=) DPDK

DATA PLANE DEVELOPMENT KIT

Event Device Drivers
Release 19.05.0

May 13, 2019

NXP DPAA Eventdev Driver

1.1 Features
1.2 Supported DPAAS0Cs
1.3 Prerequisites oo
1.4 Pre-Installation Configuration
1.5 Initialization. o oL,
1.6 Limitations

NXP DPAA2 Eventdev Driver

21 Features
2.2 Supported DPAA2S0oCs
23 Prerequisites
2.4 Pre-Installation Configuration
2.5 Initialization. oo
26 Enablinglogs.
2.7 Limitations oL

Distributed Software Eventdev Poll Mode Driver

3.1 Features
3.2 ConfigurationandOptions
3.3 Limitations oo oo

Software Eventdev Poll Mode Driver

41 Features e
4.2 Configurationand Options
4.3 Limitations L

OCTEON TX SSOVF Eventdev Driver

51 Features
5.2 Supported OCTEONTXSoCs
5.3 Prerequisites L
5.4 Pre-Installation Configuration
5.5 Initialization.
56 Selftest
57 EnableTIMvfstats.
5.8 Limitations

OPDL Eventdev Poll Mode Driver

6.1 Features
6.2 ConfigurationandOptions

CONTENTS

6.3 Limitations

Event Device Drivers, Release 19.05.0

The following are a list of event device PMDs, which can be used from an application trough
the eventdev API.

CONTENTS 1

CHAPTER
ONE

NXP DPAA EVENTDEV DRIVER

The dpaa eventdev is an implementation of the eventdev API, that provides a wide range of the
eventdev features. The eventdev relies on a dpaa based platform to perform event scheduling.

More information can be found at NXP Official Website.

1.1 Features

The DPAA EVENTDEYV implements many features in the eventdev API;
» Hardware based event scheduler
* 4 event ports

* 4 event queues

Parallel flows

Atomic flows

1.2 Supported DPAA SoCs

* LS1046A/LS1026A
* LS1043A/LS1023A

1.3 Prerequisites

See ../platform/dpaa for setup information
Currently supported by DPDK:

* NXP SDK 2.0+ or LSDK 18.09+

» Supported architectures: arm64 LE.

* Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM

Event Device Drivers, Release 19.05.0

1.4 Pre-Installation Configuration

1.4.1 Config File Options
The following options can be modified in the config file. Please note that enabling debugging
options may affect system performance.

* CONFIG_RTE_LIBRTE_PMD_DPAA_EVENTDEV (default y)

Toggle compilation of the 1ibrte_pmd_dpaa_event driver.

1.4.2 Driver Compilation

To compile the DPAA EVENTDEV PMD for Linux arm64 gcc target, run the following make
command:

cd <DPDK-source-directory>
make config T=arm64-dpaa-linux-gcc install

1.5 Initialization

The dpaa eventdev is exposed as a vdev device which consists of a set of channels and
queues. On EAL initialization, dpaa components will be probed and then vdev device can be
created from the application code by

* Invoking rte_vdev_init ("event_dpaal") from the application

» Using ——vdev="event_dpaal" in the EAL options, which will call rte_vdev_init() inter-
nally

Example:

./your_eventdev_application —--vdev="event_dpaal"

» Use dev arg option disable_intr=1 to disable the interrupt mode

1.6 Limitations

1. DPAA eventdev can not work with DPAA PUSH mode queues configured for ethdev.
Please configure export DPAA_NUM_PUSH_QUEUES=0

1.6.1 Platform Requirement

DPAA drivers for DPDK can only work on NXP SoCs as listed in the Supported DPAA SoCs.

1.6.2 Port-core Binding

DPAA EVENTDEYV driver requires event port X’ to be used on core X’.

1.4. Pre-Installation Configuration 3

CHAPTER
TWO

NXP DPAA2 EVENTDEV DRIVER

The dpaa2 eventdev is an implementation of the eventdev API, that provides a wide range of
the eventdev features. The eventdev relies on a dpaa2 hw to perform event scheduling.

More information can be found at NXP Official Website.

