
Getting Started Guide for Linux
Release 16.07.2

November 30, 2016

CONTENTS

1 Introduction 1
1.1 Documentation Roadmap . 1

2 System Requirements 2
2.1 BIOS Setting Prerequisite on x86 . 2
2.2 Compilation of the DPDK . 2
2.3 Running DPDK Applications . 3

3 Compiling the DPDK Target from Source 7
3.1 Install the DPDK and Browse Sources . 7
3.2 Installation of DPDK Target Environments . 7
3.3 Browsing the Installed DPDK Environment Target 8
3.4 Loading Modules to Enable Userspace IO for DPDK 9
3.5 Loading VFIO Module . 9
3.6 Binding and Unbinding Network Ports to/from the Kernel Modules 9

4 Compiling and Running Sample Applications 11
4.1 Compiling a Sample Application . 11
4.2 Running a Sample Application . 12
4.3 Additional Sample Applications . 14
4.4 Additional Test Applications . 14

5 Enabling Additional Functionality 15
5.1 High Precision Event Timer HPET) Functionality 15
5.2 Running DPDK Applications Without Root Privileges 16
5.3 Power Management and Power Saving Functionality 16
5.4 Using Linux Core Isolation to Reduce Context Switches 17
5.5 Loading the DPDK KNI Kernel Module . 17
5.6 Using Linux IOMMU Pass-Through to Run DPDK with Intel® VT-d 17
5.7 High Performance of Small Packets on 40G NIC 17

6 Quick Start Setup Script 19
6.1 Script Organization . 19
6.2 Use Cases . 20
6.3 Applications . 22

7 How to get best performance with NICs on Intel platforms 24
7.1 Hardware and Memory Requirements . 24
7.2 Configurations before running DPDK . 26
7.3 Example of getting best performance for an Intel NIC 27

i

CHAPTER

ONE

INTRODUCTION

This document contains instructions for installing and configuring the Data Plane Development
Kit (DPDK) software. It is designed to get customers up and running quickly. The document
describes how to compile and run a DPDK application in a Linux application (linuxapp) envi-
ronment, without going deeply into detail.

1.1 Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

• Release Notes: Provides release-specific information, including supported features, lim-
itations, fixed issues, known issues and so on. Also, provides the answers to frequently
asked questions in FAQ format.

• Getting Started Guide (this document): Describes how to install and configure the DPDK;
designed to get users up and running quickly with the software.

• Programmer’s Guide: Describes:

– The software architecture and how to use it (through examples), specifically in a
Linux application (linuxapp) environment

– The content of the DPDK, the build system (including the commands that can be
used in the root DPDK Makefile to build the development kit and an application) and
guidelines for porting an application

– Optimizations used in the software and those that should be considered for new
development

A glossary of terms is also provided.

• API Reference: Provides detailed information about DPDK functions, data structures and
other programming constructs.

• Sample Applications User Guide: Describes a set of sample applications. Each chap-
ter describes a sample application that showcases specific functionality and provides
instructions on how to compile, run and use the sample application.

1

CHAPTER

TWO

SYSTEM REQUIREMENTS

This chapter describes the packages required to compile the DPDK.

Note: If the DPDK is being used on an Intel® Communications Chipset 89xx Series platform,
please consult the Intel® Communications Chipset 89xx Series Software for Linux Getting
Started Guide.

2.1 BIOS Setting Prerequisite on x86

For the majority of platforms, no special BIOS settings are needed to use basic DPDK func-
tionality. However, for additional HPET timer and power management functionality, and high
performance of small packets on 40G NIC, BIOS setting changes may be needed. Consult the
section on Enabling Additional Functionality for more information on the required changes.

2.2 Compilation of the DPDK

Required Tools:

Note: Testing has been performed using Fedora 18. The setup commands and installed
packages needed on other systems may be different. For details on other Linux distributions
and the versions tested, please consult the DPDK Release Notes.

• GNU make.

• coreutils: cmp, sed, grep, arch, etc.

• gcc: versions 4.5.x or later is recommended for i686/x86_64. Versions 4.8.x or
later is recommended for ppc_64 and x86_x32 ABI. On some distributions, some
specific compiler flags and linker flags are enabled by default and affect performance
(-fstack-protector, for example). Please refer to the documentation of your distri-
bution and to gcc -dumpspecs.

• libc headers, often packaged as gcc-multilib (glibc-devel.i686 /
libc6-dev-i386; glibc-devel.x86_64 / libc6-dev for 64-bit compilation
on Intel architecture; glibc-devel.ppc64 for 64 bit IBM Power architecture;)

• Linux kernel headers or sources required to build kernel modules. (kernel - devel.x86_64;
kernel - devel.ppc64)

• Additional packages required for 32-bit compilation on 64-bit systems are:

2

Getting Started Guide for Linux, Release 16.07.2

– glibc.i686, libgcc.i686, libstdc++.i686 and glibc-devel.i686 for Intel i686/x86_64;

– glibc.ppc64, libgcc.ppc64, libstdc++.ppc64 and glibc-devel.ppc64 for IBM ppc_64;

Note: x86_x32 ABI is currently supported with distribution packages only on Ubuntu higher
than 13.10 or recent Debian distribution. The only supported compiler is gcc 4.8+.

Note: Python, version 2.6 or 2.7, to use various helper scripts included in the DPDK package.

Optional Tools:

• Intel® C++ Compiler (icc). For installation, additional libraries may be required. See the
icc Installation Guide found in the Documentation directory under the compiler installa-
tion.

• IBM® Advance ToolChain for Powerlinux. This is a set of open source development
tools and runtime libraries which allows users to take leading edge advantage of IBM’s
latest POWER hardware features on Linux. To install it, see the IBM official installation
document.

• libpcap headers and libraries (libpcap-devel) to compile and use the libpcap-based
poll-mode driver. This driver is disabled by default and can be enabled by setting
CONFIG_RTE_LIBRTE_PMD_PCAP=y in the build time config file.

• libarchive headers and library are needed for some unit tests using tar to get their re-
sources.

2.3 Running DPDK Applications

To run an DPDK application, some customization may be required on the target machine.

2.3.1 System Software

Required:

• Kernel version >= 2.6.34

The kernel version in use can be checked using the command:

uname -r

• glibc >= 2.7 (for features related to cpuset)

The version can be checked using the ldd --version command.

• Kernel configuration

In the Fedora OS and other common distributions, such as Ubuntu, or Red Hat Enter-
prise Linux, the vendor supplied kernel configurations can be used to run most DPDK
applications.

For other kernel builds, options which should be enabled for DPDK include:

– UIO support

– HUGETLBFS

2.3. Running DPDK Applications 3

Getting Started Guide for Linux, Release 16.07.2

– PROC_PAGE_MONITOR support

– HPET and HPET_MMAP configuration options should also be enabled if HPET sup-
port is required. See the section on High Precision Event Timer (HPET) Functional-
ity for more details.

