
DPDK Summit China 2017

Network Acceleration and
Performance Improvement

Lou, Fangliang
ZTE

Agenda

Performance optimization concepts and methods第一

Performance optimization crisis第二

Software Performance Lean Measurements第三

Enhance software parallel scalability第四

Performance Optimization Concepts

RFC2544协议性能测试定义

Difficulties of Processing Packet

Software to achieve high-speed packet forwarding is
difficult, the smaller the average packet arrival interval is
smaller, the higher the CPU processing time requirements,
the above table to 2G clock speed CPU, for example, a
command cycle is 0.5ns, CPU Access to DDR memory is 140 *
0.5 = 70ns, CPU access L3 cache time is 40 * 0.5 = 20ns. And a
64byte packet arrived at the average time in 16.8ns, this
multi-software message processing put forward a very high
requirements: in an access time need 70ns, 16.8ns to deal
with a packet。

报文长度 网卡线速 最大PPS 报文平均间
隔

换算指
令周期

64byte 10G 14.88M 67.2ns 134cyc

512byte 10G 2.35M 425.6ns 861cyc
64byte 40G 59M 16.8ns 33cyc

512byte 40G 9.4M 106ns 212cyc

容量
访问延迟

(cyc)
访问时间

(2G)
指令cache 32K 5/7 2.5ns
L1 cache 32K 5/7 2.5ns
L2 cache 256K 12 6ns
LLC(L3) 20M 40 20ns

DDR 128G 140 70ns

Tradition Optimization

雕琢软件细节

挖掘平台潜力

构建卓越架构

•Compile the potential of
mining CPU instructions /
specific calculations using a
specific instruction set
•Compile Select the appropriate
compiler to carefully select the
optimization strategy
•Process No Locked Parallel
Processing Flattened Process
Design Cured Framework Code
•Memory control memory read
and write times space for time
•Algorithm main process focus
optimization

•CPU frequency \ more
kernel \ CPU new
technology
•Memory faster read and
write speed \ multi -
channel \ cache
optimization
•NIC packet classification \
programmable
•OS cloud system \ kernel
optimization \ nuclear
isolation

•Control media separation
build
•Unlocked, Conflictless
Parallel Processing
Architecture
•Reasonable memory
access range
•Statistical Design Based
on Traffic Model

Agenda

Performance optimization concepts and methods第一

Performance optimization crisis第二

Software Performance Lean Measurements第三

Enhance software parallel scalability第四

Crisis

From each version of the performance point of
view, due to the addition of some features, DU
performance has been declining; each version of the
performance tuning work, although there are certain
enhancements, very painful repetitive labor;

The future increase in demand for media, DU
software, increased complexity, but also reduce
performance; bottleneck in the DU core, how to
avoid this?

0

1

2

3

4

5

6

7

DU 单元性能

Software Performance Lean Measurement
Method

Software Performance Lean Measurement Method:
 Where is the performance of the ceiling? Does performance optimization
have space? Is it worthwhile to spend more effort on further research?
 Often encountered problems, the code modified a line, the performance
suddenly dropped a lot of length, how to avoid these problems?

Today we propose a software performance lean measurement optimization method
through the theoretical quantitative calculation, the model can be more accurate
calculation of optimization goals.

Agenda

Performance optimization concepts and methods第一

Performance optimization crisis第二

Software Performance Lean Measurements第三

Enhance software parallel scalability第四

Instruction four - layer water structure

Assuming an instruction requires a clock cycle, the
following procedure takes a few iterations over a
loop?

while (1)
{

mov $0x1, %eax
mov $0x2, %ebx
mov $0x3, %ecx

}

Instruction Flow Indicator

指标 英文 中文
IPC instuction per cycle 单周期执行指令数

eIPC effective instuction per cycle 单周期执行的有效指令数

Out of Order Execution -> Order to Commit

Out of order to use other "executable" instructions to fill the gaps in the time, and then reorder the
results at the end of the operation, in order to achieve the results of instruction execution in order to
submit the code.

