THE

2)DPDK L JLINUX

FOUNDATION

DATA PLANE DEVELOPMENT KIT

Fihs (intel)
8575 : iz ZTE @®=Zc ¥ranabit” EAZER & [[jjErmE
thinss . S§SDNLAB sy o [T29MiHE

THE

2)DPDK ¢ JLINUX

FOUNDATION

F175 : (inteD
8575 : iz ZTE @®=Zc ¥ranabit” EAZER & [[jjErmE
s . GYSDNAB sy [T

DPDK SUMMIT CHINA 2017

Agenda

Performance optimization concepts and methods
Performance optimization crisis
Software Performance Lean Measurements

Enhance software parallel scalability

DPDK SUMMIT CHINA 2017
Performance Optimization Concepts

>RFC2544 13t BE I A e X

| back to back :

| burst packet capability e
| caching packet capability)
e — Performance
‘/] concept r

latency:The speed at | Packet loss rate :
which packets are processed Bear the load capacity

Packet throughput
pps Bps

=215

RO = pkgsize + IB3TS T + MHIEIFE + MGES T+

1 ,
-a. S .-:I:} - A — . ":I:_':- - " " = — ‘ \ {
TRSTALIR P15 (8] = $R3TF12RT 8 8] PR e \,w

DPDK SUMMIT CHINA 2017

Difficulties of Processing Packet

YRER |] A e
RN

%>cache 32K 5/7 2.5ns
Software to achieve high-speed packet forwarding is L1 cache 32K 5/7 2.5ns
difficult, the smaller the average packet arrival interval is L2 cache 256K 12 bns
smaller, the higher the CPU processing time requirements, LLC(L3) e w0 21007
the above table to 2G clock speed CPU, for example, a 128G 70ns
command cycle is 0.5ns, CPU Acgess tp DDR memory is 140 *
0.5 =70ns, CPU access L3 cache time is 40 * 0.5 = 20ns. And a g%;@g
64byte packet arrived at the average time in 16.8ns, this 64byte 14.88M 59 134cyc
multi-software message processing put forward a very high 512byte 10G 2.35M 4256ns 861cyc
requirements: in an access time need 70ns, 16.8ns to deal 64byte 40G 59M 16.8ns 33cyc
with a packet. 512byte 40G 9.4M 106ns 212cyc

DPDK SUMMIT CHINA 2017

Tradition Optimization

*CPU frequency \ more
kernel \ CPU new
technology

*Memory faster read and
write speed \ multi -
channel \ cache
optimization

*NIC packet classification \
programmable

*0S cloud system \ kernel
optimization \ nuclear

*Control media separation
build

*Unlocked, Conflictless
Parallel Processing
Architecture
*Reasonable memory
access range

eStatistical Design Based
on Traffic Model

*Compile the potential of
mining CPU instructions /
specific calculations using a
specific instruction set
*Compile Select the appropriate
compiler to carefully select the
optimization strategy

*Process No Locked Parallel
Processing Flattened Process
Design Cured Framework Code
*Memory control memory read
and write times space for time
*Algorithm main process focus
optimization

DPDK SUMMIT CHINA 2017

Agenda

Performance optimization concepts and methods
Performance optimization crisis
Software Performance Lean Measurements

Enhance software parallel scalability

DPDK SUMMIT CHINA 2017

Crisis

» From each version of the performance point of 7 DU SyuHERE

view, due to the addition of some features, DU

performance has been declining; each version of the i \

performance tuning work, although there are certain 5

enhancements, very painful repetitive labor; 4 \\
»The future increase in demand for media, DU 3

software, increased complexity, but also reduce

performance; bottleneck in the DU core, how to
avoid this?

DPDK SUMMIT CHINA 2017

Software Performance Lean Measurement
Method

Software Performance Lean Measurement Method:
» Where is the performance of the ceiling? Does performance optimization
have space? Is it worthwhile to spend more effort on further research?
» Often encountered problems, the code modified a line, the performance
suddenly dropped a lot of length, how to avoid these problems?

Today we propose a software performance lean measurement optimization method
through the theoretical quantitative calculation, the model can be more accurate
calculation of optimization goals.

