for:

11.1.1 Symmetric Crypto Algorithms

Cipher algorithms:

RTE_CRYPTO_CIPHER _NULL
RTE_CRYPTO_CIPHER_3DES_CBC
RTE_CRYPTO_CIPHER_3DES_ECB
RTE_CRYPTO_CIPHER_AES_CBC
RTE_CRYPTO_CIPHER_AES_CTR
RTE_CRYPTO_CIPHER_AES_XTS
RTE_CRYPTO_CIPHER_DES_CBC
RTE_CRYPTO_CIPHER_KASUMI_FS8
RTE_CRYPTO_CIPHER_SNOW3G_UEAZ2

RTE_CRYPTO_CIPHER_ZUC_EEA3

Hash algorithms:

RTE_CRYPTO_AUTH_NULL
RTE_CRYPTO_AUTH_AES_GMAC
RTE_CRYPTO_AUTH_KASUMI_F9
RTE_CRYPTO_AUTH_MDb5
RTE_CRYPTO_AUTH_MD5_HMAC

RTE_CRYPTO_AUTH_SHA1

36

https://www.marvell.com

Crypto Device Drivers, Release 20.02.1

e RTE_CRYPTO_AUTH_SHA1l_HMAC

e RTE_CRYPTO_AUTH_SHA224

* RTE_CRYPTO_AUTH_SHA224_HMAC
e RTE_CRYPTO_AUTH_SHA256

e RTE_CRYPTO_AUTH_SHA256_HMAC
* RTE_CRYPTO_AUTH_SHA384

e RTE_CRYPTO_AUTH_SHA384_HMAC
e RTE_CRYPTO_AUTH_SHAS12

e RTE_CRYPTO_AUTH_SHA512_HMAC
* RTE_CRYPTO_AUTH_SNOW3G_UIAZ2
e RTE_CRYPTO_AUTH_ZUC_EIA3

AEAD algorithms:

e RTE_CRYPTO_AEAD_AES_GCM

11.1.2 Asymmetric Crypto Algorithms

e RTE_CRYPTO_ASYM XFORM_RSA

e RTE_CRYPTO_ASYM XFORM_MODEX

11.2 Installation

The OCTEON TX2 crypto PMD may be compiled natively on an OCTEON TX2 platform or cross-
compiled on an x86 platform.

Enable OCTEON TX2 crypto PMD in your config file:
* CONFIG_RTE_LIBRTE_PMD_OCTEONTX2_CRYPTO=y

Refer to ../platform/octeontx?2 for instructions to build your DPDK application.

Note: The OCTEON TX2 crypto PMD uses services from the kernel mode OCTEON TX2 crypto PF
driver in linux. This driver is included in the OCTEON TX SDK.

11.3 Initialization

List the CPT PF devices available on your OCTEON TX2 platform:
lspci —-d:a0fd
a0fd is the CPT PF device id. You should see output similar to:

0002:10:00.0 Class 1080: Device 177d:a0fd

Set sriov_numvfs on the CPT PF device, to create a VF:

11.2. Installation 37

Crypto Device Drivers, Release 20.02.1

echo 1 > /sys/bus/pci/drivers/octeontx2-cpt/0002:10:00.0/sriov_numvfs

Bind the CPT VF device to the vfio_pci driver:

echo '177d aOfe' > /sys/bus/pci/drivers/vfio-pci/new_id
echo 0002:10:00.1 > /sys/bus/pci/devices/0002:10:00.1/driver/unbind
echo 0002:10:00.1 > /sys/bus/pci/drivers/vfio-pci/bind

Another way to bind the VF would be to use the dpdk—devbind. py script:

cd <dpdk directory>
./usertools/dpdk-devbind.py —u 0002:10:00.1
./usertools/dpdk—-devbind.py -b vfio-pci 0002:10.00.1

Note: Ensure that sufficient huge pages are available for your application:

echo 8 > /sys/kernel/mm/hugepages/hugepages—524288kB/nr_hugepages

Refer to linux_gsg_hugepages for more details.

11.4 Debugging Options

Table 11.1: OCTEON TX2 crypto PMD debug options

| Component | EAL log command
1 | CPT —log-level="pmd.crypto.octeontx2,8’

11.5 Testing

The symmetric crypto operations on OCTEON TX2 crypto PMD may be verified by running the test
application:

./test
RTE>>cryptodev_octeontx2_autotest

The asymmetric crypto operations on OCTEON TX2 crypto PMD may be verified by running the test
application:

./test
RTE>>cryptodev_octeontx2_asym_autotest

11.4. Debugging Options 38

CHAPTER
TWELVE

OPENSSL CRYPTO POLL MODE DRIVER

This code provides the initial implementation of the openssl poll mode driver. All cryptography opera-
tions are using Openssl library crypto APIL. Each algorithm uses EVP interface from openssl API - which
is recommended by Openssl maintainers.

For more details about openssl library please visit openssl webpage: https://www.openssl.org/

12.1 Features

OpenSSL PMD has support for:
Supported cipher algorithms:
e RTE_CRYPTO_CIPHER_3DES_CBC
e RTE_CRYPTO_CIPHER_AES_CBC
e RTE_CRYPTO_CIPHER_AES_CTR
e RTE_CRYPTO_CIPHER_3DES_CTR
e RTE_CRYPTO_CIPHER DES DOCSISBPI
Supported authentication algorithms:
e RTE_CRYPTO_AUTH_AES_GMAC
e RTE_CRYPTO_AUTH_MD5
e RTE_CRYPTO_AUTH_SHA1
e RTE_CRYPTO_AUTH_SHA224
* RTE_CRYPTO_AUTH_SHA256
e RTE_CRYPTO_AUTH_SHA384
e RTE_CRYPTO_AUTH_SHAS512
e RTE_CRYPTO_AUTH_MD5_HMAC
e RTE_CRYPTO_AUTH_SHA1l_HMAC
e RTE_CRYPTO_AUTH_SHA224_HMAC
e RTE_CRYPTO_AUTH_SHA256_HMAC

e RTE_CRYPTO_AUTH_SHA384_HMAC

39

https://www.openssl.org/

Crypto Device Drivers, Release 20.02.1

* RTE_CRYPTO_AUTH_SHA512_HMAC
Supported AEAD algorithms:

e RTE_CRYPTO_AEAD_AES_GCM

e RTE_CRYPTO_AEAD AES_CCM
Supported Asymmetric Crypto algorithms:

e RTE_CRYPTO_ASYM XFORM_RSA

e RTE_CRYPTO_ASYM XFORM_DSA

e RTE_CRYPTO_ASYM XFORM_DH

e RTE_CRYPTO_ASYM XFORM_MODINV

* RTE_CRYPTO_ASYM XFORM_MODEX

12.2 Installation

To compile openssl PMD, it has to be enabled in the config/common_base file and appropriate openssl

packages have to be installed in the build environment.
The newest openssl library version is supported:
* 1.0.2h-fips 3 May 2016.
Older versions that were also verified:
* 1.0.1f 6 Jan 2014
* 1.0.1 14 Mar 2012
For Ubuntu 14.04 LTS these packages have to be installed in the build system:

sudo apt-get install openssl
sudo apt—-get install libc6-dev-i386 # for i686-native-linux—-gcc target

This code was also verified on Fedora 24. This code has NOT been verified on FreeBSD yet.

12.3 Initialization

User can use app/test application to check how to use this pmd and to verify crypto processing.

Test name is cryptodev_openssl_autotest. For asymmetric crypto operations testing, run cryp-

todev_openssl_asym_autotest.