Out of order execution:
Use the following steps to disrupt the order:
(1). get the instruction ;
(2). The instruction is sent to a sequence of instructions (execution of a buffer or a reserved station);
(3). The instruction waits for a direct data operation object in the sequence to be fetched, and then
the instruction sequence is allowed to leave the buffer before entering the old instruction and
before;
(4). The instruction is assigned to a suitable functional unit and executed by him
(5). The result is placed in a sequence;
(6) The result of this instruction is written to the register only if all the instructions before the
instruction have written their results to the register. This process is called a graduation or retirement
period

Cache

Cache is the cache (Cache Memory), in order to solve the read physical memory delay,
because the modern CPU processing speed and memory access speed.

Cache Miss

As shown above, when the prefetch is not
performed, the execution unit is forced to wait
due to the delay of reading the memory from the
front side bus (FSB).

After prefetching in advance, the data required by the execution unit
has been read in advance to the cache and read the data directly in
the cache. So that the execution unit eliminates the latency of
memory access.

指标 英文 中文
Cache miss Cache miss Cache 没有命中的概率

Cache Prefetch

Metrics

Metrics

[1] eIPC indicators higher, the better the performance;
[2] IPP indicators lower, the better performance;
[3] When the CPU occupancy rate is low, the performance and occupancy rate are close to the linear
relationship because the eIPC and IPP can be considered unchanged; when the CPU occupancy rate is high,
the performance and occupancy rate are non-linear, because eIPC and IPP (Due to the greater flow of
concurrent processing will increase, will affect the eIPC and IPP indicators);

Data Collection Method
Intel CPU built-in hardware Performance Monitoring Unit (PMU)
Provides a lot of hardware event counters (such as Haswell provides 334 hardware event counters) You
can monitor the CPU instruction execution in detail, such as the number of Cache-miss, the number of
branch prediction failures,
Number of successful Retire instructions.

Tools

Perf

VTune

CASE 1: Quick Feedback, Timely
Correction

CI to monitor the performance of media performance indicators to monitor, quickly find defects, which
version, which led to a decline in the joint. Timely correction

CASE 2： Guidance Coding

This code can only be functional verification, the efficiency is
very poor, mainly due to two reasons:
 the innermost layer of the temp for the calculation of the
cycle, the dependencies between the various iterations can not
be parallel processing;
 Calculate temp, the B matrix by B [k * M + i] reference is to
press B line to jump to take the data, if the B number of columns
is large, will lead to access to memory when the span is large,
can not use hardware pre- Take, will lead to a lot of cache-miss.

 Calculate the for loop of ptmp [i], the dependency
of each iteration can be processed in parallel;
 Calculate ptmp [i], the B matrix is accessed by
column, you can use hardware prefetching, cache-miss
greatly reduced.

CASE 2： Guidance Coding

Case3 ： Guide the Software
Architecture Design.

We believe that the CPU instruction execution level, the effect of performance
optimization is ultimately reflected in two aspects:

Features: The total number of instructions executed at this node is constant, but the concurrency increases significantly;

Features: The number of instructions executed by this node has been significantly reduced;

(1) eIPC (effective instruction per cycle) indicators, that is, the code should make full use
of CPU pipelines to improve the number of instructions within a clock cycle can be
implemented, such as the use of VPP architecture, loop expansion and reduce the code
between the statements, Hardware and software prefetching.

(2) IPP (instruction per packet) indicators of the reduction, that is to say as much as
possible to reduce the number of instructions required to deal with the use of efficient
instructions, algorithms or architecture decomposition, such as the use of SIMD
instructions, ahead of time rather than the cycle of each iteration Calculation, the
drive burst transceiver (one call to send and receive multiple messages), node split,
traffic unloading, etc.,

Agenda

Performance optimization concepts and methods第一

Performance optimization crisis第二

Software Performance Lean Measurements第三

Enhance software parallel scalability第四

Amdahl Law
A program (or an algorithm) can be divided
into the following two parts by whether it
can be parallelized:
Can be parallelized
Can not be parallelized
Defined as follows:
T = total time of serial execution
B = can not be parallel to the total time
T-B = total time of the parallel part
When a parallel portion of a program is
executed using N threads or CPUs, the total
time taken is:
T (N) = B + (T - B) / N

