=) DPDK

DATA PLANE DEVELOPMENT KIT

Programmer’s Guide
Release 18.05.1

September 07, 2018

Introduction

1.1 Documentation Roadmap
1.2 Related Publications

Overview

2.1 Development Environment
2.2 Environment Abstraction Layer
2.3 Core Components
2.4 Ethernet* Poll Mode Driver Architecture
2.5 Packet Forwarding Algorithm Support
2.6 librte_net

Environment Abstraction Layer
3.1 EAL in a Linux-userland Execution Environment
3.2 Memory Segments and Memory Zones (memzone)
3.3 Multiple pthread
34 Malloc.

Service Cores
4.1 Service Core Initialization
4.2 Enabling Services on Cores
4.3 Service Core Statistics

Ring Library

5.1 References for Ring Implementation in FreeBSD*
5.2 Lockless Ring Buffer in Linux*
5.3 Additional Features
5.4 Use Cases
5.5 Anatomy of a Ring Buffer
5.6 References

Mempool Library

6.1 Cookies

62 Stats, .
6.3 Memory Alignment Constraints
6.4 Local Cache
6.5 Mempool Handlers
6.6 Use Cases

Mbuf Library

CONTENTS

7.1 Designof PacketBuffers 39

7.2 Buffers Storedin Memory Pools oo 41
7.3 Constructors e e e 41
7.4 Allocatingand Freeingmbufs o oL 41
7.5 Manipulatingmbufs e 41
7.6 MetalInformation. 41
7.7 Directand Indirect Buffers 43
7.8 Debug e 44
7.9 UseCases i it e e e 44
8 Poll Mode Driver 45
8.1 Requirements and Assumptions o 45
8.2 Design Principles e 46
8.3 Logical Cores, Memory and NIC Queues Relationships 47
8.4 Device Identification, Ownership and Configuration 47
8.5 Poll Mode Driver APl e e 51
9 Generic flow API (rte_flow) 57
9.1 OVEIVIEW e e e e e e 57
9.2 Flowrule e 57
9.3 Rulesmanagement e 87
9.4 lIsolatedmode e 90
9.5 Verboseerrorreportingo e e 91
9.6 Helpers e 92
9.7 Caveats. o e 92
9.8 PMDinterface 93
9.9 Devicecompatibility e 93
9.10 Future evolutions L 95
10 Switch Representation within DPDK Applications 97
10.1 Introduction. o L e 97
10.2 Port Representors 98
10.3 Basic SR-IOV e 99
10.4 Controlled SR-IOV 100
10.5 Flow API(rte_flow) 103
10.6 Switching Examples e 108
11 Traffic Metering and Policing API 111
11.1 OVervIiew e e e e e e e 111
11.2 Configurationsteps e 111
11.3 Run-timeprocessing e 111
12 Traffic Management API 113
12,1 OVEIVIEW o e e e e e 113
12.2 Capability APl e 113
12.3 Scheduling Algorithms 114
12.4 Traffic Shaping e e 114
12.5 Congestion Management 114
12.6 PacketMarking e 115
12.7 Stepsto Setupthe Hierarchy 115
13 Wireless Baseband Device Library 117

13.1 Design Principles
13.2 Device Management
13.3 Device Operation Capabilities
13.4 Operation Processing
13.5 Sample code

14 Cryptography Device Library
14.1 Design Principles
14.2 Device Management
14.3 Device Features and Capabilities
14.4 Operation Processing
14.5 Symmetric Cryptography Support
14.6 Sample code
14.7 Asymmetric Cryptography

15 Compression Device Library
15.1 Device Management
15.2 Device Features and Capabilities
15.3 Compression Operation
15.4 Transforms
15.5 Compression APl Hash support .
15.6
15.7
15.8
15.9

Burst in compression API
Sample code

16 Security Library
16.1 Design Principles
16.2 Device Features and Capabilities

17 Rawdevice Library
17.1 Introduction
17.2 Design

18 Link Bonding Poll Mode Driver Library
18.1 Link Bonding Modes Overview
18.2 Implementation Details
18.3 Using Link Bonding Devices

19 Timer Library
19.1 Implementation Details
19.2 Use Cases
19.3 References

20 Hash Library
20.1 Hash API Overview
20.2 Multi-process support
20.3 Implementation Details
20.4 Entry distribution in hash table
20.5 Use Case: Flow Classification
20.6 References

21 Elastic Flow Distributor Library

Compression API Stateless operation
Compression API| Stateful operation

211 Introduction.o oo
21.2 Flow Based Distribution
21.3 Example of EFD LibraryUsage
21.4 Library APIOverview
21.5 LibrarylInternals
216 References Lo

22 Membership Library

22.1 Introduction.
22.2 Vectorof BloomFilters
22.3 Hash-Table based Set-Summaries
22.4 Library APl Overview
225 References e

23 LPM Library

23.1 LPMAPIQOverview,
23.2 Implementation Details

24 LPM6 Library

241 LPMB APIOverview o e e e e e e e e e e e e
242 Use Case: IPv6 Forwarding

25 Flow Classification Library

25.1 OVEIVIEW e e e e e

26 Packet Distributor Library

26.1 Distributor Core Operation e
26.2 Worker Operation e e e e e e e e e

27 Reorder Library

27.1 Operation
27.2 Implementation Details
27.3 Use Case: Packet Distributor oL

28 IP Fragmentation and Reassembly Library

28.1 Packet fragmentation e
28.2 Packetreassembly.

29 Generic Receive Offload Library

29.1 OVEIVIEW o e e e e
29.2 Two Sets of APl e e e
29.3 Reassembly Algorithmo
29.4 TCP/IPv4 GRO e e
29.5 VXLANGRO e

30 Generic Segmentation Offload Library

30.1 OVErVIEW o e e e e
30.2 Limitations e e
30.3 Packet Segmentation e
30.4 Supported GSO Packet Types i i it
30.5 Howto SegmentaPacket

31 The librte_pdump Library

31.1 Operation e e e e e e e e e e e
31.2 Implementation Details
31.83 Use Case: Packet Capturing it

32 Multi-process Support
32.1 Memory Sharing e e e e e e e e e e
32.2 DeploymentModels e
32.3 Multi-process Limitations
32.4 Communication between multiple processes

33 Kernel NIC Interface
33.1 The DPDK KNI KernelModule,
33.2 KNI Creationand Deletion
33.3 DPDKmbuf Flow e
334 UseCase: Ingress o i i i i i e e e e e e e e e e
33.5 UseCase: Egress e
33.6 Ethtool e
33.7 LinkstateandMTUchange.

34 Thread Safety of DPDK Functions
341 Fast-Path APIs
34.2 Performance Insensitive APl
34.3 Library Initialization
34.4 Interrupt Thread e

35 Event Device Library
35.1 Eventstruct e
35.2 APl Walk-through e
35.3 Summary e e e e e

36 Event Ethernet Rx Adapter Library
36.1 APl Walk-through

37 Event Timer Adapter Library
37.1 EventTimerstruct e
37.2 APIOverview e e e e e e e e
37.3 Processing Timer Expiry Events L.
37.4 SUMMANY ot e e e e e e e e e e e e e e e e

38 Event Crypto Adapter Library
38.1 AdapterMode
38.2 APIOverview e e e e e e e e

39 Quality of Service (QoS) Framework
39.1 Packet Pipeline with QoS Support
39.2 Hierarchical Scheduler
39.3 Dropper e e
39.4 Traffic Metering L

40 Power Management
40.1 CPUFrequency Scaling o i i e e e
40.2 Core-load Throttling through C-States
40.3 Per-core TurboBoost e

40.4 Use of Power Library in a Hyper-Threaded Environment
40.5 APIOverview of the Power Library

40.6 UserCases.
40.7 References

41 Packet Classification and Access Control

411 Overview

41.2 Application Programming Interface (APl)Usage

42 Packet Framework
42.1 Design Objectives .
42.2 Overview
42.3 Port Library Design
42.4 Table Library Design

42.5 Pipeline Library Design e

42.6 Multicore Scaling .

42.7 Interfacing with Accelerators

43 Vhost Library
43.1 Vhost APl Overview

43.2 Vhost-user Implementations Lo
43.3 Guestmemoryrequirement. e
43.4 Vhost supported vSwitchreference L.
43.5 Vhost data path acceleration (vDPA) oL

44 Metrics Library
44 .1 |Initialising the library
44.2 Registering metrics

443 Updating metricvalues e

44.4 Querying metrics .

44.5 Bit-rate statistics library
44.6 Latency statisticslibrary

45 Port Hotplug Framework
45.1 Overview

45.2 Port Hotplug APloverview

45.3 Reference
45.4 Limitations

46 Berkeley Packet Filter Library
46.1 Not currently supported eBPF features,

47 Source Organization
47.1 Makefiles and Config
47.2 Libraries
47.3 Drivers
47.4 Applications

48 Development Kit Build System
48.1 Building the Development KitBinary
48.2 Building External Applications o o

48.3 Makefile Description

Vi

49 Development Kit Root Makefile Help
49.1 Configuration Targets e

49.2 Build Targets
49.3 Install Targets . . .
49.4 Test Targets

49.5 Documentation Targets e

49.6 Misc Targets

49.7 Other Useful Command-line Variables
49.8 Make inaBuild Directory

49.9 Compiling for Debug

50 Extending the DPDK

50.1 Example: Adding a New Library libfoo

51 Building Your Own Application
51.1 Compiling a Sample Application in the Development Kit Directory
51.2 Build Your Own Application Outside the Development Kit
51.3 Customizing Makefiles e

52 External Application/Library Makefile help

52.1 Prerequisites
52.2 Build Targets
52.3 Help Targets

52.4 Other Useful Command-line Variables
52.5 Make from Another Directory

53 Performance Optimization Guidelines

53.1 Introduction.

54 Writing Efficient Code
541 Memory.

54 2 Communication Betweenlcores

54.3 PMD Driver.

54.4 Locks and Atomic Operations e
545 Coding Considerations e
54.6 Settingthe Target CPU Type o i it it

55 Profile Your Application
55.1 Profilingon x86 . .
55.2 Profiling on ARM64

56 Glossary

364
364
364
365
365
365
366
366
366
366

367
367

369
369
369
369

371
371
371
371
372
372

373
373

374
374
375
376
377
377
377

378
378
379

380

Vii

CHAPTER
ONE

INTRODUCTION

This document provides software architecture information, development environment informa-
tion and optimization guidelines.

For programming examples and for instructions on compiling and running each sample appli-
cation, see the DPDK Sample Applications User Guide for details.

For general information on compiling and running applications, see the DPDK Getting Started
Guide.

1.1 Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

* Release Notes : Provides release-specific information, including supported features,
limitations, fixed issues, known issues and so on. Also, provides the answers to frequently
asked questions in FAQ format.

» Getting Started Guide : Describes how to install and configure the DPDK software;
designed to get users up and running quickly with the software.

* FreeBSD* Getting Started Guide : A document describing the use of the DPDK with
FreeBSD* has been added in DPDK Release 1.6.0. Refer to this guide for installation
and configuration instructions to get started using the DPDK with FreeBSD*.

» Programmer’s Guide (this document): Describes:

— The software architecture and how to use it (through examples), specifically in a
Linux* application (linuxapp) environment

— The content of the DPDK, the build system (including the commands that can be
used in the root DPDK Makefile to build the development kit and an application) and
guidelines for porting an application

— Optimizations used in the software and those that should be considered for new
development

A glossary of terms is also provided.

« API Reference : Provides detailed information about DPDK functions, data structures
and other programming constructs.

« Sample Applications User Guide: Describes a set of sample applications. Each chap-
ter describes a sample application that showcases specific functionality and provides
instructions on how to compile, run and use the sample application.

Programmer’s Guide, Release 18.05.1

1.2 Related Publications

The following documents provide information that is relevant to the development of applications
using the DPDK:

* Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Pro-
gramming Guide

Part 1: Architecture Overview

1.2. Related Publications 2

CHAPTER
TWO

OVERVIEW

This section gives a global overview of the architecture of Data Plane Development Kit (DPDK).

The main goal of the DPDK is to provide a simple, complete framework for fast packet process-
ing in data plane applications. Users may use the code to understand some of the techniques
employed, to build upon for prototyping or to add their own protocol stacks. Alternative ecosys-
tem options that use the DPDK are available.

The framework creates a set of libraries for specific environments through the creation of an
Environment Abstraction Layer (EAL), which may be specific to a mode of the Intel® architec-
ture (32-bit or 64-bit), Linux* user space compilers or a specific platform. These environments
are created through the use of make files and configuration files. Once the EAL library is cre-
ated, the user may link with the library to create their own applications. Other libraries, outside
of EAL, including the Hash, Longest Prefix Match (LPM) and rings libraries are also provided.
Sample applications are provided to help show the user how to use various features of the
DPDK.

The DPDK implements a run to completion model for packet processing, where all resources
must be allocated prior to calling Data Plane applications, running as execution units on logical
processing cores. The model does not support a scheduler and all devices are accessed by
polling. The primary reason for not using interrupts is the performance overhead imposed by
interrupt processing.

In addition to the run-to-completion model, a pipeline model may also be used by passing
packets or messages between cores via the rings. This allows work to be performed in stages
and may allow more efficient use of code on cores.

2.1 Development Environment

The DPDK project installation requires Linux and the associated toolchain, such as one or more
compilers, assembler, make utility, editor and various libraries to create the DPDK components
and libraries.

Once these libraries are created for the specific environment and architecture, they may then
be used to create the user’s data plane application.

When creating applications for the Linux user space, the glibc library is used. For DPDK
applications, two environmental variables (RTE_SDK and RTE_TARGET) must be configured
before compiling the applications. The following are examples of how the variables can be set:

export RTE_SDK=/home/user/DPDK
export RTE_TARGET=x86_64-native-linuxapp—-gcc

Programmer’s Guide, Release 18.05.1

See the DPDK Getting Started Guide for information on setting up the development environ-
ment.

2.2 Environment Abstraction Layer

The Environment Abstraction Layer (EAL) provides a generic interface that hides the environ-
ment specifics from the applications and libraries. The services provided by the EAL are:

+ DPDK loading and launching

» Support for multi-process and multi-thread execution types
» Core affinity/assignment procedures

+ System memory allocation/de-allocation
» Atomic/lock operations

» Time reference

» PCl bus access

+ Trace and debug functions

» CPU feature identification

* Interrupt handling

» Alarm operations

* Memory management (malloc)

The EAL is fully described in Environment Abstraction Layer.

2.3 Core Components

The core components are a set of libraries that provide all the elements needed for high-
performance packet processing applications.

2.3.1 Ring Manager (librte_ring)

The ring structure provides a lockless multi-producer, multi-consumer FIFO APl in a finite size
table. It has some advantages over lockless queues; easier to implement, adapted to bulk
operations and faster. A ring is used by the Memory Pool Manager (librte_mempool) and
may be used as a general communication mechanism between cores and/or execution blocks
connected together on a logical core.

This ring buffer and its usage are fully described in Ring Library.
2.3.2 Memory Pool Manager (librte_mempool)

The Memory Pool Manager is responsible for allocating pools of objects in memory. A pool
is identified by name and uses a ring to store free objects. It provides some other optional

2.2. Environment Abstraction Layer 4

Programmer’s Guide, Release 18.05.1

X—— Y

XusesY

Timer facilities. Based
on HPET interface that
is provided by EAL.

rte_timer

rte_malloc

Allocation of named
memory zones using
libc's malloc()

Manipulation of packet
buffers carrying network
data.

Handle a pool of objects

using a ring to store rte_mbuf
them. Allow bulk

enqueue/dequeue and

per-CPU cache.
rte_ring
rte_mempool -
Fixed-size lockless
FIFO for storing objects
in a table.
rte_eal + libc

Environment abstraction
layer: RTE loading, memory
allocation, time reference,
PCl access, logging

rte_debug

Provides debug helpers

Fig. 2.1: Core Components Architecture

2.3. Core Components

Programmer’s Guide, Release 18.05.1

services, such as a per-core object cache and an alignment helper to ensure that objects are
padded to spread them equally on all RAM channels.

This memory pool allocator is described in Mempool Library.

2.3.3 Network Packet Buffer Management (librte_mbuf)

The mbuf library provides the facility to create and destroy buffers that may be used by the
DPDK application to store message buffers. The message buffers are created at startup time
and stored in a mempool, using the DPDK mempool library.

This library provides an API to allocate/free mbufs, manipulate packet buffers which are used
to carry network packets.

Network Packet Buffer Management is described in Mbuf Library.

2.3.4 Timer Manager (librte_timer)

This library provides a timer service to DPDK execution units, providing the ability to execute
a function asynchronously. It can be periodic function calls, or just a one-shot call. It uses
the timer interface provided by the Environment Abstraction Layer (EAL) to get a precise time
reference and can be initiated on a per-core basis as required.

The library documentation is available in Timer Library.

2.4 Ethernet* Poll Mode Driver Architecture

The DPDK includes Poll Mode Drivers (PMDs) for 1 GbE, 10 GbE and 40GbE, and para virtu-
alized virtio Ethernet controllers which are designed to work without asynchronous, interrupt-
based signaling mechanisms.

See Poll Mode Driver.

2.5 Packet Forwarding Algorithm Support

The DPDK includes Hash (librte_hash) and Longest Prefix Match (LPM,librte_lpm) libraries to
support the corresponding packet forwarding algorithms.

See Hash Library and LPM Library for more information.

2.6 librte net

The librte_net library is a collection of IP protocol definitions and convenience macros. It is
based on code from the FreeBSD* IP stack and contains protocol numbers (for use in IP
headers), IP-related macros, IPv4/IPv6 header structures and TCP, UDP and SCTP header
structures.

2.4. Ethernet* Poll Mode Driver Architecture 6

CHAPTER
THREE

ENVIRONMENT ABSTRACTION LAYER

The Environment Abstraction Layer (EAL) is responsible for gaining access to low-level re-
sources such as hardware and memory space. It provides a generic interface that hides the
environment specifics from the applications and libraries. It is the responsibility of the initial-
ization routine to decide how to allocate these resources (that is, memory space, PCI devices,
timers, consoles, and so on).

Typical services expected from the EAL are:

* DPDK Loading and Launching: The DPDK and its application are linked as a single
application and must be loaded by some means.

+ Core Affinity/Assignment Procedures: The EAL provides mechanisms for assigning exe-
cution units to specific cores as well as creating execution instances.

+ System Memory Reservation: The EAL facilitates the reservation of different memory
zones, for example, physical memory areas for device interactions.

« PCI Address Abstraction: The EAL provides an interface to access PCI address space.
» Trace and Debug Functions: Logs, dump_stack, panic and so on.
« Utility Functions: Spinlocks and atomic counters that are not provided in libc.

* CPU Feature Identification: Determine at runtime if a particular feature, for example,
Intel® AVX is supported. Determine if the current CPU supports the feature set that the
binary was compiled for.

* Interrupt Handling: Interfaces to register/unregister callbacks to specific interrupt
sources.

« Alarm Functions: Interfaces to set/remove callbacks to be run at a specific time.

3.1 EAL in a Linux-userland Execution Environment

In a Linux user space environment, the DPDK application runs as a user-space application
using the pthread library. PCI information about devices and address space is discovered
through the /sys kernel interface and through kernel modules such as uio_pci_generic, or
igb_uio. Refer to the UIO: User-space drivers documentation in the Linux kernel. This memory
is mmap’d in the application.

The EAL performs physical memory allocation using mmap() in hugetlbfs (using huge page
sizes to increase performance). This memory is exposed to DPDK service layers such as the
Mempool Library.

Programmer’s Guide, Release 18.05.1

At this point, the DPDK services layer will be initialized, then through pthread setaffinity calls,
each execution unit will be assigned to a specific logical core to run as a user-level thread.

The time reference is provided by the CPU Time-Stamp Counter (TSC) or by the HPET kernel
API through a mmap() call.

3.1.1 Initialization and Core Launching

Part of the initialization is done by the start function of glibc. A check is also performed at
initialization time to ensure that the micro architecture type chosen in the config file is supported
by the CPU. Then, the main() function is called. The core initialization and launch is done
in rte_eal_init() (see the APl documentation). It consist of calls to the pthread library (more
specifically, pthread_self(), pthread_create(), and pthread_setaffinity_np()).

Note: Initialization of objects, such as memory zones, rings, memory pools, I[pm tables and
hash tables, should be done as part of the overall application initialization on the master Icore.

The creation and initialization functions for these objects are not multi-thread safe. However,
once initialized, the objects themselves can safely be used in multiple threads simultaneously.

3.1.2 Shutdown and Cleanup

During the initialization of EAL resources such as hugepage backed memory can be allocated
by core components. The memory allocated during rte_eal_init () can be released by
calling the rte_eal_cleanup () function. Refer to the APl documentation for details.

3.1.3 Multi-process Support

The Linuxapp EAL allows a multi-process as well as a multi-threaded (pthread) deployment
model. See chapter Multi-process Support for more details.

3.1.4 Memory Mapping Discovery and Memory Reservation

The allocation of large contiguous physical memory is done using the hugetlbfs kernel filesys-
tem. The EAL provides an API to reserve named memory zones in this contiguous memory.
The physical address of the reserved memory for that memory zone is also returned to the
user by the memory zone reservation API.

There are two modes in which DPDK memory subsystem can operate: dynamic mode, and
legacy mode. Both modes are explained below.

Note: Memory reservations done using the APIs provided by rte_malloc are also backed by
pages from the hugetlbfs filesystem.

» Dynamic memory mode
Currently, this mode is only supported on Linux.

In this mode, usage of hugepages by DPDK application will grow and shrink based on applica-
tion’s requests. Any memory allocation through rte_malloc (), rte_memzone_reserve ()
or other methods, can potentially result in more hugepages being reserved from the system.

3.1. EAL in a Linux-userland Execution Environment 8

Programmer’s Guide, Release 18.05.1

Fig. 3.1: EAL Initialization in a Linux Application Environment

3.1. EAL in a Linux-userland Execution Environment

Programmer’s Guide, Release 18.05.1

Similarly, any memory deallocation can potentially result in hugepages being released back to
the system.

Memory allocated in this mode is not guaranteed to be IOVA-contiguous. If large chunks of
IOVA-contiguous are required (with “large” defined as “more than one page”), it is recom-
mended to either use VFIO driver for all physical devices (so that IOVA and VA addresses can
be the same, thereby bypassing physical addresses entirely), or use legacy memory mode.

For chunks of memory which must be IOVA-contiguous, it is recommended to use
rte_memzone_reserve () function with RTE_MEMZONE_IOVA_CONTIG flag specified. This
way, memory allocator will ensure that, whatever memory mode is in use, either reserved
memory will satisfy the requirements, or the allocation will fail.

There is no need to preallocate any memory at startup using -m or -—socket-mem command-
line parameters, however it is still possible to do so, in which case preallocate memory will be
“pinned” (i.e. will never be released by the application back to the system). It will be possible
to allocate more hugepages, and deallocate those, but any preallocated pages will not be
freed. If neither -m nor ——socket-mem were specified, no memory will be preallocated, and
all memory will be allocated at runtime, as needed.

Another available option to use in dynamic memory mode is ——single-file-segments
command-line option. This option will put pages in single files (per memseg list), as opposed
to creating a file per page. This is normally not needed, but can be useful for use cases like
userspace vhost, where there is limited number of page file descriptors that can be passed to
VirtlO.

If the application (or DPDK-internal code, such as device drivers) wishes to receive notifica-
tions about newly allocated memory, it is possible to register for memory event callbacks via
rte_mem_event_callback_register () function. This will call a callback function any
time DPDK’s memory map has changed.

If the application (or DPDK-internal code, such as device drivers) wishes to
be notified about memory allocations above specified threshold (and have a
chance to deny them), allocation validator callbacks are also available via
rte_mem _alloc_validator_callback_register () function.

Note: In multiprocess scenario, all related processes (i.e. primary process, and secondary
processes running with the same prefix) must be in the same memory modes. That is, If

primary process is run in dynamic memory mode, all of its secondary processes must be run
in the same mode. The same is applicable t0 ——-single-file-segments command-line
option - both primary and secondary processes must shared this mode.

* Legacy memory mode

This mode is enabled by specifying ——1legacy-mem command-line switch to the EAL. This
switch will have no effect on FreeBSD as FreeBSD only supports legacy mode anyway.

This mode mimics historical behavior of EAL. That is, EAL will reserve all memory at startup,
sort all memory into large IOVA-contiguous chunks, and will not allow acquiring or releasing
hugepages from the system at runtime.

If neither -m nor ——socket-mem were specified, the entire available hugepage memory will
be preallocated.

» 32-bit support

3.1. EAL in a Linux-userland Execution Environment 10

Programmer’s Guide, Release 18.05.1

Additional restrictions are present when running in 32-bit mode. In dynamic memory mode, by
default maximum of 2 gigabytes of VA space will be preallocated, and all of it will be on master
Icore NUMA node unless ——socket-mem flag is used.

In legacy mode, VA space will only be preallocated for segments that were requested (plus
padding, to keep IOVA-contiguousness).

* Maximum amount of memory

All possible virtual memory space that can ever be used for hugepage mapping in a DPDK
process is preallocated at startup, thereby placing an upper limit on how much memory a
DPDK application can have. DPDK memory is stored in segment lists, each segment is strictly
one physical page. It is possible to change the amount of virtual memory being preallocated at
startup by editing the following config variables:

* CONFIG_RTE_MAX_MEMSEG_LISTS controls how many segment lists can DPDK have

* CONFIG_RTE_MAX_MEM_MB_PER_LIST controls how much megabytes of memory each
segment list can address

* CONFIG_RTE_MAX_MEMSEG_PER_LIST controls how many segments each segment
can have

* CONFIG_RTE_MAX_MEMSEG_PER_TYPE controls how many segments each memory
type can have (where “type” is defined as “page size + NUMA node” combination)

* CONFIG_RTE_MAX_MEM_MB_PER_TYPE controls how much megabytes of memory each
memory type can address

* CONFIG_RTE_MAX_MEM_MB places a global maximum on the amount of memory DPDK
can reserve

Normally, these options do not need to be changed.

Note: Preallocated virtual memory is not to be confused with preallocated hugepage memory!
All DPDK processes preallocate virtual memory at startup. Hugepages can later be mapped

into that preallocated VA space (if dynamic memory mode is enabled), and can optionally be
mapped into it at startup.

3.1.5 PCI Access

The EAL uses the /sys/bus/pci utilities provided by the kernel to scan the content on the PCI
bus. To access PCl memory, a kernel module called uio_pci_generic provides a /dev/uioX
device file and resource files in /sys that can be mmap’d to obtain access to PCIl address
space from the application. The DPDK-specific igb_uio module can also be used for this. Both
drivers use the uio kernel feature (userland driver).

3.1.6 Per-Icore and Shared Variables

Note: Icore refers to a logical execution unit of the processor, sometimes called a hardware
thread.

Shared variables are the default behavior. Per-Icore variables are implemented using Thread
Local Storage (TLS) to provide per-thread local storage.

3.1. EAL in a Linux-userland Execution Environment 11

Programmer’s Guide, Release 18.05.1

3.1.7 Logs

A logging APl is provided by EAL. By default, in a Linux application, logs are sent to syslog and
also to the console. However, the log function can be overridden by the user to use a different
logging mechanism.

Trace and Debug Functions

There are some debug functions to dump the stack in glibc. The rte_panic() function can
voluntarily provoke a SIG_ABORT, which can trigger the generation of a core file, readable by
gdb.

3.1.8 CPU Feature Identification

The EAL can query the CPU at runtime (using the rte_cpu_get_features() function) to deter-
mine which CPU features are available.

3.1.9 User Space Interrupt Event

» User Space Interrupt and Alarm Handling in Host Thread

The EAL creates a host thread to poll the UIO device file descriptors to detect the interrupts.
Callbacks can be registered or unregistered by the EAL functions for a specific interrupt event
and are called in the host thread asynchronously. The EAL also allows timed callbacks to be
used in the same way as for NIC interrupts.

Note: In DPDK PMD, the only interrupts handled by the dedicated host thread are those for
link status change (link up and link down notification) and for sudden device removal.

* RX Interrupt Event

The receive and transmit routines provided by each PMD don’t limit themselves to execute in
polling thread mode. To ease the idle polling with tiny throughput, it's useful to pause the polling
and wait until the wake-up event happens. The RX interrupt is the first choice to be such kind
of wake-up event, but probably won’t be the only one.

EAL provides the event APIs for this event-driven thread mode. Taking linuxapp as an example,
the implementation relies on epoll. Each thread can monitor an epoll instance in which all the
wake-up events’ file descriptors are added. The event file descriptors are created and mapped
to the interrupt vectors according to the UIO/VFIO spec. From bsdapp’s perspective, kqueue
is the alternative way, but not implemented yet.

EAL initializes the mapping between event file descriptors and interrupt vectors, while each
device initializes the mapping between interrupt vectors and queues. In this way, EAL actually
is unaware of the interrupt cause on the specific vector. The eth_dev driver takes responsibility
to program the latter mapping.

Note: Per queue RX interrupt event is only allowed in VFIO which supports multiple MSI-
X vector. In UIO, the RX interrupt together with other interrupt causes shares the same

vector. In this case, when RX interrupt and LSC(link status change) interrupt are both en-
abled(intr_conf.Isc == 1 && intr_conf.rxq == 1), only the former is capable.

3.1. EAL in a Linux-userland Execution Environment 12

Programmer’s Guide, Release 18.05.1

*7

The RX interrupt are controlled/enabled/disabled by ethdev APIs - ‘rte_eth_dev_rx_intr_*.
They return failure if the PMD hasn’t support them yet. The intr_conf.rxq flag is used to turn on
the capability of RX interrupt per device.

» Device Removal Event

This event is triggered by a device being removed at a bus level. Its underlying resources may
have been made unavailable (i.e. PCI mappings unmapped). The PMD must make sure that
on such occurrence, the application can still safely use its callbacks.

This event can be subscribed to in the same way one would subscribe to a link status change
event. The execution context is thus the same, i.e. it is the dedicated interrupt host thread.

Considering this, it is likely that an application would want to close a device having emitted
a Device Removal Event. In such case, calling rte_eth_dev_close () can trigger it to
unregister its own Device Removal Event callback. Care must be taken not to close the device
from the interrupt handler context. It is necessary to reschedule such closing operation.

3.1.10 Blacklisting

The EAL PCI device blacklist functionality can be used to mark certain NIC ports as blacklisted,
so they are ignored by the DPDK. The ports to be blacklisted are identified using the PCle*
description (Domain:Bus:Device.Function).

3.1.11 Misc Functions

Locks and atomic operations are per-architecture (i686 and x86_64).

3.2 Memory Segments and Memory Zones (memzone)

The mapping of physical memory is provided by this feature in the EAL. As physical memory
can have gaps, the memory is described in a table of descriptors, and each descriptor (called
rte_memseg) describes a physical page.

On top of this, the memzone allocator’s role is to reserve contiguous portions of physical mem-
ory. These zones are identified by a unique name when the memory is reserved.

The rte_memzone descriptors are also located in the configuration structure. This structure is
accessed using rte_eal_get_configuration(). The lookup (by name) of a memory zone returns
a descriptor containing the physical address of the memory zone.

Memory zones can be reserved with specific start address alignment by supplying the align
parameter (by default, they are aligned to cache line size). The alignment value should be a
power of two and not less than the cache line size (64 bytes). Memory zones can also be
reserved from either 2 MB or 1 GB hugepages, provided that both are available on the system.

Both memsegs and memzones are stored using rte_fbarray structures. Please refer to
DPDK API Reference for more information.

3.2. Memory Segments and Memory Zones (memzone) 13

Programmer’s Guide, Release 18.05.1

3.3 Multiple pthread

DPDK usually pins one pthread per core to avoid the overhead of task switching. This allows
for significant performance gains, but lacks flexibility and is not always efficient.

Power management helps to improve the CPU efficiency by limiting the CPU runtime frequency.
However, alternately it is possible to utilize the idle cycles available to take advantage of the
full capability of the CPU.

By taking advantage of cgroup, the CPU utilization quota can be simply assigned. This gives
another way to improve the CPU efficiency, however, there is a prerequisite; DPDK must handle
the context switching between multiple pthreads per core.

For further flexibility, it is useful to set pthread affinity not only to a CPU but to a CPU set.

3.3.1 EAL pthread and Icore Affinity

The term “Icore” refers to an EAL thread, which is really a Linux/FreeBSD pthread. “EAL
pthreads” are created and managed by EAL and execute the tasks issued by remote launch.
In each EAL pthread, there is a TLS (Thread Local Storage) called _/core_id for unique identi-
fication. As EAL pthreads usually bind 1:1 to the physical CPU, the _Icore id is typically equal
to the CPU ID.

When using multiple pthreads, however, the binding is no longer always 1:1 between an EAL
pthread and a specified physical CPU. The EAL pthread may have affinity to a CPU set, and
as such the _Icore id will not be the same as the CPU ID. For this reason, there is an EAL
long option ‘—Icores’ defined to assign the CPU affinity of Icores. For a specified Icore ID or ID
group, the option allows setting the CPU set for that EAL pthread.

The format pattern: —Icores="<Icore_set>[@cpu_set][,<Icore_set>[@cpu_set],...]
‘Icore_set’ and ‘cpu_set’ can be a single number, range or a group.

A number is a “digit([0-9]+)”; a range is “<number>-<number>"; a group is “(<num-
ber|range>[,<number|range>,...])".

If a ‘@cpu_set’ value is not supplied, the value of ‘cpu_set’ will default to the value of ‘Icore_set'.

For example, "--lcores='1l,2@(5-7), (3-5)@(0,2),(0,6),7-8"" which means start 9 EAL thread;

lcore 0 runs on cpuset 0x41l (cpu 0,6);

lcore 1 runs on cpuset 0x2 (cpu 1);

lcore 2 runs on cpuset 0xe0O (cpu 5,6,7);

lcore 3,4,5 runs on cpuset 0x5 (cpu 0,2);

lcore 6 runs on cpuset 0x41l (cpu 0,6);

lcore 7 runs on cpuset 0x80 (cpu 7);

lcore 8 runs on cpuset 0x100 (cpu 8).

Using this option, for each given Icore ID, the associated CPUs can be assigned. It's also
compatible with the pattern of corelist(‘-I') option.

3.3.2 non-EAL pthread support

It is possible to use the DPDK execution context with any user pthread (aka. Non-EAL
pthreads). In a non-EAL pthread, the _Icore id is always LCORE_ID_ANY which identifies

3.3. Multiple pthread 14

Programmer’s Guide, Release 18.05.1

that it is not an EAL thread with a valid, unique, _Icore id. Some libraries will use an alter-
native unique ID (e.g. TID), some will not be impacted at all, and some will work but with
limitations (e.g. timer and mempool libraries).

All these impacts are mentioned in Known Issues section.

3.3.3 Public Thread API

There are two public APIs rte_thread_set_affinity () and
rte_thread_get_affinity () introduced for threads. When they’re used in any pthread
context, the Thread Local Storage(TLS) will be set/get.

Those TLS include _cpuset and _socket id:
» _cpuset stores the CPUs bitmap to which the pthread is affinitized.

» _socket_id stores the NUMA node of the CPU set. If the CPUs in CPU set belong to
different NUMA node, the _socket id will be set to SOCKET _ID_ANY.

3.3.4 Known Issues

* rte_mempool

The rte_mempool uses a per-Icore cache inside the mempool. For non-EAL pthreads,
rte_lcore_id () will not return a valid number. So for now, when rte_mempool is used
with non-EAL pthreads, the put/get operations will bypass the default mempool cache and
there is a performance penalty because of this bypass. Only user-owned external caches
can be used in a non-EAL context in conjunction with rte_mempool_generic_put ()
and rte_mempool_generic_get () that accept an explicit cache parameter.

* rte_ring

rte_ring supports multi-producer enqueue and multi-consumer dequeue. However, it is
non-preemptive, this has a knock on effect of making rte_mempool non-preemptable.

Note: The “non-preemptive” constraint means:

— a pthread doing multi-producers enqueues on a given ring must not be preempted
by another pthread doing a multi-producer enqueue on the same ring.

— a pthread doing multi-consumers dequeues on a given ring must not be preempted
by another pthread doing a multi-consumer dequeue on the same ring.

Bypassing this constraint may cause the 2nd pthread to spin until the 1st one is scheduled
again. Moreover, if the 1st pthread is preempted by a context that has an higher priority,
it may even cause a dead lock.

This does not mean it cannot be used, simply, there is a need to narrow down the situation
when it is used by multi-pthread on the same core.

1. It CAN be used for any single-producer or single-consumer situation.

2. It MAY be used by multi-producer/consumer pthread whose scheduling policy are all
SCHED_OTHER(cfs). User SHOULD be aware of the performance penalty before
using it.

3.3. Multiple pthread 15

Programmer’s Guide, Release 18.05.1

3. It MUST not be used by multi-producer/consumer pthreads, whose scheduling poli-
cies are SCHED_FIFO or SCHED_RR.

* rte_timer

Running rte_timer_manage () on a non-EAL pthread is not allowed. However, reset-
ting/stopping the timer from a non-EAL pthread is allowed.

* rte_log

In non-EAL pthreads, there is no per thread loglevel and logtype, global loglevels are
used.

* misc

The debug statistics of rte_ring, rte_mempool and rte_timer are not supported in a non-
EAL pthread.

3.3.5 cgroup control

The following is a simple example of cgroup control usage, there are two pthreads(t0 and t1)
doing packet 1/0 on the same core ($CPU). We expect only 50% of CPU spend on packet 10.

mkdir /sys/fs/cgroup/cpu/pkt_io
mkdir /sys/fs/cgroup/cpuset/pkt_io

echo S$cpu > /sys/fs/cgroup/cpuset/cpuset.cpus

echo $t0 > /sys/fs/cgroup/cpu/pkt_io/tasks
echo $t0 > /sys/fs/cgroup/cpuset/pkt_io/tasks

echo $tl > /sys/fs/cgroup/cpu/pkt_io/tasks
echo $tl1 > /sys/fs/cgroup/cpuset/pkt_io/tasks

cd /sys/fs/cgroup/cpu/pkt_io
echo 100000 > pkt_io/cpu.cfs_period_us
echo 50000 > pkt_io/cpu.cfs_quota_us

3.4 Malloc

The EAL provides a malloc API to allocate any-sized memory.

The objective of this APl is to provide malloc-like functions to allow allocation from hugepage
memory and to facilitate application porting. The DPDK API Reference manual describes the
available functions.

Typically, these kinds of allocations should not be done in data plane processing because they
are slower than pool-based allocation and make use of locks within the allocation and free
paths. However, they can be used in configuration code.

Refer to the rte_malloc() function description in the DPDK API Reference manual for more
information.

3.4. Malloc 16

Programmer’s Guide, Release 18.05.1

3.4.1 Cookies

When CONFIG_RTE_MALLOC_DEBUG is enabled, the allocated memory contains overwrite
protection fields to help identify buffer overflows.

3.4.2 Alignment and NUMA Constraints
The rte_malloc() takes an align argument that can be used to request a memory area that is
aligned on a multiple of this value (which must be a power of two).

On systems with NUMA support, a call to the rte_malloc() function will return memory that has
been allocated on the NUMA socket of the core which made the call. A set of APlIs is also
provided, to allow memory to be explicitly allocated on a NUMA socket directly, or by allocated
on the NUMA socket where another core is located, in the case where the memory is to be
used by a logical core other than on the one doing the memory allocation.

3.4.3 Use Cases
This APl is meant to be used by an application that requires malloc-like functions at initialization
time.

For allocating/freeing data at runtime, in the fast-path of an application, the memory pool library
should be used instead.

3.4.4 Internal Implementation
Data Structures

There are two data structure types used internally in the malloc library:
« struct malloc_heap - used to track free space on a per-socket basis

« struct malloc_elem - the basic element of allocation and free-space tracking inside the
library.

Structure: malloc_heap

The malloc_heap structure is used to manage free space on a per-socket basis. Internally,
there is one heap structure per NUMA node, which allows us to allocate memory to a thread
based on the NUMA node on which this thread runs. While this does not guarantee that the
memory will be used on that NUMA node, it is no worse than a scheme where the memory is
always allocated on a fixed or random node.

The key fields of the heap structure and their function are described below (see also diagram
above):

* lock - the lock field is needed to synchronize access to the heap. Given that the free
space in the heap is tracked using a linked list, we need a lock to prevent two threads
manipulating the list at the same time.

« free_head - this points to the first element in the list of free nodes for this malloc heap.

3.4. Malloc 17

Programmer’s Guide, Release 18.05.1

« first - this points to the first element in the heap.

* last - this points to the last element in the heap.

o . next free T~ « - next free “

prev/next prev/next prev/next prev/next
[Free element header | | Free space
I used element header | Allocated data
Pad element header ‘ ' Padding

V7 | Unavailable space

Fig. 3.2: Example of a malloc heap and malloc elements within the malloc library

Structure: malloc_elem

The malloc_elem structure is used as a generic header structure for various blocks of memory.
It is used in two different ways - all shown in the diagram above:

1. As a header on a block of free or allocated memory - normal case
2. As a padding header inside a block of memory
The most important fields in the structure and how they are used are described below.

Malloc heap is a doubly-linked list, where each element keeps track of its previous and next
elements. Due to the fact that hugepage memory can come and go, neighbouring malloc
elements may not necessarily be adjacent in memory. Also, since a malloc element may
span multiple pages, its contents may not necessarily be IOVA-contiguous either - each malloc
element is only guaranteed to be virtually contiguous.

Note: If the usage of a particular field in one of the above three usages is not described, the
field can be assumed to have an undefined value in that situation, for example, for padding

headers only the “state” and “pad” fields have valid values.