DPDK SUMMIT CHINA 2017

Agenda

Performance optimization concepts and methods
Performance optimization crisis
Software Performance Lean Measurements

Enhance software parallel scalability

DPDK SUMMIT CHINA 2017

Clock cycle
2 3 4 5 6 7 8

i

Waiting
instructions

—
Stage 1: Fetch

Stage 21: Decode

Stage 3: Execute

Pipeline
A

XXX -
XXX
XX
XONEN
CHEN
| | [
LI <0

Stage 4: Write-bady
e

B W<
|| O

Completed {
instructions

—RR b Ef SRR, TR RERETT RS o

Assuming an instruction requires a clock cycle, the
following procedure takes a few iterations over a

loop?
while (1)
{
mov SO0x1, %eax
mov S0x2, %ebx
mov $S0x3, %ecx

Figure 2-2. CPU Core Pipeline Functionality of the Haswell Microarchitecture

1
2
3

XOR a, b
XOR b, a
XOR a, b

DPDK SUMMIT CHINA 2017

Instruction Flow Indicator

Table 2-6. Dispatch Port and Execution Stacks of the Haswell Microarchitecture
Port O Port 1 Port2, 3 Port 4 Port 5 Port & Port7
ALU, AL, Load_Addr, Store_data AL, AL, Store_addr,
Shift Fast LEA, Store_addr Fast LEA, Shift, Simple_AGU
BM BM JEU
SIMD_Log, SIMD_ALU, SIMD_ALU,
SIMD misc, SIMD_Log SIMD_Log,
SIMD_Shifts
FMA/FP_mul, FMA/FP_mul, Shuffle
Divide FP_add
Z2nd_Jeu slow_int, FF mowv,
AES

v

2y by

IPC instuction per cycle B E AP ATIE S 2L
elPC effective instuction per cycle EAJE HAFAT B 2038 2 %5

DPDK SUMMIT CHINA 2017

Out of Order Execution -> Order to Commit

Out of order execution:

Use the following steps to disrupt the order:

(1). get the instruction ;

(2). The instruction is sent to a sequence of instructions (execution of a buffer or a reserved station);
(3). The instruction waits for a direct data operation object in the sequence to be fetched, and then
the instruction sequence is allowed to leave the buffer before entering the old instruction and
before;

(4). The instruction is assigned to a suitable functional unit and executed by him

(5). The result is placed in a sequence;

(6) The result of this instruction is written to the register only if all the instructions before the
instruction have written their results to the register. This process is called a graduation or retirement
period

»Out of order to use other "executable" instructions to fill the gaps in the time, and then reorder the
results at the end of the operation, in order to achieve the results of instruction execution in order to)
submit the code. \ w

DPDK SUMMIT CHINA 2017

/’f N B \ d \ CPU Cache Access Latencies in Clock Cycles
Core Core Core Core

Main memory NI, 167
L3 Cache Full Random access I 35
L3 Cache In Page Random access [N 18

L3 Cache sequential access [N 14

L2 Cache Full Random access [11
L2 Cache L2 Cache L2 Cache L2 Cache L2 Cache In Page Random access N 11
\ / \) \) \ / L2 Cache sequential access N 11

L1 Cache In Full Random access W4

L1 Cache In Page Random access M4

|-3 CaChe L1 Cache sequential access W4

0 50 100 150 200

Cache is the cache (Cache Memory), in order to solve the read physical memory delay,
because the modern CPU processing speed and memory access speed.

DPDK SUMMIT CHINA 2017

Cache Miss

.
> e > Time
E ti
_ mic:l:ig Vertex n-2 Vertex n-1 Vertex n Vertex n+1
Exe_nut!on Execution units idle Execution units idle PIp / \ i'1
pipeline s R t issue prefetch ‘: prefetch | prefetch
1 i | L
! lssue loads | \ forvertexn V... 1| V..,
‘11 Jertex data {ilssue loads Eront-Side % | I‘.
i]
| | Bus Mem latency for V_ !
Front-Side \ FSBide ¥ \ lh
......... i
Bus / K .
Mem latency for V
d‘{ n+1
.‘ .. } .{ .. }. v
Vertexn Vertex n+1

As shown above, when the prefetch is not
performed, the execution unit is forced to wait

Mem latency for V__,

due to the delay of reading the memory from the
front side bus (FSB).

Yy
Cache miss

Cache miss

memory access.

Cache 1A fiy 1 {IER

After prefetching in advance, the data required by the execution unit

has been read in advance to the cache and read the data directly in
the cache. So that the execution unit eliminates the latency of

DPDK SUMMIT CHINA 2017

Cache Prefetch

PREFETCHNTA = fetch data into non-temporal cache close to the processor, minimizing cache
pollution. "

PREFETCHTO — fetch data into all cache levels., "

FREFETCHT1 = fetch data into 2nd and 3rd level caches,

PREFETCHTZ — this instruction is identical to PREFETCHT1.

