DPDK

DPDK's Best Kept Secret
Micro-benchmarks

VY ELY
Muthurajan.Jayakumar@intel.com

Legal Information

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality,
or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with
Intel microprocessors. Certain optimizations not specifc to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User an
Reference Guides for more information regarding the specifc instruction sets covered by this notice. Cost reduction scenarios described are intended as examples of
how a given Intel- based product, in the specifed circumstances and confgurations, may affect future costs and provide cost savings. Circumstances will vary. Intel doe:
not guarantee any costs or cost reduction. Intel technologies’ features and benefts depend on system confguration and may require enabled hardware, software or servic
activation. Performance varies depending on system confguration. No computer system can be absolutely secure. Check with your system manufacturer or retailer ot
learn more at https://networkbuilders.intel.com/network-technologies/intelselectfasttrackkit.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-
infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact
your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized
errata are available on request. Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or
by visiting www.intel.com/design/literature. htm.

© 2017 Intel Corporation. Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

» Why should | care about DPDK Micro-benchmarks?
» What do they benchmark?

» Howdolrunthem?

Not all slots are made equal

Ensure that you have plugged in your NIC card in most optimal slot

Not all slots

are made
equall

How many lcores, you think, are there in this 2 socket

server?

More
than 100
lcorese

64 96
lcorese lcorese

Question: What can be Improved here?

Optional Intel® QAT DMI

and/or 4x10/1GbE

1
1
1
1
+
I

Intet” C627 Chipaet

titt

Improvements

I/O Plugged in CPU1’s Slot
How much memory do you
see in CPU1 node?
ZERO !

Optional Intel® QAT DMI

and/or 4x10/1GbE

CPU 0 has only One
Channel memory
populated.

tret

INn Which Socket lcore # 50 resides? Socket O or Socket D P D K

17

More
than 100
|cores

» Question:

» In which socket you think Icore# 50 resides? — socket 0? Or socket 17

» Assume NIC is Plugged in socket O

» Will the performance be best or sub-optimal?

Why Should | Care About DPDK Micro-benchmarks? D P D K

» We thoughtlcore # 50 resides in socket O.
» But actually, you can see itisin socket 1.
» So, NICin socket O is actually sub-optimal.

» How to quantitatively ensure that system is set for optimal performance?

Cores Within A Socket — All In Same

4-8 Core (LCC)

-
| -
\ o) O - C ! o
3 -
Y R~
RIS L ¥ - —
\\ ‘‘‘‘ //
S
. ic_ | ope
r 1 D
-
SR e -~
7 ~
N\
7 D 1 R }\\
/ V‘ Ay vass .
| N O DR [i} \
R

Cores Within A Socket — Not equal

Oroximity

14-18 Core (HCC)

o
| | ‘
\ on on pai €| [Pt - €] ecr -] [Pei €] Fl —
JA0 XA 4400 S sobaly
\ - oo | Pou - b
[_maom J||[_meeq] (=8 ™ Pulnks
AP
" ?
~ B_
~ - - wn o> * e —
] . WG | Cave ™
1im »
ate | LLC Wuc - i~ s w | LG LG | Cane e
15w i o e Cen . ERT Iam L}
S, S, S AL .
L0 A
Cmstw e uc T Cuw o= Comrwm e ue Gave oy
—~ e aw n e c « = P 1im L
4 L0 L0
v wcre | LLC LU | care Cen Cone care | LLC LG | Cate Cor
’ e L B c e v EETL Y Be a
L00
- Caste | LLC LLC | Sworw * e are | LLC WC | e e
J sswe | |sowe b wighore | | € g wdasvm| |2twe K
p——
"{_ _B_ WUC | cana e
—r Ty "
———— —— -
- — -~ - e pros
s T i~ e
7 7
/ N / b
Home | \ | Home | \
| DOR Aosct. DOR ! R Aocct ~0R
\/r‘ Mam Ctr -_— \ { Mem Cte \

Prior to application level

benchmarking..

Without tighteningthese, if you start developingyour application...
And on top of that, if you start measuring application level performance

Root cause analysis is made unnecessarily complex

Instead... what if ..
What if you can do basic benchmarking of key performant elements / ops

You will build strong foundation first

vV v v vV v v VvV Y

Will help you develop Applications confidently towards overall higher performance

What Objects, What Operations to

benchmark?

» In other words, what are the key high performant objects and operations?

» Objects: Sotware wrtes a

descriptor to the

Basesj’lse +2 memory ring and First Descriptor added

. q ea a moves the tail 2 g
» Ring | e %“17?\ Togutar Qﬂl‘} e
WV > NJ
» Mem pool e

Software writes another
descriptor to the memory ring
Head
> M b Uf Head oldest first to

oldest first to AT be added
. be added ,\\X-
H 4 ,\\r 4 ’ ' Second
> O p e ra tl o n S : ' newest latest a : descriptor to

to be added \(f & / be added

\/[\ m\’ - X "' newest latest

> M The tail moves do: fler the newest to be added

em Copy & tail moves down after the ne
descrptor was inserted between the old tal Tail
location and the new tall location Previous Head Head moves towards the tail and
. Head location frees-up the buffer to the SW
> HaSh Operatlons Data from the packet represented by