* heap - this pointer is a reference back to the heap structure from which this block was
allocated. It is used for normal memory blocks when they are being freed, to add the
newly-freed block to the heap’s free-list.

* prev - this pointer points to previous header element/block in memory. When freeing a
block, this pointer is used to reference the previous block to check if that block is also
free. If so, and the two blocks are immediately adjacent to each other, then the two free
blocks are merged to form a single larger block.

* next - this pointer points to next header element/block in memory. When freeing a block,
this pointer is used to reference the next block to check if that block is also free. If so,

3.4. Malloc 18

Programmer’s Guide, Release 18.05.1

and the two blocks are immediately adjacent to each other, then the two free blocks are
merged to form a single larger block.

« free_list - this is a structure pointing to previous and next elements in this heap’s free list.
It is only used in normal memory blocks; on malloc () to find a suitable free block to
allocate and on free () to add the newly freed element to the free-list.

« state - This field can have one of three values: FREE, BUSY or PAD. The former two are
to indicate the allocation state of a normal memory block and the latter is to indicate that
the element structure is a dummy structure at the end of the start-of-block padding, i.e.
where the start of the data within a block is not at the start of the block itself, due to
alignment constraints. In that case, the pad header is used to locate the actual malloc
element header for the block.

* pad - this holds the length of the padding present at the start of the block. In the case
of a normal block header, it is added to the address of the end of the header to give the
address of the start of the data area, i.e. the value passed back to the application on
a malloc. Within a dummy header inside the padding, this same value is stored, and is
subtracted from the address of the dummy header to yield the address of the actual block
header.

* size - the size of the data block, including the header itself.

Memory Allocation

On EAL initialization, all preallocated memory segments are setup as part of the malloc heap.
This setup involves placing an element header with FREE at the start of each virtually contigu-
ous segment of memory. The FREE element is then added to the free_11st for the malloc
heap.

This setup also happens whenever memory is allocated at runtime (if supported), in which case
newly allocated pages are also added to the heap, merging with any adjacent free segments if
there are any.

When an application makes a call to a malloc-like function, the malloc function will first index the
lcore_config structure for the calling thread, and determine the NUMA node of that thread.
The NUMA node is used to index the array of malloc_heap structures which is passed as a
parameter to the heap_alloc () function, along with the requested size, type, alignment and
boundary parameters.

The heap_alloc () function will scan the free_list of the heap, and attempt to find a free block
suitable for storing data of the requested size, with the requested alignment and boundary
constraints.

When a suitable free element has been identified, the pointer to be returned to the user is
calculated. The cache-line of memory immediately preceding this pointer is filled with a struct
malloc_elem header. Because of alignment and boundary constraints, there could be free
space at the start and/or end of the element, resulting in the following behavior:

1. Check for trailing space. If the trailing space is big enough, i.e. > 128 bytes, then the free
element is split. If it is not, then we just ignore it (wasted space).

2. Check for space at the start of the element. If the space at the start is small, i.e. <=128
bytes, then a pad header is used, and the remaining space is wasted. If, however, the
remaining space is greater, then the free element is split.

3.4. Malloc 19

Programmer’s Guide, Release 18.05.1

The advantage of allocating the memory from the end of the existing element is that no adjust-
ment of the free list needs to take place - the existing element on the free list just has its size
value adjusted, and the next/previous elements have their “prev’/’next” pointers redirected to
the newly created element.

In case when there is not enough memory in the heap to satisfy allocation request, EAL will
attempt to allocate more memory from the system (if supported) and, following successful
allocation, will retry reserving the memory again. In a multiprocessing scenario, all primary
and secondary processes will synchronize their memory maps to ensure that any valid pointer
to DPDK memory is guaranteed to be valid at all times in all currently running processes.

Failure to synchronize memory maps in one of the processes will cause allocation to fail, even
though some of the processes may have allocated the memory successfully. The memory is
not added to the malloc heap unless primary process has ensured that all other processes
have mapped this memory successfully.

Any successful allocation event will trigger a callback, for which user applications and other
DPDK subsystems can register. Additionally, validation callbacks will be triggered before allo-
cation if the newly allocated memory will exceed threshold set by the user, giving a chance to
allow or deny allocation.

Note: Any allocation of new pages has to go through primary process. If the primary process
is not active, no memory will be allocated even if it was theoretically possible to do so. This is

because primary’s process map acts as an authority on what should or should not be mapped,
while each secondary process has its own, local memory map. Secondary processes do not
update the shared memory map, they only copy its contents to their local memory map.

Freeing Memory

To free an area of memory, the pointer to the start of the data area is passed to the free
function. The size of the malloc_elem structure is subtracted from this pointer to get the
element header for the block. If this header is of type PAD then the pad length is further
subtracted from the pointer to get the proper element header for the entire block.

From this element header, we get pointers to the heap from which the block was allocated and
to where it must be freed, as well as the pointer to the previous and next elements. These
next and previous elements are then checked to see if they are also FREE and are immediately
adjacent to the current one, and if so, they are merged with the current element. This means
that we can never have two FREE memory blocks adjacent to one another, as they are always
merged into a single block.

If deallocating pages at runtime is supported, and the free element encloses one or more
pages, those pages can be deallocated and be removed from the heap. If DPDK was started
with command-line parameters for preallocating memory (-m or ——socket-mem), then those
pages that were allocated at startup will not be deallocated.

Any successful deallocation event will trigger a callback, for which user applications and other
DPDK subsystems can register.

3.4. Malloc 20

CHAPTER
FOUR

SERVICE CORES

DPDK has a concept known as service cores, which enables a dynamic way of performing
work on DPDK Icores. Service core support is built into the EAL, and an APl is provided to
optionally allow applications to control how the service cores are used at runtime.

The service cores concept is built up out of services (components of DPDK that require CPU
cycles to operate) and service cores (DPDK Icores, tasked with running services). The power
of the service core concept is that the mapping between service cores and services can be
configured to abstract away the difference between platforms and environments.

For example, the Eventdev has hardware and software PMDs. Of these the software PMD
requires an Icore to perform the scheduling operations, while the hardware PMD does not.
With service cores, the application would not directly notice that the scheduling is done in
software.

For detailed information about the service core API, please refer to the docs.

4.1 Service Core Initialization

There are two methods to having service cores in a DPDK application, either by using the
service coremask, or by dynamically adding cores using the API. The simpler of the two is to
pass the -s coremask argument to EAL, which will take any cores available in the main DPDK
coremask, and if the bits are also set in the service coremask the cores become service-cores
instead of DPDK application Icores.

4.2 Enabling Services on Cores

Each registered service can be individually mapped to a service core, or set of service cores.
Enabling a service on a particular core means that the Icore in question will run the service.
Disabling that core on the service stops the Icore in question from running the service.

Using this method, it is possible to assign specific workloads to each service core, and map N
workloads to M number of service cores. Each service Icore loops over the services that are
enabled for that core, and invokes the function to run the service.

21

Programmer’s Guide, Release 18.05.1

4.3 Service Core Statistics

The service core library is capable of collecting runtime statistics like number of calls to a
specific service, and number of cycles used by the service. The cycle count collection is
dynamically configurable, allowing any application to profile the services running on the system
at any time.

4.3. Service Core Statistics 22

CHAPTER
FIVE

RING LIBRARY

The ring allows the management of queues. Instead of having a linked list of infinite size, the
rte_ring has the following properties:

FIFO

Maximum size is fixed, the pointers are stored in a table

Lockless implementation

Multi-consumer or single-consumer dequeue

Multi-producer or single-producer enqueue

Bulk dequeue - Dequeues the specified count of objects if successful; otherwise fails
Bulk enqueue - Enqueues the specified count of objects if successful; otherwise fails

Burst dequeue - Dequeue the maximum available objects if the specified count cannot
be fulfilled

Burst enqueue - Enqueue the maximum available objects if the specified count cannot
be fulfilled

The advantages of this data structure over a linked list queue are as follows:

Faster; only requires a single Compare-And-Swap instruction of sizeof(void *) instead of
several double-Compare-And-Swap instructions.

Simpler than a full lockless queue.

Adapted to bulk enqueue/dequeue operations. As pointers are stored in a table, a de-
queue of several objects will not produce as many cache misses as in a linked queue.
Also, a bulk dequeue of many objects does not cost more than a dequeue of a simple
object.

The disadvantages:

» Size is fixed

* Having many rings costs more in terms of memory than a linked list queue. An empty

ring contains at least N pointers.

A simplified representation of a Ring is shown in with consumer and producer head and tail
pointers to objects stored in the data structure.

23

Programmer’s Guide, Release 18.05.1

BN

cons_head prod_head
cons_tail prod_tail

Fig. 5.1: Ring Structure

5.1 References for Ring Implementation in FreeBSD*

The following code was added in FreeBSD 8.0, and is used in some network device drivers (at
least in Intel drivers):

* bufring.h in FreeBSD
* bufring.c in FreeBSD

5.2 Lockless Ring Buffer in Linux*

The following is a link describing the Linux Lockless Ring Buffer Design.

5.3 Additional Features

5.3.1 Name

Aring is identified by a unique name. It is not possible to create two rings with the same name
(rte_ring_create() returns NULL if this is attempted).

5.4 Use Cases

Use cases for the Ring library include:
« Communication between applications in the DPDK

* Used by memory pool allocator

5.5 Anatomy of a Ring Buffer

This section explains how a ring buffer operates. The ring structure is composed of two head
and tail couples; one is used by producers and one is used by the consumers. The figures of
the following sections refer to them as prod_head, prod_tail, cons_head and cons_tail.

5.1. References for Ring Implementation in FreeBSD* 24

http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/sys/buf_ring.h?revision=199625&view=markup
http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/kern/subr_bufring.c?revision=199625&view=markup
http://lwn.net/Articles/340400/

Programmer’s Guide, Release 18.05.1

Each figure represents a simplified state of the ring, which is a circular buffer. The content
of the function local variables is represented on the top of the figure, and the content of ring
structure is represented on the bottom of the figure.

5.5.1 Single Producer Enqueue

This section explains what occurs when a producer adds an object to the ring. In this example,
only the producer head and tail (prod_head and prod_tail) are modified, and there is only one
producer.

The initial state is to have a prod_head and prod_tail pointing at the same location.

Enqueue First Step

First, ring->prod_head and ring->cons_tail are copied in local variables. The prod_next lo-
cal variable points to the next element of the table, or several elements after in case of bulk
enqueue.

If there is not enough room in the ring (this is detected by checking cons_tail), it returns an
error.

local variables

cons_tail prod_head prod_next

T T
[aezCehes

cons_head prod_head
cons_tail prod_tail

structure state

Fig. 5.2: Enqueue first step

5.5. Anatomy of a Ring Buffer 25

Programmer’s Guide, Release 18.05.1

Enqueue Second Step

The second step is to modify ring->prod _head in ring structure to point to the same location
as prod_next.

A pointer to the added object is copied in the ring (obj4).

local variables

cons_tail prod_head prod_next

T T
[ERCEOCES
-

cons_head prod_tail prod_head
cons_tail

structure state

Fig. 5.3: Enqueue second step

Enqueue Last Step

Once the object is added in the ring, ring->prod_tail in the ring structure is modified to point to
the same location as ring->prod_head. The enqueue operation is finished.

5.5.2 Single Consumer Dequeue

This section explains what occurs when a consumer dequeues an object from the ring. In this
example, only the consumer head and tail (cons_head and cons_tail) are modified and there
is only one consumer.

The initial state is to have a cons_head and cons_tail pointing at the same location.

Dequeue First Step

First, ring->cons_head and ring->prod_tail are copied in local variables. The cons_next local
variable points to the next element of the table, or several elements after in the case of bulk

5.5. Anatomy of a Ring Buffer 26

Programmer’s Guide, Release 18.05.1

local variables

cons_tail prod_head prod_next

i v
EROCCLes

cons_head prod_tail
cons_tail prod_head

structure state

Fig. 5.4: Enqueue last step

dequeue.

If there are not enough objects in the ring (this is detected by checking prod_tail), it returns an
error.

Dequeue Second Step

The second step is to modify ring->cons_head in the ring structure to point to the same location
as cons_next.

The pointer to the dequeued object (obj1) is copied in the pointer given by the user.

Dequeue Last Step

Finally, ring->cons_tail in the ring structure is modified to point to the same location as ring-
>cons_head. The dequeue operation is finished.

5.5.3 Multiple Producers Enqueue

This section explains what occurs when two producers concurrently add an object to the ring.
In this example, only the producer head and tail (prod_head and prod_tail) are modified.

The initial state is to have a prod_head and prod_tail pointing at the same location.

5.5. Anatomy of a Ring Buffer 27

Programmer’s Guide, Release 18.05.1

local variables

cons_head cons_next prod_tail

‘o i
L]

consThead prod_tail
cons_ tail prod_head
“Stiicture state
Fig. 5.5: Dequeue last step
local variables
cons_head cons_next prod_tail

T

cons_tall

T

cons_head

T

prod_tail
prod_head

“Structure state

Fig. 5.6: Dequeue second step

5.5. Anatomy of a Ring Buffer

Programmer’s Guide, Release 18.05.1

local variables

cons_head cons_next prod_tail

‘o l
SEELCCEE
T

cons_head prod_tail
cons_tail prod_head

structure state

Fig. 5.7: Dequeue last step

Multiple Producers Enqueue First Step

On both cores, ring->prod_head and ring->cons_tail are copied in local variables. The
prod_next local variable points to the next element of the table, or several elements after in
the case of bulk enqueue.

If there is not enough room in the ring (this is detected by checking cons_tail), it returns an
error.

Multiple Producers Enqueue Second Step

The second step is to modify ring->prod_head in the ring structure to point to the same location
as prod_next. This operation is done using a Compare And Swap (CAS) instruction, which
does the following operations atomically:

« If ring->prod_head is different to local variable prod_head, the CAS operation fails, and
the code restarts at first step.

» Otherwise, ring->prod_head is set to local prod_next, the CAS operation is successful,
and processing continues.

In the figure, the operation succeeded on core 1, and step one restarted on core 2.

Multiple Producers Enqueue Third Step

The CAS operation is retried on core 2 with success.

5.5. Anatomy of a Ring Buffer 29

Programmer’s Guide, Release 18.05.1

local variables cons_tall prod_head prod_next
. core 2 ¢ ¢ ¢
¢"local variables cons_tail prod_head prod_next

T

cons_head prod_he_ad
cons_tail prod_tail

structure state

Fig. 5.8: Multiple producer enqueue first step

compare and swap succeeds
on core 1 and fails on core 2

" local variables cons_tail prod_head prod_next
. core 2 i i i ’
"local variables cons_tail prod_head prod_next

T

cons_head prod_head
cons_tall prod_tail

structure state

Fig. 5.9: Multiple producer enqueue second step

5.5. Anatomy of a Ring Buffer 30

Programmer’s Guide, Release 18.05.1

The core 1 updates one element of the ring(obj4), and the core 2 updates another one (obj5).

compare and swap succeeds

on core 2
" local variables cons._tail prod_head prod_next
. core 2 i i l |
{"local variables cons_tail prod_head prod_next

é”ml l i i
| [I I"b"{ °biZI obJsI Obj{ ObjSI j
\ Cr

cons_head _ prod_head
cons_tail prod_tail

structure state

Fig. 5.10: Multiple producer enqueue third step

Multiple Producers Enqueue Fourth Step

Each core now wants to update ring->prod_tail. A core can only update it if ring->prod_tail is
equal to the prod_head local variable. This is only true on core 1. The operation is finished on
core 1.

Multiple Producers Enqueue Last Step

Once ring->prod_tail is updated by core 1, core 2 is allowed to update it too. The operation is
also finished on core 2.

5.5.4 Modulo 32-bit Indexes

In the preceding figures, the prod_head, prod_tail, cons_head and cons_tail indexes are repre-
sented by arrows. In the actual implementation, these values are not between 0 and size(ring)-
1 as would be assumed. The indexes are between 0 and 2"32 -1, and we mask their value
when we access the pointer table (the ring itself). 32-bit modulo also implies that operations
on indexes (such as, add/subtract) will automatically do 2232 modulo if the result overflows the
32-bit number range.

The following are two examples that help to explain how indexes are used in a ring.

5.5. Anatomy of a Ring Buffer 31

Programmer’s Guide, Release 18.05.1

core 2 is waiting for
r->prod_tail == prod_head

/" local variables cons_tail prod_head prod_next
. core 2 i i :
v

local variables cons_talil prod_head prod_next

. core 1 i i

Y

!

cons_head ~ prod_head
cons_talil prod_tail

“structure state

Fig. 5.11: Multiple producer enqueue fourth step

"local variables cons_tail prod_head prod_next

T

cons_head prod_head
cons_tail prod_tail

Structure state

Fig. 5.12: Multiple producer enqueue last step

5.5. Anatomy of a Ring Buffer 32

Programmer’s Guide, Release 18.05.1

Note: To simplify the explanation, operations with modulo 16-bit are used instead of modulo
32-bit. In addition, the four indexes are defined as unsigned 16-bit integers, as opposed to

unsigned 32-bit integers in the more realistic case.

0 0
0 16384 32768 49152 65536 16384 32768 49152 65536 16384
I I I I I I I I I I
value for
(ring)()) @B)))) indexes
(prod_head,
Used_ent]ies d_tail, ...
size = 16384 A . . prod_tail, ...)
mask = 16383 o o
ph = pt = 14000 ¢ P
ct = ch = 3000 I used entries in ring
used_entries = (pt - ch) % 65536 = 11000
free_entries = (mask + ct - ph) % 65536 = 5383
Fig. 5.13: Modulo 32-bit indexes - Example 1
This ring contains 11000 entries.
0 0
0 16384 32768 49152 65536 16384 32768 49152 65536 16384
I I I I I I I I I I >
value for

I) C @ X)))) indexes

4_4 (prod_head,
size = 16384 Tdt prod_tail, ...)

mask = 16383 h oh
ph = pt = 6000 c P
ct = ch = 59000 I used entries in ring

used_entries = (pt - ch) % 65536 = 12536
free_entries = (mask + ct - ph) % 65536 = 3847

Fig. 5.14: Modulo 32-bit indexes - Example 2

This ring contains 12536 entries.

Note: For ease of understanding, we use modulo 65536 operations in the above examples.
In real execution cases, this is redundant for low efficiency, but is done automatically when the

result overflows.

The code always maintains a distance between producer and consumer between 0 and
size(ring)-1. Thanks to this property, we can do subtractions between 2 index values in a
modulo-32bit base: that’s why the overflow of the indexes is not a problem.

At any time, entries and free_entries are between 0 and size(ring)-1, even if only the first term
of subtraction has overflowed:

uint32_t entries = (prod_tail - cons_head);
uint32_t free_entries = (mask + cons_tail -prod_head);

5.6 References

* bufring.h in FreeBSD (version 8)

* bufring.c in FreeBSD (version 8)

5.6. References 33

http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/sys/buf_ring.h?revision=199625&view=markup
http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/kern/subr_bufring.c?revision=199625&view=markup

Programmer’s Guide, Release 18.05.1

* Linux Lockless Ring Buffer Design

5.6. References

34

http://lwn.net/Articles/340400/

CHAPTER
SIX

MEMPOOL LIBRARY

A memory pool is an allocator of a fixed-sized object. In the DPDK, it is identified by name and
uses a mempool handler to store free objects. The default mempool handler is ring based. It
provides some other optional services such as a per-core object cache and an alignment helper
to ensure that objects are padded to spread them equally on all DRAM or DDR3 channels.

This library is used by the Mbuf Library.

6.1 Cookies

In debug mode (CONFIG_RTE_LIBRTE_MEMPOOL_DEBUG is enabled), cookies are added
at the beginning and end of allocated blocks. The allocated objects then contain overwrite
protection fields to help debugging buffer overflows.

6.2 Stats

In debug mode (CONFIG_RTE_LIBRTE_MEMPOOL_DEBUG is enabled), statistics about get
from/put in the pool are stored in the mempool structure. Statistics are per-Icore to avoid
concurrent access to statistics counters.

6.3 Memory Alignment Constraints

Depending on hardware memory configuration, performance can be greatly improved by
adding a specific padding between objects. The objective is to ensure that the beginning of
each object starts on a different channel and rank in memory so that all channels are equally
loaded.

This is particularly true for packet buffers when doing L3 forwarding or flow classification. Only
the first 64 bytes are accessed, so performance can be increased by spreading the start ad-
dresses of objects among the different channels.

The number of ranks on any DIMM is the number of independent sets of DRAMSs that can be
accessed for the full data bit-width of the DIMM. The ranks cannot be accessed simultaneously
since they share the same data path. The physical layout of the DRAM chips on the DIMM itself
does not necessarily relate to the number of ranks.

When running an application, the EAL command line options provide the ability to add the
number of memory channels and ranks.

35

Programmer’s Guide, Release 18.05.1

Note: The command line must always have the number of memory channels specified for the
processor.

Examples of alignment for different DIMM architectures are shown in Fig. 6.1 and Fig. 6.2.

memory addresses 64 bytes wide

Block num 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 ..
Channel
Rank
0 1 2 3 4 5 6 7 8 9 A B C D E FIHNEEENoO 1 2 3

packet 1 padding T packet 2

pktl starts at

pkt2 starts at
channel 0, rank 0

channel 1, rank 1

Fig. 6.1: Two Channels and Quad-ranked DIMM Example

In this case, the assumption is that a packet is 16 blocks of 64 bytes, which is not true.

The Intel® 5520 chipset has three channels, so in most cases, no padding is required between
objects (except for objects whose size are n x 3 x 64 bytes blocks).

memory addresses 64 bytes wide
y > y
Blocknum 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 ..
Channel | 0 0 0
Rank
DIMM 0 [0 | [0 |
packet 1 packet 2
pktO starts at pkt2 starts at

channel 0, rank 1 channel 1, rank 0

(no padding needed)

Fig. 6.2: Three Channels and Two Dual-ranked DIMM Example

When creating a new pool, the user can specify to use this feature or not.

6.4 Local Cache

In terms of CPU usage, the cost of multiple cores accessing a memory pool’s ring of free
buffers may be high since each access requires a compare-and-set (CAS) operation. To avoid
having too many access requests to the memory pool’s ring, the memory pool allocator can
maintain a per-core cache and do bulk requests to the memory pool’s ring, via the cache with
many fewer locks on the actual memory pool structure. In this way, each core has full access
to its own cache (with locks) of free objects and only when the cache fills does the core need to
shuffle some of the free objects back to the pools ring or obtain more objects when the cache
is empty.

While this may mean a number of buffers may sit idle on some core’s cache, the speed at
which a core can access its own cache for a specific memory pool without locks provides
performance gains.

6.4. Local Cache 36

Programmer’s Guide, Release 18.05.1

The cache is composed of a small, per-core table of pointers and its length (used as a stack).
This internal cache can be enabled or disabled at creation of the pool.

The maximum size of the cache is static and is defined at compilation time (CON-
FIG_RTE_MEMPOOL_CACHE_MAX_SIZE).

Fig. 6.3 shows a cache in operation.

(. N
Core 0 Object caches for header trailer
AppA-ring e i
core < obj 0
Core 1 < If cache empty get from ring <—>
App B - ring core 1 if cache full move to ring elt_size

App C - ring _ obj 1

-

rte_ring: stores memory pool's free objects
L mempool)

Fig. 6.3: A mempool in Memory with its Associated Ring

Alternatively to the internal default per-Ilcore local cache, an application can cre-
ate and manage external caches through the rte_mempool_cache_create(),

rte_mempool_cache_free() and rte_mempool_cache_flush() calls. These
user-owned caches can be explicitly passed t0 rte_mempool_generic_put () and
rte_mempool_generic_get (). The rte_mempool_default_cache () call returns the

default internal cache if any. In contrast to the default caches, user-owned caches can be
used by non-EAL threads too.

6.5 Mempool Handlers

This allows external memory subsystems, such as external hardware memory management
systems and software based memory allocators, to be used with DPDK.

There are two aspects to a mempool handler.

» Adding the code for your new mempool operations (ops). This is achieved by adding a
new mempool ops code, and using the MEMPOOL_REGISTER_OPS macro.

» Using the new API to call rte_mempool_create_empty () and
rte_mempool_set_ops_byname () o create a new mempool and specifying
which ops to use.

Several different mempool handlers may be used in the same application. A new mem-
pool can be created by using the rte_mempool_create_empty () function, then using
rte_mempool_set_ops_byname () to point the mempool to the relevant mempool handler
callback (ops) structure.

Legacy applications may continue to use the old rte_mempool_create () API call, which
uses a ring based mempool handler by default. These applications will need to be modified to

6.5. Mempool Handlers 37

Programmer’s Guide, Release 18.05.1

use a new mempool handler.

For applications that use rte_pktmbuf_create(), there is a config setting
(RTE_MBUF_DEFAULT_MEMPOOL_OPS) that allows the application to make use of an
alternative mempool handler.

6.6 Use Cases

All allocations that require a high level of performance should use a pool-based memory allo-
cator. Below are some examples:

» Mbuf Library
» Environment Abstraction Layer , for logging service

» Any application that needs to allocate fixed-sized objects in the data plane and that will
be continuously utilized by the system.

6.6. Use Cases 38

CHAPTER
SEVEN

MBUF LIBRARY

The mbuf library provides the ability to allocate and free buffers (mbufs) that may be used by
the DPDK application to store message buffers. The message buffers are stored in a mempool,
using the Mempool Library.

A rte_mbuf struct generally carries network packet buffers, but it can actually be any data
(control data, events, ...). The rte_mbuf header structure is kept as small as possible and
currently uses just two cache lines, with the most frequently used fields being on the first of the
two cache lines.

7.1 Design of Packet Buffers

For the storage of the packet data (including protocol headers), two approaches were consid-
ered:

1. Embed metadata within a single memory buffer the structure followed by a fixed size area
for the packet data.

2. Use separate memory buffers for the metadata structure and for the packet data.

The advantage of the first method is that it only needs one operation to allocate/free the whole
memory representation of a packet. On the other hand, the second method is more flexible
and allows the complete separation of the allocation of metadata structures from the allocation
of packet data buffers.

The first method was chosen for the DPDK. The metadata contains control information such as
message type, length, offset to the start of the data and a pointer for additional mbuf structures
allowing buffer chaining.

Message buffers that are used to carry network packets can handle buffer chaining where
multiple buffers are required to hold the complete packet. This is the case for jumbo frames
that are composed of many mbufs linked together through their next field.

For a newly allocated mbuf, the area at which the data begins in the message buffer is
RTE_PKTMBUF_HEADROOM bytes after the beginning of the buffer, which is cache aligned.
Message buffers may be used to carry control information, packets, events, and so on between
different entities in the system. Message buffers may also use their buffer pointers to point to
other message buffer data sections or other structures.

Fig. 7.1 and Fig. 7.2 show some of these scenarios.

The Buffer Manager implements a fairly standard set of buffer access functions to manipulate
network packets.

39

Programmer’s Guide, Release 18.05.1

rte_pktmbuf_mtod(m)

mbuf
struct

m->pkt.next = NULL rte_pktmbuf_pktlen(m)

or rte_pktmbuf_datalen(m)

m->buf_addr
(m->buf_iova is the
corresponding physical address)

struct rte_mbuf

Fig. 7.1: An mbuf with One Segment

rte_pktmbuf_pktlen(m) = rte_pktmbuf_datalen(m) +
rte_pktmbuf_datalen(mseg2) + rte_pktmbuf_datalen(mseg3)

-« -

rte_pktmbuf_mtod(m)

> - > -
rte_pktmbuf_datalen(m) rte_pktmbuf_datalen(m) rte_pktmbuf_datalen(m)

m->pkt.next = mseg2 m->pkt.next = mseg3 m->pkt.next = NULL

multi-segmented rte_mbuf

Fig. 7.2: An mbuf with Three Segments

7.1. Design of Packet Buffers 40

Programmer’s Guide, Release 18.05.1

7.2 Buffers Stored in Memory Pools

The Buffer Manager uses the Mempool Library to allocate buffers. Therefore, it ensures
that the packet header is interleaved optimally across the channels and ranks for L3 pro-
cessing. An mbuf contains a field indicating the pool that it originated from. When calling
rte_pktmbuf_free(m), the mbuf returns to its original pool.

7.3 Constructors

Packet mbuf constructors are provided by the API. The rte_pktmbuf_init() function initializes
some fields in the mbuf structure that are not modified by the user once created (mbuf type,
origin pool, buffer start address, and so on). This function is given as a callback function to the
rte_mempool_create() function at pool creation time.

7.4 Allocating and Freeing mbufs

Allocating a new mbuf requires the user to specify the mempool from which the mbuf
should be taken. For any newly-allocated mbuf, it contains one segment, with a length
of 0. The offset to data is initialized to have some bytes of headroom in the buffer
(RTE_PKTMBUF_HEADROOM).

Freeing a mbuf means returning it into its original mempool. The content of an mbuf is not
modified when it is stored in a pool (as a free mbuf). Fields initialized by the constructor do not
need to be re-initialized at mbuf allocation.

When freeing a packet mbuf that contains several segments, all of them are freed and returned
to their original mempool.

7.5 Manipulating mbufs

This library provides some functions for manipulating the data in a packet mbuf. For instance:
» Get data length
» Get a pointer to the start of data
* Prepend data before data
» Append data after data
* Remove data at the beginning of the buffer (rte_pktmbuf_adj())

* Remove data at the end of the buffer (rte_pktmbuf_trim()) Refer to the DPDK API Refer-
ence for details.

7.6 Meta Information

Some information is retrieved by the network driver and stored in an mbuf to make process-
ing easier. For instance, the VLAN, the RSS hash result (see Poll Mode Driver) and a flag
indicating that the checksum was computed by hardware.

7.2. Buffers Stored in Memory Pools 41

Programmer’s Guide, Release 18.05.1

An mbuf also contains the input port (where it comes from), and the number of segment mbufs
in the chain.

For chained buffers, only the first mbuf of the chain stores this meta information.

For instance, this is the case on RX side for the IEEE1588 packet timestamp mechanism, the
VLAN tagging and the IP checksum computation.

On TX side, it is also possible for an application to delegate some processing to the hardware
if it supports it. For instance, the PKT_TX_IP_CKSUM flag allows to offload the computation
of the IPv4 checksum.

The following examples explain how to configure different TX offloads on a vxlan-encapsulated
tcp packet: out_eth/out_ip/out_udp/vxlan/in_eth/in_ip/in_tcp/payload
+ calculate checksum of out_ip:

mb->12_len = len (out_eth)

mb->13_len = len(out_ip)

mb->o0l_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM
set out_ip checksum to 0 in the packet

This is supported on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM.

+ calculate checksum of out_ip and out_udp:

mb->12_len = len (out_eth)
mb->13_len = len(out_ip)
mb->0l1_flags |= PKT_TX_IPV4 | PKT_TX_TIP_CSUM | PKT_TX_ UDP_CKSUM

set out_ip checksum to 0 in the packet
set out_udp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX_ OFFLOAD_IPV4 _CKSUM and
DEV_TX OFFLOAD_UDP_CKSUM.

+ calculate checksum of in_ip:

mb->12_1len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->13_len = len(in_ip)
mb->0l_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM

set in_ip checksum to 0 in the packet

This is similar to case 1), but 12_len is different. It is supported on hardware advertising
DEV_TX_OFFLOAD_IPV4_CKSUM. Note that it can only work if outer L4 checksum is
0.

+ calculate checksum of in_ip and in_tcp:

mb->12_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->13_len = len(in_ip)
mb->0l_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM | PKT_TX_TCP_CKSUM

set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is similar to case 2), but 12_len is different. It is supported on hardware advertising
DEV_TX OFFLOAD_IPV4_CKSUM and DEV_TX_OFFLOAD_TCP_CKSUM. Note that
it can only work if outer L4 checksum is 0.

» segment inner TCP:

mb->12_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->13_len = len(in_ip)

mb->14_len = len(in_tcp)

mb->0l_flags |= PKT_TX_IPV4 | PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM |

PKT_TX_TCP_SEG;

7.6. Meta Information 42

Programmer’s Guide, Release 18.05.1

set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header without including the IP
payload length using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX_OFFLOAD_TCP_TSO. Note that it
can only work if outer L4 checksum is 0.

+ calculate checksum of out_ip, in_ip, in_tcp:

mb->outer_12_1len
mb->outer_13_1len

len (out_eth)
len (out_ip)

mb->12_len = len(out_udp + vxlan + in_eth)

mb->13_len = len(in_ip)

mb->0l_flags |= PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IP_CKSUM I\
PKT_TX_TIP_CKSUM | PKT_TX_TCP_CKSUM;

set out_ip checksum to 0 in the packet
set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX OFFLOAD_IPV4 CKSUM,
DEV_TX_OFFLOAD_ UDP_CKSUM and DEV_TX OFFLOAD_OUTER_IPV4_CKSUM.

The list of flags and their precise meaning is described in the mbuf APl documentation
(rte_mbuf.h). Also refer to the testpmd source code (specifically the csumonly.c file) for de-
tails.

7.7 Direct and Indirect Buffers

A direct buffer is a buffer that is completely separate and self-contained. An indirect buffer
behaves like a direct buffer but for the fact that the buffer pointer and data offset in it refer to
data in another direct buffer. This is useful in situations where packets need to be duplicated
or fragmented, since indirect buffers provide the means to reuse the same packet data across
multiple buffers.

A buffer becomes indirect when it is “attached” to a direct buffer using the rte_pktmbuf_attach()
function. Each buffer has a reference counter field and whenever an indirect buffer is attached
to the direct buffer, the reference counter on the direct buffer is incremented. Similarly, when-
ever the indirect buffer is detached, the reference counter on the direct buffer is decremented.
If the resulting reference counter is equal to 0, the direct buffer is freed since it is no longer in
use.

There are a few things to remember when dealing with indirect buffers. First of all, an indirect
buffer is never attached to another indirect buffer. Attempting to attach buffer A to indirect buffer
B that is attached to C, makes rte_pktmbuf_attach() automatically attach A to C, effectively
cloning B. Secondly, for a buffer to become indirect, its reference counter must be equal to 1,
that is, it must not be already referenced by another indirect buffer. Finally, it is not possible to
reattach an indirect buffer to the direct buffer (unless it is detached first).

While the attach/detach operations can be invoked directly using the recommended
rte_pktmbuf_attach() and rte_pktmbuf detach() functions, it is suggested to use the higher-
level rte_pktmbuf_clone() function, which takes care of the correct initialization of an indirect
buffer and can clone buffers with multiple segments.

Since indirect buffers are not supposed to actually hold any data, the memory pool for indirect
buffers should be configured to indicate the reduced memory consumption. Examples of the
initialization of a memory pool for indirect buffers (as well as use case examples for indirect

7.7. Direct and Indirect Buffers 43

Programmer’s Guide, Release 18.05.1

buffers) can be found in several of the sample applications, for example, the IPv4 Multicast
sample application.

7.8 Debug

In debug mode (CONFIG_RTE_MBUF_DEBUG is enabled), the functions of the mbuf library
perform sanity checks before any operation (such as, buffer corruption, bad type, and so on).

7.9 Use Cases

All networking application should use mbufs to transport network packets.

7.8. Debug 44

CHAPTER
EIGHT

POLL MODE DRIVER

The DPDK includes 1 Gigabit, 10 Gigabit and 40 Gigabit and para virtualized virtio Poll Mode
Drivers.

A Poll Mode Driver (PMD) consists of APIs, provided through the BSD driver running in user
space, to configure the devices and their respective queues. In addition, a PMD accesses the
RX and TX descriptors directly without any interrupts (with the exception of Link Status Change
interrupts) to quickly receive, process and deliver packets in the user’s application. This section
describes the requirements of the PMDs, their global design principles and proposes a high-
level architecture and a generic external API for the Ethernet PMDs.

8.1 Requirements and Assumptions

The DPDK environment for packet processing applications allows for two models, run-to-
completion and pipe-line:

* In the run-to-completion model, a specific port’s RX descriptor ring is polled for packets
through an API. Packets are then processed on the same core and placed on a port’s TX
descriptor ring through an API for transmission.

* In the pipe-line model, one core polls one or more port’s RX descriptor ring through
an API. Packets are received and passed to another core via a ring. The other core
continues to process the packet which then may be placed on a port’s TX descriptor ring
through an API for transmission.

In a synchronous run-to-completion model, each logical core assigned to the DPDK executes
a packet processing loop that includes the following steps:

 Retrieve input packets through the PMD receive API
* Process each received packet one at a time, up to its forwarding
» Send pending output packets through the PMD transmit API

Conversely, in an asynchronous pipe-line model, some logical cores may be dedicated to the
retrieval of received packets and other logical cores to the processing of previously received
packets. Received packets are exchanged between logical cores through rings. The loop for
packet retrieval includes the following steps:

 Retrieve input packets through the PMD receive API
* Provide received packets to processing Icores through packet queues

The loop for packet processing includes the following steps:

45

Programmer’s Guide, Release 18.05.1

 Retrieve the received packet from the packet queue
* Process the received packet, up to its retransmission if forwarded

To avoid any unnecessary interrupt processing overhead, the execution environment must not
use any asynchronous notification mechanisms. Whenever needed and appropriate, asyn-
chronous communication should be introduced as much as possible through the use of rings.

Avoiding lock contention is a key issue in a multi-core environment. To address this issue,
PMDs are designed to work with per-core private resources as much as possible. For ex-
ample, a PMD maintains a separate transmit queue per-core, per-port, if the PMD is not
DEV_TX_OFFLOAD_MT_LOCKFREE capable. In the same way, every receive queue of a port is
assigned to and polled by a single logical core (Icore).

To comply with Non-Uniform Memory Access (NUMA), memory management is designed to
assign to each logical core a private buffer pool in local memory to minimize remote memory
access. The configuration of packet buffer pools should take into account the underlying physi-
cal memory architecture in terms of DIMMS, channels and ranks. The application must ensure
that appropriate parameters are given at memory pool creation time. See Mempool Library.

8.2 Design Principles

The API and architecture of the Ethernet* PMDs are designed with the following guidelines in
mind.

PMDs must help global policy-oriented decisions to be enforced at the upper application level.
Conversely, NIC PMD functions should not impede the benefits expected by upper-level global
policies, or worse prevent such policies from being applied.

For instance, both the receive and transmit functions of a PMD have a maximum number of
packets/descriptors to poll. This allows a run-to-completion processing stack to statically fix or
to dynamically adapt its overall behavior through different global loop policies, such as:

* Receive, process immediately and transmit packets one at a time in a piecemeal fashion.

* Receive as many packets as possible, then process all received packets, transmitting
them immediately.

* Receive a given maximum number of packets, process the received packets, accumulate
them and finally send all accumulated packets to transmit.

To achieve optimal performance, overall software design choices and pure software optimiza-
tion techniques must be considered and balanced against available low-level hardware-based
optimization features (CPU cache properties, bus speed, NIC PCI bandwidth, and so on). The
case of packet transmission is an example of this software/hardware tradeoff issue when opti-
mizing burst-oriented network packet processing engines. In the initial case, the PMD could ex-
port only an rte_eth_tx_one function to transmit one packet at a time on a given queue. On top
of that, one can easily build an rte_eth_tx_burst function that loops invoking the rte_eth_tx_one
function to transmit several packets at a time. However, an rte_eth_tx_burst function is effec-
tively implemented by the PMD to minimize the driver-level transmit cost per packet through
the following optimizations:

» Share among multiple packets the un-amortized cost of invoking the rte_eth_tx_one func-
tion.

8.2. Design Principles 46

Programmer’s Guide, Release 18.05.1

» Enable the rte_eth_tx_burst function to take advantage of burst-oriented hardware fea-
tures (prefetch data in cache, use of NIC head/tail registers) to minimize the number of
CPU cycles per packet, for example by avoiding unnecessary read memory accesses
to ring transmit descriptors, or by systematically using arrays of pointers that exactly fit
cache line boundaries and sizes.

» Apply burst-oriented software optimization techniques to remove operations that would
otherwise be unavoidable, such as ring index wrap back management.

Burst-oriented functions are also introduced via the API for services that are intensively used
by the PMD. This applies in particular to buffer allocators used to populate NIC rings, which
provide functions to allocate/free several buffers at a time. For example, an mbuf_multiple_alloc
function returning an array of pointers to rte_mbuf buffers which speeds up the receive poll
function of the PMD when replenishing multiple descriptors of the receive ring.

8.3 Logical Cores, Memory and NIC Queues Relationships

The DPDK supports NUMA allowing for better performance when a processor’s logical cores
and interfaces utilize its local memory. Therefore, mbuf allocation associated with local PCle*
interfaces should be allocated from memory pools created in the local memory. The buffers
should, if possible, remain on the local processor to obtain the best performance results and RX
and TX buffer descriptors should be populated with mbufs allocated from a mempool allocated
from local memory.

The run-to-completion model also performs better if packet or data manipulation is in local
memory instead of a remote processors memory. This is also true for the pipe-line model
provided all logical cores used are located on the same processor.

Multiple logical cores should never share receive or transmit queues for interfaces since this
would require global locks and hinder performance.

If the PMD is DEV_TX OFFLOAD_MT_LOCKFREE capable, multiple threads can invoke
rte_eth_tx_burst () concurrently on the same tx queue without SW lock. This PMD fea-
ture found in some NICs and useful in the following use cases:

* Remove explicit spinlock in some applications where Icores are not mapped to Tx queues
with 1:1 relation.

* In the eventdev use case, avoid dedicating a separate TX core for transmitting and thus
enables more scaling as all workers can send the packets.

See Hardware Offload for DEV_TX_OFFLOAD_MT_LOCKFREE capability probing details.

