=) DPDK

DATA PLANE DEVELOPMENT KIT

Sample Applications User Guides
Release 20.02.1

May 18, 2020

Introduction to the DPDK Sample Applications

1.1 Running Sample Applications
1.2 The DPDK Sample Applications
Compiling the Sample Applications

2.1 To compile all the sample applications . . .
2.2 To compile a single application

2.3 To cross compile the sample application(s)

Command Line Sample Application
31 Overviewo

3.2 Compiling the Application
3.3 Running the Application
34 Explanation.

Ethtool Sample Application

4.1 Compiling the Application
4.2 Running the Application
4.3 Using the application
44 Explanation.
4.5 Ethtoolinterface

Hello World Sample Application

5.1 Compiling the Application
5.2 Running the Application
5.3 Explanation.

Basic Forwarding Sample Application

6.1 Compiling the Application
6.2 Running the Application
6.3 Explanation.

RX/TX Callbacks Sample Application

7.1 Compiling the Application
7.2 Running the Application
7.3 Explanation.

Flow Classify Sample Application
8.1 Compiling the Application
8.2 Running the Application

CONTENTS

11
........................ 11
........................ 11
........................ 11

13
........................ 13
........................ 13
........................ 13

18
........................ 18
........................ 18
........................ 18

10

11

12

13

14

15

16

17

8.3 Sampleipv4_rules_file.txt e
84 Explanation L. e e e

Basic RTE Flow Filtering Sample Application

9.1 Compiling the Application e
9.2 Running the Application e
0.3 Explanation e e e e e e e e

IP Fragmentation Sample Application

10.1 OVerview o o i e e e e e e e e e e e e e e e e e
10.2 Compiling the Application i i e
10.3 Running the Application L

IPv4 Multicast Sample Application

T1.1 OVerVIEW o o o e e e e e e e e e e e e
11.2 Compiling the Application i it e
11.3 Running the Application e
11.4 Explanation e e e e e e e e e e e

IP Reassembly Sample Application

12,1 OVEIVIEW o ot i e
12.2 Compiling the Application e
12.3 Running the Application L
12.4 Explanation e e e e e e e

Kernel NIC Interface Sample Application

I3.1 OVEIVIEW . . . v o v it e e e e e e e e e e e e e
13.2 Compiling the Application e
13.3 Running the kni Example Application 0.,
13.4 KNI Operations o v i ittt e e e e
13.5 Explanation e e e e e e e e e

Keep Alive Sample Application

T4 T OVEIVIEW . . . o o v it e i e e e e e e e e e e e e e
14.2 Compiling the Application e
14.3 Running the Application e e e e e
144 Explanation L e e e e e e

Packet copying using Intel® QuickData Technology

I5.1 OVEIVIEW o o v i e e e e e e e e
15.2 Compiling the Application L e
15.3 Running the Application
154 Explanation oL e e e e

L2 Forwarding with Crypto Sample Application

16.1 OVEIVIEW o oo i e e e e e e e
16.2 Compiling the Application 0 i e e
16.3 Running the Application L e
16.4 EXplanation e e e e e e e e e e e e e

L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load
statistics.
I7.1 OVerview o e e e e e e e e e e

31
31
31
31

39
39
39
39

42
42
42
42
43

47
47
47
47
49

51
51
52
52
54
55

56
56
56
56
57

59
59
59
59
60

68
68
68
68
70

17.2 Compiling the Application L e 78

17.3 Running the Application e 78
17.4 Explanation o e e e e e e e e e e e e e e 78
18 L2 Forwarding Sample Application (in Real and Virtualized Environments) 86
I8.1 OVEIVIEW . . . v o i i i e e e e e e e e e e e e e e 86
18.2 Compiling the Application 89
18.3 Running the Application L e 89
18.4 Explanation e e e e e e e e e e 89
19 L2 Forwarding Eventdev Sample Application 95
19.1 OVErVIEW o o o i e e e e e e e e e e e e 95
19.2 Compiling the Application e 95
19.3 Running the Application L e 95
194 Explanation e e e e e e 97
20 L2 Forwarding Sample Application with Cache Allocation Technology (CAT) 106
20.1 Compiling the Application 0 i e e 106
20.2 Running the Application L e 107
203 Explanation e e e e e e e e 108
21 L3 Forwarding Sample Application 109
211 OVEIVIEW . . . v o v it e e e e e e e e e e e e e e e e e e 109
21.2 Compiling the Application e 109
21.3 Running the Application e e e e e 110
214 Explanation e e e e e e 112
22 L3 Forwarding with Power Management Sample Application 116
22.1 Introduction e e e e e e e e 116
222 OVEIVIEW .« v v v v it e e e e e e e e e e e e e e e e 116
22.3 Compiling the Application e 117
22.4 Running the Application L 117
22.5 Explanation e e e e e e e 118
22,6 Empty PollMode e 122
2277 Telemetry Mode L e e e e e e 123
23 L3 Forwarding with Access Control Sample Application 124
23,1 OVEIVIEW . .« o v v v it e e e e e e e e e e e e e e e 124
23.2 Compiling the Application e 128
23.3 Running the Application 128
234 Explanation e e e 129
24 Link Status Interrupt Sample Application 130
241 OVEIVIEW . . . v v i v it e e e e e e e e e e e 130
24.2 Compiling the Application L e 130
24.3 Running the Application 130
244 Explanation e e e e e e e e e e e e e e 131
25 Server-Node EFD Sample Application 137
25.1 OVEIVIEW v i ittt e it e s e e e e e e e 137
25.2 Compiling the Application i e 138
25.3 Running the Application L e 138
25.4 Explanation e e e e e e e 139

26

27

28

29

30

31

32

33

34

35

36

Service Cores Sample Application

26.1 Compiling the Application
26.2 Running the Application
263 Explanation.

Multi-process Sample Application

27.1 Example Applications

QoS Metering Sample Application

281 OVerview o o v v it e e e e e e
28.2 Compiling the Application
28.3 Running the Application
284 Explanation. e

QoS Scheduler Sample Application

201 OVErVIEW . . . v i v i e e e e e e e e e e
29.2 Compiling the Application
29.3 Running the Application
29.4 Explanation

Timer Sample Application

30.1 Compiling the Application
30.2 Running the Application
303 Explanation.

Packet Ordering Application

311 OVerview o o v vt e e e e e e e e e e
31.2 Compiling the Application
31.3 Running the Application

VMDQ and DCB Forwarding Sample Application

32,1 OVEerVIeW . . . v v i e i e e e e e e e e e
32.2 Compiling the Application
32.3 Running the Application
324 Explanation. e

Vhost Sample Application

33,1 Testing Steps . . . v v o i e e e e e e e e e
332 Injectpackets
33.3 Parameters e
334 CommonlIssues

Vhost_blk Sample Application

341 Testing StePS .« v v v v v e e e e e e e e e e e e
34.2 Compiling the Application

Vhost_Crypto Sample Application

35.1 Testing Steps . . ¢ v v i i e e e e e e e e e e
35.2 Compiling the Application

Vdpa Sample Application

36.1 Testing Steps . .« v v v i e e e e e e e e e

145
145
145
145

148
148

155
155
155
155
156

158
158
158
159
163

165
165
165
165

168
168
168
168

170
170
171
171
171

175
175
176
176
177

178
178
178

180
180
180

182

37 Internet Protocol (IP) Pipeline Application

Application OVEIVIEW v v v v v ot e e e e e e e e e e e e
Running the application e
Application Stages e e e e e e e e e e

38

39

40

41

42

43

44

37.1
37.2
37.3
37.4
37.5

Examples

Command Line Interface (CLI)

Test Pipeline Application

38.1

Overview

38.2 Compiling the Application L
38.3 Running the Application

Eventdev Pipeline Sample Application

39.1 Compiling the Application o e e
39.2 Running the Application e
39.3 Observing the Application e e

Distributor Sample Application

40.1
40.2
40.3
40.4
40.5
40.6
40.7

Overview

Compiling the Application i
Running the Application L e
Explanation e e e e e e e
Intel SST-BF Support e e e e e
Debug Logging Support e e e e e e

Statistics

40.8 Application Initialization oL L

Virtual Machine Power Management Application

Sample Application Architecture Overview v ...
Configuration e e e e e
Compiling and Running the Host Application
Compiling and Running the Guest Applications
JSON Interface for Power Management Requests and Policies

41.1
41.2
41.3
41.4
41.5

TEP termination Sample Application

Background e e e e e e e
Sample Code OVerview oottt e e e
Supported Distributions
Compiling the Sample Code
Running the Sample Code
Running the Virtual Machine (QEMU)
Running DPDK in the Virtual Machine
Passing Traffic to the Virtual Machine Device

42.1
42.2
42.3
42.4
42.5
42.6
42.7
42.8

PTP Client Sample Application

Limitations e e e e e e e
How the Application Works e
Compiling the Application L e
Running the Application
Code Explanation e e

43.1
43.2
43.3
43.4
43.5

Performance Thread Sample Application

44.1

Overview

184
184
184
185
188
189

195
195
195
196

199
199
199
200

202
202
203
203
203
204
204
204
205

206
208
209
211
213
215

221
221
222
222
224
224
225
225
225

226
226
226
227
227
228

231
231

45

46

47

48

44.2
443
44.4
44.5

Compiling the Application e
Running the Application e
Explanation L e e e e e e e
The L-thread subsystem e

Federal Information Processing Standards (FIPS) CryptoDev Validation

45.1
45.2
45.3
45.4
45.5

OVEIVIEW . . . v it e et e e e e e e e e e e e
Limitations L e e e e
Application Information
Compiling the Application e
Running the Application

IPsec Security Gateway Sample Application

46.1
46.2
46.3
46.4
46.5
46.6

OVEIVIEW o i o i e e e e e e e e e e
Constraints o ot e e e e e e e e e e e
Compiling the Application e e e e e
Running the Application
Configurations v i i e e e e e e e e e e e e e e e
Test directory o L e e e e e e

Loop-back Sample Application using Baseband Device (bbdev)

47.1
47.2
47.3
47.4
47.5

OVEIVIEW o o o e e
Limitations e e e e e e
Compiling the Application e
Running the Application e
Using Packet Generator with baseband device sample application

NTB Sample Application

48.1
48.2
48.3
48.4

Compiling the Application i
Running the Application
Command-line Options v v v v e e e e e e e e
Using the application o o it e e

248
248
248
249
249
249

251
251
252
252
252
255
262

264
264
264
264
265
265

Vi

CHAPTER
ONE

INTRODUCTION TO THE DPDK SAMPLE APPLICATIONS

The DPDK Sample Applications are small standalone applications which demonstrate various features
of DPDK. They can be considered as a cookbook of DPDK features. Users interested in getting started
with DPDK can take the applications, try out the features, and then extend them to fit their needs.

1.1 Running Sample Applications

Some sample applications may have their own command-line parameters described in their respective
guides, however all of them also share the same EAL parameters. Please refer to EAL parameters
(Linux) or EAL parameters (FreeBSD) for a list of available EAL command-line options.

1.2 The DPDK Sample Applications

There are many sample applications available in the examples directory of DPDK. These examples
range from simple to reasonably complex but most are designed to demonstrate one particular feature of
DPDK. Some of the more interesting examples are highlighted below.

* Hello World: As with most introductions to a programming framework a good place to start is
with the Hello World application. The Hello World example sets up the DPDK Environment Ab-
straction Layer (EAL), and prints a simple “Hello World” message to each of the DPDK enabled
cores. This application doesn’t do any packet forwarding but it is a good way to test if the DPDK
environment is compiled and set up properly.

* Basic Forwarding/Skeleton Application: The Basic Forwarding/Skeleton contains the minimum
amount of code required to enable basic packet forwarding with DPDK. This allows you to test if
your network interfaces are working with DPDK.

* Network Layer 2 forwarding: The Network Layer 2 forwarding, or 12 fwd application does for-
warding based on Ethernet MAC addresses like a simple switch.

* Network Layer 2 forwarding: The Network Layer 2 forwarding, or 12 fwd-event application
does forwarding based on Ethernet MAC addresses like a simple switch. It demonstrates usage of
poll and event mode IO mechanism under a single application.

* Network Layer 3 forwarding: The Network Layer3 forwarding, or 13fwd application does for-
warding based on Internet Protocol, IPv4 or IPv6 like a simple router.

* Hardware packet copying: The Hardware packet copying, or 1oat fwd application demonstrates
how to use IOAT rawdev driver for copying packets between two threads.

Sample Applications User Guides, Release 20.02.1

* Packet Distributor: The Packet Distributor demonstrates how to distribute packets arriving on an
Rx port to different cores for processing and transmission.

* Multi-Process Application: The multi-process application shows how two DPDK processes can
work together using queues and memory pools to share information.

* RX/TX callbacks Application: The RX/TX callbacks sample application is a packet forwarding
application that demonstrates the use of user defined callbacks on received and transmitted pack-
ets. The application calculates the latency of a packet between RX (packet arrival) and TX (packet
transmission) by adding callbacks to the RX and TX packet processing functions.

* [Psec Security Gateway: The IPsec Security Gateway application is minimal example of some-
thing closer to a real world example. This is also a good example of an application using the
DPDK Cryptodev framework.

* Precision Time Protocol (PTP) client: The PTP client is another minimal implementation of a real
world application. In this case the application is a PTP client that communicates with a PTP master
clock to synchronize time on a Network Interface Card (NIC) using the IEEE1588 protocol.

* Quality of Service (QoS) Scheduler: The QoS Scheduler application demonstrates the use of
DPDK to provide QoS scheduling.

There are many more examples shown in the following chapters. Each of the documented sample appli-
cations show how to compile, configure and run the application as well as explaining the main function-
ality of the code.

1.2. The DPDK Sample Applications 2

CHAPTER
TWO

COMPILING THE SAMPLE APPLICATIONS

This section explains how to compile the DPDK sample applications.

2.1 To compile all the sample applications

Set the path to DPDK source code if its not set:

export RTE_SDK=/path/to/rte_sdk
Go to DPDK source:

cd SRTE_SDK
Build DPDK:

make defconfig
make

Build the sample applications:

export RTE_TARGET=build
make —-C examples

For other possible RTE_TARGET values and additional information on com-
piling see Compiling DPDK on Linux or Compiling DPDK on FreeBSD.
Applications are output to: SRTE_SDK/examples/app-dir/build or
SRTE_SDK/examples/app—-dir/S$SRTE_TARGET.

In the example above the compiled application is written to the bui 1d subdirectory. To have the applica-
tions written to a different location, the O=/path/to/build/directory option may be specified
in the make command.

make O=/tmp

To build the applications for debugging use the DEBUG option. This option adds some extra flags,
disables compiler optimizations and sets verbose output.

make DEBUG=1

2.2 To compile a single application

Set the path to DPDK source code:

export RTE_SDK=/path/to/rte_sdk

Go to DPDK source:

Sample Applications User Guides, Release 20.02.1

cd $RTE_SDK

Build DPDK:

make defconfig
make

Go to the sample application directory. Unless otherwise specified the sample applications are located
in SRTE_SDK/examples/.

Build the application:

export RTE_TARGET=build
make

2.3 To cross compile the sample application(s)

For Cross compiling the sample application(s), please append
‘CROSS=$(CROSS_COMPILER_PREFIX)’ to the ‘make’ command. In example of AARCH64
cross compiling:

export RTE_TARGET=build

export RTE_SDK=/path/to/rte_sdk

make -C examples CROSS=aarché64-linux—-gnu-
or

make CROSS=aarch64-linux—-gnu-—

2.3. To cross compile the sample application(s) 4

CHAPTER
THREE

COMMAND LINE SAMPLE APPLICATION

This chapter describes the Command Line sample application that is part of the Data Plane Development
Kit (DPDK).

3.1 Overview

The Command Line sample application is a simple application that demonstrates the use of the command
line interface in the DPDK. This application is a readline-like interface that can be used to debug a DPDK
application, in a Linux* application environment.

Note: The rte_cmdline library should not be used in production code since it is not validated to the same
standard as other DPDK libraries. See also the “rte_cmdline library should not be used in production
code due to limited testing” item in the “Known Issues” section of the Release Notes.

The Command Line sample application supports some of the features of the GNU readline library such
as, completion, cut/paste and some other special bindings that make configuration and debug faster and
easier.

The application shows how the rte_cmdline application can be extended to handle a list of objects. There
are three simple commands:

* add obj_name IP: Add a new object with an IP/IPv6 address associated to it.
* del obj_name: Delete the specified object.

* show obj_name: Show the IP associated with the specified object.

Note: To terminate the application, use Ctrl-d.

3.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications

The application is located in the cmd__11ine sub-directory.

Sample Applications User Guides, Release 20.02.1

3.3 Running the Application

To run the application in linux environment, issue the following command:

$./build/cmdline -1 0-3 -n 4

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

3.4 Explanation

The following sections provide some explanation of the code.

3.4.1 EAL Initialization and cmdline Start

The first task is the initialization of the Environment Abstraction Layer (EAL). This is achieved as
follows:
int main(int argc, char xxargv)
{
ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_panic("Cannot init EAL\n");

Then, a new command line object is created and started to interact with the user through the console:

cl = cmdline_stdin_new (main_ctx, "example> ");
cmdline_interact (cl);
cmdline_stdin_exit (cl);

The cmd line_interact() function returns when the user types Ctrl-d and in this case, the application
exits.

3.4.2 Defining a cmdline Context

A cmdline context is a list of commands that are listed in a NULL-terminated table, for example:

cmdline_parse_ctx_t main_ctx[] = {
(cmdline_parse_inst_t ») &cmd_obj_del_show,
(cmdline_parse_inst_t *) &cmd_obj_add,
(cmdline_parse_inst_t x) &cmd_help,
NULL,

bi

Each command (of type cmdline_parse_inst_t) is defined statically. It contains a pointer to a callback
function that is executed when the command is parsed, an opaque pointer, a help string and a list of
tokens in a NULL-terminated table.

The rte_cmdline application provides a list of pre-defined token types:
» String Token: Match a static string, a list of static strings or any string.
* Number Token: Match a number that can be signed or unsigned, from 8-bit to 32-bit.
* [P Address Token: Match an IPv4 or IPv6 address or network.
* Ethernet* Address Token: Match a MAC address.

3.3. Running the Application 6

Sample Applications User Guides, Release 20.02.1

In this example, a new token type obj_list is defined and implemented in the parse_obj_list.c and
parse_obj_list.h files.

For example, the cmd_obj_del_show command is defined as shown below:

struct cmd_obj_add_result {
cmdline_fixed_string_t action;
cmdline_fixed_string_t name;
struct object xobj;

bi

static void cmd_obj_del_show_parsed(void xparsed_result, struct cmdline xcl, attribute

{
VAV

cmdline_parse_token_string t cmd_obj_action = TOKEN_STRING_INITIALIZER (struct cmd_obj_del_show_

parse_token_obj_list_t cmd_obj_obj = TOKEN_OBJ_LIST_INITIALIZER (struct cmd_obj_del_show_result,

cmdline_parse_inst_t cmd_obj_del_show = {
.f = cmd_obj_del_show_parsed, /% function to call x/
.data = NULL, /#* 2nd arg of func #*/
.help_str = "Show/del an object",
.tokens = { /* token 1list, NULL terminated #*/
(void *)&cmd_obj_action,
(void *)&cmd_obj_obi,
NULL,
}I
}i

This command is composed of two tokens:
* The first token is a string token that can be show or del.

* The second token is an object that was previously added using the add command in the
global_obj_list variable.

Once the command is parsed, the rte_cmdline application fills a cmd_obj_del_show_result structure. A
pointer to this structure is given as an argument to the callback function and can be used in the body of
this function.

3.4. Explanation 7

CHAPTER
FOUR

ETHTOOL SAMPLE APPLICATION

The Ethtool sample application shows an implementation of an ethtool-like API and provides a console
environment that allows its use to query and change Ethernet card parameters. The sample is based upon
a simple L2 frame reflector.

4.1 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the etht ool sub-directory.

4.2 Running the Application

The application requires an available core for each port, plus one. The only available options are the
standard ones for the EAL:

./ethtool-app/ethtool-app/${RTE_TARGET}/ethtool [EAL options]

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

4.3 Using the application

The application is console-driven using the cmdline DPDK interface:

EthApp>
From this interface the available commands and descriptions of what they do as follows:
* drvinfo: Print driver info
* eeprom: Dump EEPROM to file
* module-eeprom: Dump plugin module EEPROM to file
* link: Print port link states
* macaddr: Gets/sets MAC address
* mtu: Set NIC MTU

* open: Open port

Sample Applications User Guides, Release 20.02.1

* pause: Get/set port pause state

* portstats: Print port statistics

* regs: Dump port register(s) to file

* ringparam: Get/set ring parameters

* rxmode: Toggle port Rx mode

* stop: Stop port

* validate: Check that given MAC address is valid unicast address
* vlan: Add/remove VLAN id

* quit: Exit program

4.4 Explanation

The sample program has two parts: A background packet reflector that runs on a slave core, and a
foreground Ethtool Shell that runs on the master core. These are described below.

4.4.1 Packet Reflector

The background packet reflector is intended to demonstrate basic packet processing on NIC ports con-
trolled by the Ethtool shim. Each incoming MAC frame is rewritten so that it is returned to the sender,
using the port in question’s own MAC address as the source address, and is then sent out on the same
port.

4.4.2 Ethtool Shell

The foreground part of the Ethtool sample is a console-based interface that accepts commands as de-
scribed in using the application. Individual call-back functions handle the detail associated with each
command, which make use of the functions defined in the Ethtool interface to the DPDK functions.

4.5 Ethtool interface

The Ethtool interface is built as a separate library, and implements the following functions:
* rte_ethtool_get_drvinfo ()
e rte_ethtool_get_regs_len()
* rte_ethtool_get_regs()
* rte_ethtool_get_link()
* rte_ethtool_get_eeprom_len()
* rte_ethtool_get_eeprom()
* rte_ethtool_set_eeprom()

* rte_ethtool_get_module_info()

4.4. Explanation 9

Sample Applications User Guides, Release 20.02.1

rte_ethtool_get_module_eeprom/()
rte_ethtool_get_pauseparam()
rte_ethtool_set_pauseparam/()
rte_ethtool_net_open()
rte_ethtool_net_stop()
rte_ethtool_net_get_mac_addr ()
rte_ethtool_net_set_mac_addr ()
rte_ethtool_net_validate_addr ()
rte_ethtool_net_change_mtu()
rte_ethtool_net_get_stats64 ()
rte_ethtool _net_vlan_rx_add_vid()
rte_ethtool_net_vlan_rx_kill_wvid{()
rte_ethtool _net set rx mode ()
rte_ethtool_get_ringparam/()

rte_ethtool_set_ringparam/ ()

4.5. Ethtool interface

10

CHAPTER
FIVE

HELLO WORLD SAMPLE APPLICATION

The Hello World sample application is an example of the simplest DPDK application that can be written.
The application simply prints an “helloworld” message on every enabled Icore.

5.1 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the hellowor1d sub-directory.

5.2 Running the Application

To run the example in a linux environment:

$./build/helloworld -1 0-3 —-n 4

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

5.3 Explanation

The following sections provide some explanation of code.

5.3.1 EAL Initialization

The first task is to initialize the Environment Abstraction Layer (EAL). This is done in the main()
function using the following code:

int
main (int argc, char *xargv)

{
ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_panic("Cannot init EAL\n");

This call finishes the initialization process that was started before main() is called (in case of a Linux
environment). The argc and argv arguments are provided to the rte_eal_init() function. The value
returned is the number of parsed arguments.

11

Sample Applications User Guides, Release 20.02.1

5.3.2 Starting Application Unit Lcores

Once the EAL is initialized, the application is ready to launch a function on an Icore. In this example,
Icore_hello() is called on every available Icore. The following is the definition of the function:

static int
lcore_hello(attribute ((unused)) wvoid *arg)
{

unsigned lcore_id;

lcore_id = rte_lcore_id();
printf ("hello from core %u\n", lcore_id);
return 0;

}

The code that launches the function on each Icore is as follows:

/% call lcore_hello() on every slave lcore x/

RTE_LCORE_FOREACH_SLAVE (lcore_id) {
rte_eal_remote_launch (lcore_hello, NULL, lcore_id);

}

/+ call it on master lcore too x/
lcore_hello (NULL) ;

The following code is equivalent and simpler:

rte_eal_mp_remote_launch(lcore_hello, NULL, CALL_MASTER);

Refer to the DPDK API Reference for detailed information on the rte_eal_mp_remote_launch() function.

5.3. Explanation 12

CHAPTER
SIX

BASIC FORWARDING SAMPLE APPLICATION

The Basic Forwarding sample application is a simple skeleton example of a forwarding application.

It is intended as a demonstration of the basic components of a DPDK forwarding application. For more
detailed implementations see the L2 and L3 forwarding sample applications.

6.1 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the skeleton sub-directory.

6.2 Running the Application

To run the example in a 1 inux environment:

./build/basicfwd -1 1 -n 4

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

6.3 Explanation

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte__ and are explained in detail
in the DPDK API Documentation.

6.3.1 The Main Function

The main () function performs the initialization and calls the execution threads for each Icore.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv arguments
are providedtothe rte_eal_init () function. The value returned is the number of parsed arguments:

int ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Error with EAL initialization\n");

The main () also allocates a mempool to hold the mbufs (Message Buffers) used by the application:

13

Sample Applications User Guides, Release 20.02.1

mbuf_pool = rte_mempool_create ("MBUF_POOL",
NUM_MBUFS * nb_ports,
MBUF_SIZE,
MBUF_CACHE_SIZE,
sizeof (struct rte_pktmbuf_pool_private),
rte_pktmbuf_pool_init, NULL,

rte_pktmbuf_init, NULL,
rte_socket_id (),
0);

Mbufs are the packet buffer structure used by DPDK. They are explained in detail in the “Mbuf Library”
section of the DPDK Programmer’s Guide.

Themain () function also initializes all the ports using the user defined port_init () function which
is explained in the next section:

RTE_ETH_FOREACH_DEV (portid) {
if (port_init (portid, mbuf_pool) != 0) {
rte_exit (EXIT_FAILURE,
"Cannot init port %" PRIu8 "\n", portid);

}

Once the initialization is complete, the application is ready to launch a function on an Icore. In this
example 1core_main () is called on a single Icore.

lcore_main () ;

The 1core_main () function is explained below.

6.3.2 The Port Initialization Function

The main functional part of the port initialization used in the Basic Forwarding application is shown
below:

static inline int
port_init (uintlé6_t port, struct rte_mempool »mbuf_pool)
{
struct rte_eth_conf port_conf = port_conf_default;
const uintlé6_t rx_rings = 1, tx_rings = 1;
struct rte_ether_addr addr;
int retval;
uintlé_t g;

if (!rte_eth_dev_is_valid_port (port))
return -1;

/+ Configure the Ethernet device. */
retval = rte_eth_dev_configure (port, rx_rings, tx_rings, &port_conf);
if (retval != 0)

return retval;

/* Allocate and set up 1 RX queue per Ethernet port. */
for (g = 0; g < rx_rings; gt++) {
retval = rte_eth_rx_queue_setup(port, g, RX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL, mbuf_pool);
if (retval < 0)
return retval;

/* Allocate and set up 1 TX queue per Ethernet port. x/
for (g = 0; g < tx_rings; gt++) {

6.3. Explanation 14

Sample Applications User Guides, Release 20.02.1

retval = rte_eth_tx_queue_setup (port, g, TX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL);
if (retval < 0)
return retval;

/+* Start the Ethernet port. #*/
retval = rte_eth_dev_start (port);
if (retval < 0)

return retval;

/#* Enable RX in promiscuous mode for the Ethernet device. */
retval = rte_eth_promiscuous_enable (port);
if (retval != 0)

return retval;

return 0O;

}

The Ethernet ports are configured with default settings using the rte_eth_dev_configure ()

function and the port_conf_default struct:

static const struct rte_eth_conf port_conf_default = {
.rxmode = { .max_rx_pkt_len = RTE_ETHER_MAX_LEN }
}i

For this example the ports are set up with 1 RX and 1 TX queue using
rte_eth_rx_queue_setup () and rte_eth_tx_queue_setup () functions.

The Ethernet port is then started:

retval = rte_eth_dev_start (port);

Finally the RX port is set in promiscuous mode:

retval = rte_eth_promiscuous_enable (port);

6.3.3 The Lcores Main

As we saw above the main () function calls an application function on the available lcore

Basic Forwarding application the lcore function looks like the following:

static _ attribute_ ((noreturn)) wvoid
lcore_main (void)
{

uintl6_t port;

/ *

* Check that the port is on the same NUMA node as the polling thread

* for best performance.
*/
RTE_ETH_FOREACH_DEV (port)
if (rte_eth_dev_socket_id(port) > 0 &&
rte_eth_dev_socket_id(port) !=
(int) rte_socket_id())
printf ("WARNING, port %u is on remote NUMA node to "
"polling thread.\n\tPerformance will "
"not be optimal.\n", port);

printf ("\nCore %u forwarding packets. [Ctrl+C to quit]\n",
rte_lcore_id());

/#+ Run until the application is quit or killed. x/

6.3. Explanation

Sample Applications User Guides, Release 20.02.1

for (;;) {
J *
* Receive packets on a port and forward them on the paired
* port. The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
*/
RTE_ETH_FOREACH_DEV (port) {

/+ Get burst of RX packets, from first port of pair. =*/
struct rte_mbuf *bufs[BURST_SIZE];
const uintl6_t nb_rx = rte_eth_rx_burst (port, 0,

bufs, BURST_SIZE);

if (unlikely(nb_rx == 0))
continue;

/* Send burst of TX packets, to second port of pair. */
const uintlé6_t nb_tx = rte_eth_tx_burst (port ~ 1, 0,
bufs, nb_rx);

/+ Free any unsent packets. #*/
if (unlikely(nb_tx < nb_rx)) {
uintlé6_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)
rte_pktmbuf_free (bufs[buf]);

}
The main work of the application is done within the loop:

for (;;) {
RTE_ETH_FOREACH_DEV (port) {

/* Get burst of RX packets, from first port of pair. */
struct rte_mbuf *bufs[BURST_SIZE];
const uintl6_t nb_rx = rte_eth_rx_burst (port, O,

bufs, BURST_SIZE);

if (unlikely(nb_rx == 0))
continue;

/+ Send burst of TX packets, to second port of pair. */
const uintl6_t nb_tx = rte_eth_tx_burst (port ~ 1, 0,
bufs, nb_rx);

/+ Free any unsent packets. */
if (unlikely(nb_tx < nb_rx)) {
uintl6_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)
rte_pktmbuf_free (bufs[buf]);

}

Packets are received in bursts on the RX ports and transmitted in bursts on the TX ports. The ports are
grouped in pairs with a simple mapping scheme using the an XOR on the port number:

0 ->1
1 ->0
2 —> 3
3 -> 2

6.3. Explanation 16

Sample Applications User Guides, Release 20.02.1

etc.