To verify real traffic 12fwd-crypto example can be used with this command:

sudo ./build/12fwd-crypto -1 0-1 -n 4 —--vdev "crypto_openssl"

—-—vdev "crypto_openssl"-— -p 0x3 —--chain CIPHER_HASH

——cipher_op ENCRYPT --cipher_algo AES_CBC

——cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f

——iv 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:ff

—-—auth_op GENERATE --auth_algo SHA1l_HMAC

--auth_key 11:11:11:211:11:21:11:12:11:11:212:212:11:127:22:12:22:17:121:121:12:11
:11:121:11:121:11:211:212:221:121:121:21:2121:22:212:12:121:211:212:212:121:12:11:11:11:11
:11:11:11:121:21:12:212:221:121:11:12:21:12:212:11:11:11

12.2. Installation

40

Crypto Device Drivers, Release 20.02.1

12.4 Limitations

* Maximum number of sessions is 2048.

* Chained mbufs are supported only for source mbuf (destination must be contiguous).
» Hash only is not supported for GCM and GMAC.

* Cipher only is not supported for GCM and GMAC.

12.4. Limitations 41

CHAPTER
THIRTEEN

MVSAM CRYPTO POLL MODE DRIVER

The MVSAM CRYPTO PMD (librte_crypto_mvsam_pmd) provides poll mode crypto driver support
by utilizing MUSDK library, which provides cryptographic operations acceleration by using Security
Acceleration Engine (EIP197) directly from user-space with minimum overhead and high performance.

Detailed information about SoCs that use MVSAM crypto driver can be obtained here:
* https://www.marvell.com/embedded-processors/armada-70xx/
* https://www.marvell.com/embedded-processors/armada-80xx/

* https://www.marvell.com/embedded-processors/armada-3700/

13.1 Features

MVSAM CRYPTO PMD has support for:
Cipher algorithms:
e RTE_CRYPTO_CIPHER_NULL
e RTE_CRYPTO_CIPHER_AES_CBC
e RTE_CRYPTO_CIPHER_AES_CTR
e RTE_CRYPTO_CIPHER_AES_FECB
¢ RTE_CRYPTO_CIPHER_3DES_CBC
¢ RTE_CRYPTO_CIPHER_3DES_CTR
* RTE_CRYPTO_CIPHER_3DES_ECB
Hash algorithms:
e RTE_CRYPTO_AUTH_NULL
* RTE_CRYPTO_AUTH_MD5
* RTE_CRYPTO_AUTH_MD5_HMAC
e RTE_CRYPTO_AUTH_SHA1
¢ RTE_CRYPTO_AUTH_SHA1_HMAC
* RTE_CRYPTO_AUTH_SHA224

e RTE_CRYPTO_AUTH_SHA224_HMAC

42

https://www.marvell.com/embedded-processors/armada-70xx/
https://www.marvell.com/embedded-processors/armada-80xx/
https://www.marvell.com/embedded-processors/armada-3700/

Crypto Device Drivers, Release 20.02.1

e RTE_CRYPTO_AUTH_SHA256

e RTE_CRYPTO_AUTH_SHA256_HMAC

* RTE_CRYPTO_AUTH_SHA384

¢ RTE_CRYPTO_AUTH_SHA384_HMAC

e RTE_CRYPTO_AUTH_SHAS512

* RTE_CRYPTO_AUTH_SHA512_HMAC

e RTE_CRYPTO_AUTH_AES_GMAC
AEAD algorithms:

e RTE_CRYPTO_AEAD_AES_GCM

For supported feature flags please consult Crypto Device Supported Functionality Matrices.

13.2 Limitations

» Hardware only supports scenarios where ICV (digest buffer) is placed just after the authenticated
data. Other placement will result in error.

13.3 Installation

MVSAM CRYPTO PMD driver compilation is disabled by default due to external dependencies. Cur-
rently there are two driver specific compilation options in config/common_base available:

e CONFIG_RTE_LIBRTE_PMD_MVSAM_ CRYPTO (default: n)
Toggle compilation of the librte_pmd_mvsam driver.

MVSAM CRYPTO PMD requires MUSDK built with EIP197 support thus following extra option must
be passed to the library configuration script:

——enable-sam [-—-enable-sam-statistics] [-—-enable-sam-debug]

For instructions how to build required kernel modules please refer to doc/musdk_get_started.txt.

13.4 Initialization

After successfully building MVSAM CRYPTO PMD, the following modules need to be loaded:

insmod musdk_cma.ko
insmod crypto_safexcel.ko rings=0,0
insmod mv_sam_uio.ko

The following parameters (all optional) are exported by the driver:

* max_nb_qgueue_pairs: maximum number of queue pairs in the device (default: 8 - A8K, 4 -
ATK/A3K).

* max_nb_sessions: maximum number of sessions that can be created (default: 2048).

e socket_id: socket on which to allocate the device resources on.

13.2. Limitations 43

Crypto Device Drivers, Release 20.02.1

12fwd-crypto example application can be used to verify MVSAM CRYPTO PMD operation:

./12fwd-crypto —--vdev=eth_mvpp2,iface=eth0 --vdev=crypto_mvsam —--— \
——cipher_op ENCRYPT —--cipher_algo aes-cbc \
——cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f \
—-—auth_op GENERATE --auth_algo shal-hmac \
——auth_key 10:11:12:13:14:15:16:17:18:19:1a:1b:1c:1d:1le:1f

13.4. Initialization 44

CHAPTER
FOURTEEN

MARVELL NITROX CRYPTO POLL MODE DRIVER

The Nitrox crypto poll mode driver provides support for offloading cryptographic operations to the
NITROX V security processor. Detailed information about the NITROX V security processor can be
obtained here:

* https://www.marvell.com/security-solutions/nitrox-security-processors/nitrox-v/

14.1 Features

Nitrox crypto PMD has support for:
Cipher algorithms:

e RTE_CRYPTO_CIPHER_AES_CBC
Hash algorithms:

e RTE_CRYPTO_AUTH_SHAI1_HMAC

e RTE_CRYPTO_AUTH_SHA224_HMAC

* RTE_CRYPTO_AUTH_SHA256_HMAC

14.2 Limitations

* AES_CBC Cipher Only combination is not supported.

» Session-less APIs are not supported.

14.3 Installation

For compiling the Nitrox crypto PMD, please check if the CONFIG_RTE_LIBRTE_PMD_NITROX
setting is set to y in config/common_base file.

e CONFIG_RTE_LIBRTE_PMD_NITROX=y

45

https://www.marvell.com/security-solutions/nitrox-security-processors/nitrox-v/

Crypto Device Drivers, Release 20.02.1

14.4 Initialization

Nitrox crypto PMD depend on Nitrox kernel PF driver being installed on the platform. Nitrox PF
driver is required to create VF devices which will be used by the PMD. Each VF device can enable one

cryptodev PMD.

Nitrox kernel PF driver is available as part of CNN55XX-Driver SDK. The SDK and it’s installation
instructions can be obtained from: Marvell Technical Documentation Portal.

14.4. Initialization 46

https://support.cavium.com/

CHAPTER
FIFTEEN

NULL CRYPTO POLL MODE DRIVER

The Null Crypto PMD (librte_pmd_null_crypto) provides a crypto poll mode driver which provides
a minimal implementation for a software crypto device. As a null device it does not modify the data
in the mbuf on which the crypto operation is to operate and it only has support for a single cipher and
authentication algorithm.

When a burst of mbufs is submitted to a Null Crypto PMD for processing then each mbuf in the burst
will be enqueued in an internal buffer for collection on a dequeue call as long as the mbuf has a valid
rte_mbuf_offload operation with a valid rte_cryptodev_session or rte_crypto_xform chain of operations.