’X’I his descriptor is stored in memory \n}
. o . S Data from the packet represented b)
» Flow Classification ’ é;, % B g ,’j i descrpor 5 ored n memory
\ ;.J
‘\ZZIL\,’—*J ards

Tail

Tail
Original Head location Previous Head location

»\’X_’Q} Head moves towards the tail and &H}
7 &g < frees-up the buffer to the SW i

@ \J 4’ Head and
a4

Tail

J:[ID& B To;:(l:\er

test_hash_multiwriter_main(void)

{

if (rte_lcore_count() == 1) {

printf("More than one lcore is required to do multiwriter test\n");

return ©;

setlocale(LC_NUMERIC, "");

if (!rte_tm_supported()) {
printf("Hardware transactional memory (lock elision) "
"is NOT supported\n");
} else {
printf("Hardware transactional memory (lock elision) "
“is supported\n");

printf(“Test multi-writer with Hardware transactional memory\n");

use_htm = 1;
if (test_hash_multiwriter() < ©)
return -1;

}

printf("Test multi-writer without Hardware transactional memory\n");
use_htm = ©;
if (test_hash_multiwriter() < ©)

return -1;

return ©;

Tests: Ring, PMD, Table

test ring.c
test ring perf.c

test pmd perf.c
test pmd ring.c
test pmd ring perf.c

test table.c
test table.h
test table acl.c
test table acl.h

test table combined.
test table combined.
test table pipeline.
test table pipeline.

test table ports.c
test table ports.h

test table tables.c
t+toct +ahle tablec h

-5 0O D 0O

Router, Memcpy, Hash

test lpm.c
test lpmb6.c
test lpm6 data.h
test 1pm6 perf.c
test lpm perf.c

test malloc.c

test mbuf.c

test member.c

test _member perf.c
test _memcpy.c

test _memcpy perf.c
test _memory.c

test _mempool.c

test mempool perf.c
test _memzone.c

test hash.c

test hash functions.c
test hash multiwriter.c
test hash _perf.c

test hash _scaling.c

Tests: Crypto, Event, Flow Classity

test cryptodev.c
test cryptodev.h

test _event eth rx_adapter.c
test _event ring.c

test cryptodev_aead test vectors.h

test cryptodev_aes test vectors.h test_eventdev.c
test _cryptodev_blockcipher.c test_eventdev_octeontx.c
test cryptodev_blockcipher.h test eventdev_sw.c

test cryptodev_des test vectors.h

test cryptodev_hash test vectors.h

test cryptodev_hmac test vectors.h

test cryptodev_kasumi_hash test vectors.h test_flow_classify.c
test cryptodev_kasumi_ test vectors.h test_flow_classify.h
test cryptodev_snow3g hash test vectors.h

test cryptodev_snow3g test vectors.h

test cryptodev _zuc test vectors.h

Mempool performance

Each core get *n_keep* objects per bulk of *n_get_bulk*. Then,
objects are put back in the pool per bulk of *n_put_bulk*.

This sequence is done during TIME_S seconds.

This test is done on the following configurations:

* - Cores configuration (*cores*)

* - One core with cache

* - Two cores with cache

* - Max. cores with cache

* - One core without cache

* - Two cores without cache

* - Max. cores without cache

* - One core with user-owned cache

* - Two cores with user-owned cache
* - Max. cores with user-owned cache
-

* - Bulk size (*n_get_bulk*, *n_put_bulk*)
*

* - Bulk get from 1 to 32

* - Bulk put from 1 to 32

* - Number of kept objects (*n_keep*)
-

* - 32

* - 128

SPSC MPMC —SRiSEE =

Cycle Cost [Enqueue + Dequeue] in CPU cycles

B Cycle Cost [Enqueue + Dequeue)

o - | — A _— . — - o - - -

Siagie Core I vt e neic) iage Cor el | e

UL R 1[2]a7806 32 [1]274]8016 32 (1124|8016 32 [1]2]4[81602 1.2.1.“:16 32m’

Single Producer/Single Consumer Multi Producer /Multi Consumer

V\/here i@ Fmd Them & How |t

>

The app directory contains sample applications that are used to test DPDK (such as autotests)
or the Poll Mode Drivers (test-pmd):

app

+-- chkincs # Test program to check include dependencies
+—-.-. gn&d}v}eoﬁeﬁ‘ ecccoéoleilo s0% 0816800 é 4% ¢ 00 7 %Ye *oces,,

e ;%S:'. 000000000 # .A:lgoot.eits. EO. ;/e:l.lgia:t.e DPD§ fgat.u;e& .

+-- test-acl 3 Test the ACL library

+-- test-pipeline # Test the IP Pipeline framework

+-- test-pmd # Test and benchmark poll mode drivers

/* Delete */

status = 96

for (i = ©; i < NUM_ROUTE_ENTRIES; i++) {
/* rte_lpm_delete(lpm, ip, depth) */
status += rte_lpm_delete(lpm, large_route_table[i].ip,
large_route_table[i].depth);

}

total_time - begin;

printf("Average LPM Delete: %g cycles\n",
(double)total_time / NUM_ROUTE_ENTRIES);

Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2®, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information

regarding the specific instruction sets covered by this notice.

Notice revision #20110804

M Jay

Muthurajan.Jayakumar@intel.com

Questiomss