2.3.2 Use of Hugepages in the Linux Environment

Hugepage support is required for the large memory pool allocation used for packet buffers (the
HUGETLBFS option must be enabled in the running kernel as indicated the previous section).
By using hugepage allocations, performance is increased since fewer pages are needed, and
therefore less Translation Lookaside Buffers (TLBs, high speed translation caches), which re-
duce the time it takes to translate a virtual page address to a physical page address. Without
hugepages, high TLB miss rates would occur with the standard 4k page size, slowing perfor-
mance.

Reserving Hugepages for DPDK Use

The allocation of hugepages should be done at boot time or as soon as possible after system
boot to prevent memory from being fragmented in physical memory. To reserve hugepages at
boot time, a parameter is passed to the Linux kernel on the kernel command line.

For 2 MB pages, just pass the hugepages option to the kernel. For example, to reserve 1024
pages of 2 MB, use:

hugepages=1024

For other hugepage sizes, for example 1G pages, the size must be specified explicitly and can
also be optionally set as the default hugepage size for the system. For example, to reserve 4G
of hugepage memory in the form of four 1G pages, the following options should be passed to
the kernel:

default_hugepagesz=1G hugepagesz=1G hugepages=4

Note: The hugepage sizes that a CPU supports can be determined from the CPU flags on Intel
architecture. If pse exists, 2M hugepages are supported; if pdpe1gb exists, 1G hugepages are
supported. On IBM Power architecture, the supported hugepage sizes are 16MB and 16GB.

Note: For 64-bit applications, it is recommended to use 1 GB hugepages if the platform
supports them.

In the case of a dual-socket NUMA system, the number of hugepages reserved at boot time is
generally divided equally between the two sockets (on the assumption that sufficient memory
is present on both sockets).

See the Documentation/kernel-parameters.txt file in your Linux source tree for further details
of these and other kernel options.

Alternative:

For 2 MB pages, there is also the option of allocating hugepages after the system has booted.
This is done by echoing the number of hugepages required to a nr_hugepages file in the
/sys/devices/ directory. For a single-node system, the command to use is as follows (as-
suming that 1024 pages are required):

2.3. Running DPDK Applications 4

Getting Started Guide for Linux, Release 16.07.2

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

On a NUMA machine, pages should be allocated explicitly on separate nodes:

echo 1024 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
echo 1024 > /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages

Note: For 1G pages, it is not possible to reserve the hugepage memory after the system has
booted.

Using Hugepages with the DPDK

Once the hugepage memory is reserved, to make the memory available for DPDK use, perform
the following steps:

mkdir /mnt/huge
mount -t hugetlbfs nodev /mnt/huge

The mount point can be made permanent across reboots, by adding the following line to the
/etc/fstab file:

nodev /mnt/huge hugetlbfs defaults 0 0

For 1GB pages, the page size must be specified as a mount option:

nodev /mnt/huge_1GB hugetlbfs pagesize=1GB 0 0

2.3.3 Xen Domain0 Support in the Linux Environment

The existing memory management implementation is based on the Linux kernel hugepage
mechanism. On the Xen hypervisor, hugepage support for DomainU (DomU) Guests means
that DPDK applications work as normal for guests.

However, Domain0 (Dom0) does not support hugepages. To work around this limitation, a new
kernel module rte_dom0_mm is added to facilitate the allocation and mapping of memory via
IOCTL (allocation) and MMAP (mapping).

Enabling Xen Dom0 Mode in the DPDK

By default, Xen Dom0 mode is disabled in the DPDK build configuration files. To support
Xen Dom0, the CONFIG_RTE_LIBRTE_XEN_DOM0 setting should be changed to “y”, which
enables the Xen Dom0 mode at compile time.

Furthermore, the CONFIG_RTE_EAL_ALLOW_INV_SOCKET_ID setting should also be
changed to “y” in the case of the wrong socket ID being received.

Loading the DPDK rte_dom0_mm Module

To run any DPDK application on Xen Dom0, the rte_dom0_mm module must be loaded into
the running kernel with rsv_memsize option. The module is found in the kmod sub-directory
of the DPDK target directory. This module should be loaded using the insmod command as
shown below (assuming that the current directory is the DPDK target directory):

sudo insmod kmod/rte_dom0_mm.ko rsv_memsize=X

2.3. Running DPDK Applications 5

Getting Started Guide for Linux, Release 16.07.2

The value X cannot be greater than 4096(MB).

Configuring Memory for DPDK Use

After the rte_dom0_mm.ko kernel module has been loaded, the user must configure the mem-
ory size for DPDK usage. This is done by echoing the memory size to a memsize file in the
/sys/devices/ directory. Use the following command (assuming that 2048 MB is required):

echo 2048 > /sys/kernel/mm/dom0-mm/memsize-mB/memsize

The user can also check how much memory has already been used:

cat /sys/kernel/mm/dom0-mm/memsize-mB/memsize_rsvd

Xen Domain0 does not support NUMA configuration, as a result the --socket-mem command
line option is invalid for Xen Domain0.

Note: The memsize value cannot be greater than the rsv_memsize value.

Running the DPDK Application on Xen Domain0

To run the DPDK application on Xen Domain0, an extra command line option --xen-dom0 is
required.

2.3. Running DPDK Applications 6

CHAPTER

THREE

COMPILING THE DPDK TARGET FROM SOURCE

Note: Parts of this process can also be done using the setup script described in the Quick
Start Setup Script section of this document.

3.1 Install the DPDK and Browse Sources

First, uncompress the archive and move to the uncompressed DPDK source directory:

unzip DPDK-<version>.zip
cd DPDK-<version>

ls
app/ config/ examples/ lib/ LICENSE.GPL LICENSE.LGPL Makefile
mk/ scripts/ tools/

The DPDK is composed of several directories:

• lib: Source code of DPDK libraries

• drivers: Source code of DPDK poll-mode drivers

• app: Source code of DPDK applications (automatic tests)

• examples: Source code of DPDK application examples

• config, tools, scripts, mk: Framework-related makefiles, scripts and configuration

3.2 Installation of DPDK Target Environments

The format of a DPDK target is:

ARCH-MACHINE-EXECENV-TOOLCHAIN

where:

• ARCH can be: i686, x86_64, ppc_64

• MACHINE can be: native, ivshmem, power8

• EXECENV can be: linuxapp, bsdapp

• TOOLCHAIN can be: gcc, icc

7

Getting Started Guide for Linux, Release 16.07.2

The targets to be installed depend on the 32-bit and/or 64-bit packages and compilers installed
on the host. Available targets can be found in the DPDK/config directory. The defconfig_ prefix
should not be used.

