
Network Interface Controller Drivers
Release 17.05.2

September 07, 2017

CONTENTS

1 Overview of Networking Drivers 1

2 Compiling and testing a PMD for a NIC 4
2.1 Driver Compilation . 4
2.2 Running testpmd in Linux . 5

3 ARK Poll Mode Driver 6
3.1 Overview . 6
3.2 Device Parameters . 7
3.3 Data Path Interface . 7
3.4 Configuration Information . 8
3.5 Building DPDK . 8
3.6 Supported ARK RTL PCIe Instances . 8
3.7 Supported Operating Systems . 8
3.8 Supported Features . 9
3.9 Unsupported Features . 9
3.10 Pre-Requisites . 9
3.11 Usage Example . 9

4 AVP Poll Mode Driver 10
4.1 Features and Limitations of the AVP PMD . 10
4.2 Prerequisites . 11
4.3 Launching a VM with an AVP type network attachment 11

5 BNX2X Poll Mode Driver 12
5.1 Supported Features . 12
5.2 Non-supported Features . 12
5.3 Co-existence considerations . 12
5.4 Supported QLogic NICs . 13
5.5 Prerequisites . 13
5.6 Pre-Installation Configuration . 13
5.7 Driver compilation and testing . 13
5.8 SR-IOV: Prerequisites and sample Application Notes 14

6 BNXT Poll Mode Driver 16
6.1 Limitations . 16

7 CXGBE Poll Mode Driver 17
7.1 Features . 17
7.2 Limitations . 17

i

7.3 Supported Chelsio T5 NICs . 17
7.4 Prerequisites . 18
7.5 Pre-Installation Configuration . 18
7.6 Driver compilation and testing . 18
7.7 Linux . 19
7.8 FreeBSD . 20
7.9 Sample Application Notes . 23

8 DPAA2 Poll Mode Driver 24
8.1 NXP DPAA2 (Data Path Acceleration Architecture Gen2) 24
8.2 DPAA2 DPDK - Poll Mode Driver Overview . 28
8.3 Supported DPAA2 SoCs . 29
8.4 Prerequisites . 30
8.5 Pre-Installation Configuration . 30
8.6 Driver compilation and testing . 31
8.7 Limitations . 32

9 Driver for VM Emulated Devices 33
9.1 Validated Hypervisors . 33
9.2 Recommended Guest Operating System in Virtual Machine 33
9.3 Setting Up a KVM Virtual Machine . 33
9.4 Known Limitations of Emulated Devices . 35

10 ENA Poll Mode Driver 36
10.1 Overview . 36
10.2 Management Interface . 36
10.3 Data Path Interface . 37
10.4 Configuration information . 37
10.5 Building DPDK . 38
10.6 Supported ENA adapters . 38
10.7 Supported Operating Systems . 38
10.8 Supported features . 38
10.9 Unsupported features . 38
10.10Prerequisites . 39
10.11Usage example . 39

11 ENIC Poll Mode Driver 40
11.1 How to obtain ENIC PMD integrated DPDK . 40
11.2 Configuration information . 40
11.3 Flow director support . 41
11.4 SR-IOV mode utilization . 42
11.5 Limitations . 43
11.6 How to build the suite . 43
11.7 Supported Cisco VIC adapters . 44
11.8 Supported Operating Systems . 44
11.9 Supported features . 44
11.10Known bugs and unsupported features in this release 45
11.11Prerequisites . 45
11.12Additional Reference . 46
11.13Contact Information . 46

12 FM10K Poll Mode Driver 47

ii

12.1 FTAG Based Forwarding of FM10K . 47
12.2 Vector PMD for FM10K . 47
12.3 Limitations . 49

13 I40E Poll Mode Driver 50
13.1 Features . 50
13.2 Prerequisites . 51
13.3 Pre-Installation Configuration . 51
13.4 Driver compilation and testing . 52
13.5 SR-IOV: Prerequisites and sample Application Notes 52
13.6 Sample Application Notes . 53
13.7 Limitations or Known issues . 55

14 IXGBE Driver 57
14.1 Vector PMD for IXGBE . 57
14.2 Application Programming Interface . 59
14.3 Sample Application Notes . 59
14.4 Limitations or Known issues . 59
14.5 Supported Chipsets and NICs . 60

15 I40E/IXGBE/IGB Virtual Function Driver 62
15.1 SR-IOV Mode Utilization in a DPDK Environment 62
15.2 Setting Up a KVM Virtual Machine Monitor . 68
15.3 DPDK SR-IOV PMD PF/VF Driver Usage Model 71
15.4 SR-IOV (PF/VF) Approach for Inter-VM Communication 72

16 KNI Poll Mode Driver 74
16.1 Usage . 74
16.2 Default interface configuration . 74
16.3 PMD arguments . 75
16.4 PMD log messages . 75
16.5 PMD testing . 75

17 LiquidIO VF Poll Mode Driver 77
17.1 Supported LiquidIO Adapters . 77
17.2 Pre-Installation Configuration . 77
17.3 SR-IOV: Prerequisites and Sample Application Notes 78
17.4 Limitations . 79

18 MLX4 poll mode driver library 80
18.1 Implementation details . 80
18.2 Features . 80
18.3 Limitations . 81
18.4 Configuration . 81
18.5 Prerequisites . 83
18.6 Supported NICs . 84
18.7 Usage example . 84

19 MLX5 poll mode driver 86
19.1 Implementation details . 86
19.2 Features . 86
19.3 Limitations . 87
19.4 Configuration . 87

iii

19.5 Prerequisites . 89
19.6 Supported NICs . 90
19.7 Known issues . 91
19.8 Notes for testpmd . 91
19.9 Usage example . 92

20 NFP poll mode driver library 94
20.1 Dependencies . 94
20.2 Building the software . 94
20.3 Driver compilation and testing . 95
20.4 System configuration . 95

21 QEDE Poll Mode Driver 96
21.1 Supported Features . 96
21.2 Non-supported Features . 97
21.3 Supported QLogic Adapters . 97
21.4 Prerequisites . 97
21.5 Driver compilation and testing . 98
21.6 SR-IOV: Prerequisites and Sample Application Notes 98

22 Solarflare libefx-based Poll Mode Driver 100
22.1 Features . 100
22.2 Non-supported Features . 101
22.3 Limitations . 101
22.4 Flow API support . 101
22.5 Supported NICs . 102
22.6 Prerequisites . 102
22.7 Pre-Installation Configuration . 102

23 SZEDATA2 poll mode driver library 104
23.1 Prerequisites . 104
23.2 Configuration . 104
23.3 Using the SZEDATA2 PMD . 105
23.4 Example of usage . 105

24 Tun/Tap Poll Mode Driver 106
24.1 Flow API support . 107
24.2 Example . 108

25 ThunderX NICVF Poll Mode Driver 109
25.1 Features . 109
25.2 Supported ThunderX SoCs . 109
25.3 Prerequisites . 110
25.4 Pre-Installation Configuration . 110
25.5 Driver compilation and testing . 110
25.6 Linux . 110
25.7 Limitations . 114

26 Poll Mode Driver for Emulated Virtio NIC 115
26.1 Virtio Implementation in DPDK . 115
26.2 Features and Limitations of virtio PMD . 115
26.3 Prerequisites . 116
26.4 Virtio with kni vhost Back End . 116

iv

26.5 Virtio with qemu virtio Back End . 119
26.6 Virtio PMD Rx/Tx Callbacks . 119
26.7 Interrupt mode . 120

27 Poll Mode Driver that wraps vhost library 122
27.1 Vhost Implementation in DPDK . 122
27.2 Features and Limitations of vhost PMD . 122
27.3 Vhost PMD arguments . 122
27.4 Vhost PMD event handling . 122
27.5 Vhost PMD with testpmd application . 123

28 Poll Mode Driver for Paravirtual VMXNET3 NIC 124
28.1 VMXNET3 Implementation in the DPDK . 124
28.2 Features and Limitations of VMXNET3 PMD . 125
28.3 Prerequisites . 125
28.4 VMXNET3 with a Native NIC Connected to a vSwitch 126
28.5 VMXNET3 Chaining VMs Connected to a vSwitch 126

29 Libpcap and Ring Based Poll Mode Drivers 130
29.1 Using the Drivers from the EAL Command Line 130

v

CHAPTER

ONE

OVERVIEW OF NETWORKING DRIVERS

The networking drivers may be classified in two categories:

• physical for real devices

• virtual for emulated devices

Some physical devices may be shaped through a virtual layer as for SR-IOV. The interface
seen in the virtual environment is a VF (Virtual Function).

The ethdev layer exposes an API to use the networking functions of these devices. The bottom
half part of ethdev is implemented by the drivers. Thus some features may not be implemented.

There are more differences between drivers regarding some internal properties, portability or
even documentation availability. Most of these differences are summarized below.

Table 1.1: [u’Features availability in networking drivers’]

Feature a f p a c k e t a r k a v p b n x 2 x b n x 2 x v f b n x t b o n d i n g c x g b e d p a a 2 e 1 0 0 0 e n a e n i c f m 1 0 k f m 1 0 k . . v e c f m 1 0 k v f f m 1 0 k v f v e c i 4 0 e i 4 0 e . . . v e c i 4 0 e v f i 4 0 e v f . v e c i g b i g b v f i x g b e i x g b e . . v e c i x g b e v f i x g b e v f v e c k n i l i q u i d i o m l x 4 m l x 5 n f p n u l l p c a p q e d e q e d e v f r i n g s f c _ e f x s z e d a t a 2 t a p t h u n d e r x v h o s t v i r t i o v i r t i o . v e c v m x n e t 3 x e n v i r t
Speed capabilities Y Y Y Y Y Y
Link status Y
Link status event Y
Removal event Y
Queue status event Y
Rx interrupt Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Free Tx mbuf on demand Y Y
Queue start/stop Y
MTU update Y
Jumbo frame Y
Scattered Rx Y
LRO Y Y Y Y Y Y Y
TSO Y
Promiscuous mode Y
Allmulticast mode Y
Unicast MAC filter Y
Multicast MAC filter Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
RSS hash Y
RSS key update Y
RSS reta update Y
VMDq Y Y Y Y Y Y Y
SR-IOV Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Continued on next page

1

Network Interface Controller Drivers, Release 17.05.2

Table 1.1 – continued from previous page
Feature a f p a c k e t a r k a v p b n x 2 x b n x 2 x v f b n x t b o n d i n g c x g b e d p a a 2 e 1 0 0 0 e n a e n i c f m 1 0 k f m 1 0 k . . v e c f m 1 0 k v f f m 1 0 k v f v e c i 4 0 e i 4 0 e . . . v e c i 4 0 e v f i 4 0 e v f . v e c i g b i g b v f i x g b e i x g b e . . v e c i x g b e v f i x g b e v f v e c k n i l i q u i d i o m l x 4 m l x 5 n f p n u l l p c a p q e d e q e d e v f r i n g s f c _ e f x s z e d a t a 2 t a p t h u n d e r x v h o s t v i r t i o v i r t i o . v e c v m x n e t 3 x e n v i r t
DCB Y Y Y Y Y
VLAN filter Y
Ethertype filter Y Y Y Y Y
N-tuple filter Y Y Y Y
SYN filter Y Y Y
Tunnel filter Y Y Y Y Y
Flexible filter Y
Hash filter Y Y Y Y
Flow director Y Y Y Y Y Y Y
Flow control Y Y Y Y Y Y Y Y Y Y Y Y
Flow API Y Y Y Y Y
Rate limitation Y Y
Traffic mirroring Y Y Y Y
CRC offload Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
VLAN offload Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y P Y Y Y Y P P Y
QinQ offload Y Y Y Y Y Y Y
L3 checksum offload Y
L4 checksum offload Y
MACsec offload Y
Inner L3 checksum Y Y Y Y Y Y Y Y Y
Inner L4 checksum Y Y Y Y Y Y Y Y Y
Packet type parsing Y
Timesync Y Y Y Y Y
Rx descriptor status Y Y Y Y Y Y Y Y Y Y Y Y
Tx descriptor status Y Y Y Y Y Y Y Y Y Y Y Y
Basic stats Y
Extended stats Y
Stats per queue Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
FW version Y Y Y Y
EEPROM dump Y Y Y Y
Registers dump Y Y Y Y Y Y Y Y
Multiprocess aware Y
BSD nic_uio Y
Linux UIO Y
Linux VFIO Y
Other kdrv Y Y Y Y
ARMv7 Y Y Y Y
ARMv8 Y Y Y Y Y Y Y Y Y Y Y Y Y
Power8 Y Y Y Y Y Y
x86-32 Y
x86-64 Y
Usage doc Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Design doc
Perf doc

Note: Features marked with “P” are partially supported. Refer to the appropriate NIC guide
in the following sections for details.

2

Network Interface Controller Drivers, Release 17.05.2

3

CHAPTER

TWO

COMPILING AND TESTING A PMD FOR A NIC

This section demonstrates how to compile and run a Poll Mode Driver (PMD) for the available
Network Interface Cards in DPDK using TestPMD.

TestPMD is one of the reference applications distributed with the DPDK. Its main purpose is to
forward packets between Ethernet ports on a network interface and as such is the best way to
test a PMD.

Refer to the testpmd application user guide for detailed information on how to build and run
testpmd.

2.1 Driver Compilation

To compile a PMD for a platform, run make with appropriate target as shown below. Use
“make” command in Linux and “gmake” in FreeBSD. This will also build testpmd.

To check available targets:

cd <DPDK-source-directory>
make showconfigs

Example output:

arm-armv7a-linuxapp-gcc
arm64-armv8a-linuxapp-gcc
arm64-dpaa2-linuxapp-gcc
arm64-thunderx-linuxapp-gcc
arm64-xgene1-linuxapp-gcc
i686-native-linuxapp-gcc
i686-native-linuxapp-icc
ppc_64-power8-linuxapp-gcc
x86_64-native-bsdapp-clang
x86_64-native-bsdapp-gcc
x86_64-native-linuxapp-clang
x86_64-native-linuxapp-gcc
x86_64-native-linuxapp-icc
x86_x32-native-linuxapp-gcc

To compile a PMD for Linux x86_64 gcc target, run the following “make” command:

make install T=x86_64-native-linuxapp-gcc

Use ARM (ThunderX, DPAA, X-Gene) or PowerPC target for respective platform.

For more information, refer to the Getting Started Guide for Linux or Getting Started Guide for
FreeBSD depending on your platform.

4

Network Interface Controller Drivers, Release 17.05.2

2.2 Running testpmd in Linux

This section demonstrates how to setup and run testpmd in Linux.

1. Mount huge pages:

mkdir /mnt/huge
mount -t hugetlbfs nodev /mnt/huge

2. Request huge pages:

Hugepage memory should be reserved as per application requirement. Check hugepage
size configured in the system and calculate the number of pages required.

To reserve 1024 pages of 2MB:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

Note: Check /proc/meminfo to find system hugepage size:
grep "Hugepagesize:" /proc/meminfo

Example output:

Hugepagesize: 2048 kB

3. Load igb_uio or vfio-pci driver:

modprobe uio
insmod ./x86_64-native-linuxapp-gcc/kmod/igb_uio.ko

or

modprobe vfio-pci

4. Setup VFIO permissions for regular users before binding to vfio-pci:

sudo chmod a+x /dev/vfio

sudo chmod 0666 /dev/vfio/*

5. Bind the adapters to igb_uio or vfio-pci loaded in the previous step:

./usertools/dpdk-devbind.py --bind igb_uio DEVICE1 DEVICE2 ...

Or setup VFIO permissions for regular users and then bind to vfio-pci:

./usertools/dpdk-devbind.py --bind vfio-pci DEVICE1 DEVICE2 ...

Note: DEVICE1, DEVICE2 are specified via PCI “domain:bus:slot.func” syntax or
“bus:slot.func” syntax.

6. Start testpmd with basic parameters:

./x86_64-native-linuxapp-gcc/app/testpmd -l 0-3 -n 4 -- -i

Successful execution will show initialization messages from EAL, PMD and testpmd ap-
plication. A prompt will be displayed at the end for user commands as interactive mode
(-i) is on.

testpmd>

Refer to the testpmd runtime functions for a list of available commands.

2.2. Running testpmd in Linux 5

CHAPTER

THREE

ARK POLL MODE DRIVER

The ARK PMD is a DPDK poll-mode driver for the Atomic Rules Arkville (ARK) family of de-
vices.

More information can be found at the Atomic Rules website.

3.1 Overview

The Atomic Rules Arkville product is DPDK and AXI compliant product that marshals packets
across a PCIe conduit between host DPDK mbufs and FPGA AXI streams.

The ARK PMD, and the spirit of the overall Arkville product, has been to take the DPDK API/ABI
as a fixed specification; then implement much of the business logic in FPGA RTL circuits. The
approach of working backwards from the DPDK API/ABI and having the GPP host software
dictate, while the FPGA hardware copes, results in significant performance gains over a naive
implementation.

While this document describes the ARK PMD software, it is helpful to understand what the
FPGA hardware is and is not. The Arkville RTL component provides a single PCIe Physical
Function (PF) supporting some number of RX/Ingress and TX/Egress Queues. The ARK PMD
controls the Arkville core through a dedicated opaque Core BAR (CBAR). To allow users full
freedom for their own FPGA application IP, an independent FPGA Application BAR (ABAR) is
provided.

One popular way to imagine Arkville’s FPGA hardware aspect is as the FPGA PCIe-facing
side of a so-called Smart NIC. The Arkville core does not contain any MACs, and is link-speed
independent, as well as agnostic to the number of physical ports the application chooses to
use. The ARK driver exposes the familiar PMD interface to allow packet movement to and from
mbufs across multiple queues.

However FPGA RTL applications could contain a universe of added functionality that an Arkville
RTL core does not provide or can not anticipate. To allow for this expectation of user-defined
innovation, the ARK PMD provides a dynamic mechanism of adding capabilities without having
to modify the ARK PMD.

The ARK PMD is intended to support all instances of the Arkville RTL Core, regardless of
configuration, FPGA vendor, or target board. While specific capabilities such as number of
physical hardware queue-pairs are negotiated; the driver is designed to remain constant over
a broad and extendable feature set.

Intentionally, Arkville by itself DOES NOT provide common NIC capabilities such as offload
or receive-side scaling (RSS). These capabilities would be viewed as a gate-level “tax” on

6

http://atomicrules.com

Network Interface Controller Drivers, Release 17.05.2

Green-box FPGA applications that do not require such function. Instead, they can be added
as needed with essentially no overhead to the FPGA Application.

The ARK PMD also supports optional user extensions, through dynamic linking. The ARK
PMD user extensions are a feature of Arkville’s DPDK net/ark poll mode driver, allowing users
to add their own code to extend the net/ark functionality without having to make source code
changes to the driver. One motivation for this capability is that while DPDK provides a rich set of
functions to interact with NIC-like capabilities (e.g. MAC addresses and statistics), the Arkville
RTL IP does not include a MAC. Users can supply their own MAC or custom FPGA applications,
which may require control from the PMD. The user extension is the means providing the control
between the user’s FPGA application and the existing DPDK features via the PMD.

3.2 Device Parameters

The ARK PMD supports device parameters that are used for packet routing and for internal
packet generation and packet checking. This section describes the supported parameters.
These features are primarily used for diagnostics, testing, and performance verification un-
der the guidance of an Arkville specialist. The nominal use of Arkville does not require any
configuration using these parameters.

“Pkt_dir”

The Packet Director controls connectivity between Arkville’s internal hardware components.
The features of the Pkt_dir are only used for diagnostics and testing; it is not intended for
nominal use. The full set of features are not published at this level.

Format: Pkt_dir=0x00110F10

“Pkt_gen”

The packet generator parameter takes a file as its argument. The file contains configuration
parameters used internally for regression testing and are not intended to be published at this
level. The packet generator is an internal Arkville hardware component.

Format: Pkt_gen=./config/pg.conf

“Pkt_chkr”

The packet checker parameter takes a file as its argument. The file contains configuration
parameters used internally for regression testing and are not intended to be published at this
level. The packet checker is an internal Arkville hardware component.

Format: Pkt_chkr=./config/pc.conf

3.3 Data Path Interface

Ingress RX and Egress TX operation is by the nominal DPDK API . The driver supports single-
port, multi-queue for both RX and TX.

Refer to ark_ethdev.h for the list of supported methods to act upon RX and TX Queues.

3.2. Device Parameters 7

Network Interface Controller Drivers, Release 17.05.2

3.4 Configuration Information

DPDK Configuration Parameters

The following configuration options are available for the ARK PMD:

• CONFIG_RTE_LIBRTE_ARK_PMD (default y): Enables or disables inclusion
of the ARK PMD driver in the DPDK compilation.

• CONFIG_RTE_LIBRTE_ARK_PAD_TX (default y): When enabled TX pack-
ets are padded to 60 bytes to support downstream MACS.

• CONFIG_RTE_LIBRTE_ARK_DEBUG_RX (default n): Enables or disables
debug logging and internal checking of RX ingress logic within the ARK PMD
driver.

• CONFIG_RTE_LIBRTE_ARK_DEBUG_TX (default n): Enables or disables
debug logging and internal checking of TX egress logic within the ARK PMD
driver.

• CONFIG_RTE_LIBRTE_ARK_DEBUG_STATS (default n): Enables or dis-
ables debug logging of detailed packet and performance statistics gathered
in the PMD and FPGA.

• CONFIG_RTE_LIBRTE_ARK_DEBUG_TRACE (default n): Enables or dis-
ables debug logging of detailed PMD events and status.

3.5 Building DPDK

See the DPDK Getting Started Guide for Linux for instructions on how to build DPDK.

By default the ARK PMD library will be built into the DPDK library.

For configuring and using UIO and VFIO frameworks, please also refer the documentation that
comes with DPDK suite.

3.6 Supported ARK RTL PCIe Instances

ARK PMD supports the following Arkville RTL PCIe instances including:

• 1d6c:100d - AR-ARKA-FX0 [Arkville 32B DPDK Data Mover]

• 1d6c:100e - AR-ARKA-FX1 [Arkville 64B DPDK Data Mover]

3.7 Supported Operating Systems

Any Linux distribution fulfilling the conditions described in System Requirements section of
the DPDK documentation or refer to DPDK Release Notes. ARM and PowerPC architectures
are not supported at this time.

3.4. Configuration Information 8

Network Interface Controller Drivers, Release 17.05.2

3.8 Supported Features

• Dynamic ARK PMD extensions

• Multiple receive and transmit queues

• Jumbo frames up to 9K

• Hardware Statistics

3.9 Unsupported Features

Features that may be part of, or become part of, the Arkville RTL IP that are not currently
supported or exposed by the ARK PMD include:

• PCIe SR-IOV Virtual Functions (VFs)

• Arkville’s Packet Generator Control and Status

• Arkville’s Packet Director Control and Status

• Arkville’s Packet Checker Control and Status

• Arkville’s Timebase Management

3.10 Pre-Requisites

1. Prepare the system as recommended by DPDK suite. This includes environment vari-
ables, hugepages configuration, tool-chains and configuration

2. Insert igb_uio kernel module using the command ‘modprobe igb_uio’

3. Bind the intended ARK device to igb_uio module

At this point the system should be ready to run DPDK applications. Once the application runs
to completion, the ARK PMD can be detached from igb_uio if necessary.

3.11 Usage Example

Follow instructions available in the document compiling and testing a PMD for a NIC to launch
testpmd with Atomic Rules ARK devices managed by librte_pmd_ark.

Example output:

[...]
EAL: PCI device 0000:01:00.0 on NUMA socket -1
EAL: probe driver: 1d6c:100e rte_ark_pmd
EAL: PCI memory mapped at 0x7f9b6c400000
PMD: eth_ark_dev_init(): Initializing 0:2:0.1
ARKP PMD CommitID: 378f3a67
Configuring Port 0 (socket 0)
Port 0: DC:3C:F6:00:00:01
Checking link statuses...
Port 0 Link Up - speed 100000 Mbps - full-duplex
Done
testpmd>

3.8. Supported Features 9

CHAPTER

FOUR

AVP POLL MODE DRIVER

The Accelerated Virtual Port (AVP) device is a shared memory based device only available
on virtualization platforms from Wind River Systems. The Wind River Systems virtualization
platform currently uses QEMU/KVM as its hypervisor and as such provides support for all of
the QEMU supported virtual and/or emulated devices (e.g., virtio, e1000, etc.). The platform
offers the virtio device type as the default device when launching a virtual machine or creating
a virtual machine port. The AVP device is a specialized device available to customers that
require increased throughput and decreased latency to meet the demands of their performance
focused applications.

The AVP driver binds to any AVP PCI devices that have been exported by the Wind River
Systems QEMU/KVM hypervisor. As a user of the DPDK driver API it supports a subset of
the full Ethernet device API to enable the application to use the standard device configuration
functions and packet receive/transmit functions.

These devices enable optimized packet throughput by bypassing QEMU and delivering packets
directly to the virtual switch via a shared memory mechanism. This provides DPDK applications
running in virtual machines with significantly improved throughput and latency over other device
types.

The AVP device implementation is integrated with the QEMU/KVM live-migration mechanism
to allow applications to seamlessly migrate from one hypervisor node to another with minimal
packet loss.

4.1 Features and Limitations of the AVP PMD

The AVP PMD driver provides the following functionality.

• Receive and transmit of both simple and chained mbuf packets,

• Chained mbufs may include up to 5 chained segments,

• Up to 8 receive and transmit queues per device,

• Only a single MAC address is supported,

• The MAC address cannot be modified,

• The maximum receive packet length is 9238 bytes,

• VLAN header stripping and inserting,

• Promiscuous mode

• VM live-migration

10

http://www.windriver.com/products/titanium-cloud/

Network Interface Controller Drivers, Release 17.05.2

• PCI hotplug insertion and removal

4.2 Prerequisites

The following prerequisites apply:

• A virtual machine running in a Wind River Systems virtualization environment and con-
figured with at least one neutron port defined with a vif-model set to “avp”.

4.3 Launching a VM with an AVP type network attachment

The following example will launch a VM with three network attachments. The first attachment
will have a default vif-model of “virtio”. The next two network attachments will have a vif-model
of “avp” and may be used with a DPDK application which is built to include the AVP PMD driver.

nova boot --flavor small --image my-image \
--nic net-id=${NETWORK1_UUID} \
--nic net-id=${NETWORK2_UUID},vif-model=avp \
--nic net-id=${NETWORK3_UUID},vif-model=avp \
--security-group default my-instance1

4.2. Prerequisites 11

CHAPTER

FIVE

BNX2X POLL MODE DRIVER

The BNX2X poll mode driver library (librte_pmd_bnx2x) implements support for QLogic
578xx 10/20 Gbps family of adapters as well as their virtual functions (VF) in SR-IOV con-
text. It is supported on several standard Linux distros like Red Hat 7.x and SLES12 OS. It is
compile-tested under FreeBSD OS.

More information can be found at QLogic Corporation’s Official Website.

5.1 Supported Features

BNX2X PMD has support for:

• Base L2 features

• Unicast/multicast filtering

• Promiscuous mode

• Port hardware statistics

• SR-IOV VF

5.2 Non-supported Features

The features not yet supported include:

• TSS (Transmit Side Scaling)

• RSS (Receive Side Scaling)

• LRO/TSO offload

• Checksum offload

• SR-IOV PF

• Rx TX scatter gather

5.3 Co-existence considerations

• BCM578xx being a CNA can have both NIC and Storage personalities. However, coex-
istence with storage protocol drivers (cnic, bnx2fc and bnx2fi) is not supported on the

12

http://www.qlogic.com

Network Interface Controller Drivers, Release 17.05.2

same adapter. So storage personality has to be disabled on that adapter when used in
DPDK applications.

• For SR-IOV case, bnx2x PMD will be used to bind to SR-IOV VF device and Linux native
kernel driver (bnx2x) will be attached to SR-IOV PF.

5.4 Supported QLogic NICs

• 578xx

5.5 Prerequisites

• Requires firmware version 7.2.51.0. It is included in most of the standard Linux distros.
If it is not available visit QLogic Driver Download Center to get the required firmware.

5.6 Pre-Installation Configuration

5.6.1 Config File Options

The following options can be modified in the .config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_BNX2X_PMD (default n)

Toggle compilation of bnx2x driver. To use bnx2x PMD set this config parameter to ‘y’.
Also, in order for firmware binary to load user will need zlib devel package installed.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG (default n)

Toggle display of generic debugging messages.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG_INIT (default n)

Toggle display of initialization related messages.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG_TX (default n)

Toggle display of transmit fast path run-time messages.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG_RX (default n)

Toggle display of receive fast path run-time messages.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG_PERIODIC (default n)

Toggle display of register reads and writes.

5.7 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

5.4. Supported QLogic NICs 13

http://driverdownloads.qlogic.com

Network Interface Controller Drivers, Release 17.05.2

5.8 SR-IOV: Prerequisites and sample Application Notes

This section provides instructions to configure SR-IOV with Linux OS.

1. Verify SR-IOV and ARI capabilities are enabled on the adapter using lspci:

lspci -s <slot> -vvv

Example output:

[...]
Capabilities: [1b8 v1] Alternative Routing-ID Interpretation (ARI)
[...]
Capabilities: [1c0 v1] Single Root I/O Virtualization (SR-IOV)
[...]
Kernel driver in use: igb_uio

2. Load the kernel module:

modprobe bnx2x

Example output:

systemd-udevd[4848]: renamed network interface eth0 to ens5f0
systemd-udevd[4848]: renamed network interface eth1 to ens5f1

3. Bring up the PF ports:

ifconfig ens5f0 up
ifconfig ens5f1 up

4. Create VF device(s):

Echo the number of VFs to be created into “sriov_numvfs” sysfs entry of the parent PF.