The rte_eth_tx_burst () function frees the memory buffers of packets that are transmit-
ted. If packets fail to transmit, (nb_tx < nb_rx), then they must be freed explicitly using
rte_pktmbuf_free().

The forwarding loop can be interrupted and the application closed using Ct r1-C.

6.3. Explanation 17

CHAPTER
SEVEN

RX/TX CALLBACKS SAMPLE APPLICATION

The RX/TX Callbacks sample application is a packet forwarding application that demonstrates the use
of user defined callbacks on received and transmitted packets. The application performs a simple latency
check, using callbacks, to determine the time packets spend within the application.

In the sample application a user defined callback is applied to all received packets to add a timestamp.
A separate callback is applied to all packets prior to transmission to calculate the elapsed time, in CPU
cycles.

If hardware timestamping is supported by the NIC, the sample application will also display the average
latency since the packet was timestamped in hardware, on top of the latency since the packet was received
and processed by the RX callback.

7.1 Compiling the Application

To compile the sample application see Compiling the Sample Applications.
The application is located in the rxtx_callbacks sub-directory.

The callbacks feature requires that the CONFIG_RTE_ETHDEV_RXTX_CALLBACKS setting is on in
the config/common_ config file that applies to the target. This is generally on by default:

CONFIG_RTE_ETHDEV_RXTX_ CALLBACKS=y

7.2 Running the Application

To run the example in a 1 inux environment:

./build/rxtx_callbacks -1 1 -n 4 —— [-t]
Use -t to enable hardware timestamping. If not supported by the NIC, an error will be displayed.

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

7.3 Explanation

The rxtx_callbacks application is mainly a simple forwarding application based on the Basic For-
warding Sample Application. See that section of the documentation for more details of the forwarding
part of the application.

18

Sample Applications User Guides, Release 20.02.1

The sections below explain the additional RX/TX callback code.

7.3.1 The Main Function

The main () function performs the application initialization and calls the execution threads for each
Icore. This function is effectively identical to the main () function explained in Basic Forwarding
Sample Application.

The 1core_main () function is also identical.

The main difference is in the user defined port_init () function where the callbacks are added. This
is explained in the next section:

7.3.2 The Port Initialization Function

The main functional part of the port initialization is shown below with comments:

static inline int
port_init (uintl6_t port, struct rte_mempool *mbuf_pool)
{
struct rte_eth_conf port_conf = port_conf_default;
const uintlé_t rx_rings = 1, tx_rings = 1;
struct rte_ether_ addr addr;
int retval;
uintlé6_t g;

/+ Configure the Ethernet device. x/
retval = rte_eth_dev_configure (port, rx_rings, tx_rings, &port_conf);
if (retval != 0)

return retval;

/+ Allocate and set up 1 RX queue per Ethernet port. */
for (g = 0; g < rx_rings; gt++) {
retval = rte_eth_rx_queue_setup (port, g, RX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL, mbuf_pool);
if (retval < 0)
return retval;

/* Allocate and set up 1 TX queue per Ethernet port. */
for (g = 0; g < tx_rings; gt++) {
retval = rte_eth_tx_queue_setup(port, g, TX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL);
if (retval < 0)
return retval;

/# Start the Ethernet port. #*/
retval = rte_eth_dev_start (port);
if (retval < 0)

return retval;

/#+ Enable RX in promiscuous mode for the Ethernet device. x/
retval = rte_eth_promiscuous_enable (port);
if (retval != 0)

return retval;

/* Add the callbacks for RX and TX.x*/
rte_eth_add_rx_callback (port, 0, add_timestamps, NULL);
rte_eth_add_tx_callback (port, 0, calc_latency, NULL);

7.3. Explanation 19

Sample Applications User Guides, Release 20.02.1

return O;

}

The RX and TX callbacks are added to the ports/queues as function pointers:

rte_eth_add_rx_callback (port, 0, add_timestamps, NULL);
rte_eth_add_tx_callback (port, 0, calc_latency, NULL) ;

More than one callback can be added and additional information can be passed to callback function
pointers as a voidx. In the examples above NULL is used.

The add_timestamps () and calc_latency () functions are explained below.

7.3.3 The add_timestamps() Callback

The add_timestamps () callback is added to the RX port and is applied to all packets received:

static uintlé6_t
add_timestamps (uintl6_t port __ rte_unused, uintlé6_t gidx __rte_unused,
struct rte_mbuf xxpkts, uintlé6_t nb_pkts, wvoid +_ __ rte_unused)
{
unsigned i;
uint64_t now = rte_rdtsc();

for (i = 0; 1 < nb_pkts; i++)
pkts[i]->udata64 = now;

return nb_pkts;
}

The DPDK function rte_rdtsc () is used to add a cycle count timestamp to each packet (see the
cycles section of the DPDK API Documentation for details).

7.3.4 The calc_latency() Callback

The calc_latency () callback is added to the TX port and is applied to all packets prior to trans-
mission:

static uintl6_t
calc_latency(uintlé6_t port __rte_unused, uintlé6_t gidx __rte_unused,
struct rte_mbuf xxpkts, uintlé6_t nb_pkts, void x_ __ rte_unused)
{
uint64_t cycles = 0;
uint64_t now = rte_rdtsc();
unsigned i;

for (1 = 0; 1 < nb_pkts; 1i++)
cycles += now - pkts[i]->udatab64;

latency_numbers.total_cycles += cycles;
latency_numbers.total_pkts += nb_pkts;

if (latency_numbers.total_pkts > (100 = 1000 % 1000ULL)) {
printf ("Latency = %"PRIu64" cycles\n",
latency_numbers.total_cycles / latency_numbers.total_pkts);

latency_numbers.total_cycles = latency_numbers.total_pkts = 0;

7.3. Explanation 20

Sample Applications User Guides, Release 20.02.1

return nb_pkts;

}

The calc_latency () function accumulates the total number of packets and the total number of
cycles used. Once more than 100 million packets have been transmitted the average cycle count per
packet is printed out and the counters are reset.

7.3. Explanation 21

CHAPTER
EIGHT

FLOW CLASSIFY SAMPLE APPLICATION

The Flow Classify sample application is based on the simple skeleton example of a forwarding applica-
tion.

It is intended as a demonstration of the basic components of a DPDK forwarding application which uses
the Flow Classify library API’s.

Please refer to the ../prog_guide/flow_classify_lib for more information.

8.1 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the f1ow_classify sub-directory.

8.2 Running the Application

To run the example in a 1 inux environment:

cd ~/dpdk/examples/flow_classify
./build/flow_classify -c 4 -n 4 —-- —-rule_ipv4="../1ipv4_rules_file.txt"

Please refer to the DPDK Getting Started Guide, section ../linux_gsg/build_sample_apps for general
information on running applications and the Environment Abstraction Layer (EAL) options.

8.3 Sample ipv4_rules_file.txt

#file format:
#src_ip/masklen dst_ip/masklen src_port : mask dst_port : mask proto/mask priority

#
2

.2.2.3/24 2.2.2.7/24 32 : Oxffff 33 : Oxffff 17/0xff O
9.9.9.3/24 9.9.9.7/24 32 : Oxffff 33 : Oxffff 17/0xff 1
9.9.9.3/24 9.9.9.7/24 32 : Oxffff 33 : Oxffff 6/0xff 2
9.9.8.3/24 9.9.8.7/24 32 : Oxffff 33 : Oxffff 6/0xff 3
6.7.8.9/24 2.3.4.5/24 32 : 0x0000 33 : 0x0000 132/0xff 4

8.4 Explanation

The following sections provide an explanation of the main components of the code.

22

Sample Applications User Guides, Release 20.02.1

All DPDK library functions used in the sample code are prefixed with rte__ and are explained in detail
in the DPDK API Documentation.

8.4.1 ACL field definitions for the IPv4 5 tuple rule

The following field definitions are used when creating the ACL table during initialisation of the Flow
Classify application..

enum {
PROTO_FIELD_TIPV4,
SRC_FIELD_IPV4,
DST_FIELD_IPV4,
SRCP_FIELD_IPV4,
DSTP_FIELD_IPV4,
NUM_FIELDS_IPV4

}i

enum {
PROTO_INPUT_IPV4,
SRC_INPUT_IPV4,
DST_INPUT_IPV4,
SRCP_DESTP_INPUT_TIPV4
}i

static struct rte_acl_field def ipv4_defs[NUM_FIELDS_IPV4] = {
/+ first input field - always one byte long. */
{
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof (uint8_t),
.field_index = PROTO_FIELD_IPV4,
.input_index = PROTO_INPUT_IPV4,
.offset = sizeof (struct rte_ether_hdr) +
offsetof (struct rte_ipv4_hdr, next_proto_id),
}I
/* next input field (IPv4 source address) - 4 consecutive bytes. #*/
{
/* rte_flow uses a bit mask for IPv4 addresses x*/
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof (uint32_t),
.field_index = SRC_FIELD_IPV4,
.input_index = SRC_INPUT_IPV4,
.offset = sizeof (struct rte_ether_hdr) +
offsetof (struct rte_ipv4_hdr, src_addr),
}I
/+ next input field (IPv4 destination address) — 4 consecutive bytes. */
{
/* rte_flow uses a bit mask for IPv4 addresses =*/
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof (uint32_¢t),
.field_index = DST_FIELD_IPV4,
.input_index = DST_INPUT_IPV4,
.0offset = sizeof (struct rte_ether_hdr) +
offsetof (struct rte_ipv4_hdr, dst_addr),
}I
/%
* Next 2 fields (src & dst ports) form 4 consecutive bytes.
* They share the same input index.
*/
{
/#* rte_flow uses a bit mask for protocol ports */
.type = RTE_ACL_FIELD_TYPE_BITMASK,

8.4. Explanation 23

Sample Applications User Guides, Release 20.02.1

.size = sizeof (uintlé_t),
.field_index = SRCP_FIELD_IPV4,
.input_index = SRCP_DESTP_INPUT_IPV4,
.offset = sizeof (struct rte_ether_hdr) +
sizeof (struct rte_ipv4_hdr) +
offsetof (struct rte_tcp_hdr, src_port),

/* rte _flow uses a bit mask for protocol ports #*/
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof (uintlé6_t),
.field_index = DSTP_FIELD_IPV4,
.input_index = SRCP_DESTP_INPUT_IPV4,
.0offset = sizeof (struct rte_ether_hdr) +
sizeof (struct rte_ipv4_hdr) +
offsetof (struct rte_tcp_hdr, dst_port),
}I
}i

8.4.2 The Main Function

The main () function performs the initialization and calls the execution threads for each Icore.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv arguments
are providedtothe rte_eal_init () function. The value returned is the number of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Error with EAL initialization\n");

It then parses the flow_classify application arguments

ret = parse_args(argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Invalid flow_classify parameters\n");

The main () function also allocates a mempool to hold the mbufs (Message Buffers) used by the appli-
cation:

mbuf_pool = rte_mempool_create ("MBUF_POOL",
NUM_MBUFS % nb_ports,
MBUF_SIZE,
MBUF_CACHE_SIZE,
sizeof (struct rte_pktmbuf_pool_private),
rte_pktmbuf_pool_init, NULL,
rte_pktmbuf_init, NULL,
rte_socket_id (),
0);

mbufs are the packet buffer structure used by DPDK. They are explained in detail in the “Mbuf Library”
section of the DPDK Programmer’s Guide.

Themain () function also initializes all the ports using the user defined port_init () function which
is explained in the next section:

RTE_ETH_FOREACH_DEV (portid) {
if (port_init (portid, mbuf_pool) != 0) {
rte_exit (EXIT_FAILURE,
"Cannot init port %" PRIu8 "\n", portid);

8.4. Explanation 24

Sample Applications User Guides, Release 20.02.1

The main () function creates the flow classifier object and adds an ACL table to the

flow classifier.

struct flow_classifier {
struct rte_flow_classifier xcls;

bi

struct flow_classifier_acl {
struct flow_classifier cls;
} __rte_cache_aligned;

/+ Memory allocation #*/
size = RTE_CACHE_LINE_ROUNDUP (sizeof (struct flow_classifier_acl));
cls_app = rte_zmalloc (NULL, size, RTE_CACHE_LINE_SIZE);
if (cls_app == NULL)
rte_exit (EXIT_FAILURE, "Cannot allocate classifier memory\n");

cls_params.name = "flow_classifier";
cls_params.socket_id = socket_id;

cls_app-—>cls = rte_flow_classifier_create(&cls_params);
if (cls_app->cls == NULL) {

rte_free(cls_app);

rte_exit (EXIT_FAILURE, "Cannot create classifier\n");

/+ initialise ACL table params */

table_acl_params.name = "table acl_ipv4 5Stuple";
table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
table_acl_params.n_rules = FLOW_CLASSIFY_ MAX_RULE_NUM;

memcpy (table_acl_params.field_format, ipv4_defs, sizeof (ipv4_defs));

/+ initialise table create params x/

cls_table_params.ops = &rte_table_acl_ops,
cls_table_params.arg_create = &table_acl_params,
cls_table_params.type = RTE_FLOW_CLASSIFY_ TABLE_ACL_IP4_5TUPLE;

ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
if (ret) {

rte_flow_classifier_free(cls_app->cls);

rte_free(cls);

rte_exit (EXIT_FAILURE, "Failed to create classifier table\n");

It then reads the ipv4_rules_file.txt file and initialises the parameters for
rte_flow_classify_table_entry_add APL This API adds a rule to the ACL table.

if (add_rules(parm_config.rule_ipv4_name)) {
rte_flow_classifier_ free(cls_app->cls);
rte_free(cls_app);
rte_exit (EXIT_FAILURE, "Failed to add rules\n");
}

the

Once the initialization is complete, the application is ready to launch a function on an lcore. In this

example 1core_main () is called on a single Icore.

lcore_main(cls_app);

The 1core_main () function is explained below.

8.4. Explanation

25

Sample Applications User Guides, Release 20.02.1

8.4.3 The Port Initialization Function

The main functional part of the port initialization used in the Basic Forwarding application is shown

below:

static inline int

port_init (uint8_t port,

{

}

struct rte_mempool xmbuf_pool)

struct rte_eth_conf port_conf = port_conf_default;

const uintlé_t rx_rings = 1, tx_rings = 1;
struct rte_ether_addr addr;

int retval;

uintlé_t g;

/* Configure the Ethernet device. x/
retval = rte_eth_dev_configure (port, rx_rings,
if (retval != 0)

return retval;

/+ Allocate and set up 1 RX queue per Ethernet port.

for (g = 0; g < rx_rings; gt++) {

retval = rte_eth_rx_queue_setup (port, g, RX_RING_SIZE,
mbuf_pool);

rte_eth_dev_socket_id(port), NULL,
if (retval < 0)
return retval;

/* Allocate and set up 1 TX queue per Ethernet port.

for (g = 0; g < tx_rings; gt+) |

retval = rte_eth_tx_queue_setup(port, g, TX_RING_SIZE,

rte_eth_dev_socket_id(port), NULL);
if (retval < 0)
return retval;

/* Start the Ethernet port. */
retval = rte_eth_dev_start (port);
if (retval < 0)

return retval;

/+ Display the port MAC address. x/
retval = rte_eth_macaddr_get (port, &addr);
if (retval < 0)
return retval;
printf ("Port %Su MAC: $02" PRIx8 " %02" PRIx8 "

tx_rings,

s02"

" 502" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",

port,

addr.addr_bytes[0], addr.addr_bytes[1l],
addr.addr_bytes[2], addr.addr_bytes[3],
addr.addr_bytes[4], addr.addr_bytes[5]);

*/

*/

PRIxS8

/# Enable RX in promiscuous mode for the Ethernet device.

retval = rte_eth_promiscuous_enable (port);
if (retval != 0)
return retval;

return 0O;

&port_conf);

The Ethernet ports are configured with default settings using the rte_eth_dev_configure ()
function and the port_conf_default struct.

8.4. Explanation

26

Sample Applications User Guides, Release 20.02.1

static const struct rte_eth_conf

port_conf_default {

.rxmode = { .max_rx_pkt_len = RTE_ETHER_MAX_LEN }

bi
For this example the ports are set up with 1 RX and 1 TX queue using the
rte_eth_rx_qgueue_setup () and rte_eth_tx_queue_setup () functions.
The Ethernet port is then started:

retval = rte_eth_dev_start (port);
Finally the RX port is set in promiscuous mode:

retval = rte_eth_promiscuous_enable (port) ;
8.4.4 The Add Rules function
The add_rules function reads the ipv4_rules_file.txt file and calls the

add_classify_rule function which
API.

static int
add_rules (const char *rule_path)
{
FILE xfh;
char buff [LINE_MAX];
unsigned int i 0;
unsigned int total_num = 0;
struct rte_eth_ntuple_filter

fh = fopen(rule_path, "rb");
if (fh == NULL)
rte_exit (EXIT_FAILURE, "%
rule_path);
fseek (fh, 0, SEEK_SET);
i = 0;
while (fgets(buff, LINE_MAX,
i++;
if (is_bypass_line (buff))
continue;
if
printf ("\nINFO: class
total_num) ;
break;
}
if (parse_ipv4_5tuple_rul
rte_exit (EXIT_FAILURE
"$s Line %u:
rule_path, 1
if (add_classify_rule (&nt
rte_exit (EXIT_FAILURE
total_num+t+;
}
fclose (fh);

(total_num >= FLOW_CLASSIFY_MAX RULE_NUM -

calls the rte_flow_classify_table_entry_add

ntuple_filter;

s: Open %s failed\n", __ func__,

fh) != NULL) {

IR

ify rule capacity %d reached\n",

e (buff,

14

parse rules error\n",

)i

sntuple_filter) 0)

uple_filter) != 0)

, "add rule error\n");

8.4. Explanation

27

Sample Applications User Guides, Release 20.02.1

return 0;

8.4.5 The Lcore Main function

As we saw above the main () function calls an application function on the available Icores. The
lcore_main function calls the rte_flow_classifier_query APIL For the Basic Forwarding
application the 1core_main function looks like the following:

/+ flow classify data */

static int num_classify_rules;

static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;

static struct rte_flow_classify_stats classify_stats = {
.stats = (void «x)é&ntuple_stats

}i

static _ attribute_ ((noreturn)) wvoid

lcore_main (cls_app)
{
uintlé6_t port;

/%
* Check that the port is on the same NUMA node as the polling thread
* for best performance.
*/
RTE_ETH_FOREACH_DEV (port)
if (rte_eth_dev_socket_id(port) > 0 &&
rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
printf ("\n\n");
printf ("WARNING: port %u is on remote NUMA node\n",
port);
printf ("to polling thread.\n");
printf ("Performance will not be optimal.\n");

printf ("\nCore %u forwarding packets. \n",
rte_lcore_id());
printf (" [Ctrl+C to quit]\n

/#* Run until the application is quit or killed. x/
for (;;) A
J *
* Receive packets on a port and forward them on the paired
* port. The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 —-> 2, etc.
*/
RTE_ETH_FOREACH_DEV (port) {

/% Get burst of RX packets, from first port of pair. */
struct rte_mbuf *bufs[BURST_SIZE];
const uintlé6_t nb_rx = rte_eth_rx_burst (port, 0,

bufs, BURST_SIZE);

if (unlikely(nb_rx == 0))
continue;

for (1 = 0; i < MAX_NUM_CLASSIFY; i++) {
if (rules[i]) |
ret = rte_flow_classifier_query (
cls_app->cls,
bufs, nb_rx, rules[i],

8.4. Explanation 28

Sample Applications User Guides, Release 20.02.1

}

&classify_stats);

if (ret)
printf (
"rule [%d] query failed ret [%d]\n\n",
i, ret);
else {
printf (

"rule[%d] count=%"PRIu64"\n",
i, ntuple_stats.counterl);

printf ("proto = %d\n",
ntuple_stats.ipv4_5tuple.proto);

/+ Send burst of TX packets, to second port of pair. =*/
const uintlé6_t nb_tx = rte_eth_tx_burst (port ~ 1, 0,
bufs, nb_rx);

/+* Free any unsent packets. */
if (unlikely(nb_tx < nb_rx)) {
uintl6_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)
rte_pktmbuf_free (bufs[buf]);

The main work of the application is done within the loop:

for (;;) |

}

RTE_ETH_FOREACH_DEV (port) {

/% Get burst of RX packets, from first port of pair. */
struct rte_mbuf xbufs[BURST_SIZE];
const uintl6_t nb_rx = rte_eth_rx_burst (port, 0,

bufs, BURST_SIZE);

if (unlikely(nb_rx == 0))
continue;

/* Send burst of TX packets, to second port of pair. #*/
const uintl6_t nb_tx = rte_eth_tx_burst (port ~ 1, 0,
bufs, nb_rx);

/+ Free any unsent packets. */
if (unlikely(nb_tx < nb_rx)) {
uintlé6_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)
rte_pktmbuf_free (bufs[buf]);

Packets are received in bursts on the RX ports and transmitted in bursts on the TX ports. The ports are
grouped in pairs with a simple mapping scheme using the an XOR on the port number:

0 —> 1
1 >0
2 -> 3
3 > 2
8.4. Explanation 29

Sample Applications User Guides, Release 20.02.1

etc.

The rte_eth_tx_burst () function frees the memory buffers of packets that are transmit-
ted. If packets fail to transmit, (nb_tx < nb_rx), then they must be freed explicitly using
rte_pktmbuf_free().

The forwarding loop can be interrupted and the application closed using Ct r1-C.

8.4. Explanation 30

CHAPTER
NINE

BASIC RTE FLOW FILTERING SAMPLE APPLICATION

The Basic RTE flow filtering sample application is a simple example of a creating a RTE flow rule.

It is intended as a demonstration of the basic components RTE flow rules.

9.1 Compiling the Application

To compile the application export the path to the DPDK source tree and go to the example directory:
export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/flow_filtering

Set the target, for example:

export RTE_TARGET=x86_64-native-linux—gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

Build the application as follows:

make

9.2 Running the Application

To run the example in a 1inux environment:

./build/flow -1 1 -n 1

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

9.3 Explanation

The example is built from 2 files, main . c which holds the example logic and £1ow_blocks. c that
holds the implementation for building the flow rule.

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte__ and are explained in detail
in the DPDK API Documentation.

31

Sample Applications User Guides, Release 20.02.1

9.3.1 The Main Function

The main () function located in main. c file performs the initialization and runs the main loop func-
tion.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv arguments
are providedtothe rte_eal_init () function. The value returned is the number of parsed arguments:

int ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Error with EAL initialization\n");

The main () also allocates a mempool to hold the mbufs (Message Buffers) used by the application:

mbuf_pool = rte_pktmbuf_pool_create ("mbuf_pool", 4096, 128, 0,
RTE_MBUF_DEFAULT_BUF_SIZE,
rte_socket_id());

Mbufs are the packet buffer structure used by DPDK. They are explained in detail in the “Mbuf Library”
section of the DPDK Programmer’s Guide.

Themain () function also initializes all the ports using the user defined init_port () function which
is explained in the next section:

init_port();

Once the initialization is complete, we set the flow rule using the following code:

/+ create flow for send packet with #*/
flow = generate_ipv4_flow (port_id, selected_qgueue,
SRC_TIP, EMPTY_MASK,
DEST_IP, FULL_MASK, &error);
if (!flow) |
printf ("Flow can't be created %$d message: %s\n",
error.type,
error.message ? error.message : " (no stated reason)");
rte_exit (EXIT_FAILURE, "error in creating flow");
}

In the last part the application is ready to launch the main_loop () function. Which is explained
below.

main_loop();

9.3.2 The Port Initialization Function

The main functional part of the port initialization used in the flow filtering application is shown below:

init_port (void)
{
int ret;
uintlé_t i;
struct rte_eth_conf port_conf = {
.rxmode = {
.split_hdr_size = 0,
} 14
.txmode = {
.offloads =
DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |

9.3. Explanation 32

Sample Applications User Guides, Release 20.02.1

DEV_TX_OFFLOAD_TCP_TSO,
}I
}i
struct rte_eth_txconf txg_conf;
struct rte_eth_rxconf rxg conf;
struct rte_eth_dev_info dev_info;

printf(":: initializing port: %d\n", port_id);
ret = rte_eth_dev_configure (port_id,
nr_gueues, nr_gueues, &port_conf);
if (ret < 0) {
rte_exit (EXIT_FAILURE,
":: cannot configure device: err=%d, port=%u\n",
ret, port_id);

rte_eth_dev_info_get (port_id, &dev_info);
rxqg_conf = dev_info.default_rxconf;
rxg_conf.offloads = port_conf.rxmode.offloads;
/+ only set Rx queues: something we care only so far */
for (i = 0; 1 < nr_queues; i++) {
ret = rte_eth_rx_qgueue_setup (port_id, i, 512,
rte_eth_dev_socket_id(port_id),
&rxg_conf,
mbuf_pool);
if (ret < 0) {
rte_exit (EXIT_FAILURE,

":: Rx queue setup failed: err=%d, port=%u\n",

ret, port_id);

txg _conf = dev_info.default_txconf;
txg _conf.offloads = port_conf.txmode.offloads;

for (i = 0; 1 < nr_queues; i++) {
ret = rte_eth_tx_queue_setup (port_id, i, 512,
rte_eth_dev_socket_id(port_id),
&txg_conf);
if (ret < 0) {
rte_exit (EXIT_FAILURE,

ret, port_id);

ret = rte_eth_promiscuous_enable (port_id);
if (ret != 0) {
rte_exit (EXIT_FAILURE,

":: cannot enable promiscuous mode: err=%d, port=%u\n",

ret, port_id);

ret = rte_eth_dev_start (port_id);
if (ret < 0) {
rte_exit (EXIT_FAILURE,
"rte_eth_dev_start:err=%d, port=%u\n",
ret, port_id);

assert_link_status();

printf(":: initializing port: %d done\n", port_id);

Tx queue setup failed: err=%d, port=%u\n",

9.3. Explanation

33

Sample Applications User Guides, Release 20.02.1

}

The Ethernet port is configured with default settings using the rte_eth_dev_configure () func-
tion and the port_conf_default struct:

struct rte_eth_conf port_conf = {
.rxmode = {
.split_hdr_size = 0,
} 4
.txmode = {
.offloads
DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
\
\

DEV_TX_OFFLOAD_TCP_CKSUM
DEV_TX_OFFLOAD_SCTP_CKSUM
DEV_TX_OFFLOAD_TCP_TSO,

} 14

}i

ret = rte_eth_dev_configure (port_id, nr_qgueues, nr_qgqueues, &port_conf);
if (ret < 0) {
rte_exit (EXIT_FAILURE,
":: cannot configure device: err=%d, port=%u\n",
ret, port_id);
}
rte_eth_dev_info_get (port_id, &dev_info);
rxg_conf = dev_info.default_rxconf;
rxg_conf.offloads = port_conf.rxmode.offloads;

For this example we are configuring number of rx and tx queues that are connected to a single port.

for (i = 0; 1 < nr_queues; i++) {
ret = rte_eth_rx_queue_setup (port_id, i, 512,
rte_eth_dev_socket_id(port_id),
&rxg_conf,
mbuf_pool);
if (ret < 0) {
rte_exit (EXIT_FAILURE,
":: Rx queue setup failed: err=%d, port=%u\n",
ret, port_id);

for (i = 0; 1 < nr_queues; i++) {
ret = rte_eth_tx_qgqueue_setup (port_id, i, 512,
rte_eth_dev_socket_id(port_id),
&txqg_conf);
if (ret < 0) {
rte_exit (EXIT_FAILURE,
":: Tx queue setup failed: err=%d, port=%u\n",
ret, port_id);

}

In the next step we create and apply the flow rule. which is to send packets with destination ip equals
to 192.168.1.1 to queue number 1. The detail explanation of the generate_ipv4_flow () appears
later in this document:

flow = generate_ipv4_flow(port_id, selected_qgueue,
SRC_IP, EMPTY_MASK,
DEST_IP, FULL_MASK, &error);

We are setting the RX port to promiscuous mode:

9.3. Explanation 34

Sample Applications User Guides, Release 20.02.1

ret = rte_eth_promiscuous_enable (port_id);
if (ret !'= 0) {
rte_exit (EXIT_FAILURE,
":: cannot enable promiscuous mode: err=%d, port=%u\n",
ret, port_id);
}

The last step is to start the port.

ret = rte_eth_dev_start (port_id);
if (ret < 0) {
rte_exit (EXIT_FAILURE, "rte_eth dev_start:err%d, port=%u\n",
ret, port_id);

9.3.3 The main_loop function

As we saw above the main () function calls an application function to handle the main loop. For the
flow filtering application the main_loop function looks like the following:

static void

main_loop (void)

{
struct rte_mbuf *mbufs[32];
struct rte_ether_hdr xeth_hdr;
uintl6_t nb_rx;
uintlé_t i;
uintlé6_t j;

while (!force_qgquit) {
for (i = 0; i < nr_queues; i++) {
nb_rx = rte_eth_rx_burst (port_id,
i, mbufs, 32);
if (nb_rx) {
for (j = 0; J < nb_rx; j++) {
struct rte_mbuf s*m = mbufs[]j];

eth_hdr = rte_pktmbuf_mtod (m,
struct rte_ether_hdr «);
print_ether_addr ("src=",
ð_hdr->s_addr) ;

print_ether_addr (" - dst=",
ð_hdr->d_addr) ;
printf (" - queue=0x%x",

(unsigned int)i);
printf ("\n");
rte_pktmbuf_free (m);

}

/* closing and releasing resources #*/
rte_flow_flush(port_id, &error);
rte_eth_dev_stop (port_id);
rte_eth_dev_close (port_id);

}

The main work of the application is reading the packets from all queues and printing for each packet the
destination queue:

while (!force_quit) {
for (i = 0; 1 < nr_queues; i++) {

9.3. Explanation 35

Sample Applications User Guides, Release 20.02.1

nb_rx = rte_eth_rx_burst (port_id, i, mbufs, 32);
if (nb_rx) {
for (j = 0; j < nb_rx; j++) {
struct rte_mbuf s*m = mbufs[j];
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr x);

print_ether_addr ("src=", ð_hdr->s_addr);
print_ether_addr (" - dst=", ð_hdr->d_addr);
printf (" - queue=0x%x", (unsigned int)i);

printf ("\n");
rte_pktmbuf_free (m);

}

The forwarding loop can be interrupted and the application closed using Ct r1-C. Which results in
closing the port and the device using rte_eth_dev_stop and rte_eth_dev_close

9.3.4 The generate_ipv4_flow function

The generate_ipv4_flow function is responsible for creating the flow rule. This function is located in the
flow_blocks.c file.

static struct rte_flow =

generate_ipv4_flow(uint8_t port_id, uintlé6_t rx_g,
uint32_t src_ip, uint32_t src_mask,
uint32_t dest_ip, uint32_t dest_mask,
struct rte_flow_error xerror)

struct rte_flow_attr attr;

struct rte_flow_item pattern[MAX_PATTERN_NUM];

struct rte_flow_action action[MAX_ACTION_NUM];

struct rte_flow xflow = NULL;

struct rte_flow_action_gqueue queue = { .index = rx_qg };
struct rte_flow_item_ ipv4 ip_spec;

struct rte_flow_item_ipv4 ip_mask;

memset (pattern, 0, sizeof (pattern));
memset (action, 0, sizeof (action));

/%
* set the rule attribute.
* 1n this case only ingress packets will be checked.
*/
memset (&attr, 0, sizeof (struct rte_flow_attr));
attr.ingress = 1;
J *
* create the action sequence.
* one action only, move packet to queue

*/
action[0] .type = RTE_FLOW_ACTION_TYPE_QUEUE;
action[0].conf = &gqueue;

action[1].type = RTE_FLOW_ACTION_TYPE_END;

J *
* set the first level of the pattern (ETH).
* since in this example we just want to get the
* 1pv4 we set this level to allow all.
*/
pattern[0] .type = RTE_FLOW_ITEM_TYPE_ETH;

9.3. Explanation 36

Sample Applications User Guides, Release 20.02.1

J *

* setting the second level of the pattern (IP).

