=) DPDK

DATA PLANE DEVELOPMENT KIT

Rawdev Drivers
Release 20.02.1

May 18, 2020

NXP DPAA2 CMDIF Driver

1.1 Features.
1.2 Supported DPAA2SoCs
1.3 Prerequisites
1.4 Pre-Installation Configuration
1.5 Enablinglogs
1.6 Initialization
NXP DPAA2 QDMA Driver

2.1 Features.
2.2 Supported DPAA2SoCs,
2.3 PrerequiSites e e e e e e
2.4 Pre-Installation Configuration
2.5 Enablinglogs
2.6 Inmitialization
IFPGA Rawdev Driver

3.1 Implementationdetails
32 Buildoptions Lo
3.3 Run-time parameters v .t e e .

IOAT Rawdev Driver for Intel® QuickData Technology

4.1 Hardware Requirements
42 Compilation
43 DeviceSetup
4.4 Using IOAT Rawdev Devices
NTB Rawdev Driver

5.1 BIOS setting on Intel Skylake
52 BuildOptions.
53 DeviceSetup e
54 Prerequisites
5.5 RingLlayout
5.6 Limitation
OCTEON TX2 DMA Driver

6.1 Features.
6.2 Prerequisites and Compilation procedure
6.3 Pre-Installation Configuration
6.4 Enablinglogs

CONTENTS

6.5 Initialization e e e e e 16
6.6 Device Setup e e e e e e e 16
6.7 Device Configuration e e e e e e e e 16
6.8 Performing Data Transfer 16
6.9 Selftest o e 16
Marvell OCTEON TX2 End Point Rawdev Driver 17
7.1 Features. o . e e e e e e 17
7.2 Initialization oL e e e e e 17
7.3 Device Setup o e e e e e e 17
7.4 Device Configuration e e e e e e e e 18
7.5 Performing Data Transfer L 18
7.6 Selftest o o e 18

Rawdev Drivers, Release 20.02.1

The following are a list of raw device PMDs, which can be used from an application through rawdev
APL

CONTENTS 1

CHAPTER
ONE

NXP DPAA2 CMDIF DRIVER

The DPAA2 CMDIF is an implementation of the rawdev API, that provides communication between the
GPP and AIOP (Firmware). This is achieved via using the DPCI devices exposed by MC for GPP <—>
AIOP interaction.

More information can be found at NXP Official Website.

1.1 Features

The DPAA2 CMDIF implements following features in the rawdev API;
* Getting the object ID of the device (DPCI) using attributes
* 1/O to and from the AIOP device using DPCI

1.2 Supported DPAA2 SoCs

* LS2084A/LS2044A
* LS2088A/LS2048A
* LS1088A/LS1048A

1.3 Prerequisites

See ../platform/dpaa2 for setup information
Currently supported by DPDK:
* NXP SDK 19.09+.
* MC Firmware version 10.18.0 and higher.
* Supported architectures: arm64 LE.

* Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

Note: Some part of fslmc bus code (mc flib - object library) routines are dual licensed (BSD & GPLv2).

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM

Rawdev Drivers, Release 20.02.1

1.4 Pre-Installation Configuration

1.4.1 Config File Options

The following options can be modified in the config file.
* CONFIG_RTE_LIBRTE_PMD_DPAA2_CMDIF_RAWDEV (default y)

Toggle compilation of the 1rte_pmd_dpaa2_cmdif driver.

1.5 Enabling logs

For enabling logs, use the following EAL parameter:

./your_cmdif_application <EAL args> —--log-level=pmd.raw.dpaa2.cmdif,<level>

Using pmd. raw.dpaaZ2.cmdif as log matching criteria, all Event PMD logs can be enabled which
are lower than logging level.

1.5.1 Driver Compilation

To compile the DPAA2 CMDIF PMD for Linux arm64 gcc target, run the following make command:

cd <DPDK-source-directory>
make config T=armé64-dpaa-linux-gcc install

1.6 Initialization

The DPAA2 CMDIF is exposed as a vdev device which consists of dpci devices. On EAL initialization,
dpci devices will be probed and then vdev device can be created from the application code by

* Invoking rte_vdev_init ("dpaa2_dpci") from the application
* Using ——vdev="dpaa2_dpci" in the EAL options, which will call rte_vdev_init() internally

Example:

./your_cmdif_application <EAL args> —--vdev="dpaa2_dpci"

1.6.1 Platform Requirement

DPAA? drivers for DPDK can only work on NXP SoCs as listed in the Supported DPAA2 SoCs.

