

DPDK Vhost/Virtio Performance Report

Release 17.08

Test Date: August 15th 2017 **Author**: Intel DPDK Validation team

Revision History

Date	Revision	Comment
August 15 th , 2017	1.0	Initial document for release

Contents

Audience and Purpose	4
Test setup:	4
Intel® Xeon® Processor E5-2680 v2 (25M Cache, 2.80 GHz)	7
Hardware & Software Ingredients	7
Test Case 1 – DPDK PVP RFC2544 zero packet loss test	9
Test Case 2 – DPDK VM2VM iperf performance test	. 10

Audience and Purpose

The primary audience for this test report are architects and engineers implementing the Data Plane Development Kit (DPDK). This report provides information on packet processing performance testing for the specified DPDK release on Intel® architecture. The initial report may be viewed as the baseline for future releases and provides system configuration and test cases based on DPDK examples.

The purpose of reporting these tests is not to imply a single "correct" approach, but rather to provide a baseline of well-tested configurations and procedures with reproducible results. This will help guide architects and engineers who are evaluating and implementing DPDK solutions on Intel® architecture and can assist in achieving optimal system performance.

Test setup:

The device under test (DUT) consists of a system with an Intel[®] architecture motherboard populated with the following;

- A single or dual processor and PCH chip, except for System on Chip (SoC) cases
- DRAM memory size and frequency (normally single DIMM per channel)
- Specific Intel Network Interface Cards (NICs)
- BIOS settings noting those that updated from the basic settings
- DPDK build configuration settings, and commands used for tests

Connected to the DUT is an IXIA*, a hardware test and simulation platform to generate packet traffic to the DUT ports and determine the throughput at the tester side. The IXIA is used to implement RFC2544 on the DUT.

Benchmarking a DPDK system requires knowledge of networking technologies including knowledge of network protocols and hands-on experience with relevant open-source software, such as Linux*, and the DPDK. Engineers also need benchmarking and debugging skills, as well as a good understanding of the device-under-test (DUT) across compute and networking domains.

DPDK Testpmd Test Case: Documentation may be found at http://www.dpdk.org/doc/guides/testpmd app ug/index.html.

The testpmd application can be used to test the DPDK in a packet forwarding mode and also to access NIC hardware features. Note in the Testpmd example if the –i argument is used, the first core is used for the command language interface (CLI).

RFC2544 Zero packet loss test case: Used to determine the DUT throughput as defined in RFC1242(https://www.ietf.org/rfc/rfc1242.txt). Note RFC6201 https://www.ietf.org/rfc/rfc1242.txt). Note RFC6201 https://www.ietf.org/rfc/rfc1242.txt). Note RFC6201 https://www.ietf.org/rfc/rfc1242.txt). Note RFC6201 https://www.ietf.org/rfc/rfc6201.txt has updated RFC2544 and RFC1242.Please check the link for more details. In this report, RFC2544 test uses DPDK testpmd as test application.

Procedure: Send a specific number of frames at a specific rate through the DUT and then count the frames that are transmitted by the DUT. If the count of offered frames is not equal to the count of

^{*} Other names and brands may be claimed as the property of others.

DPDK Performance Report Release 17.08

received frames, the rate of the offered stream is reduced and the test is rerun. The throughput is the fastest rate at which the count of test frames transmitted by the DUT is equal to the number of test frames sent to it by the test equipment.

DPDK Phy-VM-Phy(PVP) RFC2544 test case:

This test setup is shown in Figure 1. The traffic is generated by Ixia running RFC2544(IxNetwork* 8.12 with 0 packet loss, and the duration for each round is 60 seconds). The flow is one fixed flow. In this test setup, one port(40G) of Intel [®] Ethernet Converged Network Adapter XL710-QDA2 is used to inject traffic to Vhost/virtio. The case is to measure vhost/virtio system forwarding throughput, and the theoretical system forwarding throughput is 40 Gbps. Both Vhost and Virtio is DPDK polling mode driver. The flow is as below: IXIA \rightarrow NIC port0 \rightarrow Vhost-user0 \rightarrow Virtio \rightarrow Vhost-user0 \rightarrow NIC port0 \rightarrow IXIA.

Figure1. DPDK PVP test setup

DPDK Vhost VM to VM iperf test case:

This test setup is as shown in Figure 2. iperf is the TCP/UDP/SCTP network bandwidth measurement tool. Iperf performance test is widely used in the industry. In this case, Vhost is using DPDK polling mode driver, Virtio is using Linux kernel driver. The test case is to measure DPDK vhost PMD's capability for supporting the maximum TCP bandwidth with virtio-net device.

The flow is as below: virtio-net1 \rightarrow vhost-user0 \rightarrow vhost-user1 \rightarrow virtio-net2.