8.4 Device Identification, Ownership and Configuration

8.4.1 Device Identification

Each NIC port is uniquely designated by its (bus/bridge, device, function) PCI identifiers as-
signed by the PCI probing/enumeration function executed at DPDK initialization. Based on
their PCI identifier, NIC ports are assigned two other identifiers:

» A port index used to designate the NIC port in all functions exported by the PMD API.

8.3. Logical Cores, Memory and NIC Queues Relationships 47

Programmer’s Guide, Release 18.05.1

» A port name used to designate the port in console messages, for administration or de-
bugging purposes. For ease of use, the port name includes the port index.

8.4.2 Port Ownership

The Ethernet devices ports can be owned by a single DPDK entity (application, library,
PMD, process, etc). The ownership mechanism is controlled by ethdev APIs and allows to
set/remove/get a port owner by DPDK entities. Allowing this should prevent any multiple man-
agement of Ethernet port by different entities.

Note: It is the DPDK entity responsibility to set the port owner before using it and to manage
the port usage synchronization between different threads or processes.

8.4.3 Device Configuration

The configuration of each NIC port includes the following operations:
* Allocate PCl resources
* Reset the hardware (issue a Global Reset) to a well-known default state
+ Set up the PHY and the link
+ Initialize statistics counters

The PMD API must also export functions to start/stop the all-multicast feature of a port and
functions to set/unset the port in promiscuous mode.

Some hardware offload features must be individually configured at port initialization through
specific configuration parameters. This is the case for the Receive Side Scaling (RSS) and
Data Center Bridging (DCB) features for example.

8.4.4 On-the-Fly Configuration

All device features that can be started or stopped “on the fly” (that is, without stopping the
device) do not require the PMD API to export dedicated functions for this purpose.

All that is required is the mapping address of the device PCI registers to implement the config-
uration of these features in specific functions outside of the drivers.

For this purpose, the PMD API exports a function that provides all the information associated
with a device that can be used to set up a given device feature outside of the driver. This
includes the PCI vendor identifier, the PCI device identifier, the mapping address of the PCI
device registers, and the name of the driver.

The main advantage of this approach is that it gives complete freedom on the choice of the
API used to configure, to start, and to stop such features.

As an example, refer to the configuration of the IEEE1588 feature for the Intel® 82576 Giga-
bit Ethernet Controller and the Intel® 82599 10 Gigabit Ethernet Controller controllers in the
testpmd application.

Other features such as the L3/L4 5-Tuple packet filtering feature of a port can be configured in
the same way. Ethernet* flow control (pause frame) can be configured on the individual port.

8.4. Device Identification, Ownership and Configuration 48

Programmer’s Guide, Release 18.05.1

Refer to the testpmd source code for details. Also, L4 (UDP/TCP/ SCTP) checksum offload by
the NIC can be enabled for an individual packet as long as the packet mbuf is set up correctly.
See Hardware Offload for details.

8.4.5 Configuration of Transmit Queues

Each transmit queue is independently configured with the following information:
» The number of descriptors of the transmit ring

» The socket identifier used to identify the appropriate DMA memory zone from which to
allocate the transmit ring in NUMA architectures

» The values of the Prefetch, Host and Write-Back threshold registers of the transmit queue

» The minimum transmit packets to free threshold (tx_free _thresh). When the number of
descriptors used to transmit packets exceeds this threshold, the network adaptor should
be checked to see if it has written back descriptors. A value of 0 can be passed during
the TX queue configuration to indicate the default value should be used. The default
value for tx_free_thresh is 32. This ensures that the PMD does not search for completed
descriptors until at least 32 have been processed by the NIC for this queue.

» The minimum RS bit threshold. The minimum number of transmit descriptors to use be-
fore setting the Report Status (RS) bit in the transmit descriptor. Note that this parameter
may only be valid for Intel 10 GbE network adapters. The RS bit is set on the last de-
scriptor used to transmit a packet if the number of descriptors used since the last RS bit
setting, up to the first descriptor used to transmit the packet, exceeds the transmit RS
bit threshold (tx_rs_thresh). In short, this parameter controls which transmit descriptors
are written back to host memory by the network adapter. A value of 0 can be passed
during the TX queue configuration to indicate that the default value should be used. The
default value for tx_rs_thresh is 32. This ensures that at least 32 descriptors are used
before the network adapter writes back the most recently used descriptor. This saves
upstream PCle* bandwidth resulting from TX descriptor write-backs. It is important to
note that the TX Write-back threshold (TX wthresh) should be set to 0 when tx_rs_thresh
is greater than 1. Refer to the Intel® 82599 10 Gigabit Ethernet Controller Datasheet for
more details.

The following constraints must be satisfied for tx_free_thresh and tx_rs_thresh:
* tx_rs_thresh must be greater than 0.
» tx_rs_thresh must be less than the size of the ring minus 2.
* tx_rs_thresh must be less than or equal to tx_free_thresh.
* tx_free_thresh must be greater than 0.
» tx_free_thresh must be less than the size of the ring minus 3.

» For optimal performance, TX wthresh should be set to 0 when tx_rs_thresh is greater
than 1.

One descriptor in the TX ring is used as a sentinel to avoid a hardware race condition, hence
the maximum threshold constraints.

Note: When configuring for DCB operation, at port initialization, both the number of transmit
queues and the number of receive queues must be set to 128.

8.4. Device Identification, Ownership and Configuration 49

Programmer’s Guide, Release 18.05.1

8.4.6 Free Tx mbuf on Demand

Many of the drivers do not release the mbuf back to the mempool, or local cache, immediately
after the packet has been transmitted. Instead, they leave the mbuf in their Tx ring and either
perform a bulk release when the tx_rs_thresh has been crossed or free the mbuf when a
slot in the Tx ring is needed.

An application can request the driver to release wused mbufs with the
rte_eth_tx_done_cleanup () APIL This API requests the driver to release mbufs that are
no longer in use, independent of whether or not the tx_rs_thresh has been crossed. There
are two scenarios when an application may want the mbuf released immediately:

» When a given packet needs to be sent to multiple destination interfaces (either for Layer 2
flooding or Layer 3 multi-cast). One option is to make a copy of the packet or a copy of the
header portion that needs to be manipulated. A second option is to transmit the packet
and then poll the rte_eth_tx_done_cleanup () APl until the reference count on the
packet is decremented. Then the same packet can be transmitted to the next destination
interface. The application is still responsible for managing any packet manipulations
needed between the different destination interfaces, but a packet copy can be avoided.
This APl is independent of whether the packet was transmitted or dropped, only that the
mbuf is no longer in use by the interface.

+ Some applications are designed to make multiple runs, like a packet generator. For
performance reasons and consistency between runs, the application may want to reset
back to an initial state between each run, where all mbufs are returned to the mempool.
In this case, it can call the rte_eth_tx_done_cleanup () API for each destination
interface it has been using to request it to release of all its used mbufs.

To determine if a driver supports this API, check for the Free Tx mbuf on demand feature in
the Network Interface Controller Drivers document.

8.4.7 Hardware Offload

Depending on driver capabilities advertised by rte_eth_dev_info_get (), the PMD may
support hardware offloading feature like checksumming, TCP segmentation, VLAN insertion
or lockfree multithreaded TX burst on the same TX queue.

The support of these offload features implies the addition of dedicated status bit(s) and value
field(s) into the rte_mbuf data structure, along with their appropriate handling by the re-
ceive/transmit functions exported by each PMD. The list of flags and their precise meaning
is described in the mbuf APl documentation and in the in Mbuf Library, section “Meta Informa-
tion”.

Per-Port and Per-Queue Offloads

In the DPDK offload API, offloads are divided into per-port and per-queue offloads as follows:

» A per-queue offloading can be enabled on a queue and disabled on another queue at the
same time.

» A pure per-port offload is the one supported by device but not per-queue type.

8.4. Device Identification, Ownership and Configuration 50

Programmer’s Guide, Release 18.05.1

A pure per-port offloading can’t be enabled on a queue and disabled on another queue
at the same time.

A pure per-port offloading must be enabled or disabled on all queues at the same time.

Any offloading is per-queue or pure per-port type, but can’t be both types at same de-
vices.

 Port capabilities = per-queue capabilities + pure per-port capabilities.
» Any supported offloading can be enabled on all queues.

The different offloads capabilities can be queried using rte_eth_dev_info_get (). The
dev_info->[rt]x_queue_offload_capa returnedfrom rte_eth_dev_info_get () in-
cludes all per-queue offloading capabilities. The dev_info->[rt]x_offload_capa re-
turned from rte_eth_dev_info_get () includes all pure per-port and per-queue offloading
capabilities. Supported offloads can be either per-port or per-queue.

Offloads are enabled using the existing DEV_TX_OFFLOAD_x Or DEV_RX_OFFLOAD_x
flags. Any requested offloading by an application must be within the device ca-
pabilities. Any offloading is disabled by default if it is not set in the param-
eter dev_conf->[rt]xmode.offloads to rte_eth_dev_configure () and
[rt]x_conf->offloadst0o rte_eth_[rt]x_queue_setup().

If any offloading is enabled in rte_eth_dev_configure () by an application, it is enabled
on all queues no matter whether it is per-queue or per-port type and no matter whether it is set
orclearedin [rt]x_conf->offloads t0 rte_eth_[rt]x_queue_setup ().

If a per-queue offloading hasn’t been enabled in rte_eth_dev_configure (), it can be
enabled or disabled in rte_eth_ [rt]lx_queue_setup () for individual queue. A newly
added offloads in [rt]x_conf->offloads 10 rte_eth_[rt]x_gueue_setup () input by
application is the one which hasn’t been enabled in rte_eth_dev_configure () and is re-
quested to be enabled in rte_eth_[rt]x_queue_setup (). It must be per-queue type,
otherwise trigger an error log.

For an application to use the Tx offloads API it should set the ETH_TXQ_FLAGS_IGNORE flag
in the txg_flags field located in rte_eth_txconf struct. In such cases it is not required
to set other flags in txg_flags. For an application to use the Rx offloads API it should set
the ignore_offload_bitfield bitinthe rte_eth_rxmode struct. In such cases it is not
required to set other bitfield offloads in the rxmode struct.

8.5 Poll Mode Driver API

8.5.1 Generalities

By default, all functions exported by a PMD are lock-free functions that are assumed not to be
invoked in parallel on different logical cores to work on the same target object. For instance,
a PMD receive function cannot be invoked in parallel on two logical cores to poll the same RX
queue of the same port. Of course, this function can be invoked in parallel by different logical
cores on different RX queues. It is the responsibility of the upper-level application to enforce
this rule.

If needed, parallel accesses by multiple logical cores to shared queues can be explicitly pro-
tected by dedicated inline lock-aware functions built on top of their corresponding lock-free
functions of the PMD API.

8.5. Poll Mode Driver API 51

Programmer’s Guide, Release 18.05.1

8.5.2 Generic Packet Representation

A packet is represented by an rte_mbuf structure, which is a generic metadata structure con-
taining all necessary housekeeping information. This includes fields and status bits corre-
sponding to offload hardware features, such as checksum computation of IP headers or VLAN
tags.

The rte_mbuf data structure includes specific fields to represent, in a generic way, the offload
features provided by network controllers. For an input packet, most fields of the rte_mbuf
structure are filled in by the PMD receive function with the information contained in the receive
descriptor. Conversely, for output packets, most fields of rte_mbuf structures are used by the
PMD transmit function to initialize transmit descriptors.

The mbuf structure is fully described in the Mbuf Library chapter.

8.5.3 Ethernet Device API

The Ethernet device API exported by the Ethernet PMDs is described in the DPDK API Refer-
ence.

8.5.4 Ethernet Device Standard Device Arguments

Standard Ethernet device arguments allow for a set of commonly used arguments/ parameters
which are applicable to all Ethernet devices to be available to for specification of specific device
and for passing common configuration parameters to those ports.

* representor for a device which supports the creation of representor ports this argu-
ment allows user to specify which switch ports to enable port representors for.:

-w BDBF, representor=0
-w BDBF, representor=[0,4,6,9]
-w BDBF, representor=[0-31]

Note: PMDs are not required to support the standard device arguments and users should
consult the relevant PMD documentation to see support devargs.

8.5.5 Extended Statistics API

The extended statistics API allows a PMD to expose all statistics that are available to it, includ-
ing statistics that are unique to the device. Each statistic has three properties name, id and
value:

* name: A human readable string formatted by the scheme detailed below.
* id: An integer that represents only that statistic.
* value: A unsigned 64-bit integer that is the value of the statistic.

Note that extended statistic identifiers are driver-specific, and hence might not be the same for
different ports. The API consists of various rte_eth_xstats_x* () functions, and allows an
application to be flexible in how it retrieves statistics.

8.5. Poll Mode Driver API 52

Programmer’s Guide, Release 18.05.1

Scheme for Human Readable Names

A naming scheme exists for the strings exposed to clients of the API. This is to allow scraping of
the API for statistics of interest. The naming scheme uses strings split by a single underscore
_. The scheme is as follows:

« direction

* detail 1

* detail 2

* detail n

* unit
Examples of common statistics xstats strings, formatted to comply to the scheme proposed
above:

* rx_bytes

®* X _Crc_errors

* tx_multicast_packets

The scheme, although quite simple, allows flexibility in presenting and reading information
from the statistic strings. The following example illustrates the naming scheme:rx_packets.
In this example, the string is split into two components. The first component rx indicates that
the statistic is associated with the receive side of the NIC. The second component packets
indicates that the unit of measure is packets.

A more complicated example: tx_size_128_to_255_packets. In this example, tx indi-
cates transmission, size is the first detail, 128 etc are more details, and packets indicates
that this is a packet counter.

Some additions in the metadata scheme are as follows:

« If the first part does not match rx or t x, the statistic does not have an affinity with either
receive of transmit.

« If the first letter of the second part is g and this g is followed by a number, this statistic is
part of a specific queue.

An example where queue numbers are used is as follows: tx_g7_bytes which indicates this
statistic applies to queue number 7, and represents the number of transmitted bytes on that
queue.

API Design
The xstats APl uses the name, id, and value to allow performant lookup of specific statistics.
Performant lookup means two things;

* No string comparisons with the name of the statistic in fast-path

 Allow requesting of only the statistics of interest

The API ensures these requirements are met by mapping the name of the statistic to a unique
id, which is used as a key for lookup in the fast-path. The API allows applications to request an
array of id values, so that the PMD only performs the required calculations. Expected usage
is that the application scans the name of each statistic, and caches the id if it has an interest

8.5. Poll Mode Driver API 53

Programmer’s Guide, Release 18.05.1

in that statistic. On the fast-path, the integer can be used to retrieve the actual value of the
statistic that the id represents.

API Functions

The API is built out of a small number of functions, which can be used to retrieve the number
of statistics and the names, |Ds and values of those statistics.

* rte_eth_xstats_get_names_by_id(): returns the names of the statistics. When
given a NULL parameter the function returns the number of statistics that are available.

* rte_eth_xstats_get_id_by_name (): Searches for the statistic ID that matches
xstat_name. If found, the id integer is set.

* rte_eth_xstats_get_by_id(): Fills in an array of uint64_t values with matching
the provided ids array. If the ids array is NULL, it returns all statistics that are available.

Application Usage

Imagine an application that wants to view the dropped packet count. If no packets are dropped,
the application does not read any other metrics for performance reasons. If packets are
dropped, the application has a particular set of statistics that it requests. This “set” of statistics
allows the app to decide what next steps to perform. The following code-snippets show how
the xstats API can be used to achieve this goal.

First step is to get all statistics names and list them:

struct rte_eth_xstat_name +xstats_names;
uint64_t x+values;
int len, 1i;

/+ Get number of stats x/
len = rte_eth_xstats_get_names_by_id(port_id, NULL, NULL, O0);
if (len < 0) {

printf ("Cannot get xstats count\n");

goto err;

}

xstats_names = malloc (sizeof (struct rte_eth_xstat_name) * len);

if (xstats_names == NULL) {
printf ("Cannot allocate memory for xstat names\n");
goto err;

}

/+ Retrieve xstats names, passing NULL for IDs to return all statistics #*/

if (len != rte_eth_xstats_get_names_by_id(port_id, =xstats_names, NULL, len)) {
printf ("Cannot get xstat names\n");
goto err;

}

values = malloc (sizeof (values) * len);

if (values == NULL) {
printf ("Cannot allocate memory for xstats\n");
goto err;

}

/* Getting xstats values */
if (len != rte_eth_xstats_get_by_id(port_id, NULL, values, len)) {
printf ("Cannot get xstat values\n");

8.5. Poll Mode Driver API 54

Programmer’s Guide, Release 18.05.1

goto err;

}

/#* Print all xstats names and values #/
for (i = 0; 1 < len; i++) {
printf ("%s: $"PRIu64"\n", xstats_names[i].name, values[i]);

}

The application has access to the names of all of the statistics that the PMD exposes. The ap-
plication can decide which statistics are of interest, cache the ids of those statistics by looking
up the name as follows:

uint64_t id;

uint64_t value;
const char sxstat_name = "rx_errors";

if(!rte_eth_xstats_get_id_by_name (port_id, xstat_name, &id)) {
rte_eth_xstats_get_by_id(port_id, &id, &value, 1);
printf ("%s: $"PRIu64"\n", xstat_name, value);
}
else {
printf ("Cannot find xstats with a given name\n");
goto err;

}

The API provides flexibility to the application so that it can look up multiple statistics using an
array containing multiple id numbers. This reduces the function call overhead of retrieving
statistics, and makes lookup of multiple statistics simpler for the application.

#define APP_NUM _STATS 4

/* application cached these ids previously; see above x*/
uint64_t ids_array[APP_NUM_STATS] = {3,4,7,21};

uint64_t value_array[APP_NUM_STATS];

/* Getting multiple xstats values from array of IDs x/
rte_eth_xstats_get_by_id(port_id, ids_array, value_array, APP_NUM_STATS);

uint32_t i;
for(i = 0; 1 < APP_NUM_STATS; i++) {
printf ("%d: %"PRIu64"\n", ids_arrayl[i], value_arrayl[i]);

}

This array lookup API for xstats allows the application create multiple “groups” of statistics, and
look up the values of those IDs using a single API call. As an end result, the application is able
to achieve its goal of monitoring a single statistic (“rx_errors” in this case), and if that shows
packets being dropped, it can easily retrieve a “set” of statistics using the IDs array parameter
to rte_eth_xstats_get_by_id function.

8.5.6 NIC Reset API

int rte_eth_dev_reset (uintl6_t port_id);

Sometimes a port has to be reset passively. For example when a PF is reset, all its VFs should
also be reset by the application to make them consistent with the PF. A DPDK application also
can call this function to trigger a port reset. Normally, a DPDK application would invokes this
function when an RTE_ETH_EVENT_INTR_RESET event is detected.

It is the duty of the PMD to trigger RTE_ETH_EVENT_INTR_RESET events and the appli-
cation should register a callback function to handle these events. When a PMD needs to
trigger a reset, it can trigger an RTE_ETH_EVENT_INTR_RESET event. On receiving an

8.5. Poll Mode Driver API 55

Programmer’s Guide, Release 18.05.1

RTE_ETH_EVENT_INTR_RESET event, applications can handle it as follows: Stop working
queues, stop calling Rx and Tx functions, and then call rte_eth_dev_reset(). For thread safety
all these operations should be called from the same thread.

For example when PF is reset, the PF sends a message to notify VFs of this event and also
trigger an interrupt to VFs. Then in the interrupt service routine the VFs detects this notification
message and calls _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
NULL). This means that a PF reset triggers an RTE_ETH_EVENT_INTR_RESET event within
VFs. The function _rte_eth_dev_callback_process() will call the registered callback function.
The callback function can trigger the application to handle all operations the VF reset requires
including stopping Rx/Tx queues and calling rte_eth_dev_reset().

The rte_eth_dev_reset() itself is a generic function which only does some hardware reset op-
erations through calling dev_unint() and dev_init(), and itself does not handle synchronization,
which is handled by application.

The PMD itself should not call rte_eth_dev_reset(). The PMD can trigger the application
to handle reset event. It is duty of application to handle all synchronization before it calls
rte_eth_dev_reset().

8.5. Poll Mode Driver API 56

CHAPTER
NINE

GENERIC FLOW API (RTE_FLOW)

9.1 Overview

This API provides a generic means to configure hardware to match specific ingress or egress
traffic, alter its fate and query related counters according to any number of user-defined rules.

It is named rte_flow after the prefix used for all its symbols, and is defined in rte_flow.h.

» Matching can be performed on packet data (protocol headers, payload) and properties
(e.g. associated physical port, virtual device function ID).

» Possible operations include dropping traffic, diverting it to specific queues, to vir-
tual/physical device functions or ports, performing tunnel offloads, adding marks and
SO on.

It is slightly higher-level than the legacy filtering framework which it encompasses and super-
sedes (including all functions and filter types) in order to expose a single interface with an
unambiguous behavior that is common to all poll-mode drivers (PMDs).

9.2 Flow rule

9.2.1 Description

A flow rule is the combination of attributes with a matching pattern and a list of actions. Flow
rules form the basis of this API.

Flow rules can have several distinct actions (such as counting, encapsulating, decapsulating
before redirecting packets to a particular queue, etc.), instead of relying on several rules to
achieve this and having applications deal with hardware implementation details regarding their
order.

Support for different priority levels on a rule basis is provided, for example in order to force a
more specific rule to come before a more generic one for packets matched by both. However
hardware support for more than a single priority level cannot be guaranteed. When supported,
the number of available priority levels is usually low, which is why they can also be implemented
in software by PMDs (e.g. missing priority levels may be emulated by reordering rules).

In order to remain as hardware-agnostic as possible, by default all rules are considered to
have the same priority, which means that the order between overlapping rules (when a packet
is matched by several filters) is undefined.

57

Programmer’s Guide, Release 18.05.1

PMDs may refuse to create overlapping rules at a given priority level when they can be detected
(e.g. if a pattern matches an existing filter).

Thus predictable results for a given priority level can only be achieved with non-overlapping
rules, using perfect matching on all protocol layers.

Flow rules can also be grouped, the flow rule priority is specific to the group they belong to.
All flow rules in a given group are thus processed within the context of that group. Groups
are not linked by default, so the logical hierarchy of groups must be explicitly defined by flow
rules themselves in each group using the JUMP action to define the next group to redirect too.
Only flow rules defined in the default group 0 are guarantee to be matched against, this makes
group 0 the origin of any group hierarchy defined by an application.

Support for multiple actions per rule may be implemented internally on top of non-default hard-
ware priorities, as a result both features may not be simultaneously available to applications.

Considering that allowed pattern/actions combinations cannot be known in advance and would
result in an impractically large number of capabilities to expose, a method is provided to vali-
date a given rule from the current device configuration state.

This enables applications to check if the rule types they need is supported at initialization time,
before starting their data path. This method can be used anytime, its only requirement being
that the resources needed by a rule should exist (e.g. a target RX queue should be configured
first).

Each defined rule is associated with an opagque handle managed by the PMD, applications are
responsible for keeping it. These can be used for queries and rules management, such as
retrieving counters or other data and destroying them.

To avoid resource leaks on the PMD side, handles must be explicitly destroyed by the applica-
tion before releasing associated resources such as queues and ports.

The following sections cover:

+ Attributes (represented by struct rte_flow_attr): properties of a flow rule such
as its direction (ingress or egress) and priority.

» Pattern item (represented by struct rte_flow_item): part of a matching pattern
that either matches specific packet data or traffic properties. It can also describe proper-
ties of the pattern itself, such as inverted matching.

» Matching pattern: traffic properties to look for, a combination of any number of items.

» Actions (represented by struct rte_flow_action): operations to perform when-
ever a packet is matched by a pattern.

9.2.2 Attributes
Attribute: Group

Flow rules can be grouped by assigning them a common group number. Groups allow a logical
hierarchy of flow rule groups (tables) to be defined. These groups can be supported virtually
in the PMD or in the physical device. Group 0 is the default group and this is the only group
which flows are guarantee to matched against, all subsequent groups can only be reached by
way of the JUMP action from a matched flow rule.

9.2. Flow rule 58

Programmer’s Guide, Release 18.05.1

Although optional, applications are encouraged to group similar rules as much as possible
to fully take advantage of hardware capabilities (e.g. optimized matching) and work around
limitations (e.g. a single pattern type possibly allowed in a given group), while being aware that
the groups hierarchies must be programmed explicitly.

Note that support for more than a single group is not guaranteed.

Attribute: Priority
A priority level can be assigned to a flow rule, lower values denote higher priority, with 0 as the
maximum.

Priority levels are arbitrary and up to the application, they do not need to be contiguous nor
start from 0, however the maximum number varies between devices and may be affected by
existing flow rules.

A flow which matches multiple rules in the same group will always matched by the rule with the
highest priority in that group.

If a packet is matched by several rules of a given group for a given priority level, the outcome
is undefined. It can take any path, may be duplicated or even cause unrecoverable errors.

Note that support for more than a single priority level is not guaranteed.

Attribute: Traffic direction

Flow rule patterns apply to inbound and/or outbound traffic.

In the context of this API, ingress and egress respectively stand for inbound and outbound
based on the standpoint of the application creating a flow rule.

There are no exceptions to this definition.

Several pattern items and actions are valid and can be used in both directions. At least one
direction must be specified.

Specifying both directions at once for a given rule is not recommended but may be valid in a
few cases (e.g. shared counters).

Attribute: Transfer

Instead of simply matching the properties of traffic as it would appear on a given DPDK port ID,
enabling this attribute transfers a flow rule to the lowest possible level of any device endpoints
found in the pattern.

When supported, this effectively enables an application to reroute traffic not necessarily in-
tended for it (e.g. coming from or addressed to different physical ports, VFs or applications) at
the device level.

It complements the behavior of some pattern items such as /ltem: PHY _PORT and is mean-
ingless without them.

When transferring flow rules, ingress and egress attributes (Attribute: Traffic direction) keep
their original meaning, as if processing traffic emitted or received by the application.

9.2. Flow rule 59

Programmer’s Guide, Release 18.05.1

9.2.3 Pattern item

Pattern items fall in two categories:

» Matching protocol headers and packet data, usually associated with a specification struc-
ture. These must be stacked in the same order as the protocol layers to match inside
packets, starting from the lowest.

» Matching meta-data or affecting pattern processing, often without a specification struc-
ture. Since they do not match packet contents, their position in the list is usually not
relevant.

ltem specification structures are used to match specific values among protocol fields (or item
properties). Documentation describes for each item whether they are associated with one and
their type name if so.

Up to three structures of the same type can be set for a given item:
* spec: values to match (e.g. a given IPv4 address).
* last: upper bound for an inclusive range with corresponding fields in spec.

* mask: bit-mask applied to both spec and 1ast whose purpose is to distinguish the
values to take into account and/or partially mask them out (e.g. in order to match an IPv4
address prefix).

Usage restrictions and expected behavior:
+ Setting either mask or 1ast without spec is an error.

 Field values in 1ast which are either 0 or equal to the corresponding values in spec are
ignored; they do not generate a range. Nonzero values lower than those in spec are not
supported.

» Setting spec and optionally 1ast without mask causes the PMD to use the default mask
defined for that item (defined as rte_flow_item_{name}_mask constants).

* Not setting any of them (assuming item type allows it) is equivalent to providing an empty
(zeroed) mask for broad (nonspecific) matching.

* mask is a simple bit-mask applied before interpreting the contents of spec and last,
which may yield unexpected results if not used carefully. For example, if for an IPv4
address field, spec provides 70.1.2.3, last provides 10.3.4.5 and mask provides
255.255.0.0, the effective range becomes 710.1.0.0 to 10.3.255.255.

Example of an item specification matching an Ethernet header:

Table 9.1: Ethernet item

Field Subfield | Value
src 00:01:02:03:04
spec | dst 00:2a:66:00:01
type 0x22aa
last | unspecified
src 00:ff:f£:££:00
mask | dst 00:00:00:00:£ff
type 0x0000

9.2. Flow rule 60

Programmer’s Guide, Release 18.05.1

Non-masked bits stand for any value (shown as 2 below), Ethernet headers with the following
properties are thus matched:

* src: ?2?2:01:02:03:27
e dst:?72:2?2:22:2?2:01

e type: 0x?2727?2°?

9.2.4 Matching pattern

A pattern is formed by stacking items starting from the lowest protocol layer to match. This
stacking restriction does not apply to meta items which can be placed anywhere in the stack
without affecting the meaning of the resulting pattern.

Patterns are terminated by END items.

Examples:

Table 9.2: TCPv4

as L4
Index | ltem
0 Ethernet
1 IPv4
2 TCP
3 END

Table 9.3: TCPv6in
VXLAN

Index | ltem

0 Ethernet
IPv4
UDP
VXLAN
Ethernet
IPv6
TCP
END

N OO~ W NN =

9.2. Flow rule 61

Programmer’s Guide, Release 18.05.1

Table 9.4: TCPv4
as L4 with meta

items

Index | ltem

0 VOID

1 Ethernet
2 VOID

3 IPv4

4 TCP

5 VOID

6 VOID

7 END

The above example shows how meta items do not affect packet data matching items, as long
as those remain stacked properly. The resulting matching pattern is identical to “TCPv4 as L4”.

Table 9.5:
UDPv6 any-
where

Index | ltem

0 IPv6

1 UDP

2 END

If supported by the PMD, omitting one or several protocol layers at the bottom of the stack
as in the above example (missing an Ethernet specification) enables looking up anywhere in
packets.

It is unspecified whether the payload of supported encapsulations (e.g. VXLAN payload) is
matched by such a pattern, which may apply to inner, outer or both packets.

Table 9.6: Invalid,

missing L3
Index | Item
0 Ethernet
1 UDP
2 END

The above pattern is invalid due to a missing L3 specification between L2 (Ethernet) and L4
(UDP). Doing so is only allowed at the bottom and at the top of the stack.

9.2.5 Meta item types
They match meta-data or affect pattern processing instead of matching packet data directly,

most of them do not need a specification structure. This particularity allows them to be speci-
fied anywhere in the stack without causing any side effect.

ltem: END

End marker for item lists. Prevents further processing of items, thereby ending the pattern.

9.2. Flow rule 62

Programmer’s Guide, Release 18.05.1

* Its numeric value is 0 for convenience.
* PMD support is mandatory.

* spec, last and mask are ignored.

Table 9.7: END
Field | Value

spec | ignored
last | ignored
mask | ignored

Item: vOID

Used as a placeholder for convenience. It is ignored and simply discarded by PMDs.
* PMD support is mandatory.

* spec, last and mask are ignored.

Table 9.8: VOID

Field | Value

spec | ignored
last | ignored
mask | ignored

One usage example for this type is generating rules that share a common prefix quickly without
reallocating memory, only by updating item types:

Table 9.9: TCP, UDP or ICMP as

L4

Index | ltem

0 Ethernet

1 IPv4

2 UDP | VOID | VOID
3 VOID | TCP | VOID
4 VOID | VOID | ICMP
5 END

ltem: INVERT

Inverted matching, i.e. process packets that do not match the pattern.

* spec, last and mask are ignored.

Table 9.10:
INVERT
Field | Value

spec | ignored
last | ignored
mask | ignored

9.2. Flow rule 63

Programmer’s Guide, Release 18.05.1

Usage example, matching non-TCPv4 packets only:

Table 9.11:
Anything but TCPv4

Index | Item

0 INVERT

1 Ethernet

2 IPv4

3 TCP

4 END
ltem: PF

Matches traffic originating from (ingress) or going to (egress) the physical function of the current
device.

If supported, should work even if the physical function is not managed by the application and
thus not associated with a DPDK port ID.

» Can be combined with any number of /tem: VF to match both PF and VF traffic.

* spec, last and mask must not be set.

Table 9.12: PF

Field | Value
spec | unset
last | unset
mask | unset

ltem: VF
Matches traffic originating from (ingress) or going to (egress) a given virtual function of the
current device.

If supported, should work even if the virtual function is not managed by the application and
thus not associated with a DPDK port ID.

Note this pattern item does not match VF representors traffic which, as separate entities,
should be addressed through their own DPDK port IDs.

+ Can be specified multiple times to match traffic addressed to several VF IDs.
» Can be combined with a PF item to match both PF and VF traffic.

» Default mask matches any VF ID.

Table 9.13: VF
Field | Subfield | Value
spec | id destination VF ID
last | id upper range value
mask | id zeroed to match any VF ID

9.2. Flow rule 64

Programmer’s Guide, Release 18.05.1

Item: PHY PORT

Matches traffic originating from (ingress) or going to (egress) a physical port of the underlying
device.

The first PHY_PORT item overrides the physical port normally associated with the specified
DPDK input port (port_id). This item can be provided several times to match additional physical
ports.

Note that physical ports are not necessarily tied to DPDK input ports (port_id) when those are
not under DPDK control. Possible values are specific to each device, they are not necessarily
indexed from zero and may not be contiguous.

As a device property, the list of allowed values as well as the value associated with a port_id
should be retrieved by other means.

* Default mask matches any port index.

Table 9.14: PHY_PORT
Field | Subfield | Value
spec | index physical port index
last | index upper range value
mask | index zeroed to match any port index

ltem: PORT_1ID

Matches traffic originating from (ingress) or going to (egress) a given DPDK port ID.

Normally only supported if the port ID in question is known by the underlying PMD and related
to the device the flow rule is created against.

This must not be confused with /tem: PHY _PORT which refers to the physical port of a device,
whereas ltem: PORT_ID refers 1o a struct rte_eth_dev object on the application side
(also known as “port representor” depending on the kind of underlying device).

* Default mask matches the specified DPDK port ID.

Table 9.15: PORT_ID

Field | Subfield | Value

spec | id DPDK port ID

last | id upper range value

mask | id zeroed to match any port ID
Item: MARK

Matches an arbitrary integer value which was set using the MARK action in a previously matched
rule.

This item can only specified once as a match criteria as the MARK action can only be specified
once in a flow action.

Note the value of MARK field is arbitrary and application defined.

9.2. Flow rule 65

Programmer’s Guide, Release 18.05.1

Depending on the underlying implementation the MARK item may be supported on the physical
device, with virtual groups in the PMD or not at all.

» Default mask matches any integer value.

Table 9.16: MARK

Field | Subfield [Value

spec | id | integer value

last | id | upper range value

mask | id | zeroed to match any value

9.2.6 Data matching item types
Most of these are basically protocol header definitions with associated bit-masks. They must
be specified (stacked) from lowest to highest protocol layer to form a matching pattern.

The following list is not exhaustive, new protocols will be added in the future.

ltem: ANY
Matches any protocol in place of the current layer, a single ANY may also stand for several
protocol layers.

This is usually specified as the first pattern item when looking for a protocol anywhere in a
packet.

» Default mask stands for any number of layers.

Table 9.17: ANY

Field | Subfield | Value

spec | num number of layers covered

last | num upper range value

mask | num zeroed to cover any number of layers

Example for VXLAN TCP payload matching regardless of outer L3 (IPv4 or IPv6) and L4 (UDP)
both matched by the first ANY specification, and inner L3 (IPv4 or IPv6) matched by the second
ANY specification:

Table 9.18: TCP in VXLAN with wildcards

Index | Item | Field | Subfield | Value
0 Ethernet

1 ANY ‘ spec ‘ num ‘ 2

2 VXLAN

3 Ethernet

4 ANY ‘ spec ‘ num ‘ 1

5 TCP

6 END

9.2. Flow rule 66

Programmer’s Guide, Release 18.05.1

ltem: RAW

Matches a byte string of a given length at a given offset.

Offset is either absolute (using the start of the packet) or relative to the end of the previous

matched item in the stack, in which case negative values are allowed.

If search is enabled, offset is used as the starting point. The search area can be delimited by
setting limit to a nonzero value, which is the maximum number of bytes after offset where the
pattern may start.

Matching a zero-length pattern is allowed, doing so resets the relative offset for subsequent

items.

 This type does not support ranges (1ast field).

» Default mask matches all fields exactly.

Table 9.19: RAW

Field Subfield Value
relative | look for pattern after the previous item
search search pattern from offset (see also 1imit)
reserved | reserved, must be set to zero

spec | offset absolute or relative offset for pattern
limit search area limit for start of pattern
length pattern length
pattern | byte string to look for

last | if specified, either all O or with the same values as spec

mask | bit-mask applied to spec values with usual behavior

Example pattern looking for several strings at various offsets of a UDP payload, using com-
bined RAW items:

9.2. Flow rule

67

Programmer’s Guide, Release 18.05.1

Table 9.20: UDP payload matching

Index | Item [Field | Subfield | Value

0 Ethernet

1 IPv4

2 UDP
relative | 1
search 1
offset 10

3 RAW | spec Timit 0
length 3
pattern | “fo0”
relative | 1
search 0
offset 20

4 RAW spec T 0
length 3
pattern | “bar’
relative | 1
search 0
offset -29

5 RAW | spec Timic 0
length 3
pattern “baz”

6 END

This translates to:

» Locate “foo” at least 10 bytes deep inside UDP payload.

* Locate “bar” after “foo” plus 20 bytes.

* Locate “baz” after “bar” minus 29 bytes.

Such a packet may be represented as follows (not to scale):

Note that matching subsequent pattern items would resume after “baz”, not “bar” since match-
ing is always performed after the previous item of the stack.

Item: ETH

Matches an Ethernet header.

The type field either stands for “EtherType” or “TPID” when followed by so-called layer 2.5
pattern items such as RTE_FLOW_ITEM_TYPE_VLAN. In the latter case, type refers to that of

9.2. Flow rule

68

Programmer’s Guide, Release 18.05.1

the outer header, with the inner EtherType/TPID provided by the subsequent pattern item. This
is the same order as on the wire.

» dst: destination MAC.
» src: source MAC.
* type: EtherType or TPID.

» Default mask matches destination and source addresses only.

ltem: VLAN

Matches an 802.1Q/ad VLAN tag.

The corresponding standard outer EtherType (TPID) values are ETHER_TYPE_VLAN Or
ETHER_TYPE_QINQ. It can be overridden by the preceding pattern item.

* tci: tag control information.
* inner_type: inner EtherType or TPID.

+ Default mask matches the VID part of TCI only (lower 12 bits).

Item: IPV4

Matches an IPv4 header.
Note: IPv4 options are handled by dedicated pattern items.
* hdr: IPv4 header definition (rte_ip.h).

» Default mask matches source and destination addresses only.

Item: IPV6

Matches an IPv6 header.
Note: IPv6 options are handled by dedicated pattern items, see ltem: IPV6_EXT.
* hdr: IPv6 header definition (rte_ip.h).

 Default mask matches source and destination addresses only.

ltem: ICMP

Matches an ICMP header.
* hdr: ICMP header definition (rte_icmp.h).

» Default mask matches ICMP type and code only.

9.2. Flow rule 69

Programmer’s Guide, Release 18.05.1

Item: uDP

Matches a UDP header.
* hdr: UDP header definition (rte_udp.h).

+ Default mask matches source and destination ports only.

ltem: TCP

Matches a TCP header.
* hdr: TCP header definition (rte_tcp.h).

» Default mask matches source and destination ports only.

ltem: scTP

Matches a SCTP header.
* hdr: SCTP header definition (rte_sctp.h).

+ Default mask matches source and destination ports only.

ltem: VXLAN

Matches a VXLAN header (RFC 7348).
* flags: normally 0x08 (I flag).
* rsvdO0: reserved, normally 0x000000.
* vni: VXLAN network identifier.
* rsvdl: reserved, normally 0x00.

+ Default mask matches VNI only.

ltem: E_TAG

Matches an IEEE 802.1BR E-Tag header.

The corresponding standard outer EtherType (TPID) value is ETHER_TYPE_ETAG. It can be
overridden by the preceding pattern item.

* epcp_edei_in_ecid_b: E-Tag control information (E-TCl), E-PCP (3b), E-DEI (1b),
ingress E-CID base (12b).

* rsvd_grp_ecid_b: reserved (2b), GRP (2b), E-CID base (12b).
* in_ecid_e: ingress E-CID ext.
* ecid_e: E-CID ext.

* inner_type: inner EtherType or TPID.

Default mask simultaneously matches GRP and E-CID base.

9.2. Flow rule 70

Programmer’s Guide, Release 18.05.1

ltem: NVGRE

Matches a NVGRE header (RFC 7637).

* c_k_s_rsvd0_ver: checksum (1b), undefined (1b), key bit (1b), sequence number
(1b), reserved 0 (9b), version (3b). This field must have value 0x2000 according to RFC
7637.

* protocol: protocol type (0x6558).
e tni: virtual subnet ID.

* flow_id: flow ID.

Default mask matches TNI only.

ltem: MPLS

Matches a MPLS header.
* label tc_s_ttl: label, TC, Bottom of Stack and TTL.

» Default mask matches label only.

ltem: GRE

Matches a GRE header.
* ¢_rsvd0_ver: checksum, reserved 0 and version.
* protocol: protocol type.

+ Default mask matches protocol only.

ltem: FUZZY

Fuzzy pattern match, expect faster than default.

This is for device that support fuzzy match option. Usually a fuzzy match is fast but the cost is
accuracy. i.e. Signature Match only match pattern’s hash value, but it is possible two different
patterns have the same hash value.

Matching accuracy level can be configured by threshold. Driver can divide the range of thresh-
old and map to different accuracy levels that device support.

Threshold 0 means perfect match (no fuzziness), while threshold Oxffffffff means fuzziest
match.

Table 9.21: FUZZY

Field | Subfield Value

spec | threshold | 0 as perfect match, Oxffffffff as fuzziest match
last | threshold | upper range value

mask | threshold | bit-mask apply to “spec” and “last”

Usage example, fuzzy match a TCPv4 packets:

9.2. Flow rule 71

Programmer’s Guide, Release 18.05.1

Table 9.22: Fuzzy

matching
Index | Item
0 FUZZY
1 Ethernet
2 IPv4
3 TCP
4 END

Item: GTP, GTPC, GTPU

Matches a GTPv1 header.