1.4. Pre-Installation Configuration 3

CHAPTER
TWO

NXP DPAA2 QDMA DRIVER

The DPAA2 QDMA is an implementation of the rawdev API, that provide means to initiate a DMA
transaction from CPU. The initiated DMA is performed without CPU being involved in the actual DMA
transaction. This is achieved via using the DPDMALI device exposed by MC.

More information can be found at NXP Official Website.

2.1 Features

The DPAA2 QDMA implements following features in the rawdev API;

* Supports issuing DMA of data within memory without hogging CPU while performing DMA
operation.

» Supports configuring to optionally get status of the DMA translation on per DMA operation basis.

2.2 Supported DPAA2 SoCs

LX2160A

LS2084A/LS2044A
LS2088A/LS2048A
LS1088A/LS1048A

2.3 Prerequisites

See ../platform/dpaa?2 for setup information
Currently supported by DPDK:
* NXP SDK 19.09+.
* MC Firmware version 10.18.0 and higher.
* Supported architectures: arm64 LE.

* Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM

Rawdev Drivers, Release 20.02.1

Note: Some part of fslmc bus code (mc flib - object library) routines are dual licensed (BSD & GPLv2).

2.4 Pre-Installation Configuration

2.4.1 Config File Options

The following options can be modified in the config file.
e CONFIG_RTE_LIBRTE_PMD_DPAA2_ QDMA_RAWDEV (default y)

Toggle compilation of the 1rte_pmd_dpaa2_gdma driver.

2.5 Enabling logs

For enabling logs, use the following EAL parameter:

./your_gdma_application <EAL args> —--log-level=pmd.raw.dpaa2.gdma,<level>

Using pmd. raw.dpaaZ2.gdma as log matching criteria, all Event PMD logs can be enabled which
are lower than logging level.

2.5.1 Driver Compilation

To compile the DPAA2 QDMA PMD for Linux arm64 gcc target, run the following make command:

cd <DPDK-source-directory>
make config T=arm64-dpaa-linux-gcc install

2.6 Initialization

The DPAA2 QDMA is exposed as a vdev device which consists of dpdmai devices. On EAL initializa-
tion, dpdmai devices will be probed and populated into the rawdevices. The rawdev ID of the device can
be obtained using

* Invoking rte_rawdev_get_dev_id ("dpdmai.x") from the application where x is the ob-
ject ID of the DPDMALI object created by MC. Use can use this index for further rawdev function
calls.

2.6.1 Platform Requirement

DPAAZ? drivers for DPDK can only work on NXP SoCs as listed in the Supported DPAA2 SoCs.

2.4. Pre-Installation Configuration 5

CHAPTER
THREE

IFPGA RAWDEYV DRIVER

FPGA is used more and more widely in Cloud and NFV, one primary reason is that FPGA not only
provides ASIC performance but also it’s more flexible than ASIC.

FPGA uses Partial Reconfigure (PR) Parts of Bit Stream to achieve its flexibility. That means one FPGA
Device Bit Stream is divided into many Parts of Bit Stream(each Part of Bit Stream is defined as AFU-
Accelerated Function Unit), and each AFU is a hardware acceleration unit which can be dynamically
reloaded respectively.

By PR (Partial Reconfiguration) AFUs, one FPGA resources can be time-shared by different users.
FPGA hot upgrade and fault tolerance can be provided easily.

The SW IFPGA Rawdev Driver (ifpga_rawdev) provides a Rawdev driver that utilizes Intel FPGA
Software Stack OPAE(Open Programmable Acceleration Engine) for FPGA management.