Example output:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

5. Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is: ip link set <PF iface>
vf <VF id> mac <macaddr>

Example output:

ip link set ens5f0 vf 0 mac 52:54:00:2f:9d:e8

6. PCI Passthrough:

The VF devices may be passed through to the guest VM using virt-manager or virsh etc.
bnx2x PMD should be used to bind the VF devices in the guest VM using the instructions
outlined in the Application notes below.

7. Running testpmd:

Follow instructions available in the document compiling and testing a PMD for a NIC to
run testpmd.

Example output:

[...]
EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 14e4:168e rte_bnx2x_pmd
EAL: PCI memory mapped at 0x7f14f6fe5000
EAL: PCI memory mapped at 0x7f14f67e5000
EAL: PCI memory mapped at 0x7f15fbd9b000

5.8. SR-IOV: Prerequisites and sample Application Notes 14

Network Interface Controller Drivers, Release 17.05.2

EAL: PCI device 0000:84:00.1 on NUMA socket 1
EAL: probe driver: 14e4:168e rte_bnx2x_pmd
EAL: PCI memory mapped at 0x7f14f5fe5000
EAL: PCI memory mapped at 0x7f14f57e5000
EAL: PCI memory mapped at 0x7f15fbd4f000
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: bnx2x_dev_tx_queue_setup(): fp[00] req_bd=512, thresh=512,

usable_bd=1020, total_bd=1024,
tx_pages=4

PMD: bnx2x_dev_rx_queue_setup(): fp[00] req_bd=128, thresh=0,
usable_bd=510, total_bd=512,

rx_pages=1, cq_pages=8
PMD: bnx2x_print_adapter_info():
[...]
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

5.8. SR-IOV: Prerequisites and sample Application Notes 15

CHAPTER

SIX

BNXT POLL MODE DRIVER

The bnxt poll mode library (librte_pmd_bnxt) implements support for:

• Broadcom NetXtreme-C®/NetXtreme-E® BCM5730X and BCM574XX family of Eth-
ernet Network Controllers

These adapters support Standards compliant 10/25/50/100Gbps 30MPPS full-duplex
throughput.

Information about the NetXtreme family of adapters can be found in the NetXtreme®
Brand section of the Broadcom website.

• Broadcom StrataGX® BCM5871X Series of Communucations Processors

These ARM based processors target a broad range of networking applications including
virtual CPE (vCPE) and NFV appliances, 10G service routers and gateways, control
plane processing for Ethernet switches and network attached storage (NAS).

Information about the StrataGX family of adapters can be found in the StrataGX®
BCM5871X Series section of the Broadcom website.

6.1 Limitations

With the current driver, allocated mbufs must be large enough to hold the entire received frame.
If the mbufs are not large enough, the packets will be dropped. This is most limiting when jumbo
frames are used.

16

https://www.broadcom.com/products/ethernet-communication-and-switching?technology%5B%5D=88
https://www.broadcom.com/products/ethernet-communication-and-switching?technology%5B%5D=88
http://www.broadcom.com/
http://www.broadcom.com/products/enterprise-and-network-processors/processors/bcm58712
http://www.broadcom.com/products/enterprise-and-network-processors/processors/bcm58712
http://www.broadcom.com/

CHAPTER

SEVEN

CXGBE POLL MODE DRIVER

The CXGBE PMD (librte_pmd_cxgbe) provides poll mode driver support for Chelsio T5 10/40
Gbps family of adapters. CXGBE PMD has support for the latest Linux and FreeBSD operating
systems.

More information can be found at Chelsio Communications Official Website.

7.1 Features

CXGBE PMD has support for:

• Multiple queues for TX and RX

• Receiver Side Steering (RSS)

• VLAN filtering

• Checksum offload

• Promiscuous mode

• All multicast mode

• Port hardware statistics

• Jumbo frames

7.2 Limitations

The Chelsio T5 devices provide two/four ports but expose a single PCI bus address, thus, li-
brte_pmd_cxgbe registers itself as a PCI driver that allocates one Ethernet device per detected
port.

For this reason, one cannot whitelist/blacklist a single port without whitelisting/blacklisting the
other ports on the same device.

7.3 Supported Chelsio T5 NICs

• 1G NICs: T502-BT

• 10G NICs: T520-BT, T520-CR, T520-LL-CR, T520-SO-CR, T540-CR

17

http://www.chelsio.com

Network Interface Controller Drivers, Release 17.05.2

• 40G NICs: T580-CR, T580-LP-CR, T580-SO-CR

• Other T5 NICs: T522-CR

7.4 Prerequisites

• Requires firmware version 1.13.32.0 and higher. Visit Chelsio Download Center to get
latest firmware bundled with the latest Chelsio Unified Wire package.

For Linux, installing and loading the latest cxgb4 kernel driver from the Chelsio Unified
Wire package should get you the latest firmware. More information can be obtained from
the User Guide that is bundled with the Chelsio Unified Wire package.

For FreeBSD, the latest firmware obtained from the Chelsio Unified Wire package must
be manually flashed via cxgbetool available in FreeBSD source repository.

Instructions on how to manually flash the firmware are given in section Linux Installation
for Linux and section FreeBSD Installation for FreeBSD.

7.5 Pre-Installation Configuration

7.5.1 Config File Options

The following options can be modified in the .config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_CXGBE_PMD (default y)

Toggle compilation of librte_pmd_cxgbe driver.

• CONFIG_RTE_LIBRTE_CXGBE_DEBUG (default n)

Toggle display of generic debugging messages.

• CONFIG_RTE_LIBRTE_CXGBE_DEBUG_REG (default n)

Toggle display of registers related run-time check messages.

• CONFIG_RTE_LIBRTE_CXGBE_DEBUG_MBOX (default n)

Toggle display of firmware mailbox related run-time check messages.

• CONFIG_RTE_LIBRTE_CXGBE_DEBUG_TX (default n)

Toggle display of transmission data path run-time check messages.

• CONFIG_RTE_LIBRTE_CXGBE_DEBUG_RX (default n)

Toggle display of receiving data path run-time check messages.

7.6 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

7.4. Prerequisites 18

http://service.chelsio.com

Network Interface Controller Drivers, Release 17.05.2

7.7 Linux

7.7.1 Linux Installation

Steps to manually install the latest firmware from the downloaded Chelsio Unified Wire package
for Linux operating system are as follows:

1. Load the kernel module:

modprobe cxgb4

2. Use ifconfig to get the interface name assigned to Chelsio card:

ifconfig -a | grep "00:07:43"

Example output:

p1p1 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C0
p1p2 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C8

3. Install cxgbtool:

cd <path_to_uwire>/tools/cxgbtool
make install

4. Use cxgbtool to load the firmware config file onto the card:

cxgbtool p1p1 loadcfg <path_to_uwire>/src/network/firmware/t5-config.txt

5. Use cxgbtool to load the firmware image onto the card:

cxgbtool p1p1 loadfw <path_to_uwire>/src/network/firmware/t5fw-*.bin

6. Unload and reload the kernel module:

modprobe -r cxgb4
modprobe cxgb4

7. Verify with ethtool:

ethtool -i p1p1 | grep "firmware"

Example output:

firmware-version: 1.13.32.0, TP 0.1.4.8

7.7.2 Running testpmd

This section demonstrates how to launch testpmd with Chelsio T5 devices managed by li-
brte_pmd_cxgbe in Linux operating system.

1. Load the kernel module:

modprobe cxgb4

2. Get the PCI bus addresses of the interfaces bound to cxgb4 driver:

dmesg | tail -2

Example output:

cxgb4 0000:02:00.4 p1p1: renamed from eth0
cxgb4 0000:02:00.4 p1p2: renamed from eth1

7.7. Linux 19

Network Interface Controller Drivers, Release 17.05.2

Note: Both the interfaces of a Chelsio T5 2-port adapter are bound to the same PCI bus
address.

3. Unload the kernel module:

modprobe -ar cxgb4 csiostor

4. Running testpmd

Follow instructions available in the document compiling and testing a PMD for a NIC to
run testpmd.

Note: Currently, CXGBE PMD only supports the binding of PF4 for Chelsio T5 NICs.

Example output:

[...]
EAL: PCI device 0000:02:00.4 on NUMA socket -1
EAL: probe driver: 1425:5401 rte_cxgbe_pmd
EAL: PCI memory mapped at 0x7fd7c0200000
EAL: PCI memory mapped at 0x7fd77cdfd000
EAL: PCI memory mapped at 0x7fd7c10b7000
PMD: rte_cxgbe_pmd: fw: 1.13.32.0, TP: 0.1.4.8
PMD: rte_cxgbe_pmd: Coming up as MASTER: Initializing adapter
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:07:43:2D:EA:C0
Configuring Port 1 (socket 0)
Port 1: 00:07:43:2D:EA:C8
Checking link statuses...
PMD: rte_cxgbe_pmd: Port0: passive DA port module inserted
PMD: rte_cxgbe_pmd: Port1: passive DA port module inserted
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

Note: Flow control pause TX/RX is disabled by default and can be enabled via testpmd.
Refer section Enable/Disable Flow Control for more details.

7.8 FreeBSD

7.8.1 FreeBSD Installation

Steps to manually install the latest firmware from the downloaded Chelsio Unified Wire package
for FreeBSD operating system are as follows:

1. Load the kernel module:

kldload if_cxgbe

2. Use dmesg to get the t5nex instance assigned to the Chelsio card:

dmesg | grep "t5nex"

Example output:

7.8. FreeBSD 20

Network Interface Controller Drivers, Release 17.05.2

t5nex0: <Chelsio T520-CR> irq 16 at device 0.4 on pci2
cxl0: <port 0> on t5nex0
cxl1: <port 1> on t5nex0
t5nex0: PCIe x8, 2 ports, 14 MSI-X interrupts, 31 eq, 13 iq

In the example above, a Chelsio T520-CR card is bound to a t5nex0 instance.

3. Install cxgbetool from FreeBSD source repository:

cd <path_to_FreeBSD_source>/tools/tools/cxgbetool/
make && make install

4. Use cxgbetool to load the firmware image onto the card:

cxgbetool t5nex0 loadfw <path_to_uwire>/src/network/firmware/t5fw-*.bin

5. Unload and reload the kernel module:

kldunload if_cxgbe
kldload if_cxgbe

6. Verify with sysctl:

sysctl -a | grep "t5nex" | grep "firmware"

Example output:

dev.t5nex.0.firmware_version: 1.13.32.0

7.8.2 Running testpmd

This section demonstrates how to launch testpmd with Chelsio T5 devices managed by li-
brte_pmd_cxgbe in FreeBSD operating system.

1. Change to DPDK source directory where the target has been compiled in section Driver
compilation and testing:

cd <DPDK-source-directory>

2. Copy the contigmem kernel module to /boot/kernel directory:

cp x86_64-native-bsdapp-clang/kmod/contigmem.ko /boot/kernel/

3. Add the following lines to /boot/loader.conf:

reserve 2 x 1G blocks of contiguous memory using contigmem driver
hw.contigmem.num_buffers=2
hw.contigmem.buffer_size=1073741824
load contigmem module during boot process
contigmem_load="YES"

The above lines load the contigmem kernel module during boot process and allocate 2 x
1G blocks of contiguous memory to be used for DPDK later on. This is to avoid issues
with potential memory fragmentation during later system up time, which may result in
failure of allocating the contiguous memory required for the contigmem kernel module.

4. Restart the system and ensure the contigmem module is loaded successfully:

reboot
kldstat | grep "contigmem"

Example output:

2 1 0xffffffff817f1000 3118 contigmem.ko

5. Repeat step 1 to ensure that you are in the DPDK source directory.

7.8. FreeBSD 21

Network Interface Controller Drivers, Release 17.05.2

6. Load the cxgbe kernel module:

kldload if_cxgbe

7. Get the PCI bus addresses of the interfaces bound to t5nex driver:

pciconf -l | grep "t5nex"

Example output:

t5nex0@pci0:2:0:4: class=0x020000 card=0x00001425 chip=0x54011425 rev=0x00

In the above example, the t5nex0 is bound to 2:0:4 bus address.

Note: Both the interfaces of a Chelsio T5 2-port adapter are bound to the same PCI bus
address.

8. Unload the kernel module:

kldunload if_cxgbe

9. Set the PCI bus addresses to hw.nic_uio.bdfs kernel environment parameter:

kenv hw.nic_uio.bdfs="2:0:4"

This automatically binds 2:0:4 to nic_uio kernel driver when it is loaded in the next step.

Note: Currently, CXGBE PMD only supports the binding of PF4 for Chelsio T5 NICs.

10. Load nic_uio kernel driver:

kldload ./x86_64-native-bsdapp-clang/kmod/nic_uio.ko

11. Start testpmd with basic parameters:

./x86_64-native-bsdapp-clang/app/testpmd -l 0-3 -n 4 -w 0000:02:00.4 -- -i

Example output:

[...]
EAL: PCI device 0000:02:00.4 on NUMA socket 0
EAL: probe driver: 1425:5401 rte_cxgbe_pmd
EAL: PCI memory mapped at 0x8007ec000
EAL: PCI memory mapped at 0x842800000
EAL: PCI memory mapped at 0x80086c000
PMD: rte_cxgbe_pmd: fw: 1.13.32.0, TP: 0.1.4.8
PMD: rte_cxgbe_pmd: Coming up as MASTER: Initializing adapter
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:07:43:2D:EA:C0
Configuring Port 1 (socket 0)
Port 1: 00:07:43:2D:EA:C8
Checking link statuses...
PMD: rte_cxgbe_pmd: Port0: passive DA port module inserted
PMD: rte_cxgbe_pmd: Port1: passive DA port module inserted
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

Note: Flow control pause TX/RX is disabled by default and can be enabled via testpmd. Refer
section Enable/Disable Flow Control for more details.

7.8. FreeBSD 22

Network Interface Controller Drivers, Release 17.05.2

7.9 Sample Application Notes

7.9.1 Enable/Disable Flow Control

Flow control pause TX/RX is disabled by default and can be enabled via testpmd as follows:

testpmd> set flow_ctrl rx on tx on 0 0 0 0 mac_ctrl_frame_fwd off autoneg on 0
testpmd> set flow_ctrl rx on tx on 0 0 0 0 mac_ctrl_frame_fwd off autoneg on 1

To disable again, run:

testpmd> set flow_ctrl rx off tx off 0 0 0 0 mac_ctrl_frame_fwd off autoneg off 0
testpmd> set flow_ctrl rx off tx off 0 0 0 0 mac_ctrl_frame_fwd off autoneg off 1

7.9.2 Jumbo Mode

There are two ways to enable sending and receiving of jumbo frames via testpmd. One method
involves using the mtu command, which changes the mtu of an individual port without having
to stop the selected port. Another method involves stopping all the ports first and then running
max-pkt-len command to configure the mtu of all the ports with a single command.

• To configure each port individually, run the mtu command as follows:

testpmd> port config mtu 0 9000
testpmd> port config mtu 1 9000

• To configure all the ports at once, stop all the ports first and run the max-pkt-len command
as follows:

testpmd> port stop all
testpmd> port config all max-pkt-len 9000

7.9. Sample Application Notes 23

CHAPTER

EIGHT

DPAA2 POLL MODE DRIVER

The DPAA2 NIC PMD (librte_pmd_dpaa2) provides poll mode driver support for the inbuilt
NIC found in the NXP DPAA2 SoC family.

More information can be found at NXP Official Website.

8.1 NXP DPAA2 (Data Path Acceleration Architecture Gen2)

This section provides an overview of the NXP DPAA2 architecture and how it is integrated into
the DPDK.

Contents summary

• DPAA2 overview

• Overview of DPAA2 objects

• DPAA2 driver architecture overview

8.1.1 DPAA2 Overview

Reference: FSL MC BUS in Linux Kernel.

DPAA2 is a hardware architecture designed for high-speed network packet processing. DPAA2
consists of sophisticated mechanisms for processing Ethernet packets, queue management,
buffer management, autonomous L2 switching, virtual Ethernet bridging, and accelerator (e.g.
crypto) sharing.

A DPAA2 hardware component called the Management Complex (or MC) manages the DPAA2
hardware resources. The MC provides an object-based abstraction for software drivers to use
the DPAA2 hardware.

The MC uses DPAA2 hardware resources such as queues, buffer pools, and network ports
to create functional objects/devices such as network interfaces, an L2 switch, or accelerator
instances.

The MC provides memory-mapped I/O command interfaces (MC portals) which DPAA2 soft-
ware drivers use to operate on DPAA2 objects:

The diagram below shows an overview of the DPAA2 resource management architecture:

+--------------------------------------+
| OS |
| DPAA2 drivers |
| | |

24

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM
https://www.kernel.org/doc/readme/drivers-staging-fsl-mc-README.txt

Network Interface Controller Drivers, Release 17.05.2

+-----------------------------|--------+
|
| (create,discover,connect
| config,use,destroy)
|

DPAA2 |
+------------------------| mc portal |-+
| | |
| +- - - - - - - - - - - - -V- - -+ |
	Management Complex (MC)	
+- - - - - - - - - - - - - - - -+		
Hardware Hardware		
Resources Objects		
--------- -------		
-queues -DPRC		
-buffer pools -DPMCP		
-Eth MACs/ports -DPIO		
-network interface -DPNI		
profiles -DPMAC		
-queue portals -DPBP		
-MC portals ...		
...		
+--------------------------------------+

The MC mediates operations such as create, discover, connect, configuration, and destroy.
Fast-path operations on data, such as packet transmit/receive, are not mediated by the MC
and are done directly using memory mapped regions in DPIO objects.

8.1.2 Overview of DPAA2 Objects

The section provides a brief overview of some key DPAA2 objects. A simple scenario is de-
scribed illustrating the objects involved in creating a network interfaces.

DPRC (Datapath Resource Container)

A DPRC is a container object that holds all the other types of DPAA2 objects. In
the example diagram below there are 8 objects of 5 types (DPMCP, DPIO, DPBP,
DPNI, and DPMAC) in the container.

+---+
| DPRC |
| |
| +-------+ +-------+ +-------+ +-------+ +-------+ |
| | DPMCP | | DPIO | | DPBP | | DPNI | | DPMAC | |
| +-------+ +-------+ +-------+ +---+---+ +---+---+ |
| | DPMCP | | DPIO | |
| +-------+ +-------+ |
| | DPMCP | |
| +-------+ |
| |
+---+

From the point of view of an OS, a DPRC behaves similar to a plug and play bus, like PCI.
DPRC commands can be used to enumerate the contents of the DPRC, discover the hardware
objects present (including mappable regions and interrupts).

8.1. NXP DPAA2 (Data Path Acceleration Architecture Gen2) 25

Network Interface Controller Drivers, Release 17.05.2

DPRC.1 (bus)
|
+--+--------+-------+-------+-------+

| | | | |
DPMCP.1 DPIO.1 DPBP.1 DPNI.1 DPMAC.1
DPMCP.2 DPIO.2
DPMCP.3

Hardware objects can be created and destroyed dynamically, providing the ability to hot
plug/unplug objects in and out of the DPRC.

A DPRC has a mappable MMIO region (an MC portal) that can be used to send MC commands.
It has an interrupt for status events (like hotplug).

All objects in a container share the same hardware “isolation context”. This means that with
respect to an IOMMU the isolation granularity is at the DPRC (container) level, not at the
individual object level.

DPRCs can be defined statically and populated with objects via a config file passed to the MC
when firmware starts it. There is also a Linux user space tool called “restool” that can be used
to create/destroy containers and objects dynamically.

8.1.3 DPAA2 Objects for an Ethernet Network Interface

A typical Ethernet NIC is monolithic– the NIC device contains TX/RX queuing mechanisms,
configuration mechanisms, buffer management, physical ports, and interrupts. DPAA2 uses a
more granular approach utilizing multiple hardware objects. Each object provides specialized
functions. Groups of these objects are used by software to provide Ethernet network interface
functionality. This approach provides efficient use of finite hardware resources, flexibility, and
performance advantages.

The diagram below shows the objects needed for a simple network interface configuration on
a system with 2 CPUs.

+---+---+ +---+---+
CPU0 CPU1

+---+---+ +---+---+
| |

+---+---+ +---+---+
DPIO DPIO

+---+---+ +---+---+
\ /
\ /
\ /

+---+---+
DPNI --- DPBP,DPMCP

+---+---+
|
|

+---+---+
DPMAC

+---+---+
|

port/PHY

Below the objects are described. For each object a brief description is provided along with a
summary of the kinds of operations the object supports and a summary of key resources of
the object (MMIO regions and IRQs).

8.1. NXP DPAA2 (Data Path Acceleration Architecture Gen2) 26

Network Interface Controller Drivers, Release 17.05.2

DPMAC (Datapath Ethernet MAC): represents an Ethernet MAC, a hardware device that con-
nects to an Ethernet PHY and allows physical transmission and reception of Ethernet frames.

• MMIO regions: none

• IRQs: DPNI link change

• commands: set link up/down, link config, get stats, IRQ config, enable, reset

DPNI (Datapath Network Interface): contains TX/RX queues, network interface configuration,
and RX buffer pool configuration mechanisms. The TX/RX queues are in memory and are
identified by queue number.

• MMIO regions: none

• IRQs: link state

• commands: port config, offload config, queue config, parse/classify config, IRQ config,
enable, reset

DPIO (Datapath I/O): provides interfaces to enqueue and dequeue packets and do hardware
buffer pool management operations. The DPAA2 architecture separates the mechanism to
access queues (the DPIO object) from the queues themselves. The DPIO provides an MMIO
interface to enqueue/dequeue packets. To enqueue something a descriptor is written to the
DPIO MMIO region, which includes the target queue number. There will typically be one DPIO
assigned to each CPU. This allows all CPUs to simultaneously perform enqueue/dequeued
operations. DPIOs are expected to be shared by different DPAA2 drivers.

• MMIO regions: queue operations, buffer management

• IRQs: data availability, congestion notification, buffer pool depletion

• commands: IRQ config, enable, reset

DPBP (Datapath Buffer Pool): represents a hardware buffer pool.

• MMIO regions: none

• IRQs: none

• commands: enable, reset

DPMCP (Datapath MC Portal): provides an MC command portal. Used by drivers to send
commands to the MC to manage objects.

• MMIO regions: MC command portal

• IRQs: command completion

• commands: IRQ config, enable, reset

8.1.4 Object Connections

Some objects have explicit relationships that must be configured:

• DPNI <–> DPMAC

• DPNI <–> DPNI

• DPNI <–> L2-switch-port

8.1. NXP DPAA2 (Data Path Acceleration Architecture Gen2) 27

Network Interface Controller Drivers, Release 17.05.2

A DPNI must be connected to something such as a DPMAC, another DPNI, or L2 switch port.
The DPNI connection is made via a DPRC command.

+-------+ +-------+
| DPNI | | DPMAC |
+---+---+ +---+---+

| |
+==========+

• DPNI <–> DPBP

A network interface requires a ‘buffer pool’ (DPBP object) which provides a list of pointers to
memory where received Ethernet data is to be copied. The Ethernet driver configures the
DPBPs associated with the network interface.

8.1.5 Interrupts

All interrupts generated by DPAA2 objects are message interrupts. At the hardware level mes-
sage interrupts generated by devices will normally have 3 components– 1) a non-spoofable
‘device-id’ expressed on the hardware bus, 2) an address, 3) a data value.

In the case of DPAA2 devices/objects, all objects in the same container/DPRC share the same
‘device-id’. For ARM-based SoC this is the same as the stream ID.

8.2 DPAA2 DPDK - Poll Mode Driver Overview

This section provides an overview of the drivers for DPAA2– 1) the bus driver and associated
“DPAA2 infrastructure” drivers and 2) functional object drivers (such as Ethernet).

As described previously, a DPRC is a container that holds the other types of DPAA2 objects. It
is functionally similar to a plug-and-play bus controller.

Each object in the DPRC is a Linux “device” and is bound to a driver. The diagram below shows
the dpaa2 drivers involved in a networking scenario and the objects bound to each driver. A
brief description of each driver follows.

A brief description of each driver is provided below.

8.2.1 DPAA2 bus driver

The DPAA2 bus driver is a rte_bus driver which scans the fsl-mc bus. Key functions include:

• Reading the container and setting up vfio group

• Scanning and parsing the various MC objects and adding them to their respective device
list.

Additionally, it also provides the object driver for generic MC objects.

8.2.2 DPIO driver

The DPIO driver is bound to DPIO objects and provides services that allow other drivers such
as the Ethernet driver to enqueue and dequeue data for their respective objects. Key services
include:

8.2. DPAA2 DPDK - Poll Mode Driver Overview 28

Network Interface Controller Drivers, Release 17.05.2

• Data availability notifications

• Hardware queuing operations (enqueue and dequeue of data)

• Hardware buffer pool management

To transmit a packet the Ethernet driver puts data on a queue and invokes a DPIO API. For
receive, the Ethernet driver registers a data availability notification callback. To dequeue a
packet a DPIO API is used.

There is typically one DPIO object per physical CPU for optimum performance, allowing differ-
ent CPUs to simultaneously enqueue and dequeue data.

The DPIO driver operates on behalf of all DPAA2 drivers active – Ethernet, crypto, compres-
sion, etc.

8.2.3 DPBP based Mempool driver

The DPBP driver is bound to a DPBP objects and provides sevices to create a hardware
offloaded packet buffer mempool.

8.2.4 DPAA2 NIC Driver

The Ethernet driver is bound to a DPNI and implements the kernel interfaces needed to connect
the DPAA2 network interface to the network stack.

Each DPNI corresponds to a DPDK network interface.

Features

Features of the DPAA2 PMD are:

• Multiple queues for TX and RX

• Receive Side Scaling (RSS)

• Packet type information

• Checksum offload

• Promiscuous mode

8.3 Supported DPAA2 SoCs

• LS2080A/LS2040A

• LS2084A/LS2044A

• LS2088A/LS2048A

• LS1088A/LS1048A

8.3. Supported DPAA2 SoCs 29

Network Interface Controller Drivers, Release 17.05.2

8.4 Prerequisites

There are three main pre-requisities for executing DPAA2 PMD on a DPAA2 compatible board:

1. ARM 64 Tool Chain

For example, the *aarch64* Linaro Toolchain.

2. Linux Kernel

It can be obtained from NXP’s Github hosting.

3. Rootfile system

Any aarch64 supporting filesystem can be used. For example, Ubuntu 15.10 (Wily) or
16.04 LTS (Xenial) userland which can be obtained from here.

As an alternative method, DPAA2 PMD can also be executed using images provided as part of
SDK from NXP. The SDK includes all the above prerequisites necessary to bring up a DPAA2
board.

The following dependencies are not part of DPDK and must be installed separately:

• NXP Linux SDK

NXP Linux software development kit (SDK) includes support for family of QorIQ® ARM-
Architecture-based system on chip (SoC) processors and corresponding boards.

It includes the Linux board support packages (BSPs) for NXP SoCs, a fully operational
tool chain, kernel and board specific modules.

SDK and related information can be obtained from: NXP QorIQ SDK.

• DPDK Helper Scripts

DPAA2 based resources can be configured easily with the help of ready scripts as pro-
vided in the DPDK helper repository.

DPDK Helper Scripts.

Currently supported by DPDK:

• NXP SDK 2.0+.

• MC Firmware version 10.0.0 and higher.

• Supported architectures: arm64 LE.

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

Note: Some part of fslmc bus code (mc flib - object library) routines are dual licensed (BSD &
GPLv2).

8.5 Pre-Installation Configuration

8.5.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging
options may affect system performance.

8.4. Prerequisites 30

https://releases.linaro.org/components/toolchain/binaries/4.9-2017.01/aarch64-linux-gnu
https://github.com/qoriq-open-source/linux
http://cdimage.ubuntu.com/ubuntu-base/releases/16.04/release/ubuntu-base-16.04.1-base-arm64.tar.gz
http://www.nxp.com/products/software-and-tools/run-time-software/linux-sdk/linux-sdk-for-qoriq-processors:SDKLINUX
https://github.com/qoriq-open-source/dpdk-helper

Network Interface Controller Drivers, Release 17.05.2

• CONFIG_RTE_LIBRTE_FSLMC_BUS (default n)

By default it is enabled only for defconfig_arm64-dpaa2-* config. Toggle compilation of
the librte_bus_fslmc driver.

• CONFIG_RTE_LIBRTE_DPAA2_PMD (default n)

By default it is enabled only for defconfig_arm64-dpaa2-* config. Toggle compilation of
the librte_pmd_dpaa2 driver.

• CONFIG_RTE_LIBRTE_DPAA2_DEBUG_DRIVER (default n)

Toggle display of generic debugging messages

• CONFIG_RTE_LIBRTE_DPAA2_USE_PHYS_IOVA (default y)

Toggle to use physical address vs virtual address for hardware accelerators.

• CONFIG_RTE_LIBRTE_DPAA2_DEBUG_INIT (default n)

Toggle display of initialization related messages.

• CONFIG_RTE_LIBRTE_DPAA2_DEBUG_RX (default n)

Toggle display of receive fast path run-time message

• CONFIG_RTE_LIBRTE_DPAA2_DEBUG_TX (default n)

Toggle display of transmit fast path run-time message

• CONFIG_RTE_LIBRTE_DPAA2_DEBUG_TX_FREE (default n)

Toggle display of transmit fast path buffer free run-time message

8.6 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

1. Running testpmd:

Follow instructions available in the document compiling and testing a PMD for a NIC to
run testpmd.