15.1 Features

Modes:
e RTE_CRYPTO_XFORM_CIPHER ONLY
* RTE_CRYPTO_XFORM_AUTH ONLY
* RTE_CRYPTO_XFORM_CIPHER THEN RTE_CRYPTO_XFORM_AUTH
* RTE_CRYPTO_XFORM_AUTH THEN RTE_CRYPTO_XFORM_CIPHER
Cipher algorithms:
* RTE_CRYPTO_CIPHER_NULL
Authentication algorithms:

* RTE_CRYPTO_AUTH_NULL

15.2 Limitations

* Only in-place is currently supported (destination address is the same as source address).

15.3 Installation

The Null Crypto PMD is enabled and built by default in both the Linux and FreeBSD builds.

47

Crypto Device Drivers, Release 20.02.1

15.4 Initialization

To use the PMD in an application, user must:

 Call rte_vdev_init(“crypto_null”’) within the application.

* Use —vdev="crypto_null” in the EAL options, which will call rte_vdev_init() internally.
The following parameters (all optional) can be provided in the previous two calls:

 socket_id: Specify the socket where the memory for the device is going to be allocated (by default,
socket_id will be the socket where the core that is creating the PMD is running on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).
* max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./12fwd-crypto -1 1 -n 4 —-vdev="crypto_null, socket_id=0,max_nb_sessions=128" \
-— -p 1 ——cdev SW —--chain CIPHER_ONLY --cipher_algo "null"

15.4. Initialization 48

CHAPTER
SIXTEEN

CRYPTODEV SCHEDULER POLL MODE DRIVER LIBRARY

Scheduler PMD is a software crypto PMD, which has the capabilities of attaching hardware and/or
software cryptodevs, and distributes ingress crypto ops among them in a certain manner.

User Application

Cryptodev Scheduler

Cryptodev Cryptodev Cryptodev

Fig. 16.1: Cryptodev Scheduler Overview

The Cryptodev Scheduler PMD library (librte_pmd_crypto_scheduler) acts as a software crypto PMD
and shares the same API provided by librte_cryptodev. The PMD supports attaching multiple crypto
PMDs, software or hardware, as slaves, and distributes the crypto workload to them with certain behav-
ior. The behaviors are categorizes as different “modes”. Basically, a scheduling mode defines certain
actions for scheduling crypto ops to its slaves.

The librte_pmd_crypto_scheduler library exports a C API which provides an API for attaching/detaching
slaves, set/get scheduling modes, and enable/disable crypto ops reordering.

16.1 Limitations

* Sessionless crypto operation is not supported

* OOP crypto operation is not supported when the crypto op reordering feature is enabled.

49

Crypto Device Drivers, Release 20.02.1

16.2 Installation

To build DPDK with CRYTPO_SCHEDULER_PMD the user is required to set CON-
FIG_RTE_LIBRTE_PMD_CRYPTO_SCHEDULER=y in config/common_base, and recompile DPDK

16.3 Initialization

To use the PMD in an application, user must:

Call rte_vdev_init(“crypto_scheduler”) within the application.

Use —vdev="crypto_scheduler” in the EAL options, which will call rte_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

socket_id: Specify the socket where the memory for the device is going to be allocated (by default,
socket_id will be the socket where the core that is creating the PMD is running on).

max_nb_sessions: Specify the maximum number of sessions that can be created. This value may
be overwritten internally if there are too many devices are attached.

slave: If a cryptodev has been initialized with specific name, it can be attached to the scheduler
using this parameter, simply filling the name here. Multiple cryptodevs can be attached initially
by presenting this parameter multiple times.

mode: Specify the scheduling mode of the PMD. The supported scheduling mode parameter
values are specified in the “Cryptodev Scheduler Modes Overview” section.

mode_param: Specify the mode-specific parameter. Some scheduling modes may be initialized
with specific parameters other than the default ones, such as the threshold packet size of packet-
size-distr mode. This parameter fulfills the purpose.

ordering: Specify the status of the crypto operations ordering feature. The value of this parameter
can be “enable” or “disable”. This feature is disabled by default.

Example:

. ——vdev "crypto_aesni_mb0,name=aesni_mb_1" —--vdev "crypto_aesni_mbl, name=aesni_mb_2"

Note:

The scheduler cryptodev cannot be started unless the scheduling mode is set and at least one
slave is attached. Also, to configure the scheduler in the run-time, like attach/detach slave(s),
change scheduling mode, or enable/disable crypto op ordering, one should stop the scheduler
first, otherwise an error will be returned.

The crypto op reordering feature requires using the userdata field of every mbuf to be processed to
store temporary data. By the end of processing, the field is set to pointing to NULL, any previously
stored value of this field will be lost.

16.4 Cryptodev Scheduler Modes Overview

Currently the Crypto Scheduler PMD library supports following modes of operation:

16.2.

Installation 50

—-—vdev

Crypto Device Drivers, Release 20.02.1

* CDEV_SCHED_MODE_ROUNDROBIN:
Initialization mode parameter: round-robin

Round-robin mode, which distributes the enqueued burst of crypto ops among its slaves in
a round-robin manner. This mode may help to fill the throughput gap between the physical
core and the existing cryptodevs to increase the overall performance.

* CDEV_SCHED_MODE_PKT_SIZE_DISTR:
Initialization mode parameter: packet-size-distr

Packet-size based distribution mode, which works with 2 slaves, the primary slave and the
secondary slave, and distributes the enqueued crypto operations to them based on their data
lengths. A crypto operation will be distributed to the primary slave if its data length is equal
to or bigger than the designated threshold, otherwise it will be handled by the secondary
slave.

A typical usecase in this mode is with the QAT cryptodev as the primary and a software
cryptodev as the secondary slave. This may help applications to process additional crypto
workload than what the QAT cryptodev can handle on its own, by making use of the avail-
able CPU cycles to deal with smaller crypto workloads.

The threshold is set to 128 bytes by default. It can be updated by call-
ing function rte_cryptodev_scheduler_option_set. @ The parameter of option_type
must be CDEV_SCHED_OPTION_THRESHOLD and option should point to a
rte_cryptodev_scheduler_threshold_option structure filled with appropriate threshold value.
Please NOTE this threshold has be a power-of-2 unsigned integer. It is possible to use
mode_param initialization parameter to achieve the same purpose. For example:

... =vdev “crypto_scheduler,mode=packet-size-distr,mode_param=threshold:512” ...
The above parameter will overwrite the threshold value to 512.

* CDEV_SCHED_MODE_FAILOVER:
Initialization mode parameter: fail-over

Fail-over mode, which works with 2 slaves, the primary slave and the secondary slave. In
this mode, the scheduler will enqueue the incoming crypto operation burst to the primary
slave. When one or more crypto operations fail to be enqueued, then they will be enqueued
to the secondary slave.

* CDEV_SCHED_MODE_MULTICORE:
Initialization mode parameter: multi-core

Multi-core mode, which distributes the workload with several (up to eight) worker cores.
The enqueued bursts are distributed among the worker cores in a round-robin manner. If
scheduler cannot enqueue entire burst to the same worker, it will enqueue the remaining
operations to the next available worker. For pure small packet size (64 bytes) traffic how-
ever the multi-core mode is not an optimal solution, as it doesn’t give significant per-core
performance improvement. For mixed traffic (IMIX) the optimal number of worker cores
is around 2-3. For large packets (1.5 kbytes) scheduler shows linear scaling in performance
up to eight cores. Each worker uses its own slave cryptodev. Only software cryptodevs are
supported. Only the same type of cryptodevs should be used concurrently.

The multi-core mode uses one extra parameter:

16.4. Cryptodev Scheduler Modes Overview 51

Crypto Device Drivers, Release 20.02.1

* corelist: Semicolon-separated list of logical cores to be used as workers. The number
of worker cores should be equal to the number of slave cryptodevs. These cores should
be present in EAL core list parameter and should not be used by the application or any
other process.