3.1 Implementation details

Each instance of IFPGA Rawdev Driver is probed by Intel FpgaDev. In coordination with OPAE share
code IFPGA Rawdev Driver provides common FPGA management ops for FPGA operation, OPAE
provides all following operations: - FPGA PR (Partial Reconfiguration) management - FPGA AFUs
Identifying - FPGA Thermal Management - FPGA Power Management - FPGA Performance reporting
- FPGA Remote Debug

All configuration parameters are taken by vdev_ifpga_cfg driver. Besides configuration, vdev_ifpga_cfg
driver also hot plugs in IFPGA Bus.

All of the AFUs of one FPGA may share same PCI BDF and AFUs scan depend on IFPGA Rawdev
Driver so IFPGA Bus takes AFU device scan and AFU drivers probe. All AFU device driver bind to
AFU device by its UUID (Universally Unique Identifier).

To avoid unnecessary code duplication and ensure maximum performance, handling of AFU devices is
left to different PMDs; all the design as summarized by the following block diagram:

et +
| Application(s) |
e B T +
\
\
e ittt +

| DPDK Framework (APIs)

[Eth PMD [Crypto PMD | | |

Rawdev Drivers, Release 20.02.1

o I + \ |
\ \ \ I
\ \ \ |
o e I i + | IFPGA [
| Eth AFU Dev | |Crypto AFU Dev | | Rawdev Driver |
- + + | (OPAE Share Code) |
\ \ \ |
\ \ Rawdev | |
to— ' ' + Ops \ |
[IFPGA Bus [— > | [
e + Fom e +

3.2 Build options

* CONFIG_RTE_LIBRTE_IFPGA_BUS (default y)
Toggle compilation of IFPGA Bus library.
e CONFIG_RTE_LIBRTE_IFPGA_RAWDEV (default y)

Toggle compilation of the 1 fpga_rawdev driver.

3.3 Run-time parameters

This driver is invoked automatically in systems added with Intel FPGA, but PR and IFPGA Bus scan is
triggered by command line using —-vdev 'ifpga_rawdev_cfg EAL option.

The following device parameters are supported:
* ifpga [string]

Provide a specific Intel FPGA device PCI BDF. Can be provided multiple times for additional
instances.

e port [int]

Each FPGA can provide many channels to PR AFU by software, each channels is identified by
this parameter.

* afu_bts [string]

If null, the AFU Bit Stream has been PR in FPGA, if not forces PR and identifies AFU Bit Stream
file.

3.2. Build options 7

CHAPTER
FOUR

IOAT RAWDEV DRIVER FOR INTEL® QUICKDATA TECHNOLOGY

The ioat rawdeyv driver provides a poll-mode driver (PMD) for Intel® QuickData Technology, part of
Intel® I/O Acceleration Technology (Intel I/OAT). This PMD, when used on supported hardware, allows
data copies, for example, cloning packet data, to be accelerated by that hardware rather than having to

be done by software, freeing up CPU cycles for other tasks.

4.1 Hardware Requirements

On Linux, the presence of an Intel® QuickData Technology hardware can be detected by checking the
output of the 1spci command, where the hardware will be often listed as “Crystal Beach DMA” or
“CBDMA”. For example, on a system with Intel® Xeon® CPU E5-2699 v4 @2.20GHz, Ispci shows:

lspci | grep DMA
00:04.0 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4d/Xeon
00:04.1 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon
00:04.2 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon
00:04.3 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4d/Xeon
00:04.4 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon
00:04.5 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon
00:04.6 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4d/Xeon
00:04.7 System peripheral: Intel Corporation Xeon E7 v4/Xeon E5 v4/Xeon E3 v4/Xeon
On a system with Intel® Xeon® Gold 6154 CPU @ 3.00GHz, Ispci shows:
lspci | grep DMA
00:04.0 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)
00:04.1 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)
00:04.2 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)
00:04.3 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)
00:04.4 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)
00:04.5 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)
00:04.6 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)
00:04.7 System peripheral: Intel Corporation Sky Lake-E CBDMA Registers (rev 04)
4.2 Compilation
For builds done with make, the driver compilation is enabled by the

CONFIG_RTE_LIBRTE_PMD_IOAT_RAWDEV build configuration option.
default in builds for x86 platforms, and disabled in other configurations.