* in this example this 1is the level we care about

* so we set it according to the parameters.

*/
memset (&ip_spec, 0, sizeof (struct rte_flow_item_ipv4));
memset (&ip_mask, 0, sizeof (struct rte_flow_item_ ipv4));
ip_spec.hdr.dst_addr = htonl (dest_ip);
ip_mask.hdr.dst_addr = dest_mask;
ip_spec.hdr.src_addr = htonl (src_ip);

ip_mask.hdr.src_addr = src_mask;
pattern[l].type = RTE_FLOW_ITEM_TYPE_IPV4;
pattern[l].spec = &ip_spec;

pattern[l] .mask = &ip_mask;

/% the final level must be always type end #*/
pattern[2].type = RTE_FLOW_ITEM_TYPE_END;

int res = rte_flow_validate(port_id, é&attr, pattern, action, error);
if(!res)
flow = rte_flow_create(port_id, &attr, pattern, action, error);

return flow;

}

The first part of the function is declaring the structures that will be used.

struct rte_flow_attr attr;

struct rte_flow_item pattern[MAX_PATTERN_NUM];

struct rte_flow_action action[MAX_ACTION_NUM];

struct rte_flow xflow;

struct rte_flow_error error;

struct rte_flow_action_queue queue = { .index = rx_qgq };
struct rte_flow_item_ipv4 ip_spec;

struct rte_flow_item_ipv4 ip_mask;

The following part create the flow attributes, in our case ingress.

memset (&attr, O

, sizeof (struct rte_flow_attr));
attr.ingress = 1;

The third part defines the action to be taken when a packet matches the rule. In this case send the packet
to queue.
action[0].type = RTE_FLOW_ACTION_TYPE_QUEUE;

action[0].conf = &gqueue;
action[1l].type = RTE_FLOW_ACTION_TYPE_END;

The fourth part is responsible for creating the pattern and is built from number of steps. In each step we
build one level of the pattern starting with the lowest one.

Setting the first level of the pattern ETH:

pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;

Setting the second level of the pattern IP:

memset (&ip_spec, 0, sizeof (struct rte_flow_item_ipv4));
memset (&ip_mask, 0, sizeof (struct rte_flow_item_ipvi4));
ip_spec.hdr.dst_addr htonl (dest_ip);
ip_mask.hdr.dst_addr = dest_mask;

ip_spec.hdr.src_addr = htonl (src_ip);
ip_mask.hdr.src_addr = src_mask;

pattern[1l].type = RTE_FLOW_ITEM_TYPE_IPV4;

9.3. Explanation 37

Sample Applications User Guides, Release 20.02.1

pattern[l].spec = &ip_spec;
pattern[l] .mask = &ip_mask;

Closing the pattern part.

pattern[2] .type = RTE_FLOW_ITEM TYPE_END;

The last part of the function is to validate the rule and create it.

int res = rte_flow_validate (port_id, &attr, pattern, action,
if (!res)
flow = rte_flow_create(port_id, &attr, pattern, action,

&error);

&error);

9.3. Explanation

38

CHAPTER
TEN

IP FRAGMENTATION SAMPLE APPLICATION

The IPv4 Fragmentation application is a simple example of packet processing using the Data Plane De-
velopment Kit (DPDK). The application does L3 forwarding with IPv4 and IPv6 packet fragmentation.

10.1 Overview

The application demonstrates the use of zero-copy buffers for packet fragmentation. The initialization
and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and
Virtualized Environments). This guide highlights the differences between the two applications.

There are three key differences from the L2 Forwarding sample application:
* The first difference is that the IP Fragmentation sample application makes use of indirect buffers.

* The second difference is that the forwarding decision is taken based on information read from the
input packet’s IP header.

* The third difference is that the application differentiates between IP and non-IP traffic by means
of offload flags.

The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to store/lookup an outgoing
port number, associated with that IP address. Any unmatched packets are forwarded to the originating
port.

By default, input frame sizes up to 9.5 KB are supported. Before forwarding, the input IP packet is
fragmented to fit into the “standard” Ethernet* v2 MTU (1500 bytes).

10.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ip_fragmentation sub-directory.

10.3 Running the Application

The LPM object is created and loaded with the pre-configured entries read from global
13fwd_ipv4_route_array and 13fwd_ipv6_route_array tables. For each input packet, the packet forward-
ing decision (that is, the identification of the output interface for the packet) is taken as a result of LPM
lookup. If the IP packet size is greater than default output MTU, then the input packet is fragmented and
several fragments are sent via the output interface.

39

Sample Applications User Guides, Release 20.02.1

Application usage:

./build/ip_fragmentation [EAL options] -- -p PORTMASK [-gq NQ]
where:

* -p PORTMASK is a hexadecimal bitmask of ports to configure

* -q NQ is the number of queue (=ports) per Icore (the default is 1)

To run the example in linux environment with 2 Icores (2,4) over 2 ports(0,2) with 1 RX queue per Icore:

./build/ip_fragmentation -1 2,4 -n 3 —— -p 5

EAL: coremask set to 14

EAL: Detected lcore 0 on socket O

EAL: Detected lcore 1 on socket 1

EAL: Detected lcore 2 on socket 0

EAL: Detected lcore 3 on socket 1

EAL: Detected lcore 4 on socket 0

Initializing port 0 on lcore 2... Address:00:1B:21:76:FA:2C, rxg=0 txg=2,0 txg=4,1

done: Link Up - speed 10000 Mbps - full-duplex

Skipping disabled port 1

Initializing port 2 on lcore 4... Address:00:1B:21:5C:FF:54, rxg=0 txg=2,0 txg=4,1
done: Link Up - speed 10000 Mbps - full-duplex

Skipping disabled port 3IP_FRAG: Socket 0: adding route 100.10.0.0/16 (port 0)
IP_FRAG: Socket 0: adding route 100.20.0.0/16 (port 1)

IP_FRAG: Socket 0: adding route 0101:0101:0101:0101:0101:0101:0101:0101/48 (port 0)
IP_FRAG: Socket 0: adding route 0201:0101:0101:0101:0101:0101:0101:0101/48 (port 1)

IP_FRAG: entering main loop on lcore 4

IP_FRAG: -- lcoreid=4 portid=2
IP_FRAG: entering main loop on lcore 2
IP_FRAG: —— lcoreid=2 portid=0

To run the example in linux environment with 1 Icore (4) over 2 ports(0,2) with 2 RX queues per lcore:
./build/ip_fragmentation -1 4 -n 3 —— -p 5 —q 2

To test the application, flows should be set up in the flow generator that match the values in the
13fwd_ipv4_route_array and/or 13fwd_ipv6_route_array table.

The default 13fwd_ipv4_route_array table is:

struct 13fwd_ipv4_route 13fwd_ipv4_route_arrayl[] = {

{RTE_IPV4 (100, 10, O, 0), 16, 0},
{RTE_IPV4 (100, 20, O, 0), 16, 1},
{RTE_IPV4 (100, 30, 0, 0), 16, 2},
{RTE_IPV4 (100, 40, 0, 0), 16, 3},
{RTE_IPV4 (100, 50, 0, 0), 16, 4},
{RTE_IPV4 (100, 60, 0, 0), 16, 5},
{RTE_IPV4 (100, 70, 0O, 0), 16, 6},
{RTE_IPV4 (100, 80, 0, 0), 16, 7},

}i
The default 13fwd_ipv6_route_array table is:

struct 13fwd_ipv6_route 13fwd_ipvé_route_array([] = {
{{1, 1, , 1, 1, 1, , 1, 1, 1, 1, 1, 1, 1}, 48, 0},
{{2, 1}, 48, 1},
{{3, 1}, 48, 2},
{{4, 1}y, 48, 33},
{{5, 1}, 48, 4},
{{6, 1}, 48, 5},

I4

~

~

4 ’ ’ ’ 4 ’ ’ ’ 4 ’ ’ 4 4

~

14 ’ ’ ’ 14 ’ ’ ’ ’ ’ ’

~

4 ’ ’ 14 4 ’ ’ 14 4 ’ ’ 14 4

’ ’

~

4 ’ ’ ’ 4 ’ ’ 4 ’ ’

~

1
1
r 1y
1
1
1

e
[e S S
R e
e
el e e e
[S S
R e
e
el e
[e SR
R
Lo
el e e e

~

’ ’ 14 ’ ’ ’ ’ ’ ’ ’ 14 ’

10.3. Running the Application 40

Sample Applications User Guides, Release 20.02.1

{7 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
{{81 1/ 1! 1[ll 1/ 1! 1[ll 1/ 1! 1[ll 1/ 1! 1}[48[7}!
}i

For example, for the input IPv4 packet with destination address: 100.10.1.1 and packet length 9198
bytes, seven IPv4 packets will be sent out from port #0 to the destination address 100.10.1.1: six of
those packets will have length 1500 bytes and one packet will have length 318 bytes. IP Fragmentation
sample application provides basic NUMA support in that all the memory structures are allocated on all
sockets that have active Icores on them.

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

10.3. Running the Application 41

CHAPTER
ELEVEN

IPV4 MULTICAST SAMPLE APPLICATION

The IPv4 Multicast application is a simple example of packet processing using the Data Plane Develop-
ment Kit (DPDK). The application performs L3 multicasting.

11.1 Overview

The application demonstrates the use of zero-copy buffers for packet forwarding. The initialization
and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and
Virtualized Environments). This guide highlights the differences between the two applications. There
are two key differences from the L2 Forwarding sample application:

* The IPv4 Multicast sample application makes use of indirect buffers.
* The forwarding decision is taken based on information read from the input packet’s IPv4 header.

The lookup method is the Four-byte Key (FBK) hash-based method. The lookup table is composed of
pairs of destination IPv4 address (the FBK) and a port mask associated with that IPv4 address.

Note: The max port mask supported in the given hash table is Oxf, so only first four ports can be
supported. If using non-consecutive ports, use the destination IPv4 address accordingly.

For convenience and simplicity, this sample application does not take IANA-assigned multicast ad-
dresses into account, but instead equates the last four bytes of the multicast group (that is, the last four
bytes of the destination IP address) with the mask of ports to multicast packets to. Also, the application
does not consider the Ethernet addresses; it looks only at the IPv4 destination address for any given
packet.

11.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the 1pv4_multicast sub-directory.

11.3 Running the Application

The application has a number of command line options:

./build/ipv4_multicast [EAL options] —-- -p PORTMASK [-g NQ]

42

Sample Applications User Guides, Release 20.02.1

where,
* -p PORTMASK: Hexadecimal bitmask of ports to configure

* -q NQ: determines the number of queues per lcore

Note: Unlike the basic L2/L3 Forwarding sample applications, NUMA support is not provided in the
IPv4 Multicast sample application.

Typically, to run the IPv4 Multicast sample application, issue the following command (as root):

./build/ipv4_multicast -1 0-3 -n 3 -- -p 0x3 —-g 1
In this command:

* The -1 option enables cores 0, 1, 2 and 3

* The -n option specifies 3 memory channels

* The -p option enables ports 0 and 1

* The -q option assigns 1 queue to each Icore

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

11.4 Explanation

The following sections provide some explanation of the code. As mentioned in the overview section,
the initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application
(in Real and Virtualized Environments). The following sections describe aspects that are specific to the
IPv4 Multicast sample application.

11.4.1 Memory Pool Initialization

The IPv4 Multicast sample application uses three memory pools. Two of the pools are for indirect buffers
used for packet duplication purposes. Memory pools for indirect buffers are initialized differently from
the memory pool for direct buffers:
packet_pool = rte_pktmbuf_pool_create ("packet_pool", NB_PKT_MBUF, 32,
0, PKT_MBUF_DATA_SIZE, rte_socket_id());
header_pool = rte_pktmbuf_pool_create ("header_pool", NB_HDR_MBUF, 32,
0, HDR_MBUF_DATA_SIZE, rte_socket_id());

clone_pool = rte_pktmbuf_pool_create("clone pool", NB_CLONE_MBUF, 32,
0, 0, rte_socket_id());

The reason for this is because indirect buffers are not supposed to hold any packet data and therefore
can be initialized with lower amount of reserved memory for each buffer.

11.4.2 Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array:

11.4. Explanation 43

Sample Applications User Guides, Release 20.02.1

static int

init_mcast_hash (void)
{
uint32_t i;
mcast_hash_params.socket_id = rte_socket_id();

mcast_hash = rte_fbk_hash_create (&émcast_hash_params) ;
if (mcast_hash == NULL) {
return -1;

for (i = 0; i < N_MCAST_GROUPS; i ++){
if (rte_fbk_hash_add_key (mcast_hash, mcast_group_table[i].ip, mcast_group_table[i] .port
return -1;

}

return 0O;

11.4.3 Forwarding

All forwarding is done inside the mcast_forward() function. Firstly, the Ethernet* header is removed
from the packet and the IPv4 address is extracted from the IPv4 header:

/% Remove the Ethernet header from the input packet */

iphdr = (struct rte_ipv4_hdr «)rte_pktmbuf_adj(m, sizeof (struct rte_ether_hdr));
RTE_ASSERT (iphdr != NULL);
dest_addr = rte_be_to_cpu_32 (iphdr->dst_addr);

Then, the packet is checked to see if it has a multicast destination address and if the routing table has
any ports assigned to the destination address:

if (!RTE_IS_IPV4_MCAST (dest_addr) ||
(hash = rte_fbk_hash_lookup (mcast_hash, dest_addr)) <= 0 ||

(port_mask = hash & enabled_port_mask) == 0) {
rte_pktmbuf_free (m);
return;

}

Then, the number of ports in the destination portmask is calculated with the help of the bitcnt() function:

/% Get number of bits set. */

static inline uint32_t bitcnt (uint32_t v)
{
uint32_t n;

for (n = 0; v != 0; v &= v — 1, nt++)
;
return n;

}

This is done to determine which forwarding algorithm to use. This is explained in more detail in the
next section.

Thereafter, a destination Ethernet address is constructed:

/% construct destination Ethernet address =/

dst_eth_addr = ETHER_ADDR_FOR_IPV4_MCAST (dest_addr) ;

11.4. Explanation 44

Sample Applications User Guides, Release 20.02.1

Since Ethernet addresses are also part of the multicast process, each outgoing packet carries the same
destination Ethernet address. The destination Ethernet address is constructed from the lower 23 bits of
the multicast group OR-ed with the Ethernet address 01:00:5¢:00:00:00, as per RFC 1112:

#define ETHER _ADDR FOR_IPV4 MCAST (x) \
(rte_cpu_to_be 64 (0x01005e000000ULL | ((x) & Ox7fffff)) >> 16)

Then, packets are dispatched to the destination ports according to the portmask associated with a multi-
cast group:

for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
/* Prepare output packet and send it out. x/

if ((port_mask & 1) != 0) {
if (likely ((mc = mcast_out_pkt (m, use_clone)) != NULL))
mcast_send_pkt (mc, &dst_eth_addr.as_addr, gconf, port);
else if (use_clone == 0)

rte_pktmbuf_free (m);

}

The actual packet transmission is done in the mcast_send_pkt() function:

static inline void mcast_send_pkt (struct rte_mbuf *pkt, struct rte_ether_addr xdest_addr,

{
struct rte_ether_hdr xethdr;
uintl6_t len;

/% Construct Ethernet header. =/

ethdr = (struct rte_ether_hdr »)rte_pktmbuf_prepend(pkt, (uintl6_t) sizeof (xethdr));

RTE_ASSERT (ethdr != NULL);

rte_ether_addr_copy (dest_addr, ðdr->d_addr);
rte_ether_addr_copy (&éports_eth_addr([port], ðdr->s_addr);
ethdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4);

/* Put new packet into the output queue */

len = gconf->tx_mbufs[port].len;
qgqconf->tx_mbufs|[port].m_table[len] = pkt;
gconf->tx_mbufs[port].len = ++len;

/* Transmit packets =/

if (unlikely (MAX_PKT_BURST == len))
send_burst (gconf, port);

11.4.4 Buffer Cloning

This is the most important part of the application since it demonstrates the use of zero- copy buffer
cloning. There are two approaches for creating the outgoing packet and although both are based on the
data zero-copy idea, there are some differences in the detail.

The first approach creates a clone of the input packet, for example, walk though all segments of the input
packet and for each of segment, create a new buffer and attach that new buffer to the segment (refer to
rte_pktmbuf_clone() in the rte_mbuf library for more details). A new buffer is then allocated for the
packet header and is prepended to the cloned buffer.

11.4. Explanation 45

struc

Sample Applications User Guides, Release 20.02.1

The second approach does not make a clone, it just increments the reference counter for all input packet
segment, allocates a new buffer for the packet header and prepends it to the input packet.

Basically, the first approach reuses only the input packet’s data, but creates its own copy of packet’s
metadata. The second approach reuses both input packet’s data and metadata.

The advantage of first approach is that each outgoing packet has its own copy of the metadata, so we can
safely modify the data pointer of the input packet. That allows us to skip creation if the output packet
is for the last destination port and instead modify input packet’s header in place. For example, for N
destination ports, we need to invoke mcast_out_pkt() (N-1) times.

The advantage of the second approach is that there is less work to be done for each outgoing packet,
that is, the “clone” operation is skipped completely. However, there is a price to pay. The input packet’s
metadata must remain intact, so for N destination ports, we need to invoke mcast_out_pkt() (N) times.

Therefore, for a small number of outgoing ports (and segments in the input packet), first approach is
faster. As the number of outgoing ports (and/or input segments) grows, the second approach becomes
more preferable.

Depending on the number of segments or the number of ports in the outgoing portmask, either the first
(with cloning) or the second (without cloning) approach is taken:

use_clone = (port_num <= MCAST_CLONE_PORTS && m—>pkt.nb_segs <= MCAST_CLONE_SEGS) ;

It is the mcast_out_pkt() function that performs the packet duplication (either with or without actually
cloning the buffers):

static inline struct rte_mbuf smcast_out_pkt (struct rte_mbuf »pkt, int use_clone)
{
struct rte_mbuf +hdr;

/* Create new mbuf for the header. */

if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
return NULL;

/* If requested, then make a new clone packet. #*/
if (use_clone != 0 && unlikely ((pkt = rte_pktmbuf_clone (pkt, clone_pool)) ==
rte_pktmbuf_free (hdr);

return NULL;
}

/+ prepend new header x/
hdr->pkt.next = pkt;
/* update header's fields */

hdr->pkt.pkt_len = (uintlé_t) (hdr->pkt.data_len + pkt->pkt.pkt_len);
hdr->pkt.nb_segs = pkt->pkt.nb_segs + 1;

/% copy metadata from source packet =*/
hdr->pkt.in_port = pkt->pkt.in_port;
hdr->pkt.vlan_macip = pkt->pkt.vlan_macip;
hdr->pkt.hash = pkt->pkt.hash;
rte_mbuf_sanity_check (hdr, RTE_MBUF_PKT, 1);

return hdr;

11.4. Explanation 46

NULL))

{

CHAPTER
TWELVE

IP REASSEMBLY SAMPLE APPLICATION

The L3 Forwarding application is a simple example of packet processing using the DPDK. The applica-
tion performs L3 forwarding with reassembly for fragmented IPv4 and IPv6 packets.

12.1 Overview

The application demonstrates the use of the DPDK libraries to implement packet forwarding with re-
assembly for IPv4 and IPv6 fragmented packets. The initialization and run- time paths are very similar
to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments). The main
difference from the L2 Forwarding sample application is that it reassembles fragmented IPv4 and IPv6
packets before forwarding. The maximum allowed size of reassembled packet is 9.5 KB.

There are two key differences from the L2 Forwarding sample application:

* The first difference is that the forwarding decision is taken based on information read from the
input packet’s IP header.

* The second difference is that the application differentiates between IP and non-IP traffic by means
of offload flags.

The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to store/lookup an outgoing
port number, associated with that IPv4 address. Any unmatched packets are forwarded to the originating
port.

12.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ip_reassembly sub-directory.

12.3 Running the Application

The application has a number of command line options:

./build/ip_reassembly [EAL options] —-— -p PORTMASK [-g NQ] [--maxflows=FLOWS>] [--flowttl=TTL[|
where:

* -p PORTMASK: Hexadecimal bitmask of ports to configure

* -q NQ: Number of RX queues per Icore

47

Sample Applications User Guides, Release 20.02.1

* —maxflows=FLOWS: determines maximum number of active fragmented flows (1-65535). De-
fault value: 4096.

e —flowttl=TTL[(sIms)]: determines maximum Time To Live for fragmented packet. If all fragments
of the packet wouldn’t appear within given time-out, then they are considered as invalid and will
be dropped. Valid range is 1ms - 3600s. Default value: 1s.

To run the example in linux environment with 2 Icores (2,4) over 2 ports(0,2) with 1 RX queue per Icore:

./build/ip_reassembly -1

EAL:
EAL:
EAL:
EAL:
EAL:
EAL:

coremask
Detected
Detected
Detected
Detected
Detected

set to 14

lcore 0 on
lcore 1 on
lcore 2 on
lcore 3 on
lcore 4 on

2,4 -n3 — -p b5

socket
socket
socket
socket
socket

O P O O

Initializing port 0 on lcore 2...

done:

Skipping disabled port 1
Initializing port 2 on lcore 4...

done:
Skipping
IP_RSMBL:

IP_RSMBL:
IP_RSMBL:

IP_RSMBL:
IP_RSMBL:
IP_RSMBL:
IP_RSMBL:

Socket O:
Socket 0:

Link Up - speed 10000 Mbps

Link Up - speed 10000 Mbps
disabled port 3IP_FRAG:
Socket O:

adding route

adding route
adding route

entering main loop on 1
—— lcoreid=4 portid=2
entering main loop on 1
—— lcoreid=2 portid=0

Address:00:1B:21:76:FA:2C,

- full-duplex

Address:00:1B:21:5C:FF:54,

- full-duplex

Socket O0:

adding route 100.10.0.0/16

100.20.0.0/16

0101:0101:0101:0101:0101:0101:0101:0101/48
0201:0101:0101:0101:0101:0101:0101:0101/48

core

core

(port 1)

rxg=0 txg=2,0 txg=4,1

rxg=0 txg=2,0 txg=4,1

(port 0)

(port 0)
(port 1)

To run the example in linux environment with 1 Icore (4) over 2 ports(0,2) with 2 RX queues per lcore:

./build/ip_reassembly -1 4 -n 3 —— -p 5 —-q 2

To test the application, flows should be set up in the flow generator that match the values in the

13fwd_ipv4_route_array and/or 13fwd_ipv6_route_array table.

Please note that in order to test this application, the traffic generator should be generating valid frag-
mented IP packets. For IPv6, the only supported case is when no other extension headers other than
fragment extension header are present in the packet.

The default 13fwd_ipv4_route_array table is:

struct 13fwd_ipv4_route 13fwd_ipv4_route_arrayl]
{RTE_IPV4 (100,
{RTE_IPV4 (100,
{RTE_IPV4 (100,
{RTE_IPV4 (100,
{RTE_IPV4 (100,
{RTE_IPV4 (100,
{RTE_IPV4 (100,
{RTE_IPV4 (100,

}i

10, O
20, 0
30, 0
40, O,
50, O
60, 0O
70, O
80, O

’

7

I4

14

4

’

’

0), 1le,
), 16,
)! 16/
), 16,
), 16,
)! 16/
), 16,
), 16,

0},
1},
2}/
3},
4},
Sty
6},
T},

The default 13fwd_ipv6_route_array table is:

struct 13fwd_ipv6_route 13fwd_ipv6_route_arrayl]

(L 1, 1,

1,1,

1,1, 1, 1,

1,1

1,

1,

1,

12.3. Running the Application

48

Sample Applications User Guides, Release 20.02.1

{{2, , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},
{{3, ., 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},
{{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},
{{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},
{{¢, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},
{{7, », 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
{{¢, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},

bi

For example, for the fragmented input IPv4 packet with destination address: 100.10.1.1, a reassembled
IPv4 packet be sent out from port #0 to the destination address 100.10.1.1 once all the fragments are
collected.

12.4 Explanation

The following sections provide some explanation of the sample application code. As mentioned in the
overview section, the initialization and run-time paths are very similar to those of the L2 Forwarding
Sample Application (in Real and Virtualized Environments). The following sections describe aspects
that are specific to the IP reassemble sample application.

12.4.1 IPv4 Fragment Table Initialization

This application uses the rte_ip_frag library. Please refer to Programmer’s Guide for more detailed
explanation of how to use this library. Fragment table maintains information about already received
fragments of the packet. Each IP packet is uniquely identified by triple <Source IP address>, <Des-
tination IP address>, <ID>. To avoid lock contention, each RX queue has its own Fragment Table,
e.g. the application can’t handle the situation when different fragments of the same packet arrive
through different RX queues. Each table entry can hold information about packet consisting of up
to RTE_LIBRTE_IP_FRAG_MAX_FRAGS fragments.

frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S % max_flow_ttl;
if ((gconf->frag_tbl[queue] = rte_ip_frag_ tbl_create(max_flow_num, IPV4_FRAG_TBL_BUCKET_ENTRIES
{

RTE_LOG (ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on " "lcore: %u for queue: %u failed\n", me

return -1;

12.4.2 Mempools Initialization

The reassembly application demands a lot of mbuf’s to be allocated. At any given time up to
(2 * max_flow_num * RTE_LIBRTE_IP_FRAG_MAX_FRAGS * <maximum number of mbufs per
packet>) can be stored inside Fragment Table waiting for remaining fragments. To keep mempool size
under reasonable limits and to avoid situation when one RX queue can starve other queues, each RX
queue uses its own mempool.

nb_mbuf = RTE_MAX (max_flow_num, 2UL * MAX PKT BURST) * RTE_LIBRTE_IP_FRAG_MAX_ FRAGS;
nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE;

nb_mbuf *= 2; /% ipv4 and ipvé #/

nb_mbuf += RTE_TEST_RX_DESC_DEFAULT + RTE_TEST TX_DESC_DEFAULT;

nb_mbuf = RTE_MAX (nb_mbuf, (uint32_t)NB_MBUF) ;

snprintf (buf, sizeof (buf), "mbuf_ pool_ %u_%u", lcore, queue);

12.4. Explanation 49

Sample Applications User Guides, Release 20.02.1

if ((rxg—->pool = rte_mempool_create (buf, nb_mbuf, MBUF_SIZE, 0, sizeof (struct rte_pktmbuf_pool_
rte_pktmbuf_init, NULL, socket, MEMPOOL_F_SP_PUT | MEMPOOL_F_SC_GET)) == NULL) {

RTE_LOG (ERR, IP_RSMBL, "mempool_create(%s) failed", buf);
return -1;

12.4.3 Packet Reassembly and Forwarding

For each input packet, the packet forwarding operation is done by the 13fwd_simple_forward() function.
If the packet is an IPv4 or IPv6 fragment, then it calls rte_ipv4_reassemble_packet() for IPv4 pack-
ets, or rte_ipv6_reassemble_packet() for IPv6 packets. These functions either return a pointer to valid
mbuf that contains reassembled packet, or NULL (if the packet can’t be reassembled for some reason).
Then 13fwd_simple_forward() continues with the code for the packet forwarding decision (that is, the
identification of the output interface for the packet) and actual transmit of the packet.

The rte_ipv4_reassemble_packet() or rte_ipv6_reassemble_packet() are responsible for:

1. Searching the Fragment Table for entry with packet’s <IP Source Address, IP Destination Address,
Packet ID>

2. If the entry is found, then check if that entry already timed-out. If yes, then free all previously
received fragments, and remove information about them from the entry.

3. If no entry with such key is found, then try to create a new one by one of two ways:
(a) Use as empty entry

(b) Delete a timed-out entry, free mbufs associated with it mbufs and store a new entry with
specified key in it.

4. Update the entry with new fragment information and check if a packet can be reassembled (the
packet’s entry contains all fragments).

(a) If yes, then, reassemble the packet, mark table’s entry as empty and return the reassembled
mbuf to the caller.

(b) If no, then just return a NULL to the caller.

If at any stage of packet processing a reassembly function encounters an error (can’t insert new entry
into the Fragment table, or invalid/timed-out fragment), then it will free all associated with the packet
fragments, mark the table entry as invalid and return NULL to the caller.