Example: ... —vdev “crypto_aesni_mbl,name=aesni_mb_1" -
vdev “crypto_aesni_mb_pmd2,name=aesni_mb_2" —vdev
“crypto_scheduler,slave=aesni_mb_1,slave=aesni_mb_2,mode=multi-
core,corelist=23;24" ...

16.4. Cryptodev Scheduler Modes Overview

52

CHAPTER
SEVENTEEN

SNOW 3G CRYPTO POLL MODE DRIVER

The SNOW3G PMD (librte_snow3g_zuc) provides poll mode crypto driver support for utilizing Intel
IPSec Multi-buffer library which implements F8 and F8 functions for SNOW 3G UEA2 cipher and
UIA2 hash algorithms.

17.1 Features

SNOW 3G PMD has support for:
Cipher algorithm:

* RTE_CRYPTO_CIPHER_SNOW3G_UEA2
Authentication algorithm:

 RTE_CRYPTO_AUTH_SNOW3G_UIA2

17.2 Limitations

* Chained mbufs are not supported.
* SNOW 3G (UIA2) supported only if hash offset field is byte-aligned.

* In-place bit-level operations for SNOW 3G (UEAZ2) are not supported (if length and/or offset of
data to be ciphered is not byte-aligned).

17.3 Installation

To build DPDK with the SNOW3G_PMD the user is required to download the multi-buffer library from
here and compile it on their user system before building DPDK. The latest version of the library sup-
ported by this PMD is v0.53, which can be downloaded from https://github.com/01org/intel-ipsec-mb/
archive/v0.53.zip.

After downloading the library, the user needs to unpack and compile it on their system before building
DPDK:

make
make install

53

https://github.com/01org/intel-ipsec-mb
https://github.com/01org/intel-ipsec-mb
https://github.com/01org/intel-ipsec-mb
https://github.com/01org/intel-ipsec-mb/archive/v0.53.zip
https://github.com/01org/intel-ipsec-mb/archive/v0.53.zip

Crypto Device Drivers, Release 20.02.1

Note: Compilation of the Multi-Buffer library is broken when GCC < 5.0, if library <= v0.53. If a
lower GCC version than 5.0, the workaround proposed by the following link should be used: https:
//github.com/intel/intel-ipsec-mb/issues/40.

As a reference, the following table shows a mapping between the past DPDK versions and the external
crypto libraries supported by them:

Table 17.1: DPDK and external crypto library
version compatibility

DPDK version | Crypto library version
16.04 - 19.11 LibSSO SNOW3G
20.02+ Multi-buffer library 0.53

17.4 Initialization

In order to enable this virtual crypto PMD, user must:
* Build the multi buffer library (explained in Installation section).

¢ Build DPDK as follows:

make config T=x86_64-native-linux—gcc
sed -i 's,\ (CONFIG_RTE_LIBRTE_PMD_SNOW3G\)=n,\1=y, ' build/.config
make
To use the PMD in an application, user must:
 Call rte_vdev_init(“crypto_snow3g”) within the application.
* Use —vdev="crypto_snow3g” in the EAL options, which will call rte_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

 socket_id: Specify the socket where the memory for the device is going to be allocated (by default,
socket_id will be the socket where the core that is creating the PMD is running on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).
* max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./12fwd-crypto -1 1 -n 4 —-vdev="crypto_snow3g, socket_id=0,max_nb_sessions=128" \
-—— —p 1 ——cdev SW —--chain CIPHER_ONLY --cipher_algo "snow3g-ueal"

17.4. Initialization 54

https://github.com/intel/intel-ipsec-mb/issues/40
https://github.com/intel/intel-ipsec-mb/issues/40

CHAPTER
EIGHTEEN

INTEL(R) QUICKASSIST (QAT) CRYPTO POLL MODE DRIVER

QAT documentation consists of three parts:

* Details of the symmetric and asymmetric crypto services below.

* Details of the compression service in the compressdev drivers section.

* Details of building the common QAT infrastructure and the PMDs to support the above services.

See Building PMDs on QAT below.

18.1 Symmetric Crypto Service on QAT

The QAT symmetric crypto PMD (hereafter referred to as QAT SYM [PMD]) provides poll mode crypto
driver support for the following hardware accelerator devices:

Intel QuickAssist Technology
Intel QuickAssist Technology
Intel QuickAssist Technology
Intel QuickAssist Technology

Intel QuickAssist Technology

18.1.1 Features

The QAT SYM PMD has support for:

Cipher algorithms:

RTE_CRYPTO_CIPHER_3DES_CBC

RTE_CRYPTO_CIPHER_3DES_CTR

RTE_CRYPTO_CIPHER_AES128_CBC
RTE_CRYPTO_CIPHER_AES192_CBC
RTE_CRYPTO_CIPHER_AES256_CBC
RTE_CRYPTO_CIPHER_AES128_CTR
RTE_CRYPTO_CIPHER_AES192_CTR

RTE_CRYPTO_CIPHER_AES256_CTR

DH895xCC
C62x
C3xxx
D15xx

Cdxxx

55

Crypto Device Drivers, Release 20.02.1

e RTE_CRYPTO_CIPHER_AES_XTS

e RTE_CRYPTO_CIPHER_SNOW3G_UEAZ2

e RTE_CRYPTO_CIPHER_NULL

¢ RTE_CRYPTO_CIPHER_KASUMI_F8

e RTE_CRYPTO_CIPHER_DES_CBC

e RTE_CRYPTO_CIPHER_AES_DOCSISBPI

e RTE_CRYPTO_CIPHER DES_DOCSISBPI

e RTE_CRYPTO_CIPHER_ZUC_EEA3
Hash algorithms:

e RTE_CRYPTO_AUTH_SHAI1_HMAC

e RTE_CRYPTO_AUTH_SHA224_HMAC

* RTE_CRYPTO_AUTH_SHA256_HMAC

* RTE_CRYPTO_AUTH_SHA384_HMAC

e RTE_CRYPTO_AUTH_SHAS512_HMAC

e RTE_CRYPTO_AUTH_AES_XCBC_MAC

* RTE_CRYPTO_AUTH_SNOW3G_UIAZ2

e RTE_CRYPTO_AUTH_MD5_HMAC

e RTE_CRYPTO_AUTH_NULL

* RTE_CRYPTO_AUTH_KASUMI_F9

e RTE_CRYPTO_AUTH_AES_GMAC

e RTE_CRYPTO_AUTH_ZUC_EIA3

e RTE_CRYPTO_AUTH_AES_CMAC
Supported AEAD algorithms:

e RTE_CRYPTO_AEAD_AES_GCM

e RTE_CRYPTO_AEAD_AES_CCM

18.1.2 Supported Chains

All the usual chains are supported and also some mixed chains:

Table 18.1: Supported hash-cipher chains for wireless digest-encrypted cases

Cipher algorithm | NULL AUTH | SNOW3G UIA2 | ZUC EIA3 | AES CMAC
NULL CIPHER Y 3 3 Y
SNOW3G UEA2 | 3 Y 3 3
ZUC EEA3 3 3 2&3 3
AES CTR Y 3 3 Y

* The combinations marked as “Y” are supported on all QAT hardware versions.

18.1. Symmetric Crypto Service on QAT

56

Crypto Device Drivers, Release 20.02.1

* The combinations marked as “2&3” are supported on GEN2/GEN3 QAT hardware only.

* The combinations marked as “3” are supported on GEN3 QAT hardware only.

18.1.3 Limitations

* Only supports the session-oriented API implementation (session-less APIs are not supported).