Note: Configuration files are provided with the RTE_MACHINE optimization level set. Within
the configuration files, the RTE_MACHINE configuration value is set to native, which means that
the compiled software is tuned for the platform on which it is built. For more information on this
setting, and its possible values, see the DPDK Programmers Guide.

When using the Intel® C++ Compiler (icc), one of the following commands should be invoked
for 64-bit or 32-bit use respectively. Notice that the shell scripts update the $PATH variable and
therefore should not be performed in the same session. Also, verify the compiler’s installation
directory since the path may be different:

source /opt/intel/bin/iccvars.sh intel64
source /opt/intel/bin/iccvars.sh ia32

To install and make targets, use the make install T=<target> command in the top-level
DPDK directory.

For example, to compile a 64-bit target using icc, run:

make install T=x86_64-native-linuxapp-icc

To compile a 32-bit build using gcc, the make command should be:

make install T=i686-native-linuxapp-gcc

To prepare a target without building it, for example, if the configuration changes need to be
made before compilation, use the make config T=<target> command:

make config T=x86_64-native-linuxapp-gcc

Warning: Any kernel modules to be used, e.g. igb_uio, kni, must be compiled with
the same kernel as the one running on the target. If the DPDK is not being built on the
target machine, the RTE_KERNELDIR environment variable should be used to point the
compilation at a copy of the kernel version to be used on the target machine.

Once the target environment is created, the user may move to the target environment directory
and continue to make code changes and re-compile. The user may also make modifications to
the compile-time DPDK configuration by editing the .config file in the build directory. (This is a
build-local copy of the defconfig file from the top- level config directory).

cd x86_64-native-linuxapp-gcc
vi .config
make

In addition, the make clean command can be used to remove any existing compiled files for a
subsequent full, clean rebuild of the code.

3.3 Browsing the Installed DPDK Environment Target

Once a target is created it contains all libraries, including poll-mode drivers, and header files
for the DPDK environment that are required to build customer applications. In addition, the test
and testpmd applications are built under the build/app directory, which may be used for testing.
A kmod directory is also present that contains kernel modules which may be loaded if needed.

3.3. Browsing the Installed DPDK Environment Target 8

Getting Started Guide for Linux, Release 16.07.2

ls x86_64-native-linuxapp-gcc

app build include kmod lib Makefile

3.4 Loading Modules to Enable Userspace IO for DPDK

To run any DPDK application, a suitable uio module can be loaded into the running kernel.
In many cases, the standard uio_pci_generic module included in the Linux kernel can
provide the uio capability. This module can be loaded using the command

sudo modprobe uio_pci_generic

As an alternative to the uio_pci_generic, the DPDK also includes the igb_uio module which
can be found in the kmod subdirectory referred to above. It can be loaded as shown below:

sudo modprobe uio
sudo insmod kmod/igb_uio.ko

Note: For some devices which lack support for legacy interrupts, e.g. virtual function (VF)
devices, the igb_uio module may be needed in place of uio_pci_generic.

Since DPDK release 1.7 onward provides VFIO support, use of UIO is optional for platforms
that support using VFIO.

3.5 Loading VFIO Module

To run an DPDK application and make use of VFIO, the vfio-pci module must be loaded:

sudo modprobe vfio-pci

Note that in order to use VFIO, your kernel must support it. VFIO kernel modules have been
included in the Linux kernel since version 3.6.0 and are usually present by default, however
please consult your distributions documentation to make sure that is the case.

Also, to use VFIO, both kernel and BIOS must support and be configured to use IO virtualiza-
tion (such as Intel® VT-d).

For proper operation of VFIO when running DPDK applications as a non-privileged user, cor-
rect permissions should also be set up. This can be done by using the DPDK setup script
(called dpdk-setup.sh and located in the tools directory).

3.6 Binding and Unbinding Network Ports to/from the Kernel Mod-
ules

As of release 1.4, DPDK applications no longer automatically unbind all supported network
ports from the kernel driver in use. Instead, all ports that are to be used by an DPDK ap-
plication must be bound to the uio_pci_generic, igb_uio or vfio-pci module before
the application is run. Any network ports under Linux* control will be ignored by the DPDK
poll-mode drivers and cannot be used by the application.

3.4. Loading Modules to Enable Userspace IO for DPDK 9

Getting Started Guide for Linux, Release 16.07.2

Warning: The DPDK will, by default, no longer automatically unbind network ports from
the kernel driver at startup. Any ports to be used by an DPDK application must be unbound
from Linux* control and bound to the uio_pci_generic, igb_uio or vfio-pci module
before the application is run.

To bind ports to the uio_pci_generic, igb_uio or vfio-pci module for DPDK use, and
then subsequently return ports to Linux* control, a utility script called dpdk_nic _bind.py is
provided in the tools subdirectory. This utility can be used to provide a view of the current
state of the network ports on the system, and to bind and unbind those ports from the different
kernel modules, including the uio and vfio modules. The following are some examples of how
the script can be used. A full description of the script and its parameters can be obtained by
calling the script with the --help or --usage options. Note that the uio or vfio kernel modules
to be used, should be loaded into the kernel before running the dpdk-devbind.py script.

Warning: Due to the way VFIO works, there are certain limitations to which devices can
be used with VFIO. Mainly it comes down to how IOMMU groups work. Any Virtual Function
device can be used with VFIO on its own, but physical devices will require either all ports
bound to VFIO, or some of them bound to VFIO while others not being bound to anything at
all.
If your device is behind a PCI-to-PCI bridge, the bridge will then be part of the IOMMU
group in which your device is in. Therefore, the bridge driver should also be unbound from
the bridge PCI device for VFIO to work with devices behind the bridge.

Warning: While any user can run the dpdk-devbind.py script to view the status of the
network ports, binding or unbinding network ports requires root privileges.

To see the status of all network ports on the system:

./tools/dpdk-devbind.py --status

Network devices using DPDK-compatible driver
==
0000:82:00.0 '82599EB 10-GbE NIC' drv=uio_pci_generic unused=ixgbe
0000:82:00.1 '82599EB 10-GbE NIC' drv=uio_pci_generic unused=ixgbe

Network devices using kernel driver
===================================
0000:04:00.0 'I350 1-GbE NIC' if=em0 drv=igb unused=uio_pci_generic *Active*
0000:04:00.1 'I350 1-GbE NIC' if=eth1 drv=igb unused=uio_pci_generic
0000:04:00.2 'I350 1-GbE NIC' if=eth2 drv=igb unused=uio_pci_generic
0000:04:00.3 'I350 1-GbE NIC' if=eth3 drv=igb unused=uio_pci_generic

Other network devices
=====================
<none>

To bind device eth1,‘‘04:00.1‘‘, to the uio_pci_generic driver:

./tools/dpdk-devbind.py --bind=uio_pci_generic 04:00.1

or, alternatively,

./tools/dpdk-devbind.py --bind=uio_pci_generic eth1

To restore device 82:00.0 to its original kernel binding:

./tools/dpdk-devbind.py --bind=ixgbe 82:00.0

3.6. Binding and Unbinding Network Ports to/from the Kernel Modules 10

CHAPTER

FOUR

COMPILING AND RUNNING SAMPLE APPLICATIONS

The chapter describes how to compile and run applications in an DPDK environment. It also
provides a pointer to where sample applications are stored.