Note: GTP, GTPC and GTPU use the same structure. GTPC and GTPU item are defined for a
user-friendly APl when creating GTP-C and GTP-U flow rules.

* v_pt_rsv_flags: version (3b), protocol type (1b), reserved (1b), extension header flag
(1b), sequence number flag (1b), N-PDU number flag (1b).

* msg_type: message type.

* msg_len: message length.

teid: tunnel endpoint identifier.

Default mask matches teid only.

ltem: ESP

Matches an ESP header.
* hdr: ESP header definition (rte_esp.h).

* Default mask matches SPI only.

Item: GENEVE

Matches a GENEVE header.

* ver_opt_len_o_c_rsvd0: version (2b), length of the options fields (6b), OAM packet
(1b), critical options present (1b), reserved 0 (6b).

* protocol: protocol type.
* vni: virtual network identifier.
* rsvdl: reserved, normally 0x00.

» Default mask matches VNI only.

ltem: VXLAN-GPE

Matches a VXLAN-GPE header (draft-ietf-nvo3-vxlan-gpe-05).

9.2. Flow rule 72

Programmer’s Guide, Release 18.05.1

» flags: normally OxOC (I and P flags).
* rsvd0: reserved, normally 0x0000.

* protocol: protocol type.

» vni: VXLAN network identifier.

* rsvdl: reserved, normally 0x00.

* Default mask matches VNI only.

ltem: ARP_ETH IPV4

Matches an ARP header for Ethernet/IPv4.
* hdr: hardware type, normally 1.
» pro: protocol type, normally 0x0800.
* hln: hardware address length, normally 6.
* pln: protocol address length, normally 4.
» op: opcode (1 for request, 2 for reply).
* sha: sender hardware address.
* spa: sender IPv4 address.
* tha: target hardware address.
» tpa: target IPv4 address.
* Default mask matches SHA, SPA, THA and TPA.

ltem: IPV6_EXT

Matches the presence of any IPv6 extension header.
* next_hdr: next header.
» Default mask matches next_hdr.
Normally preceded by any of:
 ltem: IPV6
* ltem: IPV6_EXT

ltem: ICMP6

Matches any ICMPv6 header.
* type: ICMPV6 type.
* code: ICMPv6 code.
* checksum: ICMPv6 checksum.

» Default mask matches type and code.

9.2. Flow rule

73

Programmer’s Guide, Release 18.05.1

Iltem: ICMP6_ND NS

Matches an ICMPv6 neighbor discovery solicitation.
* type: ICMPV6 type, normally 135.
* code: ICMPv6 code, normally 0.
* checksum: ICMPv6 checksum.
* reserved: reserved, normally 0.
* target_addr: target address.

+ Default mask matches target address only.

Item: ICMP6_ND_NA

Matches an ICMPV6 neighbor discovery advertisement.
* type: ICMPV6 type, normally 136.
* code: ICMPvV6 code, normally 0.
* checksum: ICMPv6 checksum.
* rso_reserved: route flag (1b), solicited flag (1b), override flag (1b), reserved (29b).
* target_addr: target address.

+ Default mask matches target address only.

ltem: ICMP6_ND_ OPT

Matches the presence of any ICMPV6 neighbor discovery option.
* type: ND option type.
* length: ND option length.
+ Default mask matches type only.
Normally preceded by any of:
o ltem: ICMP6_ND_NA
* Item: ICMP6_ND_NS
* Item: ICMP6_ND_OPT

ltem: ICMP6_ND OPT SLA ETH

Matches an ICMPv6 neighbor discovery source Ethernet link-layer address option.
* type: ND option type, normally 1.
* length: ND option length, normally 1.
* sla: source Ethernet LLA.

» Default mask matches source link-layer address only.

9.2. Flow rule 74

Programmer’s Guide, Release 18.05.1

Normally preceded by any of:
» ltem: ICMP6_ND_NA
s Item: ICMP6_ND_OPT

Item: ICMP6_ND_OPT_ TLA ETH

Matches an ICMPv6 neighbor discovery target Ethernet link-layer address option.
» type: ND option type, normally 2.
* length: ND option length, normally 1.
* tla: target Ethernet LLA.
+ Default mask matches target link-layer address only.
Normally preceded by any of:
» ltem: ICMP6_ND_ NS
» ltem: ICMP6_ND_OPT

9.2.7 Actions

Each possible action is represented by a type. Some have associated configuration structures.
Several actions combined in a list can be assigned to a flow rule and are performed in order.
They fall in three categories:

+ Actions that modify the fate of matching traffic, for instance by dropping or assigning it a
specific destination.

+ Actions that modify matching traffic contents or its properties. This includes
adding/removing encapsulation, encryption, compression and marks.

* Actions related to the flow rule itself, such as updating counters or making it non-
terminating.

Flow rules being terminating by default, not specifying any action of the fate kind results in
undefined behavior. This applies to both ingress and egress.

PASSTHRU, when supported, makes a flow rule non-terminating.
Like matching patterns, action lists are terminated by END items.

Example of action that redirects packets to queue index 10:

Table 9.23:

Queue action
Field Value
index | 10

Actions are performed in list order:

9.2. Flow rule 75

Programmer’s Guide, Release 18.05.1

Table 9.24: Count

then drop
Index | Action
0 COUNT
1 DROP
2 END

Table 9.25: Mark, count then redirect

Index | Action Field Value

0 MARK mark Ox2a
shared | O

1 COUNT i 0

2 QUEUE | queue 10

3 END

Table 9.26: Redirect to queue 5

Index | Action | Field [Value
0 DROP

1 QUEUE ‘ queue ‘ 5

2 END

In the above example, while DROP and QUEUE must be performed in order, both have to
happen before reaching END. Only QUEUE has a visible effect.

Note that such a list may be thought as ambiguous and rejected on that basis.

Table 9.27: Redirect to queues 5 and

3
Index | Action Field Value
0 QUEUE | queue | 5
1 VOID
2 QUEUE ‘ queue ‘ 3
3 END

As previously described, all actions must be taken into account. This effectively duplicates
traffic to both queues. The above example also shows that VOID is ignored.

9.2.8 Action types

Common action types are described in this section. Like pattern item types, this list is not
exhaustive as new actions will be added in the future.

9.2. Flow rule 76

Programmer’s Guide, Release 18.05.1

Action: END

End marker for action lists. Prevents further processing of actions, thereby ending the list.
* lts numeric value is 0 for convenience.
* PMD support is mandatory.
» No configurable properties.

Table 9.28:
END

Field
no properties

Action: vOID

Used as a placeholder for convenience. It is ignored and simply discarded by PMDs.
» PMD support is mandatory.
* No configurable properties.

Table 9.29:
VOID

Field
no properties

Action: PASSTHRU

Leaves traffic up for additional processing by subsequent flow rules; makes a flow rule non-
terminating.

» No configurable properties.

Table 9.30:
PASSTHRU
Field

no properties

Example to copy a packet to a queue and continue processing by subsequent flow rules:

Table 9.31: Copy to queue 8

Index | Action | Field | Value
0 PASSTHRU

1 QUEUE \ queue \ 8

2 END

Action: JguMp

Redirects packets to a group on the current device.

9.2. Flow rule 77

Programmer’s Guide, Release 18.05.1

In a hierarchy of groups, which can be used to represent physical or logical flow group/tables
on the device, this action redirects the matched flow to the specified group on that device.

If a matched flow is redirected to a table which doesn’t contain a matching rule for that flow
then the behavior is undefined and the resulting behavior is up to the specific device. Best
practice when using groups would be define a default flow rule for each group which a defines
the default actions in that group so a consistent behavior is defined.

Defining an action for matched flow in a group to jump to a group which is higher in the group
hierarchy may not be supported by physical devices, depending on how groups are mapped
to the physical devices. In the definitions of jump actions, applications should be aware that it
may be possible to define flow rules which trigger an undefined behavior causing flows to loop
between groups.

Table 9.32: JUMP

Field Value
group | Group to redirect packets to

Action: MARK

Attaches an integer value to packets and sets PKT_RX_FDIR and PKT_RX_FDIR_ID mbuf
flags.

This value is arbitrary and application-defined. Maximum allowed value depends on the under-
lying implementation. It is returned in the hash.fdir.hi mbuf field.

Table 9.33: MARK

Field | Value
id integer value to return with packets

Action: FLAG

Flags packets. Similar to Action: MARK without a specific value; only sets the PKT_RX_FDIR
mbuf flag.

* No configurable properties.

Table 9.34:
FLAG

Field
no properties

Action: QUEUE

Assigns packets to a given queue index.

Table 9.35: QUEUE

Field Value
index | queue index to use

9.2. Flow rule 78

Programmer’s Guide, Release 18.05.1

Action: DROP

Drop packets.

* No configurable properties.

Table 9.36:
DROP

Field
no properties

Action: COUNT

Adds a counter action to a matched flow.

If more than one count action is specified in a single flow rule, then each action must specify a
unique id.

Counters can be retrieved and reset through rte_flow_query(), See struct
rte_flow_gquery_count.

The shared flag indicates whether the counter is unique to the flow rule the action is specified
with, or whether it is a shared counter.

For a count action with the shared flag set, then then a global device namespace is assumed
for the counter id, so that any matched flow rules using a count action with the same counter
id on the same port will contribute to that counter.

For ports within the same switch domain then the counter id namespace extends to all ports
within that switch domain.

Table 9.37: COUNT

Field Value
shared | shared counter flag
id counter id

Query structure to retrieve and reset flow rule counters:

Table 9.38: COUNT query

Field I/O | Value

reset in reset counter after query
hits_set out | hits field is set
bytes_set | out | bytes field is set

hits out | number of hits for this rule
bytes out | number of bytes through this rule
Action: RSS

Similar to QUEUE, except RSS is additionally performed on packets to spread them among
several queues according to the provided parameters.

9.2. Flow rule 79

Programmer’s Guide, Release 18.05.1

Unlike global RSS settings used by other DPDK APIs, unsetting the types field does not
disable RSS in a flow rule. Doing so instead requests safe unspecified “best-effort” settings
from the underlying PMD, which depending on the flow rule, may result in anything ranging
from empty (single queue) to all-inclusive RSS.

Note: RSS hash result is stored in the hash. rss mbuf field which overlaps hash. fdir.lo.
Since Action: MARK sets the hash.fdir.hi field only, both can be requested simultane-
ously.

Also, regarding packet encapsulation 1evel:

* 0 requests the default behavior. Depending on the packet type, it can mean outermost,
innermost, anything in between or even no RSS.

It basically stands for the innermost encapsulation level RSS can be performed on ac-
cording to PMD and device capabilities.

+ 1 requests RSS to be performed on the outermost packet encapsulation level.

* 2 and subsequent values request RSS to be performed on the specified inner
packet encapsulation level, from outermost to innermost (lower to higher values).

Values other than 0 are not necessarily supported.

Requesting a specific RSS level on unrecognized traffic results in undefined behavior. For
predictable results, it is recommended to make the flow rule pattern match packet headers up
to the requested encapsulation level so that only matching traffic goes through.

Table 9.39: RSS

Field Value

func RSS hash function to apply

level encapsulation level for types

types specific RSS hash types (see ETH_RSS_ «)

key_len hash key length in bytes
queue_num | humber of entries in queue

key hash key
queue queue indices to use
Action: PF

Directs matching traffic to the physical function (PF) of the current device.
See ltem: PF.

» No configurable properties.

Table 9.40: PF

Field
no properties

Action: VF

Directs matching traffic to a given virtual function of the current device.

9.2. Flow rule 80

Programmer’s Guide, Release 18.05.1

Packets matched by a VF pattern item can be redirected to their original VF ID instead of the
specified one. This parameter may not be available and is not guaranteed to work properly if
the VF part is matched by a prior flow rule or if packets are not addressed to a VF in the first
place.

See ltem: VF.
Table 9.41: VF
Field Value
original | use original VF ID if possible
id VF ID

Action: PHY PORT

Directs matching traffic to a given physical port index of the underlying device.
See Iltem: PHY _PORT.

Table 9.42: PHY_PORT

Field Value
original | use original port index if possible
index physical port index

Action: PORT ID

Directs matching traffic to a given DPDK port ID.
See ltem: PORT _ID.

Table 9.43: PORT_ID

Field Value
original | use original DPDK port ID if possible
id DPDK port ID

Action: METER

Applies a stage of metering and policing.

The metering and policing (MTR) object has to be first created using the rte_mtr_create() API
function. The ID of the MTR object is specified as action parameter. More than one flow can
use the same MTR object through the meter action. The MTR object can be further updated
or queried using the rte_mtr* API.

Table 9.44: METER

Field Value
mtr_id | MTR object ID

9.2. Flow rule 81

Programmer’s Guide, Release 18.05.1

Action: SECURITY

Perform the security action on flows matched by the pattern items according to the configura-
tion of the security session.

This action modifies the payload of matched flows. For INLINE_CRYPTO, the security protocol
headers and IV are fully provided by the application as specified in the flow pattern. The
payload of matching packets is encrypted on egress, and decrypted and authenticated on
ingress. For INLINE_PROTOCOL, the security protocol is fully offloaded to HW, providing full
encapsulation and decapsulation of packets in security protocols. The flow pattern specifies
both the outer security header fields and the inner packet fields. The security session specified
in the action must match the pattern parameters.

The security session specified in the action must be created on the same port as the flow
action that is being specified.

The ingress/egress flow attribute should match that specified in the security session if the
security session supports the definition of the direction.

Multiple flows can be configured to use the same security session.

Table 9.45: SECURITY

Field Value
security_session | security session to apply

The following is an example of configuring IPsec inline using the INLINE_CRYPTO security
session:

The encryption algorithm, keys and salt are part of the opaque rte_security_session.
The SA is identified according to the IP and ESP fields in the pattern items.

Table 9.46: IPsec
inline crypto flow
pattern items.

Index | Item
0 Ethernet
1 IPv4
2 ESP
3 END

Table 9.47: IPsec in-
line flow actions.

Index | Action
0 SECURITY
1 END

Action: OF_SET MPLS TTL

Implements OFPAT_SET_MPLS_TTL (“MPLS TTL’) as defined by the OpenFlow Switch Spec-
ification.

9.2. Flow rule 82

https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/

Programmer’s Guide, Release 18.05.1

Table 9.48:
OF SET MPLS TTL
Field Value

mpls_ttl | MPLSTTL

Action: OF_DEC_MPLS_TTL

Implements OFPAT_DEC_MPLS_TTL (“decrement MPLS TTL’) as defined by the OpenFlow
Switch Specification.

Table 9.49:
OF DEC_MPLS TTL
Field

no properties

Action: OF_SET_NW_TTL

Implements OFPAT_SET_NW_TTL (“IP TTL’) as defined by the OpenFlow Switch Specification.

Table 9.50:
OF SET NW_TTL
Field Value

nw_ttl | IPTTL

Action: OF DEC_NW_TTL

Implements OFPAT_DEC_NW_TTL (“decrement IP TTL') as defined by the OpenFlow Switch
Specification.

Table 9.51:
OF DEC NW _TTL
Field

no properties

Action: OF_COPY_TTL_OUT

Implements OFPAT_COPY_TTL_OUT (“copy TTL “outwards” — from next-to-outermost to outer-
most”) as defined by the OpenFlow Switch Specification.

Table 9.52:
OF _COPY_TTL_OUT
Field

no properties

9.2. Flow rule 83

https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/

Programmer’s Guide, Release 18.05.1

Action: OF_COPY_TTIL 1IN

Implements OFPAT_COPY_TTL_IN (“copy TTL “inwards” — from outermost to next-to-
outermost”) as defined by the OpenFlow Switch Specification.

Table 9.53:
OF COPY_TTL_IN
Field

no properties

Action: OF_POP_VLAN

Implements OFPAT_POP_VLAN (“pop the outer VLAN tag”) as defined by the OpenFlow Switch
Specification.

Table 9.54:
OF POP_VLAN
Field

no properties

Action: OF_PUSH_VLAN

Implements OFPAT_PUSH_VLAN (“push a new VLAN tag”) as defined by the OpenFlow Switch
Specification.

Table 9.55:
OF PUSH_VLAN
Field Value

ethertype | EtherType

Action: OF_SET_VLAN_VID

Implements OFPAT_SET_VLAN_VID (“set the 802.1q VLAN id”) as defined by the OpenFlow
Switch Specification.

Table 9.56:
OF _SET_VLAN_ VID
Field Value

vlan_vid | VLANid

Action: OF_SET VLAN PCP

Implements OFPAT_SET_LAN_PCP (“set the 802.1q priority”) as defined by the OpenFlow
Switch Specification.

9.2. Flow rule 84

https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/

Programmer’s Guide, Release 18.05.1

Table 9.57:
OF SET VLAN_PCP
Field Value

vlan_pcp | VLAN priority

Action: OF_POP_MPLS

Implements OFPAT_POP_MPLS (“pop the outer MPLS tag”) as defined by the OpenFlow Switch
Specification.

Table 9.58:
OF POP_MPLS
Field Value

ethertype | EtherType

Action: OF_PUSH_MPLS

Implements OFPAT_PUSH_MPLS (“push a new MPLS tag”) as defined by the OpenFlow Switch
Specification.

Table 9.59:
OF _PUSH_MPLS
Field Value

ethertype | EtherType

Action: VXLAN ENCAP

Performs a VXLAN encapsulation action by encapsulating the matched flow in the VXLAN
tunnel as defined in the“rte_flow_action_vxlan_encap* flow items definition.

This action modifies the payload of matched flows. The flow definition specified in the
rte_flow_action_tunnel_encap action structure must define a valid VLXAN network
overlay which conforms with RFC 7348 (Virtual eXtensible Local Area Network (VXLAN): A
Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks). The pattern
must be terminated with the RTE_FLOW_ITEM_TYPE_END item type.

Table 9.60: VXLAN_ENCAP

Field Value
definition | Tunnel end-point overlay definition

9.2. Flow rule 85

https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/

Programmer’s Guide, Release 18.05.1

Table 9.61: IPv4
VXLAN flow pattern

example.
Index | ltem
0 Ethernet
1 IPv4
2 UbDP
3 VXLAN
4 END

Action: VXLAN DECAP

Performs a decapsulation action by stripping all headers of the VXLAN tunnel network overlay
from the matched flow.

The flow items pattern defined for the flow rule with which a VX1.AN_DECAP action is specified,
must define a valid VXLAN tunnel as per RFC7348. If the flow pattern does not specify a valid
VXLAN tunnel then a RTE_FLOW_ERROR_TYPE_ACTION error should be returned.

This action modifies the payload of matched flows.

Action: NVGRE_ENCAP

Performs a NVGRE encapsulation action by encapsulating the matched flow in the NVGRE
tunnel as defined in the“rte_flow_action_tunnel_encap* flow item definition.

This action modifies the payload of matched flows. The flow definition specified in the
rte_flow_action_tunnel_encap action structure must defined a valid NVGRE network
overlay which conforms with RFC 7637 (NVGRE: Network Virtualization Using Generic Rout-
ing Encapsulation). The pattern must be terminated with the RTE_FLOW_ITEM_TYPE_END
item type.

Table 9.62: NVGRE_ENCAP

Field Value
definition | NVGRE end-point overlay definition

Table 9.63: IPv4
NVGRE flow pat-
tern example.

Index | Item

0 Ethernet
1 IPv4

2 NVGRE
3 END

Action: NVGRE_DECAP

Performs a decapsulation action by stripping all headers of the NVGRE tunnel network overlay
from the matched flow.

9.2. Flow rule 86

Programmer’s Guide, Release 18.05.1

The flow items pattern defined for the flow rule with which a NVGRE_DECAP action is specified,
must define a valid NVGRE tunnel as per RFC7637. If the flow pattern does not specify a valid
NVGRE tunnel then a RTE_ FLOW_ERROR_TYPE_ACTION error should be returned.

This action modifies the payload of matched flows.

9.2.9 Negative types

All specified pattern items (enum rte_flow_item_type) and actions (enum
rte_flow_action_type) use positive identifiers.

The negative space is reserved for dynamic types generated by PMDs during run-time. PMDs
may encounter them as a result but must not accept negative identifiers they are not aware of.

A method to generate them remains to be defined.

9.2.10 Planned types

Pattern item types will be added as new protocols are implemented.

Variable headers support through dedicated pattern items, for example in order to match spe-
cific IPv4 options and IPv6 extension headers would be stacked after IPv4/IPv6 items.

Other action types are planned but are not defined yet. These include the ability to alter packet
data in several ways, such as performing encapsulation/decapsulation of tunnel headers.

9.3 Rules management

A rather simple API with few functions is provided to fully manage flow rules.

Each created flow rule is associated with an opaque, PMD-specific handle pointer. The appli-
cation is responsible for keeping it until the rule is destroyed.

Flows rules are represented by struct rte_flow objects.

9.3.1 Validation

Given that expressing a definite set of device capabilities is not practical, a dedicated function
is provided to check if a flow rule is supported and can be created.
int
rte_flow_validate (uintl6_t port_id,
const struct rte_flow_attr =xattr,
const struct rte_flow_item patternl],

const struct rte_flow_action actions|],
struct rte_flow_error xerror);

The flow rule is validated for correctness and whether it could be accepted by the device
given sufficient resources. The rule is checked against the current device mode and queue
configuration. The flow rule may also optionally be validated against existing flow rules and
device resources. This function has no effect on the target device.

The returned value is guaranteed to remain valid only as long as no successful calls to
rte_flow_create () Of rte_flow_destroy () are made in the meantime and no device

9.3. Rules management 87

Programmer’s Guide, Release 18.05.1

parameter affecting flow rules in any way are modified, due to possible collisions or resource
limitations (although in such cases EINVAL should not be returned).

Arguments:

port_id: port identifier of Ethernet device.

attr: flow rule attributes.

pattern: pattern specification (list terminated by the END pattern item).
actions: associated actions (list terminated by the END action).

error: perform verbose error reporting if not NULL. PMDs initialize this structure in case
of error only.

Return values:

0 if flow rule is valid and can be created. A negative errno value otherwise (rte_errno
is also set), the following errors are defined.

-ENOSYS: underlying device does not support this functionality.
-EINVAL: unknown or invalid rule specification.

—-ENOTSUP: valid but unsupported rule specification (e.g. partial bit-masks are unsup-
ported).

EEXIST: collision with an existing rule. Only returned if device supports flow rule colli-
sion checking and there was a flow rule collision. Not receiving this return code is no
guarantee that creating the rule will not fail due to a collision.

ENOMEM: not enough memory to execute the function, or if the device supports resource
validation, resource limitation on the device.

—-EBUSY: action cannot be performed due to busy device resources, may suc-
ceed if the affected queues or even the entire port are in a stopped state (see
rte_eth_dev_rx_queue_stop () and rte_eth_dev_stop()).

9.3.2 Creation

Creating a flow rule is similar to validating one, except the rule is actually created and a handle
returned.

struct rte_flow =«
rte_flow_create (uintl6_t port_id,

const struct rte_flow_attr =xattr,

const struct rte_flow_item pattern|[],
const struct rte_flow_action xactions([],
struct rte_flow_error xerror);

Arguments:

port_id: port identifier of Ethernet device.
attr: flow rule attributes.
pattern: pattern specification (list terminated by the END pattern item).

actions: associated actions (list terminated by the END action).

9.3. Rules management 88

Programmer’s Guide, Release 18.05.1

» error: perform verbose error reporting if not NULL. PMDs initialize this structure in case
of error only.

Return values:

A valid handle in case of success, NULL otherwise and rte_errno is set to the positive
version of one of the error codes defined for rte_flow_validate ().

9.3.3 Destruction

Flow rules destruction is not automatic, and a queue or a port should not be released if any
are still attached to them. Applications must take care of performing this step before releasing
resources.

int
rte_flow_destroy (uintl6_t port_id,
struct rte_flow *flow,
struct rte_flow_error +error);

Failure to destroy a flow rule handle may occur when other flow rules depend on it, and de-
stroying it would result in an inconsistent state.

This function is only guaranteed to succeed if handles are destroyed in reverse order of their
creation.

Arguments:
* port_id: port identifier of Ethernet device.
» f1ow: flow rule handle to destroy.

» error: perform verbose error reporting if not NULL. PMDs initialize this structure in case
of error only.

Return values:

» 0 on success, a negative errno value otherwise and rte_errno is set.

9.3.4 Flush

Convenience function to destroy all flow rule handles associated with a port. They are released
as with successive calls to rte_flow_destroy ().

int
rte_flow_flush (uintl6_t port_id,
struct rte_flow_error +error);

In the unlikely event of failure, handles are still considered destroyed and no longer valid but
the port must be assumed to be in an inconsistent state.

Arguments:
» port_id: port identifier of Ethernet device.

» error: perform verbose error reporting if not NULL. PMDs initialize this structure in case
of error only.

Return values:

» 0 on success, a negative errno value otherwise and rte_errno is set.

9.3. Rules management 89

Programmer’s Guide, Release 18.05.1

9.3.5 Query

Query an existing flow rule.

This function allows retrieving flow-specific data such as counters. Data is gathered by special
actions which must be present in the flow rule definition.
int
rte_flow_query (uintl6_t port_id,
struct rte_flow *flow,
const struct rte_flow_action xaction,

void xdata,
struct rte_flow_error *error);

Arguments:
* port_id: port identifier of Ethernet device.
» flow: flow rule handle to query.
* action: action to query, this must match prototype from flow rule.
* data: pointer to storage for the associated query data type.

» error: perform verbose error reporting if not NULL. PMDs initialize this structure in case
of error only.

Return values:

» 0 on success, a negative errno value otherwise and rte_errno is set.

9.4 Isolated mode

The general expectation for ingress traffic is that flow rules process it first; the remaining un-
matched or pass-through traffic usually ends up in a queue (with or without RSS, locally or in
some sub-device instance) depending on the global configuration settings of a port.

While fine from a compatibility standpoint, this approach makes drivers more complex as they
have to check for possible side effects outside of this APl when creating or destroying flow
rules. It results in a more limited set of available rule types due to the way device resources
are assigned (e.g. no support for the RSS action even on capable hardware).

Given that nonspecific traffic can be handled by flow rules as well, isolated mode is a means
for applications to tell a driver that ingress on the underlying port must be injected from the
defined flow rules only; that no default traffic is expected outside those rules.

This has the following benefits:

+ Applications get finer-grained control over the kind of traffic they want to receive (no traffic
by default).

» More importantly they control at what point nonspecific traffic is handled relative to other
flow rules, by adjusting priority levels.

 Drivers can assign more hardware resources to flow rules and expand the set of sup-
ported rule types.

Because toggling isolated mode may cause profound changes to the ingress processing path
of a driver, it may not be possible to leave it once entered. Likewise, existing flow rules or global
configuration settings may prevent a driver from entering isolated mode.

9.4. Isolated mode 920

Programmer’s Guide, Release 18.05.1

Applications relying on this mode are therefore encouraged to toggle it as soon as possible
after device initialization, ideally before the first call to rte_eth_dev_configure () to avoid
possible failures due to conflicting settings.

Once effective, the following functionality has no effect on the underlying port and may return
errors such as ENOTSUP (“not supported”):

» Toggling promiscuous mode.

Toggling allmulticast mode.

» Configuring MAC addresses.

+ Configuring multicast addresses.

+ Configuring VLAN filters.

» Configuring Rx filters through the legacy API (e.g. FDIR).
+ Configuring global RSS settings.

int
rte_flow_isolate (uintl6_t port_id, int set, struct rte_flow_error *error);

Arguments:
* port_id: port identifier of Ethernet device.
* set: nonzero to enter isolated mode, attempt to leave it otherwise.

» error: perform verbose error reporting if not NULL. PMDs initialize this structure in case
of error only.

Return values:

» 0 on success, a negative errno value otherwise and rte_errno is set.

9.5 Verbose error reporting

The defined errno values may not be accurate enough for users or application developers
who want to investigate issues related to flow rules management. A dedicated error object is
defined for this purpose:

enum rte_flow_error_type {
RTE_FLOW_ERROR_TYPE_NONE, /##< No error. */
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, /##< Cause unspecified. #*/
RTE_FLOW_ERROR_TYPE_HANDLE, /##< Flow rule (handle). */
RTE_FLOW_ERROR_TYPE_ATTR_GROUP, /##< Group field. =/
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, /##< Priority field. #*/
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, /##< Ingress field. =*/
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, /##< Egress field. */
RTE_FLOW_ERROR_TYPE_ATTR, /#x*< Attributes structure. =%/
RTE_FLOW_ERROR_TYPE_ITEM _NUM, /##< Pattern length. x/
RTE_FLOW_ERROR_TYPE_ITEM, /#*< Specific pattern item. */
RTE_FLOW_ERROR_TYPE_ACTION_NUM, /#*x< Number of actions. */
RTE_FLOW_ERROR_TYPE_ACTION, /##< Specific action. */

}i

struct rte_flow_error {
enum rte_flow_error_type type; /#x< Cause field and error types. */
const void xcause; /#x< Object responsible for the error. x/

9.5. Verbose error reporting 91

Programmer’s Guide, Release 18.05.1

const char xmessage; /##< Human-readable error message. */

bi

Error type RTE_FLOW_ERROR_TYPE_NONE stands for no error, in which case remaining fields
can be ignored. Other error types describe the type of the object pointed by cause.

If non-NULL, cause points to the object responsible for the error. For a flow rule, this may be
a pattern item or an individual action.

If non-NULL, message provides a human-readable error message.

This object is normally allocated by applications and set by PMDs in case of error, the message
points to a constant string which does not need to be freed by the application, however its
pointer can be considered valid only as long as its associated DPDK port remains configured.
Closing the underlying device or unloading the PMD invalidates it.

9.6 Helpers

9.6.1 Error initializer

static inline int

rte_flow_error_set (struct rte_flow_error xerror,
int code,
enum rte_flow_error_type type,
const void *cause,
const char xmessage);

This function initializes error (if non-NULL) with the provided parameters and sets
rte_errno to code. A negative error code is then returned.

9.7 Caveats

+ DPDK does not keep track of flow rules definitions or flow rule objects automatically.
Applications may keep track of the former and must keep track of the latter. PMDs may
also do it for internal needs, however this must not be relied on by applications.

» Flow rules are not maintained between successive port initializations. An application
exiting without releasing them and restarting must re-create them from scratch.

» API operations are synchronous and blocking (EAGAIN cannot be returned).

» There is no provision for reentrancy/multi-thread safety, although nothing should prevent
different devices from being configured at the same time. PMDs may protect their control
path functions accordingly.

+ Stopping the data path (TX/RX) should not be necessary when managing flow rules. If
this cannot be achieved naturally or with workarounds (such as temporarily replacing the
burst function pointers), an appropriate error code must be returned (EBUSY).

* PMDs, not applications, are responsible for maintaining flow rules configuration when
stopping and restarting a port or performing other actions which may affect them. They
can only be destroyed explicitly by applications.

For devices exposing multiple ports sharing global settings affected by flow rules:

9.6. Helpers 92

Programmer’s Guide, Release 18.05.1

+ All ports under DPDK control must behave consistently, PMDs are responsible for making
sure that existing flow rules on a port are not affected by other ports.

» Ports not under DPDK control (unaffected or handled by other applications) are user’s
responsibility. They may affect existing flow rules and cause undefined behavior. PMDs
aware of this may prevent flow rules creation altogether in such cases.

9.8 PMD interface

The PMD interface is defined in rte_flow_driver.h. Itis not subject to API/ABI versioning
constraints as it is not exposed to applications and may evolve independently.

It is currently implemented on top of the legacy filtering framework through filter type
RTE_ETH_FILTER GENERIC that accepts the single operation RTE_ETH_FILTER _GET to
return PMD-specific rte_flow callbacks wrapped inside struct rte_flow_ops.

This overhead is temporarily necessary in order to keep compatibility with the legacy filtering
framework, which should eventually disappear.

» PMD callbacks implement exactly the interface described in Rules management, except
for the port ID argument which has already been converted to a pointer to the underlying
struct rte_eth_dev.

+ Public API functions do not process flow rules definitions at all before calling PMD func-
tions (no basic error checking, no validation whatsoever). They only make sure these
callbacks are non-NULL or return the ENOSYS (function not supported) error.

This interface additionally defines the following helper function:
* rte_flow_ops_get (): get generic flow operations structure from a port.

More will be added over time.

9.9 Device compatibility

No known implementation supports all the described features.

Unsupported features or combinations are not expected to be fully emulated in software by
PMDs for performance reasons. Partially supported features may be completed in software as
long as hardware performs most of the work (such as queue redirection and packet recogni-
tion).

However PMDs are expected to do their best to satisfy application requests by working around
hardware limitations as long as doing so does not affect the behavior of existing flow rules.

The following sections provide a few examples of such cases and describe how PMDs should
handle them, they are based on limitations built into the previous APls.

9.9.1 Global bit-masks

Each flow rule comes with its own, per-layer bit-masks, while hardware may support only a
single, device-wide bit-mask for a given layer type, so that two IPv4 rules cannot use different
bit-masks.

9.8. PMD interface 93

Programmer’s Guide, Release 18.05.1

The expected behavior in this case is that PMDs automatically configure global bit-masks ac-
cording to the needs of the first flow rule created.

Subsequent rules are allowed only if their bit-masks match those, the EEXIST error code
should be returned otherwise.

9.9.2 Unsupported layer types

Many protocols can be simulated by crafting patterns with the ltem: RAW type.

PMDs can rely on this capability to simulate support for protocols with headers not directly
recognized by hardware.

9.9.3 ANY pattern item

This pattern item stands for anything, which can be difficult to translate to something hardware
would understand, particularly if followed by more specific types.

Consider the following pattern:

Table 9.64: Pattern with

ANY as L3
Index | ltem
0 ETHER
1 ANY ‘ num ‘ 1
2 TCP
3 END

Knowing that TCP does not make sense with something other than IPv4 and IPv6 as L3, such
a pattern may be translated to two flow rules instead:

Table 9.65: ANY replaced with

IPV4
Index | ltem
0 ETHER
1 IPV4 (zeroed mask)
2 TCP
3 END

Table 9.66: ANY replaced with

IPV6
Index | ltem
0 ETHER
1 IPV6 (zeroed mask)
2 TCP
3 END

9.9. Device compatibility 94

Programmer’s Guide, Release 18.05.1

Note that as soon as a ANY rule covers several layers, this approach may yield a large number
of hidden flow rules. It is thus suggested to only support the most common scenarios (anything
as L2 and/or L3).

9.9.4 Unsupported actions

» When combined with Action: QUEUE, packet counting (Action: COUNT) and tagging
(Action: MARK or Action: FLAG) may be implemented in software as long as the target
queue is used by a single rule.

* When a single target queue is provided, Action: RSS can also be implemented through
Action: QUEUE.

9.9.5 Flow rules priority
While it would naturally make sense, flow rules cannot be assumed to be processed by hard-
ware in the same order as their creation for several reasons:

« They may be managed internally as a tree or a hash table instead of a list.

* Removing a flow rule before adding another one can either put the new rule at the end of
the list or reuse a freed entry.

» Duplication may occur when packets are matched by several rules.

For overlapping rules (particularly in order to use Action: PASSTHRU) predictable behavior is
only guaranteed by using different priority levels.

Priority levels are not necessarily implemented in hardware, or may be severely limited (e.g. a
single priority bit).

For these reasons, priority levels may be implemented purely in software by PMDs.

+ For devices expecting flow rules to be added in the correct order, PMDs may destroy and
re-create existing rules after adding a new one with a higher priority.

+ A configurable number of dummy or empty rules can be created at initialization time to
save high priority slots for later.

* In order to save priority levels, PMDs may evaluate whether rules are likely to collide and
adjust their priority accordingly.

9.10 Future evolutions

+ A device profile selection function which could be used to force a permanent profile in-
stead of relying on its automatic configuration based on existing flow rules.

» A method to optimize rte_flow rules with specific pattern items and action types gener-
ated on the fly by PMDs. DPDK should assign negative numbers to these in order to not
collide with the existing types. See Negative types.

+ Adding specific egress pattern items and actions as described in Attribute: Traffic direc-
tion.

9.10. Future evolutions 95

Programmer’s Guide, Release 18.05.1

» Optional software fallback when PMDs are unable to handle requested flow rules so
applications do not have to implement their own.

9.10. Future evolutions 96

CHAPTER
TEN

SWITCH REPRESENTATION WITHIN DPDK APPLICATIONS

Introduction
» Port Representors
Basic SR-I0OV
Controlled SR-IOV
— Initialization
— VF Representors
— Traffic Steering
Flow API (rte_flow)
— Extensions
— Traffic Direction
— Transferring Traffic
= Without Port Representors
= With Port Representors
— Pattern Items And Actions
« PORT Pattern Item
= PORT Action
» PORT _ID Pattern Item
+ PORT_ID Action
= PF Pattern ltem
= PF Action
« VF Pattern ltem
= VF Action
+ * ENCAP actions
= * DECAP actions
— Actions Order and Repetition
 Switching Examples
— Associating VF 1 with Physical Port 0
— Sharing Broadcasts
— Encapsulating VF 2 Traffic in VXLAN

10.1 Introduction

Network adapters with multiple physical ports and/or SR-IOV capabilities usually support the
offload of traffic steering rules between their virtual functions (VFs), physical functions (PFs)
and ports.

97

Programmer’s Guide, Release 18.05.1

Like for standard Ethernet switches, this involves a combination of automatic MAC learning
and manual configuration. For most purposes it is managed by the host system and fully
transparent to users and applications.

On the other hand, applications typically found on hypervisors that process layer 2 (L2) traffic
(such as OVS) need to steer traffic themselves according on their own criteria.

Without a standard software interface to manage traffic steering rules between VFs, PFs and
the various physical ports of a given device, applications cannot take advantage of these of-
floads; software processing is mandatory even for traffic which ends up re-injected into the
device it originates from.

This document describes how such steering rules can be configured through the DPDK flow
API (rte_flow), with emphasis on the SR-IOV use case (PF/VF steering) using a single physical
port for clarity, however the same logic applies to any number of ports without necessarily
involving SR-IOV.

10.2 Port Representors

In many cases, traffic steering rules cannot be determined in advance; applications usually
have to process a bit of traffic in software before thinking about offloading specific flows to
hardware.

Applications therefore need the ability to receive and inject traffic to various device endpoints
(other VFs, PFs or physical ports) before connecting them together. Device drivers must pro-
vide means to hook the “other end” of these endpoints and to refer them when configuring flow
rules.

This role is left to so-called “port representors” (also known as “VF representors” in the specific
context of VFs), which are to DPDK what the Ethernet switch device driver model (switchdev)
! is to Linux, and which can be thought as a software “patch panel” front-end for applications.

+ DPDK port representors are implemented as additional virtual Ethernet device (ethdev)
instances, spawned on an as needed basis through configuration parameters passed to
the driver of the underlying device using devargs.

-w pci:dbdf, representor=0

-w pci:dbdf, representor=[0-3]
-w pci:dbdf, representor=[0,5-11]

« As virtual devices, they may be more limited than their physical counterparts, for instance
by exposing only a subset of device configuration callbacks and/or by not necessarily
having Rx/Tx capability.

« Among other things, they can be used to assign MAC addresses to the resource they
represent.

» Applications can tell port representors apart from other physical of virtual port
by checking the dev_flags field within their device information structure for the
RTE_ETH_DEV_REPRESENTOR bit-field.

struct rte_eth_dev_info {
uint32_t dev_flags; /#*< Device flags =/

}i

! Ethernet switch device driver model (switchdev)

10.2. Port Representors 98

https://www.kernel.org/doc/Documentation/networking/switchdev.txt

Programmer’s Guide, Release 18.05.1

» The device or group relationship of ports can be discovered using the switch domain_id
field within the devices switch information structure. By default the switch domain_id
of a port willbe RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID to indicate that the port
doesn’t support the concept of a switch domain, but ports which do support the concept
will be allocated a unique switch domain_id, ports within the same switch domain will
share the same domain_id. The switch port_id is used to specify the port_id in terms
of the switch, so in the case of SR-IOV devices the switch port_id would represent the
virtual function identifier of the port.

J ok

* Ethernet device associated switch information
*/
struct rte_eth_switch_info {
const char *name; /*x< switch name x/
uintl6_t domain_id; /**< switch domain id */
uintl6_t port_id; /##< switch port id =/

by

10.3 Basic SR-IOV

“Basic” in the sense that it is not managed by applications, which nonetheless expect traffic to
flow between the various endpoints and the outside as if everything was linked by an Ethernet
hub.

The following diagram pictures a setup involving a device with one PF, two VFs and one shared
physical port

| hypervisor | VM 1 VM 2
| application | | application | | application |
‘77+ 7777777777 |} S +77l ‘77+ 7777777777 |}
| \ |
————— te———= \ |
| port_id 3 | \ |
B ! \ |
| \ I
L S et
| PF | | VEE1 | | VF 2 |
NI N N
| \ I
————————— ! |
| /" !
| \ |
——t————— f———— +—=

| interconnection |
N e .

St .
| physical |
| port O |

A DPDK application running on the hypervisor owns the PF device, which is arbitrarily
assigned port index 3.

Both VFs are assigned to VMs and used by unknown applications; they may be DPDK-
based or anything else.

* Interconnection is not necessarily done through a true Ethernet switch and may not even

10.3. Basic SR-IOV 99

Programmer’s Guide, Release 18.05.1

exist as a separate entity. The role of this block is to show that something brings PF, VFs
and physical ports together and enables communication between them, with a number
of built-in restrictions.