* SNOW 3G (UEA2), KASUMI (F8) and ZUC (EEA3) supported only if cipher length and offset
fields are byte-multiple.

* SNOW 3G (UIA2) and ZUC (EIA3) supported only if hash length and offset fields are byte-
multiple.

* No BSD support as BSD QAT kernel driver not available.
» ZUC EEA3/EIA3 is not supported by dh895xcc devices

* Maximum additional authenticated data (AAD) for GCM is 240 bytes long and must be passed to
the device in a buffer rounded up to the nearest block-size multiple (x16) and padded with zeros.

* Queue-pairs are thread-safe on Intel CPUs but Queues are not (that is, within a single queue-pair
all enqueues to the TX queue must be done from one thread and all dequeues from the RX queue
must be done from one thread, but enqueues and dequeues may be done in different threads.)

* A GCM limitation exists, but only in the case where there are multiple generations of QAT devices
on a single platform. To optimise performance, the GCM crypto session should be initialised
for the device generation to which the ops will be enqueued. Specifically if a GCM session is
initialised on a GEN2 device, but then attached to an op enqueued to a GEN3 device, it will work
but cannot take advantage of hardware optimisations in the GEN3 device. And if a GCM session
is initialised on a GEN3 device, then attached to an op sent to a GEN1/GEN2 device, it will not
be enqueued to the device and will be marked as failed. The simplest way to mitigate this is to use
the bdf whitelist to avoid mixing devices of different generations in the same process if planning
to use for GCM.

18.1.4 Extra notes on KASUMI F9

When using KASUMI F9 authentication algorithm, the input buffer must be constructed according to
the 3GPP KASUMI specification (section 4.4, page 13). The input buffer has to have COUNT (4 bytes),
FRESH (4 bytes), MESSAGE and DIRECTION (1 bit) concatenated. After the DIRECTION bit, a
single ‘1’ bit is appended, followed by between 0 and 7 ‘0’ bits, so that the total length of the buffer is
multiple of 8 bits. Note that the actual message can be any length, specified in bits.

Once this buffer is passed this way, when creating the crypto operation, length of data to authenticate
“op.sym.auth.data.length” must be the length of all the items described above, including the padding at
the end. Also, offset of data to authenticate “op.sym.auth.data.offset” must be such that points at the
start of the COUNT bytes.

18.2 Asymmetric Crypto Service on QAT

The QAT asymmetric crypto PMD (hereafter referred to as QAT ASYM [PMD]) provides poll mode
crypto driver support for the following hardware accelerator devices:

* Intel QuickAssist Technology DH895xCC

18.2. Asymmetric Crypto Service on QAT 57

http://cryptome.org/3gpp/35201-900.pdf

Crypto Device Drivers, Release 20.02.1

* Intel QuickAssist Technology C62x

e Intel QuickAssist Technology C3xxx

* Intel QuickAssist Technology D15xx

e Intel QuickAssist Technology C4xxx
The QAT ASYM PMD has support for:

e RTE_CRYPTO_ASYM XFORM_MODEX

e RTE_CRYPTO_ASYM XFORM_MODINV

18.2.1 Limitations

* Big integers longer than 4096 bits are not supported.

* Queue-pairs are thread-safe on Intel CPUs but Queues are not (that is, within a single queue-pair
all enqueues to the TX queue must be done from one thread and all dequeues from the RX queue
must be done from one thread, but enqueues and dequeues may be done in different threads.)

* RSA-2560, RSA-3584 are not supported

18.3 Building PMDs on QAT

A QAT device can host multiple acceleration services:
* symmetric cryptography
* data compression
* asymmetric cryptography

These services are provided to DPDK applications via PMDs which register to implement the corre-
sponding cryptodev and compressdev APIs. The PMDs use common QAT driver code which manages
the QAT PCI device. They also depend on a QAT kernel driver being installed on the platform, see
Dependency on the QAT kernel driver below.

18.3.1 Configuring and Building the DPDK QAT PMDs

Further information on configuring, building and installing DPDK is described here.

Quick instructions for QAT cryptodev PMD are as follows:

cd to the top-level DPDK directory

make defconfig

sed -1 's,\ (CONFIG_RTE_LIBRTE_PMD_QAT_SYM\)=n,\l=y,' build/.config
or/and

sed -i 's,\ (CONFIG_RTE_LIBRTE_PMD_QAT_ASYM\)=n,\l=y,' build/.config
make

Quick instructions for QAT compressdev PMD are as follows:

cd to the top-level DPDK directory
make defconfig
make

18.3. Building PMDs on QAT 58

Crypto Device Drivers, Release 20.02.1

18.3.2 Build Configuration

These are the build configuration options affecting QAT, and their default values:

CONFIG_RTE_LIBRTE_PMD_QAT=y
CONFIG_RTE_LIBRTE_PMD_OQAT SYM=n
CONFIG_RTE_LIBRTE_PMD_ QAT _ASYM=n
CONFIG_RTE_PMD_QAT_MAX_PCI_DEVICES=48
CONFIG_RTE_PMD_QAT_COMP_IM BUFFER_SIZE=65536

CONFIG_RTE_LIBRTE_PMD_QAT must be enabled for any QAT PMD to be built.

Both QAT SYM PMD and QAT ASYM PMD have an external dependency on libcrypto, so are not built
by default. CONFIG_RTE_LIBRTE_PMD_QAT_SYM/ASYM should be enabled to build them.

The QAT compressdev PMD has no external dependencies, so needs no configuration options and is
built by default.

The number of VFs per PF varies - see table below. If multiple QAT packages are installed on a platform
then CONFIG_RTE_PMD_QAT_MAX_PCI_DEVICES should be adjusted to the number of VFs which
the QAT common code will need to handle.

Note: There are separate config items (not QAT-specific) for max cryp-
todevs CONFIG_RTE_CRYPTO_MAX_DEVS and max compressdevs CON-
FIG_RTE_COMPRESS_MAX_DEVS, if necessary these should be adjusted to handle the total
of QAT and other devices which the process will use. In particular for crypto, where each QAT VF may
expose two crypto devices, sym and asym, it may happen that the number of devices will be bigger
than MAX_DEVS and the process will show an error during PMD initialisation. To avoid this problem
CONFIG_RTE_CRYPTO_MAX_DEVS may be increased or -w, pci-whitelist domain:bus:devid:func
option may be used.

QAT compression PMD needs intermediate buffers to support Deflate compression with Dynamic Huff-
man encoding. CONFIG_RTE_PMD_QAT_COMP_IM_BUFFER_SIZE specifies the size of a single
buffer, the PMD will allocate a multiple of these, plus some extra space for associated meta-data. For
GEN?2 devices, 20 buffers are allocated while for GEN1 devices, 12 buffers are allocated, plus 1472
bytes overhead.

Note: If the compressed output of a Deflate operation using Dynamic Huffman Encoding is too big to
fit in an intermediate buffer, then the operation will fall back to fixed compression rather than failing the
operation. To avoid this less performant case, applications should configure the intermediate buffer size
to be larger than the expected input data size (compressed output size is usually unknown, so the only
option is to make larger than the input size).

18.3.3 Running QAT PMD with minimum threshold for burst size
If only a small number or packets can be enqueued. Each enqueue causes an expensive MMIO write.
These MMIO write occurrences can be optimised by setting any of the following parameters:

* gat_sym_enq_threshold

* gat_asym_enq_threshold

* gat_comp_enq_threshold

18.3. Building PMDs on QAT 59

Crypto Device Drivers, Release 20.02.1

When any of these parameters is set rte_cryptodev_enqueue_burst function will return O (thereby avoid-
ing an MMIO) if the device is congested and number of packets possible to enqueue is smaller. To use
this feature the user must set the parameter on process start as a device additional parameter:

-w 03:01.1,gat_sym_enqg_threshold=32, gat_comp_eng_threshold=16

All parameters can be used with the same device regardless of order. Parameters are separated by
comma. When the same parameter is used more than once first occurrence of the parameter is used.
Maximum threshold that can be set is 32.