Note: Parts of this process can also be done using the setup script described the Quick Start
Setup Script section of this document.

4.1 Compiling a Sample Application

Once an DPDK target environment directory has been created (such as
x86_64-native-linuxapp-gcc), it contains all libraries and header files required to
build an application.

When compiling an application in the Linux* environment on the DPDK, the following variables
must be exported:

• RTE_SDK - Points to the DPDK installation directory.

• RTE_TARGET - Points to the DPDK target environment directory.

The following is an example of creating the helloworld application, which runs in the DPDK
Linux environment. This example may be found in the ${RTE_SDK}/examples directory.

The directory contains the main.c file. This file, when combined with the libraries in the
DPDK target environment, calls the various functions to initialize the DPDK environment, then
launches an entry point (dispatch application) for each core to be utilized. By default, the binary
is generated in the build directory.

cd examples/helloworld/
export RTE_SDK=$HOME/DPDK
export RTE_TARGET=x86_64-native-linuxapp-gcc

make
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

ls build/app
helloworld helloworld.map

Note: In the above example, helloworld was in the directory structure of the DPDK. How-
ever, it could have been located outside the directory structure to keep the DPDK structure

11

Getting Started Guide for Linux, Release 16.07.2

intact. In the following case, the helloworld application is copied to a new directory as a
new starting point.

export RTE_SDK=/home/user/DPDK
cp -r $(RTE_SDK)/examples/helloworld my_rte_app
cd my_rte_app/
export RTE_TARGET=x86_64-native-linuxapp-gcc

make
CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

4.2 Running a Sample Application

Warning: The UIO drivers and hugepages must be setup prior to running an application.

Warning: Any ports to be used by the application must be already bound to an appropriate
kernel module, as described in Binding and Unbinding Network Ports to/from the Kernel
Modules, prior to running the application.

The application is linked with the DPDK target environment’s Environmental Abstraction Layer
(EAL) library, which provides some options that are generic to every DPDK application.

The following is the list of options that can be given to the EAL:

./rte-app -c COREMASK [-n NUM] [-b <domain:bus:devid.func>] \
[--socket-mem=MB,...] [-m MB] [-r NUM] [-v] [--file-prefix] \
[--proc-type <primary|secondary|auto>] [-- xen-dom0]

The EAL options are as follows:

• -c COREMASK: An hexadecimal bit mask of the cores to run on. Note that core number-
ing can change between platforms and should be determined beforehand.

• -n NUM: Number of memory channels per processor socket.

• -b <domain:bus:devid.func>: Blacklisting of ports; prevent EAL from using speci-
fied PCI device (multiple -b options are allowed).

• --use-device: use the specified Ethernet device(s) only. Use comma-separate
[domain:]bus:devid.func values. Cannot be used with -b option.

• --socket-mem: Memory to allocate from hugepages on specific sockets.

• -m MB: Memory to allocate from hugepages, regardless of processor socket. It is rec-
ommended that --socket-mem be used instead of this option.

• -r NUM: Number of memory ranks.

• -v: Display version information on startup.

• --huge-dir: The directory where hugetlbfs is mounted.

• --file-prefix: The prefix text used for hugepage filenames.

• --proc-type: The type of process instance.

4.2. Running a Sample Application 12

Getting Started Guide for Linux, Release 16.07.2

• --xen-dom0: Support application running on Xen Domain0 without hugetlbfs.

• --vmware-tsc-map: Use VMware TSC map instead of native RDTSC.

• --base-virtaddr: Specify base virtual address.

• --vfio-intr: Specify interrupt type to be used by VFIO (has no effect if VFIO is not
used).

The -c and option is mandatory; the others are optional.

Copy the DPDK application binary to your target, then run the application as follows (assuming
the platform has four memory channels per processor socket, and that cores 0-3 are present
and are to be used for running the application):

./helloworld -c f -n 4

Note: The --proc-type and --file-prefix EAL options are used for running multiple
DPDK processes. See the “Multi-process Sample Application” chapter in the DPDK Sample
Applications User Guide and the DPDK Programmers Guide for more details.

4.2.1 Logical Core Use by Applications

The coremask parameter is always mandatory for DPDK applications. Each bit of the mask
corresponds to the equivalent logical core number as reported by Linux. Since these logical
core numbers, and their mapping to specific cores on specific NUMA sockets, can vary from
platform to platform, it is recommended that the core layout for each platform be considered
when choosing the coremask to use in each case.

On initialization of the EAL layer by an DPDK application, the logical cores to be used and their
socket location are displayed. This information can also be determined for all cores on the
system by examining the /proc/cpuinfo file, for example, by running cat /proc/cpuinfo.
The physical id attribute listed for each processor indicates the CPU socket to which it belongs.
This can be useful when using other processors to understand the mapping of the logical cores
to the sockets.

Note: A more graphical view of the logical core layout may be obtained using the lstopo
Linux utility. On Fedora Linux, this may be installed and run using the following command:

sudo yum install hwloc
./lstopo

Warning: The logical core layout can change between different board layouts and should
be checked before selecting an application coremask.

4.2.2 Hugepage Memory Use by Applications

When running an application, it is recommended to use the same amount of memory as that
allocated for hugepages. This is done automatically by the DPDK application at startup, if no
-m or --socket-mem parameter is passed to it when run.

If more memory is requested by explicitly passing a -m or --socket-mem value, the applica-
tion fails. However, the application itself can also fail if the user requests less memory than the

4.2. Running a Sample Application 13

Getting Started Guide for Linux, Release 16.07.2

reserved amount of hugepage-memory, particularly if using the -m option. The reason is as
follows. Suppose the system has 1024 reserved 2 MB pages in socket 0 and 1024 in socket 1.
If the user requests 128 MB of memory, the 64 pages may not match the constraints:

• The hugepage memory by be given to the application by the kernel in socket 1 only. In
this case, if the application attempts to create an object, such as a ring or memory pool
in socket 0, it fails. To avoid this issue, it is recommended that the --socket-mem option
be used instead of the -m option.

• These pages can be located anywhere in physical memory, and, although the DPDK EAL
will attempt to allocate memory in contiguous blocks, it is possible that the pages will not
be contiguous. In this case, the application is not able to allocate big memory pools.