12.4.4 Debug logging and Statistics Collection

The RTE_LIBRTE_IP_FRAG_TBL_STAT controls statistics collection for the IP Fragment Table. This
macro is disabled by default. To make ip_reassembly print the statistics to the standard output, the
user must send either an USR1, INT or TERM signal to the process. For all of these signals, the
ip_reassembly process prints Fragment table statistics for each RX queue, plus the INT and TERM will
cause process termination as usual.

12.4. Explanation 50

CHAPTER
THIRTEEN

KERNEL NIC INTERFACE SAMPLE APPLICATION

The Kernel NIC Interface (KNI) is a DPDK control plane solution that allows userspace applications to
exchange packets with the kernel networking stack. To accomplish this, DPDK userspace applications
use an IOCTL call to request the creation of a KNI virtual device in the Linux* kernel. The IOCTL
call provides interface information and the DPDK’s physical address space, which is re-mapped into the
kernel address space by the KNI kernel loadable module that saves the information to a virtual device
context. The DPDK creates FIFO queues for packet ingress and egress to the kernel module for each
device allocated.

The KNI kernel loadable module is a standard net driver, which upon receiving the IOCTL call access
the DPDK’s FIFO queue to receive/transmit packets from/to the DPDK userspace application. The FIFO
queues contain pointers to data packets in the DPDK. This:

* Provides a faster mechanism to interface with the kernel net stack and eliminates system calls
* Facilitates the DPDK using standard Linux* userspace net tools (tshark, rsync, and so on)
* Eliminate the copy_to_user and copy_from_user operations on packets.

The Kernel NIC Interface sample application is a simple example that demonstrates the use of the DPDK
to create a path for packets to go through the Linux* kernel. This is done by creating one or more kernel
net devices for each of the DPDK ports. The application allows the use of standard Linux tools (ethtool,
iproute, tshark) with the DPDK ports and also the exchange of packets between the DPDK application
and the Linux* kernel.

The Kernel NIC Interface sample application requires that the KNI kernel module rte_kni be loaded
into the kernel. See ../prog_guide/kernel_nic_interface for more information on loading the rte_kni
kernel module.

13.1 Overview

The Kernel NIC Interface sample application kn1i allocates one or more KNI interfaces for each physical
NIC port. For each physical NIC port, kni uses two DPDK threads in user space; one thread reads
from the port and writes to the corresponding KNI interfaces and the other thread reads from the KNI
interfaces and writes the data unmodified to the physical NIC port.

It is recommended to configure one KNI interface for each physical NIC port. The application can be
configured with more than one KNI interface for each physical NIC port for performance testing or it
can work together with VMDq support in future.

The packet flow through the Kernel NIC Interface application is as shown in the following figure.

If link monitoring is enabled with the —m command line flag, one additional pthread is launched which
will check the link status of each physical NIC port and will update the carrier status of the corresponding

51

Sample Applications User Guides, Release 20.02.1

KNI Sample Application Linux Kernel

Core)
Port0 f \ vitho 6,
Traffic / \ g f E ..O
Generator
’
CoreAN !
Port N f _\' vEth N 4
_ CoreAN ‘/—\

Fig. 13.1: Kernel NIC Application Packet Flow

KNI interface(s) to match the physical NIC port’s state. This means that the KNI interface(s) will be
disabled automatically when the Ethernet link goes down and enabled when the Ethernet link goes up.

If link monitoring is enabled, the rte_kni kernel module should be loaded such that the default carrier
state is set to off. This ensures that the KNI interface is only enabled after the Ethernet link of the
corresponding NIC port has reached the linkup state.

If link monitoring is not enabled, the rte_kni kernel module should be loaded with the default carrier
state set to on. This sets the carrier state of the KNI interfaces to on when the KNI interfaces are
enabled without regard to the actual link state of the corresponding NIC port. This is useful for testing
in loopback mode where the NIC port may not be physically connected to anything.

13.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the examples/kni sub-directory.

Note: This application is intended as a linux only.

13.3 Running the kni Example Application

The kni example application requires a number of command line options:

kni [EAL options] —-- -p PORTMASK --config=" (port,lcore_rx,lcore_tx[,lcore_kthread, ..

Where:

13.2. Compiling the Application 52

.1) [, (port,

Sample Applications User Guides, Release 20.02.1

e -p PORTMASK:
Hexadecimal bitmask of ports to configure.
e ——config=" (port, lcore_rx,lcore_tx[,lcore_kthread,...]) [, (port,lcore_rx, lcors

Determines which Icores the Rx and Tx DPDK tasks, and (optionally) the KNI kernel thread(s)
are bound to for each physical port.

. -P:

Optional flag to set all ports to promiscuous mode so that packets are accepted regardless of the
packet’s Ethernet MAC destination address. Without this option, only packets with the Ethernet
MAC destination address set to the Ethernet address of the port are accepted.

¢ —m:

Optional flag to enable monitoring and updating of the Ethernet carrier state. With this option
set, a thread will be started which will periodically check the Ethernet link status of the physical
Ethernet ports and set the carrier state of the corresponding KNI network interface to match it.
This means that the KNI interface will be disabled automatically when the Ethernet link goes
down and enabled when the Ethernet link goes up.

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

The —c coremask or -1 corelist parameter of the EAL options must include the lcores spec-
ified by 1core_rx and 1core_tx for each port, but does not need to include Icores specified by
lcore_kthread as those cores are used to pin the kernel threads in the rte_kni kernel module.

The ——config parameter must include a setof (port, lcore_rx, lcore_tx, [lcore_kthread,...])
values for each physical port specified in the -p PORTMASK parameter.

The optional 1core_kthread lcore ID parameter in ——config can be specified zero, one or more
times for each physical port.

If no Icore ID is specified for Llcore_kthread, one KNI interface will be created for the physical port
port and the KNI kernel thread(s) will have no specific core affinity.

If one or more lcore IDs are specified for 1core_kthread, a KNI interface will be created for each
Icore ID specified, bound to the physical port port. If the rte_kni kernel module is loaded in multiple
kernel thread mode, a kernel thread will be created for each KNI interface and bound to the specified
core. If the rte_kni kernel module is loaded in single kernel thread mode, only one kernel thread is
started for all KNI interfaces. The kernel thread will be bound to the first 1core_kthread lcore ID
specified.

13.3.1 Example Configurations

The following commands will first load the rte_kni kernel module in multiple kernel thread mode.
The kni application is then started using two ports; Port O uses lcore 4 for the Rx task, lcore 6 for the
Tx task, and will create a single KNI interface vEthO0_0 with the kernel thread bound to Icore 8. Port
1 uses Icore 5 for the Rx task, Icore 7 for the Tx task, and will create a single KNI interface vEthl_0
with the kernel thread bound to Icore 9.

rmmod rte_kni

insmod kmod/rte_kni.ko kthread mode=multiple
./build/kni -1 4-7 -n 4 —— -P -p 0x3 -m --config="(0,4,6,8), (1,5,7,9)"

13.3. Running the kni Example Application 53

Sample Applications User Guides, Release 20.02.1

The following example is identical, except an additional 1core_kthread core is specified per physi-
cal port. In this case, kni will create four KNI interfaces: vEth0_0/vEth0_1 bound to physical port
Oand vEthl_0/vEthl_1 bound to physical port 1.

The kernel thread for each interface will be bound as follows:
e vEthO_0 - bound to lcore 8.
* vEth0_1 - bound to Icore 10.
e vEthl_0 - bound to Icore 9.

e vEthl 1 -bound tolcore 11

rmmod rte_kni
insmod kmod/rte_kni.ko kthread mode=multiple
./build/kni -1 4-7 -n 4 --— -P -p 0x3 -m --config="¢(0,4,6,8,10),(1,5,7,9,11)"

The following example can be used to test the interface between the kni test application and the
rte_kni kernel module. In this example, the rte_kni kernel module is loaded in single kernel
thread mode, loopback mode enabled, and the default carrier state is set to on so that the corresponding
physical NIC port does not have to be connected in order to use the KNI interface. One KNI interface
vEthO0_0 is created for port O and one KNI interface vEth1_0 is created for port 1. Since rte_kni
is loaded in “single kernel thread” mode, the one kernel thread is bound to Icore 8.

Since the physical NIC ports are not being used, link monitoring can be disabled by not specifying the
-m flag to kni:

rmmod rte_kni
insmod kmod/rte_kni.ko lo mode=lo_mode_fifo carrier=on
./build/kni -1 4-7 -n 4 —— -P -p 0x3 —--config="(0,4,6,8), (1,5,7,9)"

13.4 KNI Operations

Once the kni application is started, the user can use the normal Linux commands to manage the KNI
interfaces as if they were any other Linux network interface.

Enable KNI interface and assign an IP address:

ip addr add dev vEthO_0 192.168.0.1

Show KNI interface configuration and statistics:

ip -s -d addr show vEthO0_0

The user can also check and reset the packet statistics inside the kni application by sending the app the
USR1 and USR2 signals:

Print statistics
pkill -USR1 kni

Zero statistics
pkill -USR2 kni

Dump network traffic:
tshark -n -i vEth0_0

The normal Linux commands can also be used to change the MAC address and MTU size used by
the physical NIC which corresponds to the KNI interface. However, if more than one KNI interface is
configured for a physical port, these commands will only work on the first KNI interface for that port.

13.4. KNI Operations 54

Sample Applications User Guides, Release 20.02.1

Change the MAC address:

ip link set dev vEthO_0 lladdr 0C:01:02:03:04:08

Change the MTU size:

ip link set dev vEthO_0 mtu 1450

Limited ethtool support:

ethtool —-i vEthO0_0

When the kni application is closed, all the KNI interfaces are deleted from the Linux kernel.

13.5 Explanation

The following sections provide some explanation of code.

13.5.1 Initialization

Setup of mbuf pool, driver and queues is similar to the setup done in the L2 Forwarding Sample Ap-
plication (in Real and Virtualized Environments).. In addition, one or more kernel NIC interfaces are
allocated for each of the configured ports according to the command line parameters.

The code for allocating the kernel NIC interfaces for a specific port is in the function kni_alloc.

The other step in the initialization process that is unique to this sample application is the association of
each port with Icores for RX, TX and kernel threads.

* One Icore to read from the port and write to the associated one or more KNI devices
* Another Icore to read from one or more KNI devices and write to the port
* Other Icores for pinning the kernel threads on one by one

This is done by using the kni_port_params_array[] array, which is indexed by the port ID. The
code is in the function parse_config.

13.5.2 Packet Forwarding

After the initialization steps are completed, the main_loop() function is run on each Icore. This function
first checks the Icore_id against the user provided Icore_rx and Icore_tx to see if this Icore is reading
from or writing to kernel NIC interfaces.

For the case that reads from a NIC port and writes to the kernel NIC interfaces (kni_ingress),
the packet reception is the same as in L2 Forwarding sample application (see Receive, Process and
Transmit Packets). The packet transmission is done by sending mbufs into the kernel NIC interfaces by
rte_kni_tx_burst (). The KNI library automatically frees the mbufs after the kernel successfully
copied the mbufs.

For the other case that reads from kernel NIC interfaces and writes to a physical NIC
port (kni_egress), packets are retrieved by reading mbufs from kernel NIC interfaces by
rte_kni_rx_burst (). The packet transmission is the same as in the L2 Forwarding sample ap-
plication (see Receive, Process and Transmit Packets).

13.5. Explanation 55

CHAPTER
FOURTEEN

KEEP ALIVE SAMPLE APPLICATION

The Keep Alive application is a simple example of a heartbeat/watchdog for packet processing cores. It
demonstrates how to detect ‘failed’ DPDK cores and notify a fault management entity of this failure. Its
purpose is to ensure the failure of the core does not result in a fault that is not detectable by a management
entity.

14.1 Overview

The application demonstrates how to protect against ‘silent outages’ on packet processing cores. A
Keep Alive Monitor Agent Core (master) monitors the state of packet processing cores (worker cores)
by dispatching pings at a regular time interval (default is 5ms) and monitoring the state of the cores.
Cores states are: Alive, MIA, Dead or Buried. MIA indicates a missed ping, and Dead indicates two
missed pings within the specified time interval. When a core is Dead, a callback function is invoked
to restart the packet processing core; A real life application might use this callback function to notify a
higher level fault management entity of the core failure in order to take the appropriate corrective action.

Note: Only the worker cores are monitored. A local (on the host) mechanism or agent to supervise the
Keep Alive Monitor Agent Core DPDK core is required to detect its failure.

Note: This application is based on the L2 Forwarding Sample Application (in Real and Virtualized Envi-
ronments). As such, the initialization and run-time paths are very similar to those of the L2 forwarding
application.

14.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the 12fwd_keep_alive sub-directory.

14.3 Running the Application

The application has a number of command line options:

./build/12fwd-keepalive [EAL options] \
-— -p PORTMASK [-g NQ] [-K PERIOD] [-T PERIOD]

where,

* p PORTMASK: A hexadecimal bitmask of the ports to configure

56

Sample Applications User Guides, Release 20.02.1

* g NQ: A number of queues (=ports) per Icore (default is 1)
* K PERIOD: Heartbeat check period in ms(5ms default; 86400 max)

e T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default, 86400
maximum).

To run the application in linux environment with 4 Icores, 16 ports 8 RX queues per Icore and a ping
interval of 10ms, issue the command:

./build/12fwd-keepalive -1 0-3 -n 4 —— -q 8 -p ffff -K 10

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

14.4 Explanation

The following sections provide some explanation of the The Keep-Alive/’ Liveliness’ conceptual scheme.
As mentioned in the overview section, the initialization and run-time paths are very similar to those of
the L2 Forwarding Sample Application (in Real and Virtualized Environments).

The Keep-Alive/’Liveliness’ conceptual scheme:
* A Keep- Alive Agent Runs every N Milliseconds.
* DPDK Cores respond to the keep-alive agent.

* If keep-alive agent detects time-outs, it notifies the fault management entity through a callback
function.

The following sections provide some explanation of the code aspects that are specific to the Keep Alive
sample application.

The keepalive functionality is initialized with a struct rte_keepalive and the callback function to invoke
in the case of a timeout.

rte_global_keepalive_info = rte_keepalive_create (&dead_core, NULL);
if (rte_global_keepalive_info == NULL)
rte_exit (EXIT_FAILURE, "keepalive_create() failed");

The function that issues the pings keepalive_dispatch_pings() is configured to run every check_period
milliseconds.

if (rte_timer_reset (&hb_timer,
(check_period * rte_get_timer_hz()) / 1000,
PERIODICAL,
rte_lcore_id (),
&rte_keepalive_dispatch_pings,
rte_global_keepalive_info
) = 0)

rte_exit (EXIT_FAILURE, "Keepalive setup failure.\n");

The rest of the initialization and run-time path follows the same paths as the L2 forwarding application.
The only addition to the main processing loop is the mark alive functionality and the example random
failures.

rte_keepalive_mark_alive (&rte_global_keepalive_info);
cur_tsc = rte_rdtsc();

/% Die randomly within 7 secs for demo purposes.. */

14.4. Explanation 57

Sample Applications User Guides, Release 20.02.1

if (cur_tsc - tsc_initial > tsc_lifetime)
break;

The rte_keepalive_mark_alive function simply sets the core state to alive.

static inline void
rte_keepalive_mark_alive (struct rte_keepalive xkeepcfq)
{
keepcfg->live_data[rte_lcore_id()].core_state = RTE_KA_STATE_ALIVE;

14.4. Explanation 58

CHAPTER
FIFTEEN

PACKET COPYING USING INTEL® QUICKDATA TECHNOLOGY

15.1 Overview

This sample is intended as a demonstration of the basic components of a DPDK forwarding application
and example of how to use IOAT driver API to make packets copies.

Also while forwarding, the MAC addresses are affected as follows:
* The source MAC address is replaced by the TX port MAC address
* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to compare performance of using software packet copy with copy done
using a DMA device for different sizes of packets. The example will print out statistics each second.
The stats shows received/send packets and packets dropped or failed to copy.

15.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ioat sub-directory.

15.3 Running the Application

In order to run the hardware copy application, the copying device needs to be bound to user-space 10
driver.

Refer to the “IOAT Rawdev Driver” chapter in the “Rawdev Drivers” document for information on using
the driver.

The application requires a number of command line options:

./build/iocatfwd [EAL options] -- [-p MASK] [-g NQ] [-s RS] [-c <sw|hw>]
[-- [no-]mac-updating]

where,
* p MASK: A hexadecimal bitmask of the ports to configure (default is all)
* g NQ: Number of Rx queues used per port equivalent to CBDMA channels per port (default is 1)
* ¢ CT: Performed packet copy type: software (sw) or hardware using DMA (hw) (default is hw)

59

Sample Applications User Guides, Release 20.02.1

* s RS: Size of IOAT rawdev ring for hardware copy mode or rte_ring for software copy mode
(default is 2048)

* —[no-Jmac-updating: Whether MAC address of packets should be changed or not (default is mac-
updating)

The application can be launched in various configurations depending on provided parameters. The
app can use up to 2 Icores: one of them receives incoming traffic and makes a copy of each packet. The
second Icore then updates MAC address and sends the copy. If one Icore per port is used, both operations
are done sequentially. For each configuration an additional lcore is needed since the master Icore does
not handle traffic but is responsible for configuration, statistics printing and safe shutdown of all ports
and devices.

The application can use a maximum of 8 ports.

To run the application in a Linux environment with 3 Icores (the master Icore, plus two forwarding
cores), a single port (port 0), software copying and MAC updating issue the command:

$./build/iocatfwd -1 0-2 -n 2 —— -p 0x1 —--mac-updating -c sw
To run the application in a Linux environment with 2 Icores (the master Icore, plus one forwarding core),
2 ports (ports 0 and 1), hardware copying and no MAC updating issue the command:

$./build/iocatfwd -1 0-1 -n 1 -—— -p 0x3 —--no-mac-updating -c hw

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

15.4 Explanation

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte__ and are explained in detail
in the DPDK API Documentation.

15.4.1 The Main Function

The main () function performs the initialization and calls the execution threads for each Icore.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv arguments
are providedtothe rte_eal_init () function. The value returned is the number of parsed arguments:

/* 1init EAL x/
ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Invalid EAL arguments\n");

The main () also allocates a mempool to hold the mbufs (Message Buffers) used by the application:

nb_mbufs = RTE_MAX (rte_eth_dev_count_avail () * (nb_rxd + nb_txd
+ MAX_PKT_BURST + rte_lcore_count () » MEMPOOL_CACHE_SIZE),
MIN_POOL_SIZE) ;

/+ Create the mbuf pool #*/

iocat_pktmbuf_pool = rte_pktmbuf_pool_create ("mbuf_pool", nb_mbufs,
MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
rte_socket_id());

if (iocat_pktmbuf_pool == NULL)
rte_exit (EXIT_FAILURE, "Cannot init mbuf pool\n");

15.4. Explanation 60

Sample Applications User Guides, Release 20.02.1

Mbufs are the packet buffer structure used by DPDK. They are explained in detail in the “Mbuf Library”
section of the DPDK Programmer’s Guide.

The main () function also initializes the ports:

/+ Initialise each port #*/
RTE_ETH_FOREACH_DEV (portid) {

port_init (portid, ioat_pktmbuf_pool);
}

Each port is configured using port_init () function. The Ethernet ports are configured with local
settings using the rte_eth_dev_configure () function and the port_conf struct. The RSS is
enabled so that multiple Rx queues could be used for packet receiving and copying by multiple CBDMA
channels per port:

/% configuring port to use RSS for multiple RX queues */

static const struct rte_eth_conf port_conf = {
.rxmode = {
.mg_mode = ETH_MQ_RX_RSS,

.max_rx_pkt_len = RTE_ETHER_MAX_LEN
}I
.rx_adv_conf = {
.rss_conf = {
.rss_key = NULL,
.rss_hf = ETH_RSS_PROTO_MASK,

}i

For this example the ports are set up with the number of Rx queues provided with -q option and 1 Tx
queue using the rte_eth_rx_queue_setup () and rte_eth_tx_queue_setup () functions.

The Ethernet port is then started:

ret = rte_eth_dev_start (portid);
if (ret < 0)
rte_exit (EXIT_FAILURE, "rte_eth_dev_start:err=%d, port=%u\n",
ret, portid);

Finally the Rx port is set in promiscuous mode:

rte_eth_promiscuous_enable (portid);

After that each port application assigns resources needed.

check_1link_status (iocat_enabled_port_mask);

if (!cfg.nb_ports) {
rte_exit (EXIT_FAILURE,
"All available ports are disabled. Please set portmask.\n");

/% Check if there is enough lcores for all ports. #*/
cfg.nb_lcores = rte_lcore_count () - 1;
if (cfg.nb_lcores < 1)
rte_exit (EXIT_FAILURE,
"There should be at least one slave lcore.\n");

ret = 0;

if (copy_mode == COPY_MODE_TIOAT_NUM) {
assign_rawdevs();

} else /* copy_mode == COPY_MODE_SW_NUM %/ {

assign_rings();

15.4. Explanation 61

Sample Applications User Guides, Release 20.02.1

Depending on mode set (whether copy should be done by software or by hardware) special structures
are assigned to each port. If software copy was chosen, application have to assign ring structures for
packet exchanging between lcores assigned to ports.

static void

assign_rings (void)

{
uint32_t i;

for (i = 0; 1 < cfg.nb_ports; i++) {
char ring_name[20];

snprintf (ring_name, 20, "rx_to_tx_ring_%u", 1i);
/* Create ring for inter core communication */
cfg.ports[i].rx_to_tx_ring = rte_ring_create(
ring_name, ring_size,
rte_socket_id (), RING_F_SP_ENQ);
if (cfg.ports[i].rx_to_tx_ring == NULL)

rte_exit (EXIT_FAILURE, "%s\n",
rte_strerror (rte_errno));

}

When using hardware copy each Rx queue of the port is assigned an IOAT device
(assign_rawdevs ()) using IOAT Rawdev Driver API functions:

static void

assign_rawdevs (void)

{
uintl6_t nb_rawdev = 0, rdev_id = 0;
uint32_t i, 3j;

for (i = 0; i < cfg.nb_ports; i++) {
for (j = 0; j < cfg.ports[i].nb_queues; Jj++) {
struct rte_rawdev_info rdev_info = { 0 };
do {
if (rdev_id == rte_rawdev_count ())
goto end;

rte_rawdev_info_get (rdev_id++, &rdev_info);
} while (strcmp(rdev_info.driver_name,
IOAT_PMD_RAWDEV_NAME_STR) != 0);

cfg.ports[i].ioat_ids[j] = rdev_id - 1;
configure_rawdev_queue (cfg.ports[i] .iocat_ids[]j]);
++nb_rawdev;

end:
if (nb_rawdev < cfg.nb_ports * cfg.ports[0].nb_qgueues)
rte_exit (EXIT_FAILURE,
"Not enough IOAT rawdevs (%u) for all gqueues (%u).\n",
nb_rawdev, cfg.nb_ports » cfg.ports[0].nb_queues);
RTE_LOG (INFO, IOAT, "Number of used rawdevs: %u.\n", nb_rawdev);
}

The initialization of hardware device is done by rte_rawdev_configure () function using
rte_rawdev_info struct. After configuration the device is started using rte_rawdev_start ()
function. Each of the above operations is done in configure_rawdev_queue ().

static void
configure_rawdev_qgueue (uint32_t dev_id)

15.4. Explanation 62

Sample Applications User Guides, Release 20.02.1

struct rte_ioat_rawdev_config dev_config = { .ring_size = ring_size };
struct rte_rawdev_info info = { .dev_private = &dev_config };
if (rte_rawdev_configure(dev_id, &info) != 0) {

rte_exit (EXIT_FAILURE,
"Error with rte_rawdev_configure ()\n");
}
if (rte_rawdev_start (dev_id) != 0) {
rte_exit (EXIT_FAILURE,
"Error with rte_rawdev_start ()\n");

}
If initialization is successful, memory for hardware device statistics is allocated.

Finally main () function starts all packet handling lcores and starts printing stats in a loop on the master
Icore. The application can be interrupted and closed using Ct r1-C. The master lcore waits for all slave
processes to finish, deallocates resources and exits.

The processing Icores launching function are described below.

15.4.2 The Lcores Launching Functions

As described above, main () function invokes start_forwarding_cores () function in order to
start processing for each lcore:

static void start_forwarding_cores (void)

{

uint32_t lcore_id = rte_lcore_id();

RTE_LOG (INFO, IOAT, "Entering %s on lcore %u\n",
_ func__, rte_lcore_id{());

if (cfg.nb_lcores == 1) {
lcore_id = rte_get_next_lcore(lcore_id, true, true);
rte_eal_remote_launch ((lcore_function_t *)rxtx_main_loop,
NULL, lcore_id);
} else if (cfg.nb_lcores > 1) {
lcore_id = rte_get_next_lcore(lcore_id, true, true);
rte_eal_ remote_launch((lcore_function_t «*)rx_main_loop,
NULL, lcore_id);

lcore_id = rte_get_next_lcore(lcore_id, true, true);
rte_eal_remote_launch ((lcore_function_t «)tx_main_loop, NULL,
lcore_id);

}

The function launches Rx/Tx processing functions on configured Icores using
rte_eal_remote_launch (). The configured ports, their number and number of assigned
Icores are stored in user-defined rxtx_transmission_config struct:
struct rxtx_transmission_config {
struct rxtx_port_config ports[RTE_MAX_ETHPORTS];
uintl6_t nb_ports;

uintl6_t nb_lcores;

}i

The structure is initialized in ‘main()’ function with the values corresponding to ports and lcores config-
uration provided by the user.

15.4. Explanation 63

Sample Applications User Guides, Release 20.02.1

15.4.3 The Lcores Processing Functions

For receiving packets on each port, the ioat_rx_port () function is used. The function receives
packets on each configured Rx queue. Depending on the mode the user chose, it will enqueue packets
to IOAT rawdev channels and then invoke copy process (hardware copy), or perform software copy of
each packet using pktmbuf_sw_copy () function and enqueue them to an rte_ring:

/% Receive packets on one port and enqueue to IOAT rawdev or rte_ring. */
static void
ioat_rx_port (struct rxtx_port_config *rx_confiqg)
{
uint32_t nb_rx, nb_eng, i, 7J;
struct rte_mbuf xpkts_burst [MAX_ PKT_BURST];
for (i = 0; i < rx_config->nb_queues; i++) {

nb_rx = rte_eth_rx_burst (rx_config->rxtx_port, i,
pkts_burst, MAX_PKT_BURST);

if (nb_rx == 0)
continue;

port_statistics.rx[rx_config->rxtx_port] += nb_rx;

if (copy_mode == COPY_MODE_TIOAT_NUM) {
/+ Perform packet hardware copy #*/
nb_enqg = ioat_enqueue_packets (pkts_burst,
nb_rx, rx_config->iocat_ids[i]);
if (nb_eng > 0)
rte_ioat_do_copies (rx_config->icat_ids[i]);

} else {
/+ Perform packet software copy, free source packets */
int ret;

struct rte_mbuf xpkts_burst_copy[MAX_PKT_BURST];

ret = rte_mempool_get_bulk (iocat_pktmbuf_pool,
(void «*)pkts_burst_copy, nb_rx);

if (unlikely(ret < 0))
rte_exit (EXIT_FAILURE,
"Unable to allocate memory.\n");

for (j = 0; j < nb_rx; j++)
pktmbuf_sw_copy (pkts_burst[j],
pkts_burst_copyljl);

rte_mempool_put_bulk (icat_pktmbuf_pool,
(void *)pkts_burst, nb_rx);

nb_eng = rte_ring_enqueue_burst (
rx_config->rx_to_tx_ring,
(void «*)pkts_burst_copy, nb_rx, NULL);

/% Free any not enqueued packets. */

rte_mempool_put_bulk (icat_pktmbuf_pool,
(void «) &pkts_burst_copylnb_enqgl,
nb_rx - nb_enqg);

port_statistics.copy_dropped[rx_config->rxtx_port] +=
(nb_rx - nb_enq);

15.4. Explanation 64

Sample Applications User Guides, Release 20.02.1

The packets are received in burst mode using rte_eth_rx_burst () function. When
using hardware copy mode the packets are enqueued in copying device’s buffer using
ioat_enqueue_packets () which calls rte_iocat_enqueue_copy (). When all received
packets are in the buffer the copy operations are started by calling rte_ioat_do_copies ().
Function rte_ioat_enqueue_copy () operates on physical address of the packet. Structure
rte_mbuf contains only physical address to start of the data buffer (ouf_iova). Thus the address is
adjusted by addr_offset value in order to get the address of rearm_data member of rte_mbuf.
That way both the packet data and metadata can be copied in a single operation. This method can be
used because the mbufs are direct mbufs allocated by the apps. If another app uses external buffers, or
indirect mbufs, then multiple copy operations must be used.
static uint32_t
ioat_enqueue_packets (struct rte_mbuf =xxpkts,
uint32_t nb_rx, uintl6é_t dev_id)
{ int ret;
uint32_t i;
struct rte_mbuf xpkts_copy[MAX_PKT_BURST];

const uint64_t addr_offset = RTE_PTR_DIFF (pkts[0]->buf_addr,
&pkts[0] —>rearm_data) ;

ret = rte_mempool_get_bulk (ioat_pktmbuf_pool,
(void *)pkts_copy, nb_rx);

if (unlikely(ret < 0))
rte_exit (EXIT_FAILURE, "Unable to allocate memory.\n");

for (i = 0; 1 < nb_rx; i++) {
/* Perform data copy #*/
ret = rte_ioat_enqueue_copy (dev_id,

pkts[i]->buf_iova

- addr_offset,
pkts_copyl[i]-—>buf_iova

- addr_offset,
rte_pktmbuf_data_len (pkts[i])

+ addr_offset,
(uintptr_t)pkts[i],
(uintptr_t)pkts_copyl[il],
0 /* nofence */);

if (ret != 1)
break;

}

ret = 1i;
/* Free any not enqueued packets. x/
rte_mempool_put_bulk (icat_pktmbuf_pool, (wvoid «)é&pkts[i], nb_rx - 1i);
rte_mempool_put_bulk (icat_pktmbuf_pool, (void =x)é&pkts_copyl[i],
nb_rx - 1i);

return ret;

}

All completed copies are processed by ioat_tx_port () function. When using hardware copy mode
the function invokes rte_ioat_completed_copies () on each assigned IOAT channel to gather
copied packets. If software copy mode is used the function dequeues copied packets from the rte_ring.
Then each packet MAC address is changed if it was enabled. After that copies are sent in burst mode
using *‘ rte_eth_tx_burst()‘‘.