Example output:

./arm64-dpaa2-linuxapp-gcc/testpmd -c 0xff -n 1 \
-- -i --portmask=0x3 --nb-cores=1 --no-flush-rx

.....
EAL: Registered [pci] bus.
EAL: Registered [fslmc] bus.
EAL: Detected 8 lcore(s)
EAL: Probing VFIO support...
EAL: VFIO support initialized
.....
PMD: DPAA2: Processing Container = dprc.2
EAL: fslmc: DPRC contains = 51 devices
EAL: fslmc: Bus scan completed
.....
Configuring Port 0 (socket 0)
Port 0: 00:00:00:00:00:01
Configuring Port 1 (socket 0)
Port 1: 00:00:00:00:00:02

8.6. Driver compilation and testing 31

Network Interface Controller Drivers, Release 17.05.2

.....
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

8.7 Limitations

8.7.1 Platform Requirement

DPAA2 drivers for DPDK can only work on NXP SoCs as listed in the Supported DPAA2
SoCs.

8.7.2 Maximum packet length

The DPAA2 SoC family support a maximum of a 10240 jumbo frame. The value is fixed
and cannot be changed. So, even when the rxmode.max_rx_pkt_len member of struct
rte_eth_conf is set to a value lower than 10240, frames up to 10240 bytes can still reach
the host interface.

8.7. Limitations 32

CHAPTER

NINE

DRIVER FOR VM EMULATED DEVICES

The DPDK EM poll mode driver supports the following emulated devices:

• qemu-kvm emulated Intel® 82540EM Gigabit Ethernet Controller (qemu e1000 device)

• VMware* emulated Intel® 82545EM Gigabit Ethernet Controller

• VMware emulated Intel® 8274L Gigabit Ethernet Controller.

9.1 Validated Hypervisors

The validated hypervisors are:

• KVM (Kernel Virtual Machine) with Qemu, version 0.14.0

• KVM (Kernel Virtual Machine) with Qemu, version 0.15.1

• VMware ESXi 5.0, Update 1

9.2 Recommended Guest Operating System in Virtual Machine

The recommended guest operating system in a virtualized environment is:

• Fedora* 18 (64-bit)

For supported kernel versions, refer to the DPDK Release Notes.

9.3 Setting Up a KVM Virtual Machine

The following describes a target environment:

• Host Operating System: Fedora 14

• Hypervisor: KVM (Kernel Virtual Machine) with Qemu version, 0.14.0

• Guest Operating System: Fedora 14

• Linux Kernel Version: Refer to the DPDK Getting Started Guide

• Target Applications: testpmd

The setup procedure is as follows:

33

Network Interface Controller Drivers, Release 17.05.2

1. Download qemu-kvm-0.14.0 from http://sourceforge.net/projects/kvm/files/qemu-kvm/
and install it in the Host OS using the following steps:

When using a recent kernel (2.6.25+) with kvm modules included:

tar xzf qemu-kvm-release.tar.gz cd qemu-kvm-release
./configure --prefix=/usr/local/kvm
make
sudo make install
sudo /sbin/modprobe kvm-intel

When using an older kernel or a kernel from a distribution without the kvm modules, you
must download (from the same link), compile and install the modules yourself:

tar xjf kvm-kmod-release.tar.bz2
cd kvm-kmod-release
./configure
make
sudo make install
sudo /sbin/modprobe kvm-intel

Note that qemu-kvm installs in the /usr/local/bin directory.

For more details about KVM configuration and usage, please refer to: http://www.linux-
kvm.org/page/HOWTO1.

2. Create a Virtual Machine and install Fedora 14 on the Virtual Machine. This is referred
to as the Guest Operating System (Guest OS).

3. Start the Virtual Machine with at least one emulated e1000 device.

Note: The Qemu provides several choices for the emulated network device backend.
Most commonly used is a TAP networking backend that uses a TAP networking device in
the host. For more information about Qemu supported networking backends and different
options for configuring networking at Qemu, please refer to:

— http://www.linux-kvm.org/page/Networking

— http://wiki.qemu.org/Documentation/Networking

— http://qemu.weilnetz.de/qemu-doc.html

For example, to start a VM with two emulated e1000 devices, issue the following com-
mand:

/usr/local/kvm/bin/qemu-system-x86_64 -cpu host -smp 4 -hda qemu1.raw -m 1024
-net nic,model=e1000,vlan=1,macaddr=DE:AD:1E:00:00:01
-net tap,vlan=1,ifname=tapvm01,script=no,downscript=no
-net nic,model=e1000,vlan=2,macaddr=DE:AD:1E:00:00:02
-net tap,vlan=2,ifname=tapvm02,script=no,downscript=no

where:

— -m = memory to assign

— -smp = number of smp cores

— -hda = virtual disk image

This command starts a new virtual machine with two emulated 82540EM devices, backed
up with two TAP networking host interfaces, tapvm01 and tapvm02.

ip tuntap show
tapvm01: tap
tapvm02: tap

9.3. Setting Up a KVM Virtual Machine 34

http://sourceforge.net/projects/kvm/files/qemu-kvm/
http://www.linux-kvm.org/page/HOWTO1
http://www.linux-kvm.org/page/HOWTO1
http://www.linux-kvm.org/page/Networking
http://wiki.qemu.org/Documentation/Networking
http://qemu.weilnetz.de/qemu-doc.html

Network Interface Controller Drivers, Release 17.05.2

4. Configure your TAP networking interfaces using ip/ifconfig tools.

5. Log in to the guest OS and check that the expected emulated devices exist:

lspci -d 8086:100e
00:04.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 03)
00:05.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 03)

6. Install the DPDK and run testpmd.

9.4 Known Limitations of Emulated Devices

The following are known limitations:

1. The Qemu e1000 RX path does not support multiple descriptors/buffers per packet.
Therefore, rte_mbuf should be big enough to hold the whole packet. For example, to
allow testpmd to receive jumbo frames, use the following:

testpmd [options] – –mbuf-size=<your-max-packet-size>

2. Qemu e1000 does not validate the checksum of incoming packets.

3. Qemu e1000 only supports one interrupt source, so link and Rx interrupt should be ex-
clusive.

4. Qemu e1000 does not support interrupt auto-clear, application should disable interrupt
immediately when woken up.

9.4. Known Limitations of Emulated Devices 35

CHAPTER

TEN

ENA POLL MODE DRIVER

The ENA PMD is a DPDK poll-mode driver for the Amazon Elastic Network Adapter (ENA)
family.

10.1 Overview

The ENA driver exposes a lightweight management interface with a minimal set of memory
mapped registers and an extendable command set through an Admin Queue.

The driver supports a wide range of ENA adapters, is link-speed independent (i.e., the same
driver is used for 10GbE, 25GbE, 40GbE, etc.), and it negotiates and supports an extendable
feature set.

ENA adapters allow high speed and low overhead Ethernet traffic processing by providing a
dedicated Tx/Rx queue pair per CPU core.

The ENA driver supports industry standard TCP/IP offload features such as checksum offload
and TCP transmit segmentation offload (TSO).

Receive-side scaling (RSS) is supported for multi-core scaling.

Some of the ENA devices support a working mode called Low-latency Queue (LLQ), which
saves several more microseconds.

10.2 Management Interface

ENA management interface is exposed by means of:

• Device Registers

• Admin Queue (AQ) and Admin Completion Queue (ACQ)

ENA device memory-mapped PCIe space for registers (MMIO registers) are accessed only
during driver initialization and are not involved in further normal device operation.

AQ is used for submitting management commands, and the results/responses are reported
asynchronously through ACQ.

ENA introduces a very small set of management commands with room for vendor-specific
extensions. Most of the management operations are framed in a generic Get/Set feature com-
mand.

The following admin queue commands are supported:

36

Network Interface Controller Drivers, Release 17.05.2

• Create I/O submission queue

• Create I/O completion queue

• Destroy I/O submission queue

• Destroy I/O completion queue

• Get feature

• Set feature

• Get statistics

Refer to ena_admin_defs.h for the list of supported Get/Set Feature properties.

10.3 Data Path Interface

I/O operations are based on Tx and Rx Submission Queues (Tx SQ and Rx SQ correspond-
ingly). Each SQ has a completion queue (CQ) associated with it.

The SQs and CQs are implemented as descriptor rings in contiguous physical memory.

Refer to ena_eth_io_defs.h for the detailed structure of the descriptor

The driver supports multi-queue for both Tx and Rx.

10.4 Configuration information

DPDK Configuration Parameters

The following configuration options are available for the ENA PMD:

• CONFIG_RTE_LIBRTE_ENA_PMD (default y): Enables or disables inclusion
of the ENA PMD driver in the DPDK compilation.

• CONFIG_RTE_LIBRTE_ENA_DEBUG_INIT (default y): Enables or disables
debug logging of device initialization within the ENA PMD driver.

• CONFIG_RTE_LIBRTE_ENA_DEBUG_RX (default n): Enables or disables
debug logging of RX logic within the ENA PMD driver.

• CONFIG_RTE_LIBRTE_ENA_DEBUG_TX (default n): Enables or disables
debug logging of TX logic within the ENA PMD driver.

• CONFIG_RTE_LIBRTE_ENA_COM_DEBUG (default n): Enables or disables
debug logging of low level tx/rx logic in ena_com(base) within the ENA PMD
driver.

ENA Configuration Parameters

• Number of Queues

This is the requested number of queues upon initialization, however, the actual number
of receive and transmit queues to be created will be the minimum between the maximal
number supported by the device and number of queues requested.

10.3. Data Path Interface 37

Network Interface Controller Drivers, Release 17.05.2

• Size of Queues

This is the requested size of receive/transmit queues, while the actual size will be the
minimum between the requested size and the maximal receive/transmit supported by the
device.

10.5 Building DPDK

See the DPDK Getting Started Guide for Linux for instructions on how to build DPDK.

By default the ENA PMD library will be built into the DPDK library.

For configuring and using UIO and VFIO frameworks, please also refer the documentation that
comes with DPDK suite.

10.6 Supported ENA adapters

Current ENA PMD supports the following ENA adapters including:

• 1d0f:ec20 - ENA VF

• 1d0f:ec21 - ENA VF with LLQ support

10.7 Supported Operating Systems

Any Linux distribution fulfilling the conditions described in System Requirements section of
the DPDK documentation or refer to DPDK Release Notes.

10.8 Supported features

• Jumbo frames up to 9K

• Port Hardware Statistics

• IPv4/TCP/UDP checksum offload

• TSO offload

• Multiple receive and transmit queues

• RSS

• Low Latency Queue for Tx

10.9 Unsupported features

The features supported by the device and not yet supported by this PMD include:

• Asynchronous Event Notification Queue (AENQ)

10.5. Building DPDK 38

Network Interface Controller Drivers, Release 17.05.2

10.10 Prerequisites

1. Prepare the system as recommended by DPDK suite. This includes environment vari-
ables, hugepages configuration, tool-chains and configuration

2. Insert igb_uio kernel module using the command ‘modprobe igb_uio’

3. Bind the intended ENA device to igb_uio module

At this point the system should be ready to run DPDK applications. Once the application runs
to completion, the ENA can be detached from igb_uio if necessary.

10.11 Usage example

Follow instructions available in the document compiling and testing a PMD for a NIC to launch
testpmd with Amazon ENA devices managed by librte_pmd_ena.

Example output:

[...]
EAL: PCI device 0000:02:00.1 on NUMA socket -1
EAL: probe driver: 1d0f:ec20 rte_ena_pmd
EAL: PCI memory mapped at 0x7f9b6c400000
PMD: eth_ena_dev_init(): Initializing 0:2:0.1
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:00:00:11:00:01
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

10.10. Prerequisites 39

CHAPTER

ELEVEN

ENIC POLL MODE DRIVER

ENIC PMD is the DPDK poll-mode driver for the Cisco System Inc. VIC Ethernet NICs. These
adapters are also referred to as vNICs below. If you are running or would like to run DPDK soft-
ware applications on Cisco UCS servers using Cisco VIC adapters the following documentation
is relevant.

11.1 How to obtain ENIC PMD integrated DPDK

ENIC PMD support is integrated into the DPDK suite. dpdk-<version>.tar.gz should be down-
loaded from http://dpdk.org

11.2 Configuration information

• DPDK Configuration Parameters

The following configuration options are available for the ENIC PMD:

– CONFIG_RTE_LIBRTE_ENIC_PMD (default y): Enables or disables inclusion of
the ENIC PMD driver in the DPDK compilation.

– CONFIG_RTE_LIBRTE_ENIC_DEBUG (default n): Enables or disables debug log-
ging within the ENIC PMD driver.

• vNIC Configuration Parameters

– Number of Queues

The maximum number of receive queues (RQs), work queues (WQs) and comple-
tion queues (CQs) are configurable on a per vNIC basis through the Cisco UCS
Manager (CIMC or UCSM).

These values should be configured as follows:

* The number of WQs should be greater or equal to the value of the expected
nb_tx_q parameter in the call to the rte_eth_dev_configure()

* The number of RQs configured in the vNIC should be greater or equal
to twice the value of the expected nb_rx_q parameter in the call to
rte_eth_dev_configure(). With the addition of Rx scatter, a pair of RQs on the
vnic is needed for each receive queue used by DPDK, even if Rx scatter is not
being used. Having a vNIC with only 1 RQ is not a valid configuration, and will
fail with an error message.

40

http://dpdk.org

Network Interface Controller Drivers, Release 17.05.2

* The number of CQs should set so that there is one CQ for each WQ, and one
CQ for each pair of RQs.

For example: If the application requires 3 Rx queues, and 3 Tx queues, the vNIC
should be configured to have at least 3 WQs, 6 RQs (3 pairs), and 6 CQs (3 for use
by WQs + 3 for use by the 3 pairs of RQs).

– Size of Queues

Likewise, the number of receive and transmit descriptors are configurable on a
per vNIC bases via the UCS Manager and should be greater than or equal to
the nb_rx_desc and nb_tx_desc parameters expected to be used in the calls to
rte_eth_rx_queue_setup() and rte_eth_tx_queue_setup() respectively. An applica-
tion requesting more than the set size will be limited to that size.

Unless there is a lack of resources due to creating many vNICs, it is recommended
that the WQ and RQ sizes be set to the maximum. This gives the application the
greatest amount of flexibility in its queue configuration.

* Note: Since the introduction of Rx scatter, for performance reasons, this PMD
uses two RQs on the vNIC per receive queue in DPDK. One RQ holds descrip-
tors for the start of a packet the second RQ holds the descriptors for the rest
of the fragments of a packet. This means that the nb_rx_desc parameter to
rte_eth_rx_queue_setup() can be a greater than 4096. The exact amount will
depend on the size of the mbufs being used for receives, and the MTU size.

For example: If the mbuf size is 2048, and the MTU is 9000, then receiving a
full size packet will take 5 descriptors, 1 from the start of packet queue, and 4
from the second queue. Assuming that the RQ size was set to the maximum
of 4096, then the application can specify up to 1024 + 4096 as the nb_rx_desc
parameter to rte_eth_rx_queue_setup().

– Interrupts

Only one interrupt per vNIC interface should be configured in the UCS manager re-
gardless of the number receive/transmit queues. The ENIC PMD uses this interrupt
to get information about link status and errors in the fast path.

11.3 Flow director support

Advanced filtering support was added to 1300 series VIC firmware starting with version 2.0.13
for C-series UCS servers and version 3.1.2 for UCSM managed blade servers. In order to
enable advanced filtering the ‘Advanced filter’ radio button should be enabled via CIMC or
UCSM followed by a reboot of the server.

With advanced filters, perfect matching of all fields of IPv4, IPv6 headers as well as TCP, UDP
and SCTP L4 headers is available through flow director. Masking of these fields for partial
match is also supported.

Without advanced filter support, the flow director is limited to IPv4 perfect filtering of the 5-tuple
with no masking of fields supported.

11.3. Flow director support 41

Network Interface Controller Drivers, Release 17.05.2

11.4 SR-IOV mode utilization

UCS blade servers configured with dynamic vNIC connection policies in UCS manager are
capable of supporting assigned devices on virtual machines (VMs) through a KVM hypervisor.
Assigned devices, also known as ‘passthrough’ devices, are SR-IOV virtual functions (VFs) on
the host which are exposed to VM instances.

The Cisco Virtual Machine Fabric Extender (VM-FEX) gives the VM a dedicated interface on
the Fabric Interconnect (FI). Layer 2 switching is done at the FI. This may eliminate the require-
ment for software switching on the host to route intra-host VM traffic.

Please refer to Creating a Dynamic vNIC Connection Policy for information on configuring SR-
IOV Adapter policies using UCS manager.

Once the policies are in place and the host OS is rebooted, VFs should be visible on the host,
E.g.:

lspci | grep Cisco | grep Ethernet
0d:00.0 Ethernet controller: Cisco Systems Inc VIC Ethernet NIC (rev a2)
0d:00.1 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.2 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.3 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.4 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.5 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.6 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.7 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)

Enable Intel IOMMU on the host and install KVM and libvirt. A VM instance should be created
with an assigned device. When using libvirt, this configuration can be done within the domain
(i.e. VM) config file. For example this entry maps host VF 0d:00:01 into the VM.

<interface type='hostdev' managed='yes'>
<mac address='52:54:00:ac:ff:b6'/>
<source>

<address type='pci' domain='0x0000' bus='0x0d' slot='0x00' function='0x1'/>
</source>

Alternatively, the configuration can be done in a separate file using the network keyword.
These methods are described in the libvirt documentation for Network XML format.

When the VM instance is started, the ENIC KVM driver will bind the host VF to vfio, complete
provisioning on the FI and bring up the link.

Note: It is not possible to use a VF directly from the host because it is not fully provisioned
until the hypervisor brings up the VM that it is assigned to.

In the VM instance, the VF will now be visible. E.g., here the VF 00:04.0 is seen on the VM
instance and should be available for binding to a DPDK.

lspci | grep Ether
00:04.0 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)

Follow the normal DPDK install procedure, binding the VF to either igb_uio or vfio in non-
IOMMU mode.

Please see Limitations for limitations in the use of SR-IOV.

11.4. SR-IOV mode utilization 42

http://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/sw/vm_fex/vmware/gui/config_guide/b_GUI_VMware_VM-FEX_UCSM_Configuration_Guide/b_GUI_VMware_VM-FEX_UCSM_Configuration_Guide_chapter_010.html#task_433E01651F69464783A68E66DA8A47A5
https://libvirt.org/formatnetwork.html

Network Interface Controller Drivers, Release 17.05.2

11.5 Limitations

• VLAN 0 Priority Tagging

If a vNIC is configured in TRUNK mode by the UCS manager, the adapter will priority tag
egress packets according to 802.1Q if they were not already VLAN tagged by software.
If the adapter is connected to a properly configured switch, there will be no unexpected
behavior.

In test setups where an Ethernet port of a Cisco adapter in TRUNK mode is connected
point-to-point to another adapter port or connected though a router instead of a switch,
all ingress packets will be VLAN tagged. Programs such as l3fwd which do not account
for VLAN tags in packets will misbehave. The solution is to enable VLAN stripping on
ingress. The follow code fragment is example of how to accomplish this:

vlan_offload = rte_eth_dev_get_vlan_offload(port);
vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
rte_eth_dev_set_vlan_offload(port, vlan_offload);

• Limited flow director support on 1200 series and 1300 series Cisco VIC adapters with old
firmware. Please see Flow director support .

• Flow director features are not supported on generation 1 Cisco VIC adapters (M81KR
and P81E)

• SR-IOV

– KVM hypervisor support only. VMware has not been tested.

– Requires VM-FEX, and so is only available on UCS managed servers connected to
Fabric Interconnects. It is not on standalone C-Series servers.

– VF devices are not usable directly from the host. They can only be used as assigned
devices on VM instances.

– Currently, unbind of the ENIC kernel mode driver ‘enic.ko’ on the VM instance may
hang. As a workaround, enic.ko should blacklisted or removed from the boot pro-
cess.

– pci_generic cannot be used as the uio module in the VM. igb_uio or vfio in non-
IOMMU mode can be used.

– The number of RQs in UCSM dynamic vNIC configurations must be at least 2.

– The number of SR-IOV devices is limited to 256. Components on target system
might limit this number to fewer than 256.

11.6 How to build the suite

Refer to the document compiling and testing a PMD for a NIC for details.

By default the ENIC PMD library will be built into the DPDK library.

For configuring and using UIO and VFIO frameworks, please refer to the documentation that
comes with DPDK suite.

11.5. Limitations 43

Network Interface Controller Drivers, Release 17.05.2

11.7 Supported Cisco VIC adapters

ENIC PMD supports all recent generations of Cisco VIC adapters including:

• VIC 1280

• VIC 1240

• VIC 1225

• VIC 1285

• VIC 1225T

• VIC 1227

• VIC 1227T

• VIC 1380

• VIC 1340

• VIC 1385

• VIC 1387

11.8 Supported Operating Systems

Any Linux distribution fulfilling the conditions described in Dependencies section of DPDK doc-
umentation.

11.9 Supported features

• Unicast, multicast and broadcast transmission and reception

• Receive queue polling

• Port Hardware Statistics

• Hardware VLAN acceleration

• IP checksum offload

• Receive side VLAN stripping

• Multiple receive and transmit queues

• Flow Director ADD, UPDATE, DELETE, STATS operation support IPv4 and IPv6

• Promiscuous mode

• Setting RX VLAN (supported via UCSM/CIMC only)

• VLAN filtering (supported via UCSM/CIMC only)

• Execution of application by unprivileged system users

• IPV4, IPV6 and TCP RSS hashing

• Scattered Rx

11.7. Supported Cisco VIC adapters 44

Network Interface Controller Drivers, Release 17.05.2

• MTU update

• SR-IOV on UCS managed servers connected to Fabric Interconnects.

11.10 Known bugs and unsupported features in this release

• Signature or flex byte based flow direction

• Drop feature of flow direction

• VLAN based flow direction

• non-IPV4 flow direction

• Setting of extended VLAN

• UDP RSS hashing

• MTU update only works if Scattered Rx mode is disabled

11.11 Prerequisites

• Prepare the system as recommended by DPDK suite. This includes environment vari-
ables, hugepages configuration, tool-chains and configuration

• Insert vfio-pci kernel module using the command ‘modprobe vfio-pci’ if the user wants to
use VFIO framework

• Insert uio kernel module using the command ‘modprobe uio’ if the user wants to use UIO
framework

• DPDK suite should be configured based on the user’s decision to use VFIO or UIO frame-
work

• If the vNIC device(s) to be used is bound to the kernel mode Ethernet driver use ‘ifconfig’
to bring the interface down. The dpdk-devbind.py tool can then be used to unbind the
device’s bus id from the ENIC kernel mode driver.

• Bind the intended vNIC to vfio-pci in case the user wants ENIC PMD to use VFIO frame-
work using dpdk-devbind.py.

• Bind the intended vNIC to igb_uio in case the user wants ENIC PMD to use UIO frame-
work using dpdk-devbind.py.

At this point the system should be ready to run DPDK applications. Once the application runs
to completion, the vNIC can be detached from vfio-pci or igb_uio if necessary.

Root privilege is required to bind and unbind vNICs to/from VFIO/UIO. VFIO framework helps
an unprivileged user to run the applications. For an unprivileged user to run the applications
on DPDK and ENIC PMD, it may be necessary to increase the maximum locked memory of
the user. The following command could be used to do this.

sudo sh -c "ulimit -l <value in Kilo Bytes>"

The value depends on the memory configuration of the application, DPDK and PMD. Typically,
the limit has to be raised to higher than 2GB. e.g., 2621440

11.10. Known bugs and unsupported features in this release 45

Network Interface Controller Drivers, Release 17.05.2

The compilation of any unused drivers can be disabled using the configuration file in config/
directory (e.g., config/common_linuxapp). This would help in bringing down the time taken for
building the libraries and the initialization time of the application.

11.12 Additional Reference

• http://www.cisco.com/c/en/us/products/servers-unified-computing

11.13 Contact Information

Any questions or bugs should be reported to DPDK community and to the ENIC PMD main-
tainers:

• John Daley <johndale@cisco.com>

• Nelson Escobar <neescoba@cisco.com>

11.12. Additional Reference 46

http://www.cisco.com/c/en/us/products/servers-unified-computing
mailto:johndale@cisco.com
mailto:neescoba@cisco.com

CHAPTER

TWELVE

FM10K POLL MODE DRIVER

The FM10K poll mode driver library provides support for the Intel FM10000 (FM10K) family of
40GbE/100GbE adapters.

12.1 FTAG Based Forwarding of FM10K

FTAG Based Forwarding is a unique feature of FM10K. The FM10K family of NICs support
the addition of a Fabric Tag (FTAG) to carry special information. The FTAG is placed at the
beginning of the frame, it contains information such as where the packet comes from and goes,
and the vlan tag. In FTAG based forwarding mode, the switch logic forwards packets according
to glort (global resource tag) information, rather than the mac and vlan table. Currently this
feature works only on PF.

To enable this feature, the user should pass a devargs parameter to the eal like “-w 84:00.0,en-
able_ftag=1”, and the application should make sure an appropriate FTAG is inserted for every
frame on TX side.

12.2 Vector PMD for FM10K

Vector PMD (vPMD) uses Intel® SIMD instructions to optimize packet I/O. It improves
load/store bandwidth efficiency of L1 data cache by using a wider SSE/AVX ‘’register (1)’‘.
The wider register gives space to hold multiple packet buffers so as to save on the number of
instructions when bulk processing packets.

There is no change to the PMD API. The RX/TX handlers are the only two entries for vPMD
packet I/O. They are transparently registered at runtime RX/TX execution if all required condi-
tions are met.

1. To date, only an SSE version of FM10K vPMD is available. To ensure that vPMD is in the
binary code, set CONFIG_RTE_LIBRTE_FM10K_INC_VECTOR=y in the configure file.

Some constraints apply as pre-conditions for specific optimizations on bulk packet transfers.
The following sections explain RX and TX constraints in the vPMD.

47

Network Interface Controller Drivers, Release 17.05.2

12.2.1 RX Constraints

Prerequisites and Pre-conditions

For Vector RX it is assumed that the number of descriptor rings will be a power of 2. With this
pre-condition, the ring pointer can easily scroll back to the head after hitting the tail without
a conditional check. In addition Vector RX can use this assumption to do a bit mask using
ring_size - 1.

Features not Supported by Vector RX PMD

Some features are not supported when trying to increase the throughput in vPMD. They are:

• IEEE1588

• Flow director

• Header split

• RX checksum offload

Other features are supported using optional MACRO configuration. They include:

• HW VLAN strip

• L3/L4 packet type

To enable via RX_OLFLAGS use RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE=y.

To guarantee the constraint, the following configuration flags in dev_conf.rxmode will be
checked:

• hw_vlan_extend

• hw_ip_checksum

• header_split

• fdir_conf->mode

RX Burst Size

As vPMD is focused on high throughput, it processes 4 packets at a time. So it assumes that
the RX burst should be greater than 4 packets per burst. It returns zero if using nb_pkt < 4 in
the receive handler. If nb_pkt is not a multiple of 4, a floor alignment will be applied.

12.2.2 TX Constraint

Features not Supported by TX Vector PMD

TX vPMD only works when txq_flags is set to FM10K_SIMPLE_TX_FLAG. This means that it
does not support TX multi-segment, VLAN offload or TX csum offload. The following MACROs
are used for these three features:

• ETH_TXQ_FLAGS_NOMULTSEGS

• ETH_TXQ_FLAGS_NOVLANOFFL

12.2. Vector PMD for FM10K 48

Network Interface Controller Drivers, Release 17.05.2

• ETH_TXQ_FLAGS_NOXSUMSCTP

• ETH_TXQ_FLAGS_NOXSUMUDP

• ETH_TXQ_FLAGS_NOXSUMTCP

12.3 Limitations

12.3.1 Switch manager

The Intel FM10000 family of NICs integrate a hardware switch and multiple host interfaces.
The FM10000 PMD driver only manages host interfaces. For the switch component another
switch driver has to be loaded prior to to the FM10000 PMD driver. The switch driver can be
acquired from Intel support. Only Testpoint is validated with DPDK, the latest version that has
been validated with DPDK is 4.1.6.

12.3.2 CRC striping

The FM10000 family of NICs strip the CRC for every packets coming into the host interface. So,
CRC will be stripped even when the rxmode.hw_strip_crc member is set to 0 in struct
rte_eth_conf.

12.3.3 Maximum packet length

The FM10000 family of NICS support a maximum of a 15K jumbo frame. The value is fixed
and cannot be changed. So, even when the rxmode.max_rx_pkt_len member of struct
rte_eth_conf is set to a value lower than 15364, frames up to 15364 bytes can still reach
the host interface.

12.3.4 Statistic Polling Frequency

The FM10000 NICs expose a set of statistics via the PCI BARs. These statistics are read
from the hardware registers when rte_eth_stats_get() or rte_eth_xstats_get() is
called. The packet counting registers are 32 bits while the byte counting registers are 48 bits.
As a result, the statistics must be polled regularly in order to ensure the consistency of the
returned reads.

Given the PCIe Gen3 x8, about 50Gbps of traffic can occur. With 64 byte packets this gives
almost 100 million packets/second, causing 32 bit integer overflow after approx 40 seconds.
To ensure these overflows are detected and accounted for in the statistics, it is necessary to
read statistic regularly. It is suggested to read stats every 20 seconds, which will ensure the
statistics are accurate.