Subsequent sections in this document describe means for DPDK applications running on the
hypervisor to freely assign specific flows between PF, VFs and physical ports based on traffic
properties, by managing this interconnection.

10.4 Controlled SR-IOV

10.4.1 Initialization

When a DPDK application gets assigned a PF device and is deliberately not started in basic
SR-IOV mode, any traffic coming from physical ports is received by PF according to default
rules, while VFs remain isolated.

| hypervisor | | VM 1 [VM 2 |
| application | | application | | application |
__+ __________ A} S +__V __+ __________ A}
| \ |
S F————- . \ |
| port_id 3 | | |
o e ! \ I
| \ |
R it R T
| PF | | VE 1 | | VE 2 |

S v oS v

| managed interconnection |
S + 777777777777]

St .
| physical |
| port O |

In this mode, interconnection must be configured by the application to enable VF communica-
tion, for instance by explicitly directing traffic with a given destination MAC address to VF 1 and
allowing that with the same source MAC address to come out of it.

For this to work, hypervisor applications need a way to refer to either VF 1 or VF 2 in addition
to the PF. This is addressed by VF representors.

10.4.2 VF Representors

VF representors are virtual but standard DPDK network devices (albeit with limited capabilities)
created by PMDs when managing a PF device.

Since they represent VF instances used by other applications, configuring them (e.g. as-
signing a MAC address or setting up promiscuous mode) affects interconnection accordingly.

If supported, they may also be used as two-way communication ports with VFs (assuming
switchdev topology)

10.4. Controlled SR-IOV 100

Programmer’s Guide, Release 18.05.1

| hypervisor | | VM 1 (. VM 2 |
| application | | application | | application |
e e ——— =" e !
| \ | \ |
| /" . \ |
| T . \ \ I
| \ \ \ |
e +————= e +————= R +————= . | |
| port_id 3 | | port_id 4 | | port_id 5 | | |
N o N o o~ o . | |
| \ \ \ |
—+—- R Fomm—— it G
| PF | | VFE 1 rep. | | VF 2 rep. | | VE 1 | | VF 2 |
N N —— o~ — U N
| \ \ \ |
| | ' | |
o . \ | e ! |
| \ | [e !
| \ | | \
——t e ——
| managed interconnection |
N + 777777777777]
\
S .
| physical |
| port O |

* VF representors are assigned arbitrary port indices 4 and 5 in the hypervisor application
and are respectively associated with VF 1 and VF 2.

» They can’t be dissociated; even if VF 1 and VF 2 were not connected, representors could
still be used for configuration.

* In this context, port index 3 can be thought as a representor for physical port 0.

As previously described, the “interconnection” block represents a logical concept. Interconnec-
tion occurs when hardware configuration enables traffic flows from one place to another (e.g.
physical port 0 to VF 1) according to some criteria.

This is discussed in more detail in traffic steering.

10.4.3 Traffic Steering

In the following diagram, each meaningful traffic origin or endpoint as seen by the hypervisor
application is tagged with a unique letter from A to F.

| hypervisor | | VM 1 [VM 2 |

| application | | application | | application |

B e e e —— =" !
| \ | \ |
I | |
| T . \ |
| \ \ \ |
———=(A) ———— —(B)—=. .= (C)———= \ I
| port_id 3 | | port_id 4 | | port_id 5 | \ |
Yo —— +———— v +———— v +———— ! | |
| \ \ \ |

-—+——. === +————= . e . === +—— ——

10.4. Controlled SR-IOV 101

Programmer’s Guide, Release 18.05.1

| PF | | VF 1 rep. | | VF 2 rep. | | VF 1 | | VF 2 |
R T + - e F————- ' ——(D)-"'" —(E)——"

St —————,
| managed interconnection |
S + ____________]
\
S (F) .
| physical |
| port 0 |

* A: PF device.

B: port representor for VF 1.

+ C: port representor for VF 2.

D: VF 1 proper.
» E: VF 2 proper.
* F: physical port.

Although uncommon, some devices do not enforce a one to one mapping between PF and
physical ports. For instance, by default all ports of mix4 adapters are available to all their
PF/VF instances, in which case additional ports appear next to F in the above diagram.

Assuming no interconnection is provided by default in this mode, setting up a basic SR-IOV
configuration involving physical port 0 could be broken down as:

PF:
+ A to F: let everything through.
* F to A: PF MAC as destination.
VF 1:
* AtoD, EtoD and F to D: VF 1 MAC as destination.
* Dto A: VF 1 MAC as source and PF MAC as destination.
* Dto E: VF 1 MAC as source and VF 2 MAC as destination.
* Dto F: VF 1 MAC as source.
VF 2:

AtoE,Dto E and F to E: VF 2 MAC as destination.

E to A: VF 2 MAC as source and PF MAC as destination.
E to D: VF 2 MAC as source and VF 1 MAC as destination.
E to F: VF 2 MAC as source.

Devices may additionally support advanced matching criteria such as IPv4/IPv6 addresses or
TCP/UDP ports.

10.4. Controlled SR-IOV 102

Programmer’s Guide, Release 18.05.1

The combination of matching criteria with target endpoints fits well with rte_flow ¢, which
expresses flow rules as combinations of patterns and actions.

Enhancing rte_flow with the ability to make flow rules match and target these endpoints pro-
vides a standard interface to manage their interconnection without introducing new concepts
and whole new API to implement them. This is described in flow API (rte_flow).

10.5 Flow API (rte_flow)

10.5.1 Extensions
Compared to creating a brand new dedicated interface, rte_flow was deemed flexible enough
to manage representor traffic only with minor extensions:

» Using physical ports, PF, VF or port representors as targets.

 Affecting traffic that is not necessarily addressed to the DPDK port ID a flow rule is
associated with (e.g. forcing VF traffic redirection to PF).

For advanced uses:
* Rule-based packet counters.

+ The ability to combine several identical actions for traffic duplication (e.g. VF representor
in addition to a physical port).

+ Dedicated actions for traffic encapsulation / decapsulation before reaching an endpoint.

10.5.2 Traffic Direction

From an application standpoint, “ingress” and “egress” flow rule attributes apply to the DPDK
port ID they are associated with. They select a traffic direction for matching patterns, but have
no impact on actions.

When matching traffic coming from or going to a different place than the immediate port ID a
flow rule is associated with, these attributes keep their meaning while applying to the chosen
origin, as highlighted by the following diagram

| hypervisor | | VM 1 | VM 2 |
| application | | application | | application |
e e ——— =" T ————— !
| \ | \ |
| \ T . \ |
I o \ \ |
(. [|~ \ |
| | ingress | | ingress | | ingress | |
| | egress | | egress | | egress | |
| v | v | v \ I
——(A)-——. .——=(B)————=. .——(C)————. | |
| port_id 3 | | port_id 4 | | port_id 5 | \ |
N e N o o~ e . | |
| \ \ \ |
i S Fo——— e o R s b
| PE | | VF 1 rep. | | VF 2 rep. | | VE 1 | | VF 2 |

8 Generic flow API (rte_flow)

10.5. Flow API (rte_flow) 103

http://dpdk.org/doc/guides/prog_guide/rte_flow.html

Programmer’s Guide, Release 18.05.1

egress | egress

ingress

e Rt e e R
| managed interconnection |
N + 777777777777]

~
ingress | |
egress | |
v

= (F)————.

| physical |

| port O |

Ingress and egress are defined as relative to the application creating the flow rule.

For instance, matching traffic sent by VM 2 would be done through an ingress flow rule on VF 2
(E). Likewise for incoming traffic on physical port (F). This also applies to C and A respectively.

10.5.3 Transferring Traffic

Without Port Representors

Traffic direction describes how an application could match traffic coming from or going to a
specific place reachable from a DPDK port ID. This makes sense when the traffic in question
is normally seen (i.e. sent or received) by the application creating the flow rule (e.g. as in
“redirect all traffic coming from VF 1 to local queue 67).

However this does not force such traffic to take a specific route. Creating a flow rule on A
matching traffic coming from D is only meaningful if it can be received by A in the first place,
otherwise doing so simply has no effect.

A new flow rule attribute named “transfer” is necessary for that. Combining it with “ingress” or
“egress” and a specific origin requests a flow rule to be applied at the lowest level

ingress only : ingress + transfer
| hypervisor | VM 1 | : | hypervisor | VM 1 |
| application | | application | : | application | | application |
777777 e I e I e
| | | traffic : | | | traffic
————(A) ———- | v : == (A)————. | v
| port_id 3 | | | port_id 3 |
T R ' [I R ' |
| | [~ \
| | | | traffic |
—+—— ———t—— —+—— ———t——
| PF | | VE 1 | | PEF | | VE 1
- -——(D)-" : Pt -—(D)-"
| | | traffic : [| | traffic
| | v : | | traffic | v
Rt T +-—. : Rt —
| interconnection | : | interconnection |

10.5. Flow API (rte_flow) 104

Programmer’s Guide, Release 18.05.1

T Fe————— ! : T Fe————— !
| | traffic : |
Y : [
== (F)————. : == (F)————.
| physical | : | physical |
| port 0 | : | port 0 |

With “ingress” only, traffic is matched on A thus still goes to physical port F by default

testpmd> flow create 3 ingress pattern vf id is 1 / end
actions queue index 6 / end

With “ingress + transfer”, traffic is matched on D and is therefore successfully assigned to
queue 6 on A

testpmd> flow create 3 ingress transfer pattern vf id is 1 / end
actions queue index 6 / end

With Port Representors

When port representors exist, implicit flow rules with the “transfer” attribute (described in with-
out port representors) are be assumed to exist between them and their represented resources.
These may be immutable.

In this case, traffic is received by default through the representor and neither the “transfer”
attribute nor traffic origin in flow rule patterns are necessary. They simply have to be created
on the representor port directly and may target a different representor as described in PORT_ID
action.

Implicit traffic flow with port representor

hypervisor | VM 1 |

| application | | application |

—— Fom' e +—="

| [" | | traffic

| | | traffic | v
i . \
| \ \
-——(A)——. .——=(B)———- \
| port_id 3 | | port_id 4 | |
N N e . |
I \ \

—+-- S fomm—— - +-—

| PF | | VE 1 rep. | | VF 1 |

= (F) .
| physical |
| port 0 |

10.5. Flow API (rte_flow) 105

Programmer’s Guide, Release 18.05.1

10.5.4 Pattern ltems And Actions
PORT Pattern Item
Matches traffic originating from (ingress) or going to (egress) a physical port of the underlying

device.

Using this pattern item without specifying a port index matches the physical port associated
with the current DPDK port ID by default. As described in traffic steering, specifying it should
be rarely needed.

» Matches F in traffic steering.

PORT Action

Directs matching traffic to a given physical port index.

» Targets F in traffic steering.

PORT _ID Pattern Iltem

Matches traffic originating from (ingress) or going to (egress) a given DPDK port ID.

Normally only supported if the port ID in question is known by the underlying PMD and related
to the device the flow rule is created against.

This must not be confused with the PORT pattern item which refers to the physical port of
a device. PORT_1ID refers to a struct rte_eth_dev object on the application side (also
known as “port representor” depending on the kind of underlying device).

* Matches A, B or C in traffic steering.

PORT _ID Action

Directs matching traffic to a given DPDK port ID.
Same restrictions as PORT _ID pattern item.

» Targets A, B or C in traffic steering.

PF Pattern ltem
Matches traffic originating from (ingress) or going to (egress) the physical function of the current
device.

If supported, should work even if the physical function is not managed by the application and
thus not associated with a DPDK port ID. Its behavior is otherwise similar to PORT_ID pattern
item using PF port ID.

» Matches A in traffic steering.

10.5. Flow API (rte_flow) 106

Programmer’s Guide, Release 18.05.1

PF Action

Directs matching traffic to the physical function of the current device.
Same restrictions as PF pattern item.

» Targets A in traffic steering.

VF Pattern Iltem
Matches traffic originating from (ingress) or going to (egress) a given virtual function of the
current device.

If supported, should work even if the virtual function is not managed by the application and
thus not associated with a DPDK port ID. Its behavior is otherwise similar to PORT _ID pattern
item using VF port ID.

Note this pattern item does not match VF representors traffic which, as separate entities,
should be addressed through their own port IDs.

* Matches D or E in traffic steering.

VF Action

Directs matching traffic to a given virtual function of the current device.
Same restrictions as VF pattern item.

 Targets D or E in traffic steering.

* ENCAP actions

These actions are named according to the protocol they encapsulate traffic with (e.qg.
VXLAN_ENCAP) and using specific parameters (e.g. VNI for VXLAN).

While they modify traffic and can be used multiple times (order matters), unlike PORT_ID action
and friends, they have no impact on steering.

As described in actions order and repetition this means they are useless if used alone in an
action list, the resulting traffic gets dropped unless combined with either PASSTHRU or other
endpoint-targeting actions.

* DECAP actions

They perform the reverse of * ENCAP actions by popping protocol headers from traffic instead
of pushing them. They can be used multiple times as well.

Note that using these actions on non-matching traffic results in undefined behavior. It is rec-
ommended to match the protocol headers to decapsulate on the pattern side of a flow rule in
order to use these actions or otherwise make sure only matching traffic goes through.

10.5. Flow API (rte_flow) 107

Programmer’s Guide, Release 18.05.1

10.5.5 Actions Order and Repetition

Flow rules are currently restricted to at most a single action of each supported type, performed
in an unpredictable order (or all at once). To repeat actions in a predictable fashion, applications
have to make rules pass-through and use priority levels.

It's now clear that PMD support for chaining multiple non-terminating flow rules of varying pri-
ority levels is prohibitively difficult to implement compared to simply allowing multiple identical
actions performed in a defined order by a single flow rule.

» This change is required to support protocol encapsulation offloads and the ability to per-
form them multiple times (e.g. VLAN then VXLAN).

+ It makes the DUP action redundant since multiple QUEUE actions can be combined for
duplication.

» The (non-)terminating property of actions must be discarded. Instead, flow rules them-
selves must be considered terminating by default (i.e. dropping traffic if there is no spe-
cific target) unless a PASSTHRU action is also specified.

10.6 Switching Examples

This section provides practical examples based on the established testpmd flow command
syntax 2, in the context described in traffic steering

| hypervisor | VM 1 VM 2
| application | | application | | application |
S S e !
| \ | \ |
| \ T \ |
| T . \ \ I
| \ \ \ |
.~——(A)-———. .————(B)———. .———(C)——~. | |
| port_id 3 | | port_id 4 | | port_id 5 | | |
N o N o o~ e . | |
| \ \ \ |
Lo R fomm— - o R s
| PE | | VF 1 rep. | | VF 2 rep. | | VFE 1 | | VF 2 |
pRSERE PR o L — o ' ——(D)-' = (E)——"
| \ I
| i ! \ |
o . \ | e ! |
| \ | I e !
| \ | | |
il e el el Al R
| | \ - |
| e ! |
| T . |
777777777777 ‘ —e
\
= (F)———.
| physical |
| port O |

2 Flow syntax

10.6. Switching Examples 108

http://dpdk.org/doc/guides/testpmd_app_ug/testpmd_funcs.html#flow-syntax

Programmer’s Guide, Release 18.05.1

By default, PF (A) can communicate with the physical port it is associated with (F), while VF
1 (D) and VF 2 (E) are isolated and restricted to communicate with the hypervisor application
through their respective representors (B and C) if supported.

Examples in subsequent sections apply to hypervisor applications only and are based on port
representors A, B and C.

10.6.1 Associating VF 1 with Physical Port 0

Assign all port traffic (F) to VF 1 (D) indiscriminately through their representors

flow create 3 ingress pattern / end actions port_id id 4 / end
flow create 4 ingress pattern / end actions port_id id 3 / end

More practical example with MAC address restrictions

flow create 3 ingress
pattern eth dst is {VF 1 MAC} / end
actions port_id id 4 / end

flow create 4 ingress
pattern eth src is {VF 1 MAC} / end
actions port_id id 3 / end

10.6.2 Sharing Broadcasts

From outside to PF and VFs

flow create 3 ingress
pattern eth dst is ff:ff:ff:ff:ff:ff / end
actions port_id id 3 / port_id id 4 / port_id id 5 / end

Note port_id id 3is necessary otherwise only VFs would receive matching traffic.
From PF to outside and VFs

flow create 3 egress
pattern eth dst is ff:ff:ff:ff:ff:ff / end
actions port / port_id id 4 / port_id id 5 / end

From VFs to outside and PF

flow create 4 ingress
pattern eth dst is ff:ff:ff:ff:ff:ff src is {VF 1 MAC} / end
actions port_id id 3 / port_id id 5 / end

flow create 5 ingress
pattern eth dst is ff:ff:ff:ff:ff:ff src is {VF 2 MAC} / end
actions port_id id 4 / port_id id 4 / end

Similar 33:33: x rules based on known MAC addresses should be added for IPv6 traffic.

10.6.3 Encapsulating VF 2 Traffic in VXLAN

Assuming pass-through flow rules are supported

flow create 5 ingress
pattern eth / end
actions vxlan_encap vni 42 / passthru / end

10.6. Switching Examples 109

Programmer’s Guide, Release 18.05.1

flow create 5 egress
pattern vxlan vni is 42 / end
actions vxlan_decap / passthru / end
Here passthru is needed since as described in actions order and repetition, flow rules are
otherwise terminating; if supported, a rule without a target endpoint will drop traffic.

Without pass-through support, ingress encapsulation on the destination endpoint might not be
supported and action list must provide one

flow create 5 ingress
pattern eth src is {VF 2 MAC} / end
actions vxlan_encap vni 42 / port_id id 3 / end

flow create 3 ingress
pattern vxlan vni is 42 / end
actions vxlan_decap / port_id id 5 / end

10.6. Switching Examples 110

CHAPTER
ELEVEN

TRAFFIC METERING AND POLICING API

11.1 Overview

This is the generic API for the Quality of Service (QoS) Traffic Metering and Policing (MTR) of
Ethernet devices. This APl is agnostic of the underlying HW, SW or mixed HW-SW implemen-
tation.

The main features are:
» Part of DPDK rte_ethdev API

Capability query API

Metering algorithms: RFC 2697 Single Rate Three Color Marker (srTCM), RFC 2698 and
RFC 4115 Two Rate Three Color Marker (trTCM)

Policer actions (per meter output color): recolor, drop

Statistics (per policer output color)

11.2 Configuration steps

The metering and policing stage typically sits on top of flow classification, which is why the
MTR objects are enabled through a special “meter” action.

The MTR objects are created and updated in their own name space (rte_mtr) within the
librte_ethdev library. Whether an MTR object is private to a flow or potentially shared by
several flows has to be specified at its creation time.

Once successfully created, an MTR object is hooked into the RX processing path of the Ether-
net device by linking it to one or several flows through the dedicated “meter” flow action. One
or several “meter” actions can be registered for the same flow. An MTR object can only be
destroyed if there are no flows using it.

11.3 Run-time processing

Traffic metering determines the color for the current packet (green, yellow, red) based on the
previous history for this flow as maintained by the MTR object. The policer can do nothing,
override the color the packet or drop the packet. Statistics counters are maintained for MTR
object, as configured.

The processing done for each input packet hitting an MTR object is:

111

Programmer’s Guide, Release 18.05.1

« Traffic metering: The packet is assigned a color (the meter output color) based on the
previous traffic history reflected in the current state of the MTR object, according to the
specific traffic metering algorithm. The traffic metering algorithm can typically work in
color aware mode, in which case the input packet already has an initial color (the input
color), or in color blind mode, which is equivalent to considering all input packets initially
colored as green.

 Policing: There is a separate policer action configured for each meter output color, which
can:

— Drop the packet.

— Keep the same packet color: the policer output color matches the meter output color
(essentially a no-op action).

— Recolor the packet: the policer output color is set to a different color than the meter
output color. The policer output color is the output color of the packet, which is set
in the packet meta-data (i.e. struct rte_mbuf: :sched: :color).

+ Statistics: The set of counters maintained for each MTR object is configurable and sub-
ject to the implementation support. This set includes the number of packets and bytes
dropped or passed for each output color.

11.3. Run-time processing 112

CHAPTER
TWELVE

TRAFFIC MANAGEMENT API

12.1 Overview

This is the generic API for the Quality of Service (QoS) Traffic Management of Ethernet devices,
which includes the following main features: hierarchical scheduling, traffic shaping, congestion
management, packet marking. This API is agnostic of the underlying HW, SW or mixed HW-
SW implementation.

Main features:
» Part of DPDK rte_ethdev API
+ Capability query API per port, per hierarchy level and per hierarchy node
» Scheduling algorithms: Strict Priority (SP), Weighed Fair Queuing (WFQ)

« Traffic shaping: single/dual rate, private (per node) and shared (by multiple nodes)
shapers

» Congestion management for hierarchy leaf nodes: algorithms of tail drop, head drop,
WRED, private (per node) and shared (by multiple nodes) WRED contexts

« Packet marking: IEEE 802.1q (VLAN DEI), IETF RFC 3168 (IPv4/IPv6 ECN for TCP and
SCTP), IETF RFC 2597 (IPv4 / IPv6 DSCP)

12.2 Capability API

The aim of these APlIs is to advertise the capability information (i.e critical parameter values)
that the TM implementation (HW/SW) is able to support for the application. The APIs supports
the information disclosure at the TM level, at any hierarchical level of the TM and at any node
level of the specific hierarchical level. Such information helps towards rapid understanding of
whether a specific implementation does meet the needs to the user application.

At the TM level, users can get high level idea with the help of various parameters such as
maximum number of nodes, maximum number of hierarchical levels, maximum number of
shapers, maximum number of private shapers, type of scheduling algorithm (Strict Priority,
Weighted Fair Queueing , etc.), etc., supported by the implementation.

Likewise, users can query the capability of the TM at the hierarchical level to have more gran-
ular knowledge about the specific level. The various parameters such as maximum number of
nodes at the level, maximum number of leaf/non-leaf nodes at the level, type of the shaper(dual
rate, single rate) supported at the level if node is non-leaf type etc., are exposed as a result of
hierarchical level capability query.

113

Programmer’s Guide, Release 18.05.1

Finally, the node level capability API offers knowledge about the capability supported by the
node at any specific level. The information whether the support is available for private shaper,
dual rate shaper, maximum and minimum shaper rate, etc. is exposed by node level capability
API.

12.3 Scheduling Algorithms

The fundamental scheduling algorithms that are supported are Strict Priority (SP) and
Weighted Fair Queuing (WFQ). The SP and WFQ algorithms are supported at the level of
each node of the scheduling hierarchy, regardless of the node level/position in the tree. The
SP algorithm is used to schedule between sibling nodes with different priority, while WFQ is
used to schedule between groups of siblings that have the same priority.

Algorithms such as Weighed Round Robin (WRR), byte-level WRR, Deficit WRR (DWRR),
etc are considered approximations of the ideal WFQ and are therefore assimilated to WFQ,
although an associated implementation-dependent accuracy, performance and resource usage
trade-off might exist.

12.4 Traffic Shaping

The TM API provides support for single rate and dual rate shapers (rate limiters) for the hierar-
chy nodes, subject to the specific implementation support being available.

Each hierarchy node has zero or one private shaper (only one node using it) and/or zero, one
or several shared shapers (multiple nodes use the same shaper instance). A private shaper
is used to perform traffic shaping for a single node, while a shared shaper is used to perform
traffic shaping for a group of nodes.

The configuration of private and shared shapers is done through the definition of shaper pro-
files. Any shaper profile (single rate or dual rate shaper) can be used by one or several shaper
instances (either private or shared).

Single rate shapers use a single token bucket. Therefore, single rate shaper is configured by
setting the rate of the committed bucket to zero, which effectively disables this bucket. The
peak bucket is used to limit the rate and the burst size for the single rate shaper. Dual rate
shapers use both the committed and the peak token buckets. The rate of the peak bucket has
to be bigger than zero, as well as greater than or equal to the rate of the committed bucket.

12.5 Congestion Management

Congestion management is used to control the admission of packets into a packet queue
or group of packet queues on congestion. The congestion management algorithms that are
supported are: Tail Drop, Head Drop and Weighted Random Early Detection (WRED). They
are made available for every leaf node in the hierarchy, subject to the specific implementation
supporting them. On request of writing a new packet into the current queue while the queue
is full, the Tail Drop algorithm drops the new packet while leaving the queue unmodified, as
opposed to the Head Drop* algorithm, which drops the packet at the head of the queue (the
oldest packet waiting in the queue) and admits the new packet at the tail of the queue.

12.3. Scheduling Algorithms 114

Programmer’s Guide, Release 18.05.1

The Random Early Detection (RED) algorithm works by proactively dropping more and more
input packets as the queue occupancy builds up. When the queue is full or almost full, RED
effectively works as Tail Drop. The Weighted RED (WRED) algorithm uses a separate set of
RED thresholds for each packet color and uses separate set of RED thresholds for each packet
color.

Each hierarchy leaf node with WRED enabled as its congestion management mode has zero
or one private WRED context (only one leaf node using it) and/or zero, one or several shared
WRED contexts (multiple leaf nodes use the same WRED context). A private WRED context is
used to perform congestion management for a single leaf node, while a shared WRED context
is used to perform congestion management for a group of leaf nodes.

The configuration of WRED private and shared contexts is done through the definition of WRED
profiles. Any WRED profile can be used by one or several WRED contexts (either private or
shared).

12.6 Packet Marking

The TM APIs have been provided to support various types of packet marking such as VLAN
DEI packet marking (IEEE 802.1Q), IPv4/IPv6 ECN marking of TCP and SCTP packets (IETF
RFC 3168) and IPv4/IPv6 DSCP packet marking (IETF RFC 2597). All VLAN frames of a given
color get their DEI bit set if marking is enabled for this color. In case, when marking for a given
color is not enabled, the DEI bit is left as is (either set or not).

All IPv4/IPv6 packets of a given color with ECN set to 2’b01 or 2’b10 carrying TCP or SCTP
have their ECN set to 2’b11 if the marking feature is enabled for the current color, otherwise
the ECN field is left as is.

All IPv4/IPv6 packets have their color marked into DSCP bits 3 and 4 as follows: green mapped
to Low Drop Precedence (2'b01), yellow to Medium (2'b10) and red to High (2’b11). Marking
needs to be explicitly enabled for each color; when not enabled for a given color, the DSCP
field of all packets with that color is left as is.

12.7 Steps to Setup the Hierarchy

The TM hierarchical tree consists of leaf nodes and non-leaf nodes. Each leaf node sits on top
of a scheduling queue of the current Ethernet port. Therefore, the leaf nodes have predefined
IDs in the range of 0... (N-1), where N is the number of scheduling queues of the current
Ethernet port. The non-leaf nodes have their IDs generated by the application outside of the
above range, which is reserved for leaf nodes.

Each non-leaf node has multiple inputs (its children nodes) and single output (which is input
to its parent node). It arbitrates its inputs using Strict Priority (SP) and Weighted Fair Queuing
(WFQ) algorithms to schedule input packets to its output while observing its shaping (rate
limiting) constraints.

The children nodes with different priorities are scheduled using the SP algorithm based on their
priority, with 0 as the highest priority. Children with the same priority are scheduled using the
WEFQ algorithm according to their weights. The WFQ weight of a given child node is relative
to the sum of the weights of all its sibling nodes that have the same priority, with 1 as the
lowest weight. For each SP priority, the WFQ weight mode can be set as either byte-based or
packet-based.

12.6. Packet Marking 115

Programmer’s Guide, Release 18.05.1

12.7.1 Initial Hierarchy Specification

The hierarchy is specified by incrementally adding nodes to build up the scheduling tree. The
first node that is added to the hierarchy becomes the root node and all the nodes that are
subsequently added have to be added as descendants of the root node. The parent of the root
node has to be specified as RTE_TM_NODE_ID_NULL and there can only be one node with
this parent ID (i.e. the root node). The unique ID that is assigned to each node when the node
is created is further used to update the node configuration or to connect children nodes to it.

During this phase, some limited checks on the hierarchy specification can be conducted, usu-
ally limited in scope to the current node, its parent node and its sibling nodes. At this time, since
the hierarchy is not fully defined, there is typically no real action performed by the underlying
implementation.

12.7.2 Hierarchy Commit

The hierarchy commit API is called during the port initialization phase (before the Ethernet port
is started) to freeze the start-up hierarchy. This function typically performs the following steps:

« It validates the start-up hierarchy that was previously defined for the current port through
successive node add API invocations.

» Assuming successful validation, it performs all the necessary implementation specific
operations to install the specified hierarchy on the current port, with immediate effect
once the port is started.

This function fails when the currently configured hierarchy is not supported by the Ethernet port,
in which case the user can abort or try out another hierarchy configuration (e.g. a hierarchy
with less leaf nodes), which can be built from scratch or by modifying the existing hierarchy
configuration. Note that this function can still fail due to other causes (e.g. not enough memory
available in the system, etc.), even though the specified hierarchy is supported in principle by
the current port.

12.7.3 Run-Time Hierarchy Updates

The TM API provides support for on-the-fly changes to the scheduling hierarchy, thus op-
erations such as node add/delete, node suspend/resume, parent node update, etc., can be
invoked after the Ethernet port has been started, subject to the specific implementation sup-
porting them. The set of dynamic updates supported by the implementation is advertised
through the port capability set.

12.7. Steps to Setup the Hierarchy 116

CHAPTER
THIRTEEN

WIRELESS BASEBAND DEVICE LIBRARY

The Wireless Baseband library provides a common programming framework that abstracts HW
accelerators based on FPGA and/or Fixed Function Accelerators that assist with 3GPP Phys-
ical Layer processing. Furthermore, it decouples the application from the compute-intensive
wireless functions by abstracting their optimized libraries to appear as virtual bbdev devices.

The functional scope of the BBDEYV library are those functions in relation to the 3GPP Layer 1
signal processing (channel coding, modulation, ...).

The framework currently only supports Turbo Code FEC function.

13.1 Design Principles

The Wireless Baseband library follows the same ideology of DPDK’s Ethernet Device and
Crypto Device frameworks. Wireless Baseband provides a generic acceleration abstraction
framework which supports both physical (hardware) and virtual (software) wireless acceleration
functions.

13.2 Device Management

13.2.1 Device Creation

Physical bbdev devices are discovered during the PCI probe/enumeration of the EAL function
which is executed at DPDK initialization, based on their PCI device identifier, each unique PCI
BDF (bus/bridge, device, function).

Virtual devices can be created by two mechanisms, either using the EAL command line options
or from within the application using an EAL API directly.

From the command line using the —vdev EAL option

—--vdev 'baseband_turbo_sw,max_nb_queues=8, socket_id=0"

Our using the rte_vdev_init API within the application code.

rte_vdev_init ("baseband_turbo_sw", "max_nb_qgueues=2, socket_id=0")
All virtual bbdev devices support the following initialization parameters:
* max_nb_queues - maximum number of queues supported by the device.

* socket_id - socket on which to allocate the device resources on.

117

Programmer’s Guide, Release 18.05.1

13.2.2 Device Identification

Each device, whether virtual or physical is uniquely designated by two identifiers:

» A unique device index used to designate the bbdev device in all functions exported by
the bbdev API.

» A device name used to designate the bbdev device in console messages, for administra-
tion or debugging purposes. For ease of use, the port name includes the port index.

13.2.3 Device Configuration

From the application point of view, each instance of a bbdev device consists of one or more
queues identified by queue IDs. While different devices may have different capabilities (e.qg.
support different operation types), all queues on a device support identical configuration possi-
bilities. A queue is configured for only one type of operation and is configured at initializations
time. When an operation is enqueued to a specific queue ID, the result is dequeued from the
same queue ID.

Configuration of a device has two different levels: configuration that applies to the whole device,
and configuration that applies to a single queue.

Device configuration is applied with rte_bbdev_setup_qgueues (dev_id, num_queues, socket_id)
and queue configuration is applied with rte_bbdev_queue_configure (dev_id, queue_id, conf).
Note that, although all queues on a device support same capabilities, they can be configured
differently and will then behave differently. Devices supporting interrupts can enable them by

using rte_bbdev_intr_enable (dev_id).

The configuration of each bbdev device includes the following operations:
« Allocation of resources, including hardware resources if a physical device.
* Resetting the device into a well-known default state.
« Initialization of statistics counters.

The rte_bbdev_setup_queues APl is used to setup queues for a bbdev device.

int rte_bbdev_setup_queues (uintl6_t dev_id, uintl6_t num_gueues,
int socket_id);

* num_queues argument identifies the total number of queues to setup for this device.
* socket_id specifies which socket will be used to allocate the memory.

The rte_bbdev_intr_enable APl is used to enable interrupts for a bbdev device, if sup-
ported by the driver. Should be called before starting the device.

int rte_bbdev_intr_enable (uintl6_t dev_id);

13.2.4 Queues Configuration

Each bbdev devices queue is individually configured through the
rte_bbdev_queue_configure () APl. Each queue resources may be allocated on a
specified socket.

13.2. Device Management 118

Programmer’s Guide, Release 18.05.1

struct rte_bbdev_queue_conf {

int socket;

uint32_t queue_size;

uint8_t priority;

bool deferred_start;

enum rte_bbdev_op_type op_type;
}i

13.2.5 Device & Queues Management

After initialization, devices are in a stopped state, so must be started by the application. If
an application is finished using a device it can close the device. Once closed, it cannot be
restarted.

int rte_bbdev_start (uintlé_t dev_id)

int rte_bbdev_stop (uintl6_t dev_id)

int rte_bbdev_close (uintl6_t dev_id)

int rte_bbdev_qgueue_start (uintl6_t dev_id, uintl6_t queue_id)

int rte_bbdev_queue_stop (uintl6_t dev_id, uintlé6_t queue_id)

By default, all queues are started when the device is started, but they can be stopped individ-
ually.

int rte_bbdev_queue_start (uintl6_t dev_id, uintl6_t queue_id)
int rte_bbdev_queue_stop (uintl6_t dev_id, uintlé6_t queue_id)

13.2.6 Logical Cores, Memory and Queues Relationships

The bbdev device Library as the Poll Mode Driver library support NUMA for when a processor’s
logical cores and interfaces utilize its local memory. Therefore baseband operations, the mbuf
being operated on should be allocated from memory pools created in the local memory. The
buffers should, if possible, remain on the local processor to obtain the best performance results
and buffer descriptors should be populated with mbufs allocated from a mempool allocated
from local memory.

The run-to-completion model also performs better, especially in the case of virtual bbdev de-
vices, if the baseband operation and data buffers are in local memory instead of a remote
processor's memory. This is also true for the pipe-line model provided all logical cores used
are located on the same processor.

Multiple logical cores should never share the same queue for enqueuing operations or de-
queuing operations on the same bbdev device since this would require global locks and hinder
performance. It is however possible to use a different logical core to dequeue an operation on
a queue pair from the logical core which it was enqueued on. This means that a baseband
burst enqueue/dequeue APIs are a logical place to transition from one logical core to another
in a packet processing pipeline.

13.3 Device Operation Capabilities

Capabilities (in terms of operations supported, max number of queues, etc.) identify what a
bbdev is capable of performing that differs from one device to another. For the full scope of the
bbdev capability see the definition of the structure in the DPDK API Reference.

struct rte_bbdev_op_cap;

13.3. Device Operation Capabilities 119

Programmer’s Guide, Release 18.05.1

A device reports its capabilities when registering itself in the bbdev framework. With the aid
of this capabilities mechanism, an application can query devices to discover which operations
within the 3GPP physical layer they are capable of performing. Below is an example of the
capabilities for a PMD it supports in relation to Turbo Encoding and Decoding operations.

static const struct rte_bbdev_op_cap bbdev_capabilities]|]

}i

13.3.

{
.type = RTE_BBDEV_OP_TURBO_DEC,
.cap.turbo_dec = {

.capability_flags =
RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
RTE_BBDEV_TURBO_CRC_TYPE_24B |
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
RTE_BBDEV_TURBO_EARLY_TERMINATION,

.max_1llr_modulus = 16,

.num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,

.num_buffers_hard_out =

RTE_BBDEV_MAX_CODE_BLOCKS,

.num_buffers_soft_out = 0,

.type = RTE_BBDEV_OP_TURBO_ENC,
.cap.turbo_enc = {

.capability_flags =
RTE_BBDEV_TURBO_CRC_24B_ATTACH |
RTE_BBDEV_TURBO_CRC_24A_ ATTACH |
RTE_BBDEV_TURBO_RATE_MATCH |
RTE_BBDEV_TURBO_RV_INDEX_BYPASS,

.num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,

.num_buffers_dst = RTE_BBDEV_MAX_ CODE_BLOCKS,

}
}I
RTE_BBDEV_END_OF CAPABILITIES_LIST ()

1 Capabilities Discovery

=1

Discovering the features and capabilities of a bbdev device poll mode driver is achieved through
the rte_bbdev_info_get () function.

int rte_bbdev_info_get (uintl6_t dev_id,

struct rte_bbdev_info xdev_info)

This allows the user to query a specific bbdev PMD and get all the device capabilities. The
rte_bbdev_info structure provides two levels of information:

Device relevant information, like: name and related rte_bus.

 Driver specific information, as defined by the struct rte_bbdev_driver_info
structure, this is where capabilities reside along with other specifics like: maximum queue

sizes and priority level.

struct rte_bbdev_info {

int socket_id;

const char xdev_name;
const struct rte_bus xbus;
uintl6_t num_queues;

bool started;

13.3.

Device Operation Capabilities

120

Programmer’s Guide, Release 18.05.1

struct rte_bbdev_driver_info drv;

bi

13.4 Operation Processing

Scheduling of baseband operations on DPDK’s application data path is performed using a
burst oriented asynchronous API set. A queue on a bbdev device accepts a burst of baseband
operations using enqueue burst API. On physical bbdev devices the enqueue burst API will
place the operations to be processed on the device’s hardware input queue, for virtual devices
the processing of the baseband operations is usually completed during the enqueue call to the
bbdev device. The dequeue burst API will retrieve any processed operations available from
the queue on the bbdev device, from physical devices this is usually directly from the device’s
processed queue, and for virtual device’s from a rte_ring where processed operations are
place after being processed on the enqueue call.

13.4.1 Enqueue / Dequeue Burst APIs

The burst enqueue API uses a bbdev device identifier and a queue identifier to specify the
bbdev device queue to schedule the processing on. The num_ops parameter is the number
of operations to process which are supplied in the ops array of rte_bbdev_~*_op structures.
The enqueue function returns the number of operations it actually enqueued for processing, a
return value equal to num_ops means that all packets have been enqueued.

uintl6_t rte_bbdev_enqueue_enc_ops (uintl6_t dev_id, uintl6_t queue_id,
struct rte_bbdev_enc_op *+*ops, uintl6_t num_ops)

uintl6_t rte_bbdev_enqueue_dec_ops (uintl6_t dev_id, uintl6_t queue_id,
struct rte_bbdev_dec_op *+*ops, uintl6_t num_ops)

The dequeue API uses the same format as the enqueue API of processed but the num_ops
and ops parameters are now used to specify the max processed operations the user wishes
to retrieve and the location in which to store them. The API call returns the actual number of
processed operations returned, this can never be larger than num_ops.

uintlé6_t rte_bbdev_dequeue_enc_ops (uintl6_t dev_id, uintl6_t queue_id,
struct rte_bbdev_enc_op **ops, uintl6_t num_ops)

uintlé6_t rte_bbdev_dequeue_dec_ops (uintl6_t dev_id, uintl6_t queue_id,
struct rte_bbdev_dec_op **ops, uintl6_t num_ops)

13.4.2 Operation Representation

An encode bbdev operation is represented by rte_bbdev_enc_op structure, and by
rte_bbdev_dec_op for decode. These structures act as metadata containers for all nec-
essary information required for the bbdev operation to be processed on a particular bbdev
device poll mode driver.

struct rte_bbdev_enc_op {
int status;
struct rte_mempool xmempool;
void xopaque_data;
struct rte_bbdev_op_turbo_enc turbo_enc;

13.4. Operation Processing 121

Programmer’s Guide, Release 18.05.1

struct rte_bbdev_dec_op {

int status;

struct rte_mempool xmempool;

void xopaque_data;

struct rte_bbdev_op_turbo_dec turbo_dec;
}i

The operation structure by itself defines the operation type. It includes an operation status,
a reference to the operation specific data, which can vary in size and content depending on
the operation being provisioned. It also contains the source mempool for the operation, if it is
allocated from a mempool.

If bbdev operations are allocated from a bbdev operation mempool, see next section, there is
also the ability to allocate private memory with the operation for applications purposes.

Application software is responsible for specifying all the operation specific fields in the
rte_bbdev_*_op structure which are then used by the bbdev PMD to process the requested
operation.

13.4.3 Operation Management and Allocation

The bbdev library provides an API set for managing bbdev operations which utilize the Mem-
pool Library to allocate operation buffers. Therefore, it ensures that the bbdev operation is
interleaved optimally across the channels and ranks for optimal processing.

struct rte_mempool =«

rte_bbdev_op_pool_create (const char xname, enum rte_bbdev_op_type type,
unsigned int num_elements, unsigned int cache_size,
int socket_id)

rte_bbdev_x_op_alloc_bulk () and rte_bbdev_x*_op_free_bulk () are used to allo-
cate bbdev operations of a specific type from a given bbdev operation mempool.

int rte_bbdev_enc_op_alloc_bulk (struct rte_mempool *mempool,
struct rte_bbdev_enc_op **ops, uintl6_t num_ops)

int rte_bbdev_dec_op_alloc_bulk (struct rte_mempool *mempool,
struct rte_bbdev_dec_op **ops, uintl6_t num_ops)

rte_bbdev_x_op_free_bulk () is called by the application to return an operation to its
allocating pool.
void rte_bbdev_dec_op_free_bulk (struct rte_bbdev_dec_op xxops,
unsigned int num_ops)

void rte_bbdev_enc_op_free_bulk (struct rte_bbdev_enc_op x*ops,
unsigned int num_ops)

13.4.4 BBDEYV Inbound/Outbound Memory

The bbdev operation structure contains all the mutable data relating to performing Turbo coding
on a referenced mbuf data buffer. It is used for either encode or decode operations.