2.1 Features

The DPAA2 EVENTDEYV implements many features in the eventdev API;
* Hardware based event scheduler
* 8 event ports

» 8 event queues

Parallel flows

Atomic flows

2.2 Supported DPAA2 SoCs

LX2160A

LS2084A/LS2044A
LS2088A/LS2048A
LS1088A/LS1048A

2.3 Prerequisites

See ../platform/dpaa? for setup information
Currently supported by DPDK:

* NXP SDK 19.03+.

* MC Firmware version 10.14.0 and higher.

» Supported architectures: arm64 LE.

* Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM

Event Device Drivers, Release 19.05.0

ggtf:)Some part of fsimc bus code (mc flib - object library) routines are dual licensed (BSD &
v2).

2.4 Pre-Installation Configuration

2.4.1 Config File Options
The following options can be modified in the config file. Please note that enabling debugging
options may affect system performance.

* CONFIG_RTE_LIBRTE_PMD_DPAA2_EVENTDEV (default v)

Toggle compilation of the 1rte_pmd_dpaa2_event driver.

2.4.2 Driver Compilation

To compile the DPAA2 EVENTDEV PMD for Linux arm64 gcc target, run the following make
command:

cd <DPDK-source-directory>
make config T=armé64-dpaa2-linux-gcc install

2.5 Initialization

The dpaa2 eventdev is exposed as a vdev device which consists of a set of dpcon devices
and dpci devices. On EAL initialization, dpcon and dpci devices will be probed and then vdev
device can be created from the application code by

* Invoking rte_vdev_init ("event_dpaa2") from the application

» Using —-vdev="event_dpaa2" in the EAL options, which will call rte_vdev_init() inter-
nally

Example:

./your_eventdev_application —--vdev="event_dpaa2"

2.6 Enabling logs

For enabling logs, use the following EAL parameter:

./your_eventdev_application <EAL args> —--log-level=pmd.event.dpaa2,<level>

Using eventdev.dpaa2 as log matching criteria, all Event PMD logs can be enabled which
are lower than logging level.

2.4. Pre-Installation Configuration 5

Event Device Drivers, Release 19.05.0

2.7 Limitations

2.7.1 Platform Requirement

DPAA2 drivers for DPDK can only work on NXP SoCs as listed in the Supported DPAA2
SoCs.

2.7.2 Port-core binding

DPAA2 EVENTDEYV can support only one eventport per core.

2.7. Limitations 6

CHAPTER
THREE

DISTRIBUTED SOFTWARE EVENTDEV POLL MODE DRIVER

The distributed software event device is an eventdev driver which distributes the task of
scheduling events among all the eventdev ports and the Icore threads using them.

3.1 Features

Queues

+ Atomic

* Parallel

* Single-Link
Ports

* Load balanced (for Atomic, Ordered, Parallel queues)

« Single Link (for single-link queues)

3.2 Configuration and Options

The distributed software eventdev is a vdev device, and as such can be created from the
application code, or from the EAL command line:

* Call rte_vdev_init ("event_dsw0") from the application
* Use -—vdev="event_dsw0" in the EAL options, which will call rte_vdev_init() internally

Example:

./your_eventdev_application —--vdev="event_dsw0"

3.3 Limitations

3.3.1 Unattended Ports

The distributed software eventdev uses an internal signaling schema between the ports to
achieve load balancing. In order for this to work, the application must perform enqueue and/or
dequeue operations on all ports.

Event Device Drivers, Release 19.05.0

Producer-only ports which currently have no events to enqueue should periodically call
rte_event_enqueue_burst() with a zero-sized burst.

Ports left unattended for longer periods of time will prevent load balancing, and also cause
traffic interruptions on the flows which are in the process of being migrated.

3.3.2 Output Buffering
For efficiency reasons, the distributed software eventdev might not send enqueued events

immediately to the destination port, but instead store them in an internal buffer in the source
port.

In case no more events are enqueued on a port with buffered events, these events will be sent
after the application has performed a number of enqueue and/or dequeue operations.

For explicit flushing, an application may call rte_event_enqueue_burst() with a zero-sized burst.

3.3.3 Priorities

The distributed software eventdev does not support event priorities.

3.3.4 Ordered Queues

The distributed software eventdev does not support the ordered queue type.