The socket-mem option can be used to request specific amounts of memory for specific sock-
ets. This is accomplished by supplying the --socket-mem flag followed by amounts of mem-
ory requested on each socket, for example, supply --socket-mem=0,512 to try and reserve
512 MB for socket 1 only. Similarly, on a four socket system, to allocate 1 GB memory on
each of sockets 0 and 2 only, the parameter --socket-mem=1024,0,1024 can be used.
No memory will be reserved on any CPU socket that is not explicitly referenced, for example,
socket 3 in this case. If the DPDK cannot allocate enough memory on each socket, the EAL
initialization fails.

4.3 Additional Sample Applications

Additional sample applications are included in the ${RTE_SDK}/examples directory. These
sample applications may be built and run in a manner similar to that described in earlier sec-
tions in this manual. In addition, see the DPDK Sample Applications User Guide for a descrip-
tion of the application, specific instructions on compilation and execution and some explanation
of the code.

4.4 Additional Test Applications

In addition, there are two other applications that are built when the libraries are created. The
source files for these are in the DPDK/app directory and are called test and testpmd. Once the
libraries are created, they can be found in the build/app directory.

• The test application provides a variety of specific tests for the various functions in the
DPDK.

• The testpmd application provides a number of different packet throughput tests and ex-
amples of features such as how to use the Flow Director found in the Intel® 82599 10
Gigabit Ethernet Controller.

4.3. Additional Sample Applications 14

CHAPTER

FIVE

ENABLING ADDITIONAL FUNCTIONALITY

5.1 High Precision Event Timer HPET) Functionality

5.1.1 BIOS Support

The High Precision Timer (HPET) must be enabled in the platform BIOS if the HPET is to be
used. Otherwise, the Time Stamp Counter (TSC) is used by default. The BIOS is typically
accessed by pressing F2 while the platform is starting up. The user can then navigate to
the HPET option. On the Crystal Forest platform BIOS, the path is: Advanced -> PCH-IO
Configuration -> High Precision Timer -> (Change from Disabled to Enabled if necessary).

On a system that has already booted, the following command can be issued to check if HPET
is enabled:

grep hpet /proc/timer_list

If no entries are returned, HPET must be enabled in the BIOS (as per the instructions above)
and the system rebooted.

5.1.2 Linux Kernel Support

The DPDK makes use of the platform HPET timer by mapping the timer counter into the pro-
cess address space, and as such, requires that the HPET_MMAP kernel configuration option be
enabled.

Warning: On Fedora, and other common distributions such as Ubuntu, the HPET_MMAP
kernel option is not enabled by default. To recompile the Linux kernel with this option en-
abled, please consult the distributions documentation for the relevant instructions.

5.1.3 Enabling HPET in the DPDK

By default, HPET support is disabled in the DPDK build configuration files. To use HPET,
the CONFIG_RTE_LIBEAL_USE_HPET setting should be changed to y, which will enable the
HPET settings at compile time.

For an application to use the rte_get_hpet_cycles() and rte_get_hpet_hz() API
calls, and optionally to make the HPET the default time source for the rte_timer library, the
new rte_eal_hpet_init() API call should be called at application initialization. This API
call will ensure that the HPET is accessible, returning an error to the application if it is not, for

15

Getting Started Guide for Linux, Release 16.07.2

example, if HPET_MMAP is not enabled in the kernel. The application can then determine what
action to take, if any, if the HPET is not available at run-time.

Note: For applications that require timing APIs, but not the HPET timer specifically, it is recom-
mended that the rte_get_timer_cycles() and rte_get_timer_hz() API calls be used
instead of the HPET-specific APIs. These generic APIs can work with either TSC or HPET time
sources, depending on what is requested by an application call to rte_eal_hpet_init(),
if any, and on what is available on the system at runtime.

5.2 Running DPDK Applications Without Root Privileges

Although applications using the DPDK use network ports and other hardware resources di-
rectly, with a number of small permission adjustments it is possible to run these applications
as a user other than “root”. To do so, the ownership, or permissions, on the following Linux file
system objects should be adjusted to ensure that the Linux user account being used to run the
DPDK application has access to them:

• All directories which serve as hugepage mount points, for example, /mnt/huge

• The userspace-io device files in /dev, for example, /dev/uio0, /dev/uio1, and so on

• The userspace-io sysfs config and resource files, for example for uio0:

/sys/class/uio/uio0/device/config
/sys/class/uio/uio0/device/resource*

• If the HPET is to be used, /dev/hpet

Note: On some Linux installations, /dev/hugepages is also a hugepage mount point cre-
ated by default.

5.3 Power Management and Power Saving Functionality

Enhanced Intel SpeedStep® Technology must be enabled in the platform BIOS if the
power management feature of DPDK is to be used. Otherwise, the sys file folder
/sys/devices/system/cpu/cpu0/cpufreq will not exist, and the CPU frequency- based
power management cannot be used. Consult the relevant BIOS documentation to determine
how these settings can be accessed.

For example, on some Intel reference platform BIOS variants, the path to Enhanced Intel
SpeedStep® Technology is:

Advanced
-> Processor Configuration
-> Enhanced Intel SpeedStep® Tech

In addition, C3 and C6 should be enabled as well for power management. The path of C3 and
C6 on the same platform BIOS is:

Advanced
-> Processor Configuration
-> Processor C3 Advanced
-> Processor Configuration
-> Processor C6

5.2. Running DPDK Applications Without Root Privileges 16

Getting Started Guide for Linux, Release 16.07.2

5.4 Using Linux Core Isolation to Reduce Context Switches

While the threads used by an DPDK application are pinned to logical cores on the system,
it is possible for the Linux scheduler to run other tasks on those cores also. To help prevent
additional workloads from running on those cores, it is possible to use the isolcpus Linux
kernel parameter to isolate them from the general Linux scheduler.

For example, if DPDK applications are to run on logical cores 2, 4 and 6, the following should
be added to the kernel parameter list:

isolcpus=2,4,6

5.5 Loading the DPDK KNI Kernel Module

To run the DPDK Kernel NIC Interface (KNI) sample application, an extra kernel module (the
kni module) must be loaded into the running kernel. The module is found in the kmod sub-
directory of the DPDK target directory. Similar to the loading of the igb_uio module, this
module should be loaded using the insmod command as shown below (assuming that the
current directory is the DPDK target directory):

insmod kmod/rte_kni.ko

Note: See the “Kernel NIC Interface Sample Application” chapter in the DPDK Sample Appli-
cations User Guide for more details.