Amdahl Law
As can be seen from Amdahl's law, the parallelizable part of the program can run faster by using more

hardware (more threads or CPUs). For non-parallelizable parts, only by optimizing the code to achieve
the purpose of speed. Therefore, you can optimize the non-parallel part of the program to improve
your running speed and parallel ability. You can do nothing on the algorithm to do some changes, if
possible, you can also move some of the parallel to the release of the part.
Optimize the serial component
If you optimize the serialization of a program, you can also use Amdal's law to calculate the program
execution time after optimization. If the parallel part can be optimized by a factor O, the Amdar law
looks like this:
T (O, N) = B / O + (1 - B / O) / N
In the non-parallel part of the program occupies the B / O time, so the parallel part of the account of
the 1 - B / O time. If B is 0.1, O is 2, N is 5, the calculation looks like such:
T (2,5) = 0.4 / 2 + (1 - 0.4 / 2) / 5

= 0.2 + (1 - 0.4 / 2) / 5
= 0.2 + (1 - 0.2) / 5 = 0.2 + 0.8 / 5 = 0.2 + 0.16 = 0.36

Two Models

•Parallel processing
•Multi-threaded parallel processing
•No lock
•Unique messages are distributed to the same thread to achieve no lock.
Eliminate lock waiting time

Serial Parallelization

The distribution thread is split into driver thread and parse thread, running on both
HTs to improve performance 。

接
收

解
析

发
送

接
收

解
析

发
送

接
收

解
析

发
送

接
收

解
析

发
送

…

Offload Model

A-1

A-2

A-3

B-1

B-2

B-3

C-1

C-2

C-3

PKT

PKT

PKT

表示决策点, 该点消耗计算资源

但是被优化处理节点

Fixed action，Improve performance

首包决策，固化执行路径

PKT

The first package
for policy access，
Follow the package

fixed action

Software Parallel Scalability Optimization
For a stream, not every message requires
the whole process to determine the
processing, only the first report to get the
forwarding strategy can be, and the rest of
the traffic all unloaded to a fixed vector
node processing node;
For vector nodes to handle nodes, require
extremely high performance, the code needs
to be optimized to the simplest, and the
code is optimized by white boxing metrics.
The details of the measurement will be
detailed later

Effect

CPU occupancy rate dropped by
70%
Code parallelism increased by 3
times,
Cache miss drops by 54%.
Single thread processing capacity
close to 2Mpps

HT吞吐量带宽
（Gbps）(512BYTE)

HT包处理能力
(Mpps)

代码执行并行度
（IPC） cache miss

优化前 1.664G 0.436 0.4197 63.80%

优化后 8G 2.M 1.22 9.49%

0

2

4

6

8

10

优化前 优化后

HT吞吐量带宽

0

0.5

1

1.5

2

2.5

优化前 优化后

HT包处理能力

0

0.2

0.4

0.6

0.8

1

1.2

1.4

优化前 优化后

代码执行并行度

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

优化前 优化后

cache miss

Content Review

A software performance of the lean measurement optimization method: to guide the code to
write the level of the definition of indicators, Optimize the code based on these metrics. Raise
the code to perform parallelism, reduce cache miss.
A Theorem: Amdahl's Law, Determine the Direction of Optimization, Eliminate System
Bottlenecks, and Pursuit of Performance Parallel Expansion.
DPDK opens up new ways and new ideas for code performance optimization;

Network Platforms
Group

DPDK China Summit 2017 Shanghai，

34

Thanks!!

欢迎关注DPDK开源社区

	Slide Number 1
	Network Acceleration and Performance Improvement
	 Agenda
	Performance Optimization Concepts
	Difficulties of Processing Packet
	Tradition Optimization
	Agenda
	Crisis
	Software Performance Lean Measurement Method
	Agenda
	Instruction four - layer water structure
	Instruction Flow Indicator
	Out of Order Execution -> Order to Commit
	 Cache
	 Cache Miss
	Cache Prefetch
	Metrics
	Metrics
	Data Collection Method
	 Tools
	CASE 1: Quick Feedback, Timely Correction
	 CASE 2： Guidance Coding
	Slide Number 23
	Case3 ： Guide the Software Architecture Design.
	Agenda
	Amdahl Law
	Amdahl Law
	Two Models
	Serial Parallelization
	Offload Model
	Software Parallel Scalability Optimization
	 Effect
	Content Review
	Slide Number 34

