
Let’s Hot plug:

By uevent mechanism in DPDK

Jeff guo
Intel
DPDK Summit User space - Dublin- 2017

Agenda

 Hot plug overview

 what we have & why uevent ?

 Uevent mechanism introduction

 Uevent in virtualization

 Open and plan

 Q & A

Hot plug tech

 Hotplug is a technology, which lets plug in a devices when system is running and use
them immediately. While lets unplug a device but not affect the system running.

 HW support(etc. new IA platform), OS support(etc. linux), driver support(etc. OFED)

 Kernel >= linux 2.6, pciehp, port service like

 Management: BIOS -> ACPI.

 Hot-insertion and hot-removal.

 Non surprise hot plug and surprise hot plug.

Hot plug user case

 Load balance

 Reduce power consumption

 Handle hardware error

(fail over or fail safe)

 live migration

Nic
(idle)

Nic
(In use)

Nic
(idle)

Nic
(In use)

2.Reduce power consumption 3.Handle hardware error

1.Load balance

4. Live migration

For 24/7 availability, don’t
take it down for any reason!

port1

what we have.

 General Hot plug API

hot plug add / remove,

dev_attach / dev_detach,

Port plug in & out

port0

Bus

Dpdk app

port2attach
detach

 Fail-safe driver

like an app helper,

Manage sub device and process hot plug
event,

dynamic switch fail device to safe device.
sub sub

Fail-safe

driver

app

sub sub

Fail-safe

driver

app

error
runing runningbackup

why uevent ?

 Currently , device plug & play by plan, it need stop/close port before detach,

It would be mass in cloud. And when attach port, need app knowledge the pci
device id.

 Hot plug event are diversity in drivers, not all uio driver exposure hot plug event,

need a general event from bus/device layer.

 Uevent is easy to use and management.

Netlink socket, kobject, asynchronous, sysfs, kernel space --> user space.

Abundant device status , like add/remove/change/online/offline.

why uevent ??

device

bus

driver

Linux Kernel is useful,
Just use it.kobject

pci/vdev, …

Igb_uio/vfio/
uio_generic/
other

scan / probe

attach/detach
Uevent monitor

bind
Initial
Operation

 Each component each scope, hot plug belong to device, might be better to
offload it from app and driver to the bus/device layer of the eal core lib.

Uevent mechanism

Fail-safe pmd

kobject

eal

Sub pmd Sub pmd

app

callback

Hot plug ueventKernel space

User space

callback

callback

Orange : Interrupt mechanism path
Blue : uevent mechanism path

Kernel driver

Hot plug interrupt

Uevent processing

Uevent monitoring Uevent process APPFault handler

Parse event Remap device
Switch device, fail-safe or

fail over

Detach device

Restore device

Attach device

removal event
Detect uevent

epolling

Register the uevent callback

Call back

Bind igb_uio

driver

insertion event

Enable uevent monitor

Call back

Uevent bring in.

 An new epolling, user register interesting event when start.

 A device_state machine in structure of rte_device.

PARSED/ PROBED / FAULT

 dev_event_type enumerate and uevent structure in a new file eal_dev.h. BSD not
support uevent.

uev_monitor_enable / uev_receive / uev_parse / uev_process/

dev_monitor_start / dev_monitor_stop

uevent monitor:

Uevent bring in..

 Add below API in rte eal device for common

rte_eal_dev_monitor_enable

rte_dev_callback_register / rte_dev_callback_unregister

_rte_dev_callback_process

rte_dev_bind_driver

Uevent bring in…

 add remap_device in bus layer, to remap the device resource to be “safe” before
device detach.

 Add dev_bind_driver in device layer, to auto bind driver before device attach.

 Add find_device_by_name in bus layer, to find device in the device list of bus by
the device name

Failure handler:

Uevent in virtualization

 Uevent support vfio, each vdev have its

own kobject and uevent, it directly process

vfio uevent when pf hot plug.

 live migration, share memory (NFS) or block
migration, detect the switching nic across the
platform by uevent.

 uevent for virtio and SRIOV ???
Nic (10G) Nic (25G)

Configuration

data

.vhd

Plan and Open…

 Make the API upstream, to public it for developer usage.

 Hot plug API + uevent + failsafe driver, integration and verification.

 Performance(hot plug action speed and packet loss) and robots.

 Co-work with community contributor, fix the gap with pci bus rework.

http://dpdk.org/dev/patchwork/patch/28950/

http://dpdk.org/dev/patchwork/patch/28949/

Questions ? Jeff Guo

Jia.guo@intel.com