5.6 Using Linux IOMMU Pass-Through to Run DPDK with Intel®
VT-d

To enable Intel® VT-d in a Linux kernel, a number of kernel configuration options must be set.
These include:

• IOMMU_SUPPORT

• IOMMU_API

• INTEL_IOMMU

In addition, to run the DPDK with Intel® VT-d, the iommu=pt kernel parameter must be
used when using igb_uio driver. This results in pass-through of the DMAR (DMA Remap-
ping) lookup in the host. Also, if INTEL_IOMMU_DEFAULT_ON is not set in the kernel, the
intel_iommu=on kernel parameter must be used too. This ensures that the Intel IOMMU is
being initialized as expected.

Please note that while using iommu=pt is compulsory for igb_uio driver, the vfio-pci
driver can actually work with both iommu=pt and iommu=on.

5.7 High Performance of Small Packets on 40G NIC

As there might be firmware fixes for performance enhancement in latest version of firmware
image, the firmware update might be needed for getting high performance. Check with the

5.4. Using Linux Core Isolation to Reduce Context Switches 17

Getting Started Guide for Linux, Release 16.07.2

local Intel’s Network Division application engineers for firmware updates. Users should consult
the release notes specific to a DPDK release to identify the validated firmware version for a
NIC using the i40e driver.

5.7.1 Use 16 Bytes RX Descriptor Size

As i40e PMD supports both 16 and 32 bytes RX descriptor sizes, and 16 bytes
size can provide helps to high performance of small packets. Configuration of
CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC in config files can be changed to use 16
bytes size RX descriptors.

5.7.2 High Performance and per Packet Latency Tradeoff

Due to the hardware design, the interrupt signal inside NIC is needed for per packet de-
scriptor write-back. The minimum interval of interrupts could be set at compile time by
CONFIG_RTE_LIBRTE_I40E_ITR_INTERVAL in configuration files. Though there is a default
configuration, the interval could be tuned by the users with that configuration item depends on
what the user cares about more, performance or per packet latency.

5.7. High Performance of Small Packets on 40G NIC 18

CHAPTER

SIX

QUICK START SETUP SCRIPT

The dpdk-setup.sh script, found in the tools subdirectory, allows the user to perform the follow-
ing tasks:

• Build the DPDK libraries

• Insert and remove the DPDK IGB_UIO kernel module

• Insert and remove VFIO kernel modules

• Insert and remove the DPDK KNI kernel module

• Create and delete hugepages for NUMA and non-NUMA cases

• View network port status and reserve ports for DPDK application use

• Set up permissions for using VFIO as a non-privileged user

• Run the test and testpmd applications

• Look at hugepages in the meminfo

• List hugepages in /mnt/huge

• Remove built DPDK libraries

Once these steps have been completed for one of the EAL targets, the user may compile their
own application that links in the EAL libraries to create the DPDK image.

6.1 Script Organization

The dpdk-setup.sh script is logically organized into a series of steps that a user performs in
sequence. Each step provides a number of options that guide the user to completing the
desired task. The following is a brief synopsis of each step.

Step 1: Build DPDK Libraries

Initially, the user must select a DPDK target to choose the correct target type and compiler
options to use when building the libraries.

The user must have all libraries, modules, updates and compilers installed in the system prior
to this, as described in the earlier chapters in this Getting Started Guide.

Step 2: Setup Environment

The user configures the Linux* environment to support the running of DPDK applications.
Hugepages can be set up for NUMA or non-NUMA systems. Any existing hugepages will

19

Getting Started Guide for Linux, Release 16.07.2

be removed. The DPDK kernel module that is needed can also be inserted in this step, and
network ports may be bound to this module for DPDK application use.

Step 3: Run an Application

The user may run the test application once the other steps have been performed. The test
application allows the user to run a series of functional tests for the DPDK. The testpmd appli-
cation, which supports the receiving and sending of packets, can also be run.

Step 4: Examining the System

This step provides some tools for examining the status of hugepage mappings.

Step 5: System Cleanup

The final step has options for restoring the system to its original state.

6.2 Use Cases

The following are some example of how to use the dpdk-setup.sh script. The script should be
run using the source command. Some options in the script prompt the user for further data
before proceeding.

Warning: The dpdk-setup.sh script should be run with root privileges.

source tools/dpdk-setup.sh

--

RTE_SDK exported as /home/user/rte

--

Step 1: Select the DPDK environment to build

--

[1] i686-native-linuxapp-gcc

[2] i686-native-linuxapp-icc

[3] ppc_64-power8-linuxapp-gcc

[4] x86_64-ivshmem-linuxapp-gcc

[5] x86_64-ivshmem-linuxapp-icc

[6] x86_64-native-bsdapp-clang

[7] x86_64-native-bsdapp-gcc

[8] x86_64-native-linuxapp-clang

[9] x86_64-native-linuxapp-gcc

[10] x86_64-native-linuxapp-icc

--

6.2. Use Cases 20

Getting Started Guide for Linux, Release 16.07.2

Step 2: Setup linuxapp environment

--

[11] Insert IGB UIO module

[12] Insert VFIO module

[13] Insert KNI module

[14] Setup hugepage mappings for non-NUMA systems

[15] Setup hugepage mappings for NUMA systems

[16] Display current Ethernet device settings

[17] Bind Ethernet device to IGB UIO module

[18] Bind Ethernet device to VFIO module

[19] Setup VFIO permissions

--

Step 3: Run test application for linuxapp environment

--

[20] Run test application ($RTE_TARGET/app/test)

[21] Run testpmd application in interactive mode ($RTE_TARGET/app/testpmd)

--

Step 4: Other tools

--

[22] List hugepage info from /proc/meminfo

--

Step 5: Uninstall and system cleanup

--

[23] Uninstall all targets

[24] Unbind NICs from IGB UIO driver

[25] Remove IGB UIO module

[26] Remove VFIO module

[27] Remove KNI module

[28] Remove hugepage mappings

[29] Exit Script

Option:

6.2. Use Cases 21

Getting Started Guide for Linux, Release 16.07.2

The following selection demonstrates the creation of the x86_64-native-linuxapp-gcc
DPDK library.

Option: 9

================== Installing x86_64-native-linuxapp-gcc

Configuration done
== Build lib
...
Build complete
RTE_TARGET exported as x86_64-native-linuxapp-gcc

The following selection demonstrates the starting of the DPDK UIO driver.

Option: 25

Unloading any existing DPDK UIO module
Loading DPDK UIO module

The following selection demonstrates the creation of hugepages in a NUMA system. 1024 2
MByte pages are assigned to each node. The result is that the application should use -m 4096
for starting the application to access both memory areas (this is done automatically if the -m
option is not provided).

Note: If prompts are displayed to remove temporary files, type ‘y’.