Turbo Encode operation accepts one input and one output. Turbo Decode operation accepts
one input and two outputs, called hard-decision and soft-decision outputs. Soft-decision output
is optional.

It is expected that the application provides input and output mbuf pointers allocated and ready
to use. The baseband framework supports turbo coding on Code Blocks (CB) and Transport

13.4. Operation Processing 122

Programmer’s Guide, Release 18.05.1

Blocks (TB).

For the output buffer(s), the application is required to provide an allocated and free mbuf, so
that bbdev write back the resulting output.

The support of split “scattered” buffers is a driver-specific feature, so it is reported individually
by the supporting driver as a capability.

Input and output data buffers are identified by rte_bbdev_op_data structure, as follows:

struct rte_bbdev_op_data {
struct rte_mbuf +data;
uint32_t offset;
uint32_t length;

bi

This structure has three elements:
* data: This is the mbuf data structure representing the data for BBDEV operation.

This mbuf pointer can point to one Code Block (CB) data buffer or multiple CBs contigu-
ously located next to each other. A Transport Block (TB) represents a whole piece of data
that is divided into one or more CBs. Maximum number of CBs can be contained in one
TB is defined by RTE_BBDEV_MAX_CODE_BLOCKS.

An mbuf data structure cannot represent more than one TB. The smallest piece of data
that can be contained in one mbuf is one CB. An mbuf can include one contiguous CB,
subset of contiguous CBs that are belonging to one TB, or all contiguous CBs that are
belonging to one TB.

If a BBDEV PMD supports the extended capability “Scatter-Gather”, then it is capable
of collecting (gathering) non-contiguous (scattered) data from multiple locations in the
memory. This capability is reported by the capability flags:

— RTE_BBDEV_TURBO_ENC_SCATTER_GATHER, and
— RTE_BBDEV_TURBO_DEC_SCATTER_GATHER.

Only if a BBDEV PMD supports this feature, chained mbuf data structures are accepted.
A chained mbuf can represent one non-contiguous CB or multiple non-contiguous CBs.
The first mbuf segment in the given chained mbuf represents the first piece of the CB.
Offset is only applicable to the first segment. 1ength is the total length of the CB.

BBDEV driver is responsible for identifying where the split is and enqueue the split data
to its internal queues.

If BBDEV PMD does not support this feature, it will assume inbound mbuf data contains
one segment.

The output mbuf data though is always one segment, even if the input was a chained
mbuf.

» offset: This is the starting point of the BBDEV (encode/decode) operation, in bytes.

BBDEYV starts to read data past this offset. In case of chained mbuf, this offset applies
only to the first mbuf segment.

* length: This is the total data length to be processed in one operation, in bytes.

In case the mbuf data is representing one CB, this is the length of the CB undergoing
the operation. If it is for multiple CBs, this is the total length of those CBs undergoing the
operation. If it is for one TB, this is the total length of the TB under operation. In case

13.4. Operation Processing 123

Programmer’s Guide, Release 18.05.1

of chained mbuf, this data length includes the lengths of the “scattered” data segments
undergoing the operation.

13.4.5 BBDEV Turbo Encode Operation

struct rte_bbdev_op_turbo_enc {
struct rte_bbdev_op_data input;
struct rte_bbdev_op_data output;

uint32_t op_flags;
uint8_t rv_index;
uint8_ t code_block_mode;
union {
struct rte_bbdev_op_enc_cb_params cb_params;
struct rte_bbdev_op_enc_tb_params tb_params;
}i
}i
The Turbo encode structure is composed of the input and output mbuf data pointers. The
provided mbuf pointer of input needs to be big enough to stretch for extra CRC trailers.

op_flags parameter holds all operation related flags, like whether CRC24A is included by the
application or not.

code_block_mode flag identifies the mode in which bbdev is operating in.

The encode interface works on both the code block (CB) and the transport block (TB). An
operation executes in “CB-mode” when the CB is standalone. While “TB-mode” executes when
an operation performs on one or multiple CBs that belong to a TB. Therefore, a given data can
be standalone CB, full-size TB or partial TB. Partial TB means that only a subset of CBs
belonging to a bigger TB are being enqueued.

NOTE: It is assumed that all enqueued ops in one
rte_bbdev_enqueue_enc_ops () call belong to one mode, either CB-mode or
TB-mode.

In case that the CB is smaller than Z (6144 bits), then effectively the TB = CB. CRC24A is
appended to the tail of the CB. The application is responsible for calculating and appending
CRC24A before calling BBDEV in case that the underlying driver does not support CRC24A
generation.

In CB-mode, CRC24A/B is an optional operation. The input k is the size of the CB (this maps
to K as described in 3GPP TS 36.212 section 5.1.2), this size is inclusive of CRC24A/B. The
length is inclusive of CRC24A/B and equals to k in this case.

Not all BBDEV PMDs are capable of CRC24A/B calculation. Flags
RTE_BBDEV_TURBO_CRC_24A_ATTACH and RTE_BBDEV_TURBO_CRC_24B_ATTACH in-
forms the application with relevant capability. These flags can be set in the op_flags
parameter to indicate BBDEV to calculate and append CRC24A to CB before going forward
with Turbo encoding.

Output format of the CB encode will have the encoded CB in e size output (this maps to E
described in 3GPP TS 36.212 section 5.1.4.1.2). The output mbuf buffer size needs to be big
enough to hold the encoded buffer of size e.

In TB-mode, CRC24A is assumed to be pre-calculated and appended to the inbound TB mbuf
data buffer. The output mbuf data structure is expected to be allocated by the application with
enough room for the output data.

13.4. Operation Processing 124

Programmer’s Guide, Release 18.05.1

The difference between the partial and full-size TB is that we need to know the index of the
first CB in this group and the number of CBs contained within. The first CB index is given by
r but the number of the remaining CBs is calculated automatically by BBDEV before passing
down to the driver.

The number of remaining CBs should not be confused with c. c is the total number of CBs that
composes the whole TB (this maps to C as described in 3GPP TS 36.212 section 5.1.2).

The length is total size of the CBs inclusive of any CRC24A and CRC24B in case they were
appended by the application.

The case when one CB belongs to TB and is being enqueued individually to BBDEYV, this case
is considered as a special case of partial TB where its number of CBs is 1. Therefore, it
requires to get processed in TB-mode.

13.4.6 BBDEV Turbo Decode Operation

struct rte_bbdev_op_turbo_dec {
struct rte_bbdev_op_data input;
struct rte_bbdev_op_data hard_output;
struct rte_bbdev_op_data soft_output;

uint32_t op_flags;

uint8_t rv_index;

uint8_t iter min:4;

uint8_ t iter_max:4;

uint8_t iter_count;

uint8_t ext_scale;

uint8_t num_maps;

uint8_t code_block_mode;

union {
struct rte_bbdev_op_dec_cb_params cb_params;
struct rte_bbdev_op_dec_tb_params tb_params;

}i

bi

The Turbo decode structure is composed of the input and output mbuf data pointers.
op_flags parameter holds all operation related flags, like whether CRC24B is retained or not.
code_block_mode flag identifies the mode in which bbdev is operating in.

Similarly, the decode interface works on both the code block (CB) and the transport block (TB).
An operation executes in “CB-mode” when the CB is standalone. While “TB-mode” executes
when an operation performs on one or multiple CBs that belong to a TB. Therefore, a given
data can be standalone CB, full-size TB or partial TB. Partial TB means that only a subset of
CBs belonging to a bigger TB are being enqueued.

NOTE: It is assumed that all enqueued ops in one
rte_bbdev_enqueue_dec_ops () call belong to one mode, either CB-mode or
TB-mode.

The input k is the size of the decoded CB (this maps to K as described in 3GPP TS 36.212
section 5.1.2), this size is inclusive of CRC24A/B. The 1length is inclusive of CRC24A/B and
equals to k in this case.

The input encoded CB data is the Virtual Circular Buffer data stream, wk, with the null padding
included as described in 3GPP TS 36.212 section 5.1.4.1.2 and shown in 3GPP TS 36.212

13.4. Operation Processing 125

Programmer’s Guide, Release 18.05.1

section 5.1.4.1 Figure 5.1.4-1. The size of the virtual circular buffer is 3*Kpi, where Kpi is the
32 byte aligned value of K, as specified in 3GPP TS 36.212 section 5.1.4.1.1.

Each byte in the input circular buffer is the LLR value of each bit of the original CB.

hard_output is a mandatory capability that all BBDEV PMDs support. This is the decoded
CBs of K sizes (CRC24A/B is the last 24-bit in each decoded CB). Soft output is an optional
capability for BBDEV PMDs. Setting flag RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP in
op_flags directs BBDEV to retain CRC24B at the end of each CB. This might be useful for
the application in debug mode. An LLR rate matched output is computed in the soft_output
buffer structure for the given e size (this maps to E described in 3GPP TS 36.212 section
5.1.4.1.2). The output mbuf buffer size needs to be big enough to hold the encoded buffer of
size e.

The first CB Virtual Circular Buffer (VCB) index is given by r but the number of the remaining
CB VCBs is calculated automatically by BBDEV before passing down to the driver.

The number of remaining CB VCBs should not be confused with c. c is the total number of
CBs that composes the whole TB (this maps to C as described in 3GPP TS 36.212 section
5.1.2).

The 1ength is total size of the CBs inclusive of any CRC24A and CRC24B in case they were
appended by the application.

The case when one CB belongs to TB and is being enqueued individually to BBDEYV, this case
is considered as a special case of partial TB where its number of CBs is 1. Therefore, it
requires to get processed in TB-mode.

The output mbuf data structure is expected to be allocated by the application with enough room
for the output data.

13.5 Sample code

The baseband device sample application gives an introduction on how to use the bbdev frame-
work, by giving a sample code performing a loop-back operation with a baseband processor
capable of transceiving data packets.

The following sample C-like pseudo-code shows the basic steps to encode several buffers
using (sw_trubo) bbdev PMD.

/+ EAL Init =/
ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Invalid EAL arguments\n");

/* Get number of available bbdev devices */
nb_bbdevs = rte_bbdev_count () ;
if (nb_bbdevs == 0)

rte_exit (EXIT_FAILURE, "No bbdevs detected!\n");

/% Create bbdev op pools */

bbdev_op_pool [RTE_BBDEV_OP_TURBO_ENC] =
rte_bbdev_op_pool_create ("bbdev_op_pool_enc",
RTE_BBDEV_OP_TURBO_ENC, NB_MBUF, 128, rte_socket_id());

/% Get information for this device */
rte_bbdev_info_get (dev_id, &info);

13.5. Sample code 126

Programmer’s Guide, Release 18.05.1

/+ Setup BBDEV device queues #*/
ret = rte_bbdev_setup_queues (dev_id, gs_nb, info.socket_id);
if (ret < 0)
rte_exit (EXIT_FAILURE,
"ERROR (%d) : BBDEV %u not configured properly\n",
ret, dev_id);

/+ setup device queues x/

gconf.socket = info.socket_id;
gconf.queue_size = info.drv.queue_size_lim;
qgconf.op_type = RTE_BBDEV_OP_TURBO_ENC;

for (g_id = 0; g_id < gs_nb; g_id++) {
/#+ Configure all queues belonging to this bbdev device x/
ret = rte_bbdev_gueue_configure (dev_id, g_id, &qgconf);
if (ret < 0)
rte_exit (EXIT_FAILURE,
"ERROR (%d) : BBDEV %u queue %u not configured properly\n",
ret, dev_id, g_id);

/+ Start bbdev device #*/
ret = rte_bbdev_start (dev_id);

/* Create the mbuf mempool for pkts =*/
mbuf_pool = rte_pktmbuf_pool_create ("bbdev_mbuf_ pool",
NB_MBUF, MEMPOOL_CACHE_SIZE, O,
RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
if (mbuf_pool == NULL)
rte_exit (EXIT_FAILURE,
"Unable to create '$s' pool\n", pool_name);

while (!global_exit_flag) {

/#+ Allocate burst of op structures in preparation for enqueue x/

if (rte_bbdev_enc_op_alloc_bulk (bbdev_op_pool [RTE_BBDEV_OP_TURBO_ENC],
ops_burst, op_num) != 0)
continue;

/+ Allocate input mbuf pkts */
ret = rte_pktmbuf_alloc_bulk (mbuf_pool, input_pkts_burst, MAX_PKT_BURST) ;
if (ret < 0)

continue;

/+ Allocate output mbuf pkts =/
ret = rte_pktmbuf_alloc_bulk (mbuf_pool, output_pkts_burst, MAX_PKT_BURST);
if (ret < 0)

continue;

for (j = 0; j < op_num; J++) {
/* Append the size of the ethernet header #*/
rte_pktmbuf_append (input_pkts_burst[j],
sizeof (struct ether_hdr));

/* set op */

ops_burst[j]->turbo_enc.input.offset =
sizeof (struct ether_hdr);

ops_burst[j]->turbo_enc->input.length =
rte_pktmbuf_pkt_len (bbdev_pkts[]j]);

ops_burst[j]->turbo_enc->input.data =

13.5. Sample code 127

Programmer’s Guide, Release 18.05.1

input_pkts_burst[j];

ops_burst[j]->turbo_enc->output.offset =
sizeof (struct ether_hdr);

ops_burst[j]->turbo_enc->output.data =
output_pkts_burst[j];
}

/# Enqueue packets on BBDEV device #*/

op_num = rte_bbdev_enqueue_enc_ops (gconf->bbdev_id,
qconf->bbdev_gs[qg], ops_burst,
MAX_PKT_BURST) ;

/#* Dequeue packets from BBDEV devicex/

op_num = rte_bbdev_dequeue_enc_ops (gqconf->bbdev_id,
qconf->bbdev_gs[qgq], ops_burst,
MAX_PKT_BURST) ;

13.5.1 BBDEV Device API

The bbdev Library API is described in the DPDK API Reference document.

13.5. Sample code

128

CHAPTER
FOURTEEN

CRYPTOGRAPHY DEVICE LIBRARY

The cryptodev library provides a Crypto device framework for management and provisioning
of hardware and software Crypto poll mode drivers, defining generic APls which support a
number of different Crypto operations. The framework currently only supports cipher, authen-
tication, chained cipher/authentication and AEAD symmetric Crypto operations.

14.1 Design Principles

The cryptodev library follows the same basic principles as those used in DPDKs Ethernet
Device framework. The Crypto framework provides a generic Crypto device framework which
supports both physical (hardware) and virtual (software) Crypto devices as well as a generic
Crypto API which allows Crypto devices to be managed and configured and supports Crypto
operations to be provisioned on Crypto poll mode driver.

14.2 Device Management

14.2.1 Device Creation

Physical Crypto devices are discovered during the PCI probe/enumeration of the EAL function
which is executed at DPDK initialization, based on their PCI device identifier, each unique
PCI BDF (bus/bridge, device, function). Specific physical Crypto devices, like other physical
devices in DPDK can be white-listed or black-listed using the EAL command line options.

Virtual devices can be created by two mechanisms, either using the EAL command line options
or from within the application using an EAL API directly.

From the command line using the —vdev EAL option

—-—-vdev 'crypto_aesni_mb0,max_nb_queue_pairs=2,max_nb_sessions=1024, socket_1id=0"

Note:

+ If DPDK application requires multiple software crypto PMD devices then required number
of ——vdev with appropriate libraries are to be added.

» An Application with crypto PMD instaces sharing the same library requires unique ID.

Example: —-—vdev ’'crypto_aesni_mb0’ --vdev ’'crypto_aesni_mbl’

Our using the rte_vdev_init API within the application code.

129

Programmer’s Guide, Release 18.05.1

rte_vdev_init ("crypto_aesni_mb",
"max_nb_queue_pairs=2,max_nb_sessions=1024, socket_id=0")

All virtual Crypto devices support the following initialization parameters:
* max_nb_queue_pairs - maximum number of queue pairs supported by the device.
* max_nb_sessions - maximum number of sessions supported by the device

* socket_id - socket on which to allocate the device resources on.

14.2.2 Device ldentification

Each device, whether virtual or physical is uniquely designated by two identifiers:

» A unique device index used to designate the Crypto device in all functions exported by
the cryptodev API.

» A device name used to designate the Crypto device in console messages, for adminis-
tration or debugging purposes. For ease of use, the port name includes the port index.

14.2.3 Device Configuration

The configuration of each Crypto device includes the following operations:
+ Allocation of resources, including hardware resources if a physical device.
* Resetting the device into a well-known default state.
« Initialization of statistics counters.

The rte_cryptodev_configure APl is used to configure a Crypto device.

int rte_cryptodev_configure (uint8_t dev_id,
struct rte_cryptodev_config *config)

The rte_cryptodev_config structure is used to pass the configuration parameters for
socket selection and number of queue pairs.

struct rte_cryptodev_config {
int socket_id;
/*+< Socket to allocate resources on #*/
uintl6_t nb_gueue_pairs;
/*+< Number of queue palirs to configure on device */

}i

14.2.4 Configuration of Queue Pairs

Each Crypto devices queue pair is individually configured through the
rte_cryptodev_queue_pair_setup APl Each queue pairs resources may be allo-
cated on a specified socket.

int rte_cryptodev_queue_pair_setup (uint8_t dev_id, uintl6_t queue_pair_id,
const struct rte_cryptodev_gp_conf xgp_conf,
int socket_id)

struct rte_cryptodev_gp_conf {
uint32_t nb_descriptors; /#x< Number of descriptors per queue pailr x/

}i

14.2. Device Management 130

Programmer’s Guide, Release 18.05.1

14.2.5 Logical Cores, Memory and Queues Pair Relationships

The Crypto device Library as the Poll Mode Driver library support NUMA for when a processor’s
logical cores and interfaces utilize its local memory. Therefore Crypto operations, and in the
case of symmetric Crypto operations, the session and the mbuf being operated on, should
be allocated from memory pools created in the local memory. The buffers should, if possible,
remain on the local processor to obtain the best performance results and buffer descriptors
should be populated with mbufs allocated from a mempool allocated from local memory.

The run-to-completion model also performs better, especially in the case of virtual Crypto de-
vices, if the Crypto operation and session and data buffer is in local memory instead of a
remote processor's memory. This is also true for the pipe-line model provided all logical cores
used are located on the same processor.

Multiple logical cores should never share the same queue pair for enqueuing operations or de-
queuing operations on the same Crypto device since this would require global locks and hinder
performance. It is however possible to use a different logical core to dequeue an operation on
a queue pair from the logical core which it was enqueued on. This means that a crypto burst
enqueue/dequeue APls are a logical place to transition from one logical core to another in a
packet processing pipeline.

14.3 Device Features and Capabilities

Crypto devices define their functionality through two mechanisms, global device features and
algorithm capabilities. Global devices features identify device wide level features which are
applicable to the whole device such as the device having hardware acceleration or supporting
symmetric Crypto operations,

The capabilities mechanism defines the individual algorithms/functions which the device sup-
ports, such as a specific symmetric Crypto cipher, authentication operation or Authenticated
Encryption with Associated Data (AEAD) operation.

14.3.1 Device Features

Currently the following Crypto device features are defined:
» Symmetric Crypto operations
» Asymmetric Crypto operations
+ Chaining of symmetric Crypto operations
+ SSE accelerated SIMD vector operations
» AVX accelerated SIMD vector operations
» AVX2 accelerated SIMD vector operations
» AESNI accelerated instructions

» Hardware off-load processing

14.3. Device Features and Capabilities 131

Programmer’s Guide, Release 18.05.1

14.3.2 Device Operation Capabilities

Crypto capabilities which identify particular algorithm which the Crypto PMD supports are de-
fined by the operation type, the operation transform, the transform identifier and then the par-
ticulars of the transform. For the full scope of the Crypto capability see the definition of the

structure in the DPDK API Reference.

struct rte_cryptodev_capabilities;

Each Crypto poll mode driver defines its own private array of capabilities for the operations it
supports. Below is an example of the capabilities for a PMD which supports the authentication

algorithm SHA1_HMAC and the cipher algorithm AES_CBC.

static const struct rte_cryptodev_capabilities pmd_capabilities]|]

{ /+ SHA1l HMAC +/
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
.sym = {

.xform_type = RTE_CRYPTO_SYM_ XFORM_AUTH,
.auth = {
.algo = RTE_CRYPTO_AUTH_SHA1l_HMAC,
.block_size = 64,

.key_size = {
.min = 64,
.max = 64,
.increment = 0
b
.digest_size = {
.min = 12,
.max = 12,
.increment = 0
}I
.aad_size = { 0 1},
.iv_size = { 0 }
}
}
}I
{ /* AES CBC #*/
.0op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,

.sym = {
.xform_type = RTE_CRYPTO_SYM XFORM_CIPHER,
.cipher = {
.algo = RTE_CRYPTO_CIPHER_AES_CBC,
.block_size = 16,

.key_size = {
.min = 16,
.max = 32,
.increment = 8

}I

.iv_size = {
.min = 16,
.max = 16,
.increment = 0

= A

14.3. Device Features and Capabilities

132

Programmer’s Guide, Release 18.05.1

14.3.3 Capabilities Discovery

Discovering the features and capabilities of a Crypto device poll mode driver is achieved
through the rte_cryptodev_info_get function.

void rte_cryptodev_info_get (uint8_t dev_id,
struct rte_cryptodev_info xdev_info);

This allows the user to query a specific Crypto PMD and get all the device features and ca-
pabilities. The rte_cryptodev_info structure contains all the relevant information for the
device.

struct rte_cryptodev_info {
const char *driver_name;
uint8 t driver_id;
struct rte_pci_device x*pci_dev;

uint64_t feature_flags;
const struct rte_cryptodev_capabilities xcapabilities;
unsigned max_nb_gueue_pairs;

struct {
unsigned max_nb_sessions;
} sym;
}i

14.4 Operation Processing

Scheduling of Crypto operations on DPDK’s application data path is performed using a burst
oriented asynchronous APl set. A queue pair on a Crypto device accepts a burst of Crypto
operations using enqueue burst API. On physical Crypto devices the enqueue burst API will
place the operations to be processed on the devices hardware input queue, for virtual devices
the processing of the Crypto operations is usually completed during the enqueue call to the
Crypto device. The dequeue burst APl will retrieve any processed operations available from the
queue pair on the Crypto device, from physical devices this is usually directly from the devices
processed queue, and for virtual device’s from a rte_ring where processed operations are
place after being processed on the enqueue call.

14.4.1 Private data

For session-based operations, the set and get API provides a mechanism for an application to
store and retrieve the private data information stored along with the crypto session.

For example, suppose an application is submitting a crypto operation with a session associated
and wants to indicate private data information which is required to be used after completion of
the crypto operation. In this case, the application can use the set API to set the private data
and retrieve it using get APL.

int rte_cryptodev_sym_session_set_private_data (
struct rte_cryptodev_sym_session *sess, void xdata, uintlé6_t size);

void * rte_cryptodev_sym_session_get_private_data (
struct rte_cryptodev_sym_session +sess);

14.4. Operation Processing 133

Programmer’s Guide, Release 18.05.1

For session-less mode, the private data information can be placed along with the struct
rte_crypto_op. The rte_crypto_op::private_data_offset indicates the start of
private data information. The offset is counted from the start of the rte_crypto_op including
other crypto information such as the 1Vs (since there can be an IV also for authentication).

14.4.2 Enqueue / Dequeue Burst APIs

The burst enqueue APl uses a Crypto device identifier and a queue pair identifier to specify the
Crypto device queue pair to schedule the processing on. The nb_ops parameter is the number
of operations to process which are supplied in the ops array of rte_crypto_op structures.
The enqueue function returns the number of operations it actually enqueued for processing, a
return value equal to nb_ops means that all packets have been enqueued.

uintl6_t rte_cryptodev_enqueue_burst (uint8_t dev_id, uintl6é_t gp_id,
struct rte_crypto_op **ops, uintl6_t nb_ops)

The dequeue API uses the same format as the enqueue API of processed but the nb_ops
and ops parameters are now used to specify the max processed operations the user wishes
to retrieve and the location in which to store them. The API call returns the actual number of
processed operations returned, this can never be larger than nb_ops.

uintl6_t rte_cryptodev_dequeue_burst (uint8_t dev_id, uintlé_t gp_id,
struct rte_crypto_op **ops, uintl6_t nb_ops)

14.4.3 Operation Representation

An Crypto operation is represented by an rte_crypto_op structure, which is a generic metadata
container for all necessary information required for the Crypto operation to be processed on a
particular Crypto device poll mode driver.

Crypto Operation A

4 N

Géstrac® peratigptp adp)

J

OglEmaciont & payiito Dpta_op)

private data

The operation structure includes the operation type, the operation status and the session type
(session-based/less), a reference to the operation specific data, which can vary in size and
content depending on the operation being provisioned. It also contains the source mempool
for the operation, if it allocated from a mempool.

If Crypto operations are allocated from a Crypto operation mempool, see next section, there is
also the ability to allocate private memory with the operation for applications purposes.

14.4. Operation Processing 134

Programmer’s Guide, Release 18.05.1

Application software is responsible for specifying all the operation specific fields in the
rte_crypto_op structure which are then used by the Crypto PMD to process the requested
operation.

14.4.4 Operation Management and Allocation

The cryptodev library provides an API set for managing Crypto operations which utilize the
Mempool Library to allocate operation buffers. Therefore, it ensures that the crytpo op-
eration is interleaved optimally across the channels and ranks for optimal processing. A
rte_crypto_op contains a field indicating the pool that it originated from. When calling
rte_crypto_op_~free (op), the operation returns to its original pool.

extern struct rte_mempool =

rte_crypto_op_pool_create (const char xname, enum rte_crypto_op_type type,

unsigned nb_elts, unsigned cache_size, uintl6_t priv_size,
int socket_id);

During pool creation rte_crypto_op_init () is called as a constructor to initialize each
Crypto operation which subsequently calls __rte_crypto_op_reset () to configure any
operation type specific fields based on the type parameter.

rte_crypto_op_alloc() and rte_crypto_op_bulk_alloc() are used to allo-
cate Crypto operations of a specific type from a given Crypto operation mempool.
__rte_crypto_op_reset () is called on each operation before being returned to allocate
to a user so the operation is always in a good known state before use by the application.

struct rte_crypto_op *rte_crypto_op_alloc(struct rte_mempool *mempool,
enum rte_crypto_op_type type)

unsigned rte_crypto_op_bulk_alloc (struct rte_mempool *mempool,
enum rte_crypto_op_type type,
struct rte_crypto_op **ops, uintl6_t nb_ops)

rte_crypto_op_free () is called by the application to return an operation to its allocating
pool.

void rte_crypto_op_free (struct rte_crypto_op *op)

14.5 Symmetric Cryptography Support

The cryptodev library currently provides support for the following symmetric Crypto operations;
cipher, authentication, including chaining of these operations, as well as also supporting AEAD
operations.

14.5.1 Session and Session Management

Sessions are used in symmetric cryptographic processing to store the immutable data defined
in a cryptographic transform which is used in the operation processing of a packet flow. Ses-
sions are used to manage information such as expand cipher keys and HMAC IPADs and
OPADs, which need to be calculated for a particular Crypto operation, but are immutable on a
packet to packet basis for a flow. Crypto sessions cache this immutable data in a optimal way
for the underlying PMD and this allows further acceleration of the offload of Crypto workloads.

14.5. Symmetric Cryptography Support 135

Programmer’s Guide, Release 18.05.1

Crypto Symmetric Session] Crypto Driver Private Sessipn

void *sess private data[

l-» Private Session Data

Crypto Driver Private Sessipn

> Private Session Data

The Crypto device framework provides APlIs to allocate and initizalize sessions for crypto de-
vices, where sessions are mempool objects. It is the application’s responsibility to create and
manage the session mempools. This approach allows for different scenarios such as having a
single session mempool for all crypto devices (where the mempool object size is big enough
to hold the private session of any crypto device), as well as having multiple session mempools
of different sizes for better memory usage.

An application can use rte_cryptodev_sym_get_private_session_size () to getthe
private session size of given crypto device. This function would allow an application to calcu-
late the max device session size of all crypto devices to create a single session mempool. If
instead an application creates multiple session mempools, the Crypto device framework also
provides rte_cryptodev_sym_get_header_session_size to getthe size of an uninitial-
ized session.

Once the session mempools have been created, rte_cryptodev_sym_session_create ()
is used to allocate an uninitialized session from the given mempool. The session then must
be initialized using rte_cryptodev_sym_session_init () for each of the required crypto
devices. A symmetric transform chain is used to specify the operation and its parameters. See
the section below for details on transforms.

When a session is no longer used, user must call rte_cryptodev_sym_session_clear ()
for each of the crypto devices that are using the session, to free all driver private session data.
Once this is done, session should be freed using rte_cryptodev_sym_session_free
which returns them to their mempool.

14.5.2 Transforms and Transform Chaining

Symmetric Crypto transforms (rte_crypto_sym_xform) are the mechanism used to spec-
ify the details of the Crypto operation. For chaining of symmetric operations such as cipher
encrypt and authentication generate, the next pointer allows transform to be chained together.

14.5. Symmetric Cryptography Support 136

Programmer’s Guide, Release 18.05.1

Crypto devices which support chaining must publish the chaining of symmetric Crypto opera-
tions feature flag.

Currently there are three transforms types cipher, authentication and AEAD. Also it is important
to note that the order in which the transforms are passed indicates the order of the chaining.

struct rte_crypto_sym_xform {
struct rte_crypto_sym_xform *next;
/**< next xform in chain =*/
enum rte_crypto_sym_xform_type type;
/*#+< xform type */
union {
struct rte_crypto_auth_xform auth;
/#*#x< Authentication / hash xform x/
struct rte_crypto_cipher_xform cipher;
/**< Cipher xform x/
struct rte_crypto_aead_xform aead;
/*%< AEAD xform */
}i
}i

The API does not place a limit on the number of transforms that can be chained together but
this will be limited by the underlying Crypto device poll mode driver which is processing the
operation.

(Symateatec Crnmisfgsimn_xfo rm)

-

([(stroettrteasfoto ym xform *)
~ A
(enumensorymypayn xform| (Symctatec drgpisfosym_xform)
a) ([(stroettrteasfopto 3ym xform *)
simaifotin Eaypimates nxdidn ((enumansformyiymeyim xform_type)
4 D
S) Slmaiftin Eaypinatiet ndimm
< J
\§ J

14.5.3 Symmetric Operations

The symmetric Crypto operation structure contains all the mutable data relating to performing
symmetric cryptographic processing on a referenced mbuf data buffer. It is used for either
cipher, authentication, AEAD and chained operations.

14.5. Symmetric Cryptography Support 137

Programmer’s Guide, Release 18.05.1

As a minimum the symmetric operation must have a source data buffer (m_src), a valid session
(or transform chain if in session-less mode) and the minimum authentication/ cipher/ AEAD pa-

rameters required depending on the type of operation specified in the session or the transform
chain.

struct rte_crypto_sym_op {
struct rte_mbuf *m_src;
struct rte_mbuf *m_dst;

union {
struct rte_cryptodev_sym_session *session;
/*%< Handle for the initialised session context #*/
struct rte_crypto_sym_xform *xform;
/#*#%< Session-less API Crypto operation parameters #*/

}i

union {
struct {
struct {
uint32_t offset;
uint32_t length;
} data; /##< Data offsets and length for AEAD +*/

struct {
uint8_t +data;
rte_iova_t phys_addr;
} digest; /##< Digest parameters #*/

struct {
uint8_t +data;
rte_iova_t phys_addr;
} aad;
/**< Additional authentication parameters */
} aead;

struct {
struct {
struct {
uint32_t offset;
uint32_t length;
} data; /#%< Data offsets and length for ciphering =/
} cipher;

struct {
struct {
uint32_t offset;
uint32_t length;
} data;
/#+#+< Data offsets and length for authentication x/

struct {
uint8 t x+data;
rte_iova_t phys_addr;
} digest; /##< Digest parameters */
} auth;

14.5. Symmetric Cryptography Support 138

Programmer’s Guide, Release 18.05.1

14.6 Sample code

There are various sample applications that show how to use the cryptodev library, such as the
L2fwd with Crypto sample application (L2fwd-crypto) and the IPSec Security Gateway applica-
tion (ipsec-secgw).

While these applications demonstrate how an application can be created to perform generic
crypto operation, the required complexity hides the basic steps of how to use the cryptodev
APls.

The following sample code shows the basic steps to encrypt several buffers with AES-CBC
(although performing other crypto operations is similar), using one of the crypto PMDs available
in DPDK.

/%
* Simple example to encrypt several buffers with AES-CBC using
* the Cryptodev APIs.

*/

#define MAX_SESSIONS 1024

#define NUM_MBUFS 1024

#define POOI_CACHE_SIZE 128

#define BURST _SIZE 32

#define BUFFER_SIZE 1024

#define AES _CBC_IV_LENGTH 16

#define AES_CBC_KEY LENGTH 16

#define IV_OFFSET (sizeof (struct rte_crypto_op) + \

sizeof (struct rte_crypto_sym _op))

struct rte_mempool *mbuf_pool, *crypto_op_pool, *session_pool;
unsigned int session_size;
int ret;

/#* Initialize EAL. x/
ret = rte_eal_init (argc, argv);
if (ret < 0)
rte_exit (EXIT_FAILURE, "Invalid EAL arguments\n");

uint8_t socket_id = rte_socket_id();

/+ Create the mbuf pool. */

mbuf_pool = rte_pktmbuf_pool_create ("mbuf_pool",
NUM_MBUFS,
POOL_CACHE_SIZE,
OI
RTE_MBUF_DEFAULT_BUF_SIZE,
socket_id);

if (mbuf_pool == NULL)

rte_exit (EXIT_FAILURE, "Cannot create mbuf pool\n");

/ *
* The IV is always placed after the crypto operation,
* so some private data is required to be reserved.
*/
unsigned int crypto_op_private_data = AES_CBC_IV_LENGTH;

/* Create crypto operation pool. */

crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
NUM_MBUF'S,
POOL_CACHE_SIZE,

14.6. Sample code 139

Programmer’s Guide, Release 18.05.1

crypto_op_private_data,
socket_id);
if (crypto_op_pool == NULL)
rte_exit (EXIT_FAILURE, "Cannot create crypto op pool\n");

/% Create the virtual crypto device. #*/
char args[128];
const char xcrypto_name = "crypto_aesni_mb0";
snprintf (args, sizeof (args), "socket_id=%d", socket_id);
ret = rte_vdev_init (crypto_name, args);
if (ret !'= 0)
rte_exit (EXIT_FAILURE, "Cannot create virtual device");

uint8_t cdev_id = rte_cryptodev_get_dev_id (crypto_name) ;

/+ Get private session data size. =/
session_size = rte_cryptodev_sym _get_private_session_size (cdev_id);

J/ *
* Create session mempool, with two objects per session,
* one for the session header and another one for the
* private session data for the crypto device.
*/
session_pool = rte_mempool_create("session pool",
MAX_SESSIONS «* 2,
session_size,
POOL_CACHE_SIZE,
0, NULL, NULL, NULL,
NULL, socket_id,
0);

/+ Configure the crypto device. #*/

struct rte_cryptodev_config conf = {
.nb_queue_pairs = 1,
.socket_id = socket_id

}i

struct rte_cryptodev_gp_conf gp_conf = {
.nb_descriptors = 2048

}i

if (rte_cryptodev_configure (cdev_id, &conf) < 0)
rte_exit (EXIT_FAILURE, "Failed to configure cryptodev %u", cdev_id);

if (rte_cryptodev_queue_pair_setup (cdev_id, 0, &gp_conf,
socket_id, session_pool) < 0)
rte_exit (EXIT_FAILURE, "Failed to setup queue pair\n");

if (rte_cryptodev_start (cdev_id) < 0)
rte_exit (EXIT_FAILURE, "Failed to start device\n");

/% Create the crypto transform. */
uint8_t cipher_key[16] = {0};
struct rte_crypto_sym_xform cipher_xform = ({
.next = NULL,
.type = RTE_CRYPTO_SYM_XFORM_CIPHER,
.cipher = {
.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT,
.algo = RTE_CRYPTO_CIPHER_AES_CRC,
.key = {
.data = cipher_key,
.length = AES_CBC_KEY_LENGTH
}I

v o= |

14.6. Sample code 140

Programmer’s Guide, Release 18.05.1

.offset
.length

IV_OFFSET,
AES_CBC_IV_LENGTH

}i

/* Create crypto session and initialize it for the crypto device. x/
struct rte_cryptodev_sym_session *session;
session = rte_cryptodev_sym_session_create (session_pool);
if (session == NULL)
rte_exit (EXIT_FAILURE, "Session could not be created\n");

if (rte_cryptodev_sym_session_init (cdev_id, session,
&cipher_xform, session_pool) < 0)
rte_exit (EXIT_FAILURE, "Session could not be initialized "
"for the crypto device\n");

/% Get a burst of crypto operations. #*/
struct rte_crypto_op *crypto_ops[BURST_SIZE];
if (rte_crypto_op_bulk_alloc (crypto_op_pool,
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
crypto_ops, BURST_SIZE) == 0)
rte_exit (EXIT_FAILURE, "Not enough crypto operations available\n");

/% Get a burst of mbufs. x/

struct rte_mbuf s*mbufs[BURST_SIZE];

if (rte_pktmbuf_alloc_bulk (mbuf_pool, mbufs, BURST_SIZE) < 0)
rte_exit (EXIT_FAILURE, "Not enough mbufs available");

/% Initialize the mbufs and append them to the crypto operations. #*/
unsigned int i;
for (i = 0; 1 < BURST_SIZE; i++) {
if (rte_pktmbuf_append (mbufs([i], BUFFER_SIZE) == NULL)
rte_exit (EXIT_FAILURE, "Not enough room in the mbuf\n");
crypto_ops[i]->sym->m_src = mbufs[i];

/+ Set up the crypto operations. */
for (i = 0; 1 < BURST_SIZE; i++) {
struct rte_crypto_op *op = crypto_ops[il];
/+ Modify bytes of the IV at the end of the crypto operation */
uint8_t *iv_ptr = rte_crypto_op_ctod_offset (op, uint8_t =,
IV_OFFSET) ;

generate_random_bytes (iv_ptr, AES_CBC_IV_LENGTH);

op->sym->cipher.data.offset = 0;
op->sym->cipher.data.length = BUFFER_SIZE;

/+ Attach the crypto session to the operation #*/
rte_crypto_op_attach_sym session(op, session);

/* Enqueue the crypto operations in the crypto device. #*/
uintl6_t num_enqueued_ops = rte_cryptodev_enqueue_burst (cdev_id, O,
crypto_ops, BURST_SIZE);

/%
* Dequeue the crypto operations until all the operations
* are proccessed in the crypto device.
*/

uintl6_t num_dequeued_ops, total_num_dequeued_ops = 0;

do {

14.6. Sample code 141

Programmer’s Guide, Release 18.05.1

struct rte_crypto_op *dequeued_ops[BURST_SIZE];

num_dequeued_ops = rte_cryptodev_dequeue_burst (cdev_id, O,
dequeued_ops, BURST_SIZE);

total_num_dequeued_ops += num_dequeued_ops;

/#* Check 1if operation was processed successfully =*/
for (i = 0; 1 < num_dequeued_ops; i++) {
if (dequeued_ops[i]->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
rte_exit (EXIT_FAILURE,
"Some operations were not processed correctly");

}

rte_mempool_put_bulk (crypto_op_pool, (void xx)dequeued_ops,
num_dequeued_ops) ;
} while (total_num_dequeued_ops < num_enqueued_ops) ;

14.7 Asymmetric Cryptography

Asymmetric functionality is currently not supported by the cryptodev API.

14.7.1 Crypto Device API

The cryptodev Library APl is described in the DPDK API Reference document.

14.7. Asymmetric Cryptography 142

CHAPTER
FIFTEEN

COMPRESSION DEVICE LIBRARY

The compression framework provides a generic set of APIs to perform compression ser-
vices as well as to query and configure compression devices both physical(hardware) and
virtual(software) to perform those services. The framework currently only supports lossless
compression schemes: Deflate and LZS.

15.1 Device Management

15.1.1 Device Creation

Physical compression devices are discovered during the bus probe of the EAL function which
is executed at DPDK initialization, based on their unique device identifier. For eg. PCl devices
can be identified using PCI BDF (bus/bridge, device, function). Specific physical compression
devices, like other physical devices in DPDK can be white-listed or black-listed using the EAL
command line options.

Virtual devices can be created by two mechanisms, either using the EAL command line options
or from within the application using an EAL API direcily.

From the command line using the —vdev EAL option

—-—vdev '<pmd name>, socket_id=0"

Note:

« If DPDK application requires multiple software compression PMD devices then required
number of -—vdev with appropriate libraries are to be added.

» An Application with multiple compression device instances exposed by the same PMD
must specify a unique name for each device.

Example: ——vdev ’pmd0’ --vdev ’pmdl’

Or, by using the rte_vdev_init APl within the application code.

rte_vdev_init ("<pmd_name>", "socket_id=0")
All virtual compression devices support the following initialization parameters:

* socket_id - socket on which to allocate the device resources on.

143

Programmer’s Guide, Release 18.05.1

15.1.2 Device Identification

Each device, whether virtual or physical is uniquely designated by two identifiers:

» A unigue device index used to designate the compression device in all functions exported
by the compressdev API.

» A device name used to designate the compression device in console messages, for ad-
ministration or debugging purposes.