12.3.5 Interrupt mode

The FM10000 family of NICS need one separate interrupt for mailbox. So only drivers which
support multiple interrupt vectors e.g. vfio-pci can work for fm10k interrupt mode.

12.3. Limitations 49

CHAPTER

THIRTEEN

I40E POLL MODE DRIVER

The I40E PMD (librte_pmd_i40e) provides poll mode driver support for the Intel
X710/XL710/X722 10/40 Gbps family of adapters.

13.1 Features

Features of the I40E PMD are:

• Multiple queues for TX and RX

• Receiver Side Scaling (RSS)

• MAC/VLAN filtering

• Packet type information

• Flow director

• Cloud filter

• Checksum offload

• VLAN/QinQ stripping and inserting

• TSO offload

• Promiscuous mode

• Multicast mode

• Port hardware statistics

• Jumbo frames

• Link state information

• Link flow control

• Mirror on port, VLAN and VSI

• Interrupt mode for RX

• Scattered and gather for TX and RX

• Vector Poll mode driver

• DCB

• VMDQ

50

Network Interface Controller Drivers, Release 17.05.2

• SR-IOV VF

• Hot plug

• IEEE1588/802.1AS timestamping

• VF Daemon (VFD) - EXPERIMENTAL

13.2 Prerequisites

• Identifying your adapter using Intel Support and get the latest NVM/FW images.

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

• To get better performance on Intel platforms, please follow the “How to get best perfor-
mance with NICs on Intel platforms” section of the Getting Started Guide for Linux.

13.3 Pre-Installation Configuration

13.3.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_I40E_PMD (default y)

Toggle compilation of the librte_pmd_i40e driver.

• CONFIG_RTE_LIBRTE_I40E_DEBUG_* (default n)

Toggle display of generic debugging messages.

• CONFIG_RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC (default y)

Toggle bulk allocation for RX.

• CONFIG_RTE_LIBRTE_I40E_INC_VECTOR (default n)

Toggle the use of Vector PMD instead of normal RX/TX path. To enable vPMD for RX,
bulk allocation for Rx must be allowed.

• CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC (default n)

Toggle to use a 16-byte RX descriptor, by default the RX descriptor is 32 byte.

• CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_PF (default 64)

Number of queues reserved for PF.

• CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VF (default 4)

Number of queues reserved for each SR-IOV VF.

• CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM (default 4)

Number of queues reserved for each VMDQ Pool.

• CONFIG_RTE_LIBRTE_I40E_ITR_INTERVAL (default -1)

Interrupt Throttling interval.

13.2. Prerequisites 51

http://www.intel.com/support

Network Interface Controller Drivers, Release 17.05.2

13.4 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

13.5 SR-IOV: Prerequisites and sample Application Notes

1. Load the kernel module:

modprobe i40e

Check the output in dmesg:

i40e 0000:83:00.1 ens802f0: renamed from eth0

2. Bring up the PF ports:

ifconfig ens802f0 up

3. Create VF device(s):

Echo the number of VFs to be created into the sriov_numvfs sysfs entry of the parent
PF.

Example:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

4. Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:

ip link set <PF netdev id> vf <VF id> mac <macaddr>

Example:

ip link set ens802f0 vf 0 mac a0:b0:c0:d0:e0:f0

5. Assign VF to VM, and bring up the VM. Please see the documentation for the
I40E/IXGBE/IGB Virtual Function Driver.

6. Running testpmd:

Follow instructions available in the document compiling and testing a PMD for a NIC to
run testpmd.

Example output:

...
EAL: PCI device 0000:83:00.0 on NUMA socket 1
EAL: probe driver: 8086:1572 rte_i40e_pmd
EAL: PCI memory mapped at 0x7f7f80000000
EAL: PCI memory mapped at 0x7f7f80800000
PMD: eth_i40e_dev_init(): FW 5.0 API 1.5 NVM 05.00.02 eetrack 8000208a
Interactive-mode selected
Configuring Port 0 (socket 0)
...

PMD: i40e_dev_rx_queue_setup(): Rx Burst Bulk Alloc Preconditions are
satisfied.Rx Burst Bulk Alloc function will be used on port=0, queue=0.

...
Port 0: 68:05:CA:26:85:84
Checking link statuses...

13.4. Driver compilation and testing 52

Network Interface Controller Drivers, Release 17.05.2

Port 0 Link Up - speed 10000 Mbps - full-duplex
Done

testpmd>

13.6 Sample Application Notes

13.6.1 Vlan filter

Vlan filter only works when Promiscuous mode is off.

To start testpmd, and add vlan 10 to port 0:

./app/testpmd -l 0-15 -n 4 -- -i --forward-mode=mac

...

testpmd> set promisc 0 off
testpmd> rx_vlan add 10 0

13.6.2 Flow Director

The Flow Director works in receive mode to identify specific flows or sets of flows and route
them to specific queues. The Flow Director filters can match the different fields for different
type of packet: flow type, specific input set per flow type and the flexible payload.

The default input set of each flow type is:

ipv4-other : src_ip_address, dst_ip_address
ipv4-frag : src_ip_address, dst_ip_address
ipv4-tcp : src_ip_address, dst_ip_address, src_port, dst_port
ipv4-udp : src_ip_address, dst_ip_address, src_port, dst_port
ipv4-sctp : src_ip_address, dst_ip_address, src_port, dst_port,

verification_tag
ipv6-other : src_ip_address, dst_ip_address
ipv6-frag : src_ip_address, dst_ip_address
ipv6-tcp : src_ip_address, dst_ip_address, src_port, dst_port
ipv6-udp : src_ip_address, dst_ip_address, src_port, dst_port
ipv6-sctp : src_ip_address, dst_ip_address, src_port, dst_port,

verification_tag
l2_payload : ether_type

The flex payload is selected from offset 0 to 15 of packet’s payload by default, while it is masked
out from matching.

Start testpmd with --disable-rss and --pkt-filter-mode=perfect:

./app/testpmd -l 0-15 -n 4 -- -i --disable-rss --pkt-filter-mode=perfect \
--rxq=8 --txq=8 --nb-cores=8 --nb-ports=1

Add a rule to direct ipv4-udp packet whose dst_ip=2.2.2.5, src_ip=2.2.2.3,
src_port=32, dst_port=32 to queue 1:

testpmd> flow_director_filter 0 mode IP add flow ipv4-udp \
src 2.2.2.3 32 dst 2.2.2.5 32 vlan 0 flexbytes () \
fwd pf queue 1 fd_id 1

Check the flow director status:

13.6. Sample Application Notes 53

Network Interface Controller Drivers, Release 17.05.2

testpmd> show port fdir 0

######################## FDIR infos for port 0 ####################
MODE: PERFECT
SUPPORTED FLOW TYPE: ipv4-frag ipv4-tcp ipv4-udp ipv4-sctp ipv4-other

ipv6-frag ipv6-tcp ipv6-udp ipv6-sctp ipv6-other
l2_payload

FLEX PAYLOAD INFO:
max_len: 16 payload_limit: 480
payload_unit: 2 payload_seg: 3
bitmask_unit: 2 bitmask_num: 2
MASK:

vlan_tci: 0x0000,
src_ipv4: 0x00000000,
dst_ipv4: 0x00000000,
src_port: 0x0000,
dst_port: 0x0000
src_ipv6: 0x00000000,0x00000000,0x00000000,0x00000000,
dst_ipv6: 0x00000000,0x00000000,0x00000000,0x00000000

FLEX PAYLOAD SRC OFFSET:
L2_PAYLOAD: 0 1 2 3 4 5 6 ...
L3_PAYLOAD: 0 1 2 3 4 5 6 ...
L4_PAYLOAD: 0 1 2 3 4 5 6 ...

FLEX MASK CFG:
ipv4-udp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-tcp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-sctp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-other: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-frag: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-udp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-tcp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-sctp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-other: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-frag: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
l2_payload: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

guarant_count: 1 best_count: 0
guarant_space: 512 best_space: 7168
collision: 0 free: 0
maxhash: 0 maxlen: 0
add: 0 remove: 0
f_add: 0 f_remove: 0

Delete all flow director rules on a port:

testpmd> flush_flow_director 0

13.6.3 Floating VEB

The Intel® Ethernet Controller X710 and XL710 Family support a feature called “Floating VEB”.

A Virtual Ethernet Bridge (VEB) is an IEEE Edge Virtual Bridging (EVB) term for functionality
that allows local switching between virtual endpoints within a physical endpoint and also with
an external bridge/network.

A “Floating” VEB doesn’t have an uplink connection to the outside world so all switching is
done internally and remains within the host. As such, this feature provides security benefits.

In addition, a Floating VEB overcomes a limitation of normal VEBs where they cannot forward
packets when the physical link is down. Floating VEBs don’t need to connect to the NIC port
so they can still forward traffic from VF to VF even when the physical link is down.

13.6. Sample Application Notes 54

Network Interface Controller Drivers, Release 17.05.2

Therefore, with this feature enabled VFs can be limited to communicating with each other but
not an outside network, and they can do so even when there is no physical uplink on the
associated NIC port.

To enable this feature, the user should pass a devargs parameter to the EAL, for example:

-w 84:00.0,enable_floating_veb=1

In this configuration the PMD will use the floating VEB feature for all the VFs created by this
PF device.

Alternatively, the user can specify which VFs need to connect to this floating VEB using the
floating_veb_list argument:

-w 84:00.0,enable_floating_veb=1,floating_veb_list=1;3-4

In this example VF1, VF3 and VF4 connect to the floating VEB, while other VFs connect to the
normal VEB.

The current implementation only supports one floating VEB and one regular VEB. VFs can
connect to a floating VEB or a regular VEB according to the configuration passed on the EAL
command line.

The floating VEB functionality requires a NIC firmware version of 5.0 or greater.

13.7 Limitations or Known issues

13.7.1 MPLS packet classification on X710/XL710

For firmware versions prior to 5.0, MPLS packets are not recognized by the NIC. The L2 Pay-
load flow type in flow director can be used to classify MPLS packet by using a command in
testpmd like:

testpmd> flow_director_filter 0 mode IP add flow l2_payload ether 0x8847
flexbytes () fwd pf queue <N> fd_id <M>

With the NIC firmware version 5.0 or greater, some limited MPLS support is added: Native
MPLS (MPLS in Ethernet) skip is implemented, while no new packet type, no classification or
offload are possible. With this change, L2 Payload flow type in flow director cannot be used to
classify MPLS packet as with previous firmware versions. Meanwhile, the Ethertype filter can
be used to classify MPLS packet by using a command in testpmd like:

testpmd> ethertype_filter 0 add mac_ignr 00:00:00:00:00:00 ethertype
0x8847 fwd queue <M>

13.7.2 16 Byte Descriptor cannot be used on DPDK VF

If the Linux i40e kernel driver is used as host driver, while DPDK i40e PMD is used as the
VF driver, DPDK cannot choose 16 byte receive descriptor. That is to say, user should keep
CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC=n in config file.

13.7. Limitations or Known issues 55

Network Interface Controller Drivers, Release 17.05.2

13.7.3 Receive packets with Ethertype 0x88A8

Due to the FW limitation, PF can receive packets with Ethertype 0x88A8 only when floating
VEB is disabled.

13.7.4 Incorrect Rx statistics when packet is oversize

When a packet is over maximum frame size, the packet is dropped. However the Rx statistics,
when calling rte_eth_stats_get incorrectly shows it as received.

13.7.5 VF & TC max bandwidth setting

The per VF max bandwidth and per TC max bandwidth cannot be enabled in parallel. The
dehavior is different when handling per VF and per TC max bandwidth setting. When enabling
per VF max bandwidth, SW will check if per TC max bandwidth is enabled. If so, return failure.
When enabling per TC max bandwidth, SW will check if per VF max bandwidth is enabled. If
so, disable per VF max bandwidth and continue with per TC max bandwidth setting.

13.7.6 TC TX scheduling mode setting

There’re 2 TX scheduling modes for TCs, round robin and strict priority mode. If a TC is set
to strict priority mode, it can consume unlimited bandwidth. It means if APP has set the max
bandwidth for that TC, it comes to no effect. It’s suggested to set the strict priority mode for a
TC that is latency sensitive but no consuming much bandwidth.

13.7. Limitations or Known issues 56

CHAPTER

FOURTEEN

IXGBE DRIVER

14.1 Vector PMD for IXGBE

Vector PMD uses Intel® SIMD instructions to optimize packet I/O. It improves load/store band-
width efficiency of L1 data cache by using a wider SSE/AVX register 1 (1). The wider register
gives space to hold multiple packet buffers so as to save instruction number when processing
bulk of packets.

There is no change to PMD API. The RX/TX handler are the only two entries for vPMD packet
I/O. They are transparently registered at runtime RX/TX execution if all condition checks pass.

1. To date, only an SSE version of IX GBE vPMD is available. To ensure that vPMD is in
the binary code, ensure that the option CONFIG_RTE_IXGBE_INC_VECTOR=y is in the
configure file.

Some constraints apply as pre-conditions for specific optimizations on bulk packet transfers.
The following sections explain RX and TX constraints in the vPMD.

14.1.1 RX Constraints

Prerequisites and Pre-conditions

The following prerequisites apply:

• To enable vPMD to work for RX, bulk allocation for Rx must be allowed.

Ensure that the following pre-conditions are satisfied:

• rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST

• rxq->rx_free_thresh < rxq->nb_rx_desc

• (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0

• rxq->nb_rx_desc < (IXGBE_MAX_RING_DESC - RTE_PMD_IXGBE_RX_MAX_BURST)

These conditions are checked in the code.

Scattered packets are not supported in this mode. If an incoming packet is greater than the
maximum acceptable length of one “mbuf” data size (by default, the size is 2 KB), vPMD for
RX would be disabled.

By default, IXGBE_MAX_RING_DESC is set to 4096 and
RTE_PMD_IXGBE_RX_MAX_BURST is set to 32.

57

Network Interface Controller Drivers, Release 17.05.2

Feature not Supported by RX Vector PMD

Some features are not supported when trying to increase the throughput in vPMD. They are:

• IEEE1588

• FDIR

• Header split

• RX checksum off load

Other features are supported using optional MACRO configuration. They include:

• HW VLAN strip

• HW extend dual VLAN

To guarantee the constraint, configuration flags in dev_conf.rxmode will be checked:

• hw_vlan_strip

• hw_vlan_extend

• hw_ip_checksum

• header_split

• dev_conf

fdir_conf->mode will also be checked.

RX Burst Size

As vPMD is focused on high throughput, it assumes that the RX burst size is equal to or greater
than 32 per burst. It returns zero if using nb_pkt < 32 as the expected packet number in the
receive handler.

14.1.2 TX Constraint

Prerequisite

The only prerequisite is related to tx_rs_thresh. The tx_rs_thresh value must be
greater than or equal to RTE_PMD_IXGBE_TX_MAX_BURST, but less or equal to
RTE_IXGBE_TX_MAX_FREE_BUF_SZ. Consequently, by default the tx_rs_thresh value is
in the range 32 to 64.

Feature not Supported by TX Vector PMD

TX vPMD only works when txq_flags is set to IXGBE_SIMPLE_FLAGS.

This means that it does not support TX multi-segment, VLAN offload and TX csum offload.
The following MACROs are used for these three features:

• ETH_TXQ_FLAGS_NOMULTSEGS

• ETH_TXQ_FLAGS_NOVLANOFFL

14.1. Vector PMD for IXGBE 58

Network Interface Controller Drivers, Release 17.05.2

• ETH_TXQ_FLAGS_NOXSUMSCTP

• ETH_TXQ_FLAGS_NOXSUMUDP

• ETH_TXQ_FLAGS_NOXSUMTCP

14.2 Application Programming Interface

In DPDK release v16.11 an API for ixgbe specific functions has been added to the ixgbe PMD.
The declarations for the API functions are in the header rte_pmd_ixgbe.h.

14.3 Sample Application Notes

14.3.1 l3fwd

When running l3fwd with vPMD, there is one thing to note. In the configuration, ensure that
port_conf.rxmode.hw_ip_checksum=0. Otherwise, by default, RX vPMD is disabled.

14.3.2 load_balancer

As in the case of l3fwd, set configure port_conf.rxmode.hw_ip_checksum=0 to enable vPMD.
In addition, for improved performance, use -bsz “(32,32),(64,64),(32,32)” in load_balancer to
avoid using the default burst size of 144.

14.4 Limitations or Known issues

14.4.1 Malicious Driver Detection not Supported

The Intel x550 series NICs support a feature called MDD (Malicious Driver Detection) which
checks the behavior of the VF driver. If this feature is enabled, the VF must use the advanced
context descriptor correctly and set the CC (Check Context) bit. DPDK PF doesn’t support
MDD, but kernel PF does. We may hit problem in this scenario kernel PF + DPDK VF. If
user enables MDD in kernel PF, DPDK VF will not work. Because kernel PF thinks the VF is
malicious. But actually it’s not. The only reason is the VF doesn’t act as MDD required. There’s
significant performance impact to support MDD. DPDK should check if the advanced context
descriptor should be set and set it. And DPDK has to ask the info about the header length from
the upper layer, because parsing the packet itself is not acceptable. So, it’s too expensive to
support MDD. When using kernel PF + DPDK VF on x550, please make sure to use a kernel
PF driver that disables MDD or can disable MDD.

Some kernel drivers already disable MDD by default while some kernels can use the command
insmod ixgbe.ko MDD=0,0 to disable MDD. Each “0” in the command refers to a port. For
example, if there are 6 ixgbe ports, the command should be changed to insmod ixgbe.ko
MDD=0,0,0,0,0,0.

14.2. Application Programming Interface 59

Network Interface Controller Drivers, Release 17.05.2

14.4.2 Statistics

The statistics of ixgbe hardware must be polled regularly in order for it to remain consistent.
Running a DPDK application without polling the statistics will cause registers on hardware to
count to the maximum value, and “stick” at that value.

In order to avoid statistic registers every reaching the maximum value, read the statistics from
the hardware using rte_eth_stats_get() or rte_eth_xstats_get().

The maximum time between statistics polls that ensures consistent results can be calculated
as follows:

max_read_interval = UINT_MAX / max_packets_per_second
max_read_interval = 4294967295 / 14880952
max_read_interval = 288.6218096127183 (seconds)
max_read_interval = ~4 mins 48 sec.

In order to ensure valid results, it is recommended to poll every 4 minutes.

14.4.3 MTU setting

Although the user can set the MTU separately on PF and VF ports, the ixgbe NIC only supports
one global MTU per physical port. So when the user sets different MTUs on PF and VF ports
in one physical port, the real MTU for all these PF and VF ports is the largest value set. This
behavior is based on the kernel driver behavior.

14.5 Supported Chipsets and NICs

• Intel 82599EB 10 Gigabit Ethernet Controller

• Intel 82598EB 10 Gigabit Ethernet Controller

• Intel 82599ES 10 Gigabit Ethernet Controller

• Intel 82599EN 10 Gigabit Ethernet Controller

• Intel Ethernet Controller X540-AT2

• Intel Ethernet Controller X550-BT2

• Intel Ethernet Controller X550-AT2

• Intel Ethernet Controller X550-AT

• Intel Ethernet Converged Network Adapter X520-SR1

• Intel Ethernet Converged Network Adapter X520-SR2

• Intel Ethernet Converged Network Adapter X520-LR1

• Intel Ethernet Converged Network Adapter X520-DA1

• Intel Ethernet Converged Network Adapter X520-DA2

• Intel Ethernet Converged Network Adapter X520-DA4

• Intel Ethernet Converged Network Adapter X520-QDA1

• Intel Ethernet Converged Network Adapter X520-T2

14.5. Supported Chipsets and NICs 60

Network Interface Controller Drivers, Release 17.05.2

• Intel 10 Gigabit AF DA Dual Port Server Adapter

• Intel 10 Gigabit AT Server Adapter

• Intel 10 Gigabit AT2 Server Adapter

• Intel 10 Gigabit CX4 Dual Port Server Adapter

• Intel 10 Gigabit XF LR Server Adapter

• Intel 10 Gigabit XF SR Dual Port Server Adapter

• Intel 10 Gigabit XF SR Server Adapter

• Intel Ethernet Converged Network Adapter X540-T1

• Intel Ethernet Converged Network Adapter X540-T2

• Intel Ethernet Converged Network Adapter X550-T1

• Intel Ethernet Converged Network Adapter X550-T2

14.5. Supported Chipsets and NICs 61

CHAPTER

FIFTEEN

I40E/IXGBE/IGB VIRTUAL FUNCTION DRIVER

Supported Intel® Ethernet Controllers (see the DPDK Release Notes for details) support the
following modes of operation in a virtualized environment:

• SR-IOV mode: Involves direct assignment of part of the port resources to different guest
operating systems using the PCI-SIG Single Root I/O Virtualization (SR IOV) standard,
also known as “native mode” or “pass-through” mode. In this chapter, this mode is re-
ferred to as IOV mode.

• VMDq mode: Involves central management of the networking resources by an IO Virtual
Machine (IOVM) or a Virtual Machine Monitor (VMM), also known as software switch
acceleration mode. In this chapter, this mode is referred to as the Next Generation VMDq
mode.

15.1 SR-IOV Mode Utilization in a DPDK Environment

The DPDK uses the SR-IOV feature for hardware-based I/O sharing in IOV mode. Therefore,
it is possible to partition SR-IOV capability on Ethernet controller NIC resources logically and
expose them to a virtual machine as a separate PCI function called a “Virtual Function”. Refer
to Fig. 15.1.

Therefore, a NIC is logically distributed among multiple virtual machines (as shown in Fig.
15.1), while still having global data in common to share with the Physical Function and other
Virtual Functions. The DPDK fm10kvf, i40evf, igbvf or ixgbevf as a Poll Mode Driver (PMD)
serves for the Intel® 82576 Gigabit Ethernet Controller, Intel® Ethernet Controller I350 family,
Intel® 82599 10 Gigabit Ethernet Controller NIC, Intel® Fortville 10/40 Gigabit Ethernet Con-
troller NIC’s virtual PCI function, or PCIe host-interface of the Intel Ethernet Switch FM10000
Series. Meanwhile the DPDK Poll Mode Driver (PMD) also supports “Physical Function” of
such NIC’s on the host.

The DPDK PF/VF Poll Mode Driver (PMD) supports the Layer 2 switch on Intel® 82576 Gigabit
Ethernet Controller, Intel® Ethernet Controller I350 family, Intel® 82599 10 Gigabit Ethernet
Controller, and Intel® Fortville 10/40 Gigabit Ethernet Controller NICs so that guest can choose
it for inter virtual machine traffic in SR-IOV mode.

For more detail on SR-IOV, please refer to the following documents:

• SR-IOV provides hardware based I/O sharing

• PCI-SIG-Single Root I/O Virtualization Support on IA

• Scalable I/O Virtualized Servers

62

http://www.intel.com/network/connectivity/solutions/vmdc.htm
http://www.intel.com/content/www/us/en/pci-express/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.html
http://www.intel.com/content/www/us/en/virtualization/server-virtualization/scalable-i-o-virtualized-servers-paper.html

Network Interface Controller Drivers, Release 17.05.2

Fig. 15.1: Virtualization for a Single Port NIC in SR-IOV Mode

15.1. SR-IOV Mode Utilization in a DPDK Environment 63

Network Interface Controller Drivers, Release 17.05.2

15.1.1 Physical and Virtual Function Infrastructure

The following describes the Physical Function and Virtual Functions infrastructure for the sup-
ported Ethernet Controller NICs.

Virtual Functions operate under the respective Physical Function on the same NIC Port and
therefore have no access to the global NIC resources that are shared between other functions
for the same NIC port.

A Virtual Function has basic access to the queue resources and control structures of the
queues assigned to it. For global resource access, a Virtual Function has to send a request to
the Physical Function for that port, and the Physical Function operates on the global resources
on behalf of the Virtual Function. For this out-of-band communication, an SR-IOV enabled NIC
provides a memory buffer for each Virtual Function, which is called a “Mailbox”.

The PCIE host-interface of Intel Ethernet Switch FM10000 Series VF infrastructure

In a virtualized environment, the programmer can enable a maximum of 64 Virtual Functions
(VF) globally per PCIE host-interface of the Intel Ethernet Switch FM10000 Series device.
Each VF can have a maximum of 16 queue pairs. The Physical Function in host could be only
configured by the Linux* fm10k driver (in the case of the Linux Kernel-based Virtual Machine
[KVM]), DPDK PMD PF driver doesn’t support it yet.

For example,

• Using Linux* fm10k driver:

rmmod fm10k (To remove the fm10k module)
insmod fm0k.ko max_vfs=2,2 (To enable two Virtual Functions per port)

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for
a dual-port NIC. When you enable the four Virtual Functions with the above command, the four
enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence
starting from 0 to 3. However:

• Virtual Functions 0 and 2 belong to Physical Function 0

• Virtual Functions 1 and 3 belong to Physical Function 1

Note: The above is an important consideration to take into account when targeting specific
packets to a selected port.

Intel® X710/XL710 Gigabit Ethernet Controller VF Infrastructure

In a virtualized environment, the programmer can enable a maximum of 128
Virtual Functions (VF) globally per Intel® X710/XL710 Gigabit Ethernet Controller
NIC device. The number of queue pairs of each VF can be configured by
CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VF in config file. The Physical Function
in host could be either configured by the Linux* i40e driver (in the case of the Linux Kernel-
based Virtual Machine [KVM]) or by DPDK PMD PF driver. When using both DPDK PMD
PF/VF drivers, the whole NIC will be taken over by DPDK based application.

For example,

• Using Linux* i40e driver:

15.1. SR-IOV Mode Utilization in a DPDK Environment 64

Network Interface Controller Drivers, Release 17.05.2

rmmod i40e (To remove the i40e module)
insmod i40e.ko max_vfs=2,2 (To enable two Virtual Functions per port)

• Using the DPDK PMD PF i40e driver:

Kernel Params: iommu=pt, intel_iommu=on

modprobe uio
insmod igb_uio
./dpdk-devbind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific PCI device)

Launch the DPDK testpmd/example or your own host daemon application using the
DPDK PMD library.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for
a dual-port NIC. When you enable the four Virtual Functions with the above command, the four
enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence
starting from 0 to 3. However:

• Virtual Functions 0 and 2 belong to Physical Function 0

• Virtual Functions 1 and 3 belong to Physical Function 1

Note: The above is an important consideration to take into account when targeting specific
packets to a selected port.

For Intel® X710/XL710 Gigabit Ethernet Controller, queues are in pairs. One queue pair means
one receive queue and one transmit queue. The default number of queue pairs per VF is 4,
and can be 16 in maximum.

Intel® 82599 10 Gigabit Ethernet Controller VF Infrastructure

The programmer can enable a maximum of 63 Virtual Functions and there must be one Phys-
ical Function per Intel® 82599 10 Gigabit Ethernet Controller NIC port. The reason for this is
that the device allows for a maximum of 128 queues per port and a virtual/physical function
has to have at least one queue pair (RX/TX). The current implementation of the DPDK ixgbevf
driver supports a single queue pair (RX/TX) per Virtual Function. The Physical Function in host
could be either configured by the Linux* ixgbe driver (in the case of the Linux Kernel-based Vir-
tual Machine [KVM]) or by DPDK PMD PF driver. When using both DPDK PMD PF/VF drivers,
the whole NIC will be taken over by DPDK based application.

For example,

• Using Linux* ixgbe driver:

rmmod ixgbe (To remove the ixgbe module)
insmod ixgbe max_vfs=2,2 (To enable two Virtual Functions per port)

• Using the DPDK PMD PF ixgbe driver:

Kernel Params: iommu=pt, intel_iommu=on

modprobe uio
insmod igb_uio
./dpdk-devbind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific PCI device)

Launch the DPDK testpmd/example or your own host daemon application using the
DPDK PMD library.

15.1. SR-IOV Mode Utilization in a DPDK Environment 65

Network Interface Controller Drivers, Release 17.05.2

• Using the DPDK PMD PF ixgbe driver to enable VF RSS:

Same steps as above to install the modules of uio, igb_uio, specify max_vfs for PCI
device, and launch the DPDK testpmd/example or your own host daemon application
using the DPDK PMD library.

The available queue number (at most 4) per VF depends on the total number of pool,
which is determined by the max number of VF at PF initialization stage and the number
of queue specified in config:

– If the max number of VFs (max_vfs) is set in the range of 1 to 32:

If the number of Rx queues is specified as 4 (--rxq=4 in testpmd), then there are
totally 32 pools (ETH_32_POOLS), and each VF could have 4 Rx queues;

If the number of Rx queues is specified as 2 (--rxq=2 in testpmd), then there are
totally 32 pools (ETH_32_POOLS), and each VF could have 2 Rx queues;

– If the max number of VFs (max_vfs) is in the range of 33 to 64:

If the number of Rx queues in specified as 4 (--rxq=4 in testpmd), then error
message is expected as rxq is not correct at this case;

If the number of rxq is 2 (--rxq=2 in testpmd), then there is totally 64 pools
(ETH_64_POOLS), and each VF have 2 Rx queues;

On host, to enable VF RSS functionality, rx mq mode should be set as
ETH_MQ_RX_VMDQ_RSS or ETH_MQ_RX_RSS mode, and SRIOV mode should be
activated (max_vfs >= 1). It also needs config VF RSS information like hash function,
RSS key, RSS key length.