FREFETCHW = fetch data into cache in anticipation of write; invalidate cached copies.

prefetcht0 FEXEHESR| L1/L2/L3 cache

prefetcht1 FIEAEER] L2/L3 cache+

prefetcht2 FHEAZEE| L3 cache+

gcc HESRrTIZ s SI2 I TR ERESRE: void _ builtin_prefetch (const void
addr, ...) » AL BTEEAET RS0, -

DPDK SUMMIT CHINA 2017

Metrics

—o| BRSO |

| RS l—# FEESIESH |

%
5
"‘x

-,
H'\.

e *41 BE{ECache Miss# }

1)

2)

IPC (instuction per cycle)

BRAMESH

elPC (effective instuction per cycle)

HAEANESH, ERRLAERERTH IPC (NMETRLAERNES), %18

IR

3)

IPP (instuction per packet)
BIRUAFHESY. ZfEFREET

R MFHE

4)

0)

6)

CPP (cycle per packet)
FHRUFEHALL, T PPS Z @ E CPU MERRE
PPS (packets per second)
B AERIR O
CUR (cpu use rate)
CPU SRZE, HFHEMER. FTERFERCPU SRE (FMELERETL

B RTFROCAEE S

DPDK SUMMIT CHINA 2017
Metrics

MPPS

bs Freq(CPU 4%) x R(CPU &5 A%) °

CPP :
Freq(CPU #1%) x R(CPU 5 A %) /
= IPP 5 e
eIPC 5 P
_ Freq(CPU #%) x R(CPU & FZ) x elPC 4 il
N IPP : yd

[1] elPC indicators higher, the better the performance; U
[2] IPP indicators lower, the better performance; ox om om o= om |
[3] When the CPU occupancy rate is low, the performance and occupancy rate are close to the linear
relationship because the elPC and IPP can be considered unchanged; when the CPU occupancy rate is high,

the performance and occupancy rate are non-linear, because elPC and IPP (Due to the greater flow of

concurrent processing will increase, will affect the elPC and IPP indicators); _/_8_2,

DPDK SUMMIT CHINA 2017

Data Collection Method

» Intel CPU built-in hardware Performance Monitoring Unit (PMU)
Provides a lot of hardware event counters (such as Haswell provides 334 hardware event counters) You
can monitor the CPU instruction execution in detail, such as the number of Cache-miss, the number of
branch prediction failures,

Bit Position Event Name UMask Event Select

CPUID.AH.EBX

0 UnHalted Core Cycles 00H 3CH
Instruction Retired 00H COH

2 UnHalted Reference Cycles 01H 3CH

3 LLC Reference 4FH 2EH

4 LLC Misses 41H 2EH

DPDK SUMMIT CHINA 2017

Tools

[rootflocalhost ipcl#
[root@localhost ipc]# perf stat -e cache-references:u,cache-misses:u,cycles,instructions -C 12 sleep 0.010533401

Perf Performance counter stats for "CEU(s) 12':

182157 cache-references:u {99.98%)

1471159 cache-misses:u # 80.765 % of all cache refs {99.92%)
41324823 cycles {99.99%)
12098276 instructions # 0.29 1insns per cycle

0.011883156 seconds time elapsed

Jroot@localhoat ipcld

VTune
M General Exploration General Exploration viewpoint (change) @ INTEL VTUNE AMPLIFIER XE 2017

B Collection Log '@ Analysis Target| | * Analysis Type| | Hl Summary | [eRsouuind * Event Count| B3 Platform

Grouping: Function / Call Stack
Function / Call Stack Clockticks ¥ | Instructions Retired | CPIRate | Front-End Bound »|| Bad Speculation »| Back-End Bound »
8.?&1.200.000| 5,538,000,000 1578 0.0 4% B1.8%
B osqrt 7,573,800,000 8,525,400,000 0.888 0.3% 0.0% §3.3% 38.2% lbm-2.1750 |
J run §57,800,000 273,000,000 2410 0.0% 0.0% 92.4% 15.2% ipc03 I