This is enabled by

For builds using meson and ninja, the driver will be built when the target platform is x86-based.

vllvilivilvilvilvllvilw)

Crystal
Crystal
Crystal
Crystal
Crystal
Crystal
Crystal
Crystal

Be
Be
Be
Be
Be
Be
Be
Be

https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html

Rawdev Drivers, Release 20.02.1

4.3 Device Setup

The Intel® QuickData Technology HW devices will need to be bound to a user-space 1O driver for use.
The script dpdk-devbind. py script included with DPDK can be used to view the state of the devices
and to bind them to a suitable DPDK-supported kernel driver. When querying the status of the devices,
they will appear under the category of “Misc (rawdev) devices”, i.e. the command dpdk-devbind.py
-—status—-dev misc can be used to see the state of those devices alone.

4.3.1 Device Probing and Initialization

Once bound to a suitable kernel device driver, the HW devices will be found as part of the PCI scan done
at application initialization time. No vdev parameters need to be passed to create or initialize the device.

Once probed successfully, the device will appear as a rawdev, that is a “raw device type” inside DPDK,
and can be accessed using APIs from the rte_rawdev library.

4.4 Using IOAT Rawdev Devices

To use the devices from an application, the rawdev API can be used, along with definitions taken from
the device-specific header file rte_ioat_rawdev.h. This header is needed to get the definition of
structure parameters used by some of the rawdev APIs for IOAT rawdev devices, as well as providing
key functions for using the device for memory copies.

4.4.1 Getting Device Information

Basic information about each rawdev device can be queried using the rte_rawdev_info_get ()
API. For most applications, this API will be needed to verify that the rawdev in question is of the
expected type. For example, the following code snippet can be used to identify an IOAT rawdev device
for use by an application:

for (i = 0; i < count && !found; 1i++) {
struct rte_rawdev_info info = { .dev_private = NULL };
found = (rte_rawdev_info_get (i, &info) == 0 &&

strcmp (info.driver_name,
IOAT_PMD_RAWDEV_NAME_STR) == 0);
}

When calling the rte_rawdev_info_get () API for an IOAT rawdev device, the dev_private
field in the rte_rawdev_info struct should either be NULL, or else be set to point to a structure of
type rte_ioat_rawdev_config, in which case the size of the configured device input ring will be
returned in that structure.

4.4.2 Device Configuration

Configuring an IOAT rawdev device is done using the rte_rawdev_configure () API which takes
the same structure parameters as the, previously referenced, rte_rawdev_info_get () APL The
main difference is that, because the parameter is used as input rather than output, the dev_private
structure element cannot be NULL, and must point to a valid rte_iocat_rawdev_config structure,
containing the ring size to be used by the device. The ring size must be a power of two, between 64 and
4096.

4.3. Device Setup 9

Rawdev Drivers, Release 20.02.1

The following code shows how the device is configured in test_ioat_rawdev.c:

#define IOAT _TEST RINGSIZE 512

struct rte_iocat_rawdev_config p = { .ring_size = -1 };
struct rte_rawdev_info info = { .dev_private = &p };
VA 4

p.ring_size = IOAT_TEST_RINGSIZE;

if (rte_rawdev_configure (dev_id, &info) != 0) {
printf ("Error with rte_rawdev_configure ()\n");
return -1;

}

Once configured, the device can then be made ready for use by calling the rte_rawdev_start ()
API.

4.4.3 Performing Data Copies

To perform data copies using IOAT rawdev devices, the functions rte_ioat_enqueue_copy ()
and rte_ioat_do_copies () should be used. Once copies have been completed, the completion
will be reported back when the application calls rte_ioat_completed_copies ().

The rte_ioat_enqueue_copy () function enqueues a single copy to the device ring for copying
at a later point. The parameters to that function include the IOVA addresses of both the source and
destination buffers, as well as two “handles” to be returned to the user when the copy is completed.
These handles can be arbitrary values, but two are provided so that the library can track handles for both
source and destination on behalf of the user, e.g. virtual addresses for the buffers, or mbuf pointers if
packet data is being copied.