18.3.4 Device and driver naming

* The gat cryptodev symmetric crypto driver name is “crypto_qat”.
* The gat cryptodev asymmetric crypto driver name is “crypto_qat_asym”.
The “rte_cryptodev_devices_get()” returns the devices exposed by either of these drivers.

* Each qat sym crypto device has a unique name, in format “<pci bdf>_<service>", e.g.
“0000:41:01.0_gat_sym”.

* Each gat asym crypto device has a unique name, in format “<pci bdf>_<service>", e.g.
“0000:41:01.0_qgat_asym”. This name can be passed to “rte_cryptodev_get_dev_id()” to get the
device_id.

Note: The cryptodev driver name is passed to the dpdk-test-crypto-perf tool in the “-devtype” parame-
ter.

The qgat crypto device name is in the format of the slave parameter passed to the crypto scheduler.

* The gat compressdev driver name is “compress_qat”. The rte_compressdev_devices_get() returns
the devices exposed by this driver.

* Each qat compression device has a unique name, in format <pci bdf>_<service>, e.g.
“0000:41:01.0_qgat_comp”. This name can be passed to rte_compressdev_get_dev_id() to get the
device_id.

18.3.5 Dependency on the QAT kernel driver

To use QAT an SRIOV-enabled QAT kernel driver is required. The VF devices created and initialised
by this driver will be used by the QAT PMDs.

Instructions for installation are below, but first an explanation of the relationships between the PF/VF
devices and the PMDs visible to DPDK applications.

Each QuickAssist PF device exposes a number of VF devices. Each VF device can enable one symmetric
cryptodev PMD and/or one asymmetric cryptodev PMD and/or one compressdev PMD. These QAT
PMDs share the same underlying device and pci-mgmt code, but are enumerated independently on their
respective APIs and appear as independent devices to applications.

Note: Each VF can only be used by one DPDK process. It is not possible to share the same VF across
multiple processes, even if these processes are using different acceleration services.

18.3. Building PMDs on QAT 60

Crypto Device Drivers, Release 20.02.1

Conversely one DPDK process can use one or more QAT VFs and can expose both cryptodev and
compressdev instances on each of those VFs.

18.3.6 Available kernel drivers

Kernel drivers for each device for each service are listed in the following table. (Scroll right to see the

full table)

Table 18.2: QAT device generations, devices and drivers
S | A | C | Gen Device | Driver/ver| Kernel Pci PF #PFs VF VFs/P

Module Driver | Did Did

Yes| No| No | 1 DH895x(0dinux/4.4+ | qat_dh895xacdh895xc¢ 435 1 443 32
Yes| Yes| No | “ “ 0l.org/4.2.0¥ “ “ “ “ “
Yes| Yes| Yes| “ 01.org/4.3.0¥ “ « “ “ “
Yes| No| No| 2 C62x linux/4.5+| gat_c62x cH6xx 37¢8 | 3 37¢9 | 16
Yes| Yes| Yes| “ “ 01.org/4.2.0¥ “ « “ “ “
Yes| No | No | 2 C3xxx linux/4.5+| qat_c3xxx | c3xxx 19¢2 | 1 19e3 | 16
Yes| Yes| Yes| “ “ 01.org/4.2.0¥ “ « “ “ “
Yes| No | No | 2 DI5xx | p qat_d15xx | dI5xx | 6f54 |1 6f55 | 16
Yes| No| No| 3 Cdxxx p gat_c4xxx | c4xxx 18a0 | 1 18al | 128

The first 3 columns indicate the service:

* S = Symmetric crypto service (via cryptodev API)

* A = Asymmetric crypto service (via cryptodev API)

* C = Compression service (via compressdev API)

The Driver column indicates either the Linux kernel version in which support for this device was

introduced or a driver available on Intel’s 01.org website. There are both linux in-tree and 01.org kernel
drivers available for some devices. p = release pending.

If you are running on a kernel which includes a driver for your device, see Installation using kernel.org
driver below. Otherwise see Installation using 01.org QAT driver.

18.3.7 Installation using kernel.org driver

The examples below are based on the C62x device, if you have a different device use the corresponding
values in the above table.

In BIOS ensure that SRIOV is enabled and either:

e Disable VT-d or

* Enable VI-d and set "intel_iommu=on iommu=pt" in the grub file.

Check that the QAT driver is loaded on your system, by executing:

lsmod | grep ga

You should see the kernel module for your device listed, e.g.:

gat_c62x
intel_gat

56
82

26 0
336

1 gat_c62x

18.3. Building PMDs on QAT

61

Crypto Device Drivers, Release 20.02.1

Next, you need to expose the Virtual Functions (VFs) using the sysfs file system.

First find the BDFs (Bus-Device-Function) of the physical functions (PFs) of your device, e.g.:

lspci —-d:37c8

You should see output similar to:

1a:00.0 Co-processor: Intel Corporation Device 37c8
3d:00.0 Co-processor: Intel Corporation Device 37c8
3f:00.0 Co-processor: Intel Corporation Device 37c8

Enable the VFs for each PF by echoing the number of VFs per PF to the pci driver:

echo 16 > /sys/bus/pci/drivers/c6xx/0000:1a:00.0/sriov_numvfs
echo 16 > /sys/bus/pci/drivers/c6xx/0000:3d:00.0/sriov_numvfs
echo 16 > /sys/bus/pci/drivers/c6xx/0000:3£:00.0/sriov_numvfs

Check that the VFs are available for use. For example 1spci -d:37c9 should list 48 VF devices
available for a C62x device.

To complete the installation follow the instructions in Binding the available VFs to the DPDK UIO
driver.

Note: If the QAT kernel modules are not loaded and you see an error like Failed to load MMP
firmware gat_895xcc_mmp.bin inkernel logs, this may be as a result of not using a distribution,
but just updating the kernel directly.

Download firmware from the kernel firmware repo.

Copy qat binaries to /1ib/firmware:

cp gat_895xcc.bin /lib/firmware
cp gat_895xcc_mmp.bin /lib/firmware

Change to your linux source root directory and start the qat kernel modules:

insmod ./drivers/crypto/gat/gat_common/intel_gat.ko
insmod ./drivers/crypto/gat/gat_dh895xcc/gat_dh895xcc.ko

Note: If you see the following warning in /var/log/messages it can be ignored: IOMMU
should be enabled for SR-IOV to work correctly.

18.3.8 Installation using 01.org QAT driver
Download the latest QuickAssist Technology Driver from O1.org. Consult the Getting Started Guide at
the same URL for further information.
The steps below assume you are:
* Building on a platform with one C62x device.
* Using package gat1.7.1.4.2.0-000xx.tar.gz.
e On Fedora26 kernel 4.11.11-300.fc26.x86_64.
In the BIOS ensure that SRIOV is enabled and VT-d is disabled.

Uninstall any existing QAT driver, for example by running:

18.3. Building PMDs on QAT 62

http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git/tree/
https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches

Crypto Device Drivers, Release 20.02.1

* ./installer.sh uninstall in the directory where originally installed.

Build and install the SRIOV-enabled QAT driver:

mkdir /QAT
cd /QAT

Copy the package to this location and unpack
tar zxof gatl.7.1.4.2.0-000xx.tar.gz

./configure --enable-icp-sriov=host
make install

You can use cat /sys/kernel/debug/gat<your device type and
bdf>/version/fw to confirm the driver is correctly installed and is using firmware version
4.2.0. Youcanuse 1spci -d:37c9 to confirm the presence of the 16 VF devices available per C62x
PF.