Note: The limitation for VF RSS on Intel® 82599 10 Gigabit Ethernet Controller is: The hash
and key are shared among PF and all VF, the RETA table with 128 entries is also shared among
PF and all VF; So it could not to provide a method to query the hash and reta content per VF
on guest, while, if possible, please query them on host for the shared RETA information.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for
a dual-port NIC. When you enable the four Virtual Functions with the above command, the four
enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence
starting from 0 to 3. However:

• Virtual Functions 0 and 2 belong to Physical Function 0

• Virtual Functions 1 and 3 belong to Physical Function 1

Note: The above is an important consideration to take into account when targeting specific
packets to a selected port.

Intel® 82576 Gigabit Ethernet Controller and Intel® Ethernet Controller I350 Family VF
Infrastructure

In a virtualized environment, an Intel® 82576 Gigabit Ethernet Controller serves up to eight
virtual machines (VMs). The controller has 16 TX and 16 RX queues. They are generally
referred to (or thought of) as queue pairs (one TX and one RX queue). This gives the controller
16 queue pairs.

15.1. SR-IOV Mode Utilization in a DPDK Environment 66

Network Interface Controller Drivers, Release 17.05.2

A pool is a group of queue pairs for assignment to the same VF, used for transmit and receive
operations. The controller has eight pools, with each pool containing two queue pairs, that is,
two TX and two RX queues assigned to each VF.

In a virtualized environment, an Intel® Ethernet Controller I350 family device serves up to eight
virtual machines (VMs) per port. The eight queues can be accessed by eight different VMs if
configured correctly (the i350 has 4x1GbE ports each with 8T X and 8 RX queues), that means,
one Transmit and one Receive queue assigned to each VF.

For example,

• Using Linux* igb driver:

rmmod igb (To remove the igb module)
insmod igb max_vfs=2,2 (To enable two Virtual Functions per port)

• Using DPDK PMD PF igb driver:

Kernel Params: iommu=pt, intel_iommu=on modprobe uio

insmod igb_uio
./dpdk-devbind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific pci device)

Launch DPDK testpmd/example or your own host daemon application using the DPDK
PMD library.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for
a four-port NIC. When you enable the four Virtual Functions with the above command, the four
enabled functions have a Function# represented by (Bus#, Device#, Function#) in sequence,
starting from 0 to 7. However:

• Virtual Functions 0 and 4 belong to Physical Function 0

• Virtual Functions 1 and 5 belong to Physical Function 1

• Virtual Functions 2 and 6 belong to Physical Function 2

• Virtual Functions 3 and 7 belong to Physical Function 3

Note: The above is an important consideration to take into account when targeting specific
packets to a selected port.

15.1.2 Validated Hypervisors

The validated hypervisor is:

• KVM (Kernel Virtual Machine) with Qemu, version 0.14.0

However, the hypervisor is bypassed to configure the Virtual Function devices using the Mail-
box interface, the solution is hypervisor-agnostic. Xen* and VMware* (when SR- IOV is sup-
ported) will also be able to support the DPDK with Virtual Function driver support.

15.1.3 Expected Guest Operating System in Virtual Machine

The expected guest operating systems in a virtualized environment are:

• Fedora* 14 (64-bit)

15.1. SR-IOV Mode Utilization in a DPDK Environment 67

Network Interface Controller Drivers, Release 17.05.2

• Ubuntu* 10.04 (64-bit)

For supported kernel versions, refer to the DPDK Release Notes.

15.2 Setting Up a KVM Virtual Machine Monitor

The following describes a target environment:

• Host Operating System: Fedora 14

• Hypervisor: KVM (Kernel Virtual Machine) with Qemu version 0.14.0

• Guest Operating System: Fedora 14

• Linux Kernel Version: Refer to the DPDK Getting Started Guide

• Target Applications: l2fwd, l3fwd-vf

The setup procedure is as follows:

1. Before booting the Host OS, open BIOS setup and enable Intel® VT features.

2. While booting the Host OS kernel, pass the intel_iommu=on kernel command line ar-
gument using GRUB. When using DPDK PF driver on host, pass the iommu=pt kernel
command line argument in GRUB.

3. Download qemu-kvm-0.14.0 from http://sourceforge.net/projects/kvm/files/qemu-kvm/
and install it in the Host OS using the following steps:

When using a recent kernel (2.6.25+) with kvm modules included:

tar xzf qemu-kvm-release.tar.gz
cd qemu-kvm-release
./configure --prefix=/usr/local/kvm
make
sudo make install
sudo /sbin/modprobe kvm-intel

When using an older kernel, or a kernel from a distribution without the kvm modules, you
must download (from the same link), compile and install the modules yourself:

tar xjf kvm-kmod-release.tar.bz2
cd kvm-kmod-release
./configure
make
sudo make install
sudo /sbin/modprobe kvm-intel

qemu-kvm installs in the /usr/local/bin directory.

For more details about KVM configuration and usage, please refer to:

http://www.linux-kvm.org/page/HOWTO1.

4. Create a Virtual Machine and install Fedora 14 on the Virtual Machine. This is referred
to as the Guest Operating System (Guest OS).

5. Download and install the latest ixgbe driver from:

http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=14687

15.2. Setting Up a KVM Virtual Machine Monitor 68

http://sourceforge.net/projects/kvm/files/qemu-kvm/
http://www.linux-kvm.org/page/HOWTO1
http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=14687

Network Interface Controller Drivers, Release 17.05.2

6. In the Host OS

When using Linux kernel ixgbe driver, unload the Linux ixgbe driver and reload it with the
max_vfs=2,2 argument:

rmmod ixgbe
modprobe ixgbe max_vfs=2,2

When using DPDK PMD PF driver, insert DPDK kernel module igb_uio and set the num-
ber of VF by sysfs max_vfs:

modprobe uio
insmod igb_uio
./dpdk-devbind.py -b igb_uio 02:00.0 02:00.1 0e:00.0 0e:00.1
echo 2 > /sys/bus/pci/devices/0000\:02\:00.0/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:02\:00.1/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:0e\:00.0/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:0e\:00.1/max_vfs

Note: You need to explicitly specify number of vfs for each port, for example, in the
command above, it creates two vfs for the first two ixgbe ports.

Let say we have a machine with four physical ixgbe ports:

0000:02:00.0

0000:02:00.1

0000:0e:00.0

0000:0e:00.1

The command above creates two vfs for device 0000:02:00.0:

ls -alrt /sys/bus/pci/devices/0000\:02\:00.0/virt*
lrwxrwxrwx. 1 root root 0 Apr 13 05:40 /sys/bus/pci/devices/0000:02:00.0/virtfn1 -> ../0000:02:10.2
lrwxrwxrwx. 1 root root 0 Apr 13 05:40 /sys/bus/pci/devices/0000:02:00.0/virtfn0 -> ../0000:02:10.0

It also creates two vfs for device 0000:02:00.1:

ls -alrt /sys/bus/pci/devices/0000\:02\:00.1/virt*
lrwxrwxrwx. 1 root root 0 Apr 13 05:51 /sys/bus/pci/devices/0000:02:00.1/virtfn1 -> ../0000:02:10.3
lrwxrwxrwx. 1 root root 0 Apr 13 05:51 /sys/bus/pci/devices/0000:02:00.1/virtfn0 -> ../0000:02:10.1

7. List the PCI devices connected and notice that the Host OS shows two Physical Functions
(traditional ports) and four Virtual Functions (two for each port). This is the result of the
previous step.

8. Insert the pci_stub module to hold the PCI devices that are freed from
the default driver using the following command (see http://www.linux-
kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM Section 4 for more in-
formation):

sudo /sbin/modprobe pci-stub

Unbind the default driver from the PCI devices representing the Virtual Functions. A
script to perform this action is as follows:

echo "8086 10ed" > /sys/bus/pci/drivers/pci-stub/new_id
echo 0000:08:10.0 > /sys/bus/pci/devices/0000:08:10.0/driver/unbind
echo 0000:08:10.0 > /sys/bus/pci/drivers/pci-stub/bind

where, 0000:08:10.0 belongs to the Virtual Function visible in the Host OS.

15.2. Setting Up a KVM Virtual Machine Monitor 69

http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM
http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM

Network Interface Controller Drivers, Release 17.05.2

9. Now, start the Virtual Machine by running the following command:

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -smp 4 -boot c -hda lucid.qcow2 -device pci-assign,host=08:10.0

where:

— -m = memory to assign

—-smp = number of smp cores

— -boot = boot option

—-hda = virtual disk image

— -device = device to attach

Note: — The pci-assign,host=08:10.0 value indicates that you want to attach a PCI
device to a Virtual Machine and the respective (Bus:Device.Function) numbers should
be passed for the Virtual Function to be attached.

— qemu-kvm-0.14.0 allows a maximum of four PCI devices assigned to a VM, but this
is qemu-kvm version dependent since qemu-kvm-0.14.1 allows a maximum of five PCI
devices.

— qemu-system-x86_64 also has a -cpu command line option that is used to select the
cpu_model to emulate in a Virtual Machine. Therefore, it can be used as:

/usr/local/kvm/bin/qemu-system-x86_64 -cpu ?

(to list all available cpu_models)

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -cpu host -smp 4 -boot c -hda lucid.qcow2 -device pci-assign,host=08:10.0

(to use the same cpu_model equivalent to the host cpu)

For more information, please refer to: http://wiki.qemu.org/Features/CPUModels.

10. Install and run DPDK host app to take over the Physical Function. Eg.

make install T=x86_64-native-linuxapp-gcc
./x86_64-native-linuxapp-gcc/app/testpmd -l 0-3 -n 4 -- -i

11. Finally, access the Guest OS using vncviewer with the localhost:5900 port and check the
lspci command output in the Guest OS. The virtual functions will be listed as available for
use.

12. Configure and install the DPDK with an x86_64-native-linuxapp-gcc configuration on the
Guest OS as normal, that is, there is no change to the normal installation procedure.

make config T=x86_64-native-linuxapp-gcc O=x86_64-native-linuxapp-gcc
cd x86_64-native-linuxapp-gcc
make

Note: If you are unable to compile the DPDK and you are getting “error: CPU you selected
does not support x86-64 instruction set”, power off the Guest OS and start the virtual machine
with the correct -cpu option in the qemu- system-x86_64 command as shown in step 9. You
must select the best x86_64 cpu_model to emulate or you can select host option if available.

Note: Run the DPDK l2fwd sample application in the Guest OS with Hugepages enabled. For
the expected benchmark performance, you must pin the cores from the Guest OS to the Host

15.2. Setting Up a KVM Virtual Machine Monitor 70

http://wiki.qemu.org/Features/CPUModels

Network Interface Controller Drivers, Release 17.05.2

OS (taskset can be used to do this) and you must also look at the PCI Bus layout on the board
to ensure you are not running the traffic over the QPI Interface.

Note:

• The Virtual Machine Manager (the Fedora package name is virt-manager) is a utility
for virtual machine management that can also be used to create, start, stop and delete
virtual machines. If this option is used, step 2 and 6 in the instructions provided will be
different.

• virsh, a command line utility for virtual machine management, can also be used to bind
and unbind devices to a virtual machine in Ubuntu. If this option is used, step 6 in the
instructions provided will be different.

• The Virtual Machine Monitor (see Fig. 15.2) is equivalent to a Host OS with KVM installed
as described in the instructions.

Fig. 15.2: Performance Benchmark Setup

15.3 DPDK SR-IOV PMD PF/VF Driver Usage Model

15.3.1 Fast Host-based Packet Processing

Software Defined Network (SDN) trends are demanding fast host-based packet handling. In a
virtualization environment, the DPDK VF PMD driver performs the same throughput result as
a non-VT native environment.

With such host instance fast packet processing, lots of services such as filtering, QoS, DPI can
be offloaded on the host fast path.

Fig. 15.3 shows the scenario where some VMs directly communicate externally via a VFs,
while others connect to a virtual switch and share the same uplink bandwidth.

15.3. DPDK SR-IOV PMD PF/VF Driver Usage Model 71

Network Interface Controller Drivers, Release 17.05.2

Fig. 15.3: Fast Host-based Packet Processing

15.4 SR-IOV (PF/VF) Approach for Inter-VM Communication

Inter-VM data communication is one of the traffic bottle necks in virtualization platforms. SR-
IOV device assignment helps a VM to attach the real device, taking advantage of the bridge in
the NIC. So VF-to-VF traffic within the same physical port (VM0<->VM1) have hardware accel-
eration. However, when VF crosses physical ports (VM0<->VM2), there is no such hardware
bridge. In this case, the DPDK PMD PF driver provides host forwarding between such VMs.

Fig. 15.4 shows an example. In this case an update of the MAC address lookup tables in both
the NIC and host DPDK application is required.

In the NIC, writing the destination of a MAC address belongs to another cross device VM to
the PF specific pool. So when a packet comes in, its destination MAC address will match and
forward to the host DPDK PMD application.

In the host DPDK application, the behavior is similar to L2 forwarding, that is, the packet is
forwarded to the correct PF pool. The SR-IOV NIC switch forwards the packet to a specific VM
according to the MAC destination address which belongs to the destination VF on the VM.

15.4. SR-IOV (PF/VF) Approach for Inter-VM Communication 72

Network Interface Controller Drivers, Release 17.05.2

Fig. 15.4: Inter-VM Communication

15.4. SR-IOV (PF/VF) Approach for Inter-VM Communication 73

CHAPTER

SIXTEEN

KNI POLL MODE DRIVER

KNI PMD is wrapper to the librte_kni library.

This PMD enables using KNI without having a KNI specific application, any forwarding appli-
cation can use PMD interface for KNI.

Sending packets to any DPDK controlled interface or sending to the Linux networking stack will
be transparent to the DPDK application.

To create a KNI device net_kni# device name should be used, and this will create kni#
Linux virtual network interface.

There is no physical device backend for the virtual KNI device.

Packets sent to the KNI Linux interface will be received by the DPDK application, and DPDK
application may forward packets to a physical NIC or to a virtual device (like another KNI
interface or PCAP interface).

To forward any traffic from physical NIC to the Linux networking stack, an application should
control a physical port and create one virtual KNI port, and forward between two.

Using this PMD requires KNI kernel module be inserted.

16.1 Usage

EAL --vdev argument can be used to create KNI device instance, like:

testpmd --vdev=net_kni0 --vdev=net_kn1 -- -i

Above command will create kni0 and kni1 Linux network interfaces, those interfaces can be
controlled by standard Linux tools.

When testpmd forwarding starts, any packets sent to kni0 interface forwarded to the kni1
interface and vice versa.

There is no hard limit on number of interfaces that can be created.

16.2 Default interface configuration

librte_kni can create Linux network interfaces with different features, feature set controlled
by a configuration struct, and KNI PMD uses a fixed configuration:

74

Network Interface Controller Drivers, Release 17.05.2

Interface name: kni#
force bind kernel thread to a core : NO
mbuf size: MAX_PACKET_SZ

KNI control path is not supported with the PMD, since there is no physical backend device by
default.

16.3 PMD arguments

no_request_thread, by default PMD creates a phtread for each KNI interface to handle
Linux network interface control commands, like ifconfig kni0 up

With no_request_thread option, pthread is not created and control commands not handled
by PMD.

By default request thread is enabled. And this argument should not be used most of the time,
unless this PMD used with customized DPDK application to handle requests itself.

Argument usage:

testpmd --vdev "net_kni0,no_request_thread=1" -- -i

16.4 PMD log messages

If KNI kernel module (rte_kni.ko) not inserted, following error log printed:

"KNI: KNI subsystem has not been initialized. Invoke rte_kni_init() first"

16.5 PMD testing

It is possible to test PMD quickly using KNI kernel module loopback feature:

• Insert KNI kernel module with loopback support:

insmod build/kmod/rte_kni.ko lo_mode=lo_mode_fifo_skb

• Start testpmd with no physical device but two KNI virtual devices:

./testpmd --vdev net_kni0 --vdev net_kni1 -- -i

...
Configuring Port 0 (socket 0)
KNI: pci: 00:00:00 c580:b8
Port 0: 1A:4A:5B:7C:A2:8C
Configuring Port 1 (socket 0)
KNI: pci: 00:00:00 600:b9
Port 1: AE:95:21:07:93:DD
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

• Observe Linux interfaces

$ ifconfig kni0 && ifconfig kni1
kni0: flags=4098<BROADCAST,MULTICAST> mtu 1500

ether ae:8e:79:8e:9b:c8 txqueuelen 1000 (Ethernet)

16.3. PMD arguments 75

Network Interface Controller Drivers, Release 17.05.2

RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

kni1: flags=4098<BROADCAST,MULTICAST> mtu 1500
ether 9e:76:43:53:3e:9b txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

• Start forwarding with tx_first:

testpmd> start tx_first

• Quit and check forwarding stats:

testpmd> quit
Telling cores to stop...
Waiting for lcores to finish...

---------------------- Forward statistics for port 0 ----------------------
RX-packets: 35637905 RX-dropped: 0 RX-total: 35637905
TX-packets: 35637947 TX-dropped: 0 TX-total: 35637947
--

---------------------- Forward statistics for port 1 ----------------------
RX-packets: 35637915 RX-dropped: 0 RX-total: 35637915
TX-packets: 35637937 TX-dropped: 0 TX-total: 35637937
--

+++++++++++++++ Accumulated forward statistics for all ports+++++++++++++++
RX-packets: 71275820 RX-dropped: 0 RX-total: 71275820
TX-packets: 71275884 TX-dropped: 0 TX-total: 71275884
++

16.5. PMD testing 76

CHAPTER

SEVENTEEN

LIQUIDIO VF POLL MODE DRIVER

The LiquidIO VF PMD library (librte_pmd_lio) provides poll mode driver support for Cavium
LiquidIO® II server adapter VFs. PF management and VF creation can be done using kernel
driver.

More information can be found at Cavium Official Website.

17.1 Supported LiquidIO Adapters

• LiquidIO II CN2350 210SV/225SV

• LiquidIO II CN2360 210SV/225SV

17.2 Pre-Installation Configuration

The following options can be modified in the config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_LIO_PMD (default y)

Toggle compilation of LiquidIO PMD.

• CONFIG_RTE_LIBRTE_LIO_DEBUG_DRIVER (default n)

Toggle display of generic debugging messages.

• CONFIG_RTE_LIBRTE_LIO_DEBUG_INIT (default n)

Toggle display of initialization related messages.

• CONFIG_RTE_LIBRTE_LIO_DEBUG_RX (default n)

Toggle display of receive fast path run-time messages.

• CONFIG_RTE_LIBRTE_LIO_DEBUG_TX (default n)

Toggle display of transmit fast path run-time messages.

• CONFIG_RTE_LIBRTE_LIO_DEBUG_MBOX (default n)

Toggle display of mailbox messages.

• CONFIG_RTE_LIBRTE_LIO_DEBUG_REGS (default n)

Toggle display of register reads and writes.

77

http://cavium.com/LiquidIO_Adapters.html

Network Interface Controller Drivers, Release 17.05.2

17.3 SR-IOV: Prerequisites and Sample Application Notes

This section provides instructions to configure SR-IOV with Linux OS.

1. Verify SR-IOV and ARI capabilities are enabled on the adapter using lspci:

lspci -s <slot> -vvv

Example output:

[...]
Capabilities: [148 v1] Alternative Routing-ID Interpretation (ARI)
[...]
Capabilities: [178 v1] Single Root I/O Virtualization (SR-IOV)
[...]
Kernel driver in use: LiquidIO

2. Load the kernel module:

modprobe liquidio

3. Bring up the PF ports:

ifconfig p4p1 up
ifconfig p4p2 up

4. Change PF MTU if required:

ifconfig p4p1 mtu 9000
ifconfig p4p2 mtu 9000

5. Create VF device(s):

Echo number of VFs to be created into "sriov_numvfs" sysfs entry of the parent PF.

echo 1 > /sys/bus/pci/devices/0000:03:00.0/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000:03:00.1/sriov_numvfs

6. Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:

ip link set <PF iface> vf <VF id> mac <macaddr>

Example output:

ip link set p4p1 vf 0 mac F2:A8:1B:5E:B4:66

7. Assign VF(s) to VM.

The VF devices may be passed through to the guest VM using qemu or virt-manager or
virsh etc.

Example qemu guest launch command:

./qemu-system-x86_64 -name lio-vm -machine accel=kvm \
-cpu host -m 4096 -smp 4 \
-drive file=<disk_file>,if=none,id=disk1,format=<type> \
-device virtio-blk-pci,scsi=off,drive=disk1,id=virtio-disk1,bootindex=1 \
-device vfio-pci,host=03:00.3 -device vfio-pci,host=03:08.3

8. Running testpmd

Refer to the document compiling and testing a PMD for a NIC to run testpmd application.

Note: Use igb_uio instead of vfio-pci in VM.

17.3. SR-IOV: Prerequisites and Sample Application Notes 78

Network Interface Controller Drivers, Release 17.05.2

Example output:

[...]
EAL: PCI device 0000:03:00.3 on NUMA socket 0
EAL: probe driver: 177d:9712 net_liovf
EAL: using IOMMU type 1 (Type 1)
PMD: net_liovf[03:00.3]INFO: DEVICE : CN23XX VF
EAL: PCI device 0000:03:08.3 on NUMA socket 0
EAL: probe driver: 177d:9712 net_liovf
PMD: net_liovf[03:08.3]INFO: DEVICE : CN23XX VF
Interactive-mode selected
USER1: create a new mbuf pool <mbuf_pool_socket_0>: n=171456, size=2176, socket=0
Configuring Port 0 (socket 0)
PMD: net_liovf[03:00.3]INFO: Starting port 0
Port 0: F2:A8:1B:5E:B4:66
Configuring Port 1 (socket 0)
PMD: net_liovf[03:08.3]INFO: Starting port 1
Port 1: 32:76:CC:EE:56:D7
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

17.4 Limitations

17.4.1 VF MTU

VF MTU is limited by PF MTU. Raise PF value before configuring VF for larger packet size.

17.4.2 VLAN offload

Tx VLAN insertion is not supported and consequently VLAN offload feature is marked partial.

17.4.3 Ring size

Number of descriptors for Rx/Tx ring should be in the range 128 to 512.

17.4.4 CRC striping

LiquidIO adapters strip ethernet FCS of every packet coming to the host interface. So, CRC
will be stripped even when the rxmode.hw_strip_crc member is set to 0 in struct
rte_eth_conf.

17.4. Limitations 79

CHAPTER

EIGHTEEN

MLX4 POLL MODE DRIVER LIBRARY

The MLX4 poll mode driver library (librte_pmd_mlx4) implements support for Mellanox
ConnectX-3 and Mellanox ConnectX-3 Pro 10/40 Gbps adapters as well as their virtual func-
tions (VF) in SR-IOV context.

Information and documentation about this family of adapters can be found on the Mellanox
website. Help is also provided by the Mellanox community.

There is also a section dedicated to this poll mode driver.

Note: Due to external dependencies, this driver is disabled by default. It must be enabled
manually by setting CONFIG_RTE_LIBRTE_MLX4_PMD=y and recompiling DPDK.

18.1 Implementation details

Most Mellanox ConnectX-3 devices provide two ports but expose a single PCI bus address,
thus unlike most drivers, librte_pmd_mlx4 registers itself as a PCI driver that allocates one
Ethernet device per detected port.

For this reason, one cannot white/blacklist a single port without also white/blacklisting the oth-
ers on the same device.

Besides its dependency on libibverbs (that implies libmlx4 and associated kernel support), li-
brte_pmd_mlx4 relies heavily on system calls for control operations such as querying/updating
the MTU and flow control parameters.

For security reasons and robustness, this driver only deals with virtual memory addresses. The
way resources allocations are handled by the kernel combined with hardware specifications
that allow it to handle virtual memory addresses directly ensure that DPDK applications cannot
access random physical memory (or memory that does not belong to the current process).

This capability allows the PMD to coexist with kernel network interfaces which remain func-
tional, although they stop receiving unicast packets as long as they share the same MAC
address.

Compiling librte_pmd_mlx4 causes DPDK to be linked against libibverbs.

18.2 Features

• RSS, also known as RCA, is supported. In this mode the number of configured RX
queues must be a power of two.

80

http://www.mellanox.com
http://www.mellanox.com
http://community.mellanox.com/welcome
http://www.mellanox.com/page/products_dyn?product_family=209&mtag=pmd_for_dpdk

Network Interface Controller Drivers, Release 17.05.2

• VLAN filtering is supported.

• Link state information is provided.

• Promiscuous mode is supported.

• All multicast mode is supported.

• Multiple MAC addresses (unicast, multicast) can be configured.

• Scattered packets are supported for TX and RX.

• Inner L3/L4 (IP, TCP and UDP) TX/RX checksum offloading and validation.

• Outer L3 (IP) TX/RX checksum offloading and validation for VXLAN frames.

• Secondary process TX is supported.

18.3 Limitations

• RSS hash key cannot be modified.

• RSS RETA cannot be configured

• RSS always includes L3 (IPv4/IPv6) and L4 (UDP/TCP). They cannot be dissociated.

• Hardware counters are not implemented (they are software counters).

• Secondary process RX is not supported.

18.4 Configuration

18.4.1 Compilation options

These options can be modified in the .config file.

• CONFIG_RTE_LIBRTE_MLX4_PMD (default n)

Toggle compilation of librte_pmd_mlx4 itself.

• CONFIG_RTE_LIBRTE_MLX4_DEBUG (default n)

Toggle debugging code and stricter compilation flags. Enabling this option adds addi-
tional run-time checks and debugging messages at the cost of lower performance.

• CONFIG_RTE_LIBRTE_MLX4_SGE_WR_N (default 4)

Number of scatter/gather elements (SGEs) per work request (WR). Lowering this number
improves performance but also limits the ability to receive scattered packets (packets that
do not fit a single mbuf). The default value is a safe tradeoff.

• CONFIG_RTE_LIBRTE_MLX4_MAX_INLINE (default 0)

Amount of data to be inlined during TX operations. Improves latency but lowers through-
put.

18.3. Limitations 81

Network Interface Controller Drivers, Release 17.05.2

• CONFIG_RTE_LIBRTE_MLX4_TX_MP_CACHE (default 8)

Maximum number of cached memory pools (MPs) per TX queue. Each MP from which
buffers are to be transmitted must be associated to memory regions (MRs). This is a
slow operation that must be cached.

This value is always 1 for RX queues since they use a single MP.

• CONFIG_RTE_LIBRTE_MLX4_SOFT_COUNTERS (default 1)

Toggle software counters. No counters are available if this option is disabled since hard-
ware counters are not supported.

18.4.2 Environment variables

• MLX4_INLINE_RECV_SIZE

A nonzero value enables inline receive for packets up to that size. May significantly
improve performance in some cases but lower it in others. Requires careful testing.

18.4.3 Run-time configuration

• The only constraint when RSS mode is requested is to make sure the number of RX
queues is a power of two. This is a hardware requirement.

• librte_pmd_mlx4 brings kernel network interfaces up during initialization because it is
affected by their state. Forcing them down prevents packets reception.

• ethtool operations on related kernel interfaces also affect the PMD.

• port parameter [int]

This parameter provides a physical port to probe and can be specified multiple times for
additional ports. All ports are probed by default if left unspecified.

18.4.4 Kernel module parameters

The mlx4_core kernel module has several parameters that affect the behavior and/or the per-
formance of librte_pmd_mlx4. Some of them are described below.

• num_vfs (integer or triplet, optionally prefixed by device address strings)

Create the given number of VFs on the specified devices.

• log_num_mgm_entry_size (integer)

Device-managed flow steering (DMFS) is required by DPDK applications. It is enabled
by using a negative value, the last four bits of which have a special meaning.

– -1: force device-managed flow steering (DMFS).

– -7: configure optimized steering mode to improve performance with the following
limitation: VLAN filtering is not supported with this mode. This is the recommended
mode in case VLAN filter is not needed.

18.4. Configuration 82

Network Interface Controller Drivers, Release 17.05.2

18.5 Prerequisites

This driver relies on external libraries and kernel drivers for resources allocations and initial-
ization. The following dependencies are not part of DPDK and must be installed separately:

• libibverbs

User space verbs framework used by librte_pmd_mlx4. This library provides a generic
interface between the kernel and low-level user space drivers such as libmlx4.

It allows slow and privileged operations (context initialization, hardware resources allo-
cations) to be managed by the kernel and fast operations to never leave user space.

• libmlx4

Low-level user space driver library for Mellanox ConnectX-3 devices, it is automatically
loaded by libibverbs.

This library basically implements send/receive calls to the hardware queues.

• Kernel modules (mlnx-ofed-kernel)

They provide the kernel-side verbs API and low level device drivers that manage actual
hardware initialization and resources sharing with user space processes.

Unlike most other PMDs, these modules must remain loaded and bound to their devices:

– mlx4_core: hardware driver managing Mellanox ConnectX-3 devices.

– mlx4_en: Ethernet device driver that provides kernel network interfaces.

– mlx4_ib: InifiniBand device driver.

– ib_uverbs: user space driver for verbs (entry point for libibverbs).

• Firmware update

Mellanox OFED releases include firmware updates for ConnectX-3 adapters.

Because each release provides new features, these updates must be applied to match
the kernel modules and libraries they come with.

Note: Both libraries are BSD and GPL licensed. Linux kernel modules are GPL licensed.

Currently supported by DPDK:

• Mellanox OFED 4.0-2.0.0.0.