While the rte_ioat_enqueue_copy () function enqueues a copy operation on the device ring, the
copy will not actually be performed until after the application calls the rte_ioat_do_copies ()
function. This function informs the device hardware of the elements enqueued on the ring, and the
device will begin to process them. It is expected that, for efficiency reasons, a burst of operations will
be enqueued to the device via multiple enqueue calls between calls to the rte_ioat_do_copies ()
function.

The following code from test_ioat_rawdev.c demonstrates how to enqueue a burst of copies to
the device and start the hardware processing of them:

struct rte_mbuf *srcs[32], =*dsts[32];
unsigned int j;

for (i = 0; 1 < RTE_DIM(srcs); i++) {
char *src_data;

srcs[i] = rte_pktmbuf_alloc (pool);
dsts[i] = rte_pktmbuf_alloc(pool);
srcs[i]—->data_len = srcs[i]->pkt_len = length;
dsts[i]->data_len = dsts[i]->pkt_len = length;
src_data = rte_pktmbuf_mtod(srcs[i], char x*);

for (j = 0; j < length; j++)
src_datal[j] = rand() & OxFF;

if (rte_ioat_enqueue_copy (dev_id,
srcs[i]->buf_iova + srcs[i]->data_off,
dsts[i]->buf_iova + dsts[i]->data_off,
length,

4.4. Using IOAT Rawdev Devices 10

Rawdev Drivers, Release 20.02.1

(uintptr_t)srcs[i],
(uintptr_t)dsts([i],
0 /* nofence */) !'= 1) {

printf ("Error with rte_ioat_enqueue_copy for buffer %ul\n",

i);
return -1;
}
}

rte_ioat_do_copies (dev_id);

To retrieve information about completed copies, the APl rte_ioat_completed_copies ()
should be used. This API will return to the application a set of completion handles passed in when
the relevant copies were enqueued.

The following code from test_ioat_rawdev.c shows the test code retrieving information about
the completed copies and validating the data is correct before freeing the data buffers using the returned
handles:

if (rte_ioat_completed_copies(dev_id, 64, (void *)completed_src,
(void *)completed_dst) != RTE_DIM(srcs)) {
printf ("Error with rte_ioat_completed_copies\n");
return -1;
}
for (i = 0; i < RTE_DIM(srcs); i++) |
char *src_data, =*dst_data;

if (completed_src([i] != srcs[i]) {
printf ("Error with source pointer %u\n", i);
return -1;

}

if (completed_dst[i] != dsts[i]) {
printf ("Error with dest pointer %u\n", 1i);
return -1;

}

src_data rte_pktmbuf_mtod(srcs[i], char x);
dst_data = rte_pktmbuf_mtod(dsts[i], char x);
for (j = 0; j < length; j++)
if (src_datal[j] != dst_datalj]l) {
printf ("Error with copy of packet %u, byte %u\n",
i, J);
return -1;

}
rte_pktmbuf_free(srcs[i]);
rte_pktmbuf_free(dsts[i]);

4.4.4 Querying Device Statistics

The statistics from the IOAT rawdev device can be got via the xstats functions in the rte_rawdev
library, i.e. rte_rawdev_xstats_names_get (), rte_rawdev_xstats_get () and
rte_rawdev_xstats_by_name_get. The statistics returned for each device instance are:

e failed_enqgueues
* successful_enqueues
* copies_started

* coplies_completed

4.4. Using IOAT Rawdev Devices 11

CHAPTER
FIVE

NTB RAWDEV DRIVER

The ntb rawdev driver provides a non-transparent bridge between two separate hosts so that they can
communicate with each other. Thus, many user cases can benefit from this, such as fault tolerance and
visual acceleration.

This PMD allows two hosts to handshake for device start and stop, memory allocation for the peer to
access and read/write allocated memory from peer. Also, the PMD allows to use doorbell registers to
notify the peer and share some information by using scratchpad registers.

5.1 BIOS setting on Intel Skylake

Intel Non-transparent Bridge needs special BIOS setting. Since the PMD only supports Intel Skylake
platform, introduce BIOS setting here. The referencce is https://www.intel.com/content/dam/support/
us/en/documents/server-products/Intel_Xeon_Processor_Scalable_Family_BIOS_User_Guide.pdf

* Set the needed PCle port as NTB to NTB mode on both hosts.