Figure2. DPDK VM2VM iperf test setup

Intel® Xeon® Processor E5-2699 v4 (55M Cache, 2.20 GHz)

Hardware & Software Ingredients

Item	Description	
Server Platform	Intel® Server Board S2600GZ	
	Intel® Server Board S2600GZ Family	
CPU	Intel(R) Xeon(R) CPU E5-2699 v4 (55M Cache, 2.20 GHz)	
	Number of cores 44, Number of threads 88.	
Memory	Total 128GB over 8 channels, DDR4 @2133 Mhz	
PCIe	1 x PCIe Gen3 x8	
NICs	Intel® Ethernet Converged Network Adapter XL710-QDA2 (2x40G)	
BIOS	SE5C610.86B.01.01.0016.033120161139	
Host Operating System	Ubuntu 16.04 LTS	
Host Linux kernel version	4.4.0-89-generic	
Host GCC version	gcc (Ubuntu 5.4.0-6ubuntu1~16.04.4) 5.4.0 20160609	
Host DPDK version	17.08	
Guest Operating System	Ubuntu 16.04 LTS	
Guest GCC version	gcc (Ubuntu 5.4.0-6ubuntu1~16.04.4) 5.4.0 20160609	
Guest DPDK version	17.08	
Guest Linux kernel version	4.4.0-62-generic	

Boot and BIOS settings

Thomas	Description	
Item	bugenagesz=16 bugenages=24 default bugenagesz=16 isolopus=1-40	
Host Boot Settings	intel iommu=on nohz full=1-40 rcu nocbs=1-40 iommu=pt	
	Note: nohz_full and rcu_nocbs is to disable Linux* kernel interrupts, and it's	
	important for zero-packet loss test. Generally, 1G huge pages are used for	
	performance test.	
VM Boot Settings	nugepagesz=2M nugepages=512 isoicpus=1-2 nonz_iui1=1-2 rcu_nocbs=1-2	
BIOS	CPU Power and Performance Policy < Performance >	
DIOS	CPU C-state Disabled	
	CPU P-state Disabled	
	Enhanced Intel® Speedstep® Tech Disabled	
	Turbo Boost Disabled	
Host Real Time		
Settinas	<pre>echo -1 > /proc/sys/kernel/sched_rt_period_us</pre>	
	<pre>echo -1 > /proc/sys/kernel/sched_rt_runtime_us</pre>	
	echo 10 > /proc/sys/vm/stat_interval	
	<pre>echo 0 > /proc/sys/kernel/watchdog_thresh</pre>	

	<pre># realtime setup host_isolcpus=22,23,25,26,27</pre>
	<pre># Disable watchdogs to reduce overhead echo 0 > /proc/sys/kernel/watchdog echo 0 > /proc/sys/kernel/nmi_watchdog</pre>
	<pre># Change RT priority of ksoftirqd and rcuc kernel threads on isolated CPUs i=0 for c in `echo \$host_isolcpus sed 's/,/ /g'` ; do tid=`pgrep -a ksoftirq grep "ksoftirqd/\${c}\$" cut -d ' ' -f 1`</pre>
	<pre>chrt -fp 2 \${tid} tid=`pgrep -a rcuc grep "rcuc/\${c}\$" cut -d ' ' -f 1` chrt -fp 3 \${tid} cpu[\$i]=\${c} i=`expr \$i + 1` done</pre>
	<pre># Change RT priority of rcub kernel threads for tid in `pgrep -a rcub cut -d ' ' -f 1` ; do chrt -fp 3 \${tid} done</pre>
	<pre># no interrupt will routed to the isolated CPUs for irq in /proc/irq/* ; do</pre>
VM Real Time Settings	<pre>set_irq_arrinity () { echo 0 > /proc/irq/\${1}/smp_affinity_list }</pre>
	<pre>echo 0 > /proc/sys/kernel/watchdog echo 0 > /proc/sys/kernel/nmi_watchdog</pre>
	<pre>for irq in `cat /proc/interrupts grep virtio cut -d ':' -f 1` ; do</pre>
	<pre>set_irq_affinity \${irq} done</pre>
	<pre>echo -1 > /proc/sys/kernel/sched_rt_period_us echo -1 > /proc/sys/kernel/sched_rt_runtime_us</pre>