3.3.5 “All Types” Queues
The distributed software eventdev does not support queues of type

RTE_EVENT_QUEUE_CFG_ALL_TYPES, which allow both atomic, ordered, and paral-
lel events on the same queue.

3.3.6 Dynamic Link/Unlink

The distributed software eventdev does not support calls to rte_event port_link() or
rte_event_port_unlink() after rte_event_dev_start() has been called.

3.3. Limitations 8

CHAPTER
FOUR

SOFTWARE EVENTDEV POLL MODE DRIVER

The software eventdev is an implementation of the eventdev API, that provides a wide range of
the eventdev features. The eventdev relies on a CPU core to perform event scheduling. This
PMD can use the service core library to run the scheduling function, allowing an application to
utilize the power of service cores to multiplex other work on the same core if required.

4.1 Features

The software eventdev implements many features in the eventdev API;

Queues

+ Atomic

* Ordered

* Parallel

« Single-Link
Ports

* Load balanced (for Atomic, Ordered, Parallel queues)
+ Single Link (for single-link queues)
Event Priorities

» Each event has a priority, which can be used to provide basic QoS

4.2 Configuration and Options

The software eventdev is a vdev device, and as such can be created from the application code,
or from the EAL command line:

* Call rte_vdev_init ("event_sw0") from the application
* Use ——vdev="event_sw0" in the EAL options, which will call rte_vdev_init() internally

Example:

./your_eventdev_application —--vdev="event_sw0"

Event Device Drivers, Release 19.05.0

4.2.1 Scheduling Quanta

The scheduling quanta sets the number of events that the device attempts to schedule in a
single schedule call performed by the service core. Note that is a hint only, and that fewer or
more events may be scheduled in a given iteration.

The scheduling quanta can be set using a string argument to the vdev create call:

——vdev="event_sw0, sched_gquanta=64"

4.2.2 Credit Quanta

The credit quanta is the number of credits that a port will fetch at a time from the instance’s
credit pool. Higher numbers will cause less overhead in the atomic credit fetch code, however
it also reduces the overall number of credits in the system faster. A balanced number (e.g. 32)
ensures that only small numbers of credits are pre-allocated at a time, while also mitigating
performance impact of the atomics.

Experimentation with higher values may provide minor performance improvements, at the cost
of the whole system having less credits. On the other hand, reducing the quanta may cause
measurable performance impact but provide the system with a higher number of credits at all
times.

A value of 32 seems a good balance however your specific application may benefit from a
higher or reduced quanta size, experimentation is required to verify possible gains.

—--vdev="event_sw0, credit_quanta=64"

4.3 Limitations

The software eventdev implementation has a few limitations. The reason for these limitations
is usually that the performance impact of supporting the feature would be significant.

4.3.1 “All Types” Queues

The software eventdev does not support creating queues that handle all types of traffic. An
eventdev with this capability allows enqueuing Atomic, Ordered and Parallel traffic to the same
queue, but scheduling each of them appropriately.

The reason to not allow Atomic, Ordered and Parallel event types in the same queue is that it
causes excessive branching in the code to enqueue packets to the queue, causing a significant
performance impact.

The RTE_EVENT_DEV_CAP_QUEUE_ALIL_TYPES flag is not set in the event_dev_cap field
of the rte_event_dev_info struct for the software eventdev.

4.3.2 Distributed Scheduler

The software eventdev is a centralized scheduler, requiring a service core to perform the re-
quired event distribution. This is not really a limitation but rather a design decision.

4.3. Limitations 10

Event Device Drivers, Release 19.05.0

The RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED flag is not set in the event_dev_cap
field of the rte_event_dev_info struct for the software eventdev.

4.3.3 Dequeue Timeout

The eventdev APl supports a timeout when dequeuing packets using the
rte_event_dequeue_burst function. This allows a core to wait for an event to ar-
rive, or until timeout number of ticks have passed. Timeout ticks is not supported by the
software eventdev for performance reasons.

4.3. Limitations 11

CHAPTER
FIVE

OCTEON TX SSOVF EVENTDEV DRIVER

The OCTEON TX SSOVF PMD (librte_pmd_octeontx_ssovf) provides poll mode eventdev
driver support for the inbuilt event device found in the Cavium OCTEON TX SoC family as well
as their virtual functions (VF) in SR-IOV context.