15.4. Explanation 65

Sample Applications User Guides, Release 20.02.1

/% Transmit packets from IOAT rawdev/rte_ring for one port. #*/
static void
iocat_tx_port (struct rxtx_port_config *tx_config)
{
uint32_t i, j, nb_dg = 0;
struct rte_mbuf *mbufs_src[MAX_ PKT_BURST];
struct rte_mbuf »mbufs_dst [MAX_PKT_BURST];

for (i = 0; i < tx_config->nb_queues; i++) {
if (copy_mode == COPY_MODE_TIOAT_NUM) {
/+ Deque the mbufs from IOAT device. x/
nb_dg = rte_ioat_completed_copies (
tx_config->iocat_ids[i], MAX_PKT_BURST,
(void +)mbufs_src, (void +)mbufs_dst);
} else {
/* Deque the mbufs from rx_to_tx_ring. #*/
nb_dg = rte_ring_dequeue_burst (
tx_config->rx_to_tx_ring, (void x)mbufs_dst,
MAX_PKT_BURST, NULL);

if (nb_dg == 0)
return;
if (copy_mode == COPY_MODE_TIOAT_NUM)

rte_mempool_put_bulk (icat_pktmbuf_pool,
(void *)mbufs_src, nb_dq);

/* Update macs 1f enabled */
if (mac_updating) {
for (j = 0; j < nb_dg; j++)
update_mac_addrs (mbufs_dst[]j],
tx_config->rxtx_port);

const uintl6_t nb_tx = rte_eth_tx burst(
tx_config->rxtx_port, O,
(void *)mbufs_dst, nb_dq);

port_statistics.tx[tx_config->rxtx_port] += nb_tx;

/+ Free any unsent packets. */
if (unlikely(nb_tx < nb_dqg))
rte_mempool_put_bulk (icat_pktmbuf_pool,
(void +)&mbufs_dst[nb_tx],
nb_dg - nb_tx);

15.4.4 The Packet Copying Functions

In order to perform packet copy there is a user-defined function pktmbuf_sw_copy () used. It copies
a whole packet by copying metadata from source packet to new mbuf, and then copying a data chunk of
source packet. Both memory copies are done using rte_memcpy () :

static inline void
pktmbuf_sw_copy (struct rte_mbuf xsrc, struct rte_mbuf xdst)
{
/+ Copy packet metadata =*/
rte_memcpy (&dst—>rearm_data,
&src—>rearm_data,

15.4. Explanation 66

Sample Applications User Guides, Release 20.02.1

offsetof (struct rte_mbuf, cachelinel)
— offsetof (struct rte_mbuf, rearm_data));

/% Copy packet data =/
rte_memcpy (rte_pktmbuf_mtod(dst, char »),
rte_pktmbuf_mtod(src, char x), src->data_len);

}

The metadata in this example is copied from rearm_data member of rte_mbuf struct up to
cachelinel.

In order to understand why software packet copying is done as shown above please refer to the “Mbuf
Library” section of the DPDK Programmer’s Guide.

15.4. Explanation 67

CHAPTER
SIXTEEN

L2 FORWARDING WITH CRYPTO SAMPLE APPLICATION

The L2 Forwarding with Crypto (I12fwd-crypto) sample application is a simple example of packet pro-
cessing using the Data Plane Development Kit (DPDK), in conjunction with the Cryptodev library.

16.1 Overview

The L2 Forwarding with Crypto sample application performs a crypto operation (cipher/hash) specified
by the user from command line (or using the default values), with a crypto device capable of doing that
operation, for each packet that is received on a RX_PORT and performs L2 forwarding. The destination
port is the adjacent port from the enabled portmask, that is, if the first four ports are enabled (portmask
0xf), ports 0 and 1 forward into each other, and ports 2 and 3 forward into each other. Also, if MAC
addresses updating is enabled, the MAC addresses are affected as follows:

* The source MAC address is replaced by the TX_PORT MAC address
* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

16.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the 12 fwd—-crypt sub-directory.

16.3 Running the Application

The application requires a number of command line options:

./build/12fwd-crypto [EAL options] —- [-p PORTMASK] [-g NQ] [-s] [-T PERIOD] /
[-—cdev_type HW/SW/ANY] [--chain HASH_CIPHER/CIPHER_HASH/CIPHER_ONLY/HASH_ONLY/AEAD] /
[-—cipher_algo ALGO] [--cipher_op ENCRYPT/DECRYPT] [--cipher_key KEY] /
[-—cipher_key_random_size SIZE] [--cipher_iv IV] [--cipher_iv_random_size SIZE] /
[-—auth_algo ALGO] [--auth_op GENERATE/VERIFY] [--auth_key KEY] /
[-—auth_key_random_size SIZE] [--auth_iv IV] [--auth_iv_random_size SIZE] /
[-—aead_algo ALGO] [--aead_op ENCRYPT/DECRYPT] [-—-aead_key KEY] /
[-—aead_key_random_size SIZE] [--aead_iv] [--aead_iv_random_size SIZE] /
[-—aad AAD] [—-—-aad_random_size SIZE] /
[-—digest size SIZE] [--sessionless] [--cryptodev_mask MASK] /
[--mac-updating] [-—-no-mac-updating]

where,

68

Sample Applications User Guides, Release 20.02.1

p PORTMASK: A hexadecimal bitmask of the ports to configure (default is all the ports)

* q NQ: A number of queues (=ports) per Icore (default is 1)

* s: manage all ports from single core

» T PERIOD: statistics will be refreshed each PERIOD seconds
(0 to disable, 10 default, 86400 maximum)

* cdev_type: select preferred crypto device type: HW, SW or anything (ANY)
(default is ANY)

* chain: select the operation chaining to perform: Cipher->Hash (CIPHER_HASH),
Hash->Cipher (HASH_CIPHER), Cipher (CIPHER_ONLY), Hash (HASH_ONLY)
or AEAD (AEAD)

(default is Cipher->Hash)

* cipher_algo: select the ciphering algorithm (default is aes-cbc)

* cipher_op: select the ciphering operation to perform: ENCRYPT or DECRYPT
(default is ENCRYPT)

* cipher_key: set the ciphering key to be used. Bytes has to be separated with :”

* cipher_key_random_size: set the size of the ciphering key,
which will be generated randomly.

Note that if —cipher_key is used, this will be ignored.

* cipher_iv: set the cipher IV to be used. Bytes has to be separated with ”:”

* cipher_iv_random_size: set the size of the cipher IV, which will be generated randomly.
Note that if —cipher_iv is used, this will be ignored.

 auth_algo: select the authentication algorithm (default is shal-hmac)

* auth_op: select the authentication operation to perform: GENERATE or VERIFY
(default is GENERATE)

» auth_key: set the authentication key to be used. Bytes has to be separated with ”:”

* auth_key_random_size: set the size of the authentication key,
which will be generated randomly.

Note that if —auth_key is used, this will be ignored.

 auth_iv: set the auth I'V to be used. Bytes has to be separated with :”

* auth_iv_random_size: set the size of the auth IV, which will be generated randomly.
Note that if —auth_iv is used, this will be ignored.

 aead_algo: select the AEAD algorithm (default is aes-gcm)

* aead_op: select the AEAD operation to perform: ENCRYPT or DECRYPT

(default is ENCRYPT)

16.3. Running the Application 69

Sample Applications User Guides, Release 20.02.1

» aead_key: set the AEAD key to be used. Bytes has to be separated with ”:”

* aead_key_random_size: set the size of the AEAD key,
which will be generated randomly.
Note that if —aead_key is used, this will be ignored.

* aead_iv: set the AEAD IV to be used. Bytes has to be separated with ”:”

* aead_iv_random_size: set the size of the AEAD IV, which will be generated randomly.
Note that if —aead_iv is used, this will be ignored.

* aad: set the AAD to be used. Bytes has to be separated with :”

* aad_random_size: set the size of the AAD, which will be generated randomly.
Note that if —aad is used, this will be ignored.

* digest_size: set the size of the digest to be generated/verified.

* sessionless: no crypto session will be created.

* cryptodev_mask: A hexadecimal bitmask of the cryptodevs to be used by the application.
(default is all cryptodevs).

* [no-]Jmac-updating: Enable or disable MAC addresses updating (enabled by default).

The application requires that crypto devices capable of performing the specified crypto operation are
available on application initialization. This means that HW crypto device/s must be bound to a DPDK
driver or a SW crypto device/s (virtual crypto PMD) must be created (using —vdev).

To run the application in linux environment with 2 Icores, 2 ports and 2 crypto devices, issue the com-
mand:

$./build/l12fwd-crypto -1 0-1 -n 4 —--vdev "crypto_aesni_mb0" \
-—vdev "crypto_aesni_mbl" —-- -p 0x3 —--chain CIPHER_HASH \
——cipher_op ENCRYPT --cipher_algo aes-cbc \

——cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f \
—-—auth_op GENERATE --auth_algo aes-xcbc-mac \

——auth_key 10:11:12:13:14:15:16:17:18:19:1a:1b:1lc:1d:1le:1f

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

Note:
* The 12fwd-crypto sample application requires IPv4 packets for crypto operation.
 If multiple Ethernet ports is passed, then equal number of crypto devices are to be passed.

* All crypto devices shall use the same session.

16.4 Explanation

The L2 forward with Crypto application demonstrates the performance of a crypto operation on a packet
received on a RX PORT before forwarding it to a TX PORT.

16.4. Explanation 70

Sample Applications User Guides, Release 20.02.1

The following figure illustrates a sample flow of a packet in the application, from reception until trans-
mission.

StagéranReat packets StalpprdEsemayitts HraeSHitempte StagaEibsmifaPacket

Q ----- RX PAD CRMET CBERNQ MAC TX

Fig. 16.1: Encryption flow Through the L2 Forwarding with Crypto Application
The following sections provide some explanation of the application.

16.4.1 Crypto operation specification

All the packets received in all the ports get transformed by the crypto device/s (ciphering and/or authen-
tication). The crypto operation to be performed on the packet is parsed from the command line (go to
“Running the Application” section for all the options).

If no parameter is passed, the default crypto operation is:
* Encryption with AES-CBC with 128 bit key.
* Authentication with SHA1-HMAC (generation).
* Keys, IV and AAD are generated randomly.
There are two methods to pass keys, IV and ADD from the command line:
* Passing the full key, separated bytes by ”:”:
-—cipher_key 00:11:22:33:44
* Passing the size, so key is generated randomly:

——cipher_key_random_size 16

Note: If full key is passed (first method) and the size is passed as well (second method), the latter will
be ignored.

Size of these keys are checked (regardless the method), before starting the app, to make sure that it is
supported by the crypto devices.

16.4.2 Crypto device initialization

Once the encryption operation is defined, crypto devices are initialized. The crypto devices must be
either bound to a DPDK driver (if they are physical devices) or created using the EAL option —vdev (if
they are virtual devices), when running the application.

The initialize_cryptodevs() function performs the device initialization. It iterates through the list of the
available crypto devices and check which ones are capable of performing the operation. Each device
has a set of capabilities associated with it, which are stored in the device info structure, so the function
checks if the operation is within the structure of each device.

16.4. Explanation 71

Sample Applications User Guides, Release 20.02.1

The following code checks if the device supports the specified cipher algorithm (similar for the authen-

tication algorithm):

/% Check if device supports cipher algo */

i = 0;

opt_cipher_algo = options->cipher_xform.cipher.algo;
cap = &dev_info.capabilities[i];

while (cap->op !'= RTE_CRYPTO_OP_TYPE_UNDEFINED) {

cap_cipher_algo = cap->sym.cipher.algo;
if (cap->sym.xform_ type ==
RTE_CRYPTO_SYM_XFORM_CIPHER) {

if (cap_cipher_algo == opt_cipher_algo) {
if (check_type (options, &dev_info) == 0)
break;
}
}
cap = &dev_info.capabilities[++1];

}

If a capable crypto device is found, key sizes are checked to see if they are supported (cipher key and IV

for the ciphering):

/%
* Check if length of provided cipher key is supported
* by the algorithm chosen.
*/
if (options->ckey_param) {
if (check_supported_size(
options—>cipher_xform.cipher.key.length,
cap->sym.cipher.key_size.min,
cap->sym.cipher.key_size.max,
cap->sym.cipher.key_size.increment)
= 0) |
printf ("Unsupported cipher key length\n");
return -1;

J/ *
* Check 1if length of the cipher key to be randomly generated
* 1s supported by the algorithm chosen.
*/
} else if (options->ckey_random_size != -1) {
if (check_supported_size (options->ckey_random_size,
cap->sym.cipher.key_size.min,
cap->sym.cipher.key_size.max,
cap->sym.cipher.key_size.increment)
= 0) |
printf ("Unsupported cipher key length\n");
return -1;
}
options—>cipher_xform.cipher.key.length =
options->ckey_random_size;
/% No size provided, use minimum size. */
} else
options—->cipher_xform.cipher.key.length =
cap->sym.cipher.key_size.min;

After all the checks, the device is configured and it is added to the crypto device list.

Note: The number of crypto devices that supports the specified crypto operation must be at least the

number of ports to be used.

16.4. Explanation

72

Sample Applications User Guides, Release 20.02.1

16.4.3 Session creation

The crypto operation has a crypto session associated to it, which contains information such as the trans-
form chain to perform (e.g. ciphering then hashing), pointers to the keys, lengths... etc.

This session is created and is later attached to the crypto operation:

static struct rte_cryptodev_sym_session =
initialize_crypto_session(struct 12fwd_crypto_options *options,
uint8 t cdev_id)

struct rte_crypto_sym_xform xfirst_xform;

struct rte_cryptodev_sym_session *session;

uint8_t socket_id = rte_cryptodev_socket_id(cdev_id);

struct rte_mempool *sess_mp = session_pool_socket[socket_id];

if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
first_xform = &options—>aead_xform;

} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
first_xform = &options—>cipher_xform;
first_xform->next = &options->auth_xform;

} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
first_xform = &options—>auth_xform;
first_xform->next = &options->cipher_xform;

} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
first_xform = &options—>cipher_xform;

} else {
first_xform = &options->auth_xform;

session = rte_cryptodev_sym_session_create (sess_mp);

if (session == NULL)
return NULL;

if (rte_cryptodev_sym_session_init (cdev_id, session,
first_xform, sess_mp) < 0)
return NULL;

return session;

port_cparams[i].session = initialize_crypto_session (options,
port_cparams([i].dev_id);

16.4.4 Crypto operation creation

Given N packets received from a RX PORT, N crypto operations are allocated and filled:

if (nb_rx) {
/%
* If we can't allocate a crypto_ops, then drop
* the rest of the burst and dequeue and
* process the packets to free offload structs
*/
if (rte_crypto_op_bulk_alloc(
12fwd_crypto_op_pool,
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
ops_burst, nb_rx) !

16.4. Explanation 73

Sample Applications User Guides, Release 20.02.1

nb_rx) {
for (j = 0; j < nb_rx; j++)
rte_pktmbuf_free (pkts_burst[i]);

nb_rx = 0;

}

After filling the crypto operation (including session attachment), the mbuf which will be transformed is
attached to it:

op—>sym->m_src = m;

Since no destination mbuf is set, the source mbuf will be overwritten after the operation is done (in-
place).

16.4.5 Crypto operation enqueuing/dequeuing

Once the operation has been created, it has to be enqueued in one of the crypto devices. Before doing
so, for performance reasons, the operation stays in a buffer. When the buffer has enough operations
(MAX_PKT_BURST), they are enqueued in the device, which will perform the operation at that mo-
ment:

static int

12fwd_crypto_enqueue (struct rte_crypto_op *op,
struct 12fwd_crypto_params xcparams)

unsigned lcore_id, len;
struct lcore_queue_conf =xgconf;

lcore_id = rte_lcore_id();

gconf = &lcore_queue_conf[lcore_id];

len = gconf->op_buf [cparams—>dev_id].len;
gconf->op_buf [cparams->dev_id] .buffer[len] = op;
len++;

/* enough ops to be sent */

if (len == MAX_PKT_BURST) ({
12fwd_crypto_send_burst (gqconf, MAX_ PKT_BURST, cparams);
len = 0;

}

gconf->op_buf [cparams->dev_id] .len = len;

return 0O;

static int
12fwd_crypto_send_burst (struct lcore_queue_conf xqgconf, unsigned n,
struct 12fwd_crypto_params *cparams)

struct rte_crypto_op **op_buffer;
unsigned ret;

op_buffer = (struct rte_crypto_op *x*)
gconf->op_buf [cparams—>dev_id] .buffer;

ret = rte_cryptodev_enqueue_burst (cparams—>dev_id,
cparams—>qgp_id, op_buffer, (uintl6é_t) n);

16.4. Explanation 74

} while

16.4. Explanation

crypto_statistics|[cparams—->dev_id] .enqueued += ret;
if (unlikely(ret < n))

Sample Applications User Guides, Release 20.02.1

{
crypto_statistics[cparams—>dev_id].errors +=
do {

(n — ret);
rte_pktmbuf_free (op_buffer[ret]->sym->m_src);
rte_crypto_op_free (op_buffer[ret]);
} while (++ret < n);
}

return 0;
}

After this, the operations are dequeued from the device, and the transformed mbuf is extracted from the
application.

/* Dequeue packets from Crypto device
do {

nb_rx

*/
= rte_cryptodev_dequeue_burst (

cparams—>dev_id,
ops_burst,

operation. Then, the operation is freed and the mbuf is forwarded as it is done in the L2 forwarding

cparams->qp_id,

MAX_PKT_BURST) ;

crypto_statistics|[cparams—>dev_id] .dequeued +=
nb_rx;

/+ Forward crypto'd packets #*/
for (j = 0; j < nb_rx; j++) {
m =

ops_burst[j]->sym->m_src;

}

rte_crypto_op_free (ops_burst[]j]);
(nb_rx

12fwd_simple_forward(m, portid);
== MAX_PKT_BURST) ;

75

CHAPTER
SEVENTEEN

L2 FORWARDING SAMPLE APPLICATION (IN REAL AND
VIRTUALIZED ENVIRONMENTS) WITH CORE LOAD STATISTICS.

The L2 Forwarding sample application is a simple example of packet processing using the Data Plane
Development Kit (DPDK) which also takes advantage of Single Root I/O Virtualization (SR-IOV) fea-
tures in a virtualized environment.

Note: This application is a variation of L2 Forwarding sample application. It demonstrate possible
scheme of job stats library usage therefore some parts of this document is identical with original L2
forwarding application.

17.1 Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments, performs
L2 forwarding for each packet that is received. The destination port is the adjacent port from the enabled
portmask, that is, if the first four ports are enabled (portmask 0xf), ports 1 and 2 forward into each other,
and ports 3 and 4 forward into each other. Also, the MAC addresses are affected as follows:

* The source MAC address is replaced by the TX port MAC address
* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as shown in the Fig.
17.1.

The application can also be used in a virtualized environment as shown in Fig. 17.2.

The L2 Forwarding application can also be used as a starting point for developing a new application
based on the DPDK.

17.1.1 Virtual Function Setup Instructions

This application can use the virtual function available in the system and therefore can be used in a
virtual machine without passing through the whole Network Device into a guest machine in a virtualized
scenario. The virtual functions can be enabled in the host machine or the hypervisor with the respective
physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the following
command:

modprobe ixgbe max_vfs=2,2

76

Sample Applications User Guides, Release 20.02.1

Mote: Port 0-2 initialized from PCI Virtual Function 0-2
enabled in the Host Machine using "pgbe max_vis=22"

0 Flow 0 > p-----5 0
< < v
]]
P
p————— Flow 1 > -
1 ke «-— 0 0 O O 4----- 21
2 Flow 2 > SE—
< < 2 12
]]
Lo
Flow 3 > S !
3« ¢ - 43
Traffic NUT
Generator (RTE)
Fig. 17.1: Performance Benchmark Setup (Basic Environment)
__i_n-—l-""p-— Flow 0 —stessssses, 0
1 -ﬁ—\ﬂ—d:l
x : Flow 1 =
. i*—»—r_‘r—*m—-— ,
=E- P————p—Flow2—> 2
| Flow 3 _.J
« (=i |,
Traffic NUT (RTE)
Generator Vinual
Machine
Host Machinef
Hypervisor
Legend

—| Physical Function

Virtual Function

Fig. 17.2: Performance Benchmark Setup (Virtualized Environment)

17.1. Overview

77

Sample Applications User Guides, Release 20.02.1

This command enables two Virtual Functions on each of Physical Function of the NIC, with two physical
ports in the PCI configuration space. It is important to note that enabled Virtual Function 0 and 2 would
belong to Physical Function 0 and Virtual Function 1 and 3 would belong to Physical Function 1, in this
case enabling a total of four Virtual Functions.

17.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the 12 fwd—-jobstats sub-directory.

17.3 Running the Application

The application requires a number of command line options:

./build/12fwd-jobstats [EAL options] —- —-p PORTMASK [-g NQJ] [-1]
where,

* p PORTMASK: A hexadecimal bitmask of the ports to configure

* ¢ NQ: A number of queues (=ports) per Icore (default is 1)

* I: Use locale thousands separator when formatting big numbers.

To run the application in linux environment with 4 Icores, 16 ports, 8 RX queues per Icore and thousands
separator printing, issue the command:

$./build/12fwd-jobstats -1 0-3 -n 4 -—- -q 8 -p ffff -1

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

17.4 Explanation

The following sections provide some explanation of the code.

17.4.1 Command Line Arguments

The L2 Forwarding sample application takes specific parameters, in addition to Environment Abstraction
Layer (EAL) arguments (see Running the Application). The preferred way to parse parameters is to use
the getopt() function, since it is part of a well-defined and portable library.

The parsing of arguments is done in the 12fwd_parse_args() function. The method of argument parsing
is not described here. Refer to the glibc getopt(3) man page for details.

EAL arguments are parsed first, then application-specific arguments. This is done at the beginning of
the main() function:

/* init EAL */
ret = rte_eal_init (argc, argv);

if (ret < 0)
rte_exit (EXIT_FAILURE, "Invalid EAL arguments\n");

17.2. Compiling the Application 78

Sample Applications User Guides, Release 20.02.1

argc —= ret;
argv += ret;

/* parse application arguments (after the EAL ones) x/

ret = 12fwd_parse_args(argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Invalid L2FWD arguments\n");

17.4.2 Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created. The mbuf pool contains a set of mbuf objects
that will be used by the driver and the application to store network packet data:

/* create the mbuf pool */

12fwd_pktmbuf_pool = rte_pktmbuf_pool_create ("mbuf_ pool", NB_MBUF,
MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
rte_socket_id());

if (12fwd_pktmbuf_pool == NULL)
rte_exit (EXIT_FAILURE, "Cannot init mbuf pool\n");

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is necessary
to create a pool that will be used by the driver. The number of allocated pkt mbufs is NB_MBUF,
with a data room size of RTE_MBUF_DEFAULT_BUF_SIZE each. A per-lcore cache of MEM-
POOL_CACHE_SIZE mbufs is kept. The memory is allocated in rte_socket_id() socket, but it is possi-
ble to extend this code to allocate one mbuf pool per socket.

The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf initializers, respectively
rte_pktmbuf_pool_init() and rte_pktmbuf_init(). An advanced application may want to use the mempool
API to create the mbuf pool with more control.

17.4.3 Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully
understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the
DPDK Programmer’s Guide and the DPDK API Reference.

/+ reset 12fwd _dst_ports =*/

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
12fwd_dst_ports[portid] = 0;

last_port = 0;

/ *
* Each logical core is assigned a dedicated TX queue on each port.
*/
RTE_ETH_FOREACH_DEV (portid) {
/+ skip ports that are not enabled */
if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
continue;
if (nb_ports_in_mask % 2) {
12fwd_dst_ports[portid] = last_port;
12fwd_dst_ports[last_port] = portid;
}

else

17.4. Explanation 79

Sample Applications User Guides, Release 20.02.1

last_port = portid;
nb_ports_in_mask++;

rte_eth_dev_info_get ((uint8_t) portid, &dev_info);
}

The next step is to configure the RX and TX queues. For each port, there is only one RX queue (only
one Icore is able to poll a given port). The number of TX queues depends on the number of available
Icores. The rte_eth_dev_configure() function is used to configure the number of queues for a port:

ret rte_eth_dev_configure ((uint8_t)portid, 1, 1, &port_conf);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Cannot configure device: "
"err=%d, port=%u\n",
ret, portid);

17.4.4 RX Queue Initialization

The application uses one Icore to poll one or several ports, depending on the -q option, which specifies
the number of queues per Icore.

For example, if the user specifies -q 4, the application is able to poll four ports with one Icore. If there
are 16 ports on the target (and if the portmask argument is -p ftff), the application will need four Icores
to poll all the ports.

ret rte_eth_rx_queue_setup (portid, 0, nb_rxd,
rte_eth_dev_socket_id(portid),
NULL,

12fwd_pktmbuf_pool);

if (ret < 0)
rte_exit (EXIT_FAILURE, "rte_eth_ rx_ queue_setup:err=%d, port=%u\n",
ret, (unsigned) portid);

The list of queues that must be polled for a given lcore is stored in a private structure called struct
Icore_queue_conf.

struct lcore_queue_conf {
unsigned n_rx_port;
unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
truct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];

struct rte_timer rx_timers[MAX_RX_QUEUE_PER_LCORE];
struct rte_jobstats port_fwd_jobs[MAX_RX_QUEUE_PER_LCORE];

struct rte_timer flush_timer;

struct rte_jobstats flush_job;

struct rte_jobstats idle_job;

struct rte_jobstats_context Jjobs_context;

rte_atomicl6_t stats_read_pending;
rte_spinlock_t lock;
} __rte_cache_aligned;

Values of struct Icore_queue_conf:

* n_rx_port and rx_port_list[] are used in the main packet processing loop (see Section Receive,
Process and Transmit Packets later in this chapter).

* rx_timers and flush_timer are used to ensure forced TX on low packet rate.

17.4. Explanation 80

Sample Applications User Guides, Release 20.02.1

* flush_job, idle_job and jobs_context are librte_jobstats objects used for managing 12fwd jobs.

* stats_read_pending and lock are used during job stats read phase.

17.4.5 TX Queue Initialization

Each Icore should be able to transmit on any port. For every port, a single TX queue is initialized.

/+ init one TX queue on each port =/

fflush (stdout);
ret = rte_eth_tx_queue_setup (portid, 0, nb_txd,
rte_eth_dev_socket_id(portid),
NULL) ;
if (ret < 0)
rte_exit (EXIT_FAILURE, "rte_eth_ tx_ queue_setup:err=%d, port=%u\n",
ret, (unsigned) portid);

17.4.6 Jobs statistics initialization

There are several statistics objects available:

* Flush job statistics

rte_jobstats_init (&gconf->flush_job, "flush", drain_tsc, drain_tsc,
drain_tsc, 0);

rte_timer_init (&gconf->flush_timer);
ret = rte_timer_reset (&qconf->flush_timer, drain_tsc, PERIODICAL,
lcore_id, &l12fwd_flush_job, NULL);

if (ret < 0) |
rte_exit (1, "Failed to reset flush job timer for lcore %u: %s",
lcore_id, rte_strerror(-ret));

}
* Statistics per RX port

rte_jobstats_init (job, name, 0, drain_tsc, 0, MAX_PKT_BURST);
rte_jobstats_set_update_period_function (job, 12fwd_job_update_cb);

rte_timer_init (&qconf->rx_timers[i]);
ret = rte_timer_ reset (&gqconf->rx_timers[i], 0, PERIODICAL, lcore_id,
12fwd_fwd_job, (void) (uintptr_ t)i);

if (ret < 0) {
rte_exit (1, "Failed to reset lcore %u port %u job timer: %s",
(

lcore_id, gconf->rx_port_list[i], rte_strerror(-ret));

}

Following parameters are passed to rte_jobstats_init():
* 0 as minimal poll period
¢ drain_tsc as maximum poll period

* MAX_PKT_BURST as desired target value (RX burst size)

17.4. Explanation 81

Sample Applications User Guides, Release 20.02.1

17.4.7 Main loop

The forwarding path is reworked comparing to original L2 Forwarding application. In the
12fwd_main_loop() function three loops are placed.

for (;;) {
rte_spinlock_lock (&gconf->1lock);

do {
rte_Jjobstats_context_start (&gconf->jobs_context);

/+ Do the Idle job:
* — Read stats_read _pending flag
* — check 1f some real job need to be executed
*/
rte_Jjobstats_start (¢gconf->jobs_context, &gconf->idle_job);

do {
uint8_t i;
uint64_t now = rte_get_timer_cycles();

need_manage = qgconf->flush_timer.expire < now;

/+ Check if we was esked to give a stats. */

stats_read_pending =
rte_atomicl6_read(&gconf->stats_read_pending);

need_manage |= stats_read_pending;
for (i = 0; 1 < gconf->n_rx_port && !need_manage; i++)
need_manage = qgconf->rx_timers[i].expire < now;

} while (!need_manage);
rte_jobstats_finish (&gconf->idle_job, gconf->idle_job.target);

rte_timer_manage () ;
rte_Jjobstats_context_finish (&gconf->jobs_context);
} while (likely(stats_read_pending == 0));

rte_spinlock_unlock (&gconf->1lock);
rte_pause();

}
First infinite for loop is to minimize impact of stats reading. Lock is only locked/unlocked when asked.

Second inner while loop do the whole jobs management. ~When any job is ready, the use
rte_timer_manage() is used to call the job handler. In this place functions 12fwd_fwd_job() and
12fwd_flush_job() are called when needed. Then rte_jobstats_context_finish() is called to mark loop
end - no other jobs are ready to execute. By this time stats are ready to be read and if stats_read_pending
is set, loop breaks allowing stats to be read.

Third do-while loop is the idle job (idle stats counter). Its only purpose is monitoring if any job is ready
or stats job read is pending for this Icore. Statistics from this part of code is considered as the headroom
available for additional processing.