15.1.3 Device Configuration

The configuration of each compression device includes the following operations:

« Allocation of resources, including hardware resources if a physical device.

* Resetting the device into a well-known default state.

« Initialization of statistics counters.
The rte_compressdev_configure APl is used to configure a compression device.
The rte_compressdev_config structure is used to pass the configuration parameters.
See DPDK API Reference for details.

15.1.4 Configuration of Queue Pairs

Each compression device queue pair is individually configured through the
rte_compressdev_queue_pair_setup AP

The max_inflight_ops is used to pass maximum number of rte_comp_op that could be
present in a queue at-a-time. PMD then can allocate resources accordingly on a specified
socket.

See DPDK API Reference for details.

15.1.5 Logical Cores, Memory and Queues Pair Relationships

Library supports NUMA similarly as described in Cryptodev library section.

A queue pair cannot be shared and should be exclusively used by a single processing context
for enqueuing operations or dequeuing operations on the same compression device since
sharing would require global locks and hinder performance. It is however possible to use a
different logical core to dequeue an operation on a queue pair from the logical core on which
it was enqueued. This means that a compression burst enqueue/dequeue APIs are a logical
place to transition from one logical core to another in a data processing pipeline.

15.2 Device Features and Capabilities

Compression devices define their functionality through two mechanisms, global device features
and algorithm features. Global devices features identify device wide level features which are

15.2. Device Features and Capabilities 144

Programmer’s Guide, Release 18.05.1

applicable to the whole device such as supported hardware acceleration and CPU features.
List of compression device features can be seen in the RTE_COMPDEV_FF_XXX macros.

The algorithm features lists individual algo feature which device supports per-algorithm, such
as a stateful compression/decompression, checksums operation etc. List of algorithm features
can be seen in the RTE_COMP_FF_ XXX macros.

15.2.1 Capabilities

Each PMD has a |list of capabilities, including algorithms listed in enum
rte_comp_algorithm and its associated feature flag and sliding window range in log
base 2 value. Sliding window tells the minimum and maximum size of lookup window that
algorithm uses to find duplicates.

See DPDK API Reference for details.

Each Compression poll mode driver defines its array of capabilities for each algorithm it sup-
ports. See PMD implementation for capability initialization.

15.2.2 Capabilities Discovery

PMD capability and features are discovered via rte_compressdev_info_get function.
The rte_compressdev_info structure contains all the relevant information for the device.

See DPDK API Reference for details.

15.3 Compression Operation

DPDK compression supports two types of compression methodologies:

+ Stateless, data associated to a compression operation is compressed without any refer-
ence to another compression operation.

« Stateful, data in each compression operation is compressed with reference to previous
compression operations in the same data stream i.e. history of data is maintained be-
tween the operations.

For more explanation, please refer RFC https://www.ietf.org/rfc/rfc1951.ixt

15.3.1 Operation Representation

Compression operation is described via struct rte_comp_op, Which contains both input
and output data. The operation structure includes the operation type (stateless or stateful), the
operation status and the priv_xform/stream handle, source, destination and checksum buffer
pointers. It also contains the source mempool from which the operation is allocated. PMD
updates consumed field with amount of data read from source buffer and produced field with
amount of data of written into destination buffer along with status of operation. See section
Produced, Consumed And Operation Status for more details.

Compression operations mempool also has an ability to allocate private memory with the op-
eration for application’s purposes. Application software is responsible for specifying all the

15.3. Compression Operation 145

https://www.ietf.org/rfc/rfc1951.txt

Programmer’s Guide, Release 18.05.1

operation specific fields in the rte_comp_op structure which are then used by the compres-
sion PMD to process the requested operation.

15.3.2 Operation Management and Allocation

The compressdev library provides an API set for managing compression operations which uti-
lize the Mempool Library to allocate operation buffers. Therefore, it ensures that the compres-
sion operation is interleaved optimally across the channels and ranks for optimal processing.

A rte_comp_op contains a field indicating the pool it originated from.

rte_comp_op_alloc () and rte_comp_op_bulk_alloc () are used to allocate compres-
sion operations from a given compression operation mempool. The operation gets reset before
being returned to a user so that operation is always in a good known state before use by the
application.

rte_comp_op_free () is called by the application to return an operation to its allocating pool.
See DPDK API Reference for details.

15.3.3 Passing source data as mbuf-chain

If input data is scattered across several different buffers, then Application can either parse
through all such buffers and make one mbuf-chain and enqueue it for processing or, alterna-
tively, it can make multiple sequential enqueue_burst() calls for each of them processing them
statefully. See Compression API Stateful Operation for stateful processing of ops.

15.3.4 Operation Status

Each operation carries a status information updated by PMD after it is processed. following
are currently supported status:

« RTE_COMP_OP_STATUS_SUCCESS, Operation is successfully completed

RTE_COMP_OP_STATUS_NOT_PROCESSED, Operation has not yet been processed
by the device

RTE_COMP_OP_STATUS_INVALID_ARGS, Operation failed due to invalid arguments
in request

RTE_COMP_OP_STATUS_ERROR, Operation failed because of internal error
RTE_COMP_OP_STATUS_INVALID_STATE, Operation is invoked in invalid state

RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED, Output buffer ran out of
space during processing. Error case, PMD cannot continue from here.

RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE, Output buffer ran out
of space before operation completed, but this is not an error case. Output data up
to op.produced can be used and next op in the stream should continue on from
op.consumed+1.

15.3. Compression Operation 146

Programmer’s Guide, Release 18.05.1

15.3.5 Produced, Consumed And Operation Status

« If status is RTE_COMP_OP_STATUS SUCCESS, consumed = amount of data read
from input buffer, and produced = amount of data written in destination buffer

If status is RTE_COMP_OP_STATUS_FAILURE, consumed = produced = 0 or unde-
fined

If status is RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED, consumed =
0 and produced = usually 0, but in decompression cases a PMD may return > 0 i.e.
amount of data successfully produced until out of space condition hit. Application
can consume output data in this case, if required.

If status is RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE,
consumed = amount of data read, and produced = amount of data success-
fully produced until out of space condition hit. PMD has ability to recover from here,
s0 application can submit next op from consumed+1 and a destination buffer with
available space.

15.4 Transforms

Compression transforms (rte_comp_xform) are the mechanism to specify the details of the
compression operation such as algorithm, window size and checksum.

15.5 Compression APl Hash support

Compression API allows application to enable digest calculation alongside compression and
decompression of data. A PMD reflects its support for hash algorithms via capability algo
feature flags. If supported, PMD calculates digest always on plaintext i.e. before compression
and after decompression.

Currently supported list of hash algos are SHA-1 and SHA2 family SHA256.
See DPDK API Reference for details.

If required, application should set wvalid hash algo in compress or
decompress xforms during rte_compressdev_stream_create () or
rte_compressdev_private_xform_create() and pass a valid output buffer in
rte_comp_op hash field struct to store the resulting digest. Buffer passed should be
contiguous and large enough to store digest which is 20 bytes for SHA-1 and 32 bytes for
SHA2-256.

15.6 Compression API Stateless operation

An op is processed stateless if it has - op_type set to RTE_COMP_OP_STATELESS - flush
value set to RTE_FLUSH_FULL or RTE_FLUSH_FINAL (required only on compression side),
- All required input in source buffer

When all of the above conditions are met, PMD initiates stateless processing and releases
acquired resources after processing of current operation is complete. Application can enqueue
multiple stateless ops in a single burst and must attach priv_xform handle to such ops.

15.4. Transforms 147

Programmer’s Guide, Release 18.05.1

15.6.1 priv_xform in Stateless operation

priv_xform is PMD internally managed private data that it maintains to do stateless processing.
priv_xforms are initialized provided a generic xform structure by an application via making call
to rte_comp_private_xform_create, at an output PMD returns an opaque priv_xform
reference. If PMD support SHAREABLE priv_xform indicated via algorithm feature flag, then
application can attach same priv_xform with many stateless ops at-a-time. If not, then applica-
tion needs to create as many priv_xforms as it expects to have stateless operations in-flight.

priv_xfo

Fig. 15.1: Stateless Ops using Non-Shareable priv_xform

e

op
priv_xfor

Fig. 15.2: Stateless Ops using Shareable priv_xform

Application should call rte_compressdev_private_xform create () and
attach to stateless op before enqueuing them for processing and free via
rte_compressdev_private_xform_free () during termination.

An example pseudocode to setup and process NUM_OPS stateless ops with each of length
OP_LEN using priv_xform would look like:

/%
* pseudocode for stateless compression

*/

uint8_t cdev_id = rte_compdev_get_dev_id (<pmd name>) ;

15.6. Compression API Stateless operation 148

Programmer’s Guide, Release 18.05.1

/+ configure the device. x*/
if (rte_compressdev_configure (cdev_id, &conf) < 0)
rte_exit (EXIT_FAILURE, "Failed to configure compressdev %u", cdev_id);

if (rte_compressdev_queue_pair_setup(cdev_id, 0, NUM_MAX_ INFLIGHT_OPS,
socket_id()) < 0)
rte_exit (EXIT_FAILURE, "Failed to setup queue pair\n");

if (rte_compressdev_start (cdev_id) < 0)
rte_exit (EXIT_FAILURE, "Failed to start device\n");

/% setup compress transform #*/

struct rte_compress_compress_xform compress_xform = {
.type = RTE_COMP_COMPRESS,
.compress = {

.algo = RTE_COMP_ALGO_DEFLATE,
.deflate = {

.huffman = RTE_COMP_HUFFMAN_DEFAULT
}!
.level = RTE_COMP_LEVEL_PMD_DEFAULT,
.chksum = RTE_COMP_CHECKSUM_NONE,
.window_size = DEFAULT_WINDOW_SIZE,
.hash_algo = RTE_COMP_HASH_ALGO_NONE

}i

/* create priv_xform and initialize it for the compression device. */

void xpriv_xform = NULL;

rte_compressdev_info_get (cdev_id, &dev_info);

if (dev_info.capability->comps_feature_flag & RTE_COMP_FF_SHAREABLE_PRIV_XFORM) {
rte_comp_priv_xform create(cdev_id, &compress_xform, &priv_xform);

} else {
shareable = 0;

/% create operation pool via call to rte_comp_op_pool_create and alloc ops */
rte_comp_op_bulk_alloc(op_pool, comp_ops, NUM_OPS);

/% prepare ops for compression operations #*/
for (i = 0; i < NUM_OPS; i++) |

struct rte_comp_op *op = comp_ops[i];
if (!shareable)

rte_priv_xform_create(cdev_id, &compress_xform, &op->priv_xform)
else

op—>priv_xform = priv_xform;
op—>type = RTE_COMP_OP_STATELESS;
op—>flush = RTE_COMP_FLUSH_FINAL;

op->src.offset = 0;

op—>dst.offset = 0;

op—>src.length = OP_LEN;

op—>input_chksum = 0;

setup op-—>m_src and op->m_dst;
}
num_enqgd = rte_compressdev_enqueue_burst (cdev_id, 0, comp_ops, NUM_OPS);
/+ wait for this to complete before enqueing nextx*/
do {

num_deque = rte_compressdev_dequeue_burst (cdev_id, 0 , &processed_ops, NUM_OPS);
} while (num_dgud < num_engd);

15.6. Compression API Stateless operation 149

Programmer’s Guide, Release 18.05.1

15.6.2 Stateless and OUT_OF_SPACE

OUT_OF_SPACE is a condition when output buffer runs out of space and where PMD
still has more data to produce. If PMD runs into such condition, then PMD returns
RTE_COMP_OP_OUT_OF_SPACE_TERMINATED error. In such case, PMD resets itself
and can set consumed=0 and produced=amount of output it could produce before hitting
out_of_space. Application would need to resubmit the whole input with a larger output buffer,
if it wants the operation to be completed.

15.6.3 Hash in Stateless

If hash is enabled, digest buffer will contain valid data after op is successfully processed i.e.
dequeued with status = RTE_COMP_OP_STATUS_SUCCESS.

15.6.4 Checksum in Stateless

If checksum is enabled, checksum will only be available after op is successfully processed i.e.
dequeued with status = RTE_COMP_OP_STATUS_SUCCESS.

15.7 Compression API Stateful operation

Compression API provide RTE_COMP_FF_STATEFUL _COMPRESSION and
RTE_COMP_FF_STATEFUL_DECOMPRESSION feature flag for PMD to reflect its sup-
port for Stateful operations.

A Stateful operation in DPDK compression means application invokes enqueue burst() multiple
times to process related chunk of data because application broke data into several ops.

In such case - ops are setup with op_type RTE_COMP_OP_STATEFUL, - all ops ex-
cept last set to flush value = RTE_COMP_NO/SYNC_FLUSH and last set to flush value
RTE_COMP_FULL/FINAL_FLUSH.

In case of either one or all of the above conditions, PMD initiates stateful process-
ing and releases acquired resources after processing operation with flush value =
RTE_COMP_FLUSH_FULL/FINAL is complete. Unlike stateless, application can enqueue
only one stateful op from a particular stream at a time and must attach stream handle to each

op.

15.7.1 Stream in Stateful operation

stream in DPDK compression is a logical entity which identifies related set of ops, say, a
one large file broken into multiple chunks then file is represented by a stream and each
chunk of that file is represented by compression op rte_comp_op. Whenever application
wants a stateful processing of such data, then it must get a stream handle via making call to
rte_comp_stream_create () with xform, at an output the target PMD will return an opaque
stream handle to application which it must attach to all of the ops carrying data of that stream.
In stateful processing, every op requires previous op data for compression/decompression. A
PMD allocates and set up resources such as history, states, etc. within a stream, which are
maintained during the processing of the related ops.

15.7. Compression API Stateful operation 150

Programmer’s Guide, Release 18.05.1

Unlike priv_xforms, stream is always a NON_SHAREABLE entity. One stream handle must be
attached to only one set of related ops and cannot be reused until all of them are processed
with status Success or failure.

Fig. 15.3: Stateful Ops

Application should call rte_comp_stream_create () and attach to op before enqueuing
them for processing and free via rte_comp_stream_free () during termination. All ops that
are to be processed statefully should carry same stream.

See DPDK API Reference document for details.

An example pseudocode to set up and process a stream having NUM_CHUNKS with each
chunk size of CHUNK_LEN would look like:

/%
* pseudocode for stateful compression

*/
uint8_t cdev_id = rte_compdev_get_dev_id (<pmd name>);
/+ configure the device. */
if (rte_compressdev_configure (cdev_id, &conf) < 0)
rte_exit (EXIT_FAILURE, "Failed to configure compressdev %u", cdev_id);
if (rte_compressdev_queue_pair_setup(cdev_id, 0, NUM_MAX_INFLIGHT_OPS,
socket_id()) < 0)

rte_exit (EXIT_FAILURE, "Failed to setup queue pair\n");

if (rte_compressdev_start (cdev_id) < 0)
rte_exit (EXIT_FAILURE, "Failed to start device\n");

/* setup compress transform. =/

struct rte_compress_compress_xform compress_xform = {
.type = RTE_COMP_COMPRESS,
.compress = {

.algo = RTE_COMP_ALGO_DEFLATE,
.deflate = {

.huffman = RTE_COMP_HUFFMAN_DEFAULT
} 14
.level = RTE_COMP_LEVEL_PMD_DEFAULT,
.chksum = RTE_COMP_CHECKSUM_NONE,
.window_size = DEFAULT_WINDOW_SIZE,

.hash_algo = RTE_COMP_HASH_ALGO_NONE

}i

/+ create stream x*/
rte_comp_stream_create (cdev_id, &compress_xform, &stream);

/+ create an op pool and allocate ops */
rte_comp_op_bulk_alloc (op_pool, comp_ops, NUM_CHUNKS) ;

15.7. Compression API Stateful operation 151

Programmer’s Guide, Release 18.05.1

/* Prepare source and destination mbufs for compression operations */
unsigned int i;
for (i = 0; i < NUM_CHUNKS; i++) {

if (rte_pktmbuf_append(mbufs[i], CHUNK_LEN) == NULL)
rte_exit (EXIT_FAILURE, "Not enough room in the mbuf\n");

comp_ops[i]->m_src = mbufs[i];

if (rte_pktmbuf_append(dst_mbufs[i], CHUNK_LEN) == NULL)
rte_exit (EXIT_FAILURE, "Not enough room in the mbufl\n");

comp_ops[i]->m_dst = dst_mbufs[i];

}

/+ Set up the compress operations. */
for (i = 0; i < NUM_CHUNKS; i++) {
struct rte_comp_op *op = comp_ops[i];

op->stream = stream;
op—>m_src = src_bufli];
op->m_dst = dst_buf[i];

op->type = RTE_COMP_OP_STATEFUL;
if (i == NUM_CHUNKS-1) {
/% set to final, 1if last chunkx*/
op->flush = RTE_COMP_FLUSH_FINAL;
} else {
/* set to NONE, for all intermediary ops */
op->flush = RTE_COMP_FLUSH_NONE;
}
op—>src.offset = 0;
op—>dst.offset = 0;
op—>src.length = CHUNK_LEN;
op—>input_chksum = 0;
num_enqgd = rte_compressdev_enqueue_burst (cdev_id, 0, &opli]l, 1);
/+ wait for this to complete before enqueing nextx*/
do {
num_deqgd = rte_compressdev_dequeue_burst (cdev_id, 0 , &processed_ops, 1);
} while (num_deqgd < num_enqgd);
/* push next op#*/

15.7.2 Stateful and OUT_OF_SPACE

If PMD supports stateful operation, then OUT_OF _SPACE status is not
an actual error for the PMD. In such case, PMD returns with status
RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE with consumed = num-
ber of input bytes read and produced = length of complete output buffer. Application should
enqueue next op with source starting at consumed+1 and an output buffer with available
space.

15.7.3 Hash in Stateful

If enabled, digest buffer will contain valid digest after last op in stream (having flush
RTE_COMP_OP_FLUSH_FINAL) is successfully processed i.e. dequeued with status
RTE_COMP_OP_STATUS_SUCCESS.

15.7. Compression API Stateful operation 152

Programmer’s Guide, Release 18.05.1

15.7.4 Checksum in Stateful

If enabled, checksum will only be available after last op in stream (having flush
RTE_COMP_OP_FLUSH_FINAL) is successfully processed i.e. dequeued with status
RTE_COMP_OP_STATUS SUCCESS.

15.8 Burst in compression API

Scheduling of compression operations on DPDK’s application data path is performed using a
burst oriented asynchronous API set. A queue pair on a compression device accepts a burst
of compression operations using enqueue burst APl. On physical devices the enqueue burst
API will place the operations to be processed on the device’s hardware input queue, for virtual
devices the processing of the operations is usually completed during the enqueue call to the
compression device. The dequeue burst API will retrieve any processed operations available
from the queue pair on the compression device, from physical devices this is usually directly
from the devices processed queue, and for virtual device’s from a rte_ring where processed
operations are place after being processed on the enqueue call.

A burst in DPDK compression can be a combination of stateless and stateful operations with
a condition that for stateful ops only one op at-a-time should be enqueued from a particular
stream i.e. no-two ops should belong to same stream in a single burst. However a burst may
contain multiple stateful ops as long as each op is attached to a different stream i.e. a burst
can look like:

en- op1.no_flush | op2.no_flush | op3.flush_final | op4.no_flush | op5.no_flush
queue_burst

Where, op1 .. op5 all belong to different independent data units. op1, op2, op4, op5 must
be stateful as stateless ops can only use flush full or final and op3 can be of type stateless
or stateful. Every op with type set to RTE_COMP_OP_TYPE_STATELESS must be attached
to priv_xform and Every op with type set to RTE_COMP_OP_TYPE_STATEFUL must be at-
tached to stream.

Since each operation in a burst is independent and thus can be completed out-of-order, appli-
cations which need ordering, should setup per-op user data area with reordering information
so that it can determine enqueue order at dequeue.

Also if multiple threads calls enqueue_burst() on same queue pair then it’s application onus to
use proper locking mechanism to ensure exclusive enqueuing of operations.

15.8.1 Enqueue / Dequeue Burst APIs

The burst enqueue APl uses a compression device identifier and a queue pair identifier to spec-
ify the compression device queue pair to schedule the processing on. The nb_ops parameter
is the number of operations to process which are supplied in the ops array of rte_comp_op
structures. The enqueue function returns the number of operations it actually enqueued for
processing, a return value equal to nb_ops means that all packets have been enqueued.

The dequeue API uses the same format as the enqueue API but the nb_ops and ops pa-
rameters are now used to specify the max processed operations the user wishes to retrieve
and the location in which to store them. The API call returns the actual number of processed
operations returned, this can never be larger than nb_ops.

15.8. Burst in compression API 153

Programmer’s Guide, Release 18.05.1

15.9 Sample code

There are unit test applications that show how to use the compressdev library inside
test/test/test_compressdev.c

15.9.1 Compression Device API

The compressdev Library APl is described in the DPDK API Reference document.

15.9. Sample code 154

CHAPTER
SIXTEEN

SECURITY LIBRARY

The security library provides a framework for management and provisioning of security protocol
operations offloaded to hardware based devices. The library defines generic APIs to create and
free security sessions which can support full protocol offload as well as inline crypto operation
with NIC or crypto devices. The framework currently only supports the IPSec protocol and
associated operations, other protocols will be added in future.

16.1 Design Principles

The security library provides an additional offload capability to an existing crypto device and/or
ethernet device.

o +

| rte_security |

fom +

\ /
fom + fom +
| NIC PMD | | CRYPTO PMD |
o ———— + o +

Note: Currently, the security library does not support the case of multi-process. It will be
updated in the future releases.

The supported offload types are explained in the sections below.

16.1.1 Inline Crypto

RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO: The crypto processing for security pro-
tocol (e.g. IPSec) is processed inline during receive and transmission on NIC port. The flow
based security action should be configured on the port.

Ingress Data path - The packet is decrypted in RX path and relevant crypto status is set in
Rx descriptors. After the successful inline crypto processing the packet is presented to host
as a regular Rx packet however all security protocol related headers are still attached to the
packet. e.g. In case of IPSec, the IPSec tunnel headers (if any), ESP/AH headers will remain
in the packet but the received packet contains the decrypted data where the encrypted data
was when the packet arrived. The driver Rx path check the descriptors and and based on the
crypto status sets additional flags in the rte_mbuf.ol_flags field.

Note: The underlying device may not support crypto processing for all ingress packet match-
ing to a particular flow (e.g. fragmented packets), such packets will be passed as encrypted

155

Programmer’s Guide, Release 18.05.1

packets. It is the responsibility of application to process such encrypted packets using other
crypto driver instance.

Egress Data path - The software prepares the egress packet by adding relevant security pro-
tocol headers. Only the data will not be encrypted by the software. The driver will accordingly
configure the tx descriptors. The hardware device will encrypt the data before sending the the
packet out.

Note: The underlying device may support post encryption TSO.

Egress Data Path

\ |
\ |
| +—————— Vo —— +
| | SADB lookup | |
| A |~———— +
| +—————— Vo +
| Tunnel | <—————= Add tunnel header to packet
| A | —————- +
| +—————— Vo +
[ESP | <—————= Add ESP header without trailer to packet
| | <—————= Mark packet to be offloaded, add trailer
| +——— [===~ + meta-data to mbuf
Fo—m————— Vo —— +
|
- Ve +
| L2 Stack |
+——— | ———————— +
|
Fo——————— Vo —— +
\ \
| NIC PMD | <————— Set hw context for inline crypto offload
\ |
+—— | ———————— +
|
= | ———————— +
| HW ACCELERATED | <—————= Packet Encryption and
| NIC | Authentication happens inline
\ |
o +

16.1.2 Inline protocol offload

RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL: The crypto and protocol processing
for security protocol (e.g. IPSec) is processed inline during receive and transmission. The flow
based security action should be configured on the port.

Ingress Data path - The packet is decrypted in the RX path and relevant crypto status is set in
the Rx descriptors. After the successful inline crypto processing the packet is presented to the
host as a regular Rx packet but all security protocol related headers are optionally removed
from the packet. e.g. in the case of IPSec, the IPSec tunnel headers (if any), ESP/AH headers
will be removed from the packet and the received packet will contains the decrypted packet
only. The driver Rx path checks the descriptors and based on the crypto status sets additional
flags in rte_mbuf.ol_flags field. The driver would also set device-specific metadata in

16.1. Design Principles 156

Programmer’s Guide, Release 18.05.1

rte_mbuf.udata64 field. This will allow the application to identify the security processing
done on the packet.

Note: The underlying device in this case is stateful. It is expected that the device shall support
crypto processing for all kind of packets matching to a given flow, this includes fragmented

packets (post reassembly). E.g. in case of IPSec the device may internally manage anti-replay
etc. It will provide a configuration option for anti-replay behavior i.e. to drop the packets or
pass them to driver with error flags set in the descriptor.

Egress Data path - The software will send the plain packet without any security protocol head-
ers added to the packet. The driver will configure the security index and other requirement in
tx descriptors. The hardware device will do security processing on the packet that includes
adding the relevant protocol headers and encrypting the data before sending the packet out.
The software should make sure that the buffer has required head room and tail room for any
protocol header addition. The software may also do early fragmentation if the resultant packet
is expected to cross the MTU size.

Note: The underlying device will manage state information required for egress processing.
E.g. in case of IPSec, the seq number will be added to the packet, however the device shall

provide indication when the sequence number is about to overflow. The underlying device may
support post encryption TSO.

Egress Data Path

\ \
\ \
| +—————- Vo + |
| | SADB lookup | |
| == [—————— + |
| +—————-— Vo + |
| Desc | <—————= Mark packet to be offloaded
| +——— [—————— + |
e Vo —— +
|
fom Vo +
| L2 Stack |
+—— | ———————— +
|
e Vo —— +
\ \
| NIC PMD | <= Set hw context for inline crypto offload
\ |
+—— | ———————= +
|
o | ———————— +
| HW ACCELERATED | <—————= Add tunnel, ESP header etc header to
| NIC | packet. Packet Encryption and
| | Authentication happens inline.
o —————— +

16.1.3 Lookaside protocol offload

RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL: This extends librte_cryptodev
to support the programming of IPsec Security Association (SA) as part of a crypto session
creation including the definition. In addition to standard crypto processing, as defined by the

16.1. Design Principles 157

Programmer’s Guide, Release 18.05.1

cryptodeyv, the security protocol processing is also offloaded to the crypto device.

Decryption: The packet is sent to the crypto device for security protocol processing. The device
will decrypt the packet and it will also optionally remove additional security headers from the
packet. E.g. in case of IPSec, IPSec tunnel headers (if any), ESP/AH headers will be removed
from the packet and the decrypted packet may contain plain data only.

Note: In case of IPSec the device may internally manage anti-replay etc. It will provide a
configuration option for anti-replay behavior i.e. to drop the packets or pass them to driver with

error flags set in descriptor.

Encryption: The software will submit the packet to cryptodev as usual for encryption, the hard-
ware device in this case will also add the relevant security protocol header along with encrypt-
ing the packet. The software should make sure that the buffer has required head room and tail
room for any protocol header addition.

Note: In the case of IPSec, the seq number will be added to the packet, It shall provide an
indication when the sequence number is about to overflow.

Egress Data Path

\ \
\ |
| +—————— Vo +
| | SADB lookup | | <————— SA maps to cryptodev session
|+ | ===~ +
| A= | ===~ +
| R \
[Crypto [| <= Crypto processing through
| [\ \ inline crypto PMD
| +——- [===~ + | \
t——————— Vo= + | |
| | |
o V—————— + | | create <-— SA 1is added to hw
| L2 Stack | | | inline using existing create
e | ———————= + | | session sym session APIs
| | \ |
f———— Voo ——— + | === | ———=V———+
\ \ \ \——=/ | | <-—— Add tunnel, ESP header etc
| NIC PMD | | INLINE | | header to packet.Packet
| | | CRYPTO PMD | | Encryption/Decryption and
o | ——————= + o + Authentication happens
| inline.
+—— | ———————— +
| NIC |
o | ———————— +
\

16.2 Device Features and Capabilities

16.2.1 Device Capabilities For Security Operations

The device (crypto or ethernet) capabilities which support security operations, are defined
by the security action type, security protocol, protocol capabilities and corresponding crypto

16.2. Device Features and Capabilities 158

Programmer’s Guide, Release 18.05.1

capabilities for security. For the full scope of the Security capability see definition of
rte_security_capability structure in the DPDK API Reference.

struct rte_security_capability;

Each driver (crypto or ethernet) defines its own private array of capabilities for the operations it
supports. Below is an example of the capabilities for a PMD which supports the IPSec protocol.

static const struct rte_security_capability pmd_security_capabilities[] = {
{ /% IPsec Lookaside Protocol offload ESP Tunnel Egress */
.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,
.protocol = RTE_SECURITY_PROTOCOL_IPSEC,
.ipsec = {
.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP,
.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL,
.direction = RTE_SECURITY_IPSEC_SA_DIR_EGRESS,
.options = { 0 }
}I
.crypto_capabilities = pmd_capabilities
}I
{ /# IPsec Lookaside Protocol offload ESP Tunnel Ingress */
.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,
.protocol = RTE_SECURITY_PROTOCOL_IPSEC,
.ipsec = {
.proto = RTE_SECURITY_IPSEC_SA_ PROTO_ESP,
.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL,
.direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS,
.options = { 0 }

by
.crypto_capabilities = pmd_capabilities

.action = RTE_SECURITY_ACTION_TYPE_NONE

}i
static const struct rte_cryptodev_capabilities pmd_capabilities[] = {
{ /+ SHA1l HMAC %/
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
.sym = {
.xform_type = RTE_CRYPTO_SYM XFORM_AUTH,
.auth = {
.algo = RTE_CRYPTO_AUTH_SHA1l_HMAC,
.block_size = 64,
.key_size = {
.min = 64,
.max = 64,
.increment = 0
}I
.digest_size = {
.min = 12,
.max = 12,
.increment = 0
}I
.aad_size = { 0 },
.iv_size = { 0 }

{ /% AES CBC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
.sym = {
.xform_type = RTE_CRYPTO_SYM_ XFORM_CIPHER,
.cipher = {
.algo = RTE_CRYPTO_CIPHER_AES_CBC,

16.2. Device Features and Capabilities 159

Programmer’s Guide, Release 18.05.1

key_size = {
min = 16,
.max = 32,
.increment = 8

}I

.iv_size = {
.min = 16,
.max = 16,
.increment = 0

16.2.2 Capabilities Discovery

Discovering the features and capabilities of a driver (crypto/ethernet) is achieved through the
rte_security_capabilities_get () function.

const struct rte_security_capability srte_security_capabilities_get (uintl6_t id);

This allows the user to query a specific driver and get all device security capabilities. It returns
an array of rte_security_capability structures which contains all the capabilities for that
device.

16.2.3 Security Session Create/Free

Security Sessions are created to store the immutable fields of a particular Security Association
for a particular protocol which is defined by a security session configuration structure which
is used in the operation processing of a packet flow. Sessions are used to manage protocol
specific information as well as crypto parameters. Security sessions cache this immutable data
in a optimal way for the underlying PMD and this allows further acceleration of the offload of
Crypto workloads.

The Security framework provides APIs to create and free sessions for crypto/ethernet devices,
where sessions are mempool objects. It is the application’s responsibility to create and manage
the session mempools. The mempool object size should be able to accommodate the driver’s
private data of security session.

Once the session mempools have been created, rte_security_session_create() is
used to allocate and initialize a session for the required crypto/ethernet device.

Session APIs need a parameter rte_security_ctx to identify the crypto/ethernet security
ops. This parameter can be retrieved using the APIs rte_cryptodev_get_sec_ctx () (for
crypto device) or rte_eth_dev_get_sec_ctx (for ethernet port).

Sessions already created can be updated with rte_security_session_update ().

When a session is no longer used, the user must call rte_security_session_destroy ()
to free the driver private session data and return the memory back to the mempool.

For look aside protocol offload to hardware crypto device, the rte_crypto_op
created by the application is attached to the security session by the API
rte_security_attach_session().

16.2. Device Features and Capabilities 160

Programmer’s Guide, Release 18.05.1

For Inline Crypto and Inline protocol offload, device specific defined meta-
data is updated in the mbuf using rte_security_set_pkt_metadata() if
DEV_TX_OFFLOAD_SEC_NEED_MDATA is set.

For inline protocol offloaded ingress traffic, the application can register a pointer, userdata
, in the security session. When the packet is received, rte_security_get_userdata ()
would return the userdata registered for the security session which processed the packet.

Note: In case of inline processed packets, rte_mbuf.udata64 field would be used by the
driver to relay information on the security processing associated with the packet. In ingress,

the driver would set this in Rx path while in egress, rte_security_set_pkt_metadata ()
would perform a similar operation. The application is expected not to modify the field when
it has relevant info. For ingress, this device-specific 64 bit value is required to derive other
information (like userdata), required for identifying the security processing done on the packet.

16.2.4 Security session configuration

Security Session configuration structure is defined as rte_security_session_conf

struct rte_security_session_conf {
enum rte_security_session_action_type action_type;
/**< Type of action to be performed on the session x/
enum rte_security_session_protocol protocol;
/**< Security protocol to be configured */
union {
struct rte_security_ipsec_xform ipsec;
struct rte_security_macsec_xform macsec;
}i
/*+< Configuration parameters for security session x/
struct rte_crypto_sym xform *crypto_xform;
/**< Security Session Crypto Transformations */
void xuserdata;
/*+< Application specific userdata to be saved with session */

}i

The configuration structure reuses the rte_crypto_sym_xform struct for crypto related con-
figuration. The rte_security_session_action_type struct is used to specify whether
the session is configured for Lookaside Protocol offload or Inline Crypto or Inline Protocol Of-
fload.

enum rte_security_session_action_type {

RTE_SECURITY ACTION_TYPE_NONE,

/#+#< No security actions =/

RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO,

/*+< Crypto processing for security protocol is processed inline
* during transmission x/

RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL,

/*#+< All security protocol processing is performed inline during
* transmission x/

RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL

/*+< All security protocol processing including crypto is performed
* on a lookaside accelerator =/

}i
The rte_security_session_protocol is defined as

enum rte_security_session_protocol {
RTE_SECURITY_PROTOCOL_IPSEC,
/+#*< IPsec Protocol =*/

16.2. Device Features and Capabilities 161

Programmer’s Guide, Release 18.05.1

RTE_SECURITY_PROTOCOL_MACSEC,
/*+< MACSec Protocol =/
}i

Currently the library defines configuration parameters for IPSec only. For other protocols like
MACSec, structures and enums are defined as place holders which will be updated in the
future.

IPsec related configuration parameters are defined in rte_security_ipsec_xform

struct rte_security_ipsec_xform {
uint32_t spi;
/*+< SA security parameter index */
uint32_t salt;
/*+< SA salt =/
struct rte_security_ipsec_sa_options options;
/#*#*< various SA options #*/
enum rte_security_ipsec_sa_direction direction;
/*+< IPSec SA Direction - Egress/Ingress */
enum rte_security_ipsec_sa_protocol proto;
/*+< IPsec SA Protocol AH/ESP x/
enum rte_security_ipsec_sa_mode mode;
/*+< IPsec SA Mode - transport/tunnel #*/
struct rte_security_ipsec_tunnel_param tunnel;
/#+#+< Tunnel parameters, NULL for transport mode x/

}i

16.2.5 Security API

The rte_security Library APl is described in the DPDK API Reference document.

16.2.6 Flow based Security Session

In the case of NIC based offloads, the security session specified in the
‘rte_flow_action_security’ must be created on the same port as the flow action that is
being specified.

The ingress/egress flow attribute should match that specified in the security session if the
security session supports the definition of the direction.

Multiple flows can be configured to use the same security session. For example if the security
session specifies an egress IPsec SA, then multiple flows can be specified to that SA. In the
case of an ingress IPsec SA then it is only valid to have a single flow to map to that security
session.

Configuration Path

fom— - | ———————- +
| Add/Remove |
| IPsec SA | <—————- Build security flow action of
| | | ipsec transform
|~ |~ |

|
e Voo ———— +
| Flow API |
+——— | ———————— +

|
e Vo —— +

16.2. Device Features and Capabilities 162

Programmer’s Guide, Release 18.05.1

| NIC PMD | <————— Add/Remove SA to/from hw context
\ \
tm——— | ———————— +
|
fom | ———————— +
| HW ACCELERATED |
| NIC |
\ |
tm—— | ——————— +

« Add/Delete SA flow: To add a new inline SA construct a rte flow item for Ether-
net + IP + ESP using the SA selectors and the rte_crypto_ipsec_xform as the
rte_flow_action. Note that any rte_flow_items may be empty, which means it is not

checked.
In its most basic form, IPsec flow specification is as follows:
e + o + o + +———— +
| Eth | > | IP4/6 | —> ESP | => | END |
o + e + o + +——— +

However, the API can represent, IPsec crypto offload with any encapsulation:

16.2. Device Features and Capabilities 163

CHAPTER
SEVENTEEN

RAWDEVICE LIBRARY

17.1 Introduction

In terms of device flavor (type) support, DPDK currently has ethernet (lib_ether), cryptodev
(libcryptodev), eventdev (libeventdev) and vdev (virtual device) support.

For a new type of device, for example an accelerator, there are not many options except:
1. create another lib/librte_MySpecialDev, driver/MySpecialDrv and use it through Bus/PMD
model. 2. Or, create a vdev and implement necessary custom APIs which are directly exposed
from driver layer. However this may still require changes in bus code in DPDK.

The DPDK Rawdev library is an abstraction that provides the DPDK framework a way to man-
age such devices in a generic manner without expecting changes to library or EAL for each
device type. This library provides a generic set of operations and APls for framework and
Applications to use, respectively, for interfacing with such type of devices.

17.2 Design

Key factors guiding design of the Rawdevice library:

1. Following are some generic operations which can be treated as applicable to a large
subset of device types. None of the operations are mandatory to be implemented by a
driver. Application should also be design for proper handling for unsupported APIs.

» Device Start/Stop - In some cases, ‘reset’ might also be required which has different
semantics than a start-stop-start cycle.

+ Configuration - Device, Queue or any other sub-system configuration
* |/O - Sending a series of buffers which can enclose any arbitrary data
« Statistics - Fetch arbitrary device statistics

» Firmware Management - Firmware load/unload/status

2. Application API should be able to pass along arbitrary state information to/from device
driver. This can be achieved by maintaining context information through opaque data or
pointers.

Figure below outlines the layout of the rawdevice library and device vis-a-vis other well known
device types like eth and crypto:

| Application(s) |

164

Programmer’s Guide, Release 18.05.1

+-—-— S +
|
|
- b - +
| DPDK Framework (APISs) |
I B | = +
/ \ \
(crypto ops) (eth ops) (rawdev ops) +=———t
/ \ \ |DrvA|
+———— Y —+ " o + e
| crypto | | ethdev | | raw |
+—=) +) + t——/— =+
/\ _/\ /e |IDrvB |
/A / \ /o \ +————+
+ + + + + + + + t==/=+ " " "Bus Probe
|[DevA| |DevB| |[DevC| |DevD | | DevE |
t====14 f====+ t====4 f====+ f====+
\ \ | | \
SRR RERRRRRE RERREE R R RERREERE Bus Scan
(PCI) | (PCI) (PCI) (PCI)
(BusA)

* It 1s assumed above that DrvB is a PCI type driver which registers itself
with PCI Bus

* Thereafter, when the PCI scan is done, during probe DrvB would match the
rawdev DevF ID and take control of device

* Applications can then continue using the device through rawdev API
interfaces

17.2.1 Device Identification

Physical rawdev devices are discovered during the Bus scan executed at DPDK initialization,
based on their identification and probing with corresponding driver. Thus, a generic device
needs to have an identifier and a driver capable of identifying it through this identifier.

Virtual devices can be created by two mechanisms, either using the EAL command line options
or from within the application using an EAL API directly.

From the command line using the —vdev EAL option

——vdev 'rawdev_devl'

Our using the rte_vdev_init API within the application code.

rte_vdev_init ("rawdev_devl1l", NULL)

17.2. Design 165

CHAPTER
EIGHTEEN

LINK BONDING POLL MODE DRIVER LIBRARY

In addition to Poll Mode Drivers (PMDs) for physical and virtual hardware, DPDK also includes
a pure-software library that allows physical PMDs to be bonded together to create a single

logical PMD.
User Application

DPDK

bonded ethdev

] i

Fig. 18.1: Bonded PMDs

The Link Bonding PMD library(librte_pmd_bond) supports bonding of groups of rte_eth_dev
ports of the same speed and duplex to provide similar capabilities to that found in Linux bonding
driver to allow the aggregation of multiple (slave) NICs into a single logical interface between
a server and a switch. The new bonded PMD will then process these interfaces based on
the mode of operation specified to provide support for features such as redundant links, fault
tolerance and/or load balancing.

The librte_pmd_bond library exports a C API which provides an API for the creation of bonded
devices as well as the configuration and management of the bonded device and its slave
devices.

Note: The Link Bonding PMD Library is enabled by default in the build configuration files, the
library can be disabled by setting CONFIG_RTE_LIBRTE_PMD_BOND=n and recompiling the

DPDK.

18.1 Link Bonding Modes Overview

Currently the Link Bonding PMD library supports following modes of operation:

166

Programmer’s Guide, Release 18.05.1

* Round-Robin (Mode 0):

User Application

bonded ethdev

ethdev p ‘ ethdev pr
| [| |

Fig. 18.2: Round-Robin (Mode 0)

This mode provides load balancing and fault tolerance by transmission of packets in se-
quential order from the first available slave device through the last. Packets are bulk de-
queued from devices then serviced in a round-robin manner. This mode does not guaran-
tee in order reception of packets and down stream should be able to handle out of order
packets.

| ethdev p%r

5 2

» Active Backup (Mode 1):
+ Balance XOR (Mode 2):

Note: The coloring differences of the packets are used to identify different flow classification
calculated by the selected transmit policy

» Broadcast (Mode 3):
» Link Aggregation 802.3AD (Mode 4):

» Transmit Load Balancing (Mode 5):

18.2 Implementation Details

The librte_pmd_bond bonded device are compatible with the Ethernet device API exported by
the Ethernet PMDs described in the DPDK API Reference.