More information can be found at Cavium, Inc Official Website.

5.1

Features

Features of the OCTEON TX SSOVF PMD are:

5.2

64 Event queues

32 Event ports

HW event scheduler

Supports 1M flows per event queue

Flow based event pipelining

Flow pinning support in flow based event pipelining

Queue based event pipelining

Supports ATOMIC, ORDERED, PARALLEL schedule types per flow
Event scheduling QoS based on event queue priority

Open system with configurable amount of outstanding events

HW accelerated dequeue timeout support to enable power management
SR-I0V VF

HW managed event timers support through TIMVF, with high precision and time granu-
larity of 1us.

Up to 64 event timer adapters.

Supported OCTEON TX SoCs

CN83xx

12

http://www.cavium.com/OCTEON-TX_ARM_Processors.html

Event Device Drivers, Release 19.05.0

5.3 Prerequisites

See ../platform/octeontx for setup information.

5.4 Pre-Installation Configuration

5.4.1 Config File Options
The following options can be modified in the config file. Please note that enabling debugging
options may affect system performance.

* CONFIG_RTE_LIBRTE_PMD_OCTEONTX_SSOVFE (default y)

Toggle compilation of the 1ibrte_pmd_octeontx_ssovf driver.

5.4.2 Driver Compilation

To compile the OCTEON TX SSOVF PMD for Linux arm64 gcc target, run the following make
command:

cd <DPDK-source-directory>
make config T=arm64-thunderx-linux-gcc install

5.5 Initialization

The OCTEON TX eventdev is exposed as a vdev device which consists of a set of SSO group
and work-slot PCle VF devices. On EAL initialization, SSO PCle VF devices will be probed
and then the vdev device can be created from the application code, or from the EAL command
line based on the number of probed/bound SSO PCle VF device to DPDK by

* Invoking rte_vdev_init ("event_octeontx") from the application

» Using —-vdev="event_octeontx" in the EAL options, which will call rte_vdev_init()
internally

Example:

./your_eventdev_application —--vdev="event_octeontx"

5.6 Selftest

The functionality of OCTEON TX eventdev can be verified using this option, various unit and
functional tests are run to verify the sanity. The tests are run once the vdev creation is suc-
cessfully complete.

—-—-vdev="event_octeontx,selftest=1"

5.3. Prerequisites 13

Event Device Drivers, Release 19.05.0

5.7 Enable TIMvf stats

TIMvf stats can be enabled by using this option, by default the stats are disabled.

—--vdev="event_octeontx,timvf_stats=1"

5.8 Limitations

5.8.1 Burst mode support

Burst mode is not supported. Dequeue and Enqueue functions accepts only single event at a
time.

5.8.2 Rx adapter support

When eth_octeontx is used as Rx adapter event schedule type RTE_SCHED_TYPE_PARALLEL
is not supported.

5.8.3 Event timer adapter support

When timvf is used as Event timer adapter the clock source mapping is as follows:

TIM CLK_SRC_SCLK
TIM CLK_SRC_GPIO
TIM CLK_SRC_GTI
TIM CLK_SRC_PTP

RTE_EVENT_TIMER_ADAPTER_CPU_CLK
RTE_EVENT_TIMER_ADAPTER_EXT_CLKO
RTE_EVENT_TIMER_ADAPTER_EXT CLK1
RTE_EVENT_TIMER_ADAPTER_EXT_ CLK2

When timvf is used as Event timer adapter event schedule type RTE_SCHED_TYPE_PARALLEL
is not supported.