¢ Enable NTB bars and set bar size of bar 23 and bar 45 as 12-29 (2K-512M) on both hosts. Note
that bar size on both hosts should be the same.

* Disable split bars for both hosts.

¢ Set crosslink control override as DSD/USP on one host, USD/DSP on another host.

Disable PCle PII SSC (Spread Spectrum Clocking) for both hosts. This is a hardware requirement.

5.2 Build Options
e CONFIG_RTE_LIBRTE_PMD_NTB_RAWDEV (default y)
Toggle compilation of the ntb driver.
5.3 Device Setup

The Intel NTB devices need to be bound to a DPDK-supported kernel driver to use, i.e. igb_uio, vfio.
The dpdk—-devbind. py script can be used to show devices status and to bind them to a suitable kernel
driver. They will appear under the category of “Misc (rawdev) devices”.

12

https://www.intel.com/content/dam/support/us/en/documents/server-products/Intel_Xeon_Processor_Scalable_Family_BIOS_User_Guide.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/Intel_Xeon_Processor_Scalable_Family_BIOS_User_Guide.pdf

Rawdev Drivers, Release 20.02.1

5.4 Prerequisites

NTB PMD needs kernel PCI driver to support write combining (WC) to get better performance. The
difference will be more than 10 times. To enable WC, there are 2 ways.

* Insert igb_uio with wc_activate=1 flag if use igb_uio driver.

insmod igb_uio.ko wc_activate=1

* Enable WC for NTB device’s Bar 2 and Bar 4 (Mapped memory) manually. The reference is
https://www.kernel.org/doc/html/latest/x86/mtrr.html Get bar base address using 1spci -vvv

-s ae:00.0 | grep Region.

lspci -vvv —-s ae:00.0 | grep Region

Region 0: Memory at 39bfe0000000 (64-bit, prefetchable) [size=64K]

Region 2: Memory at 39bfa0000000 (64-bit, prefetchable) [size=512M]

Region 4: Memory at 39bfc0000000 (64-bit, prefetchable) [size=512M]
Using the following command to enable WC.

echo "base=0x39bfa0000000 size=0x20000000 type=write-combining" >> /proc/mtrr

echo "base=0x39bfc0000000 size=0x20000000 type=write-combining" >> /proc/mtrr
And the results:

cat /proc/mtrr

reg00: base=0x000000000 (OMB), size= 2048MB, count=1l: write-back

reg0l: base=0x07£f000000 (2032MB), size= 16MB, count=1: uncachable

reg02: base=0x39pfa0000000 (60553728MB), size= 512MB, count=1l: write-combining

reg03: base=0x39bfc0000000 (60554240MB), size= 512MB, count=1: write-combining

To disable WC for these regions, using the following.

echo "disable=2" >> /proc/mtrr
echo "disable=3" >> /proc/mtrr

5.5 Ring Layout

Since read/write remote system’s memory are through PCI bus, remote read is much more expensive
than remote write. Thus, the enqueue and dequeue based on ntb ring should avoid remote read. The ring

layout for ntb is like the following:

* Ring Format:

desc_ring:

0 16 64

e +

| buffer address |

o T S +

| buffer length | resv |

o o +
used_ring:

0 16 32

o o ———— +

| packet length | flags |

o o +

* Ring Layout:

5.4. Prerequisites

13

https://www.kernel.org/doc/html/latest/x86/mtrr.html

Rawdev Drivers, Release 20.02.1

o + o +
| used_ring | | desc_ring |
| ===+ | | ===+ |
. \ | . \ \
+———+ o +	+———+				
	———>	buffer	<+———+—		
+=——+ - +		===+			
. \	[\ \				
+=——+		+=——+			
		.. \			
		\			
to——— +	to—— +				
	tx_tail				rx_tail
System A o +	System B t-——— +				
—— + o +
<mmmmm———= traffic-——————-—-

* Enqueue and Dequeue Based on this ring layout, enqueue reads rx_tail to get how many free
buffers and writes used_ring and tx_tail to tell the peer which buffers are filled with data. And
dequeue reads tx_tail to get how many packets are arrived, and writes desc_ring and rx_tail to tell
the peer about the new allocated buffers. So in this way, only remote write happens and remote
read can be avoid to get better performance.