• Firmware version 2.40.7000.

• Supported architectures: x86_64 and POWER8.

18.5.1 Getting Mellanox OFED

While these libraries and kernel modules are available on OpenFabrics Alliance’s website and
provided by package managers on most distributions, this PMD requires Ethernet extensions
that may not be supported at the moment (this is a work in progress).

18.5. Prerequisites 83

https://www.openfabrics.org/

Network Interface Controller Drivers, Release 17.05.2

Mellanox OFED includes the necessary support and should be used in the meantime. For
DPDK, only libibverbs, libmlx4, mlnx-ofed-kernel packages and firmware updates are required
from that distribution.

Note: Several versions of Mellanox OFED are available. Installing the version this DPDK
release was developed and tested against is strongly recommended. Please check the pre-
requisites.

18.6 Supported NICs

• Mellanox(R) ConnectX(R)-3 Pro 40G MCX354A-FCC_Ax (2*40G)

18.7 Usage example

This section demonstrates how to launch testpmd with Mellanox ConnectX-3 devices man-
aged by librte_pmd_mlx4.

1. Load the kernel modules:

modprobe -a ib_uverbs mlx4_en mlx4_core mlx4_ib

Alternatively if MLNX_OFED is fully installed, the following script can be run:

/etc/init.d/openibd restart

Note: User space I/O kernel modules (uio and igb_uio) are not used and do not have to
be loaded.

2. Make sure Ethernet interfaces are in working order and linked to kernel verbs. Related
sysfs entries should be present:

ls -d /sys/class/net/*/device/infiniband_verbs/uverbs* | cut -d / -f 5

Example output:

eth2
eth3
eth4
eth5

3. Optionally, retrieve their PCI bus addresses for whitelisting:

{
for intf in eth2 eth3 eth4 eth5;
do

(cd "/sys/class/net/${intf}/device/" && pwd -P);
done;

} |
sed -n 's,.*/\(.*\),-w \1,p'

Example output:

-w 0000:83:00.0
-w 0000:83:00.0
-w 0000:84:00.0
-w 0000:84:00.0

18.6. Supported NICs 84

http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux_sw_drivers

Network Interface Controller Drivers, Release 17.05.2

Note: There are only two distinct PCI bus addresses because the Mellanox ConnectX-3
adapters installed on this system are dual port.

4. Request huge pages:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

5. Start testpmd with basic parameters:

testpmd -l 8-15 -n 4 -w 0000:83:00.0 -w 0000:84:00.0 -- --rxq=2 --txq=2 -i

Example output:

[...]
EAL: PCI device 0000:83:00.0 on NUMA socket 1
EAL: probe driver: 15b3:1007 librte_pmd_mlx4
PMD: librte_pmd_mlx4: PCI information matches, using device "mlx4_0" (VF: false)
PMD: librte_pmd_mlx4: 2 port(s) detected
PMD: librte_pmd_mlx4: port 1 MAC address is 00:02:c9:b5:b7:50
PMD: librte_pmd_mlx4: port 2 MAC address is 00:02:c9:b5:b7:51
EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 15b3:1007 librte_pmd_mlx4
PMD: librte_pmd_mlx4: PCI information matches, using device "mlx4_1" (VF: false)
PMD: librte_pmd_mlx4: 2 port(s) detected
PMD: librte_pmd_mlx4: port 1 MAC address is 00:02:c9:b5:ba:b0
PMD: librte_pmd_mlx4: port 2 MAC address is 00:02:c9:b5:ba:b1
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: librte_pmd_mlx4: 0x867d60: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867d60: RX queues number update: 0 -> 2
Port 0: 00:02:C9:B5:B7:50
Configuring Port 1 (socket 0)
PMD: librte_pmd_mlx4: 0x867da0: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867da0: RX queues number update: 0 -> 2
Port 1: 00:02:C9:B5:B7:51
Configuring Port 2 (socket 0)
PMD: librte_pmd_mlx4: 0x867de0: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867de0: RX queues number update: 0 -> 2
Port 2: 00:02:C9:B5:BA:B0
Configuring Port 3 (socket 0)
PMD: librte_pmd_mlx4: 0x867e20: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867e20: RX queues number update: 0 -> 2
Port 3: 00:02:C9:B5:BA:B1
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex
Port 3 Link Up - speed 40000 Mbps - full-duplex
Done
testpmd>

18.7. Usage example 85

CHAPTER

NINETEEN

MLX5 POLL MODE DRIVER

The MLX5 poll mode driver library (librte_pmd_mlx5) provides support for Mel-
lanox ConnectX-4, Mellanox ConnectX-4 Lx and Mellanox ConnectX-5 families of
10/25/40/50/100 Gb/s adapters as well as their virtual functions (VF) in SR-IOV context.

Information and documentation about these adapters can be found on the Mellanox website.
Help is also provided by the Mellanox community.

There is also a section dedicated to this poll mode driver.

Note: Due to external dependencies, this driver is disabled by default. It must be enabled
manually by setting CONFIG_RTE_LIBRTE_MLX5_PMD=y and recompiling DPDK.

19.1 Implementation details

Besides its dependency on libibverbs (that implies libmlx5 and associated kernel support), li-
brte_pmd_mlx5 relies heavily on system calls for control operations such as querying/updating
the MTU and flow control parameters.

For security reasons and robustness, this driver only deals with virtual memory addresses. The
way resources allocations are handled by the kernel combined with hardware specifications
that allow it to handle virtual memory addresses directly ensure that DPDK applications cannot
access random physical memory (or memory that does not belong to the current process).

This capability allows the PMD to coexist with kernel network interfaces which remain func-
tional, although they stop receiving unicast packets as long as they share the same MAC
address.

Enabling librte_pmd_mlx5 causes DPDK applications to be linked against libibverbs.

19.2 Features

• Multiple TX and RX queues.

• Support for scattered TX and RX frames.

• IPv4, IPv6, TCPv4, TCPv6, UDPv4 and UDPv6 RSS on any number of queues.

• Several RSS hash keys, one for each flow type.

• Configurable RETA table.

86

http://www.mellanox.com
http://community.mellanox.com/welcome
http://www.mellanox.com/page/products_dyn?product_family=209&mtag=pmd_for_dpdk

Network Interface Controller Drivers, Release 17.05.2

• Support for multiple MAC addresses.

• VLAN filtering.

• RX VLAN stripping.

• TX VLAN insertion.

• RX CRC stripping configuration.

• Promiscuous mode.

• Multicast promiscuous mode.

• Hardware checksum offloads.

• Flow director (RTE_FDIR_MODE_PERFECT, RTE_FDIR_MODE_PERFECT_MAC_VLAN
and RTE_ETH_FDIR_REJECT).

• Flow API.

• Secondary process TX is supported.

• KVM and VMware ESX SR-IOV modes are supported.

• RSS hash result is supported.

• Hardware TSO.

• Hardware checksum TX offload for VXLAN and GRE.

19.3 Limitations

• Inner RSS for VXLAN frames is not supported yet.

• Port statistics through software counters only.

• Hardware checksum RX offloads for VXLAN inner header are not supported yet.

• Secondary process RX is not supported.

19.4 Configuration

19.4.1 Compilation options

These options can be modified in the .config file.

• CONFIG_RTE_LIBRTE_MLX5_PMD (default n)

Toggle compilation of librte_pmd_mlx5 itself.

• CONFIG_RTE_LIBRTE_MLX5_DEBUG (default n)

Toggle debugging code and stricter compilation flags. Enabling this option adds addi-
tional run-time checks and debugging messages at the cost of lower performance.

• CONFIG_RTE_LIBRTE_MLX5_TX_MP_CACHE (default 8)

19.3. Limitations 87

Network Interface Controller Drivers, Release 17.05.2

Maximum number of cached memory pools (MPs) per TX queue. Each MP from which
buffers are to be transmitted must be associated to memory regions (MRs). This is a
slow operation that must be cached.

This value is always 1 for RX queues since they use a single MP.

19.4.2 Environment variables

• MLX5_PMD_ENABLE_PADDING

Enables HW packet padding in PCI bus transactions.

When packet size is cache aligned and CRC stripping is enabled, 4 fewer bytes are
written to the PCI bus. Enabling padding makes such packets aligned again.

In cases where PCI bandwidth is the bottleneck, padding can improve performance by
10%.

This is disabled by default since this can also decrease performance for unaligned packet
sizes.

19.4.3 Run-time configuration

• librte_pmd_mlx5 brings kernel network interfaces up during initialization because it is
affected by their state. Forcing them down prevents packets reception.

• ethtool operations on related kernel interfaces also affect the PMD.

• rxq_cqe_comp_en parameter [int]

A nonzero value enables the compression of CQE on RX side. This feature allows to
save PCI bandwidth and improve performance at the cost of a slightly higher CPU usage.
Enabled by default.

Supported on:

– x86_64 with ConnectX4 and ConnectX4 LX

– Power8 with ConnectX4 LX

• txq_inline parameter [int]

Amount of data to be inlined during TX operations. Improves latency. Can improve
PPS performance when PCI back pressure is detected and may be useful for scenarios
involving heavy traffic on many queues.

It is not enabled by default (set to 0) since the additional software logic necessary to
handle this mode can lower performance when back pressure is not expected.

• txqs_min_inline parameter [int]

Enable inline send only when the number of TX queues is greater or equal to this value.

This option should be used in combination with txq_inline above.

• txq_mpw_en parameter [int]

A nonzero value enables multi-packet send (MPS) for ConnectX-4 Lx and enhanced
multi-packet send (Enhanced MPS) for ConnectX-5. MPS allows the TX burst function

19.4. Configuration 88

Network Interface Controller Drivers, Release 17.05.2

to pack up multiple packets in a single descriptor session in order to save PCI bandwidth
and improve performance at the cost of a slightly higher CPU usage. When txq_inline
is set along with txq_mpw_en, TX burst function tries to copy entire packet data on to TX
descriptor instead of including pointer of packet only if there is enough room remained
in the descriptor. txq_inline sets per-descriptor space for either pointers or inlined
packets. In addition, Enhanced MPS supports hybrid mode - mixing inlined packets and
pointers in the same descriptor.

This option cannot be used in conjunction with tso below. When tso is set,
txq_mpw_en is disabled.

It is currently only supported on the ConnectX-4 Lx and ConnectX-5 families of adapters.
Enabled by default.

• txq_mpw_hdr_dseg_en parameter [int]

A nonzero value enables including two pointers in the first block of TX descriptor. This
can be used to lessen CPU load for memory copy.

Effective only when Enhanced MPS is supported. Disabled by default.

• txq_max_inline_len parameter [int]

Maximum size of packet to be inlined. This limits the size of packet to be inlined. If
the size of a packet is larger than configured value, the packet isn’t inlined even though
there’s enough space remained in the descriptor. Instead, the packet is included with
pointer.

Effective only when Enhanced MPS is supported. The default value is 256.

• tso parameter [int]

A nonzero value enables hardware TSO. When hardware TSO is enabled, packets
marked with TCP segmentation offload will be divided into segments by the hardware.

Disabled by default.

19.5 Prerequisites

This driver relies on external libraries and kernel drivers for resources allocations and initial-
ization. The following dependencies are not part of DPDK and must be installed separately:

• libibverbs

User space Verbs framework used by librte_pmd_mlx5. This library provides a generic
interface between the kernel and low-level user space drivers such as libmlx5.

It allows slow and privileged operations (context initialization, hardware resources allo-
cations) to be managed by the kernel and fast operations to never leave user space.

• libmlx5

Low-level user space driver library for Mellanox ConnectX-4/ConnectX-5 devices, it is
automatically loaded by libibverbs.

This library basically implements send/receive calls to the hardware queues.

• Kernel modules (mlnx-ofed-kernel)

19.5. Prerequisites 89

Network Interface Controller Drivers, Release 17.05.2

They provide the kernel-side Verbs API and low level device drivers that manage actual
hardware initialization and resources sharing with user space processes.

Unlike most other PMDs, these modules must remain loaded and bound to their devices:

– mlx5_core: hardware driver managing Mellanox ConnectX-4/ConnectX-5 devices
and related Ethernet kernel network devices.

– mlx5_ib: InifiniBand device driver.

– ib_uverbs: user space driver for Verbs (entry point for libibverbs).

• Firmware update

Mellanox OFED releases include firmware updates for ConnectX-4/ConnectX-5
adapters.

Because each release provides new features, these updates must be applied to match
the kernel modules and libraries they come with.

Note: Both libraries are BSD and GPL licensed. Linux kernel modules are GPL licensed.

Currently supported by DPDK:

• Mellanox OFED version: 4.0-2.0.0.0

• firmware version:

– ConnectX-4: 12.18.2000

– ConnectX-4 Lx: 14.18.2000

– ConnectX-5: 16.19.1200

– ConnectX-5 Ex: 16.19.1200

19.5.1 Getting Mellanox OFED

While these libraries and kernel modules are available on OpenFabrics Alliance’s website and
provided by package managers on most distributions, this PMD requires Ethernet extensions
that may not be supported at the moment (this is a work in progress).

Mellanox OFED includes the necessary support and should be used in the meantime. For
DPDK, only libibverbs, libmlx5, mlnx-ofed-kernel packages and firmware updates are required
from that distribution.

Note: Several versions of Mellanox OFED are available. Installing the version this DPDK
release was developed and tested against is strongly recommended. Please check the pre-
requisites.

19.6 Supported NICs

• Mellanox(R) ConnectX(R)-4 10G MCX4111A-XCAT (1x10G)

• Mellanox(R) ConnectX(R)-4 10G MCX4121A-XCAT (2x10G)

• Mellanox(R) ConnectX(R)-4 25G MCX4111A-ACAT (1x25G)

19.6. Supported NICs 90

https://www.openfabrics.org/
http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux

Network Interface Controller Drivers, Release 17.05.2

• Mellanox(R) ConnectX(R)-4 25G MCX4121A-ACAT (2x25G)

• Mellanox(R) ConnectX(R)-4 40G MCX4131A-BCAT (1x40G)

• Mellanox(R) ConnectX(R)-4 40G MCX413A-BCAT (1x40G)

• Mellanox(R) ConnectX(R)-4 40G MCX415A-BCAT (1x40G)

• Mellanox(R) ConnectX(R)-4 50G MCX4131A-GCAT (1x50G)

• Mellanox(R) ConnectX(R)-4 50G MCX413A-GCAT (1x50G)

• Mellanox(R) ConnectX(R)-4 50G MCX414A-BCAT (2x50G)

• Mellanox(R) ConnectX(R)-4 50G MCX415A-GCAT (2x50G)

• Mellanox(R) ConnectX(R)-4 50G MCX416A-BCAT (2x50G)

• Mellanox(R) ConnectX(R)-4 50G MCX416A-GCAT (2x50G)

• Mellanox(R) ConnectX(R)-4 50G MCX415A-CCAT (1x100G)

• Mellanox(R) ConnectX(R)-4 100G MCX416A-CCAT (2x100G)

• Mellanox(R) ConnectX(R)-4 Lx 10G MCX4121A-XCAT (2x10G)

• Mellanox(R) ConnectX(R)-4 Lx 25G MCX4121A-ACAT (2x25G)

• Mellanox(R) ConnectX(R)-5 100G MCX556A-ECAT (2x100G)

• Mellanox(R) ConnectX(R)-5 Ex EN 100G MCX516A-CDAT (2x100G)

19.7 Known issues

• Flow pattern without any specific vlan will match for vlan packets as well.

When VLAN spec is not specified in the pattern, the matching rule will be created with
VLAN as a wild card. Meaning, the flow rule:

flow create 0 ingress pattern eth / vlan vid is 3 / ipv4 / end ...

Will only match vlan packets with vid=3. and the flow rules:

flow create 0 ingress pattern eth / ipv4 / end ...

Or:

flow create 0 ingress pattern eth / vlan / ipv4 / end ...

Will match any ipv4 packet (VLAN included).

19.8 Notes for testpmd

Compared to librte_pmd_mlx4 that implements a single RSS configuration per port, li-
brte_pmd_mlx5 supports per-protocol RSS configuration.

Since testpmd defaults to IP RSS mode and there is currently no command-line parameter
to enable additional protocols (UDP and TCP as well as IP), the following commands must be
entered from its CLI to get the same behavior as librte_pmd_mlx4:

19.7. Known issues 91

Network Interface Controller Drivers, Release 17.05.2

> port stop all
> port config all rss all
> port start all

19.9 Usage example

This section demonstrates how to launch testpmd with Mellanox ConnectX-4/ConnectX-5 de-
vices managed by librte_pmd_mlx5.

1. Load the kernel modules:

modprobe -a ib_uverbs mlx5_core mlx5_ib

Alternatively if MLNX_OFED is fully installed, the following script can be run:

/etc/init.d/openibd restart

Note: User space I/O kernel modules (uio and igb_uio) are not used and do not have to
be loaded.

2. Make sure Ethernet interfaces are in working order and linked to kernel verbs. Related
sysfs entries should be present:

ls -d /sys/class/net/*/device/infiniband_verbs/uverbs* | cut -d / -f 5

Example output:

eth30
eth31
eth32
eth33

3. Optionally, retrieve their PCI bus addresses for whitelisting:

{
for intf in eth2 eth3 eth4 eth5;
do

(cd "/sys/class/net/${intf}/device/" && pwd -P);
done;

} |
sed -n 's,.*/\(.*\),-w \1,p'

Example output:

-w 0000:05:00.1
-w 0000:06:00.0
-w 0000:06:00.1
-w 0000:05:00.0

4. Request huge pages:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

5. Start testpmd with basic parameters:

testpmd -l 8-15 -n 4 -w 05:00.0 -w 05:00.1 -w 06:00.0 -w 06:00.1 -- --rxq=2 --txq=2 -i

Example output:

[...]
EAL: PCI device 0000:05:00.0 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_0" (VF: false)

19.9. Usage example 92

Network Interface Controller Drivers, Release 17.05.2

PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fe
EAL: PCI device 0000:05:00.1 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_1" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:ff
EAL: PCI device 0000:06:00.0 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_2" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fa
EAL: PCI device 0000:06:00.1 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_3" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fb
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: librte_pmd_mlx5: 0x8cba80: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8cba80: RX queues number update: 0 -> 2
Port 0: E4:1D:2D:E7:0C:FE
Configuring Port 1 (socket 0)
PMD: librte_pmd_mlx5: 0x8ccac8: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8ccac8: RX queues number update: 0 -> 2
Port 1: E4:1D:2D:E7:0C:FF
Configuring Port 2 (socket 0)
PMD: librte_pmd_mlx5: 0x8cdb10: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8cdb10: RX queues number update: 0 -> 2
Port 2: E4:1D:2D:E7:0C:FA
Configuring Port 3 (socket 0)
PMD: librte_pmd_mlx5: 0x8ceb58: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8ceb58: RX queues number update: 0 -> 2
Port 3: E4:1D:2D:E7:0C:FB
Checking link statuses...
Port 0 Link Up - speed 40000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex
Port 3 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

19.9. Usage example 93

CHAPTER

TWENTY

NFP POLL MODE DRIVER LIBRARY

Netronome’s sixth generation of flow processors pack 216 programmable cores and over 100
hardware accelerators that uniquely combine packet, flow, security and content processing in
a single device that scales up to 400 Gbps.

This document explains how to use DPDK with the Netronome Poll Mode Driver (PMD) sup-
porting Netronome’s Network Flow Processor 6xxx (NFP-6xxx).

Currently the driver supports virtual functions (VFs) only.

20.1 Dependencies

Before using the Netronome’s DPDK PMD some NFP-6xxx configuration, which is not related
to DPDK, is required. The system requires installation of Netronome’s BSP (Board Support
Package) which includes Linux drivers, programs and libraries.

If you have a NFP-6xxx device you should already have the code and documentation for doing
this configuration. Contact support@netronome.com to obtain the latest available firmware.

The NFP Linux kernel drivers (including the required PF driver for the NFP) are available on
Github at https://github.com/Netronome/nfp-drv-kmods along with build instructions.

DPDK runs in userspace and PMDs uses the Linux kernel UIO interface to allow access to
physical devices from userspace. The NFP PMD requires the igb_uio UIO driver, available
with DPDK, to perform correct initialization.

20.2 Building the software

Netronome’s PMD code is provided in the drivers/net/nfp directory. Although NFP PMD has
Netronome´s BSP dependencies, it is possible to compile it along with other DPDK PMDs even
if no BSP was installed before. Of course, a DPDK app will require such a BSP installed for
using the NFP PMD.

Default PMD configuration is at common_linuxapp configuration file:

• CONFIG_RTE_LIBRTE_NFP_PMD=y

Once DPDK is built all the DPDK apps and examples include support for the NFP PMD.

94

Network Interface Controller Drivers, Release 17.05.2

20.3 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

20.4 System configuration

1. Enable SR-IOV on the NFP-6xxx device: The current NFP PMD works with Virtual
Functions (VFs) on a NFP device. Make sure that one of the Physical Function (PF)
drivers from the above Github repository is installed and loaded.

Virtual Functions need to be enabled before they can be used with the PMD. Before
enabling the VFs it is useful to obtain information about the current NFP PCI device
detected by the system:

lspci -d19ee:

Now, for example, configure two virtual functions on a NFP-6xxx device whose PCI sys-
tem identity is “0000:03:00.0”:

echo 2 > /sys/bus/pci/devices/0000:03:00.0/sriov_numvfs

The result of this command may be shown using lspci again:

lspci -d19ee: -k

Two new PCI devices should appear in the output of the above command. The -k option
shows the device driver, if any, that devices are bound to. Depending on the modules
loaded at this point the new PCI devices may be bound to nfp_netvf driver.

20.3. Driver compilation and testing 95

CHAPTER

TWENTYONE

QEDE POLL MODE DRIVER

The QEDE poll mode driver library (librte_pmd_qede) implements support for QLogic
FastLinQ QL4xxxx 10G/25G/40G/50G/100G CNA family of adapters as well as their vir-
tual functions (VF) in SR-IOV context. It is supported on several standard Linux distros like
RHEL7.x, SLES12.x and Ubuntu. It is compile-tested under FreeBSD OS.

More information can be found at QLogic Corporation’s Website.

21.1 Supported Features

• Unicast/Multicast filtering

• Promiscuous mode

• Allmulti mode

• Port hardware statistics

• Jumbo frames

• VLAN offload - Filtering and stripping

• Stateless checksum offloads (IPv4/TCP/UDP)

• Multiple Rx/Tx queues

• RSS (with RETA/hash table/key)

• TSS

• Multiple MAC address

• Default pause flow control

• SR-IOV VF

• MTU change

• Multiprocess aware

• Scatter-Gather

• VXLAN tunneling offload

• N-tuple filter and flow director (limited support)

• LRO/TSO

96

http://www.qlogic.com

Network Interface Controller Drivers, Release 17.05.2

21.2 Non-supported Features

• SR-IOV PF

• GENEVE and NVGRE Tunneling offloads

• NPAR

21.3 Supported QLogic Adapters

• QLogic FastLinQ QL4xxxx 10G/25G/40G/50G/100G CNAs.

21.4 Prerequisites

• Requires firmware version 8.18.x. and management firmware version 8.18.x or higher.
Firmware may be available inbox in certain newer Linux distros under the standard direc-
tory E.g. /lib/firmware/qed/qed_init_values-8.18.9.0.bin

• If the required firmware files are not available then visit QLogic Driver Download Center.

21.4.1 Performance note

• For better performance, it is recommended to use 4K or higher RX/TX rings.

21.4.2 Config File Options

The following options can be modified in the .config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_QEDE_PMD (default y)

Toggle compilation of QEDE PMD driver.

• CONFIG_RTE_LIBRTE_QEDE_DEBUG_INFO (default n)

Toggle display of generic debugging messages.

• CONFIG_RTE_LIBRTE_QEDE_DEBUG_DRIVER (default n)

Toggle display of ecore related messages.

• CONFIG_RTE_LIBRTE_QEDE_DEBUG_TX (default n)

Toggle display of transmit fast path run-time messages.

• CONFIG_RTE_LIBRTE_QEDE_DEBUG_RX (default n)

Toggle display of receive fast path run-time messages.

• CONFIG_RTE_LIBRTE_QEDE_FW (default “”)

Gives absolute path of firmware file. Eg: "/lib/firmware/qed/qed_init_values_zipped-8.18.9.0.bin"
Empty string indicates driver will pick up the firmware file from the default location.

21.2. Non-supported Features 97

http://driverdownloads.qlogic.com

Network Interface Controller Drivers, Release 17.05.2

21.5 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

21.6 SR-IOV: Prerequisites and Sample Application Notes

This section provides instructions to configure SR-IOV with Linux OS.

Note: librte_pmd_qede will be used to bind to SR-IOV VF device and Linux native kernel driver
(QEDE) will function as SR-IOV PF driver. Requires PF driver to be 8.10.x.x or higher.

1. Verify SR-IOV and ARI capability is enabled on the adapter using lspci:

lspci -s <slot> -vvv

Example output:

[...]
Capabilities: [1b8 v1] Alternative Routing-ID Interpretation (ARI)
[...]
Capabilities: [1c0 v1] Single Root I/O Virtualization (SR-IOV)
[...]
Kernel driver in use: igb_uio

2. Load the kernel module:

modprobe qede

Example output:

systemd-udevd[4848]: renamed network interface eth0 to ens5f0
systemd-udevd[4848]: renamed network interface eth1 to ens5f1

3. Bring up the PF ports:

ifconfig ens5f0 up
ifconfig ens5f1 up

4. Create VF device(s):

Echo the number of VFs to be created into "sriov_numvfs" sysfs entry of the parent
PF.

Example output:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

5. Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:

ip link set <PF iface> vf <VF id> mac <macaddr>

Example output:

ip link set ens5f0 vf 0 mac 52:54:00:2f:9d:e8

6. PCI Passthrough:

The VF devices may be passed through to the guest VM using virt-manager or virsh.
QEDE PMD should be used to bind the VF devices in the guest VM using the instructions
from Driver compilation and testing section above.

21.5. Driver compilation and testing 98

Network Interface Controller Drivers, Release 17.05.2

7. Running testpmd (Enable QEDE_DEBUG_INFO=y to view informational messages):

Refer to the document compiling and testing a PMD for a NIC to run testpmd application.

Example output:

testpmd -l 0,4-11 -n 4 -- -i --nb-cores=8 --portmask=0xf --rxd=4096 \
--txd=4096 --txfreet=4068 --enable-rx-cksum --rxq=4 --txq=4 \
--rss-ip --rss-udp

[...]

EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 1077:1634 rte_qede_pmd
EAL: Not managed by a supported kernel driver, skipped
EAL: PCI device 0000:84:00.1 on NUMA socket 1
EAL: probe driver: 1077:1634 rte_qede_pmd
EAL: Not managed by a supported kernel driver, skipped
EAL: PCI device 0000:88:00.0 on NUMA socket 1
EAL: probe driver: 1077:1656 rte_qede_pmd
EAL: PCI memory mapped at 0x7f738b200000
EAL: PCI memory mapped at 0x7f738b280000
EAL: PCI memory mapped at 0x7f738b300000
PMD: Chip details : BB1
PMD: Driver version : QEDE PMD 8.7.9.0_1.0.0
PMD: Firmware version : 8.7.7.0
PMD: Management firmware version : 8.7.8.0
PMD: Firmware file : /lib/firmware/qed/qed_init_values_zipped-8.7.7.0.bin
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_common_dev_init:macaddr \

00:0e:1e:d2:09:9c
[...]

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 0 num_desc 4096 \
tx_free_thresh 4068 socket 0

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 1 num_desc 4096 \
tx_free_thresh 4068 socket 0

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 2 num_desc 4096 \
tx_free_thresh 4068 socket 0

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 3 num_desc 4096 \
tx_free_thresh 4068 socket 0

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 0 num_desc 4096 \
rx_buf_size=2148 socket 0

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 1 num_desc 4096 \
rx_buf_size=2148 socket 0

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 2 num_desc 4096 \
rx_buf_size=2148 socket 0

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 3 num_desc 4096 \
rx_buf_size=2148 socket 0

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_dev_start:port 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_dev_start:link status: down

[...]
Checking link statuses...
Port 0 Link Up - speed 25000 Mbps - full-duplex
Port 1 Link Up - speed 25000 Mbps - full-duplex
Port 2 Link Up - speed 25000 Mbps - full-duplex
Port 3 Link Up - speed 25000 Mbps - full-duplex
Done
testpmd>

21.6. SR-IOV: Prerequisites and Sample Application Notes 99

CHAPTER

TWENTYTWO

SOLARFLARE LIBEFX-BASED POLL MODE DRIVER

The SFC EFX PMD (librte_pmd_sfc_efx) provides poll mode driver support for Solarflare
SFN7xxx and SFN8xxx family of 10/40 Gbps adapters. SFC EFX PMD has support for the
latest Linux and FreeBSD operating systems.

More information can be found at Solarflare Communications website.