Confirm the driver is correctly installed and is using firmware version 4.2.0:
cat /sys/kernel/debug/gat<your device type and bdf>/version/fw
Confirm the presence of 48 VF devices - 16 per PF:
lspci -d:37c9

To complete the installation - follow instructions in Binding the available VFs to the DPDK UIO driver.

Note: If using a later kernel and the build fails with an error relating to strict_stroul not being
available apply the following patch:

/QAT/QAT1.6/quickassist/utilities/downloader/Target_CoreLibs/uclo/include/linux/uclo_platform.r
+ #if LINUX_VERSION_CODE >= KERNEL_VERSION (3,18,5)

+ #define STR_TO_64 (str, base, num, endPtr) {endPtr=NULL; if (kstrtoul((str), (base), (num))) t
+ #else
#if LINUX_VERSION_CODE >= KERNEL_VERSION (2,6, 38)
#define STR_TO_64 (str, base, num, endPtr) {endPtr=NULL; if (strict_strtoull((str), (base), (nun
felse
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,25)
#define STR_TO_64 (str, base, num, endPtr) {endPtr=NULL; strict_strtoll((str), (base), (num));}
felse
#define STR_TO_64 (str, base, num, endPtr) \
do { \
if (str[0] == '-") \
{ \
* (num) = —(simple_strtoull ((str+l), & (endPtr), (base))); \
lelse { \
* (num) = simple_strtoull ((str), & (endPtr), (base)); \
} \
} while (0)
+ #endif
fendif
fendif

Note: If the build fails due to missing header files you may need to do following:

sudo yum install zlib-devel
sudo yum install openssl-devel
sudo yum install libudev-devel

18.3. Building PMDs on QAT 63

Crypto Device Drivers, Release 20.02.1

Note: If the build or install fails due to mismatching kernel sources you may need to do the following:

sudo yum install kernel-headers-"uname -r°
sudo yum install kernel-src- uname -r’
sudo yum install kernel-devel-"uname -r°

18.3.9 Binding the available VFs to the DPDK UIO driver

Unbind the VFs from the stock driver so they can be bound to the uio driver.

For an Intel(R) QuickAssist Technology DH895xCC device

The unbind command below assumes BDFs of 03:01.00-03:04.07, if your VFs are different adjust
the unbind command below:

for device in $(seq 1 4); do \
for fn in $(seq 0 7); do \
echo —n 0000:03:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:03\:0${device}.${fn}/driver/unbind; \
done; \
done

For an Intel(R) QuickAssist Technology C62x device

The unbind command below assumes BDFs of 1a:01.00-1a:02.07,3d:01.00-3d:02.07 and
3f:01.00-3£:02.07, if your VFs are different adjust the unbind command below:

for device in $(seq 1 2); do \
for fn in $(seq 0 7); do \
echo —n 0000:1a:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:1a\:0${device}.${fn}/driver/unbind; \

echo —n 0000:3d:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:3d\:0${device}.${fn}/driver/unbind; \

echo —n 0000:3f:0${device}.${fn} > \
/sys/bus/pci/devices/0000\:3f\:0${device}.${fn}/driver/unbind; \
done; \
done

For Intel(R) QuickAssist Technology C3xxx or D15xx device

The unbind command below assumes BDFs of 01:01.00-01:02. 07, if your VFs are different adjust
the unbind command below:

for device in $(seq 1 2); do \
for fn in $(seq 0 7); do \
echo -n 0000:01:0${device}.S${fn} > \
/sys/bus/pci/devices/0000\:01\:0S${device}.${fn}/driver/unbind; \
done; \
done

18.3. Building PMDs on QAT 64

Crypto Device Drivers, Release 20.02.1

Bind to the DPDK uio driver

Install the DPDK igb_uio driver, bind the VF PCI Device id to it and use Ispci to confirm the VF devices
are now in use by igb_uio kernel driver, e.g. for the C62x device:

cd to the top-level DPDK directory

modprobe uio

insmod ./build/kmod/igb_uio.ko

echo "8086 37c9" > /sys/bus/pci/drivers/igb_uio/new_id
lspci -vvd:37c9

Another way to bind the VFs to the DPDK UIO driver is by using the dpdk—-devbind. py script:

cd to the top-level DPDK directory
./usertools/dpdk-devbind.py -b igb_uio 0000:03:01.1

18.3.10 Testing

QAT SYM crypto PMD can be tested by running the test application:

make defconfig

make -3

cd ./build/app

./test =11 -nl -w <your gat bdf>
RTE>>cryptodev_gat_autotest

QAT ASYM crypto PMD can be tested by running the test application:

make defconfig

make —j

cd ./build/app

./test =11 -nl -w <your gat bdf>
RTE>>cryptodev_gat_asym_autotest

QAT compression PMD can be tested by running the test application:

make defconfig

sed -i 's,\ (CONFIG_RTE_COMPRESSDEV_TEST\)=n, \1=y,"' build/.config
make —j

cd ./build/app

./test -11 -nl -w <your gat bdf>

RTE>>compressdev_autotest

18.3.11 Debugging

There are 2 sets of trace available via the dynamic logging feature:
* pmd.qat_dp exposes trace on the data-path.
* pmd.qat_general exposes all other trace.

pmd.qat exposes both sets of traces. They can be enabled using the log-level option (where 8=maximum
log level) on the process cmdline, e.g. using any of the following:
--log-level="pmd.gat_general, 8"

--log-level="pmd.gat_dp, 8"
-—-log-level="pmd.gat, 8"

Note: The global RTE_LOG_DP_LEVEL overrides data-path trace so must be set to
RTE_LOG_DEBUG to see all the trace. This variable is in config/rte_config.h for meson build and

18.3. Building PMDs on QAT 65

Crypto Device Drivers, Release 20.02.1

config/common_base for gnu make. Also the dynamic global log level overrides both sets of trace, so
e.g. no QAT trace would display in this case:

—-—log-level="7" —--log-level="pmd.gat_general, 8"

18.3. Building PMDs on QAT 66

CHAPTER
NINETEEN

VIRTIO CRYPTO POLL MODE DRIVER

The virtio crypto PMD provides poll mode driver support for the virtio crypto device.

19.1 Features

The virtio crypto PMD has support for:
Cipher algorithms:

e RTE_CRYPTO_CIPHER_AES_CBC
Hash algorithms:

e RTE_CRYPTO_AUTH_SHAI1_HMAC

19.2 Limitations

* Only supports the session-oriented API implementation (session-less APIs are not supported).
* Only supports modern mode since virtio crypto conforms to virtio-1.0.

* Only has two types of queues: data queue and control queue. These two queues only support
indirect buffers to communication with the virtio backend.

* Only supports AES_CBC cipher only algorithm and AES_CBC with HMAC_SHAI1 chaining
algorithm since the vhost crypto backend only these algorithms are supported.

* Does not support Link State interrupt.

* Does not support runtime configuration.

19.3 Virtio crypto PMD Rx/Tx Callbacks

Rx callbacks:
* virtio_crypto_pkt_rx_burst
Tx callbacks:

e virtio_crypto_pkt_tx_burst

67

Crypto Device Drivers, Release 20.02.1

19.4 Installation

Quick instructions are as follows:

Firstly run DPDK vhost crypto sample as a server side and build QEMU with vhost crypto enabled.
QEMU can then be started using the following parameters:

gemu-system-x86_64 \

[...1
—chardev socket,id=charcrypto0, path=/path/to/your/socket \
-object cryptodev-vhost-user,id=cryptodev0, chardev=charcrypto0 \
—device virtio-crypto-pci,id=crypto0, cryptodev=cryptodev0

[...]