17.4.8 Receive, Process and Transmit Packets

The main task of 12fwd_fwd_job() function is to read ingress packets from the RX queue of particular
port and forward it. This is done using the following code:

total_nb_rx = rte_eth_rx_burst ((uint8_t) portid, 0, pkts_burst,
MAX_PKT_BURST) ;

17.4. Explanation 82

Sample Applications User Guides, Release 20.02.1

for (j = 0; 7 < total_nb_rx; j++) {
m = pkts_burst[]j];
rte_prefetchO (rte_pktmbuf_mtod(m, wvoid =*));
12fwd_simple_forward(m, portid);

}

Packets are read in a burst of size MAX_PKT_BURST. Then, each mbuf in the table is processed by
the 12fwd_simple_forward() function. The processing is very simple: process the TX port from the RX
port, then replace the source and destination MAC addresses.

The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of
available mbufs in the table.

After first read second try is issued.

if (total_nb_rx == MAX_PKT_BURST) {
const uintl6_t nb_rx = rte_eth_rx_burst ((uint8_t) portid, 0, pkts_burst,
MAX_PKT_BURST) ;

total_nb_rx += nb_rx;

for (j = 0; J < nb_rx; J++) {
m = pkts_burst[jl;
rte_prefetchO (rte_pktmbuf_mtod(m, wvoid «));
12fwd_simple_forward(m, portid);

}

This second read is important to give job stats library a feedback how many packets was processed.

/% Adjust period time in which we are running here. */
if (rte_jobstats_finish(job, total_nb_rx) != 0) {
rte_timer_reset (¢gconf->rx_timers|[port_idx], job->period, PERIODICAL,
lcore_id, 12fwd_fwd_job, arg);
}

To maximize performance exactly MAX_PKT_BURST is expected (the target value) to be read for each
[2fwd_fwd_job() call. If total_nb_rx is smaller than target value job->period will be increased. If it is
greater the period will be decreased.

Note: In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (12fwd_dst_ports[]) is filled such that
for each source port, a destination port is assigned that is either the next or previous enabled port from
the portmask. Naturally, the number of ports in the portmask must be even, otherwise, the application
exits.

static void
12fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
{

struct rte_ether_hdr +eth;

void xtmp;

unsigned dst_port;

dst_port = 12fwd_dst_ports|[portid];
eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr »);
/* 02:00:00:00:00:xx */

tmp = ð->d_addr.addr_bytes[0];

17.4. Explanation 83

Sample Applications User Guides, Release 20.02.1

%+ ((uint64_t +)tmp) = 0x000000000002 + ((uinté64_t) dst_port << 40);
/% src addr x*/
rte_ether_addr_copy (&12fwd_ports_eth_addr[dst_port], ð->s_addr);

12fwd_send_packet (m, (uint8_t) dst_port);
}

Then, the packet is sent using the 12fwd_send_packet (m, dst_port) function. For this test application,
the processing is exactly the same for all packets arriving on the same RX port. Therefore, it would
have been possible to call the 12fwd_send_burst() function directly from the main loop to send all the
received packets on the same TX port, using the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded on the
same port as packet N-1. The application is implemented to illustrate that, so the same approach can be
reused in a more complex application.

The 12fwd_send_packet() function stores the packet in a per-lcore and per-txport table. If the table is
full, the whole packets table is transmitted using the 12fwd_send_burst() function:

/+* Send the packet on an output interface */

static int
12fwd_send_packet (struct rte_mbuf *m, uintlé_t port)
{

unsigned lcore_id, len;

struct lcore_queue_conf xgconf;

lcore_id = rte_lcore_id();

gconf = &lcore_queue_conf[lcore_id];
len = gconf->tx_mbufs[port].len;
gconf->tx_mbufs[port].m_table[len] = m;
len++;

/* enough pkts to be sent */

if (unlikely(len == MAX_PKT_BURST)) {
12fwd_send_burst (gconf, MAX_PKT_BURST, port);
len = 0;

}

gconf->tx_mbufs[port].len = len; return 0;

}

To ensure that no packets remain in the tables, the flush job exists. The 12fwd_flush_job() is called
periodically to for each Icore draining TX queue of each port. This technique introduces some latency
when there are not many packets to send, however it improves performance:

static void
12fwd_flush_job(__rte_unused struct rte_timer xtimer, __rte_unused void xarg)
{

uint64_t now;

unsigned lcore_id;

struct lcore_qgqueue_conf xgconf;

struct mbuf_table *m_table;

uintl6_t portid;

lcore_id = rte_lcore_id();
gconf = &lcore_queue_conf[lcore_id];

rte_jobstats_start (¢gconf->jobs_context, &gconf->flush_job);

17.4. Explanation 84

Sample Applications User Guides, Release 20.02.1

now = rte_get_timer_cycles();
lcore_id = rte_lcore_id();
gconf = &lcore_queue_conf[lcore_id];
for (portid = 0; portid < RTE_MAX_ ETHPORTS; portid++) {
m_table = &qgconf->tx_mbufs[portid];
if (m_table->len == 0 || m_table->next_flush_time <= now)
continue;

12fwd_send_burst (gconf, portid);

/+ Pass target to indicate that this job is happy of time interval
* in which it was called. #*/
rte_jobstats_finish (&gconf->flush_job, gconf->flush_job.target);

17.4. Explanation 85

CHAPTER
EIGHTEEN

L2 FORWARDING SAMPLE APPLICATION (IN REAL AND
VIRTUALIZED ENVIRONMENTS)

The L2 Forwarding sample application is a simple example of packet processing using the Data Plane
Development Kit (DPDK) which also takes advantage of Single Root I/O Virtualization (SR-IOV) fea-
tures in a virtualized environment.

Note: Please note that previously a separate L2 Forwarding in Virtualized Environments sample appli-
cation was used, however, in later DPDK versions these sample applications have been merged.

18.1 Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments, performs
L2 forwarding for each packet that is received on an RX_PORT. The destination port is the adjacent port
from the enabled portmask, that is, if the first four ports are enabled (portmask Oxf), ports 1 and 2
forward into each other, and ports 3 and 4 forward into each other. Also, if MAC addresses updating is
enabled, the MAC addresses are affected as follows:

* The source MAC address is replaced by the TX_PORT MAC address
* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as shown in the Fig.
18.1, or in a virtualized environment as shown in Fig. 18.2.

This application may be used for basic VM to VM communication as shown in Fig. 18.3, when MAC
addresses updating is disabled.

The L2 Forwarding application can also be used as a starting point for developing a new application
based on the DPDK.

18.1.1 Virtual Function Setup Instructions

This application can use the virtual function available in the system and therefore can be used in a
virtual machine without passing through the whole Network Device into a guest machine in a virtualized
scenario. The virtual functions can be enabled in the host machine or the hypervisor with the respective
physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the following
command:

86

Sample Applications User Guides, Release 20.02.1

Mote: Port 0-2 initialized from PCI Virtual Function 0-2
enabled in the Host Machine using "pgbe max_vis=22"

0 Flow 0 > p-----5 0
< < v
]]
P
p————— Flow 1 > -
1 ke «-— 0 0 O O 4----- 21
2 Flow 2 > SE—
< < 2 12
]]
Lo
Flow 3 > S !
3« ¢ - 43
Traffic NUT
Generator (RTE)
Fig. 18.1: Performance Benchmark Setup (Basic Environment)
__i_n-—l-""p-— Flow 0 —stessssses, 0
1 -ﬁ—\ﬂ—d:l
x : Flow 1 =
. i*—»—r_‘r—*m—-— ,
=E- P————p—Flow2—> 2
| Flow 3 _.J
« (=i |,
Traffic NUT (RTE)
Generator Vinual
Machine
Host Machinef
Hypervisor
Legend

—| Physical Function

Virtual Function

Fig. 18.2: Performance Benchmark Setup (Virtualized Environment)

18.1. Overview

87

Sample Applications User Guides, Release 20.02.1

Host

Guestl

Guest?2

Fig. 18.3: Virtual Machine to Virtual Machine communication.

18.1. Overview

88

Sample Applications User Guides, Release 20.02.1

modprobe ixgbe max_vfs=2,2

This command enables two Virtual Functions on each of Physical Function of the NIC, with two physical
ports in the PCI configuration space. It is important to note that enabled Virtual Function 0 and 2 would
belong to Physical Function 0 and Virtual Function 1 and 3 would belong to Physical Function 1, in this
case enabling a total of four Virtual Functions.

18.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the 12 fwd sub-directory.

18.3 Running the Application

The application requires a number of command line options:

./build/12fwd [EAL options] -- -p PORTMASK [-q NQ] --[no-]mac-updating
where,

* p PORTMASK: A hexadecimal bitmask of the ports to configure

* g NQ: A number of queues (=ports) per Icore (default is 1)

* —[no-Jmac-updating: Enable or disable MAC addresses updating (enabled by default).

To run the application in linux environment with 4 Icores, 16 ports and 8 RX queues per Icore and MAC
address updating enabled, issue the command:

$./build/12fwd -1 0-3 -n 4 —— —-q 8 -p ffff

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

18.4 Explanation

The following sections provide some explanation of the code.

18.4.1 Command Line Arguments

The L2 Forwarding sample application takes specific parameters, in addition to Environment Abstraction
Layer (EAL) arguments. The preferred way to parse parameters is to use the getopt() function, since it
is part of a well-defined and portable library.

The parsing of arguments is done in the 12fwd_parse_args() function. The method of argument parsing
is not described here. Refer to the glibc getopt(3) man page for details.

EAL arguments are parsed first, then application-specific arguments. This is done at the beginning of
the main() function:

18.2. Compiling the Application 89

Sample Applications User Guides, Release 20.02.1

/* init EAL #*/

ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Invalid EAL arguments\n");

argc —= ret;
argv += ret;

/* parse application arguments (after the EAL ones) x/

ret = 12fwd_parse_args (argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Invalid L2FWD arguments\n");

18.4.2 Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created. The mbuf pool contains a set of mbuf objects
that will be used by the driver and the application to store network packet data:

/+* create the mbuf pool #*/

12fwd_pktmbuf_pool = rte_pktmbuf_pool_create ("mbuf_ pool", NB_MBUF,
MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_ BUF_SIZE,
rte_socket_id());

if (12fwd_pktmbuf_pool == NULL)
rte_panic("Cannot init mbuf pool\n");

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is necessary to
create a pool that will be used by the driver. The number of allocated pkt mbufs is NB_MBUF, with
a data room size of RTE_MBUF_DEFAULT_BUF_SIZE each. A per-Icore cache of 32 mbufs is kept.
The memory is allocated in NUMA socket 0, but it is possible to extend this code to allocate one mbuf
pool per socket.

The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf initializers, respectively
rte_pktmbuf_pool_init() and rte_pktmbuf_init(). An advanced application may want to use the mempool
API to create the mbuf pool with more control.

18.4.3 Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully
understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the
DPDK Programmer’s Guide - Rel 1.4 EAR and the DPDK API Reference.

if (rte_pci_probe() < 0)
rte_exit (EXIT_FAILURE, "Cannot probe PCI\n");

/+ reset 12fwd _dst_ports =*/

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
12fwd_dst_ports[portid] = 0;

last_port = 0;
J/ *

* Each logical core 1is assigned a dedicated TX queue on each port.

*/

18.4. Explanation 90

Sample Applications User Guides, Release 20.02.1

RTE_ETH_FOREACH_DEV (portid) {

}

/# skip ports that are not enabled */

if ((l12fwd_enabled_port_mask & (1 << portid)) ==
continue;
if (nb_ports_in_mask % 2) {
12fwd_dst_ports[portid] = last_port;
12fwd_dst_ports[last_port] = portid;
}
else
last_port = portid;

nb_ports_in_mask++;

rte_eth_dev_info_get ((uint8_t) portid, &dev_info);

Observe that:

* rte_igb_pmd_init_all() simultaneously registers the driver as a PCI driver and as an Ethernet* Poll
Mode Driver.

* rte_pci_probe() parses the devices on the PCI bus and initializes recognized devices.

The next step is to configure the RX and TX queues. For each port, there is only one RX queue (only
one Icore is able to poll a given port). The number of TX queues depends on the number of available

Icores. The rte_eth_dev_configure() function is used to configure the number of queues for a port:

ret
if

= rte_eth_dev_configure ((uint8_t)portid, 1, 1, &port_conf);

(ret < 0)

rte_exit (EXIT_FAILURE, "Cannot configure device:
"err=%d, port=%u\n",
ret, portid);

18.4.4 RX Queue Initialization

The application uses one Icore to poll one or several ports, depending on the -q option, which specifies
the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one Icore. If there
are 16 ports on the target (and if the portmask argument is -p ffff), the application will need four lcores
to poll all the ports.

ret
if

= rte_eth_rx_qgueue_setup((uint8_t) portid, 0, nb_rxd,

(ret < 0)

rte_exit (EXIT_FAILURE, "rte_eth_ rx_queue_setup:
"err=%d, port=%u\n",
ret, portid);

n

SOCKETO,

&rx_conf,

12fwd_pktmbuf_poo]

The list of queues that must be polled for a given Icore is stored in a private structure called struct
Icore_queue_conf.

struct lcore_gueue_conf {

unsigned n_rx_port;
unsigned rx_port_list[MAX RX_QUEUE_PER_LCORE];
struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];

} rte_cache_aligned;

struct lcore_qgueue_conf lcore_queue_conf [RTE_MAX_LCORE];

18.4. Explanation

91

Sample Applications User Guides, Release 20.02.1

The values n_rx_port and rx_port_list[] are used in the main packet processing loop (see Receive, Pro-

cess and Transmit Packets).

18.4.5 TX Queue Initialization

Each Icore should be able to transmit on any port. For every port, a single TX queue is initialized.

/% 1init one TX queue on each port x/

fflush (stdout) ;

ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_cc

if (ret < 0)
rte_exit (EXIT_FAILURE, "rte_eth_ tx queue_setup:err=%d, port=%u\n", ret,

The global configuration for TX queues is stored in a static structure:

static const struct rte_eth_txconf tx_conf = {
.tx_thresh = {
.pthresh = TX_PTHRESH,
.hthresh = TX_HTHRESH,
.wthresh = TX_WTHRESH,
}I
.tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /x disable feature #+/
bi

18.4.6 Receive, Process and Transmit Packets

(unsigned)

In the 12fwd_main_loop() function, the main task is to read ingress packets from the RX queues. This is

done using the following code:

/ *
* Read packet from RX queues
*/
for (i = 0; 1 < gconf->n_rx_port; i++) {

portid = gconf->rx_port_list([i];
nb_rx = rte_eth_rx_burst ((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST)

for (j = 0; J < nb_rx; j++) {
m = pkts_burst[j];

’

rte_prefetchO[rte_pktmbuf_mtod(m, void «)); l1l2fwd_simple_forward(m, portid);

}

Packets are read in a burst of size MAX_PKT_BURST. The rte_eth_rx_burst() function writes the
pointers in a local table and returns the number of available mbufs in the table.

mbuf

Then, each mbuf in the table is processed by the 12fwd_simple_forward() function. The processing

is very simple: process the TX port from the RX port, then replace the source and destination
addresses if MAC addresses updating is enabled.

MAC

Note: In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (12fwd_dst_ports[]) is filled such that
for each source port, a destination port is assigned that is either the next or previous enabled port from

18.4. Explanation

92

portid);

Sample Applications User Guides, Release 20.02.1

the portmask. Naturally, the number of ports in the portmask must be even, otherwise, the application
exits.
static void

12fwd_simple_forward(struct rte_mbuf *m, unsigned portid)

{
struct rte_ether_hdr =xeth;
void xtmp;
unsigned dst_port;

dst_port = 12fwd_dst_ports[portid];

eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr »);

/* 02:00:00:00:00:xx */

tmp = ð->d_addr.addr_bytes[0];

*((uint64_t «)tmp) = 0x000000000002 + ((uinté64_t) dst_port << 40);
/+ src addr =/

rte_ether_addr_copy (&12fwd_ports_eth_addr[dst_port], ð->s_addr);

12fwd_send_packet (m, (uint8_t) dst_port);
}

Then, the packet is sent using the 12fwd_send_packet (m, dst_port) function. For this test application,
the processing is exactly the same for all packets arriving on the same RX port. Therefore, it would
have been possible to call the 12fwd_send_burst() function directly from the main loop to send all the
received packets on the same TX port, using the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded on the
same port as packet N-1. The application is implemented to illustrate that, so the same approach can be
reused in a more complex application.

The 12fwd_send_packet() function stores the packet in a per-lcore and per-txport table. If the table is
full, the whole packets table is transmitted using the 12fwd_send_burst() function:

/+ Send the packet on an output interface */

static int
12fwd_send_packet (struct rte_mbuf »m, uintlé6_t port)
{

unsigned lcore_id, len;

struct lcore_qgueue_conf =xgconf;

lcore_id = rte_lcore_id();

gconf = &lcore_queue_conf[lcore_id];
len = gconf->tx_mbufs[port].len;
qgconf->tx_mbufs[port].m_table[len] = m;
len++;

/% enough pkts to be sent #*/
if (unlikely(len == MAX_PKT_BURST)) {

12fwd_send_burst (gconf, MAX_PKT_BURST, port);
len = 0;

gconf->tx_mbufs[port].len = len; return 0;

18.4. Explanation 93

Sample Applications User Guides, Release 20.02.1

To ensure that no packets remain in the tables, each Icore does a draining of TX queue in its main loop.
This technique introduces some latency when there are not many packets to send, however it improves

performance:
cur_tsc = rte_rdtsc();
/ *
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;

if (unlikely(diff_tsc > drain_tsc)) {

for (portid = 0; portid < RTE_MAX ETHPORTS; portid++) {

if (gconf->tx_mbufs[portid].len == 0)
continue;

12fwd_send_burst (&lcore_qgueue_conf[lcore_id],

gconf->tx_mbufs[portid].len = 0;

/* 1f timer 1is enabled =/

if (timer_period > 0) {
/* advance the timer %/

timer_tsc += diff_tsc;

/* 1f timer has reached its timeout =*/

gconf->tx_mbufs[portid].len,

if (unlikely(timer_tsc >= (uint64_t) timer_period)) {

/% do this only on master core #*/

if (lcore_id == rte_get_master_lcore()) {

print_stats();

/* reset the timer =/
timer_tsc = 0;

prev_tsc = cur_tsc;

18.4. Explanation

94

(uint8_t) pc

CHAPTER
NINETEEN

L2 FORWARDING EVENTDEV SAMPLE APPLICATION

The L2 Forwarding eventdev sample application is a simple example of packet processing using the Data
Plane Development Kit (DPDK) to demonstrate usage of poll and event mode packet I/O mechanism.

19.1 Overview

The L2 Forwarding eventdev sample application, performs L2 forwarding for each packet that is received
on an RX_PORT. The destination port is the adjacent port from the enabled portmask, that is, if the first
four ports are enabled (portmask=0x0f), ports 1 and 2 forward into each other, and ports 3 and 4 forward
into each other. Also, if MAC addresses updating is enabled, the MAC addresses are affected as follows:

* The source MAC address is replaced by the TX_PORT MAC address

* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID
Application receives packets from RX_PORT using below mentioned methods:

* Poll mode

¢ Eventdev mode (default)

This application can be used to benchmark performance using a traffic-generator, as shown in the Fig.
19.1.

19.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the 12 fwd—event sub-directory.

19.3 Running the Application

The application requires a number of command line options:

./build/12fwd-event [EAL options] —- —-p PORTMASK [-g NQ] --[no-]mac-updating --mode=MODE —-ever
where,

* p PORTMASK: A hexadecimal bitmask of the ports to configure

* g NQ: A number of queues (=ports) per Icore (default is 1)

* —[no-Jmac-updating: Enable or disable MAC addresses updating (enabled by default).

95

Sample Applications User Guides, Release 20.02.1

Op————Flow0 > pt------= 0
< < 1 i
] [}
]]
]]
p———— Flow 1 > -
1 - 4 ----- . 1
2 Flow 2 > N I—
< < a1 2
] [}
]]
]]
Flow 3 > >t - !
3|« «— §---- 43
Traffic NUT
Generator (RTE)

Fig. 19.1: Performance Benchmark Setup (Basic Environment)

* —_mode=MODE: Packet transfer mode for I/O, poll or eventdev. Eventdev by default.

» —eventq-sched=SCHED_MODE: Event queue schedule mode, Ordered, Atomic or Parallel.
Atomic by default.

Sample usage commands are given below to run the application into different mode:

Poll mode with 4 Icores, 16 ports and 8 RX queues per lcore and MAC address updating enabled, issue
the command:

./build/12fwd-event -1 0-3 -n 4 —— -g 8 -p ffff --mode=poll

Eventdev mode with 4 Icores, 16 ports , sched method ordered and MAC address updating enabled, issue
the command:

./build/12fwd-event -1 0-3 -n 4 —-- -p ffff --eventg-sched=ordered

or

./build/12fwd-event -1 0-3 -n 4 —— -g 8 -p ffff —--mode=eventdev --eventg-sched=ordered

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

To run application with S/W scheduler, it uses following DPDK services:
* Software scheduler
* Rx adapter service function
* Tx adapter service function

Application needs service cores to run above mentioned services. Service cores must be provided as
EAL parameters along with the —vdev=event_sw0 to enable S/W scheduler. Following is the sample

19.3. Running the Application 96

Sample Applications User Guides, Release 20.02.1

command:

./build/12fwd-event -1 0-7 -s 0-3 -n 4 —--vdev event_swO0 —— -q 8 —-p ffff —--mode=eventdev -—event

19.4 Explanation

The following sections provide some explanation of the code.

19.4.1 Command Line Arguments

The L2 Forwarding eventdev sample application takes specific parameters, in addition to Environment
Abstraction Layer (EAL) arguments. The preferred way to parse parameters is to use the getopt() func-
tion, since it is part of a well-defined and portable library.

The parsing of arguments is done in the 12fwd_parse_args() function for non eventdev parameters and
in parse_eventdev_args() for eventdev parameters. The method of argument parsing is not described
here. Refer to the glibc getopt(3) man page for details.

EAL arguments are parsed first, then application-specific arguments. This is done at the beginning of
the main() function and eventdev parameters are parsed in eventdev_resource_setup() function during
eventdev setup:

/* init EAL #*/

ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_panic("Invalid EAL arguments\n");

argc —= ret;
argv += ret;

/* parse application arguments (after the EAL ones) x/

ret = 12fwd_parse_args (argc, argv);
if (ret < 0)
rte_panic("Invalid L2FWD arguments\n");

/% Parse eventdev command line options #*/
ret = parse_eventdev_args(argc, argv);
if (ret < 0)

return ret;

19.4.2 Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created. The mbuf pool contains a set of mbuf objects
that will be used by the driver and the application to store network packet data:

/* create the mbuf pool #*/

12fwd_pktmbuf_pool = rte_pktmbuf_pool_create ("mbuf_ pool", NB_MBUF,
MEMPOOL_CACHE_SIZE, O,
RTE_MBUF_DEFAULT_BUF_SIZE,
rte_socket_id());

19.4. Explanation 97

Sample Applications User Guides, Release 20.02.1

if (12fwd_pktmbuf_pool == NULL)
rte_panic("Cannot init mbuf pool\n");

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is necessary to
create a pool that will be used by the driver. The number of allocated pkt mbufs is NB_MBUF, with
a data room size of RTE_MBUF_DEFAULT_BUF_SIZE each. A per-Icore cache of 32 mbufs is kept.
The memory is allocated in NUMA socket 0, but it is possible to extend this code to allocate one mbuf
pool per socket.

The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf initializers, respectively
rte_pktmbuf_pool_init() and rte_pktmbuf_init(). An advanced application may want to use the mempool
API to create the mbuf pool with more control.

19.4.3 Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully
understand this code, it is recommended to study the chapters that related to the Poll Mode and Event
mode Driver in the DPDK Programmer’s Guide - Rel 1.4 EAR and the DPDK API Reference.

if (rte_pci_probe() < 0)
rte_panic ("Cannot probe PCI\n");

/+ reset 12fwd _dst_ports =*/

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
12fwd_dst_ports[portid] = 0;

last_port = 0;
/ *
* Each logical core is assigned a dedicated TX queue on each port.

*/

RTE_ETH_FOREACH_DEV (portid) {
/% skip ports that are not enabled */

if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
continue;

if (nb_ports_in_mask % 2) {

12fwd_dst_ports[portid] = last_port;
12fwd_dst_ports[last_port] = portid;
}
else
last_port portid;

nb_ports_in_mask++;

rte_eth_dev_info_get ((uint8_t) portid, &dev_info);
}

Observe that:
* rte_pci_probe() parses the devices on the PCI bus and initializes recognized devices.

The next step is to configure the RX and TX queues. For each port, there is only one RX queue (only
one Icore is able to poll a given port). The number of TX queues depends on the number of available
Icores. The rte_eth_dev_configure() function is used to configure the number of queues for a port:

ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
if (ret < 0)

19.4. Explanation 98

Sample Applications User Guides, Release 20.02.1

rte_panic ("Cannot configure device: err=%d, port=%u\n",
ret, portid);

19.4.4 RX Queue Initialization

The application uses one Icore to poll one or several ports, depending on the -q option, which specifies
the number of queues per Icore.

For example, if the user specifies -q 4, the application is able to poll four ports with one Icore. If there
are 16 ports on the target (and if the portmask argument is -p ftff), the application will need four lcores
to poll all the ports.

ret = rte_eth_rx_qgqueue_setup((uint8_t) portid, 0, nb_rxd, SOCKETO,
&rx_conf, 12fwd_pktmbuf_pool);
if (ret < 0)

rte_panic("rte_eth_rx_queue_setup: err=%d, port=%ul\n",
ret, portid);

The list of queues that must be polled for a given lcore is stored in a private structure called struct
Icore_queue_conf.

struct lcore_queue_conf {
unsigned n_rx_port;
unsigned rx_port_list[MAX_ RX_QUEUE_PER_LCORE];
struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];

} rte_cache_aligned;

struct lcore_queue_conf lcore_qgqueue_conf [RTE_MAX_LCORE];

The values n_rx_port and rx_port_list[] are used in the main packet processing loop (see Receive, Pro-
cess and Transmit Packets).

19.4.5 TX Queue Initialization

Each Icore should be able to transmit on any port. For every port, a single TX queue is initialized.

/#* 1init one TX queue on each port */
fflush (stdout) ;

ret = rte_eth_tx_qgqueue_setup((uint8_t) portid, 0, nb_txd,
rte_eth_dev_socket_id(portid), &tx_conf);
if (ret < 0)
rte_panic("rte_eth_tx_queue_setup:err=%d, port=%u\n",
ret, (unsigned) portid);
To configure eventdev support, application setups following components:
e Event dev
* Event queue
* Event Port
* Rx/Tx adapters

* Ethernet ports

19.4. Explanation 99

Sample Applications User Guides, Release 20.02.1

19.4.6 Event device Initialization

Application can use either H/W or S/W based event device scheduler implementation and supports single
instance of event device. It configures event device as per below configuration

struct rte_event_dev_config event_d_conf = {
.nb_event_qgqueues = ethdev_count, /#* Dedicated to each Ethernet port */
.nb_event_ports = num_workers, /x Dedicated to each lcore x/
.nb_events_limit = 4096,
.nb_event_queue_flows = 1024,
.nb_event_port_dequeue_depth = 128,
.nb_event_port_enqueue_depth = 128

}i

ret = rte_event_dev_configure (event_d_id, &event_d_conf);

if (ret < 0)
rte_panic ("Error in configuring event device\n");

In case of S/W scheduler, application runs eventdev scheduler service on service core. Application
retrieves service id and finds the best possible service core to run S/W scheduler.

rte_event_dev_info_get (evt_rsrc->event_d_id, &evdev_info);
if (evdev_info.event_dev_cap & RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED) {

ret = rte_event_dev_service_id_get (evt_rsrc->event_d_id,
&service_id);
if (ret != -ESRCH && ret != 0)

rte_panic ("Error in starting eventdev service\n");
12fwd_event_service_enable (service_id);

19.4.7 Event queue Initialization

Each Ethernet device is assigned a dedicated event queue which will be linked to all available event ports
i.e. each Icore can dequeue packets from any of the Ethernet ports.

struct rte_event_queue_conf event_g _conf = {
.nb_atomic_flows = 1024,
.nb_atomic_order_sequences = 1024,
.event_queue_cfg = 0,
.schedule_type = RTE_SCHED_TYPE_ATOMIC,
.priority = RTE_EVENT_DEV_PRIORITY_HIGHEST
}i

/+ User requested sched mode #*/
event_qg_conf.schedule_type = eventqg_sched_mode;
for (event_g_id = 0; event_g id < ethdev_count; event_qg_id++) {
ret = rte_event_queue_setup(event_d_id, event_qg_id,
&event_qg_conf);
if (ret < 0)
rte_panic("Error in configuring event queue\n");

}

In case of S/W scheduler, an extra event queue is created which will be used for Tx adapter service
function for enqueue operation.

19.4.8 Event port Initialization

Each worker thread is assigned a dedicated event port for eng/deq operations to/from an event device.
All event ports are linked with all available event queues.

19.4. Explanation 100

Sample Applications User Guides, Release 20.02.1

struct rte_event_port_conf event_p_conf = {
.dequeue_depth = 32,
.enqueue_depth = 32,
.new_event_threshold = 4096

bi

for (event_p_id = 0; event_p_id < num_workers; event_p_id++) {
ret = rte_event_port_setup(event_d_id, event_p_id,
&event_p_conf);
if (ret < 0)
rte_panic ("Error in configuring event port %d\n", event_p_id);

ret = rte_event_port_link (event_d_id, event_p_id, NULL,
NULL, O0);
if (ret < 0)
rte_panic ("Error in linking event port %d to queue\n",
event_p_1id);
}

In case of S/W scheduler, an extra event port is created by DPDK library which is retrieved by the
application and same will be used by Tx adapter service.
ret = rte_event_eth_tx_adapter_event_port_get (tx_adptr_id, &tx_port_id);

if (ret)
rte_panic("Failed to get Tx adapter port id: %d\n", ret);

ret = rte_event_port_link (event_d_id, tx_port_id,
&evt_rsrc.evqg.event_qg_id][
evt_rsrc.evg.nb_queues - 1],
NULL, 1);
if (ret '= 1)

rte_panic ("Unable to link Tx adapter port to Tx queue:err=%d\n",
ret);

19.4.9 Rx/Tx adapter Initialization

Each Ethernet port is assigned a dedicated Rx/Tx adapter for H/W scheduler. Each Ethernet port’s Rx
queues are connected to its respective event queue at priority O via Rx adapter configuration and Ethernet
port’s tx queues are connected via Tx adapter.