DPDK SUMMIT CHINA 2017

CASE 1: Quick Feedback, Timely
Correction

Cl to monitor the performance of media performance indicators to monitor, quickly find defects, which

version, which led to a decline in the joint. Timely correction
Gwaﬁﬁsﬁliﬁ e
-o- EFHEE -m- BEMETEMNEE -A- DVSEAFHEE VSMET B

e e 1 [rﬂ1
l ' \] N

Ahaaaaawy

DPDK SUMMIT CHINA 2017
CASE 2: Guidance Coding

template <typename Ta, typename Th, typename Te, typename Talpha, typename Theta> for (3 = 0; 73 = HN; j++) {
viold seq_m?trix_mul_intTcDlMajDr(. for (k = 0; k < EK; k++)
const int M, const int N, const int K, const Talpha alpha, const Ta *E,
const Th *A, T *C, const Theta beta) | {
int 1, 3, k; for (1 = 0; 1 < M; 1++)
// use sequential ptl'l:'l.p[i]"':A[j*H + k] * B[k*M + 1i];
for (1 =0; 1 < M; 1++) |
for (3= 0; 3 < N; §+4) | i , , ,
Te temp = 0; for (1 = 0; 1 < M; 1++]
for (k= 0; k =< EK; k+t+) | {
C[7 * M+ 1] = alpha * temp + heta * C[7] * M + 1]; + beta * C[j*M + 1] ;
} ptmp[i] = 0O;
} '
} ;
This code can only be functional verification, the efficiency is

very poor, mainly due to two reasons:

»[the innermost layer of the temp for the calculation of the > [Calculate the for loop of ptmp [i], the dependency

cycle, the dependencies between the various iterations can not of each iteration can be processed in parallel;

be parallel processing; . . . >[Calculate ptmp [i], the B matrix is accessed by

>[I Calculate temp, the B matrix by B [k * M + i] reference is to column, you can use hardware prefetching, cache-miss

!:)ress B Iln.e to jump to take the data, if the B number gf columns greatly reduced.

is large, will lead to access to memory when the span is large, ¢

can not use hardware pre- Take, will lead to a lot of cache-miss. L

e
1
[
(Y
—
——
— =
[i)
—
-_—
p—
—
(=
o s
=
[= T
=

Guidance Coding

2..
]
V2
<q
o

cachemisOPT

—+—cachemis

/
/

© 00000€
1 000042
| 00002
© 0000TZ
© 000081
_-oooomH
~ 000021
© 00009
© 0000€
© 00057
© 00007
. 000ST
© 0000T
+ 0005

3500000
3000000
2500000
2000000
1500000
1000000

500000

(=]

IPCOPT

——I|PC

timeOPT

——time

| 00000€
| 000042
| 000072
| 0000TZ
' 00008T
' 00005T
| 0000ZT
00009

' 0000€

X

000SZ

-

1/ 00002

I

4/ 000ST

?
i 0000T

250
200
150
100

o
[Ty]

1 0009

o

- 00000€
- 0000L7
- 000017
- 000017
- 00008T
- 0000ST
- 000021
- 00009
- 0000€
- 000ST
- 00002
0005
00007
- 0005

3.5
2.5
1.5

0.5

=]

DPDK SUMMIT CHINA 2017

Case3 : Guide the Software
Architecture Design.

We believe that the CPU instruction execution level, the effect of performance
optimization is ultimately reflected in two aspects:
(1) elPC (effective instruction per cycle) indicators, that is, the code should make full use
of CPU pipelines to improve the number of instructions within a clock cycle can be
implemented, such as the use of VPP architecture, loop expansion and reduce the code
between the statements, Hardware and software prefetching.

Features: The total number of instructions executed at this node is constant, but the concurrency increases significantly;

(2) IPP (instruction per packet) indicators of the reduction, that is to say as much as
possible to reduce the number of instructions required to deal with the use of efficient
instructions, algorithms or architecture decomposition, such as the use of SIMD
instructions, ahead of time rather than the cycle of each iteration Calculation, the
drive burst transceiver (one call to send and receive multiple messages), node split,
traffic unloading, etc.,

Features: The number of instructions executed by this node has been significantly reduced;

DPDK SUMMIT CHINA 2017

Agenda

Performance optimization concepts and methods

Performance optimization crisis

Software Performance Lean Measurements

Enhance software parallel scalability

DPDK SUMMIT CHINA 2017

Amdahl Law

A program (or an algorithm) can be divided T T O 0 N L

into the following two parts by whether it B 1-B

can be parallelized: 5 - Nonparallelzable 48
Can be parallelized 1- B = Parallelizable B 1

Can not be parallelized

Defined as follows:

T = total time of serial execution (1-B)
B = can not be parallel to the total time 4 £3

T-B = total time of the parallel part |

When a parallel portion of a program is B (1-B) /2 (1-B)
executed using N threads or CPUs, the total L /3

time taken is:

T(N)=B+(T-B)/N (1-B) 1 2

DPDK SUMMIT CHINA 2017

Amdahl Law

As can be seen from Amdahl's law, the parallelizable part of the program can run faster by using more
hardware (more threads or CPUs). For non-parallelizable parts, only by optimizing the code to achieve
the purpose of speed. Therefore, you can optimize the non-parallel part of the program to improve
your running speed and parallel ability. You can do nothing on the algorithm to do some changes, if
possible, you can also move some of the parallel to the release of the part.
Optimize the serial component
If you optimize the serialization of a program, you can also use Amdal's law to calculate the program
execution time after optimization. If the parallel part can be optimized by a factor O, the Amdar law
looks like this:
T(O,N)=B/0O+(1-B/0O)/N
In the non-parallel part of the program occupies the B / O time, so the parallel part of the account of
the1-B/Otime.IfBis0.1, Ois 2, Nis 5, the calculation looks like such:
T(2,5)=04/2+(1-0.4/2)/5

=0.2+(1-04/2)/5

=0.2+(1-0.2)/5=0.2+0.8/5=0.2+0.16 =0.36 w2
4%

DPDK SUMMIT CHINA 2017

Two Models

Do-Complete

-
[
1
i
i
i
[

!
w

Pipe-Line

*Parallel processing
Multi—threaded parallel processing

No lock % &
*Unique messages are distributed to the same thread to achieve no lock. "
Eliminate lock waiting time

DPDK SUMMIT CHINA 2017

Serial Parallelization

» The distribution thread is split into driver thread and parse thread, running on both

HTs to improve performance
i
il
ﬁﬁ

ﬁﬁ

DPDK SUMMIT CHINA 2017

Offload Model

BHERK, BEHIITERE

- The first package

for policy access,

Follow the package
fixed action

® FORVE A, AR R
° (B R AL AR T

DPDK SUMMIT CHINA 2017

Software Parallel Scalability Optimization

v'For a stream, not every message requires
the whole process to determine the a-
processing, only the first report to get the
forwarding strategy can be, and the rest of
the traffic all unloaded to a fixed vector
node processing node;

v'For vector nodes to handle nodes, require
extremely high performance, the code needs o
to be optimized to the simplest, and the

code is optimized by white boxing metrics. {

v'The details of the measurement will be R RS
detailed later h

DPDK SUMMIT CHINA 2017
Effect

HTF B 5 HTRALERE S | REHATIHITE

(Gbps) (512BYTE)

v'CPU occupancy rate dropped by

70% HeAk i 1.664G 63.80%
v'Code parallelism increased by 3
times, R 8G 9.49%

v'Cache miss drops by 54%.
v'Single thread processing capacity

HTEHEH % HTE A RE /7 RIEPATIITE cache miss
close to 2Mpps

10 25 1.4 70.00%

g , | 12 - 60.00% -

1 - 50.00% -

6 - 15 1 0.8 - 40.00% -

4 1 0.6 - 30.00% -

0.4 - 20.00% -

2 7 05 1 0.2 - 10.00% -

0 - 0 - 0 - 0.00% -

iiems e/ iLsl itk 7itwi ikl iesn mibia ; /

DPDK SUMMIT CHINA 2017

Content Review

» A software performance of the lean measurement optimization method: to guide the code to
write the level of the definition of indicators, Optimize the code based on these metrics. Raise
the code to perform parallelism, reduce cache miss.

» A Theorem: Amdahl's Law, Determine the Direction of Optimization, Eliminate System
Bottlenecks, and Pursuit of Performance Parallel Expansion.

»DPDK opens up new ways and new ideas for code performance optimization;

DPDK SUMMIT CHINA 2017

Thanks:

MR 52 yE DPDKFFJEH: X

\ -
DPDK China Summit 2017, Shanghai . ; §—<

	Slide Number 1
	Network Acceleration and Performance Improvement
	 Agenda
	Performance Optimization Concepts
	Difficulties of Processing Packet
	Tradition Optimization
	Agenda
	Crisis
	Software Performance Lean Measurement Method
	Agenda
	Instruction four - layer water structure
	Instruction Flow Indicator
	Out of Order Execution -> Order to Commit
	 Cache
	 Cache Miss
	Cache Prefetch
	Metrics
	Metrics
	Data Collection Method
	 Tools
	CASE 1: Quick Feedback, Timely Correction
	 CASE 2： Guidance Coding
	Slide Number 23
	Case3 ： Guide the Software Architecture Design.
	Agenda
	Amdahl Law
	Amdahl Law
	Two Models
	Serial Parallelization
	Offload Model
	Software Parallel Scalability Optimization
	 Effect
	Content Review
	Slide Number 34