Option: 15

Removing currently reserved hugepages
mounting /mnt/huge and removing directory
Input the number of 2MB pages for each node
Example: to have 128MB of hugepages available per node,
enter '64' to reserve 64 * 2MB pages on each node
Number of pages for node0: 1024
Number of pages for node1: 1024
Reserving hugepages
Creating /mnt/huge and mounting as hugetlbfs

The following selection demonstrates the launch of the test application to run on a single core.

Option: 20

Enter hex bitmask of cores to execute test app on
Example: to execute app on cores 0 to 7, enter 0xff
bitmask: 0x01
Launching app
EAL: coremask set to 1
EAL: Detected lcore 0 on socket 0
...
EAL: Master core 0 is ready (tid=1b2ad720)
RTE>>

6.3 Applications

Once the user has run the dpdk-setup.sh script, built one of the EAL targets and set up
hugepages (if using one of the Linux EAL targets), the user can then move on to building
and running their application or one of the examples provided.

6.3. Applications 22

Getting Started Guide for Linux, Release 16.07.2

The examples in the /examples directory provide a good starting point to gain an understanding
of the operation of the DPDK. The following command sequence shows how the helloworld
sample application is built and run. As recommended in Section 4.2.1 , “Logical Core Use by
Applications”, the logical core layout of the platform should be determined when selecting a
core mask to use for an application.

cd helloworld/
make

CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

sudo ./build/app/helloworld -c 0xf -n 3
[sudo] password for rte:

EAL: coremask set to f
EAL: Detected lcore 0 as core 0 on socket 0
EAL: Detected lcore 1 as core 0 on socket 1
EAL: Detected lcore 2 as core 1 on socket 0
EAL: Detected lcore 3 as core 1 on socket 1
EAL: Setting up hugepage memory...
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0add800000 (size = 0x200000)
EAL: Ask a virtual area of 0x3d400000 bytes
EAL: Virtual area found at 0x7f0aa0200000 (size = 0x3d400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9fc00000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9f600000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9f000000 (size = 0x400000)
EAL: Ask a virtual area of 0x800000 bytes
EAL: Virtual area found at 0x7f0a9e600000 (size = 0x800000)
EAL: Ask a virtual area of 0x800000 bytes
EAL: Virtual area found at 0x7f0a9dc00000 (size = 0x800000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9d600000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9d000000 (size = 0x400000)
EAL: Ask a virtual area of 0x400000 bytes
EAL: Virtual area found at 0x7f0a9ca00000 (size = 0x400000)
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0a9c600000 (size = 0x200000)
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0a9c200000 (size = 0x200000)
EAL: Ask a virtual area of 0x3fc00000 bytes
EAL: Virtual area found at 0x7f0a5c400000 (size = 0x3fc00000)
EAL: Ask a virtual area of 0x200000 bytes
EAL: Virtual area found at 0x7f0a5c000000 (size = 0x200000)
EAL: Requesting 1024 pages of size 2MB from socket 0
EAL: Requesting 1024 pages of size 2MB from socket 1
EAL: Master core 0 is ready (tid=de25b700)
EAL: Core 1 is ready (tid=5b7fe700)
EAL: Core 3 is ready (tid=5a7fc700)
EAL: Core 2 is ready (tid=5affd700)
hello from core 1
hello from core 2
hello from core 3
hello from core 0

6.3. Applications 23

CHAPTER

SEVEN

HOW TO GET BEST PERFORMANCE WITH NICS ON INTEL
PLATFORMS

This document is a step-by-step guide for getting high performance from DPDK applications
on Intel platforms.

7.1 Hardware and Memory Requirements

For best performance use an Intel Xeon class server system such as Ivy Bridge, Haswell or
newer.

Ensure that each memory channel has at least one memory DIMM inserted, and that the mem-
ory size for each is at least 4GB. Note: this has one of the most direct effects on performance.

You can check the memory configuration using dmidecode as follows:

dmidecode -t memory | grep Locator

Locator: DIMM_A1
Bank Locator: NODE 1
Locator: DIMM_A2
Bank Locator: NODE 1
Locator: DIMM_B1
Bank Locator: NODE 1
Locator: DIMM_B2
Bank Locator: NODE 1
...
Locator: DIMM_G1
Bank Locator: NODE 2
Locator: DIMM_G2
Bank Locator: NODE 2
Locator: DIMM_H1
Bank Locator: NODE 2
Locator: DIMM_H2
Bank Locator: NODE 2

The sample output above shows a total of 8 channels, from A to H, where each channel has 2
DIMMs.

You can also use dmidecode to determine the memory frequency:

dmidecode -t memory | grep Speed

Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
Configured Clock Speed: Unknown
Speed: 2133 MHz

24

Getting Started Guide for Linux, Release 16.07.2

Configured Clock Speed: 2134 MHz
Speed: Unknown
...
Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
Configured Clock Speed: Unknown
Speed: 2133 MHz
Configured Clock Speed: 2134 MHz
Speed: Unknown
Configured Clock Speed: Unknown

The output shows a speed of 2133 MHz (DDR4) and Unknown (not existing). This aligns with
the previous output which showed that each channel has one memory bar.

7.1.1 Network Interface Card Requirements

Use a DPDK supported high end NIC such as the Intel XL710 40GbE.

Make sure each NIC has been flashed the latest version of NVM/firmware.

Use PCIe Gen3 slots, such as Gen3 x8 or Gen3 x16 because PCIe Gen2 slots don’t provide
enough bandwidth for 2 x 10GbE and above. You can use lspci to check the speed of a PCI
slot using something like the following:

lspci -s 03:00.1 -vv | grep LnkSta

LnkSta: Speed 8GT/s, Width x8, TrErr- Train- SlotClk+ DLActive- ...
LnkSta2: Current De-emphasis Level: -6dB, EqualizationComplete+ ...

When inserting NICs into PCI slots always check the caption, such as CPU0 or CPU1 to
indicate which socket it is connected to.

Care should be take with NUMA. If you are using 2 or more ports from different NICs, it is best
to ensure that these NICs are on the same CPU socket. An example of how to determine this
is shown further below.

7.1.2 BIOS Settings

The following are some recommendations on BIOS settings. Different platforms will have dif-
ferent BIOS naming so the following is mainly for reference:

1. Before starting consider resetting all BIOS settings to their default.

2. Disable all power saving options such as: Power performance tuning, CPU P-State, CPU
C3 Report and CPU C6 Report.

3. Select Performance as the CPU Power and Performance policy.

4. Disable Turbo Boost to ensure the performance scaling increases with the number of
cores.

5. Set memory frequency to the highest available number, NOT auto.

6. Disable all virtualization options when you test the physical function of the NIC, and turn
on VT-d if you wants to use VFIO.