5.6 Limitation

* This PMD only supports Intel Skylake platform.

5.6. Limitation 14

CHAPTER
SIX

OCTEON TX2 DMA DRIVER

OCTEON TX2 has an internal DMA unit which can be used by applications to initiate DMA transaction
internally, from/to host when OCTEON TX2 operates in PCle End Point mode. The DMA PF function
supports 8 VFs corresponding to 8 DMA queues. Each DMA queue was exposed as a VF function when
SRIOV enabled.

6.1 Features

This DMA PMD supports below 3 modes of memory transfers
1. Internal - OCTEON TX2 DRAM to DRAM without core intervention
2. Inbound - Host DRAM to OCTEON TX2 DRAM without host/OCTEON TX2 cores involvement

3. Outbound - OCTEON TX2 DRAM to Host DRAM without host/OCTEON TX2 cores involve-
ment

6.2 Prerequisites and Compilation procedure

See ../platform/octeontx2 for setup information.

6.3 Pre-Installation Configuration

6.3.1 Config File Options

The following options can be modified in the config file.
e CONFIG_RTE_LIBRTE_PMD_OCTEONTX2_DMA_RAWDEV (default y)

Toggle compilation of the 1rte_pmd_octeontx2_dma driver.

6.4 Enabling logs

For enabling logs, use the following EAL parameter:

./your_dma_application <EAL args> --log-level=pmd.raw.octeontx2.dpi,<level>

Using pmd.raw.octeontx2.dpi as log matching criteria, all Event PMD logs can be enabled
which are lower than logging level.

15

Rawdev Drivers, Release 20.02.1

6.5 Initialization

The number of DMA VFs (queues) enabled can be controlled by setting sysfs entry, sriov_numvfs for
the corresponding PF driver.

echo <num_vfs> > /sys/bus/pci/drivers/octeontx2-dpi/0000\:05\:00.0/sriov_numvfs

Once the required VFs are enabled, to be accessible from DPDK, VFs need to be bound to vfio-pci
driver.

6.6 Device Setup

The OCTEON TX2 DPI DMA HW devices will need to be bound to a user-space IO driver for use. The
script dpdk—devbind. py script included with DPDK can be used to view the state of the devices and
to bind them to a suitable DPDK-supported kernel driver. When querying the status of the devices, they
will appear under the category of “Misc (rawdev) devices”, i.e. the command dpdk—-devbind.py
-—status-dev misc can be used to see the state of those devices alone.

6.7 Device Configuration

Configuring DMA rawdev device is done using the rte_rawdev_configure () API, which takes
the mempool as parameter. PMD uses this pool to submit DMA commands to HW.

The following code shows how the device is configured

struct dpi_rawdev_conf_s conf = {0};
struct rte_rawdev_info rdev_info = {.dev_private = &conf};
conf.chunk_pool = (void *)rte_mempool_create_empty(...);

rte_mempool_set_ops_byname (conf.chunk_pool, rte_mbuf_platform_mempool_ops (), NULL);
rte_mempool_populate_default (conf.chunk_pool);

rte_rawdev_configure (dev_id, (rte_rawdev_obj_t)&rdev_info);

6.8 Performing Data Transfer

To perform data transfer using OCTEON TX2 DMA rawdev devices use standard
rte_rawdev_enqueue_buffers () and rte_rawdev_dequeue_buffers () APIs.

6.9 Self test

On EAL initialization, dma devices will be probed and populated into the raw devices. The rawdev ID
of the device can be obtained using

* Invoke rte_rawdev_get_dev_id ("DPI:x") from the application where x is the VF de-
vice’s bus id specified in “bus:device.func” format. Use this index for further rawdev function
calls.