Test Case 1 – DPDK PVP RFC2544 zero packet loss test

Item	Description
Test Case	RFC2544 zero packet loss test for Vhost/Virtio PVP Mergeable
NIC	Intel Ethernet Converged Network Adapter XL710-QDA2 (2x40G)
Driver	i40e DPDK PMD
Test	Test tool: IxNetwork 8.12.1053.5 EA
Configuration	Qemu Version: 2.8.0, only Qemu 2.8 can support change Vring size at qemu
	command.
	Vring size : 1024, the max Vring size Qemu support
	Hugepage size : 1G
	Virtio Mergeable: On
	Forward Mode: testpmd mac forward
	Vhost : 1 queue 1 logic core
	Virtio: 1 queue 1 logic core
	I otally 2 logic cores from 2 physical cores are used.
Flow	I Flow with fixed source and destination IP.
Test Sten	1. Bind one 40G NIC port to igb uio
Test Step	
	2. Launch Vhost:
	./x86_64-native-linuxapp-gcc/app/testpmd -1 22-23 -n 4socket-mem
	256,2048vdev 'eth_vhost0,iface=vhost-net,queues=1'i
	testpmd>set fwd mac
	testpmd>start
	3 Launch VM ·
	chrt -f 95 taskset -l 25-27 gemu 2.8/bin/gemu-system-x86 64 \
	-name us-vhost-vm1 -cpu host -enable-kvm -m 2048 \
	-object memory-backend-file,id=mem,size=2048M,mem-
	path=/mnt/huge,share=on \
	-smp cores=3, sockets=1 -drive file=/home/osimg/ubuntu16.img \
	-chardev socket,id=char0,path=./vhost-net \
	<pre>-netdev type=vhost-user,id=mynet1,chardev=char0,vhostforce \ -device virtio-net-</pre>
	<pre>pci,mac=52:54:00:00:00:01,netdev=mynet1,mrg_rxbuf=on,rx_queue_size=102</pre>
	4 \
	-device rtl8139, netdev=ipvm1, id=net0, mac=00:00:00:00:12:01 -localtime
	-vnc :10 -daemonize
	4 Launch Virtio in VM:
	./x86 64-native-linuxapp-gcc/app/testpmd -c 0x6 -n 4itxd=1024
	rxd=1024txqflags=0xf01disable-hw-vlan
	testpmd>set iwd mac testpmd>start

Test Result:

Packet Size(Bytes)	Throughput(Mpps)	Line rate%
64	5.26	8.83
128	5.11	15.12
256	4.91	27.1
512	3.87	41.12
1024	3.03	65.17
1280	2.61	67.81
1518	2.29	70.42

Figure 3. DPDK PVP RFC2544 performance with 1core for vhost-user and 1core for virtio

Test Case 2 – DPDK VM2VM iperf performance test

Item	Description
Test Case	virtio-net performance test for VM2VM
Test	Qemu Version : 2.5
configuration	Hugepage size : 1G
	dequeue-zero-copy: Enabled

Release 17.08

	Iperf version: 2.0.5
Core settings	1 core for vhost-user, and assign each VM 1 core
Test step	1. Launch Vhost with: ./examples/vhost/build/vhost-switch -c 0x1c00 -n 4socket-mem 2048,2048p 0x1mergeable 1vm2vm 1 2tso 1tx-csum 1 dequeue-zero-copysocket-file ./vhost-netsocket-file ./vhost-net1
	<pre>2. Launch VM1 and run iperf server: taskset -c 13 qemu-system-x86_64 -name vm0 -enable-kvm -chardev socket,path=/tmp/vm0_qga0.sock,server,nowait,id=vm0_qga0 -device virtio-serial -device virtserialport,chardev=vm0_qga0,name=org.qemu.guest_agent.0 -daemonize -monitor unix:/tmp/vm0_monitor.sock,server,nowait -net nic,vlan=0,macaddr=00:00:00:d9:19:f3,addr=1f -net user,vlan=0,hostfwd=tcp:localhost:6062-:22 -chardev socket,id=char0,path=./vhost-net -netdev type=vhost- user,id=netdev0,chardev=char0,vhostforce -device virtio-net- pci,netdev=netdev0,mac=52:54:00:00:00:10 -cpu host -smp 1 -m 4096 - object memory-backend-file,id=mem,size=4096M,mem- path=/mnt/huge,share=on -numa node,memdev=mem -mem-prealloc -drive file=/home/osimg/ubuntu16.img -vnc :4</pre>
	<pre>In VM1: ifconfig ens3 1.1.1.2 arp -s 1.1.1.8 52:54:00:00:00:02 iperf -s -i 1</pre>
	<pre>3. Launch VM2 and run iperf client: taskset -c 15 qemu-system-x86_64 -name vml -enable-kvm -chardev socket,path=/tmp/vml_qga0.sock,server,nowait,id=vml_qga0 -device virtio-serial -device virtio-serial -device virtserialport,chardev=vml_qga0,name=org.qemu.guest_agent.0 -daemonize -monitor unix:/tmp/vml_monitor.sock,server,nowait -net nic,vlan=0,macaddr=00:00:00:e2:a5:99,addr=1f -net user,vlan=0,hostfwd=tcp:localhost:6090-:22 -chardev socket,id=char0,path=./vhost-net1 -netdev type=vhost- user,id=netdev0,chardev=char0,vhostforce -device virtio-net- pci,netdev=netdev0,mac=52:54:00:00:00:02 -cpu host -smp 1 -m 4096 - object memory-backend-file,id=mem,size=4096M,mem- path=/mnt/huge,share=on -numa node,memdev=mem -mem-prealloc -drive file=/home/osimg/ubuntu16-2.img -vnc :5</pre>

Test Result:

Throughput with vhost dequeue	44.1 Gb/s
zero-copy	

DISCLAIMERS

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

For more information go to http://www.intel.com/performance

Intel® AES-NI requires a computer system with an AES-NI enabled processor, as well as non-Intel software to execute the instructions in the correct sequence. AES-NI is available on select Intel® processors. For availability, consult your reseller or system manufacturer. For more information, see http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/

Copyright © 2017 Intel Corporation. All rights reserved.

§