DPDK

Make DPDK's software traffic

manager a deployable solution for
vBNG

CSABA KESZEI, ERICSSON

DPDK Summit - San Jose — 2017

#DPDKSummit

» The TM problem in access and aggregation networks

» Limitations of DPDK software TM in the light of real deployments
» Other performance and usability tunings

#FDPDKSummit

Why do we need Traffic Management?

» Physical access network topology might Layer 2 connectivity model
be radically different =

» Intermediate nodes typically lack per E‘:/\
subscriber information Q_

» Shape traffic in (vV)BNG not to cause any ﬁ
congestion in the access network B

& |

Model Access Network transport capabilities in TM tree

Pipe Traffic class
(L2, subscriber) (L1)
o "SubSubPort” I
/Liyer 2 connectivity model L3, CVLAN) & ST gg?ue
.%‘“ % SubPort . T
o SN nadEes) g iiniiniiin
-:’r-"':‘:- L2 m ' (k= UIHIH]IH:
o - O
(L4 - QI
= = &
Video L2 Switch . . .'
@ : & O
. QIO
o Ce— QT
Shape traffic in (v)BNG not to cause any Traffic management O
congestion in the access network. model (mirror) a-OMIIIIC
CRe— QI
I

(_) Token bucket

Port - Subport ... - Pipe topology requirements

» Number of children should be dynamic “SubSubPort”

; ; ; g L3, CVLAN
- Topology change without traffic disturbance on the rest of the tree is a (,)

requirement SubPort
(L3, SVLAN

» Number of levels should also be dynamic
- SVLAN4+CVLAN is not supported by DPDK at the moment ot

- Tunneling cases (like L2TP) could require more levels

Storeftraverse subport hierarchy as a linked list

struct rte_sched_pipe { struct rte_sched_subport {

[--] []
uintl6 t pipe_subport id; uintl6 t subport parent;

} }
» Refill subport credits in connection with pipe credit update

» Deduct/verify chain of subport credits upon pipe dequeue
» Fits into our processing budget in case of

- ‘moderate’ number of subports

- 3 levels

» No contradictions with new rte_tm_node_add() API

Port SubPort S peubPon” LIPE ,
L4y (L3, SVLAN) (LSL’: C\L;LAN) (Lz,s@scnber)

O

On-demand queue allocations

» Static allocation of queues wastes memory

- 16*8+256 = 32K/Pipe for 256 long queues —
Corfiguration exarnple:
- 2GB for 64K subscriber slots
port ethermet 1/1
> : . . no shutdown
Real topology Is more diverse and dynamic, encapsLlation dotlg
preallocating worst case is not feasible ggﬁg i dlgh sropsianon %ﬂgﬂgﬁhooo
))) gos rate max 100000
» Low hanging fruit: allocate queues dynamically idle-down 60
startup-tirner 600
- Fits into prefetch pipeline Ser\fice Clips dual-stack source-rmac
service clips dhep max 100 context CLIPS_12
service clips dhepve max 100 cortext CLIPS_12

- Allows for per pipe queue sizes

struct rte_sched pipe {

[]
}

struct rte_ mbuf **gbase;

On-demand queue allocations

Pipe Traffic class
(L2, subscriber) (L1)
p s "SubSubPort” -
Layer 2 connectivity model (L3, CVLAN) b DI[[[[[[[[[[[[[[[[[IIE Queve
= 7, SubPort o
T i (L3, SVLAN .
=l A ([
=Y. Lom QNI
\Vides
oot I

Data
Voice |
Video

Remaining bandwidth

» Use case: re-distribute remaining bandwidth | struct ne_sched_subport {
in a subtree to users without configured TM |L] —
uint32_t th credits[2];

- Not feasible with static configuration }
{{ We do not use subport level TCs

- Algorithmic change is needed at {sub)port level

» Use RFC2697 color-aware srTCM
- TM enabled use conform {green) bucket
- Rest use excess (yellow) bucket

- Red means skip to next pipe

e
Port SubPort "SubSubPort” (L'g subscnber)

(L4) (L3, SVLAN) (L2 CVLAN)

Over-subscription

» Fixed pipe traversal order

| | 10OMELC
» First-come first served on subport E= A T™ 100M
|eve| lOOME - mﬁ L3 L3

» Nothing guarantees

— Fairness - "
- Configurable resource share = /\j; (25w

Over-subscription

» |dea: dynamically mark green the fair share

- Inspired by ‘TC3 over-subscription” but more generic (Pl_ig?subsmber) (Tlfi‘;ﬁc Bl
- Use RFC2698 trTCM on pipe level (PIR = tb _rate) SubPort

- Scale all CIRs in the subtree to match configured subport rate e

- Configured CIRs become weights @

- Users without configured TM get PIR = port rate, CIR =0 /

» Control loop

- Pipes visited in a fixed order, to make it fair, make changes once
per full round

- Bottleneck: subport where we are out of conform credits

*» Theoretically one per path

- Adjust subport associated scale
* QOwershoot is the bigger problem
*» Unused bandwidth is re-distributed in an unfair way @

Speed up credit updates

» idiv instruction is also expensive

FPU operation is removed via commit:

» ‘sched: eliminate floating point in calculating byte clock’

Few integer divisions are still visible hot-spots

> After simplifications: shift + multiply

Granularity is impacted

Actual rate is the fraction of port rate

grinder_credits_update(}

!

[::]
uintéd_t n_periods,
M Subport TB ¥
n_periods =
(port-=time - subport-=th_time}/
subport — th_period,
[-]
MPipe TB Y
n_periods =
(port-=time - pipe-=th_time} /
params — tb_period,

uintéd _t period = (time - th_time} =>
th_period_bits;

th_time += period << th_period_bits;

tokens =th_credits_per_period ¥ period,

th_period_bits = [og2(512.0 / rate},
th_credits_per_period = rate ¥
(1 << th_period_bits},

Effective storage of hierarchy of rates

» tc periodis not intuitive

Example for 40ms:

* Minimal rate is 300kbps to pass a 1500 bytes packet

» At least BM buffer per queue (78125 64 bytes packets) is needed to
avoid buffer under-run for 1G rate, unrealistic

No intuitive burst size

» Store TC rates, CIR as a fraction of TB rate

Cost is granularity, simplifications possible by handling CIR as
% of TB rate

Fits into the processing chain of division-less credit updates

Opens the possibility of real TC level burst size (+CBS)

» Saves few bytes in the structures

Especially when profiles need to be embedded

M Pipe traffic classes %/
uint32_ttc_period,
uint32_ttc_credits_per_period[4];

M Traffic classes (TCs} ¥
uintGé4_ttc_time; M time of next update %/
uint32_ttc_credits[4];

M Pipe traffic class shares from root rate (1/128} */
uintd_ttc_ratiofd],

uint32_ttc_credits(4];
M keeptrack of lost credits on TC/CIR level %
uintd_ttc_remainder,;

Complete picture via Ericsson vBNG CLI

gos policy pwfg2 pwfg card-family 3

rate maximum 100000

queue-map gmapl

77T~ gueue 0 priority 0 weight 100
—T—queue 1 priority 1 weight 50

queue 2 priority 1 weight 50
queue 3 priority 2 weight 25

queue 4 priority 2 weight 25

queue 5 priority 2 weight 25

queue 6 priority 2 weight 25

Jaim

queue 7 priority 3 weight 100

queue priorty-group 0 rate percentage 1

queue priorty-group 1 rate percentage 5
queue priority-group 2 rate percentage 100

////é%//

Application [T
visible TM [T

JaMm

queues