* This PMD supports driver self test, to test DMA internal mode from test application one can
directly calls rte_rawdev_selftest (rte_rawdev_get_dev_id("DPI:x"))

6.5. Initialization 16

CHAPTER
SEVEN

MARVELL OCTEON TX2 END POINT RAWDEYV DRIVER

OCTEON TX2 has an internal SDP unit which provides End Point mode of operation by exposing its
10Qs to Host, IOQs are used for packet I/O between Host and OCTEON TX2. Each OCTEON TX2
SDP PF supports a max of 128 VFs and Each VF is associated with a set of IOQ pairs.

7.1 Features

This OCTEON TX2 End Point mode PMD supports
1. Packet Input - Host to OCTEON TX2 with direct data instruction mode.
2. Packet Output - OCTEON TX2 to Host with info pointer mode.

7.1.1 Config File Options

The following options can be modified in the config file.
* CONFIG_RTE_LIBRTE_PMD_OCTEONTX2_EP_RAWDEV (default v)

Toggle compilation of the 1rte_pmd_octeontx2_ep driver.

7.2 Initialization

The number of SDP VFs enabled, can be controlled by setting sysfs entry sriov_numvfs for the corre-
sponding PF driver.

echo <num_vfs> > /sys/bus/pci/drivers/octeontx2-ep/0000\:04\:00.0/sriov_numvfs

Once the required VFs are enabled, to be accessible from DPDK, VFs need to be bound to vfio-pci
driver.

7.3 Device Setup

The OCTEON TX2 SDP End Point VF devices will need to be bound to a user-space 10 driver for use.
The script dpdk—-devbind. py script included with DPDK can be used to view the state of the devices
and to bind them to a suitable DPDK-supported kernel driver. When querying the status of the devices,
they will appear under the category of “Misc (rawdev) devices”, i.e. the command dpdk-devbind.py
-—-status—dev misc can be used to see the state of those devices alone.

17

Rawdev Drivers, Release 20.02.1

7.4 Device Configuration

Configuring SDP EP rawdev device is done using the rte_rawdev_configure () APIL which takes
the mempool as parameter. PMD uses this pool to send/receive packets to/from the HW.

The following code shows how the device is configured

struct sdp_rawdev_info config = {0};
struct rte_rawdev_info rdev_info = {.dev_private = &config};
config.engdeg mpool = (void x)rte_mempool_create(...);

rte_rawdev_configure (dev_id, (rte_rawdev_obj_t)&rdev_info);

7.5 Performing Data Transfer

To perform data transfer using SDP VF EP rawdev devices wuse standard
rte_rawdev_enqueue_buffers () and rte_rawdev_dequeue_buffers () APIs.

7.6 Self test

On EAL initialization, SDP VF devices will be probed and populated into the raw devices. The rawdev
ID of the device can be obtained using

* Invoke rte_rawdev_get_dev_id ("SDPEP:x") from the test application where x is the
VF device’s bus id specified in “bus:device.func”(BDF) format. Use this index for further rawdev
function calls.

* The driver’s selftest rawdev API can be used to verify the SDP EP mode functional tests which
can send/receive the raw data packets to/from the EP device.

7.4. Device Configuration 18

	NXP DPAA2 CMDIF Driver
	Features
	Supported DPAA2 SoCs
	Prerequisites
	Pre-Installation Configuration
	Enabling logs
	Initialization

	NXP DPAA2 QDMA Driver
	Features
	Supported DPAA2 SoCs
	Prerequisites
	Pre-Installation Configuration
	Enabling logs
	Initialization

	IFPGA Rawdev Driver
	Implementation details
	Build options
	Run-time parameters

	IOAT Rawdev Driver for Intel® QuickData Technology
	Hardware Requirements
	Compilation
	Device Setup
	Using IOAT Rawdev Devices

	NTB Rawdev Driver
	BIOS setting on Intel Skylake
	Build Options
	Device Setup
	Prerequisites
	Ring Layout
	Limitation

	OCTEON TX2 DMA Driver
	Features
	Prerequisites and Compilation procedure
	Pre-Installation Configuration
	Enabling logs
	Initialization
	Device Setup
	Device Configuration
	Performing Data Transfer
	Self test

	Marvell OCTEON TX2 End Point Rawdev Driver
	Features
	Initialization
	Device Setup
	Device Configuration
	Performing Data Transfer
	Self test