The Link Bonding Library supports the creation of bonded devices at application startup time
during EAL initialization using the ——vdev option as well as programmatically via the C API
rte_eth bond_create function.

18.2. Implementation Details 167

Programmer’s Guide, Release 18.05.1

User Application

DPDK

3

Fig. 18.3: Active Backup (Mode 1)

In this mode only one slave in the bond is active at any time, a different slave becomes
active if, and only if, the primary active slave fails, thereby providing fault tolerance to slave
failure. The single logical bonded interface’s MAC address is externally visible on only one
NIC (port) to avoid confusing the network switch.

Bonded devices support the dynamical addition and removal of slave devices using the
rte_eth bond slave add/rte_eth bond slave remove APls.

After a slave device is added to a bonded device slave is stopped using rte_eth_dev_stop
and then reconfigured using rte_eth_dev_configure the RX and TX queues are also re-
configured using rte_eth_tx_queue_setup / rte_eth_rx_queue_setup with the pa-
rameters use to configure the bonding device. If RSS is enabled for bonding device, this mode
is also enabled on new slave and configured as well. Any flow which was configured to the
bond device also is configured to the added slave.

Setting up multi-queue mode for bonding device to RSS, makes it fully RSS-capable, so all
slaves are synchronized with its configuration. This mode is intended to provide RSS configu-
ration on slaves transparent for client application implementation.

Bonding device stores its own version of RSS settings i.e. RETA, RSS hash function and RSS
key, used to set up its slaves. That let to define the meaning of RSS configuration of bonding
device as desired configuration of whole bonding (as one unit), without pointing any of slave
inside. It is required to ensure consistency and made it more error-proof.

RSS hash function set for bonding device, is a maximal set of RSS hash functions supported
by all bonded slaves. RETA size is a GCD of all its RETA’s sizes, so it can be easily used as
a pattern providing expected behavior, even if slave RETAs’ sizes are different. If RSS Key is
not set for bonded device, it’s not changed on the slaves and default key for device is used.

As RSS configurations, there is flow consistency in the bonded slaves for the next rte flow
operations:

Validate:

18.2. Implementation Details 168

Programmer’s Guide, Release 18.05.1

User Application

bonded ethdev

ethdev pr ethdev %‘ ethdev pr

Fig. 18.4: Balance XOR (Mode 2)

This mode provides transmit load balancing (based on the selected transmission policy)
and fault tolerance. The default policy (layer2) uses a simple calculation based on the
packet flow source and destination MAC addresses as well as the number of active slaves
available to the bonded device to classify the packet to a specific slave to transmit on. Alter-
nate transmission policies supported are layer 2+3, this takes the IP source and destination
addresses into the calculation of the transmit slave port and the final supported policy is
layer 3+4, this uses IP source and destination addresses as well as the TCP/UDP source
and destination port.

18.2. Implementation Details 169

Programmer’s Guide, Release 18.05.1

User Application

DPDK

Fig. 18.5: Broadcast (Mode 3)

This mode provides fault tolerance by transmission of packets on all slave ports.

« Validate flow for each slave, failure at least for one slave causes to bond validation
failure.

Create:

+ Create the flow in all slaves.

» Save all the slaves created flows objects in bonding internal flow structure.

+ Failure in flow creation for existed slave rejects the flow.

« Failure in flow creation for new slaves in slave adding time rejects the slave.
Destroy:

+ Destroy the flow in all slaves and release the bond internal flow memory.
Flush:

* Destroy all the bonding PMD flows in all the slaves.

Note: Don't call slaves flush directly, It destroys all the slave flows which may include external
flows or the bond internal LACP flow.

Query:

« Summarize flow counters from all the slaves, relevant only for
RTE_FLOW_ACTION_TYPE_COUNT.

Isolate:
» Call to flow isolate for all slaves.

+ Failure in flow isolation for existed slave rejects the isolate mode.

18.2. Implementation Details 170

Programmer’s Guide, Release 18.05.1

User Application

[0

Fig. 18.6: Link Aggregation 802.3AD (Mode 4)

This mode provides dynamic link aggregation according to the 802.3ad specification. It
negotiates and monitors aggregation groups that share the same speed and duplex settings
using the selected balance transmit policy for balancing outgoing traffic.
DPDK implementation of this mode provide some additional requirements of the applica-
tion.

1. Itneedsto call rte_eth_tx_burst and rte_eth_rx_burst with intervals period

of less than 100ms.
2. Calls to rte_eth_tx_burst must have a buffer size of at least 2xN, where N is

the number of slaves. This is a space required for LACP frames. Additionally LACP
packets are included in the statistics, but they are not returned to the application.

18.2. Implementation Details 171

Programmer’s Guide, Release 18.05.1

User Application

DPDK

bonded ethdev

ethdev p%r ethdev p%r ethdev p%r

BN | EnR |
000 CSOOMANN 1204

Fig. 18.7: Transmit Load Balancing (Mode 5)

This mode provides an adaptive transmit load balancing. It dynamically changes the trans-
mitting slave, according to the computed load. Statistics are collected in 100ms intervals
and scheduled every 10ms.

18.2. Implementation Details 172

Programmer’s Guide, Release 18.05.1

« Failure in flow isolation for new slaves in slave adding time rejects the slave.

All settings are managed through the bonding port APl and always are propagated in one
direction (from bonding to slaves).

18.2.1 Link Status Change Interrupts / Polling

Link bonding devices support the registration of a link status change callback, using the
rte_eth_dev_callback_register API, this will be called when the status of the bond-
ing device changes. For example in the case of a bonding device which has 3 slaves, the link
status will change to up when one slave becomes active or change to down when all slaves
become inactive. There is no callback notification when a single slave changes state and the
previous conditions are not met. If a user wishes to monitor individual slaves then they must
register callbacks with that slave direcily.

The link bonding library also supports devices which do not implement link status change
interrupts, this is achieved by polling the devices link status at a defined period which is
set using the rte_eth_bond_link_monitoring_set API, the default polling interval is
10ms. When a device is added as a slave to a bonding device it is determined using the
RTE_PCI_DRV_INTR_LSC flag whether the device supports interrupts or whether the link sta-
tus should be monitored by polling it.

18.2.2 Requirements / Limitations

The current implementation only supports devices that support the same speed and duplex to
be added as a slaves to the same bonded device. The bonded device inherits these attributes
from the first active slave added to the bonded device and then all further slaves added to the
bonded device must support these parameters.

A bonding device must have a minimum of one slave before the bonding device itself can be
started.

To use a bonding device dynamic RSS configuration feature effectively, it is also required, that
all slaves should be RSS-capable and support, at least one common hash function available
for each of them. Changing RSS key is only possible, when all slave devices support the same
key size.

To prevent inconsistency on how slaves process packets, once a device is added to a bonding
device, RSS and rte flow configurations should be managed through the bonding device API,
and not directly on the slave.

Like all other PMD, all functions exported by a PMD are lock-free functions that are assumed
not to be invoked in parallel on different logical cores to work on the same target object.

It should also be noted that the PMD receive function should not be invoked directly on a slave
devices after they have been to a bonded device since packets read directly from the slave
device will no longer be available to the bonded device to read.

18.2.3 Configuration

Link bonding devices are created using the rte_eth_bond_create API which requires a
unigue device name, the bonding mode, and the socket Id to allocate the bonding device’s
resources on. The other configurable parameters for a bonded device are its slave devices, its

18.2. Implementation Details 173

Programmer’s Guide, Release 18.05.1

primary slave, a user defined MAC address and transmission policy to use if the device is in
balance XOR mode.

Slave Devices

Bonding devices support up to a maximum of RTE_MAX_ETHPORTS slave devices of the same
speed and duplex. Ethernet devices can be added as a slave to a maximum of one bonded
device. Slave devices are reconfigured with the configuration of the bonded device on being
added to a bonded device.

The bonded also guarantees to return the MAC address of the slave device to its original value
of removal of a slave from it.

Primary Slave

The primary slave is used to define the default port to use when a bonded device is in active
backup mode. A different port will only be used if, and only if, the current primary port goes
down. If the user does not specify a primary port it will default to being the first port added to
the bonded device.

MAC Address

The bonded device can be configured with a user specified MAC address, this address will be
inherited by the some/all slave devices depending on the operating mode. If the device is in
active backup mode then only the primary device will have the user specified MAC, all other
slaves will retain their original MAC address. In mode 0, 2, 3, 4 all slaves devices are configure
with the bonded devices MAC address.

If a user defined MAC address is not defined then the bonded device will default to using the
primary slaves MAC address.

Balance XOR Transmit Policies

There are 3 supported transmission policies for bonded device running in Balance XOR mode.
Layer 2, Layer 2+3, Layer 3+4.

» Layer 2: Ethernet MAC address based balancing is the default transmission policy for
Balance XOR bonding mode. It uses a simple XOR calculation on the source MAC
address and destination MAC address of the packet and then calculate the modulus of
this value to calculate the slave device to transmit the packet on.

 Layer 2 + 3: Ethernet MAC address & IP Address based balancing uses a combination of
source/destination MAC addresses and the source/destination IP addresses of the data
packet to decide which slave port the packet will be transmitted on.

* Layer 3 + 4: |P Address & UDP Port based balancing uses a combination of
source/destination IP Address and the source/destination UDP ports of the packet of
the data packet to decide which slave port the packet will be transmitted on.

All these policies support 802.1Q VLAN Ethernet packets, as well as IPv4, IPv6 and UDP
protocols for load balancing.

18.2. Implementation Details 174

Programmer’s Guide, Release 18.05.1

18.3 Using Link Bonding Devices

The librte_pmd_bond library supports two modes of device creation, the libraries export full C
API or using the EAL command line to statically configure link bonding devices at application
startup. Using the EAL option it is possible to use link bonding functionality transparently
without specific knowledge of the libraries API, this can be used, for example, to add bonding
functionality, such as active backup, to an existing application which has no knowledge of the
link bonding C API.

18.3.1 Using the Poll Mode Driver from an Application

Using the librte_pmd_bond libraries API it is possible to dynamically create and manage
link bonding device from within any application. Link bonding devices are created using the
rte_eth_bond_create API which requires a unique device name, the link bonding mode
to initial the device in and finally the socket Id which to allocate the devices resources onto.
After successful creation of a bonding device it must be configured using the generic Ethernet
device configure APl rte_eth_dev_configure and then the RX and TX queues which will
be used must be setup using rte_eth_tx_queue_setup/rte_eth_rx_gqueue_setup.

Slave devices can be dynamically added and removed from a link bonding device us-
ing the rte_eth_bond_slave_add / rte_eth_bond_slave_remove APIs but at least
one slave device must be added to the link bonding device before it can be started using
rte _eth dev_start.

The link status of a bonded device is dictated by that of its slaves, if all slave device link status
are down or if all slaves are removed from the link bonding device then the link status of the
bonding device will go down.

It is also possible to configure / query the configuration of the control param-
eters of a bonded device using the provided APIs rte_eth_bond_mode_set/
get, rte_eth_bond_primary_set/get, rte_eth_bond_mac_set/reset and
rte_eth_bond_xmit_policy_set/get.

18.3.2 Using Link Bonding Devices from the EAL Command Line

Link bonding devices can be created at application startup time using the --vdev EAL com-
mand line option. The device name must start with the net_bonding prefix followed by numbers
or letters. The name must be unique for each device. Each device can have multiple options
arranged in a comma separated list. Multiple devices definitions can be arranged by calling the
—-—-vdev option multiple times.

Device names and bonding options must be separated by commas as shown below:

SRTE_TARGET/app/testpmd -1 0-3 -n 4 —--vdev 'net_bonding0,bond_opt0=..,bond optl=..

Link Bonding EAL Options

There are multiple ways of definitions that can be assessed and combined as long as the
following two rules are respected:

18.3. Using Link Bonding Devices 175

'——vdev

'net_

Programmer’s Guide, Release 18.05.1

» A unique device name, in the format of net_bondingX is provided, where X can be any
combination of numbers and/or letters, and the name is no greater than 32 characters
long.

* A least one slave device is provided with for each bonded device definition.
» The operation mode of the bonded device being created is provided.
The different options are:

+ mode: Integer value defining the bonding mode of the device. Currently supports modes
0,1,2,3,4,5 (round-robin, active backup, balance, broadcast, link aggregation, transmit
load balancing).

mode=2

» slave: Defines the PMD device which will be added as slave to the bonded de-
vice. This option can be selected multiple times, for each device to be added as a
slave. Physical devices should be specified using their PCI address, in the format do-
main:bus:devid.function

slave=0000:0a:00.0,slave=0000:0a:00.1

» primary: Optional parameter which defines the primary slave port, is used in active
backup mode to select the primary slave for data TX/RX if it is available. The primary
port also is used to select the MAC address to use when it is not defined by the user.
This defaults to the first slave added to the device if it is specified. The primary device
must be a slave of the bonded device.

primary=0000:0a:00.0

+ socket_id: Optional parameter used to select which socket on a NUMA device the bonded
devices resources will be allocated on.

socket_id=0
» mac: Optional parameter to select a MAC address for link bonding device, this overrides
the value of the primary slave device.

mac=00:1e:67:1d:£fd:1d

+ xmit_policy: Optional parameter which defines the transmission policy when the bonded
device is in balance mode. If not user specified this defaults to 12 (layer 2) forwarding, the
other transmission policies available are 123 (layer 2+3) and 134 (layer 3+4)

xmit_policy=123

* Isc_poll_period_ms: Optional parameter which defines the polling interval in milli-
seconds at which devices which don’t support Isc interrupts are checked for a change
in the devices link status

lsc_poll_period_ms=100

» up_delay: Optional parameter which adds a delay in milli-seconds to the propagation of
a devices link status changing to up, by default this parameter is zero.

up_delay=10

» down_delay: Optional parameter which adds a delay in milli-seconds to the propagation
of a devices link status changing to down, by default this parameter is zero.

down_delay=50

18.3. Using Link Bonding Devices 176

Programmer’s Guide, Release 18.05.1

Examples of Usage

Create a bonded device in round robin mode with two slaves specified by their PCI address:

SRTE_TARGET/app/testpmd -1 0-3 -n 4 —--vdev 'net_bonding0,mode=0, slave=0000:00a:00.

Create a bonded device in round robin mode with two slaves specified by their PCl address
and an overriding MAC address:

SRTE_TARGET/app/testpmd -1 0-3 -n 4 —--vdev 'net_bonding0,mode=0, slave=0000:00a:00.

Create a bonded device in active backup mode with two slaves specified, and a primary slave
specified by their PCl addresses:

SRTE_TARGET/app/testpmd -1 0-3 -n 4 —--vdev 'net_bonding0,mode=1, slave=0000:00a:00.

Create a bonded device in balance mode with two slaves specified by their PCI addresses,
and a transmission policy of layer 3 + 4 forwarding:

SRTE_TARGET/app/testpmd -1 0-3 -n 4 —--vdev 'net_bonding0,mode=2, slave=0000:00a:00.

18.3. Using Link Bonding Devices 177

01,slave=00C

01, slave=00C(

01, slave=00C

01, slave=00C

CHAPTER
NINETEEN

TIMER LIBRARY

The Timer library provides a timer service to DPDK execution units to enable execution of
callback functions asynchronously. Features of the library are:

» Timers can be periodic (multi-shot) or single (one-shot).

» Timers can be loaded from one core and executed on another. It has to be specified in
the call to rte_timer_reset().

+ Timers provide high precision (depends on the call frequency to rte_timer_manage() that
checks timer expiration for the local core).

+ If not required in the application, timers can be disabled at compilation time by not calling
the rte_timer_manage() to increase performance.

The timer library uses the rte_get_timer_cycles() function that uses the High Precision Event
Timer (HPET) or the CPUs Time Stamp Counter (TSC) to provide a reliable time reference.

This library provides an interface to add, delete and restart a timer. The APl is based on BSD
callout() with a few differences. Refer to the callout manual.

19.1 Implementation Details

Timers are tracked on a per-Icore basis, with all pending timers for a core being maintained
in order of timer expiry in a skiplist data structure. The skiplist used has ten levels and each
entry in the table appears in each level with probability V4"level. This means that all entries are
present in level 0, 1 in every 4 entries is present at level 1, one in every 16 at level 2 and so on
up to level 9. This means that adding and removing entries from the timer list for a core can be
done in log(n) time, up to 4*10 entries, that is, approximately 1,000,000 timers per Icore.

A timer structure contains a special field called status, which is a union of a timer state
(stopped, pending, running, config) and an owner (lcore id). Depending on the timer state,
we know if a timer is present in a list or not:

« STOPPED: no owner, not in a list

+ CONFIG: owned by a core, must not be modified by another core, maybe in a list or not,
depending on previous state

+ PENDING: owned by a core, present in a list

» RUNNING: owned by a core, must not be modified by another core, present in a list

178

http://www.daemon-systems.org/man/callout.9.html

Programmer’s Guide, Release 18.05.1

Resetting or stopping a timer while it is in a CONFIG or RUNNING state is not allowed. When
modifying the state of a timer, a Compare And Swap instruction should be used to guarantee
that the status (state+owner) is modified atomically.

Inside the rte_timer_manage() function, the skiplist is used as a regular list by iterating along
the level 0 list, which contains all timer entries, until an entry which has not yet expired has
been encountered. To improve performance in the case where there are entries in the timer
list but none of those timers have yet expired, the expiry time of the first list entry is maintained
within the per-core timer list structure itself. On 64-bit platforms, this value can be checked
without the need to take a lock on the overall structure. (Since expiry times are maintained
as 64-bit values, a check on the value cannot be done on 32-bit platforms without using either
a compare-and-swap (CAS) instruction or using a lock, so this additional check is skipped in
favor of checking as normal once the lock has been taken.) On both 64-bit and 32-bit platforms,
a call to rte_timer_manage() returns without taking a lock in the case where the timer list for
the calling core is empty.

19.2 Use Cases

The timer library is used for periodic calls, such as garbage collectors, or some state machines
(ARP, bridging, and so on).

19.3 References

« callout manual - The callout facility that provides timers with a mechanism to execute a
function at a given time.

* HPET - Information about the High Precision Event Timer (HPET).

19.2. Use Cases 179

http://www.daemon-systems.org/man/callout.9.html
http://en.wikipedia.org/wiki/HPET

CHAPTER
TWENTY

HASH LIBRARY

The DPDK provides a Hash Library for creating hash table for fast lookup. The hash table is
a data structure optimized for searching through a set of entries that are each identified by a
unique key. For increased performance the DPDK Hash requires that all the keys have the
same number of bytes which is set at the hash creation time.

20.1 Hash API Overview

The main configuration parameters for the hash are:
+ Total number of hash entries
 Size of the key in bytes

The hash also allows the configuration of some low-level implementation related parameters
such as:

» Hash function to translate the key into a bucket index
The main methods exported by the hash are:

+ Add entry with key: The key is provided as input. If a new entry is successfully added to
the hash for the specified key, or there is already an entry in the hash for the specified
key, then the position of the entry is returned. If the operation was not successful, for
example due to lack of free entries in the hash, then a negative value is returned;

* Delete entry with key: The key is provided as input. If an entry with the specified key is
found in the hash, then the entry is removed from the hash and the position where the
entry was found in the hash is returned. If no entry with the specified key exists in the
hash, then a negative value is returned

* Lookup for entry with key: The key is provided as input. If an entry with the specified
key is found in the hash (lookup hit), then the position of the entry is returned, otherwise
(lookup miss) a negative value is returned.

Apart from these method explained above, the API allows the user three more options:

» Add/lookup / delete with key and precomputed hash: Both the key and its precomputed
hash are provided as input. This allows the user to perform these operations faster, as
hash is already computed.

» Add / lookup with key and data: A pair of key-value is provided as input. This allows the
user to store not only the key, but also data which may be either a 8-byte integer or a
pointer to external data (if data size is more than 8 bytes).

180

Programmer’s Guide, Release 18.05.1

» Combination of the two options above: User can provide key, precomputed hash and
data.

Also, the API contains a method to allow the user to look up entries in bursts, achieving higher
performance than looking up individual entries, as the function prefetches next entries at the
time it is operating with the first ones, which reduces significantly the impact of the necessary
memory accesses. Notice that this method uses a pipeline of 8 entries (4 stages of 2 entries),
so it is highly recommended to use at least 8 entries per burst.

The actual data associated with each key can be either managed by the user using a separate
table that mirrors the hash in terms of number of entries and position of each entry, as shown
in the Flow Classification use case describes in the following sections, or stored in the hash
table itself.

The example hash tables in the L2/L3 Forwarding sample applications defines which port to
forward a packet to based on a packet flow identified by the five-tuple lookup. However, this
table could also be used for more sophisticated features and provide many other functions and
actions that could be performed on the packets and flows.

20.2 Multi-process support

The hash library can be used in a multi-process environment, minding that only lookups
are thread-safe. The only function that can only be used in single-process mode is
rte_hash_set _cmp_func(), which sets up a custom compare function, which is assigned to
a function pointer (therefore, it is not supported in multi-process mode).

20.3 Implementation Details

The hash table has two main tables:

* First table is an array of entries which is further divided into buckets, with the same
number of consecutive array entries in each bucket. Each entry contains the computed
primary and secondary hashes of a given key (explained below), and an index to the
second table.

» The second table is an array of all the keys stored in the hash table and its data associ-
ated to each key.

The hash library uses the cuckoo hash method to resolve collisions. For any input key, there
are two possible buckets (primary and secondary/alternative location) where that key can be
stored in the hash, therefore only the entries within those bucket need to be examined when
the key is looked up. The lookup speed is achieved by reducing the number of entries to be
scanned from the total number of hash entries down to the number of entries in the two hash
buckets, as opposed to the basic method of linearly scanning all the entries in the array. The
hash uses a hash function (configurable) to translate the input key into a 4-byte key signature.
The bucket index is the key signature modulo the number of hash buckets.

Once the buckets are identified, the scope of the hash add, delete and lookup operations is
reduced to the entries in those buckets (it is very likely that entries are in the primary bucket).

To speed up the search logic within the bucket, each hash entry stores the 4-byte key signa-
ture together with the full key for each hash entry. For large key sizes, comparing the input key

20.2. Multi-process support 181

Programmer’s Guide, Release 18.05.1

against a key from the bucket can take significantly more time than comparing the 4-byte sig-
nature of the input key against the signature of a key from the bucket. Therefore, the signature
comparison is done first and the full key comparison done only when the signatures matches.
The full key comparison is still necessary, as two input keys from the same bucket can still
potentially have the same 4-byte hash signature, although this event is relatively rare for hash
functions providing good uniform distributions for the set of input keys.

Example of lookup:

First of all, the primary bucket is identified and entry is likely to be stored there. If signature
was stored there, we compare its key against the one provided and return the position where
it was stored and/or the data associated to that key if there is a match. If signature is not in
the primary bucket, the secondary bucket is looked up, where same procedure is carried out.
If there is no match there either, key is considered not to be in the table.

Example of addition:

Like lookup, the primary and secondary buckets are identified. If there is an empty slot in the
primary bucket, primary and secondary signatures are stored in that slot, key and data (if any)
are added to the second table and an index to the position in the second table is stored in
the slot of the first table. If there is no space in the primary bucket, one of the entries on that
bucket is pushed to its alternative location, and the key to be added is inserted in its position.
To know where the alternative bucket of the evicted entry is, the secondary signature is looked
up and alternative bucket index is calculated from doing the modulo, as seen above. If there is
room in the alternative bucket, the evicted entry is stored in it. If not, same process is repeated
(one of the entries gets pushed) until a non full bucket is found. Notice that despite all the
entry movement in the first table, the second table is not touched, which would impact greatly
in performance.

In the very unlikely event that table enters in a loop where same entries are being evicted
indefinitely, key is considered not able to be stored. With random keys, this method allows the
user to get around 90% of the table utilization, without having to drop any stored entry (LRU)
or allocate more memory (extended buckets).

20.4 Entry distribution in hash table

As mentioned above, Cuckoo hash implementation pushes elements out of their bucket, if there
is a new entry to be added which primary location coincides with their current bucket, being
pushed to their alternative location. Therefore, as user adds more entries to the hash table,
distribution of the hash values in the buckets will change, being most of them in their primary
location and a few in their secondary location, which the later will increase, as table gets busier.
This information is quite useful, as performance may be lower as more entries are evicted to
their secondary location.

See the tables below showing example entry distribution as table utilization increases.

20.4. Entry distribution in hash table 182

Programmer’s Guide, Release 18.05.1

Table 20.1: Entry distribution measured with an example table with
1024 random entries using jhash algorithm

% Table used | % In Primary location | % In Secondary location
25 100 0

50 96.1 3.9

75 88.2 11.8

80 86.3 13.7

85 83.1 16.9

90 77.3 22.7

95.8 64.5 35.5

Table 20.2: Entry distribution measured with an example table with 1
million random entries using jhash algorithm

% Table used | % In Primary location | % In Secondary location
50 96 4

75 86.9 13.1

80 83.9 16.1

85 80.1 19.9

90 74.8 252

94.5 67.4 32.6

Note: Last values on the tables above are the average maximum table utilization with random
keys and using Jenkins hash function.

20.5 Use Case: Flow Classification

Flow classification is used to map each input packet to the connection/flow it belongs to. This
operation is necessary as the processing of each input packet is usually done in the context
of their connection, so the same set of operations is applied to all the packets from the same
flow.

Applications using flow classification typically have a flow table to manage, with each separate
flow having an entry associated with it in this table. The size of the flow table entry is application
specific, with typical values of 4, 16, 32 or 64 bytes.

Each application using flow classification typically has a mechanism defined to uniquely iden-
tify a flow based on a number of fields read from the input packet that make up the flow key.
One example is to use the DiffServ 5-tuple made up of the following fields of the IP and trans-
port layer packet headers: Source IP Address, Destination IP Address, Protocol, Source Port,
Destination Port.

The DPDK hash provides a generic method to implement an application specific flow classifi-
cation mechanism. Given a flow table implemented as an array, the application should create
a hash object with the same number of entries as the flow table and with the hash key size set
to the number of bytes in the selected flow key.

20.5. Use Case: Flow Classification 183

Programmer’s Guide, Release 18.05.1

The flow table operations on the application side are described below:

» Add flow: Add the flow key to hash. If the returned position is valid, use it to access the
flow entry in the flow table for adding a new flow or updating the information associated
with an existing flow. Otherwise, the flow addition failed, for example due to lack of free
entries for storing new flows.

* Delete flow: Delete the flow key from the hash. If the returned position is valid, use it to
access the flow entry in the flow table to invalidate the information associated with the
flow.

* Lookup flow: Lookup for the flow key in the hash. If the returned position is valid (flow
lookup hit), use the returned position to access the flow entry in the flow table. Otherwise
(flow lookup miss) there is no flow registered for the current packet.

20.6 References

* Donald E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching
(2nd Edition), 1998, Addison-Wesley Professional

20.6. References 184

CHAPTER
TWENTYONE

ELASTIC FLOW DISTRIBUTOR LIBRARY

21.1 Introduction

In Data Centers today, clustering and scheduling of distributed workloads is a very common
task. Many workloads require a deterministic partitioning of a flat key space among a cluster
of machines. When a packet enters the cluster, the ingress node will direct the packet to its
handling node. For example, data-centers with disaggregated storage use storage metadata
tables to forward I/O requests to the correct back end storage cluster, stateful packet inspection
will use match incoming flows to signatures in flow tables to send incoming packets to their
intended deep packet inspection (DPI) devices, and so on.

EFD is a distributor library that uses perfect hashing to determine a target/value for a given
incoming flow key. It has the following advantages: first, because it uses perfect hashing
it does not store the key itself and hence lookup performance is not dependent on the key
size. Second, the target/value can be any arbitrary value hence the system designer and/or
operator can better optimize service rates and inter-cluster network traffic locating. Third,
since the storage requirement is much smaller than a hash-based flow table (i.e. better fit for
CPU cache), EFD can scale to millions of flow keys. Finally, with the current optimized library
implementation, performance is fully scalable with any number of CPU cores.

21.2 Flow Based Distribution

21.2.1 Computation Based Schemes

Flow distribution and/or load balancing can be simply done using a stateless computation, for
instance using round-robin or a simple computation based on the flow key as an input. For
example, a hash function can be used to direct a certain flow to a target based on the flow key
(e.9. h(key) mod n) where h(key) is the hash value of the flow key and n is the number of
possible targets.

In this scheme (Fig. 21.1), the front end server/distributor/load balancer extracts the flow key
from the input packet and applies a computation to determine where this flow should be di-
rected. Intuitively, this scheme is very simple and requires no state to be kept at the front end
node, and hence, storage requirements are minimum.

A widely used flow distributor that belongs to the same category of computation-based
schemes is consistent hashing, shown in Fig. 21.2. Target destinations (shown in red)
are hashed into the same space as the flow keys (shown in blue), and keys are mapped to the
nearest target in a clockwise fashion. Dynamically adding and removing targets with consistent
hashing requires only K/n keys to be remapped on average, where K is the number of keys,

185

Programmer’s Guide, Release 18.05.1

Fig. 21.1: Load Balancing Using Front End Node

O o
o l O
o eys ®
o
®
® Ta ryattuashed

o xg

Fig. 21.2: Consistent Hashing

21.2. Flow Based Distribution 186

Programmer’s Guide, Release 18.05.1

and n is the number of targets. In contrast, in a traditional hash-based scheme, a change in
the number of targets causes nearly all keys to be remapped.

Although computation-based schemes are simple and need very little storage requirement,
they suffer from the drawback that the system designer/operator can’t fully control the target
to assign a specific key, as this is dictated by the hash function. Deterministically co-locating
of keys together (for example, to minimize inter-server traffic or to optimize for network traffic
conditions, target load, etc.) is simply not possible.

21.2.2 Flow-Table Based Schemes

When using a Flow-Table based scheme to handle flow distribution/load balancing, in contrast
with computation-based schemes, the system designer has the flexibility of assigning a given
flow to any given target. The flow table (e.g. DPDK RTE Hash Library) will simply store both
the flow key and the target value.

Packet Hea Payload
tirdd st offohe Eaftket Teg

tteshefanftonrtab kesed ex

Load Balancing

1
—1 1 1 1

Actlon
ey /@

Flow Ko, Match

Hash ¥éduwetabdel to index

e

m &edine) @dtkeiyppatdiey

Fig. 21.3: Table Based Flow Distribution

As shown in Fig. 21.3, when doing a lookup, the flow-table is indexed with the hash of the flow
key and the keys (more than one is possible, because of hash collision) stored in this index
and corresponding values are retrieved. The retrieved key(s) is matched with the input flow key
and if there is a match the value (target id) is returned.

The drawback of using a hash table for flow distribution/load balancing is the storage require-
ment, since the flow table need to store keys, signatures and target values. This doesn’t allow

21.2. Flow Based Distribution 187

Programmer’s Guide, Release 18.05.1

this scheme to scale to millions of flow keys. Large tables will usually not fit in the CPU cache,
and hence, the lookup performance is degraded because of the latency to access the main
memory.

21.2.3 EFD Based Scheme

EFD combines the advantages of both flow-table based and computation-based schemes.
It doesn’t require the large storage necessary for flow-table based schemes (because EFD
doesn’t store the key as explained below), and it supports any arbitrary value for any given key.

Wgﬁ(X v
1(H,2(x)-Hu;n(X)

eyl 0 .0

tore m for this grouj

Fig. 21.4: Searching for Perfect Hash Function

The basic idea of EFD is when a given key is to be inserted, a family of hash functions is
searched until the correct hash function that maps the input key to the correct value is found, as
shown in Fig. 21.4. However, rather than explicitly storing all keys and their associated values,
EFD stores only indices of hash functions that map keys to values, and thereby consumes
much less space than conventional flow-based tables. The lookup operation is very simple,
similar to a computational-based scheme: given an input key the lookup operation is reduced
to hashing that key with the correct hash function.

H267 Hae H132

Store hash function index for each group of keys

Fig. 21.5: Divide and Conquer for Millions of Keys

Intuitively, finding a hash function that maps each of a large number (millions) of input keys
to the correct output value is effectively impossible, as a result EFD, as shown in Fig. 21.5,
breaks the problem into smaller pieces (divide and conquer). EFD divides the entire input key
set into many small groups. Each group consists of approximately 20-28 keys (a configurable
parameter for the library), then, for each small group, a brute force search to find a hash
function that produces the correct outputs for each key in the group.

It should be mentioned that, since the online lookup table for EFD doesn’t store the key itself,
the size of the EFD table is independent of the key size and hence EFD lookup performance

21.2. Flow Based Distribution 188

Programmer’s Guide, Release 18.05.1

which is almost constant irrespective of the length of the key which is a highly desirable feature
especially for longer keys.

In summary, EFD is a set separation data structure that supports millions of keys. It is used to
distribute a given key to an intended target. By itself EFD is not a FIB data structure with an
exact match the input flow key.

21.3 Example of EFD Library Usage

EFD can be used along the data path of many network functions and middleboxes. As previ-
ously mentioned, it can used as an index table for <key,value> pairs, meta-data for objects, a
flow-level load balancer, etc. Fig. 21.6 shows an example of using EFD as a flow-level load
balancer, where flows are received at a front end server before being forwarded to the target
back end server for processing. The system designer would deterministically co-locate flows
together in order to minimize cross-server interaction. (For example, flows requesting certain
webpage objects are co-located together, to minimize forwarding of common objects across
servers).

-
I I

I
I
|

Backend Server

&rdmzc @ Sanear

Supports N Flows |

Backend Server 2

— ? T —
ey I I I
- —

Backend Server X -- --
| Supports X*N Flows

Fig. 21.6: EFD as a Flow-Level Load Balancer

As shown in Fig. 21.6, the front end server will have an EFD table that stores for each group
what is the perfect hash index that satisfies the correct output. Because the table size is small
and fits in cache (since keys are not stored), it sustains a large number of flows (N*X, where N
is the maximum number of flows served by each back end server of the X possible targets).

With an input flow key, the group id is computed (for example, using last few bits of CRC hash)
and then the EFD table is indexed with the group id to retrieve the corresponding hash index to
use. Once the index is retrieved the key is hashed using this hash function and the result will
be the intended correct target where this flow is supposed to be processed.

It should be noted that as a result of EFD not matching the exact key but rather distributing
the flows to a target back end node based on the perfect hash index, a key that has not been

21.3. Example of EFD Library Usage 189

Programmer’s Guide, Release 18.05.1

inserted before will be distributed to a valid target. Hence, a local table which stores the flows
served at each node is used and is exact matched with the input key to rule out new never
seen before flows.

21.4 Library API Overview

The EFD library API is created with a very similar semantics of a hash-index or a flow table.
The application creates an EFD table for a given maximum number of flows, a function is called
to insert a flow key with a specific target value, and another function is used to retrieve target
values for a given individual flow key or a bulk of keys.

21.4.1 EFD Table Create

The function rte_efd_create () is used to create and return a pointer to an EFD table that
is sized to hold up to num_flows key. The online version of the EFD table (the one that does
not store the keys and is used for lookups) will be allocated and created in the last level cache
(LLC) of the socket defined by the online_socket_bitmask, while the offline EFD table (the
one that stores the keys and is used for key inserts and for computing the perfect hashing) is
allocated and created in the LLC of the socket defined by offline_socket_bitmask. It should
be noted, that for highest performance the socket id should match that where the thread is
running, i.e. the online EFD lookup table should be created on the same socket as where the
lookup thread is running.

21.4.2 EFD Insert and Update

The EFD function to insert a key or update a key to a new value is rte_efd_update ().
This function will update an existing key to a new value (target) if the key has already been
inserted before, or will insert the <key,value> pair if this key has not been inserted before. It
will return 0 upon success. It will return EFD_UPDATE_WARN_GROUP_FULL (1) if the op-
eration is insert, and the last available space in the key’s group was just used. It will return
EFD_UPDATE_FAILED (2) when the insertion or update has failed (either it failed to find a
suitable perfect hash or the group was full). The function will return EFD_UPDATE_NO_CHANGE
(3) if there is no change to the EFD table (i.e, same value already exists).

Note: This function is not multi-thread safe and should only be called from one thread.

21.4.3 EFD Lookup

To lookup a certain key in an EFD table, the function rte_efd_lookup () is used to return the
value associated with single key. As previously mentioned, if the key has been inserted, the cor-
rect value inserted is returned, if the key has not been inserted before, a ‘random’ value (based
on hashing of the key) is returned. For better performance and to decrease the overhead of
function calls per key, it is always recommended to use a bulk lookup function (simultaneous
lookup of multiple keys) instead of a single key lookup function. rte_efd_lookup_bulk ()
is the bulk lookup function, that looks up num_keys simultaneously stored in the key_list and
the corresponding return values will be returned in the value_list.

21.4. Library API Overview 190

Programmer’s Guide, Release 18.05.1

Note: This function is multi-thread safe, but there should not be other threads writing in the
EFD table, unless locks are used.

21.4.4 EFD Delete

To delete a certain key in an EFD table, the function rte_efd_delete () can be used. The
function returns zero upon success when the key has been found and deleted. Socket_id is
the parameter to use to lookup the existing value, which is ideally the caller’s socket id. The
previous value associated with this key will be returned in the prev_value argument.

Note: This function is not multi-thread safe and should only be called from one thread.

21.5 Library Internals

This section provides the brief high-level idea and an overview of the library internals to accom-
pany the RFC. The intent of this section is to explain to readers the high-level implementation
of insert, lookup and group rebalancing in the EFD library.

21.5.1 Insert Function Internals

As previously mentioned the EFD divides the whole set of keys into groups of a manageable
size (e.g. 28 keys) and then searches for the perfect hash that satisfies the intended target
value for each key. EFD stores two version of the <key,value> table:

« Offline Version (in memory): Only used for the insertion/update operation, which is less
frequent than the lookup operation. In the offline version the exact keys for each group is
stored. When a new key is added, the hash function is updated that will satisfy the value
for the new key together with the all old keys already inserted in this group.

» Online Version (in cache): Used for the frequent lookup operation. In the online version,
as previously mentioned, the keys are not stored but rather only the hash index for each

group.

Keyl Key2 Key3 Key4 Key5 Key6 Key7

[ox0102ABCD| 0x0103CDAB| 0x0102BAAD| 0x0104BEEF| 0x0103DABD| 0x0102ADCB| 0x0104DBCA

Group
Identifier
(simplified)
- Kaigeysaimet ikl faokongHaipmbas exf

Group

oot mE&dy

Fig. 21.7: Group Assignment

21.5. Library Internals 191

Programmer’s Guide, Release 18.05.1

Fig. 21.7 depicts the group assignment for 7 flow keys as an example. Given a flow key, a hash
function (in our implementation CRC hash) is used to get the group id. As shown in the figure,
the groups can be unbalanced. (We highlight group rebalancing further below).

Group ID: 0x0102
Keyl: Value = b

hash_index

Key3: Value (integer, 16 bits)

I
=

Key4: Value = 0 \
lookup_table
Key7: Value =1 g (16 bits)

Fig. 21.8: Perfect Hash Search - Assigned Keys & Target Value

Focusing on one group that has four keys, Fig. 21.8 depicts the search algorithm to find the
perfect hash function. Assuming that the target value bit for the keys is as shown in the figure,
then the online EFD table will store a 16 bit hash index and 16 bit lookup table per group per
value bit.

CbRC32 (32 Goal: Find a valid

it output) .

Keyl: Value = 0 hash_index

Key3: Value = 1
[(hash(key, seedl) + hash_index * hash(key, seed?2)) % 16]

Key4: Value =0

f lookup_tablebit]

Lookup Table has | index forkeyl |

16 bits

lookup_tablebit |
____index for key3)

lookup_tablebit
. index for key4)

CRC32 (32 [lookup_tablebit |
bit output) . index for key7)

Key7: Value = 1

Goal is to find a hash_index that produces

a lookup_table with no contradictions

Fig. 21.9: Perfect Hash Search - Satisfy Target Values

For a given keyX, a hash function (h (keyX, seedl) + index * h(keyX, seed2)) is
used to point to certain bit index in the 16bit lookup_table value, as shown in Fig. 21.9. The
insert function will brute force search for all possible values for the hash index until a non
conflicting lookup_table is found.

Lookup_table
(16 bits)

= (0000 901000000020]
Keyl: Value =0 Keyl: Position 4]
Key3: Value = 1 Key3: Position 6
Key4: Value = 0 Key4: Position 14
Key7: Value = 1 Key7: Position 14

Fig. 21.10: Finding Hash Index for Conflict Free lookup_table

21.5. Library Internals 192

Programmer’s Guide, Release 18.05.1

For example, since both key3 and key7 have a target bit value of 1, it is okay if the hash function
of both keys point to the same bit in the lookup table. A conflict will occur if a hash index is
used that maps both Key4 and Key7 to the same index in the lookup_table, as shown in Fig.
21.10, since their target value bit are not the same. Once a hash index is found that produces
a lookup_table with no contradictions, this index is stored for this group. This procedure is
repeated for each bit of target value.

21.5.2 Lookup Function Internals
The design principle of EFD is that lookups are much more frequent than inserts, and hence,

EFD’s design optimizes for the lookups which are faster and much simpler than the slower
insert procedure (inserts are slow, because of perfect hash search as pre