RTE_ETH_FOREACH_DEV (port_id) {

if ((rsrc-—>enabled_port_mask & (1 << port_id)) == 0)
continue;
ret = rte_event_eth_rx_adapter_create (adapter_id, event_d_id,

&evt_rsrc—>def_p_conf);
if (ret)
rte_panic("Failed to create rx adapter[%d]\n",
adapter_id);

/+ Configure user requested sched typex/
eth_g _conf.ev.sched_type = rsrc->sched_type;
eth_qg _conf.ev.queue_id = evt_rsrc->evqg.event_qg_id[qg_id];
ret = rte_event_eth_rx_adapter_gueue_add(adapter_id, port_id,
-1, ð_qg_conf);
if (ret)
rte_panic("Failed to add queues to Rx adapter\n");

ret = rte_event_eth_rx_adapter_start (adapter_id);
if (ret)

rte_panic ("Rx adapter[%d] start Failed\n", adapter_id);

evt_rsrc->rx_adptr.rx_adptr[adapter_id] = adapter_id;

19.4. Explanation 101

Sample Applications User Guides, Release 20.02.1

adapter_id++;
if (g_id < evt_rsrc->evqg.nb_queues)
g_id++;

adapter_id = 0;
RTE_ETH_FOREACH_DEV (port_id) {

if ((rsrc—->enabled_port_mask & (1 << port_id)) == 0)
continue;
ret = rte_event_eth_tx_adapter_create (adapter_id, event_d_id,

&evt_rsrc->def_p_conf);
if (ret)
rte_panic("Failed to create tx adapter[%d]\n",
adapter_id);

ret = rte_event_eth_tx_adapter_qgqueue_add (adapter_id, port_id,
-1);
if (ret)
rte_panic("Failed to add queues to Tx adapter\n");

ret = rte_event_eth_tx_adapter_start (adapter_id);
if (ret)
rte_panic("Tx adapter[%d] start Failed\n", adapter_id);

evt_rsrc->tx_adptr.tx_adptr[adapter_id] = adapter_id;
adapter_id++;
}

For S/W scheduler instead of dedicated adapters, common Rx/Tx adapters are configured which will be
shared among all the Ethernet ports. Also DPDK library need service cores to run internal services for
Rx/Tx adapters. Application gets service id for Rx/Tx adapters and after successful setup it runs the
services on dedicated service cores.

for (i = 0; 1 < evt_rsrc—->rx_adptr.nb_rx_adptr; i++) {
ret = rte_event_eth_rx_adapter_caps_get (evt_rsrc->event_d_id,
evt_rsrc->rx_adptr.rx_adptr([i], &caps);

if (ret < 0)
rte_panic("Failed to get Rx adapter[%d] caps\n",
evt_rsrc->rx_adptr.rx_adptr([i]);
ret = rte_event_eth_rx_adapter_service_id_get (
evt_rsrc->event_d_id,
&service_id) ;
if (ret != -ESRCH && ret != 0)
rte_panic("Error in starting Rx adapter([%d] service\n",
evt_rsrc->rx_adptr.rx_adptr([i]);
12fwd_event_service_enable (service_id);

for (i = 0; 1 < evt_rsrc—>tx_adptr.nb_tx_adptr; i++) {
ret = rte_event_eth_tx_adapter_caps_get (evt_rsrc->event_d_id,
evt_rsrc—>tx_adptr.tx_adptr([i], &caps);

if (ret < 0)
rte_panic("Failed to get Rx adapter[%d] caps\n",
evt_rsrc—>tx_adptr.tx_adptr([i]);
ret = rte_event_eth_tx_adapter_service_id_get (
evt_rsrc->event_d_id,
&service_id);
if (ret != -ESRCH && ret != 0)
rte_panic("Error in starting Rx adapter[%d] service\n",
evt_rsrc—>tx_adptr.tx_adptr([i]);
12fwd_event_service_enable (service_id);

19.4. Explanation 102

Sample Applications User Guides, Release 20.02.1

19.4.10 Receive, Process and Transmit Packets

In the 12fwd_main_loop() function, the main task is to read ingress packets from the RX queues. This
is done using the following code:

/%
* Read packet from RX queues
*/
for (i = 0; 1 < gconf->n_rx_port; i++) {

portid = gconf->rx_port_list[i];
nb_rx = rte_eth_rx_burst ((uint8_t) portid, 0, pkts_burst,
MAX_PKT_BURST) ;

for (jJ = 0; Jj < nb_rx; Jj++) {
m = pkts_burst[j];
rte_prefetchO (rte_pktmbuf_mtod(m, wvoid =*));
12fwd_simple_forward(m, portid);

}

Packets are read in a burst of size MAX_PKT_BURST. The rte_eth_rx_burst() function writes the mbuf
pointers in a local table and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the 12fwd_simple_forward() function. The processing
is very simple: process the TX port from the RX port, then replace the source and destination MAC
addresses if MAC addresses updating is enabled.

During the initialization process, a static array of destination ports (12fwd_dst_ports[]) is filled such that
for each source port, a destination port is assigned that is either the next or previous enabled port from
the portmask. If number of ports are odd in portmask then packet from last port will be forwarded to
first port i.e. if portmask=0x07, then forwarding will take place like p0—>p1, pl—>p2, p2—>p0.

Also to optimize enqueue operation, 12fwd_simple_forward() stores incoming mbufs up to
MAX_PKT_BURST. Once it reaches up to limit, all packets are transmitted to destination ports.

static void
12fwd_simple_forward(struct rte_mbuf *m, uint32_t portid)
{

uint32_t dst_port;

int32_t sent;

struct rte_eth_dev_tx_buffer *buffer;

dst_port = 12fwd_dst_ports[portid];

if (mac_updating)
12fwd_mac_updating(m, dst_port);

buffer = tx_buffer[dst_port];

sent = rte_eth_tx_buffer (dst_port, 0, buffer, m);
if (sent)

port_statistics[dst_port].tx += sent;

}

For this test application, the processing is exactly the same for all packets arriving on the same RX port.
Therefore, it would have been possible to call the rte_eth_tx_buffer() function directly from the main
loop to send all the received packets on the same TX port, using the burst-oriented send function, which
is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded on the
same port as packet N-1. The application is implemented to illustrate that, so the same approach can be

19.4. Explanation 103

Sample Applications User Guides, Release 20.02.1

reused in a more complex application.

To ensure that no packets remain in the tables, each Icore does a draining of TX queue in its main loop.
This technique introduces some latency when there are not many packets to send, however it improves
performance:

cur_tsc = rte_rdtsc();
J/ *
* TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
for (i = 0; i1 < gconf->n_rx_port; i++) {

portid = 12fwd_dst_ports|[gconf->rx_port_list[i]];
buffer = tx_buffer[portid];
sent = rte_eth_tx_buffer_flush(portid, O,
buffer);
if (sent)
port_statistics[portid].tx += sent;

/% 1f timer 1s enabled =/

if (timer_period > 0) {
/% advance the timer =/
timer_tsc += diff_tsc;

/% 1f timer has reached its timeout x/

if (unlikely(timer_tsc >= timer_period)) {
/+ do this only on master core */
if (lcore_id == rte_get_master_lcore()) {

print_stats();
/+ reset the timer x/
timer_tsc = 0;

prev_tsc = cur_tsc;

}

In the 12fwd_event_loop() function, the main task is to read ingress packets from the event ports. This
is done using the following code:
/% Read packet from eventdev #*/

nb_rx = rte_event_dequeue_burst (event_d_id, event_p_id,
events, deqg_len, 0);

if (nb_rx == 0) {
rte_pause () ;
continue;

}

for (i = 0; i < nb_rx; i++) {
mbuf[i] = events[i].mbuf;

rte_prefetchO (rte_pktmbuf_mtod (mbuf[i], wvoid x));
}

Before reading packets, deq_len is fetched to ensure correct allowed deq length by the eventdev. The
rte_event_dequeue_burst() function writes the mbuf pointers in a local table and returns the number of
available mbufs in the table.

Then, each mbuf in the table is processed by the 12fwd_eventdev_forward() function. The processing
is very simple: process the TX port from the RX port, then replace the source and destination MAC

19.4. Explanation 104

Sample Applications User Guides, Release 20.02.1

addresses if MAC addresses updating is enabled.

During the initialization process, a static array of destination ports (12fwd_dst_ports[]) is filled such that
for each source port, a destination port is assigned that is either the next or previous enabled port from
the portmask. If number of ports are odd in portmask then packet from last port will be forwarded to
first port i.e. if portmask=0x07, then forwarding will take place like p0—>p1, pl—>p2, p2—>p0.

[2fwd_eventdev_forward() does not stores incoming mbufs. Packet will forwarded be to destination
ports via Tx adapter or generic event dev enqueue API depending H/W or S/W scheduler is used.

nb_tx = rte_event_eth_tx_adapter_enqueue (event_d_id, port_id, ev,
nb_rx);
while (nb_tx < nb_rx && !rsrc->force_qguit)
nb_tx += rte_event_eth_tx_adapter_enqueue (
event_d_id, port_id,
ev + nb_tx, nb_rx - nb_tx);

19.4. Explanation 105

CHAPTER
TWENTY

L2 FORWARDING SAMPLE APPLICATION WITH CACHE
ALLOCATION TECHNOLOGY (CAT)

Basic Forwarding sample application is a simple skelefon example of a forwarding application. It has
been extended to make use of CAT via extended command line options and linking against the libpqos
library.

It is intended as a demonstration of the basic components of a DPDK forwarding application and use of
the libpqos library to program CAT. For more detailed implementations see the L2 and L3 forwarding
sample applications.

CAT and Code Data Prioritization (CDP) features allow management of the CPU’s last level cache. CAT
introduces classes of service (COS) that are essentially bitmasks. In current CAT implementations, a bit
in a COS bitmask corresponds to one cache way in last level cache. A CPU core is always assigned to
one of the CAT classes. By programming CPU core assignment and COS bitmasks, applications can be
given exclusive, shared, or mixed access to the CPU’s last level cache. CDP extends CAT so that there
are two bitmasks per COS, one for data and one for code. The number of classes and number of valid
bits in a COS bitmask is CPU model specific and COS bitmasks need to be contiguous. Sample code
calls this bitmask cbm or capacity bitmask. By default, after reset, all CPU cores are assigned to COS 0
and all classes are programmed to allow fill into all cache ways. CDP is off by default.

For more information about CAT please see:
* https://github.com/0O1org/intel-cmt-cat
White paper demonstrating example use case:

* Increasing Platform Determinism with Platform Quality of Service for the Data Plane Develop-
ment Kit

20.1 Compiling the Application

Note: Requires 1ibpgos from Intel’s intel-cmt-cat software package hosted on GitHub repository.
For installation notes, please see README file.

GIT:

* https://github.com/01org/intel-cmt-cat

1. To compile the application export the path to PQoS lib and the DPDK source tree and go to the
example directory:

export PQOS_INSTALL_PATH=/path/to/libpgos

106

https://github.com/01org/intel-cmt-cat
http://www.intel.com/content/www/us/en/communications/increasing-platform-determinism-pqos-dpdk-white-paper.html
http://www.intel.com/content/www/us/en/communications/increasing-platform-determinism-pqos-dpdk-white-paper.html
https://github.com/01org/intel-cmt-cat
https://github.com/01org/intel-cmt-cat

Sample Applications User Guides, Release 20.02.1

To compile the sample application see Compiling the Sample Applications.

The application is located in the 12 fwd-cat sub-directory.

20.2 Running the Application

To run the example in a 1 inux environment and enable CAT on cpus 0-2:

./build/12fwd-cat -1 1 -n 4 -—— —--13ca="0x3@(0-2)"

or to enable CAT and CDP on cpus 1,3:

./build/12fwd-cat -1 1 -n 4 -- --13ca="(0x00C00,0x00300)@(1,3)"

If CDP is not supported it will fail with following error message:

PQOS: CDP requested but not supported.
PQOS: Requested CAT configuration is not wvalid!
PQOS: Shutting down PQoS library...
EAL: Error - exiting with code: 1
Cause: PQOS: L3CA init failed!

The option to enable CAT is:
¢ ——13ca="'<common_cbm@cpus>[, < (code_cbm,data_cbm) @cpus>...]":
where cbm stands for capacity bitmask and must be expressed in hexadecimal form.

common_ cbm is a single mask, for a CDP enabled system, a group of two masks (code_cbm
and data_ cbm) is used.

(and) are necessary if it’s a group.
cpus could be a single digit/range or a group and must be expressed in decimal form.
(and) are necessary if it’s a group.

e.g. ——13ca='0x00F00@(1,3),0x0FF00@Q (4-6), 0xF0000@7"

cpus 1 and 3 share its 4 ways with cpus 4, 5 and 6;

cpus 4, 5 and 6 share half (4 out of 8 ways) of its L3 with cpus 1 and 3;

cpus 4, 5 and 6 have exclusive access to 4 out of 8 ways;

cpu 7 has exclusive access to all of its 4 ways;
e.g. ——13ca="' (0x00C00, 0x00300) @ (1, 3) ' for CDP enabled system

— cpus 1 and 3 have access to 2 ways for code and 2 ways for data, code and data ways are not
overlapping.

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

To reset or list CAT configuration and control CDP please use pgos tool from Intel’s intel-cmt-cat
software package.

To enabled or disable CDP:

sudo ./pgos —S cdp-on

sudo ./pgos —-S cdp-off

20.2. Running the Application 107

https://github.com/01org/intel-cmt-cat
https://github.com/01org/intel-cmt-cat

Sample Applications User Guides, Release 20.02.1

to reset CAT configuration:
sudo ./pgos -R
to list CAT config:

sudo ./pgos -s

For more info about pgos tool please see its man page or intel-cmt-cat wiki.

20.3 Explanation

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte__ and are explained in detail
in the DPDK API Documentation.

20.3.1 The Main Function

The main () function performs the initialization and calls the execution threads for each Icore.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv arguments
are provided tothe rte_eal_init () function. The value returned is the number of parsed arguments:
int ret = rte_eal_init (argc, argv);

if (ret < 0)
rte_exit (EXIT_FAILURE, "Error with EAL initialization\n");

The next task is to initialize the PQoS library and configure CAT. The argc and argv arguments are
provided to the cat_init () function. The value returned is the number of parsed arguments:
int ret = cat_init (argc, argv);

if (ret < 0)
rte_exit (EXIT_FAILURE, "PQOS: L3CA init failed!\n");

cat_init () is a wrapper function which parses the command, validates the requested parameters and
configures CAT accordingly.

Parsing of command line arguments is done in parse_args (. . .). libpqos is then initialized with the
pgos_init (...) call. Next, libpqos is queried for system CPU information and L3CA capabilities
via pgos_cap_get (...) and pgos_cap_get_type(...,PQOS_CAP_TYPE_L3CA,...)

calls. When all capability and topology information is collected, the requested CAT configuration is
validated. A check is then performed (on per socket basis) for a sufficient number of un-associated COS.

COS are selected and configured via the pgos_13ca_set (.. .) call. Finally, COS are associated to
relevant CPUs via pgos_13ca_assoc_set (...) calls.

atexit (...) is used to register cat_exit (...) to be called on a clean exit.
cat_exit (...) performs a simple CAT clean-up, by associating COS 0 to all involved CPUs via
pgos_l3ca_assoc_set (...) calls.

20.3. Explanation 108

https://github.com/01org/intel-cmt-cat/wiki

CHAPTER
TWENTYONE

L3 FORWARDING SAMPLE APPLICATION

The L3 Forwarding application is a simple example of packet processing using DPDK to demonstrate
usage of poll and event mode packet I/O mechanism. The application performs L3 forwarding.

21.1 Overview

The application demonstrates the use of the hash and LPM libraries in the DPDK to implement packet
forwarding using poll or event mode PMDs for packet I/0. The initialization and run-time paths are very
similar to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments) and
L2 Forwarding Eventdev Sample Application. The main difference from the L2 Forwarding sample ap-
plication is that optionally packet can be Rx/Tx from/to eventdev instead of port directly and forwarding
decision is made based on information read from the input packet.

Eventdev can optionally use S/W or H/W (if supported by platform) scheduler implementation for packet
I/O based on run time parameters.

The lookup method is either hash-based or LPM-based and is selected at run time. When the selected
lookup method is hash-based, a hash object is used to emulate the flow classification stage. The hash
object is used in correlation with a flow table to map each input packet to its flow at runtime.

The hash lookup key is represented by a DiffServ 5-tuple composed of the following fields read from the
input packet: Source IP Address, Destination IP Address, Protocol, Source Port and Destination Port.
The ID of the output interface for the input packet is read from the identified flow table entry. The set
of flows used by the application is statically configured and loaded into the hash at initialization time.
When the selected lookup method is LPM based, an LPM object is used to emulate the forwarding stage
for IPv4 packets. The LPM object is used as the routing table to identify the next hop for each input
packet at runtime.

The LPM lookup key is represented by the Destination IP Address field read from the input packet.
The ID of the output interface for the input packet is the next hop returned by the LPM lookup. The
set of LPM rules used by the application is statically configured and loaded into the LPM object at
initialization time.

In the sample application, hash-based forwarding supports IPv4 and IPv6. LPM-based forwarding sup-
ports IPv4 only.

21.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the 13 fwd sub-directory.

109

Sample Applications User Guides, Release 20.02.1

21.3 Running the Application

The application has a number of command line options:

./13fwd [EAL options] —-- —-p PORTMASK

[-P]

[-E]

[-L]
--config(port, queue, lcore) [, (port, queue, lcore)]
[-—eth-dest=X,MM:MM:MM:MM: MM :MM]
[-—enable-jumbo [--max-pkt-len PKTLEN]]
[-—no—-numa]

[-—hash-entry—-num]

[-—ipv6]

[--parse-ptype]

[-—per—-port—-pool]

[-—mode]

[-—eventg-sched]

[-—event—-eth-rxgs]

Where,

-p PORTMASK: Hexadecimal bitmask of ports to configure

—P: Optional, sets all ports to promiscuous mode so that packets are accepted regardless of the
packet’s Ethernet MAC destination address. Without this option, only packets with the Ethernet
MAC destination address set to the Ethernet address of the port are accepted.

—E: Optional, enable exact match.
-L: Optional, enable longest prefix match.

-—-config (port, queue, lcore) [, (port,queue, lcore)]: Determines which
queues from which ports are mapped to which cores.

—-—eth-dest=X,MM:MM:MM:MM:MM: MM: Optional, ethernet destination for port X.
——enable-jumbo: Optional, enables jumbo frames.

—-—max-pkt-len: Optional, under the premise of enabling jumbo, maximum packet length in
decimal (64-9600).

——no—numa: Optional, disables numa awareness.
—-—hash-entry-num: Optional, specifies the hash entry number in hexadecimal to be setup.
—-—ipv6: Optional, set if running ipv6 packets.

——parse—-ptype: Optional, set to use software to analyze packet type. Without this option,
hardware will check the packet type.

—-—per-port-pool: Optional, set to use independent buffer pools per port. Without this op-
tion, single buffer pool is used for all ports.

—-mode : Optional, Packet transfer mode for I/O, poll or eventdev.

—-—eventg-sched: Optional, Event queue synchronization method, Ordered, Atomic or Par-
allel. Only valid if -mode=eventdev.

-—event—eth-rxgs: Optional, Number of ethernet RX queues per device. Only valid if
—mode=eventdev.

21.3.

Running the Application 110

Sample Applications User Guides, Release 20.02.1

For example, consider a dual processor socket platform with 8 physical cores, where cores 0-7 and 16-23
appear on socket 0, while cores 8-15 and 24-31 appear on socket 1.

To enable L3 forwarding between two ports, assuming that both ports are in the same socket, using two
cores, cores 1 and 2, (which are in the same socket too), use the following command:

./build/13fwd -1 1,2 -n 4 —— -p 0x3 —-—config="(0,0,1), (1,0,2)"
In this command:

* The -1 option enables cores 1, 2

* The -p option enables ports 0 and 1

* The —config option enables one queue on each port and maps each (port,queue) pair to a specific
core. The following table shows the mapping in this example:

Port | Queue | Icore | Description
0 0 1 Map queue O from port O to Icore 1.

1 0 2 Map queue O from port 1 to Icore 2.

To use eventdev mode with sync method ordered on above mentioned environment, Following is the
sample command:

./build/13fwd -1 0-3 -n 4 -w <event device> -- -p 0x3 —--eventg-sched=ordered

or

./build/13fwd -1 0-3 -n 4 -w <event device> —-- -p 0x03 —--mode=eventdev --eventg-sched=ordered
In this command:

* -w option whitelist the event device supported by platform. Way to pass this device may vary
based on platform.

* The —mode option defines PMD to be used for packet 1/O.

* The —eventg-sched option enables synchronization menthod of event queue so that packets will be
scheduled accordingly.

If application uses S/W scheduler, it uses following DPDK services:
* Software scheduler
* Rx adapter service function
* Tx adapter service function

Application needs service cores to run above mentioned services. Service cores must be provided as
EAL parameters along with the —vdev=event_sw0 to enable S/W scheduler. Following is the sample
command:

./build/13fwd -1 0-7 —-s 0xf0000 -n 4 --vdev event_sw0 ——- —-p 0x3 —--mode=eventdev —--eventg-sched-

In case of eventdev mode, —config option is not used for ethernet port configuration. Instead each ethernet
port will be configured with mentioned setup:

* Single Rx/Tx queue
* Each Rx queue will be connected to event queue via Rx adapter.
* Each Tx queue will be connected via Tx adapter.

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

21.3. Running the Application 111

Sample Applications User Guides, Release 20.02.1

21.4 Explanation

The following sections provide some explanation of the sample application code. As mentioned in
the overview section, the initialization and run-time paths are very similar to those of the L2 Forward-
ing Sample Application (in Real and Virtualized Environments) and L2 Forwarding Eventdev Sample
Application. The following sections describe aspects that are specific to the L3 Forwarding sample
application.

21.4.1 Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array, and then
generate the expected 5-tuple as key to keep consistence with those of real flow for the convenience to
execute hash performance test on 4M/8M/16M flows.

Note: The Hash initialization will setup both ipv4 and ipv6 hash table, and populate the either table
depending on the value of variable ipv6. To support the hash performance test with up to 8M single
direction flows/16M bi-direction flows, populate_ipv4_many_flow_into_table() function will populate
the hash table with specified hash table entry number(default 4M).

Note: Value of global variable ipv6 can be specified with —ipv6 in the command line. Value of global
variable hash_entry_number, which is used to specify the total hash entry number for all used ports
in hash performance test, can be specified with —hash-entry-num VALUE in command line, being its
default value 4.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT MATCH)

static void
setup_hash (int socketid)
{

S/
if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
if (ipve == 0) {
/* populate the ipv4 hash */
populate_ipv4_many_flow_into_table (ipv4_13fwd_lookup_struct [socketid],
} else {
/* populate the ipvé hash */
populate_ipv6_many_flow_into_table(ipv6_13fwd_lookup_struct [socketid],
}
} else

if (ipve == 0) {
/* populate the ipv4 hash */

populate_ipv4d_few_flow_into_table (ipv4_13fwd_lookup_struct[socketid]);

} else {
/* populate the ipvé hash */

populate_ipv6e_few_flow_into_table (ipv6_13fwd_lookup_struct[socketid]);

}
#endif

21.4. Explanation 112

hash_ent

hash_er

Sample Applications User Guides, Release 20.02.1

21.4.2 LPM Initialization

The LPM object is created and loaded with the pre-configured entries read from a global array.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)

static void
setup_lpm (int socketid)
{

unsigned i;

int ret;

char s[64];

/+ create the LPM table x*/
snprintf (s, sizeof(s), "IPV4_ L3FWD_LPM %d", socketid);
ipv4_13fwd_lookup_struct [socketid] = rte_lpm create (s, socketid, IPV4_L3FWD_LPM_MAX_ RULES,

if (ipv4_13fwd_lookup_struct[socketid] == NULL)
rte_exit (EXIT_FAILURE, "Unable to create the 13fwd LPM table"
" on socket %d\n", socketid);

/% populate the LPM table »*/

for (i = 0; i < IPVA4_L3FWD_NUM ROUTES; i++) |
/% skip unused ports x*/

0)

if ((1 << ipv4_13fwd_route_array[i].if_out & enabled_port_mask) =
continue;

ret = rte_lpm_add(ipv4_13fwd_lookup_struct[socketid], ipv4_13fwd_route_arrayl[i].ip,
ipv4_13fwd_route_array[i] .depth, ipv4_13fwd_route_array[i].if_c

if (ret < 0) {
rte_exit (EXIT_FAILURE, "Unable to add entry %u to the "
"13fwd LPM table on socket %d\n", i, socketid);
}

printf ("LPM: Adding route 0x%08x / %d (%d)\n",
(unsigned) ipv4_13fwd_route_array[i].ip, ipv4_13fwd_route_array[i].depth, ipv4_13fwc

#endif

21.4.3 Packet Forwarding for Hash-based Lookups

For each input packet, the packet forwarding operation is done by the 13fwd_simple_forward() or sim-
ple_ipv4_fwd_4pkts() function for IPv4 packets or the simple_ipv6_fwd_4pkts() function for IPv6
packets. The 13fwd_simple_forward() function provides the basic functionality for both IPv4 and
IPv6 packet forwarding for any number of burst packets received, and the packet forwarding decision
(that is, the identification of the output interface for the packet) for hash-based lookups is done by the
get_ipv4_dst_port() or get_ipv6_dst_port() function. The get_ipv4_dst_port() function is shown below:

static inline uint8_t

get_1ipv4_dst_port (void *ipv4_hdr, uintlé6_t portid, lookup_struct_t =+ipv4_13fwd_lookup_struct)

{ int ret = 0;

union ipv4_5tuple_host key;

ipv4_hdr = (uint8_t «)ipv4_hdr + offsetof (struct rte_ipv4_hdr, time_to_live);

21.4. Explanation 113

Sample Applications User Guides, Release 20.02.1

ml28i data = _mm_loadu_sil28((ml28ix) (ipv4_hdr));

/* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol x/
key.xmm = _mm_and_sil28 (data, maskO);

/#* Find destination port =/

ret = rte_hash_lookup (ipv4_13fwd_lookup_struct, (const wvoid «)&key);

return (uint8_t) ((ret < 0)? portid : ipv4_13fwd_out_if[ret]);
}

The get_ipv6_dst_port() function is similar to the get_ipv4_dst_port() function.

The simple_ipv4_fwd_4pkts() and simple_ipv6_fwd_4pkts() function are optimized for continuous
4 valid ipv4 and ipv6 packets, they leverage the multiple buffer optimization to boost the perfor-
mance of forwarding packets with the exact match on hash table. The key code snippet of sim-
ple_ipv4_fwd_4pkts() is shown below:

static inline void

simple_ipv4_fwd_4pkts (struct rte_mbuf+ m[4], uintl6é_t portid, struct lcore_conf xgconf)
{

VAR

datal[0] = _mm_loadu_sil28((ml28ix) (rte_pktmbuf_mtod(m[0], unsigned char) + sizeof (struct
datal[l] = _mm_loadu_sil128((ml28ix*) (rte_pktmbuf_mtod(m[l], unsigned char) + sizeof (struct
datal2] = _mm_loadu_sil28((ml28ix) (rte_pktmbuf_mtod(m[2], unsigned char) + sizeof (struct
datal[3] = _mm_loadu_sil28((ml28ix) (rte_pktmbuf_mtod(m[3], unsigned char) + sizeof (struct
key[0] .xmm = _mm_and_sil28(datal[0], maskO);

key[1l].xmm = _mm_and_sil28(data[l], maskO0);

key[2] .xmm = _mm_and_sil28(datal[2], maskO);

key[3].xmm = _mm_and_sil28(data[3], mask0);

const void xkey_arrayl[4] = {&key[0], &key[1l], &key[2],&key[3]1};

rte_hash_lookup_bulk (gqconf->ipv4_lookup_struct, &key_array[0], 4, ret);

dst_port[0] (ret [0] < 0)? portid:ipv4_13fwd_out_if[ret[0]];
dst_port[1l] = (ret[l] < 0)? portid:ipv4_13fwd _out_1if[ret[1l]];
dst_port[2] = (ret[2] < 0)? portid:ipv4_13fwd_out_if[ret[2]];
dst_port[3] = (ret[3] < 0)? portid:ipv4_13fwd_out_if[ret[3]];
/S

}
The simple_ipv6_fwd_4pkts() function is similar to the simple_ipv4_fwd_4pkts() function.

Known issue: IP packets with extensions or IP packets which are not TCP/UDP cannot work well at this
mode.

21.4.4 Packet Forwarding for LPM-based Lookups

For each input packet, the packet forwarding operation is done by the 13fwd_simple_forward() function,
but the packet forwarding decision (that is, the identification of the output interface for the packet) for
LPM-based lookups is done by the get_ipv4_dst_port() function below:

static inline uintlé_t
get_ipv4_dst_port (struct rte_ipv4_hdr xipv4_hdr, uintl6_t portid, lookup_struct_t *ipv4_13fwd_]

21.4. Explanation 114

Sample Applications User Guides, Release 20.02.1

uint8_t next_hop;

return ((rte_lpm_lookup (ipv4_13fwd_lookup_struct, rte_be_to_cpu_32 (ipv4_hdr->dst_addr), &ne

21.4.5 Eventdev Driver Initialization

Eventdev driver initialization is same as L2 forwarding eventdev application. Refer L2 Forwarding
Eventdev Sample Application for more details.

21.4. Explanation 115

CHAPTER
TWENTYTWO

L3 FORWARDING WITH POWER MANAGEMENT SAMPLE
APPLICATION

22.1 Introduction

The L3 Forwarding with Power Management application is an example of power-aware packet process-
ing using the DPDK. The application is based on existing L3 Forwarding sample application, with the
power management algorithms to control the P-states and C-states of the Intel processor via a power
management library.

22.2 Overview

The application demonstrates the use of the Power libraries in the DPDK to implement packet for-
warding. The initialization and run-time paths are very similar to those of the L3 Forwarding Sample
Application. The main difference from the L3 Forwarding sample application is that this application
introduces power-aware optimization algorithms by leveraging the Power library to control P-state and
C-state of processor based on packet load.