5.7. Enable TIMvf stats 14

CHAPTER
SIX

OPDL EVENTDEV POLL MODE DRIVER

The OPDL (Ordered Packet Distribution Library) eventdev is a specificimplementation of the
eventdev API. It is particularly suited to packetprocessing workloads that have high throughput
and low latency requirements.All packets follow the same path through the device. The order
in whichpackets follow is determined by the order in which queues are set up.Events are left
on the ring until they are transmitted. As a result packetsdo not go out of order

6.1 Features

The OPDL eventdev implements a subset of features of the eventdev API;
Queues
» Atomic
* Ordered (Parallel is supported as parallel is a subset of Ordered)
+ Single-Link
Ports
* Load balanced (for Atomic, Ordered, Parallel queues)

« Single Link (for single-link queues)

6.2 Configuration and Options

The software eventdev is a vdev device, and as such can be created from the application code,
or from the EAL command line:

* Call rte_vdev_init ("event_opdl0") from the application

* Use ——vdev="event_opdl0" in the EAL options, which will call rte_vdev_init() inter-
nally

Example:

./your_eventdev_application —--vdev="event_opdl0O"

6.2.1 Single Port Queue

Itis possible to create a Single Port Queue RTE_EVENT_QUEUE_CFG_SINGLE_LINK. Packets
dequeued from this queue do not need to be re-enqueued (as is the case with an ordered

15

Event Device Drivers, Release 19.05.0

queue). The purpose of this queue is to allow for asynchronous handling of packets in the
middle of a pipeline. Ordered queues in the middle of a pipeline cannot delete packets.

6.2.2 Queue Dependencies

As stated the order in which packets travel through queues is static in nature. They go through
the queues in the order the queues are setup at initialisation rte_event_queue_setup ().
For example if an application sets up 3 queues, Q0, Q1, Q2 and has 3 associated ports PO,
P1, P2 and P3 then packets must be

» Enqueued onto QO (typically through PO0), then

» Dequeued from QO (typically through P1), then

* Enqueued onto Q1 (also through P1), then

» Dequeued from Q2 (typically through P2), then

» Enqueued onto Q3 (also through P2), then

» Dequeued from Q3 (typically through P3) and then transmitted on the relevant eth port

6.3 Limitations

The opdl implementation has a number of limitations. These limitations are due to the static
nature of the underlying queues. It is because of this that the implementation can achieve such
high throughput and low latency

The following list is a comprehensive outline of the what is supported and the limitations /
restrictions imposed by the opdl pmd

» The order in which packets moved between queues is static and fixed (dynamic schedul-
ing is not supported).

« NEW, RELEASE are not explicitly supported. RX (first enqueue) implicitly adds NEW
event types, and TX (last dequeue) implicitly does RELEASE event types.

All packets follow the same path through device queues.

Flows within queues are NOT supported.

Event priority is NOT supported.

Once the device is stopped all inflight events are lost. Applications should clear all inflight
events before stopping it.

Each port can only be associated with one queue.
» Each queue can have multiple ports associated with it.
» Each worker core has to dequeue the maximum burst size for that port.

 For performance, the rte_event flow_id should not be updated once packetis enqueued
on RX.

6.3. Limitations 16

Event Device Drivers, Release 19.05.0

6.3.1 Validation & Statistics

Validation can be turned on through a command line parameter

——-vdev="event_opdl0,do_validation=1,self_test=1"

If validation is turned on every packet (as opposed to just the first in each burst), is validated to
have come from the right queue. Statistics are also produced in this mode. The statistics are
available through the eventdev xstats API. Statistics are per port as follows:

+ claim_pkts_requested
« claim_pkts_granted
+ claim_non_empty

* claim_empty

total_cycles

6.3. Limitations 17

	NXP DPAA Eventdev Driver
	Features
	Supported DPAA SoCs
	Prerequisites
	Pre-Installation Configuration
	Initialization
	Limitations

	NXP DPAA2 Eventdev Driver
	Features
	Supported DPAA2 SoCs
	Prerequisites
	Pre-Installation Configuration
	Initialization
	Enabling logs
	Limitations

	Distributed Software Eventdev Poll Mode Driver
	Features
	Configuration and Options
	Limitations

	Software Eventdev Poll Mode Driver
	Features
	Configuration and Options
	Limitations

	OCTEON TX SSOVF Eventdev Driver
	Features
	Supported OCTEON TX SoCs
	Prerequisites
	Pre-Installation Configuration
	Initialization
	Selftest
	Enable TIMvf stats
	Limitations

	OPDL Eventdev Poll Mode Driver
	Features
	Configuration and Options
	Limitations