7.1. Hardware and Memory Requirements 25

http://dpdk.org/doc/nics

Getting Started Guide for Linux, Release 16.07.2

7.1.3 Linux boot command line

The following are some recommendations on GRUB boot settings:

1. Use the default grub file as a starting point.

2. Reserve 1G huge pages via grub configurations. For example to reserve 8 huge pages
of 1G size:

default_hugepagesz=1G hugepagesz=1G hugepages=8

3. Isolate CPU cores which will be used for DPDK. For example:

isolcpus=2,3,4,5,6,7,8

4. If it wants to use VFIO, use the following additional grub parameters:

iommu=pt intel_iommu=on

7.2 Configurations before running DPDK

1. Build the DPDK target and reserve huge pages. See the earlier section on Use of
Hugepages in the Linux Environment for more details.

The following shell commands may help with building and configuration:

Build DPDK target.
cd dpdk_folder
make install T=x86_64-native-linuxapp-gcc -j

Get the hugepage size.
awk '/Hugepagesize/ {print $2}' /proc/meminfo

Get the total huge page numbers.
awk '/HugePages_Total/ {print $2} ' /proc/meminfo

Unmount the hugepages.
umount `awk '/hugetlbfs/ {print $2}' /proc/mounts`

Create the hugepage mount folder.
mkdir -p /mnt/huge

Mount to the specific folder.
mount -t hugetlbfs nodev /mnt/huge

2. Check the CPU layout using using the DPDK cpu_layout utility:

cd dpdk_folder

tools/cpu_layout.py

Or run lscpu to check the the cores on each socket.

3. Check your NIC id and related socket id:

List all the NICs with PCI address and device IDs.
lspci -nn | grep Eth

For example suppose your output was as follows:

82:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
82:00.1 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.1 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]

7.2. Configurations before running DPDK 26

Getting Started Guide for Linux, Release 16.07.2

Check the PCI device related numa node id:

cat /sys/bus/pci/devices/0000\:xx\:00.x/numa_node

Usually 0x:00.x is on socket 0 and 8x:00.x is on socket 1. Note: To get the best
performance, ensure that the core and NICs are in the same socket. In the example
above 85:00.0 is on socket 1 and should be used by cores on socket 1 for the best
performance.

4. Bind the test ports to DPDK compatible drivers, such as igb_uio. For example bind two
ports to a DPDK compatible driver and check the status:

Bind ports 82:00.0 and 85:00.0 to dpdk driver
./dpdk_folder/tools/dpdk-devbind.py -b igb_uio 82:00.0 85:00.0

Check the port driver status
./dpdk_folder/tools/dpdk-devbind.py --status

See dpdk-devbind.py --help for more details.

More details about DPDK setup and Linux kernel requirements see Compiling the DPDK Target
from Source.

7.3 Example of getting best performance for an Intel NIC

The following is an example of running the DPDK l3fwd sample application to get high perfor-
mance with an Intel server platform and Intel XL710 NICs. For specific 40G NIC configuration
please refer to the i40e NIC guide.

The example scenario is to get best performance with two Intel XL710 40GbE ports. See Fig.
7.1 for the performance test setup.

Traffic Generator

Dest MAC: Port 0
Dest IP: 2.1.1.1
Src IP: Random

Port A

Dest MAC: Port 1
Dest IP: 1.1.1.1
Src IP: Random

Port B

Intel XL 710
40G Ethernet

Port 0

Flow 2

Flow 1

Port X

Intel XL 710
40G Ethernet

Port 1

Port X

Port 0 to Port 1
Port 1 to Port 0

Forwarding

IA Platform
(Socket 1)

Fig. 7.1: Performance Test Setup

7.3. Example of getting best performance for an Intel NIC 27

Getting Started Guide for Linux, Release 16.07.2

1. Add two Intel XL710 NICs to the platform, and use one port per card to get best perfor-
mance. The reason for using two NICs is to overcome a PCIe Gen3’s limitation since
it cannot provide 80G bandwidth for two 40G ports, but two different PCIe Gen3 x8 slot
can. Refer to the sample NICs output above, then we can select 82:00.0 and 85:00.0
as test ports:

82:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]

2. Connect the ports to the traffic generator. For high speed testing, it’s best to use a
hardware traffic generator.

3. Check the PCI devices numa node (socket id) and get the cores number on the exact
socket id. In this case, 82:00.0 and 85:00.0 are both in socket 1, and the cores on
socket 1 in the referenced platform are 18-35 and 54-71. Note: Don’t use 2 logical cores
on the same core (e.g core18 has 2 logical cores, core18 and core54), instead, use 2
logical cores from different cores (e.g core18 and core19).

4. Bind these two ports to igb_uio.

5. As to XL710 40G port, we need at least two queue pairs to achieve best performance,
then two queues per port will be required, and each queue pair will need a dedicated
CPU core for receiving/transmitting packets.

6. The DPDK sample application l3fwd will be used for performance testing, with using
two ports for bi-directional forwarding. Compile the l3fwd sample with the default lpm
mode.

7. The command line of running l3fwd would be something like the followings:

./l3fwd -c 0x3c0000 -n 4 -w 82:00.0 -w 85:00.0 \
-- -p 0x3 --config '(0,0,18),(0,1,19),(1,0,20),(1,1,21)'

This means that the application uses core 18 for port 0, queue pair 0 forwarding, core 19
for port 0, queue pair 1 forwarding, core 20 for port 1, queue pair 0 forwarding, and core
21 for port 1, queue pair 1 forwarding.

8. Configure the traffic at a traffic generator.

• Start creating a stream on packet generator.

• Set the Ethernet II type to 0x0800.

7.3. Example of getting best performance for an Intel NIC 28

	Introduction
	Documentation Roadmap

	System Requirements
	BIOS Setting Prerequisite on x86
	Compilation of the DPDK
	Running DPDK Applications

	Compiling the DPDK Target from Source
	Install the DPDK and Browse Sources
	Installation of DPDK Target Environments
	Browsing the Installed DPDK Environment Target
	Loading Modules to Enable Userspace IO for DPDK
	Loading VFIO Module
	Binding and Unbinding Network Ports to/from the Kernel Modules

	Compiling and Running Sample Applications
	Compiling a Sample Application
	Running a Sample Application
	Additional Sample Applications
	Additional Test Applications

	Enabling Additional Functionality
	High Precision Event Timer HPET) Functionality
	Running DPDK Applications Without Root Privileges
	Power Management and Power Saving Functionality
	Using Linux Core Isolation to Reduce Context Switches
	Loading the DPDK KNI Kernel Module
	Using Linux IOMMU Pass-Through to Run DPDK with Intel® VT-d
	High Performance of Small Packets on 40G NIC

	Quick Start Setup Script
	Script Organization
	Use Cases
	Applications

	How to get best performance with NICs on Intel platforms
	Hardware and Memory Requirements
	Configurations before running DPDK
	Example of getting best performance for an Intel NIC