22.1 Features

SFC EFX PMD has support for:

• Multiple transmit and receive queues

• Link state information including link status change interrupt

• IPv4/IPv6 TCP/UDP transmit checksum offload

• Port hardware statistics

• Extended statistics (see Solarflare Server Adapter User’s Guide for the statistics descrip-
tion)

• Basic flow control

• MTU update

• Jumbo frames up to 9K

• Promiscuous mode

• Allmulticast mode

• TCP segmentation offload (TSO)

• Multicast MAC filter

• IPv4/IPv6 TCP/UDP receive checksum offload

• Received packet type information

• Receive side scaling (RSS)

• RSS hash

• Scattered Rx DMA for packet that are larger that a single Rx descriptor

• Deferred receive and transmit queue start

• Transmit VLAN insertion (if running firmware variant supports it)

100

http://solarflare.com

Network Interface Controller Drivers, Release 17.05.2

• Flow API

22.2 Non-supported Features

The features not yet supported include:

• Receive queue interupts

• Priority-based flow control

• Loopback

• Configurable RX CRC stripping (always stripped)

• Header split on receive

• VLAN filtering

• VLAN stripping

• LRO

22.3 Limitations

Due to requirements on receive buffer alignment and usage of the receive buffer for the aux-
iliary packet information provided by the NIC up to extra 269 (14 bytes prefix plus up to 255
bytes for end padding) bytes may be required in the receive buffer. It should be taken into
account when mbuf pool for receive is created.

22.4 Flow API support

Supported attributes:

• Ingress

Supported pattern items:

• VOID

• ETH (exact match of source/destination addresses, individual/group match of destination
address, EtherType)

• VLAN (exact match of VID, double-tagging is supported)

• IPV4 (exact match of source/destination addresses, IP transport protocol)

• IPV6 (exact match of source/destination addresses, IP transport protocol)

• TCP (exact match of source/destination ports)

• UDP (exact match of source/destination ports)

Supported actions:

• VOID

• QUEUE

22.2. Non-supported Features 101

Network Interface Controller Drivers, Release 17.05.2

Validating flow rules depends on the firmware variant.

22.4.1 Ethernet destinaton individual/group match

Ethernet item supports I/G matching, if only the corresponding bit is set in the mask of des-
tination address. If destinaton address in the spec is multicast, it matches all multicast (and
broadcast) packets, oherwise it matches unicast packets that are not filtered by other flow
rules.

22.5 Supported NICs

• Solarflare Flareon [Ultra] Server Adapters:

– Solarflare SFN8522 Dual Port SFP+ Server Adapter

– Solarflare SFN8542 Dual Port QSFP+ Server Adapter

– Solarflare SFN7002F Dual Port SFP+ Server Adapter

– Solarflare SFN7004F Quad Port SFP+ Server Adapter

– Solarflare SFN7042Q Dual Port QSFP+ Server Adapter

– Solarflare SFN7122F Dual Port SFP+ Server Adapter

– Solarflare SFN7124F Quad Port SFP+ Server Adapter

– Solarflare SFN7142Q Dual Port QSFP+ Server Adapter

– Solarflare SFN7322F Precision Time Synchronization Server Adapter

22.6 Prerequisites

• Requires firmware version:

– SFN7xxx: 4.7.1.1001 or higher

– SFN8xxx: 6.0.2.1004 or higher

Visit Solarflare Support Downloads to get Solarflare Utilities (either Linux or FreeBSD) with
the latest firmware. Follow instructions from Solarflare Server Adapter User’s Guide to update
firmware and configure the adapter.

22.7 Pre-Installation Configuration

22.7.1 Config File Options

The following options can be modified in the .config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_SFC_EFX_PMD (default y)

Enable compilation of Solarflare libefx-based poll-mode driver.

22.5. Supported NICs 102

https://support.solarflare.com

Network Interface Controller Drivers, Release 17.05.2

• CONFIG_RTE_LIBRTE_SFC_EFX_DEBUG (default n)

Enable compilation of the extra run-time consistency checks.

22.7.2 Per-Device Parameters

The following per-device parameters can be passed via EAL PCI device whitelist option like
“-w 02:00.0,arg1=value1,...”.

Case-insensitive 1/y/yes/on or 0/n/no/off may be used to specify boolean parameters value.

• rx_datapath [auto|efx|ef10] (default auto)

Choose receive datapath implementation. auto allows the driver itself to make a choice
based on firmware features available and required by the datapath implementation.
efx chooses libefx-based datapath which supports Rx scatter. ef10 chooses EF10
(SFN7xxx, SFN8xxx) native datapath which is more efficient than libefx-based and pro-
vides richer packet type classification, but lacks Rx scatter support.

• tx_datapath [auto|efx|ef10|ef10_simple] (default auto)

Choose transmit datapath implementation. auto allows the driver itself to make a choice
based on firmware features available and required by the datapath implementation. efx
chooses libefx-based datapath which supports VLAN insertion (full-feature firmware vari-
ant only), TSO and multi-segment mbufs. ef10 chooses EF10 (SFN7xxx, SFN8xxx) na-
tive datapath which is more efficient than libefx-based but has no VLAN insertion and
TSO support yet. ef10_simple chooses EF10 (SFN7xxx, SFN8xxx) native datapath
which is even more faster then ef10 but does not support multi-segment mbufs.

• perf_profile [auto|throughput|low-latency] (default throughput)

Choose hardware tunning to be optimized for either throughput or low-latency. auto
allows NIC firmware to make a choice based on installed licences and firmware variant
configured using sfboot.

• debug_init [bool] (default n)

Enable extra logging during device intialization and startup.

• mcdi_logging [bool] (default n)

Enable extra logging of the communication with the NIC’s management CPU. The logging
is done using RTE_LOG() with INFO level and PMD type. The format is consumed by
the Solarflare netlogdecode cross-platform tool.

• stats_update_period_ms [long] (default 1000)

Adjust period in milliseconds to update port hardware statistics. The accepted range is 0
to 65535. The value of 0 may be used to disable periodic statistics update. One should
note that it’s only possible to set an arbitrary value on SFN8xxx provided that firmware
version is 6.2.1.1033 or higher, otherwise any positive value will select a fixed update
period of 1000 milliseconds

22.7. Pre-Installation Configuration 103

CHAPTER

TWENTYTHREE

SZEDATA2 POLL MODE DRIVER LIBRARY

The SZEDATA2 poll mode driver library implements support for the Netcope FPGA Boards
(NFB-*), FPGA-based programmable NICs. The SZEDATA2 PMD uses interface provided by
the libsze2 library to communicate with the NFB cards over the sze2 layer.

More information about the NFB cards and used technology (Netcope Development Kit) can
be found on the Netcope Technologies website.

Note: This driver has external dependencies. Therefore it is disabled in default configuration
files. It can be enabled by setting CONFIG_RTE_LIBRTE_PMD_SZEDATA2=y and recompiling.

Note: Currently the driver is supported only on x86_64 architectures. Only x86_64 versions
of the external libraries are provided.

23.1 Prerequisites

This PMD requires kernel modules which are responsible for initialization and allocation of
resources needed for sze2 layer function. Communication between PMD and kernel modules
is mediated by libsze2 library. These kernel modules and library are not part of DPDK and
must be installed separately:

• libsze2 library

The library provides API for initialization of sze2 transfers, receiving and transmitting data
segments.

• Kernel modules

– combov3

– szedata2_cv3

Kernel modules manage initialization of hardware, allocation and sharing of resources
for user space applications.

Information about getting the dependencies can be found here.

23.2 Configuration

These configuration options can be modified before compilation in the .config file:

104

http://www.netcope.com/en/products/fpga-boards
http://www.netcope.com/en/products/fpga-development-kit
http://www.netcope.com/
http://www.netcope.com/en/company/community-support/dpdk-libsze2

Network Interface Controller Drivers, Release 17.05.2

• CONFIG_RTE_LIBRTE_PMD_SZEDATA2 default value: n

Value y enables compilation of szedata2 PMD.

• CONFIG_RTE_LIBRTE_PMD_SZEDATA2_AS default value: 0

This option defines type of firmware address space. Currently supported value is:

– 0 for firmwares:

* NIC_100G1_LR4

* HANIC_100G1_LR4

* HANIC_100G1_SR10

23.3 Using the SZEDATA2 PMD

From DPDK version 16.04 the type of SZEDATA2 PMD is changed to PMD_PDEV. SZEDATA2
device is automatically recognized during EAL initialization. No special command line options
are needed.

Kernel modules have to be loaded before running the DPDK application.

23.4 Example of usage

Read packets from 0. and 1. receive channel and write them to 0. and 1. transmit channel:

$RTE_TARGET/app/testpmd -l 0-3 -n 2 \
-- --port-topology=chained --rxq=2 --txq=2 --nb-cores=2 -i -a

Example output:

[...]
EAL: PCI device 0000:06:00.0 on NUMA socket -1
EAL: probe driver: 1b26:c1c1 rte_szedata2_pmd
PMD: Initializing szedata2 device (0000:06:00.0)
PMD: SZEDATA2 path: /dev/szedataII0
PMD: Available DMA channels RX: 8 TX: 8
PMD: resource0 phys_addr = 0xe8000000 len = 134217728 virt addr = 7f48f8000000
PMD: szedata2 device (0000:06:00.0) successfully initialized
Interactive-mode selected
Auto-start selected
Configuring Port 0 (socket 0)
Port 0: 00:11:17:00:00:00
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
Start automatic packet forwarding

io packet forwarding - CRC stripping disabled - packets/burst=32
nb forwarding cores=2 - nb forwarding ports=1
RX queues=2 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=0 hthresh=0 wthresh=0
TX queues=2 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=0 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0

testpmd>

23.3. Using the SZEDATA2 PMD 105

CHAPTER

TWENTYFOUR

TUN/TAP POLL MODE DRIVER

The rte_eth_tap.c PMD creates a device using TUN/TAP interfaces on the local host. The
PMD allows for DPDK and the host to communicate using a raw device interface on the host
and in the DPDK application.

The device created is a TAP device, which sends/receives packet in a raw format with a L2
header. The usage for a TAP PMD is for connectivity to the local host using a TAP interface.
When the TAP PMD is initialized it will create a number of tap devices in the host accessed via
ifconfig -a or ip command. The commands can be used to assign and query the virtual
like device.

These TAP interfaces can be used with Wireshark or tcpdump or Pktgen-DPDK along with be-
ing able to be used as a network connection to the DPDK application. The method enable one
or more interfaces is to use the --vdev=net_tap0 option on the DPDK application command
line. Each --vdev=net_tap1 option give will create an interface named dtap0, dtap1, and
so on.

The interface name can be changed by adding the iface=foo0, for example:

--vdev=net_tap0,iface=foo0 --vdev=net_tap1,iface=foo1, ...

Also the speed of the interface can be changed from 10G to whatever number needed, but the
interface does not enforce that speed, for example:

--vdev=net_tap0,iface=foo0,speed=25000

It is possible to specify a remote netdevice to capture packets from by adding remote=foo1,
for example:

--vdev=net_tap,iface=tap0,remote=foo1

If a remote is set, the tap MAC address will be set to match the remote one just after netdevice
creation. Using TC rules, traffic from the remote netdevice will be redirected to the tap. If the
tap is in promiscuous mode, then all packets will be redirected. In allmulti mode, all multicast
packets will be redirected.

Using the remote feature is especially useful for capturing traffic from a netdevice that has no
support in the DPDK. It is possible to add explicit rte_flow rules on the tap PMD to capture
specific traffic (see next section for examples).

After the DPDK application is started you can send and receive packets on the interface using
the standard rx_burst/tx_burst APIs in DPDK. From the host point of view you can use any
host tool like tcpdump, Wireshark, ping, Pktgen and others to communicate with the DPDK
application. The DPDK application may not understand network protocols like IPv4/6, UDP or
TCP unless the application has been written to understand these protocols.

106

Network Interface Controller Drivers, Release 17.05.2

If you need the interface as a real network interface meaning running and has a valid IP address
then you can do this with the following commands:

sudo ip link set dtap0 up; sudo ip addr add 192.168.0.250/24 dev dtap0
sudo ip link set dtap1 up; sudo ip addr add 192.168.1.250/24 dev dtap1

Please change the IP addresses as you see fit.

If routing is enabled on the host you can also communicate with the DPDK App over the internet
via a standard socket layer application as long as you account for the protocol handing in the
application.

If you have a Network Stack in your DPDK application or something like it you can utilize that
stack to handle the network protocols. Plus you would be able to address the interface using
an IP address assigned to the internal interface.

24.1 Flow API support

The tap PMD supports major flow API pattern items and actions, when running on linux kernels
above 4.2 (“Flower” classifier required). Supported items:

• eth: src and dst (with variable masks), and eth_type (0xffff mask).

• vlan: vid, pcp, tpid, but not eid. (requires kernel 4.9)

• ipv4/6: src and dst (with variable masks), and ip_proto (0xffff mask).

• udp/tcp: src and dst port (0xffff) mask.

Supported actions:

• DROP

• QUEUE

• PASSTHRU

It is generally not possible to provide a “last” item. However, if the “last” item, once masked, is
identical to the masked spec, then it is supported.

Only IPv4/6 and MAC addresses can use a variable mask. All other items need a full mask
(exact match).

As rules are translated to TC, it is possible to show them with something like:

tc -s filter show dev tap1 parent 1:

24.1.1 Examples of testpmd flow rules

Drop packets for destination IP 192.168.0.1:

testpmd> flow create 0 priority 1 ingress pattern eth / ipv4 dst is 1.1.1.1 \
/ end actions drop / end

Ensure packets from a given MAC address are received on a queue 2:

testpmd> flow create 0 priority 2 ingress pattern eth src is 06:05:04:03:02:01 \
/ end actions queue index 2 / end

Drop UDP packets in vlan 3:

24.1. Flow API support 107

Network Interface Controller Drivers, Release 17.05.2

testpmd> flow create 0 priority 3 ingress pattern eth / vlan vid is 3 / \
ipv4 proto is 17 / end actions drop / end

24.2 Example

The following is a simple example of using the TUN/TAP PMD with the Pktgen packet generator.
It requires that the socat utility is installed on the test system.

Build DPDK, then pull down Pktgen and build pktgen using the DPDK SDK/Target used to build
the dpdk you pulled down.

Run pktgen from the pktgen directory in a terminal with a commandline like the following:

sudo ./app/app/x86_64-native-linuxapp-gcc/app/pktgen -l 1-5 -n 4 \
--proc-type auto --log-level 8 --socket-mem 512,512 --file-prefix pg \
--vdev=net_tap0 --vdev=net_tap1 -b 05:00.0 -b 05:00.1 \
-b 04:00.0 -b 04:00.1 -b 04:00.2 -b 04:00.3 \
-b 81:00.0 -b 81:00.1 -b 81:00.2 -b 81:00.3 \
-b 82:00.0 -b 83:00.0 -- -T -P -m [2:3].0 -m [4:5].1 \
-f themes/black-yellow.theme

Verify with ifconfig -a command in a different xterm window, should have a dtap0 and
dtap1 interfaces created.

Next set the links for the two interfaces to up via the commands below:

sudo ip link set dtap0 up; sudo ip addr add 192.168.0.250/24 dev dtap0
sudo ip link set dtap1 up; sudo ip addr add 192.168.1.250/24 dev dtap1

Then use socat to create a loopback for the two interfaces:

sudo socat interface:dtap0 interface:dtap1

Then on the Pktgen command line interface you can start sending packets using the com-
mands start 0 and start 1 or you can start both at the same time with start all. The
command str is an alias for start all and stp is an alias for stop all.

While running you should see the 64 byte counters increasing to verify the traffic is being
looped back. You can use set all size XXX to change the size of the packets after you
stop the traffic. Use pktgen help command to see a list of all commands. You can also use
the -f option to load commands at startup in command line or Lua script in pktgen.

24.2. Example 108

CHAPTER

TWENTYFIVE

THUNDERX NICVF POLL MODE DRIVER

The ThunderX NICVF PMD (librte_pmd_thunderx_nicvf) provides poll mode driver support
for the inbuilt NIC found in the Cavium ThunderX SoC family as well as their virtual functions
(VF) in SR-IOV context.

More information can be found at Cavium Networks Official Website.

25.1 Features

Features of the ThunderX PMD are:

• Multiple queues for TX and RX

• Receive Side Scaling (RSS)

• Packet type information

• Checksum offload

• Promiscuous mode

• Multicast mode

• Port hardware statistics

• Jumbo frames

• Link state information

• Scattered and gather for TX and RX

• VLAN stripping

• SR-IOV VF

• NUMA support

• Multi queue set support (up to 96 queues (12 queue sets)) per port

25.2 Supported ThunderX SoCs

• CN88xx

• CN81xx

• CN83xx

109

http://www.cavium.com/ThunderX_ARM_Processors.html

Network Interface Controller Drivers, Release 17.05.2

25.3 Prerequisites

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

25.4 Pre-Installation Configuration

25.4.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging
options may affect system performance.

• CONFIG_RTE_LIBRTE_THUNDERX_NICVF_PMD (default y)

Toggle compilation of the librte_pmd_thunderx_nicvf driver.

• CONFIG_RTE_LIBRTE_THUNDERX_NICVF_DEBUG_INIT (default n)

Toggle display of initialization related messages.

• CONFIG_RTE_LIBRTE_THUNDERX_NICVF_DEBUG_RX (default n)

Toggle display of receive fast path run-time message

• CONFIG_RTE_LIBRTE_THUNDERX_NICVF_DEBUG_TX (default n)

Toggle display of transmit fast path run-time message

• CONFIG_RTE_LIBRTE_THUNDERX_NICVF_DEBUG_DRIVER (default n)

Toggle display of generic debugging messages

• CONFIG_RTE_LIBRTE_THUNDERX_NICVF_DEBUG_MBOX (default n)

Toggle display of PF mailbox related run-time check messages

25.5 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

To compile the ThunderX NICVF PMD for Linux arm64 gcc, use arm64-thunderx-linuxapp-gcc
as target.

25.6 Linux

25.6.1 SR-IOV: Prerequisites and sample Application Notes

Current ThunderX NIC PF/VF kernel modules maps each physical Ethernet port automatically
to virtual function (VF) and presented them as PCIe-like SR-IOV device. This section provides
instructions to configure SR-IOV with Linux OS.

1. Verify PF devices capabilities using lspci:

lspci -vvv

Example output:

25.3. Prerequisites 110

Network Interface Controller Drivers, Release 17.05.2

0002:01:00.0 Ethernet controller: Cavium Networks Device a01e (rev 01)
...
Capabilities: [100 v1] Alternative Routing-ID Interpretation (ARI)
...
Capabilities: [180 v1] Single Root I/O Virtualization (SR-IOV)
...
Kernel driver in use: thunder-nic
...

Note: Unless thunder-nic driver is in use make sure your kernel config includes
CONFIG_THUNDER_NIC_PF setting.

2. Verify VF devices capabilities and drivers using lspci:

lspci -vvv

Example output:

0002:01:00.1 Ethernet controller: Cavium Networks Device 0011 (rev 01)
...
Capabilities: [100 v1] Alternative Routing-ID Interpretation (ARI)
...
Kernel driver in use: thunder-nicvf
...

0002:01:00.2 Ethernet controller: Cavium Networks Device 0011 (rev 01)
...
Capabilities: [100 v1] Alternative Routing-ID Interpretation (ARI)
...
Kernel driver in use: thunder-nicvf
...

Note: Unless thunder-nicvf driver is in use make sure your kernel config includes
CONFIG_THUNDER_NIC_VF setting.

3. Pass VF device to VM context (PCIe Passthrough):

The VF devices may be passed through to the guest VM using qemu or virt-manager or
virsh etc.

Example qemu guest launch command:

sudo qemu-system-aarch64 -name vm1 \
-machine virt,gic_version=3,accel=kvm,usb=off \
-cpu host -m 4096 \
-smp 4,sockets=1,cores=8,threads=1 \
-nographic -nodefaults \
-kernel <kernel image> \
-append "root=/dev/vda console=ttyAMA0 rw hugepagesz=512M hugepages=3" \
-device vfio-pci,host=0002:01:00.1 \
-drive file=<rootfs.ext3>,if=none,id=disk1,format=raw \
-device virtio-blk-device,scsi=off,drive=disk1,id=virtio-disk1,bootindex=1 \
-netdev tap,id=net0,ifname=tap0,script=/etc/qemu-ifup_thunder \
-device virtio-net-device,netdev=net0 \
-serial stdio \
-mem-path /dev/huge

4. Enable VFIO-NOIOMMU mode (optional):

echo 1 > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode

Note: VFIO-NOIOMMU is required only when running in VM context and should not be

25.6. Linux 111

Network Interface Controller Drivers, Release 17.05.2

enabled otherwise.

5. Running testpmd:

Follow instructions available in the document compiling and testing a PMD for a NIC to
run testpmd.

Example output:

./arm64-thunderx-linuxapp-gcc/app/testpmd -l 0-3 -n 4 -w 0002:01:00.2 \
-- -i --disable-hw-vlan-filter --disable-crc-strip --no-flush-rx \
--port-topology=loop

...

PMD: rte_nicvf_pmd_init(): librte_pmd_thunderx nicvf version 1.0

...
EAL: probe driver: 177d:11 rte_nicvf_pmd
EAL: using IOMMU type 1 (Type 1)
EAL: PCI memory mapped at 0x3ffade50000
EAL: Trying to map BAR 4 that contains the MSI-X table.

Trying offsets: 0x40000000000:0x0000, 0x10000:0x1f0000
EAL: PCI memory mapped at 0x3ffadc60000
PMD: nicvf_eth_dev_init(): nicvf: device (177d:11) 2:1:0:2
PMD: nicvf_eth_dev_init(): node=0 vf=1 mode=tns-bypass sqs=false

loopback_supported=true
PMD: nicvf_eth_dev_init(): Port 0 (177d:11) mac=a6:c6:d9:17:78:01
Interactive-mode selected
Configuring Port 0 (socket 0)
...

PMD: nicvf_dev_configure(): Configured ethdev port0 hwcap=0x0
Port 0: A6:C6:D9:17:78:01
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

25.6.2 Multiple Queue Set per DPDK port configuration

There are two types of VFs:

• Primary VF

• Secondary VF

Each port consists of a primary VF and n secondary VF(s). Each VF provides 8 Tx/Rx queues
to a port. When a given port is configured to use more than 8 queues, it requires one (or more)
secondary VF. Each secondary VF adds 8 additional queues to the queue set.

During PMD driver initialization, the primary VF’s are enumerated by checking the specific flag
(see sqs message in DPDK boot log - sqs indicates secondary queue set). They are at the
beginning of VF list (the remain ones are secondary VF’s).

The primary VFs are used as master queue sets. Secondary VFs provide additional queue
sets for primary ones. If a port is configured for more then 8 queues than it will request for
additional queues from secondary VFs.

Secondary VFs cannot be shared between primary VFs.

25.6. Linux 112

Network Interface Controller Drivers, Release 17.05.2

Primary VFs are present on the beginning of the ‘Network devices using kernel driver’ list,
secondary VFs are on the remaining on the remaining part of the list.

Note: The VNIC driver in the multiqueue setup works differently than other drivers
like ixgbe. We need to bind separately each specific queue set device with the
usertools/dpdk-devbind.py utility.

Note: Depending on the hardware used, the kernel driver sets a threshold vf_id.
VFs that try to attached with an id below or equal to this boundary are considered
primary VFs. VFs that try to attach with an id above this boundary are considered
secondary VFs.

25.6.3 Example device binding

If a system has three interfaces, a total of 18 VF devices will be created on a non-NUMA
machine.

Note: NUMA systems have 12 VFs per port and non-NUMA 6 VFs per port.

usertools/dpdk-devbind.py --status

Network devices using DPDK-compatible driver
==
<none>

Network devices using kernel driver
===================================
0000:01:10.0 'Device a026' if= drv=thunder-BGX unused=vfio-pci,uio_pci_generic
0000:01:10.1 'Device a026' if= drv=thunder-BGX unused=vfio-pci,uio_pci_generic
0002:01:00.0 'Device a01e' if= drv=thunder-nic unused=vfio-pci,uio_pci_generic
0002:01:00.1 'Device 0011' if=eth0 drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:00.2 'Device 0011' if=eth1 drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:00.3 'Device 0011' if=eth2 drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:00.4 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:00.5 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:00.6 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:00.7 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.0 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.1 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.2 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.3 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.4 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.5 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.6 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:01.7 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:02.0 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:02.1 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic
0002:01:02.2 'Device 0011' if= drv=thunder-nicvf unused=vfio-pci,uio_pci_generic

Other network devices
=====================
0002:00:03.0 'Device a01f' unused=vfio-pci,uio_pci_generic

We want to bind two physical interfaces with 24 queues each device, we attach two primary VFs
and four secondary queues. In our example we choose two 10G interfaces eth1 (0002:01:00.2)
and eth2 (0002:01:00.3). We will choose four secondary queue sets from the ending of the list

25.6. Linux 113

Network Interface Controller Drivers, Release 17.05.2

(0002:01:01.7-0002:01:02.2).

1. Bind two primary VFs to the vfio-pci driver:

usertools/dpdk-devbind.py -b vfio-pci 0002:01:00.2
usertools/dpdk-devbind.py -b vfio-pci 0002:01:00.3

2. Bind four primary VFs to the vfio-pci driver:

usertools/dpdk-devbind.py -b vfio-pci 0002:01:01.7
usertools/dpdk-devbind.py -b vfio-pci 0002:01:02.0
usertools/dpdk-devbind.py -b vfio-pci 0002:01:02.1
usertools/dpdk-devbind.py -b vfio-pci 0002:01:02.2

The nicvf thunderx driver will make use of attached secondary VFs automatically during the
interface configuration stage.

25.7 Limitations

25.7.1 CRC striping

The ThunderX SoC family NICs strip the CRC for every packets coming into the host inter-
face. So, CRC will be stripped even when the rxmode.hw_strip_crc member is set to 0 in
struct rte_eth_conf.

25.7.2 Maximum packet length

The ThunderX SoC family NICs support a maximum of a 9K jumbo frame. The value is fixed
and cannot be changed. So, even when the rxmode.max_rx_pkt_len member of struct
rte_eth_conf is set to a value lower than 9200, frames up to 9200 bytes can still reach the
host interface.

25.7.3 Maximum packet segments

The ThunderX SoC family NICs support up to 12 segments per packet when working in scat-
ter/gather mode. So, setting MTU will result with EINVAL when the frame size does not fit in
the maximum number of segments.

25.7. Limitations 114

CHAPTER

TWENTYSIX

POLL MODE DRIVER FOR EMULATED VIRTIO NIC

Virtio is a para-virtualization framework initiated by IBM, and supported by KVM hypervisor.
In the Data Plane Development Kit (DPDK), we provide a virtio Poll Mode Driver (PMD) as
a software solution, comparing to SRIOV hardware solution, for fast guest VM to guest VM
communication and guest VM to host communication.

Vhost is a kernel acceleration module for virtio qemu backend. The DPDK extends kni to
support vhost raw socket interface, which enables vhost to directly read/ write packets from/to
a physical port. With this enhancement, virtio could achieve quite promising performance.

In future release, we will also make enhancement to vhost backend, releasing peak perfor-
mance of virtio PMD driver.

For basic qemu-KVM installation and other Intel EM poll mode driver in guest VM, please refer
to Chapter “Driver for VM Emulated Devices”.

In this chapter, we will demonstrate usage of virtio PMD driver with two backends, standard
qemu vhost back end and vhost kni back end.

26.1 Virtio Implementation in DPDK

For details about the virtio spec, refer to Virtio PCI Card Specification written by Rusty Russell.

As a PMD, virtio provides packet reception and transmission callbacks virtio_recv_pkts and
virtio_xmit_pkts.

In virtio_recv_pkts, index in range [vq->vq_used_cons_idx , vq->vq_ring.used->idx) in vring is
available for virtio to burst out.

In virtio_xmit_pkts, same index range in vring is available for virtio to clean. Virtio will enqueue
to be transmitted packets into vring, advance the vq->vq_ring.avail->idx, and then notify the
host back end if necessary.

26.2 Features and Limitations of virtio PMD

In this release, the virtio PMD driver provides the basic functionality of packet reception and
transmission.

• It supports merge-able buffers per packet when receiving packets and scattered buffer
per packet when transmitting packets. The packet size supported is from 64 to 1518.

• It supports multicast packets and promiscuous mode.

115

Network Interface Controller Drivers, Release 17.05.2

• The descriptor number for the Rx/Tx queue is hard-coded to be 256 by qemu. If given a
different descriptor number by the upper application, the virtio PMD generates a warning
and fall back to the hard-coded value.

• Features of mac/vlan filter are supported, negotiation with vhost/backend are needed to
support them. When backend can’t support vlan filter, virtio app on guest should disable
vlan filter to make sure the virtio port is configured correctly. E.g. specify ‘–disable-hw-
vlan’ in testpmd command line.

• RTE_PKTMBUF_HEADROOM should be defined larger than sizeof(struct vir-
tio_net_hdr), which is 10 bytes.

• Virtio does not support runtime configuration.

• Virtio supports Link State interrupt.

• Virtio supports Rx interrupt (so far, only support 1:1 mapping for queue/interrupt).

• Virtio supports software vlan stripping and inserting.

• Virtio supports using port IO to get PCI resource when uio/igb_uio module is not avail-
able.

26.3 Prerequisites

The following prerequisites apply:

• In the BIOS, turn VT-x and VT-d on

• Linux kernel with KVM module; vhost module loaded and ioeventfd supported. Qemu
standard backend without vhost support isn’t tested, and probably isn’t supported.

26.4 Virtio with kni vhost Back End

This section demonstrates kni vhost back end example setup for Phy-VM Communication.

Host2VM communication example

1. Load the kni kernel module:

insmod rte_kni.ko

Other basic DPDK preparations like hugepage enabling, uio port binding are not listed
here. Please refer to the DPDK Getting Started Guide for detailed instructions.