The DPDK includes poll-mode drivers to configure Intel NIC devices and their receive (Rx) and transmit
(Tx) queues. The design principle of this PMD is to access the Rx and Tx descriptors directly without
any interrupts to quickly receive, process and deliver packets in the user space.

In general, the DPDK executes an endless packet processing loop on dedicated IA cores that include the
following steps:

* Retrieve input packets through the PMD to poll Rx queue

* Process each received packet or provide received packets to other processing cores through soft-
ware queues

* Send pending output packets to Tx queue through the PMD

In this way, the PMD achieves better performance than a traditional interrupt-mode driver, at the cost
of keeping cores active and running at the highest frequency, hence consuming the maximum power all
the time. However, during the period of processing light network traffic, which happens regularly in
communication infrastructure systems due to well-known “tidal effect”, the PMD is still busy waiting
for network packets, which wastes a lot of power.

Processor performance states (P-states) are the capability of an Intel processor to switch between differ-
ent supported operating frequencies and voltages. If configured correctly, according to system workload,
this feature provides power savings. CPUFreq is the infrastructure provided by the Linux* kernel to con-
trol the processor performance state capability. CPUFreq supports a user space governor that enables
setting frequency via manipulating the virtual file device from a user space application. The Power

116

Sample Applications User Guides, Release 20.02.1

library in the DPDK provides a set of APIs for manipulating a virtual file device to allow user space
application to set the CPUFreq governor and set the frequency of specific cores.

This application includes a P-state power management algorithm to generate a frequency hint to be sent
to CPUFreq. The algorithm uses the number of received and available Rx packets on recent polls to
make a heuristic decision to scale frequency up/down. Specifically, some thresholds are checked to see
whether a specific core running an DPDK polling thread needs to increase frequency a step up based on
the near to full trend of polled Rx queues. Also, it decreases frequency a step if packet processed per
loop is far less than the expected threshold or the thread’s sleeping time exceeds a threshold.

C-States are also known as sleep states. They allow software to put an Intel core into a low power idle
state from which it is possible to exit via an event, such as an interrupt. However, there is a tradeoff
between the power consumed in the idle state and the time required to wake up from the idle state (exit
latency). Therefore, as you go into deeper C-states, the power consumed is lower but the exit latency is
increased. Each C-state has a target residency. It is essential that when entering into a C-state, the core
remains in this C-state for at least as long as the target residency in order to fully realize the benefits of
entering the C-state. CPUlIdle is the infrastructure provide by the Linux kernel to control the processor
C-state capability. Unlike CPUFreq, CPUIdle does not provide a mechanism that allows the application
to change C-state. It actually has its own heuristic algorithms in kernel space to select target C-state to
enter by executing privileged instructions like HLT and MWAIT, based on the speculative sleep duration
of the core. In this application, we introduce a heuristic algorithm that allows packet processing cores
to sleep for a short period if there is no Rx packet received on recent polls. In this way, CPUldle
automatically forces the corresponding cores to enter deeper C-states instead of always running to the
CO state waiting for packets.

Note: To fully demonstrate the power saving capability of using C-states, it is recommended to enable
deeper C3 and C6 states in the BIOS during system boot up.

22.3 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the 13 fwd-power sub-directory.

22.4 Running the Application

The application has a number of command line options:

./build/13fwd_power [EAL options] -- —-p PORTMASK [-P] --config(port, queue, lcore) [, (port, queue,
where,

* -p PORTMASK: Hexadecimal bitmask of ports to configure

* -P: Sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s
Ethernet MAC destination address. Without this option, only packets with the Ethernet MAC
destination address set to the Ethernet address of the port are accepted.

» —config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which ports are
mapped to which cores.

* —enable-jumbo: optional, enables jumbo frames

22.3. Compiling the Application 117

Sample Applications User Guides, Release 20.02.1

* —max-pkt-len: optional, maximum packet length in decimal (64-9600)
* —no-numa: optional, disables numa awareness

* —empty-poll: Traffic Aware power management. See below for details
* —telemetry: Telemetry mode.

See L3 Forwarding Sample Application for details. The L3fwd-power example reuses the L3fwd com-
mand line options.

22.5 Explanation

The following sections provide some explanation of the sample application code. As mentioned in
the overview section, the initialization and run-time paths are identical to those of the L3 forwarding
application. The following sections describe aspects that are specific to the L3 Forwarding with Power
Management sample application.

22.5.1 Power Library Initialization

The Power library is initialized in the main routine. It changes the P-state governor to userspace for
specific cores that are under control. The Timer library is also initialized and several timers are created
later on, responsible for checking if it needs to scale down frequency at run time by checking CPU
utilization statistics.

Note: Only the power management related initialization is shown.

int main(int argc, char xxargv)
{
struct lcore_conf xqgconf;
int ret;
unsigned nb_ports;
uintlé6_t queueid, portid;
unsigned lcore_id;
uint64_t hz;
uint32_t n_tx_queue, nb_lcores;
uint8_t nb_rx_queue, queue, socketid;

/S
/#* init RTE timer library to be used to initialize per—core timers */
rte_timer_subsystem_init ();

V2

/#* per—core initialization */
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;

/* 1init power management library for a specified core */

ret = rte_power_init (lcore_id);

22.5. Explanation 118

Sample Applications User Guides, Release 20.02.1

if (ret)
rte_exit (EXIT_FAILURE, "Power management library "
"initialization failed on core%d\n", lcore_id);
/% 1init timer structures for each enabled lcore #*/

rte_timer_init (&power_timers[lcore_id]);

hz = rte_get_hpet_hz();

rte_timer_reset (¢power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND, SINGLE,

VY2

V2

22.5.2 Monitoring Loads of Rx Queues

In general, the polling nature of the DPDK prevents the OS power management subsystem from knowing
if the network load is actually heavy or light. In this sample, sampling network load work is done by
monitoring received and available descriptors on NIC Rx queues in recent polls. Based on the number
of returned and available Rx descriptors, this example implements algorithms to generate frequency
scaling hints and speculative sleep duration, and use them to control P-state and C-state of processors
via the power management library. Frequency (P-state) control and sleep state (C-state) control work
individually for each logical core, and the combination of them contributes to a power efficient packet
processing solution when serving light network loads.

The rte_eth_rx_burst() function and the newly-added rte_eth_rx_queue_count() function are used in the
endless packet processing loop to return the number of received and available Rx descriptors. And those
numbers of specific queue are passed to P-state and C-state heuristic algorithms to generate hints based
on recent network load trends.

Note: Only power control related code is shown.

static
attribute ((noreturn)) int main_loop(attribute ((unused)) wvoid xdummy)
{

VAR

while (1) {
VY2

J ok k
* Read packet from RX queues

*/

lcore_scaleup_hint = FREQ_CURRENT;

lcore_rx_idle_count = 0;
for (i = 0; i < gconf->n_rx_queue; ++1)
{
rx_queue = & (qconf->rx_queue_list[i]);
rx_queue->idle_hint = 0;
portid = rx_queue->port_id;
queueid = rx_gueue->queue_id;

22.5. Explanation 119

lcore_id,

Sample Applications User Guides, Release 20.02.1

nb_rx = rte_eth_rx_burst (portid, gqueueid, pkts_burst, MAX_PKT_BURST);
stats[lcore_id] .nb_rx_processed += nb_rx;

if (unlikely(nb_rx == 0)) {
VEZ:
* no packet received from rx queue, try to
* sleep for a while forcing CPU enter deeper
* C states.

*/
rx_queue—>zero_rx_packet_count++;

if (rx_queue->zero_rx_packet_count <= MIN_ZERO_POLL_COUNT)
continue;

rx_queue—>idle_hint = power_idle_heuristic (rx_queue->zero_rx_packet_count);
lcore_rx_idle_count++;

} else {
rx_ring_length = rte_eth_rx_gueue_count (portid, queueid);

rx_queue->zero_rx_packet_count = 0;

J ok k
* do not scale up frequency immediately as
* user to kernel space communication 1s costly
* which might impact packet I/0 for received
* packets.

*/

rx_queue->freqg up_hint = power_freq_scaleup_heuristic(lcore_id, rx_ring_length);

/+ Prefetch and forward packets #*/

//
}
if (likely(lcore_rx_idle_count != gconf->n_rx_queue)) {
for (i = 1, lcore_scaleup_hint = gconf->rx_queue_list[0].freq up_hint; 1 < gconf->n_rx_
x_queue = & (gqconf->rx_queue_list[i]);
if (rx_queue->freq_ up_hint > lcore_scaleup_hint)
lcore_scaleup_hint = rx_queue->freqg_up_hint;
}
if (lcore_scaleup_hint == FREQ_HIGHEST)
rte_power_freq max(lcore_id);
else if (lcore_scaleup_hint == FREQ_HIGHER)
rte_power_freq _up(lcore_id);
} else {
J ko

* All Rx queues empty in recent consecutive polls,
* sleep in a conservative manner, meaning sleep as
* less as possible.

*/

for (i = 1, lcore_idle_hint = gconf->rx_qgqueue_list[0].idle_hint; i < gconf->n_rx_qu
rx_queue = & (qconf->rx_queue_list[i]);
if (rx_queue->idle_hint < lcore_idle_hint)

22.5. Explanation 120

Sample Applications User Guides, Release 20.02.1

lcore_idle_hint = rx_queue->idle_hint;

}

if (lcore_idle_hint < SLEEP_GEAR1_THRESHOLD)

J ok k
* execute "pause" instruction to avoid context
* switch for short sleep.
*/
rte_delay_us (lcore_idle_hint);
else

/+ long sleep force ruining thread to suspend #*/
usleep (lcore_idle_hint);

stats[lcore_id].sleep_time += lcore_idle_hint;

22.5.3 P-State Heuristic Algorithm

The power_freq_scaleup_heuristic() function is responsible for generating a frequency hint for the spec-
ified logical core according to available descriptor number returned from rte_eth_rx_queue_count(). On
every poll for new packets, the length of available descriptor on an Rx queue is evaluated, and the
algorithm used for frequency hinting is as follows:

* If the size of available descriptors exceeds 96, the maximum frequency is hinted.

* If the size of available descriptors exceeds 64, a trend counter is incremented by 100.

If the length of the ring exceeds 32, the trend counter is incremented by 1.

* When the trend counter reached 10000 the frequency hint is changed to the next higher frequency.

Note: The assumption is that the Rx queue size is 128 and the thresholds specified above must
be adjusted accordingly based on actual hardware Rx queue size, which are configured via the
rte_eth_rx_queue_setup() function.

In general, a thread needs to poll packets from multiple Rx queues. Most likely, different queue have
different load, so they would return different frequency hints. The algorithm evaluates all the hints and
then scales up frequency in an aggressive manner by scaling up to highest frequency as long as one Rx
queue requires. In this way, we can minimize any negative performance impact.

On the other hand, frequency scaling down is controlled in the timer callback function. Specifically, if
the sleep times of a logical core indicate that it is sleeping more than 25% of the sampling period, or if
the average packet per iteration is less than expectation, the frequency is decreased by one step.

22.5.4 C-State Heuristic Algorithm

Whenever recent rte_eth_rx_burst() polls return 5 consecutive zero packets, an idle counter begins in-
crementing for each successive zero poll. At the same time, the function power_idle_heuristic() is called
to generate speculative sleep duration in order to force logical to enter deeper sleeping C-state. There
is no way to control C- state directly, and the CPUIdle subsystem in OS is intelligent enough to select
C-state to enter based on actual sleep period time of giving logical core. The algorithm has the following
sleeping behavior depending on the idle counter:

22.5. Explanation 121

Sample Applications User Guides, Release 20.02.1

 If idle count less than 100, the counter value is used as a microsecond sleep value through
rte_delay_us() which execute pause instructions to avoid costly context switch but saving power
at the same time.

* If idle count is between 100 and 999, a fixed sleep interval of 100 us is used. A 100 us sleep
interval allows the core to enter the C1 state while keeping a fast response time in case new traffic
arrives.

« Ifidle count is greater than 1000, a fixed sleep value of 1 ms is used until the next timer expiration
is used. This allows the core to enter the C3/C6 states.

Note: The thresholds specified above need to be adjusted for different Intel processors and traffic
profiles.

If a thread polls multiple Rx queues and different queue returns different sleep duration values, the
algorithm controls the sleep time in a conservative manner by sleeping for the least possible time in
order to avoid a potential performance impact.

22.6 Empty Poll Mode

Additionally, there is a traffic aware mode of operation called “Empty Poll” where the number of empty
polls can be monitored to keep track of how busy the application is. Empty poll mode can be enabled by
the command line option —empty-poll.

See Power Management chapter in the DPDK Programmer’s Guide for empty poll mode details.

./13fwd-power -1 xxx -n 4 -w 0000:xx:00.0 -w 0000:xx:00.1 -- -p O0x3 -P —--config="(0,0,xx), |
Where,
—empty-poll: Enable the empty poll mode instead of original algorithm
—empty-poll="training_flag, med_threshold, high_threshold”

* training_flag : optional, enable/disable training mode. Default value is 0. If the train-
ing_flag is set as 1(true), then the application will start in training mode and print out the trained
threshold values. If the training_flag is set as O(false), the application will start in normal mode,
and will use either the default thresholds or those supplied on the command line. The trained
threshold values are specific to the user’s system, may give a better power profile when compared
to the default threshold values.

* med_threshold : optional, sets the empty poll threshold of a modestly busy system state. If
this is not supplied, the application will apply the default value of 350000.

* high_threshold : optional, sets the empty poll threshold of a busy system state. If this is not
supplied, the application will apply the default value of 580000.

* -1 : optional, set up the LOW power state frequency index
* -m : optional, set up the MED power state frequency index

* -h: optional, set up the HIGH power state frequency index

22.6. Empty Poll Mode 122

Sample Applications User Guides, Release 20.02.1

22.6.1 Empty Poll Mode Example Usage

To initially obtain the ideal thresholds for the system, the training mode should be run first. This is
achieved by running the 13fwd-power app with the training flag set to “1”, and the other parameters set
to 0.

./examples/13fwd-power/build/13fwd-power -1 1-3 -— -p 0x0f --config="(0,0,2), (0,1,3)" ——empty-t

This will run the training algorithm for x seconds on each core (cores 2 and 3), and then print out the
recommended threshold values for those cores. The thresholds should be very similar for each core.

POWER: Bring up the Timer

POWER: set the power freqg to MED
POWER: Low threshold is 230277
POWER: MED threshold is 335071
POWER: HIGH threshold is 523769
POWER: Training is Complete for 2
POWER: set the power freqg to MED
POWER: Low threshold is 236814
POWER: MED threshold is 344567
POWER: HIGH threshold is 538580
POWER: Training is Complete for 3

Once the values have been measured for a particular system, the app can then be started without the
training mode so traffic can start immediately.

./examples/13fwd-power/build/13fwd-power -1 1-3 -- -p 0x0f --config="(0,0,2),(0,1,3)" ——empty-t

22.7 Telemetry Mode

The telemetry mode support for 13fwd-power is a standalone mode, in this mode 13fwd-power
does simple 13fwding along with calculating empty polls, full polls, and busy percentage for each for-
warding core. The aggregation of these values of all cores is reported as application level telemetry to
metric library for every 500ms from the master core.

The busy percentage is calculated by recording the poll_count and when the count reaches a defined
value the total cycles it took is measured and compared with minimum and maximum reference cycles
and accordingly busy rate is set to either 0% or 50% or 100%.

Note:
* The CONFIG_RTE_LIBRTE_TELEMETRY should be set in order to get the stats in
DPDK telemetry.
./examples/13fwd-power/build/13fwd-power --telemetry -1 1-3 -- -p 0x0f --config="(0,0,2), (0,1, 2

The new stats empty_poll , full_poll and busy_percent can be viewed by running the
script /usertools/dpdk-telemetry—-client.py and selecting the menu option Send for
global Metrics.

22.7. Telemetry Mode 123

CHAPTER
TWENTYTHREE

L3 FORWARDING WITH ACCESS CONTROL SAMPLE
APPLICATION

The L3 Forwarding with Access Control application is a simple example of packet processing using the
DPDK. The application performs a security check on received packets. Packets that are in the Access
Control List (ACL), which is loaded during initialization, are dropped. Others are forwarded to the
correct port.

23.1 Overview

The application demonstrates the use of the ACL library in the DPDK to implement access control and
packet L3 forwarding. The application loads two types of rules at initialization:

* Route information rules, which are used for L3 forwarding
* Access Control List (ACL) rules that blacklist (or block) packets with a specific characteristic

When packets are received from a port, the application extracts the necessary information from the
TCP/IP header of the received packet and performs a lookup in the rule database to figure out whether
the packets should be dropped (in the ACL range) or forwarded to desired ports. The initialization
and run-time paths are similar to those of the L3 Forwarding Sample Application. However, there are
significant differences in the two applications. For example, the original L3 forwarding application uses
either LPM or an exact match algorithm to perform forwarding port lookup, while this application uses
the ACL library to perform both ACL and route entry lookup. The following sections provide more
detail.

Classification for both IPv4 and IPv6 packets is supported in this application. The application also
assumes that all the packets it processes are TCP/UDP packets and always extracts source/destination
port information from the packets.

23.1.1 Tuple Packet Syntax

The application implements packet classification for the IPv4/IPv6 5-tuple syntax specifically. The 5-
tuple syntax consist of a source IP address, a destination IP address, a source port, a destination port and
a protocol identifier. The fields in the 5-tuple syntax have the following formats:

¢ Source IP address and destination IP address : Each is either a 32-bit field (for IPv4), or a set
of 4 32-bit fields (for IPv6) represented by a value and a mask length. For example, an IPv4 range
of 192.168.1.0 to 192.168.1.255 could be represented by a value = [192, 168, 1, 0] and a mask
length = 24.

124

Sample Applications User Guides, Release 20.02.1

* Source port and destination port : Each is a 16-bit field, represented by a lower start and a
higher end. For example, a range of ports 0 to 8192 could be represented by lower = 0 and higher
=8192.

* Protocol identifier : An 8-bit field, represented by a value and a mask, that covers a range of
values. To verify that a value is in the range, use the following expression: “(VAL & mask) ==
value”

The trick in how to represent a range with a mask and value is as follows. A range can be enumerated in
binary numbers with some bits that are never changed and some bits that are dynamically changed. Set
those bits that dynamically changed in mask and value with 0. Set those bits that never changed in the
mask with 1, in value with number expected. For example, a range of 6 to 7 is enumerated as Ob110 and
Ob111. Bit 1-7 are bits never changed and bit O is the bit dynamically changed. Therefore, set bit 0 in
mask and value with O, set bits 1-7 in mask with 1, and bits 1-7 in value with number Ob11. So, mask is
Oxfe, value is 0x6.

Note: The library assumes that each field in the rule is in LSB or Little Endian order when creating
the database. It internally converts them to MSB or Big Endian order. When performing a lookup, the
library assumes the input is in MSB or Big Endian order.

23.1.2 Access Rule Syntax

In this sample application, each rule is a combination of the following:
* 5-tuple field: This field has a format described in Section.

* priority field: A weight to measure the priority of the rules. The rule with the higher priority will
ALWAYS be returned if the specific input has multiple matches in the rule database. Rules with
lower priority will NEVER be returned in any cases.

* userdata field: A user-defined field that could be any value. It can be the forwarding port number
if the rule is a route table entry or it can be a pointer to a mapping address if the rule is used for
address mapping in the NAT application. The key point is that it is a useful reserved field for user
convenience.

23.1.3 ACL and Route Rules

The application needs to acquire ACL and route rules before it runs. Route rules are mandatory, while
ACL rules are optional. To simplify the complexity of the priority field for each rule, all ACL and
route entries are assumed to be in the same file. To read data from the specified file successfully, the
application assumes the following:

* Each rule occupies a single line.

* Only the following four rule line types are valid in this application:
* ACL rule line, which starts with a leading character ‘@’

* Route rule line, which starts with a leading character ‘R’

* Comment line, which starts with a leading character ‘#’

* Empty line, which consists of a space, form-feed (‘f*), newline (‘n’), carriage return (‘r’), hori-
zontal tab (‘t’), or vertical tab (‘v’).

23.1. Overview 125

Sample Applications User Guides, Release 20.02.1

Other lines types are considered invalid.

* Rules are organized in descending order of priority, which means rules at the head of the file
always have a higher priority than those further down in the file.

* A typical IPv4 ACL rule line should have a format as shown below:

Source Address Destination Address Source Port Dest Port Protocol
- - e = ~ A ™ .'_L"l f_A_‘l
@192.168.0.34/32 192.168.0.36/32 0: 65535 20: 20 6/0xfe

Fig. 23.1: A typical IPv4 ACL rule

IPv4 addresses are specified in CIDR format as specified in RFC 4632. They consist of the dot notation
for the address and a prefix length separated by ‘/’. For example, 192.168.0.34/32, where the address is
192.168.0.34 and the prefix length is 32.

Ports are specified as a range of 16-bit numbers in the format MIN:MAX, where MIN and MAX are the
inclusive minimum and maximum values of the range. The range 0:65535 represents all possible ports
in a range. When MIN and MAX are the same value, a single port is represented, for example, 20:20.

]

The protocol identifier is an 8-bit value and a mask separated by ‘/’.
protocol values 6 and 7.

For example: 6/0xfe matches

* Route rules start with a leading character ‘R’ and have the same format as ACL rules except an
extra field at the tail that indicates the forwarding port number.

23.1.4 Rules File Example

Source Address Destination Address Source Port Dest Port Protocol Fwed

A A A A
- = i ~ % A\l] N

@1.2.3.0/24 192.168.0.36/32 0: 65535 0: 65535 6/0xfe
R0.0.0.0/0 192.168.0.36/320:655350: 65535 6/0xfe 1
R0.0.0.0/0 0.0.0.0/0 0:655350:655350x0/0x0 O

Fig. 23.2: Rules example

Each rule is explained as follows:

* Rule 1 (the first line) tells the application to drop those packets with source IP address = [1.2.3.%],
destination IP address = [192.168.0.36], protocol = [6]/[7]

* Rule 2 (the second line) is similar to Rule 1, except the source IP address is ignored. It tells the
application to forward packets with destination IP address = [192.168.0.36], protocol = [6]/[7],
destined to port 1.

* Rule 3 (the third line) tells the application to forward all packets to port 0. This is something like
a default route entry.

As described earlier, the application assume rules are listed in descending order of priority, therefore
Rule 1 has the highest priority, then Rule 2, and finally, Rule 3 has the lowest priority.

Consider the arrival of the following three packets:

23.1. Overview 126

Sample Applications User Guides, Release 20.02.1

Packet 1 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and protocol
= [6]

Packet 2 has source IP address = [1.2.4.4], destination IP address = [192.168.0.36], and protocol
=[6]

Packet 3 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and protocol
=[8]

Observe that:

Packet 1 matches all of the rules
Packet 2 matches Rule 2 and Rule 3

Packet 3 only matches Rule 3

For priority reasons, Packet 1 matches Rule 1 and is dropped. Packet 2 matches Rule 2 and is forwarded
to port 1. Packet 3 matches Rule 3 and is forwarded to port 0.

For more details on the rule file format, please refer to rule_ipv4.db and rule_ipv6.db files (inside
<RTE_SDK>/examples/13fwd-acl/).

23.1.5 Application Phases

Once the application starts, it transitions through three phases:

Initialization Phase - Perform the following tasks:

Parse command parameters. Check the validity of rule file(s) name(s), number of logical cores,
receive and transmit queues. Bind ports, queues and logical cores. Check ACL search options,
and so on.

Call Environmental Abstraction Layer (EAL) and Poll Mode Driver (PMD) functions to initialize
the environment and detect possible NICs. The EAL creates several threads and sets affinity
to a specific hardware thread CPU based on the configuration specified by the command line
arguments.

Read the rule files and format the rules into the representation that the ACL library can recognize.
Call the ACL library function to add the rules into the database and compile them as a trie of
pattern sets. Note that application maintains a separate AC contexts for IPv4 and IPv6 rules.

Runtime Phase - Process the incoming packets from a port. Packets are processed in three steps:

— Retrieval: Gets a packet from the receive queue. Each logical core may process several
queues for different ports. This depends on the configuration specified by command line
arguments.

— Lookup: Checks that the packet type is supported (IPv4/IPv6) and performs a 5-tuple lookup
over corresponding AC context. If an ACL rule is matched, the packets will be dropped and
return back to step 1. If a route rule is matched, it indicates the packet is not in the ACL list
and should be forwarded. If there is no matches for the packet, then the packet is dropped.

— Forwarding: Forwards the packet to the corresponding port.
Final Phase - Perform the following tasks:

Calls the EAL, PMD driver and ACL library to free resource, then quits.

23.1.

Overview 127

Sample Applications User Guides, Release 20.02.1

23.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the 13fwd—acl sub-directory.

23.3 Running the Application

The application has a number of command line options:

./build/13fwd-acl [EAL options] -- -p PORTMASK [-P] --config(port,queue, lcore) [, (port, queue, lcc
where,
* -p PORTMASK: Hexadecimal bitmask of ports to configure

* -P: Sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s
Ethernet MAC destination address. Without this option, only packets with the Ethernet MAC
destination address set to the Ethernet address of the port are accepted.

* —config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which ports are
mapped to which cores

» —rule_ipv4 FILENAME: Specifies the IPv4 ACL and route rules file

* —rule_ipv6 FILENAME: Specifies the IPv6 ACL and route rules file

» —scalar: Use a scalar function to perform rule lookup

* —enable-jumbo: optional, enables jumbo frames

» —max-pkt-len: optional, maximum packet length in decimal (64-9600)
* —no-numa: optional, disables numa awareness

For example, consider a dual processor socket platform with 8 physical cores, where cores 0-7 and 16-23
appear on socket 0, while cores 8-15 and 24-31 appear on socket 1.

To enable L3 forwarding between two ports, assuming that both ports are in the same socket, using two
cores, cores 1 and 2, (which are in the same socket too), use the following command:

./build/13fwd-acl -1 1,2 -n 4 -— -p 0x3 —--config="(0,0,1),(1,0,2)" —--rule_ipv4d="./rule_ipv4.db'
In this command:

* The -1 option enables cores 1, 2

* The -p option enables ports 0 and 1

* The —config option enables one queue on each port and maps each (port,queue) pair to a specific
core. The following table shows the mapping in this example:

Port | Queue | Icore | Description
0 0 1 Map queue O from port O to Icore 1.
1 0 2 Map queue O from port 1 to Icore 2.

* The —rule_ipv4 option specifies the reading of IPv4 rules sets from the ./ rule_ipv4.db file.
* The —rule_ipv6 option specifies the reading of IPv6 rules sets from the ./ rule_ipv6.db file.

* The —scalar option specifies the performing of rule lookup with a scalar function.

23.2. Compiling the Application 128

Sample Applications User Guides, Release 20.02.1

23.4 Explanation

The following sections provide some explanation of the sample application code. The aspects of port,
device and CPU configuration are similar to those of the L3 Forwarding Sample Application. The
following sections describe aspects that are specific to L3 forwarding with access control.

23.4.1 Parse Rules from File

As described earlier, both ACL and route rules are assumed to be saved in the same file. The application
parses the rules from the file and adds them to the database by calling the ACL library function. It
ignores empty and comment lines, and parses and validates the rules it reads. If errors are detected, the
application exits with messages to identify the errors encountered.

The application needs to consider the userdata and priority fields. The ACL rules save the index to
the specific rules in the userdata field, while route rules save the forwarding port number. In order to
differentiate the two types of rules, ACL rules add a signature in the userdata field. As for the priority
field, the application assumes rules are organized in descending order of priority. Therefore, the code
only decreases the priority number with each rule it parses.

23.4.2 Setting Up the ACL Context

For each supported AC rule format (IPv4 5-tuple, IPv6 6-tuple) application creates a separate context
handler from the ACL library for each CPU socket on the board and adds parsed rules into that context.

Note, that for each supported rule type, application needs to calculate the expected offset of the fields
from the start of the packet. That’s why only packets with fixed IPv4/ IPv6 header are supported. That
allows to perform ACL classify straight over incoming packet buffer - no extra protocol field retrieval
need to be performed.

Subsequently, the application checks whether NUMA is enabled. If it is, the application records the
socket IDs of the CPU cores involved in the task.

Finally, the application creates contexts handler from the ACL library, adds rules parsed from the file
into the database and build an ACL trie. It is important to note that the application creates an independent
copy of each database for each socket CPU involved in the task to reduce the time for remote memory
access.

23.4. Explanation 129

CHAPTER
TWENTYFOUR

LINK STATUS INTERRUPT SAMPLE APPLICATION

The Link Status Interrupt sample application is a simple example of packet processing using the Data
Plane Development Kit (DPDK) that demonstrates how network link status changes for a network port
can be captured and used by a DPDK application.

24.1 Overview

The Link Status Interrupt sample application registers a user space callback for the link status interrupt
of each port and performs L2 forwarding for each packet that is received on an RX_PORT. The following
operations are performed:

* RX_PORT and TX_PORT are paired with available ports one-by-one according to the core mask
* The source MAC address is replaced by the TX_PORT MAC address
* The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to demonstrate the usage of link status interrupt and its user space callbacks
and the behavior of L2 forwarding each time the link status changes.

24.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the 1ink_status_interrupt sub-directory.

24.3 Running the Application

The application requires a number of command line options:

./build/link_status_interrupt [EAL options] -— —-p PORTMASK [-gq NQ] [-T PERIOD]
where,

* -p PORTMASK: A hexadecimal bitmask of the ports to configure

* -q NQ: A number of queues (=ports) per Icore (default is 1)

e -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default)

To run the application in a linux environment with 4 Icores, 4 memory channels, 16 ports and 8 RX
queues per lcore, issue the command:

130

Sample Applications User Guides, Release 20.02.1

$./build/link_status_interrupt -1 0-3 -n 4-- —-q 8 —-p ffff

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

24.4 Explanation

The following sections provide some explanation of the code.

24.4.1 Command Line Arguments

The Link Status Interrupt sample application takes specific parameters, in addition to Environment Ab-
straction Layer (EAL) arguments (see Section Running the Application).

Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application.
See Command Line Arguments for more information.

24.4.2 Mbuf Pool Initialization

Mbuf pool initialization