Secondly bind the uio_generic driver for the virtio-crypto device. For example, 0000:00:04.0 is the
domain, bus, device and function number of the virtio-crypto device:

modprobe uio_pci_generic
echo -n 0000:00:04.0 > /sys/bus/pci/drivers/virtio-pci/unbind
echo "laf4 1054" > /sys/bus/pci/drivers/uio_pci_generic/new_id

Finally the front-end virtio crypto PMD driver can be installed:

cd to the top-level DPDK directory

sed -i 's,\ (CONFIG_RTE_LIBRTE_PMD_VIRTIO_CRYPTO\)=n,\1l=y,' config/common_base
make config T=x86_64-native-linux—-gcc

make install T=x86_64-native-linux—gcc

19.5 Tests

The unit test cases can be tested as below:

reserve enough huge pages

cd to the top-level DPDK directory

export RTE_TARGET=x86_64-native-linux—-gcc

export RTE_SDK= pwd"

cd to app/test

type the command "make" to compile

run the tests with "./test"

type the command "cryptodev_virtio_autotest" to test

The performance can be tested as below:

reserve enough huge pages

cd to the top-level DPDK directory

export RTE_TARGET=x86_64-native-linux—gcc
export RTE_SDK=pwd"

cd to app/test-crypto-perf

type the command "make" to compile

run the tests with the following command:

./dpdk-test-crypto-perf -1 0,1 -- —--devtype crypto_virtio \
—-ptest throughput --optype cipher-then-auth --cipher—-algo aes-cbc \
-—-cipher-op encrypt —--cipher-key-sz 16 —--auth-algo shal-hmac \
-—auth-op generate --auth-key-sz 64 —--digest-sz 12 \
—-—total-ops 100000000 —--burst-sz 64 —-buffer-sz 2048

19.4. Installation 68

CHAPTER
TWENTY

ZUC CRYPTO POLL MODE DRIVER

The ZUC PMD (librte_pmd_zuc) provides poll mode crypto driver support for utilizing Intel [PSec
Multi-buffer library which implements F8 and F9 functions for ZUC EEA3 cipher and EIA3 hash algo-
rithms.

20.1 Features

ZUC PMD has support for:
Cipher algorithm:

* RTE_CRYPTO_CIPHER_ZUC_EEA3
Authentication algorithm:

* RTE_CRYPTO_AUTH_ZUC_EIA3

20.2 Limitations

* Chained mbufs are not supported.
* ZUC (EIA3) supported only if hash offset field is byte-aligned.

» ZUC (EEA3) supported only if cipher length, cipher offset fields are byte-aligned.

20.3 Installation

To build DPDK with the ZUC_PMD the user is required to download the multi-buffer library from here
and compile it on their user system before building DPDK. The latest version of the library supported
by this PMD is v0.53, which can be downloaded from https://github.com/0O1org/intel-ipsec-mb/archive/
v0.53.zip.

After downloading the library, the user needs to unpack and compile it on their system before building
DPDK:

make
make install

69

https://github.com/01org/intel-ipsec-mb
https://github.com/01org/intel-ipsec-mb
https://github.com/01org/intel-ipsec-mb
https://github.com/01org/intel-ipsec-mb/archive/v0.53.zip
https://github.com/01org/intel-ipsec-mb/archive/v0.53.zip

Crypto Device Drivers, Release 20.02.1

Note: Compilation of the Multi-Buffer library is broken when GCC < 5.0, if library <= v0.53. If a
lower GCC version than 5.0, the workaround proposed by the following link should be used: https:
//github.com/intel/intel-ipsec-mb/issues/40.

As a reference, the following table shows a mapping between the past DPDK versions and the external
crypto libraries supported by them:

Table 20.1: DPDK and external crypto library
version compatibility

DPDK version | Crypto library version
16.11 - 19.11 LibSSO ZzUC
20.02+ Multi-buffer library 0.53

20.4 Initialization

In order to enable this virtual crypto PMD, user must:
* Build the multi buffer library (explained in Installation section).

¢ Build DPDK as follows:

make config T=x86_64-native-linux—gcc
sed -i 's,\ (CONFIG_RTE_LIBRTE_PMD_ZUC\)=n,\1l=y,' build/.config
make
To use the PMD in an application, user must:
 Call rte_vdev_init(“crypto_zuc”) within the application.
* Use —vdev="crypto_zuc” in the EAL options, which will call rte_vdev_init() internally.

The following parameters (all optional) can be provided in the previous two calls:

 socket_id: Specify the socket where the memory for the device is going to be allocated (by default,
socket_id will be the socket where the core that is creating the PMD is running on).

* max_nb_queue_pairs: Specify the maximum number of queue pairs in the device (8 by default).
* max_nb_sessions: Specify the maximum number of sessions that can be created (2048 by default).

Example:

./12fwd-crypto -1 1 -n 4 —-vdev="crypto_zuc, socket_id=0,max_nb_sessions=128" \
-—— —p 1 ——-cdev SW —--chain CIPHER_ONLY --cipher_algo "zuc-eea3"

20.4. Initialization 70

https://github.com/intel/intel-ipsec-mb/issues/40
https://github.com/intel/intel-ipsec-mb/issues/40

	Crypto Device Supported Functionality Matrices
	Supported Feature Flags
	Supported Cipher Algorithms
	Supported Authentication Algorithms
	Supported AEAD Algorithms
	Supported Asymmetric Algorithms

	AESN-NI Multi Buffer Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization
	Extra notes

	AES-NI GCM Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization

	ARMv8 Crypto Poll Mode Driver
	Features
	Installation
	Initialization
	Limitations

	NXP CAAM JOB RING (caam_jr)
	Architecture
	Implementation
	Features
	Supported DPAA SoCs
	Limitations
	Prerequisites
	Pre-Installation Configuration
	Installations
	Enabling logs

	AMD CCP Poll Mode Driver
	Features
	Installation
	Initialization
	Limitations

	NXP DPAA2 CAAM (DPAA2_SEC)
	Architecture
	Implementation
	Features
	Supported DPAA2 SoCs
	Whitelisting & Blacklisting
	Limitations
	Prerequisites
	Pre-Installation Configuration
	Installations
	Enabling logs

	NXP DPAA CAAM (DPAA_SEC)
	Architecture
	Implementation
	Features
	Supported DPAA SoCs
	Whitelisting & Blacklisting
	Limitations
	Prerequisites
	Pre-Installation Configuration
	Installations
	Enabling logs

	KASUMI Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization
	Extra notes on KASUMI F9

	Cavium OCTEON TX Crypto Poll Mode Driver
	Supported Symmetric Crypto Algorithms
	Supported Asymmetric Crypto Algorithms
	Config flags
	Compilation
	Execution
	Testing

	Marvell OCTEON TX2 Crypto Poll Mode Driver
	Features
	Installation
	Initialization
	Debugging Options
	Testing

	OpenSSL Crypto Poll Mode Driver
	Features
	Installation
	Initialization
	Limitations

	MVSAM Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization

	Marvell NITROX Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization

	Null Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization

	Cryptodev Scheduler Poll Mode Driver Library
	Limitations
	Installation
	Initialization
	Cryptodev Scheduler Modes Overview

	SNOW 3G Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization

	Intel(R) QuickAssist (QAT) Crypto Poll Mode Driver
	Symmetric Crypto Service on QAT
	Asymmetric Crypto Service on QAT
	Building PMDs on QAT

	Virtio Crypto Poll Mode Driver
	Features
	Limitations
	Virtio crypto PMD Rx/Tx Callbacks
	Installation
	Tests

	ZUC Crypto Poll Mode Driver
	Features
	Limitations
	Installation
	Initialization