2. Launch the kni user application:

examples/kni/build/app/kni -l 0-3 -n 4 -- -p 0x1 -P --config="(0,1,3)"

This command generates one network device vEth0 for physical port. If specify more
physical ports, the generated network device will be vEth1, vEth2, and so on.

For each physical port, kni creates two user threads. One thread loops to fetch packets
from the physical NIC port into the kni receive queue. The other user thread loops to
send packets in the kni transmit queue.

26.3. Prerequisites 116

Network Interface Controller Drivers, Release 17.05.2

Fig. 26.1: Host2VM Communication Example Using kni vhost Back End

26.4. Virtio with kni vhost Back End 117

Network Interface Controller Drivers, Release 17.05.2

For each physical port, kni also creates a kernel thread that retrieves packets from the kni
receive queue, place them onto kni’s raw socket’s queue and wake up the vhost kernel
thread to exchange packets with the virtio virt queue.

For more details about kni, please refer to kni.

3. Enable the kni raw socket functionality for the specified physical NIC port, get the gener-
ated file descriptor and set it in the qemu command line parameter. Always remember to
set ioeventfd_on and vhost_on.

Example:

echo 1 > /sys/class/net/vEth0/sock_en
fd=`cat /sys/class/net/vEth0/sock_fd`
exec qemu-system-x86_64 -enable-kvm -cpu host \
-m 2048 -smp 4 -name dpdk-test1-vm1 \
-drive file=/data/DPDKVMS/dpdk-vm.img \
-netdev tap, fd=$fd,id=mynet_kni, script=no,vhost=on \
-device virtio-net-pci,netdev=mynet_kni,bus=pci.0,addr=0x3,ioeventfd=on \
-vnc:1 -daemonize

In the above example, virtio port 0 in the guest VM will be associated with vEth0, which
in turns corresponds to a physical port, which means received packets come from vEth0,
and transmitted packets is sent to vEth0.

4. In the guest, bind the virtio device to the uio_pci_generic kernel module and start the
forwarding application. When the virtio port in guest bursts Rx, it is getting packets from
the raw socket’s receive queue. When the virtio port bursts Tx, it is sending packet to the
tx_q.

modprobe uio
echo 512 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
modprobe uio_pci_generic
python usertools/dpdk-devbind.py -b uio_pci_generic 00:03.0

We use testpmd as the forwarding application in this example.

Fig. 26.2: Running testpmd

5. Use IXIA packet generator to inject a packet stream into the KNI physical port.

The packet reception and transmission flow path is:

IXIA packet generator->82599 PF->KNI Rx queue->KNI raw socket queue->Guest VM
virtio port 0 Rx burst->Guest VM virtio port 0 Tx burst-> KNI Tx queue ->82599 PF->
IXIA packet generator

26.4. Virtio with kni vhost Back End 118

Network Interface Controller Drivers, Release 17.05.2

26.5 Virtio with qemu virtio Back End

Fig. 26.3: Host2VM Communication Example Using qemu vhost Back End

qemu-system-x86_64 -enable-kvm -cpu host -m 2048 -smp 2 -mem-path /dev/
hugepages -mem-prealloc
-drive file=/data/DPDKVMS/dpdk-vm1
-netdev tap,id=vm1_p1,ifname=tap0,script=no,vhost=on
-device virtio-net-pci,netdev=vm1_p1,bus=pci.0,addr=0x3,ioeventfd=on
-device pci-assign,host=04:10.1 \

In this example, the packet reception flow path is:

IXIA packet generator->82599 PF->Linux Bridge->TAP0’s socket queue-> Guest
VM virtio port 0 Rx burst-> Guest VM 82599 VF port1 Tx burst-> IXIA packet gen-
erator

The packet transmission flow is:

IXIA packet generator-> Guest VM 82599 VF port1 Rx burst-> Guest VM virtio port
0 Tx burst-> tap -> Linux Bridge->82599 PF-> IXIA packet generator

26.6 Virtio PMD Rx/Tx Callbacks

Virtio driver has 3 Rx callbacks and 2 Tx callbacks.

Rx callbacks:

26.5. Virtio with qemu virtio Back End 119

Network Interface Controller Drivers, Release 17.05.2

1. virtio_recv_pkts: Regular version without mergeable Rx buffer support.

2. virtio_recv_mergeable_pkts: Regular version with mergeable Rx buffer support.

3. virtio_recv_pkts_vec: Vector version without mergeable Rx buffer support, also
fixes the available ring indexes and uses vector instructions to optimize performance.

Tx callbacks:

1. virtio_xmit_pkts: Regular version.

2. virtio_xmit_pkts_simple: Vector version fixes the available ring indexes to opti-
mize performance.

By default, the non-vector callbacks are used:

• For Rx: If mergeable Rx buffers is disabled then virtio_recv_pkts is used; otherwise
virtio_recv_mergeable_pkts.

• For Tx: virtio_xmit_pkts.

Vector callbacks will be used when:

• txq_flags is set to VIRTIO_SIMPLE_FLAGS (0xF01), which implies:

– Single segment is specified.

– No offload support is needed.

• Mergeable Rx buffers is disabled.

The corresponding callbacks are:

• For Rx: virtio_recv_pkts_vec.

• For Tx: virtio_xmit_pkts_simple.

Example of using the vector version of the virtio poll mode driver in testpmd:

testpmd -l 0-2 -n 4 -- -i --txqflags=0xF01 --rxq=1 --txq=1 --nb-cores=1

26.7 Interrupt mode

There are three kinds of interrupts from a virtio device over PCI bus: config interrupt, Rx
interrupts, and Tx interrupts. Config interrupt is used for notification of device configuration
changes, especially link status (lsc). Interrupt mode is translated into Rx interrupts in the
context of DPDK.

26.7.1 Prerequisites for Rx interrupts

To support Rx interrupts, #. Check if guest kernel supports VFIO-NOIOMMU:

Linux started to support VFIO-NOIOMMU since 4.8.0. Make sure the guest kernel
is compiled with:

CONFIG_VFIO_NOIOMMU=y

1. Properly set msix vectors when starting VM:

Enable multi-queue when starting VM, and specify msix vectors in qemu cmd-
line. (N+1) is the minimum, and (2N+2) is mostly recommended.

26.7. Interrupt mode 120

Network Interface Controller Drivers, Release 17.05.2

$(QEMU) ... -device virtio-net-pci,mq=on,vectors=2N+2 ...

2. In VM, insert vfio module in NOIOMMU mode:

modprobe vfio enable_unsafe_noiommu_mode=1
modprobe vfio-pci

3. In VM, bind the virtio device with vfio-pci:

python usertools/dpdk-devbind.py -b vfio-pci 00:03.0

26.7.2 Example

Here we use l3fwd-power as an example to show how to get started.

Example:

$ l3fwd-power -l 0-1 -- -p 1 -P --config="(0,0,1)" \
--no-numa --parse-ptype

26.7. Interrupt mode 121

CHAPTER

TWENTYSEVEN

POLL MODE DRIVER THAT WRAPS VHOST LIBRARY

This PMD is a thin wrapper of the DPDK vhost library. The user can handle virtqueues as one
of normal DPDK port.

27.1 Vhost Implementation in DPDK

Please refer to Chapter “Vhost Library” of DPDK Programmer’s Guide to know detail of vhost.

27.2 Features and Limitations of vhost PMD

Currently, the vhost PMD provides the basic functionality of packet reception, transmission and
event handling.

• It has multiple queues support.

• It supports RTE_ETH_EVENT_INTR_LSC and RTE_ETH_EVENT_QUEUE_STATE events.

• It supports Port Hotplug functionality.

• Don’t need to stop RX/TX, when the user wants to stop a guest or a virtio-net driver on
guest.

27.3 Vhost PMD arguments

The user can specify below arguments in –vdev option.

1. iface:

It is used to specify a path to connect to a QEMU virtio-net device.

2. queues:

It is used to specify the number of queues virtio-net device has. (Default: 1)

27.4 Vhost PMD event handling

This section describes how to handle vhost PMD events.

122

Network Interface Controller Drivers, Release 17.05.2

The user can register an event callback handler with
rte_eth_dev_callback_register(). The registered callback handler will be invoked
with one of below event types.

1. RTE_ETH_EVENT_INTR_LSC:

It means link status of the port was changed.

2. RTE_ETH_EVENT_QUEUE_STATE:

It means some of queue statuses were changed. Call
rte_eth_vhost_get_queue_event() in the callback handler. Because chang-
ing multiple statuses may occur only one event, call the function repeatedly as long as it
doesn’t return negative value.

27.5 Vhost PMD with testpmd application

This section demonstrates vhost PMD with testpmd DPDK sample application.

1. Launch the testpmd with vhost PMD:

./testpmd -l 0-3 -n 4 --vdev 'net_vhost0,iface=/tmp/sock0,queues=1' -- -i

Other basic DPDK preparations like hugepage enabling here. Please refer to the DPDK
Getting Started Guide for detailed instructions.

2. Launch the QEMU:

qemu-system-x86_64 <snip>
-chardev socket,id=chr0,path=/tmp/sock0 \
-netdev vhost-user,id=net0,chardev=chr0,vhostforce,queues=1 \
-device virtio-net-pci,netdev=net0

This command attaches one virtio-net device to QEMU guest. After initialization pro-
cesses between QEMU and DPDK vhost library are done, status of the port will be linked
up.

27.5. Vhost PMD with testpmd application 123

CHAPTER

TWENTYEIGHT

POLL MODE DRIVER FOR PARAVIRTUAL VMXNET3 NIC

The VMXNET3 adapter is the next generation of a paravirtualized NIC, introduced by VMware*
ESXi. It is designed for performance, offers all the features available in VMXNET2, and adds
several new features such as, multi-queue support (also known as Receive Side Scaling, RSS),
IPv6 offloads, and MSI/MSI-X interrupt delivery. One can use the same device in a DPDK
application with VMXNET3 PMD introduced in DPDK API.

In this chapter, two setups with the use of the VMXNET3 PMD are demonstrated:

1. Vmxnet3 with a native NIC connected to a vSwitch

2. Vmxnet3 chaining VMs connected to a vSwitch

28.1 VMXNET3 Implementation in the DPDK

For details on the VMXNET3 device, refer to the VMXNET3 driver’s vmxnet3 directory and
support manual from VMware*.

For performance details, refer to the following link from VMware:

http://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf

As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks,
vmxnet3_recv_pkts and vmxnet3_xmit_pkts.

The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest
address space and it is solely responsible to free that memory when not needed. The packet
buffers and features to be supported are made available to hypervisor via VMXNET3 PCI
configuration space BARs. During RX/TX, the packet buffers are exchanged by their GPAs,
and the hypervisor loads the buffers with packets in the RX case and sends packets to vSwitch
in the TX case.

The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that
of the other PMDs available in the DPDK API. The driver pre-allocates the packet buffers and
loads the command ring descriptors in advance. The hypervisor fills those packet buffers on
packet arrival and write completion ring descriptors, which are eventually pulled by the PMD.
After reception, the DPDK application frees the descriptors and loads new packet buffers for
the coming packets. The interrupts are disabled and there is no notification required. This
keeps performance up on the RX side, even though the device provides a notification feature.

In the transmit routine, the DPDK application fills packet buffer pointers in the descriptors of
the command ring and notifies the hypervisor. In response the hypervisor takes packets and
passes them to the vSwitch, It writes into the completion descriptors ring. The rings are read

124

http://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf

Network Interface Controller Drivers, Release 17.05.2

by the PMD in the next transmit routine call and the buffers and descriptors are freed from
memory.

28.2 Features and Limitations of VMXNET3 PMD

In release 1.6.0, the VMXNET3 PMD provides the basic functionality of packet reception and
transmission. There are several options available for filtering packets at VMXNET3 device level
including:

1. MAC Address based filtering:

• Unicast, Broadcast, All Multicast modes - SUPPORTED BY DEFAULT

• Multicast with Multicast Filter table - NOT SUPPORTED

• Promiscuous mode - SUPPORTED

• RSS based load balancing between queues - SUPPORTED

2. VLAN filtering:

• VLAN tag based filtering without load balancing - SUPPORTED

Note:

• Release 1.6.0 does not support separate headers and body receive cmd_ring and hence,
multiple segment buffers are not supported. Only cmd_ring_0 is used for packet buffers,
one for each descriptor.

• Receive and transmit of scattered packets is not supported.

• Multicast with Multicast Filter table is not supported.

28.3 Prerequisites

The following prerequisites apply:

• Before starting a VM, a VMXNET3 interface to a VM through VMware vSphere Client
must be assigned. This is shown in the figure below.

Note: Depending on the Virtual Machine type, the VMware vSphere Client shows Ethernet
adaptors while adding an Ethernet device. Ensure that the VM type used offers a VMXNET3
device. Refer to the VMware documentation for a listed of VMs.

Note: Follow the DPDK Getting Started Guide to setup the basic DPDK environment.

Note: Follow the DPDK Sample Application’s User Guide, L2 Forwarding/L3 Forwarding and
TestPMD for instructions on how to run a DPDK application using an assigned VMXNET3
device.

28.2. Features and Limitations of VMXNET3 PMD 125

Network Interface Controller Drivers, Release 17.05.2

Fig. 28.1: Assigning a VMXNET3 interface to a VM using VMware vSphere Client

28.4 VMXNET3 with a Native NIC Connected to a vSwitch

This section describes an example setup for Phy-vSwitch-VM-Phy communication.

Note: Other instructions on preparing to use DPDK such as, hugepage enabling, uio port
binding are not listed here. Please refer to DPDK Getting Started Guide and DPDK Sample
Application’s User Guide for detailed instructions.

The packet reception and transmission flow path is:

Packet generator -> 82576
-> VMware ESXi vSwitch
-> VMXNET3 device
-> Guest VM VMXNET3 port 0 rx burst
-> Guest VM 82599 VF port 0 tx burst
-> 82599 VF
-> Packet generator

28.5 VMXNET3 Chaining VMs Connected to a vSwitch

The following figure shows an example VM-to-VM communication over a Phy-VM-vSwitch-VM-
Phy communication channel.

Note: When using the L2 Forwarding or L3 Forwarding applications, a destination MAC
address needs to be written in packets to hit the other VM’s VMXNET3 interface.

In this example, the packet flow path is:

Packet generator -> 82599 VF
-> Guest VM 82599 port 0 rx burst
-> Guest VM VMXNET3 port 1 tx burst
-> VMXNET3 device
-> VMware ESXi vSwitch
-> VMXNET3 device
-> Guest VM VMXNET3 port 0 rx burst

28.4. VMXNET3 with a Native NIC Connected to a vSwitch 126

Network Interface Controller Drivers, Release 17.05.2

Fig. 28.2: VMXNET3 with a Native NIC Connected to a vSwitch

28.5. VMXNET3 Chaining VMs Connected to a vSwitch 127

Network Interface Controller Drivers, Release 17.05.2

Fig. 28.3: VMXNET3 Chaining VMs Connected to a vSwitch

28.5. VMXNET3 Chaining VMs Connected to a vSwitch 128

Network Interface Controller Drivers, Release 17.05.2

-> Guest VM 82599 VF port 1 tx burst
-> 82599 VF
-> Packet generator

28.5. VMXNET3 Chaining VMs Connected to a vSwitch 129

CHAPTER

TWENTYNINE

LIBPCAP AND RING BASED POLL MODE DRIVERS

In addition to Poll Mode Drivers (PMDs) for physical and virtual hardware, the DPDK also
includes two pure-software PMDs. These two drivers are:

• A libpcap -based PMD (librte_pmd_pcap) that reads and writes packets using libpcap, -
both from files on disk, as well as from physical NIC devices using standard Linux kernel
drivers.

• A ring-based PMD (librte_pmd_ring) that allows a set of software FIFOs (that is, rte_ring)
to be accessed using the PMD APIs, as though they were physical NICs.

Note: The libpcap -based PMD is disabled by default in the build configuration files, owing
to an external dependency on the libpcap development files which must be installed on the
board. Once the libpcap development files are installed, the library can be enabled by setting
CONFIG_RTE_LIBRTE_PMD_PCAP=y and recompiling the DPDK.

29.1 Using the Drivers from the EAL Command Line

For ease of use, the DPDK EAL also has been extended to allow pseudo-Ethernet devices,
using one or more of these drivers, to be created at application startup time during EAL initial-
ization.

To do so, the –vdev= parameter must be passed to the EAL. This takes take options to allow
ring and pcap-based Ethernet to be allocated and used transparently by the application. This
can be used, for example, for testing on a virtual machine where there are no Ethernet ports.

29.1.1 Libpcap-based PMD

Pcap-based devices can be created using the virtual device –vdev option. The device name
must start with the net_pcap prefix followed by numbers or letters. The name is unique for
each device. Each device can have multiple stream options and multiple devices can be used.
Multiple device definitions can be arranged using multiple –vdev. Device name and stream
options must be separated by commas as shown below:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,stream_opt0=..,stream_opt1=..' \
--vdev='net_pcap1,stream_opt0=..'

130

Network Interface Controller Drivers, Release 17.05.2

Device Streams

Multiple ways of stream definitions can be assessed and combined as long as the following
two rules are respected:

• A device is provided with two different streams - reception and transmission.

• A device is provided with one network interface name used for reading and writing pack-
ets.

The different stream types are:

• rx_pcap: Defines a reception stream based on a pcap file. The driver reads each packet
within the given pcap file as if it was receiving it from the wire. The value is a path to a
valid pcap file.

rx_pcap=/path/to/file.pcap

• tx_pcap: Defines a transmission stream based on a pcap file. The driver writes each
received packet to the given pcap file. The value is a path to a pcap file. The file is
overwritten if it already exists and it is created if it does not.

tx_pcap=/path/to/file.pcap

• rx_iface: Defines a reception stream based on a network interface name. The driver
reads packets coming from the given interface using the Linux kernel driver for that inter-
face. The value is an interface name.

rx_iface=eth0

• tx_iface: Defines a transmission stream based on a network interface name. The driver
sends packets to the given interface using the Linux kernel driver for that interface. The
value is an interface name.

tx_iface=eth0

• iface: Defines a device mapping a network interface. The driver both reads and writes
packets from and to the given interface. The value is an interface name.

iface=eth0

Examples of Usage

Read packets from one pcap file and write them to another:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_pcap=file_rx.pcap,tx_pcap=file_tx.pcap' \
-- --port-topology=chained

Read packets from a network interface and write them to a pcap file:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_iface=eth0,tx_pcap=file_tx.pcap' \
-- --port-topology=chained

Read packets from a pcap file and write them to a network interface:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_pcap=file_rx.pcap,tx_iface=eth1' \
-- --port-topology=chained

Forward packets through two network interfaces:

29.1. Using the Drivers from the EAL Command Line 131

Network Interface Controller Drivers, Release 17.05.2

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,iface=eth0' --vdev='net_pcap1;iface=eth1'

Using libpcap-based PMD with the testpmd Application

One of the first things that testpmd does before starting to forward packets is to flush the RX
streams by reading the first 512 packets on every RX stream and discarding them. When using
a libpcap-based PMD this behavior can be turned off using the following command line option:

--no-flush-rx

It is also available in the runtime command line:

set flush_rx on/off

It is useful for the case where the rx_pcap is being used and no packets are meant to be
discarded. Otherwise, the first 512 packets from the input pcap file will be discarded by the RX
flushing operation.

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_pcap=file_rx.pcap,tx_pcap=file_tx.pcap' \
-- --port-topology=chained --no-flush-rx

29.1.2 Rings-based PMD

To run a DPDK application on a machine without any Ethernet devices, a pair of ring-based
rte_ethdevs can be used as below. The device names passed to the –vdev option must start
with net_ring and take no additional parameters. Multiple devices may be specified, separated
by commas.

./testpmd -l 1-3 -n 4 --vdev=net_ring0 --vdev=net_ring1 -- -i
EAL: Detected lcore 1 as core 1 on socket 0
...

Interactive-mode selected
Configuring Port 0 (socket 0)
Configuring Port 1 (socket 0)
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done

testpmd> start tx_first
io packet forwarding - CRC stripping disabled - packets/burst=16
nb forwarding cores=1 - nb forwarding ports=2
RX queues=1 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=8 hthresh=8 wthresh=4
TX queues=1 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=36 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0

testpmd> stop
Telling cores to stop...
Waiting for lcores to finish...

29.1. Using the Drivers from the EAL Command Line 132

Network Interface Controller Drivers, Release 17.05.2

+++++++++++++++ Accumulated forward statistics for allports++++++++++
RX-packets: 462384736 RX-dropped: 0 RX-total: 462384736
TX-packets: 462384768 TX-dropped: 0 TX-total: 462384768
+++

Done.

29.1.3 Using the Poll Mode Driver from an Application

Both drivers can provide similar APIs to allow the user to create a PMD, that is, rte_ethdev
structure, instances at run-time in the end-application, for example, using rte_eth_from_rings()
or rte_eth_from_pcaps() APIs. For the rings-based PMD, this functionality could be used, for
example, to allow data exchange between cores using rings to be done in exactly the same
way as sending or receiving packets from an Ethernet device. For the libpcap-based PMD, it
allows an application to open one or more pcap files and use these as a source of packet input
to the application.

Usage Examples

To create two pseudo-Ethernet ports where all traffic sent to a port is looped back for reception
on the same port (error handling omitted for clarity):

#define RING_SIZE 256
#define NUM_RINGS 2
#define SOCKET0 0

struct rte_ring *ring[NUM_RINGS];
int port0, port1;

ring[0] = rte_ring_create("R0", RING_SIZE, SOCKET0, RING_F_SP_ENQ|RING_F_SC_DEQ);
ring[1] = rte_ring_create("R1", RING_SIZE, SOCKET0, RING_F_SP_ENQ|RING_F_SC_DEQ);

/* create two ethdev's */

port0 = rte_eth_from_rings("net_ring0", ring, NUM_RINGS, ring, NUM_RINGS, SOCKET0);
port1 = rte_eth_from_rings("net_ring1", ring, NUM_RINGS, ring, NUM_RINGS, SOCKET0);

To create two pseudo-Ethernet ports where the traffic is switched between them, that is, traffic
sent to port 0 is read back from port 1 and vice-versa, the final two lines could be changed as
below:

port0 = rte_eth_from_rings("net_ring0", &ring[0], 1, &ring[1], 1, SOCKET0);
port1 = rte_eth_from_rings("net_ring1", &ring[1], 1, &ring[0], 1, SOCKET0);

This type of configuration could be useful in a pipeline model, for example, where one may
want to have inter-core communication using pseudo Ethernet devices rather than raw rings,
for reasons of API consistency.

29.1. Using the Drivers from the EAL Command Line 133

Network Interface Controller Drivers, Release 17.05.2

Enqueuing and dequeuing items from an rte_ring using the rings-based PMD may be slower
than using the native rings API. This is because DPDK Ethernet drivers make use of func-
tion pointers to call the appropriate enqueue or dequeue functions, while the rte_ring specific
functions are direct function calls in the code and are often inlined by the compiler.

Once an ethdev has been created, for either a ring or a pcap-based PMD, it should
be configured and started in the same way as a regular Ethernet device, that is, by
calling rte_eth_dev_configure() to set the number of receive and transmit queues,
then calling rte_eth_rx_queue_setup() / tx_queue_setup() for each of those queues
and finally calling rte_eth_dev_start() to allow transmission and reception of pack-
ets to begin.

Figures

Fig. 15.1 Virtualization for a Single Port NIC in SR-IOV Mode

Fig. 15.2 Performance Benchmark Setup

Fig. 15.3 Fast Host-based Packet Processing

Fig. 15.4 Inter-VM Communication

Fig. 26.1 Host2VM Communication Example Using kni vhost Back End

Fig. 26.3 Host2VM Communication Example Using qemu vhost Back End

Fig. 28.1 Assigning a VMXNET3 interface to a VM using VMware vSphere Client

Fig. 28.2 VMXNET3 with a Native NIC Connected to a vSwitch

Fig. 28.3 VMXNET3 Chaining VMs Connected to a vSwitch

29.1. Using the Drivers from the EAL Command Line 134

	Overview of Networking Drivers
	Compiling and testing a PMD for a NIC
	Driver Compilation
	Running testpmd in Linux

	ARK Poll Mode Driver
	Overview
	Device Parameters
	Data Path Interface
	Configuration Information
	Building DPDK
	Supported ARK RTL PCIe Instances
	Supported Operating Systems
	Supported Features
	Unsupported Features
	Pre-Requisites
	Usage Example

	AVP Poll Mode Driver
	Features and Limitations of the AVP PMD
	Prerequisites
	Launching a VM with an AVP type network attachment

	BNX2X Poll Mode Driver
	Supported Features
	Non-supported Features
	Co-existence considerations
	Supported QLogic NICs
	Prerequisites
	Pre-Installation Configuration
	Driver compilation and testing
	SR-IOV: Prerequisites and sample Application Notes

	BNXT Poll Mode Driver
	Limitations

	CXGBE Poll Mode Driver
	Features
	Limitations
	Supported Chelsio T5 NICs
	Prerequisites
	Pre-Installation Configuration
	Driver compilation and testing
	Linux
	FreeBSD
	Sample Application Notes

	DPAA2 Poll Mode Driver
	NXP DPAA2 (Data Path Acceleration Architecture Gen2)
	DPAA2 DPDK - Poll Mode Driver Overview
	Supported DPAA2 SoCs
	Prerequisites
	Pre-Installation Configuration
	Driver compilation and testing
	Limitations

	Driver for VM Emulated Devices
	Validated Hypervisors
	Recommended Guest Operating System in Virtual Machine
	Setting Up a KVM Virtual Machine
	Known Limitations of Emulated Devices

	ENA Poll Mode Driver
	Overview
	Management Interface
	Data Path Interface
	Configuration information
	Building DPDK
	Supported ENA adapters
	Supported Operating Systems
	Supported features
	Unsupported features
	Prerequisites
	Usage example

	ENIC Poll Mode Driver
	How to obtain ENIC PMD integrated DPDK
	Configuration information
	Flow director support
	SR-IOV mode utilization
	Limitations
	How to build the suite
	Supported Cisco VIC adapters
	Supported Operating Systems
	Supported features
	Known bugs and unsupported features in this release
	Prerequisites
	Additional Reference
	Contact Information

	FM10K Poll Mode Driver
	FTAG Based Forwarding of FM10K
	Vector PMD for FM10K
	Limitations

	I40E Poll Mode Driver
	Features
	Prerequisites
	Pre-Installation Configuration
	Driver compilation and testing
	SR-IOV: Prerequisites and sample Application Notes
	Sample Application Notes
	Limitations or Known issues

	IXGBE Driver
	Vector PMD for IXGBE
	Application Programming Interface
	Sample Application Notes
	Limitations or Known issues
	Supported Chipsets and NICs

	I40E/IXGBE/IGB Virtual Function Driver
	SR-IOV Mode Utilization in a DPDK Environment
	Setting Up a KVM Virtual Machine Monitor
	DPDK SR-IOV PMD PF/VF Driver Usage Model
	SR-IOV (PF/VF) Approach for Inter-VM Communication

	KNI Poll Mode Driver
	Usage
	Default interface configuration
	PMD arguments
	PMD log messages
	PMD testing

	LiquidIO VF Poll Mode Driver
	Supported LiquidIO Adapters
	Pre-Installation Configuration
	SR-IOV: Prerequisites and Sample Application Notes
	Limitations

	MLX4 poll mode driver library
	Implementation details
	Features
	Limitations
	Configuration
	Prerequisites
	Supported NICs
	Usage example

	MLX5 poll mode driver
	Implementation details
	Features
	Limitations
	Configuration
	Prerequisites
	Supported NICs
	Known issues
	Notes for testpmd
	Usage example

	NFP poll mode driver library
	Dependencies
	Building the software
	Driver compilation and testing
	System configuration

	QEDE Poll Mode Driver
	Supported Features
	Non-supported Features
	Supported QLogic Adapters
	Prerequisites
	Driver compilation and testing
	SR-IOV: Prerequisites and Sample Application Notes

	Solarflare libefx-based Poll Mode Driver
	Features
	Non-supported Features
	Limitations
	Flow API support
	Supported NICs
	Prerequisites
	Pre-Installation Configuration

	SZEDATA2 poll mode driver library
	Prerequisites
	Configuration
	Using the SZEDATA2 PMD
	Example of usage

	Tun/Tap Poll Mode Driver
	Flow API support
	Example

	ThunderX NICVF Poll Mode Driver
	Features
	Supported ThunderX SoCs
	Prerequisites
	Pre-Installation Configuration
	Driver compilation and testing
	Linux
	Limitations

	Poll Mode Driver for Emulated Virtio NIC
	Virtio Implementation in DPDK
	Features and Limitations of virtio PMD
	Prerequisites
	Virtio with kni vhost Back End
	Virtio with qemu virtio Back End
	Virtio PMD Rx/Tx Callbacks
	Interrupt mode

	Poll Mode Driver that wraps vhost library
	Vhost Implementation in DPDK
	Features and Limitations of vhost PMD
	Vhost PMD arguments
	Vhost PMD event handling
	Vhost PMD with testpmd application

	Poll Mode Driver for Paravirtual VMXNET3 NIC
	VMXNET3 Implementation in the DPDK
	Features and Limitations of VMXNET3 PMD
	Prerequisites
	VMXNET3 with a Native NIC Connected to a vSwitch
	VMXNET3 Chaining VMs Connected to a vSwitch

	Libpcap and Ring Based Poll Mode Drivers
	Using the Drivers from the EAL Command Line

