
Sample Applications User Guides
Release 19.08.2

Nov 15, 2019

CONTENTS

1 Introduction to the DPDK Sample Applications 1
1.1 Running Sample Applications . 1
1.2 The DPDK Sample Applications . 1

2 Compiling the Sample Applications 3
2.1 To compile all the sample applications . 3
2.2 To compile a single application . 3
2.3 To cross compile the sample application(s) . 4

3 Command Line Sample Application 5
3.1 Overview . 5
3.2 Compiling the Application . 5
3.3 Running the Application . 6
3.4 Explanation . 6

4 Ethtool Sample Application 8
4.1 Compiling the Application . 8
4.2 Running the Application . 8
4.3 Using the application . 8
4.4 Explanation . 9
4.5 Ethtool interface . 9

5 Exception Path Sample Application 11
5.1 Overview . 11
5.2 Compiling the Application . 12
5.3 Running the Application . 12
5.4 Explanation . 12

6 Hello World Sample Application 16
6.1 Compiling the Application . 16
6.2 Running the Application . 16
6.3 Explanation . 16

7 Basic Forwarding Sample Application 18
7.1 Compiling the Application . 18
7.2 Running the Application . 18
7.3 Explanation . 18

8 RX/TX Callbacks Sample Application 23
8.1 Compiling the Application . 23

i

8.2 Running the Application . 23
8.3 Explanation . 23

9 Flow Classify Sample Application 27
9.1 Compiling the Application . 27
9.2 Running the Application . 27
9.3 Sample ipv4_rules_file.txt . 27
9.4 Explanation . 27

10 Basic RTE Flow Filtering Sample Application 36
10.1 Compiling the Application . 36
10.2 Running the Application . 36
10.3 Explanation . 36

11 IP Fragmentation Sample Application 43
11.1 Overview . 43
11.2 Compiling the Application . 43
11.3 Running the Application . 43

12 IPv4 Multicast Sample Application 46
12.1 Overview . 46
12.2 Compiling the Application . 46
12.3 Running the Application . 46
12.4 Explanation . 47

13 IP Reassembly Sample Application 51
13.1 Overview . 51
13.2 Compiling the Application . 51
13.3 Running the Application . 51
13.4 Explanation . 53

14 Kernel NIC Interface Sample Application 55
14.1 Overview . 55
14.2 Compiling the Application . 56
14.3 Running the kni Example Application . 56
14.4 KNI Operations . 58
14.5 Explanation . 59

15 Keep Alive Sample Application 60
15.1 Overview . 60
15.2 Compiling the Application . 60
15.3 Running the Application . 60
15.4 Explanation . 61

16 L2 Forwarding with Crypto Sample Application 63
16.1 Overview . 63
16.2 Compiling the Application . 63
16.3 Running the Application . 63
16.4 Explanation . 65

17 L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load
statistics. 71
17.1 Overview . 71

ii

17.2 Compiling the Application . 73
17.3 Running the Application . 73
17.4 Explanation . 73

18 L2 Forwarding Sample Application (in Real and Virtualized Environments) 81
18.1 Overview . 81
18.2 Compiling the Application . 84
18.3 Running the Application . 84
18.4 Explanation . 84

19 L2 Forwarding Sample Application with Cache Allocation Technology (CAT) 90
19.1 Compiling the Application . 90
19.2 Running the Application . 91
19.3 Explanation . 92

20 L3 Forwarding Sample Application 93
20.1 Overview . 93
20.2 Compiling the Application . 93
20.3 Running the Application . 94
20.4 Explanation . 95

21 L3 Forwarding with Power Management Sample Application 99
21.1 Introduction . 99
21.2 Overview . 99
21.3 Compiling the Application . 100
21.4 Running the Application . 100
21.5 Explanation . 101
21.6 Empty Poll Mode . 105
21.7 Telemetry Mode . 106

22 L3 Forwarding with Access Control Sample Application 107
22.1 Overview . 107
22.2 Compiling the Application . 111
22.3 Running the Application . 111
22.4 Explanation . 112

23 L3 Forwarding in a Virtualization Environment Sample Application 113
23.1 Overview . 113
23.2 Compiling the Application . 113
23.3 Running the Application . 114
23.4 Explanation . 114

24 Link Status Interrupt Sample Application 115
24.1 Overview . 115
24.2 Compiling the Application . 115
24.3 Running the Application . 115
24.4 Explanation . 116

25 Load Balancer Sample Application 122
25.1 Overview . 122
25.2 Compiling the Application . 123
25.3 Running the Application . 123
25.4 Explanation . 124

iii

26 Server-Node EFD Sample Application 126
26.1 Overview . 126
26.2 Compiling the Application . 127
26.3 Running the Application . 127
26.4 Explanation . 128

27 Service Cores Sample Application 134
27.1 Compiling the Application . 134
27.2 Running the Application . 134
27.3 Explanation . 134

28 Multi-process Sample Application 137
28.1 Example Applications . 137

29 QoS Metering Sample Application 144
29.1 Overview . 144
29.2 Compiling the Application . 144
29.3 Running the Application . 144
29.4 Explanation . 145

30 QoS Scheduler Sample Application 147
30.1 Overview . 147
30.2 Compiling the Application . 147
30.3 Running the Application . 148
30.4 Explanation . 151

31 Quota and Watermark Sample Application 153
31.1 Overview . 153
31.2 Compiling the Application . 155
31.3 Running the Application . 155
31.4 Code Overview . 156

32 Timer Sample Application 163
32.1 Compiling the Application . 163
32.2 Running the Application . 163
32.3 Explanation . 163

33 Packet Ordering Application 166
33.1 Overview . 166
33.2 Compiling the Application . 166
33.3 Running the Application . 166

34 VMDQ and DCB Forwarding Sample Application 168
34.1 Overview . 168
34.2 Compiling the Application . 169
34.3 Running the Application . 169
34.4 Explanation . 169

35 Vhost Sample Application 173
35.1 Testing steps . 173
35.2 Inject packets . 174
35.3 Parameters . 174
35.4 Common Issues . 175

iv

36 Vhost_scsi Sample Application 176
36.1 Testing steps . 176
36.2 Compiling the Application . 176
36.3 Vhost_scsi Common Issues . 177

37 Vhost_Crypto Sample Application 178
37.1 Testing steps . 178
37.2 Compiling the Application . 178

38 Vdpa Sample Application 180
38.1 Testing steps . 180

39 Netmap Compatibility Sample Application 182
39.1 Introduction . 182
39.2 Available APIs . 182
39.3 Caveats . 182
39.4 Porting Netmap Applications . 183
39.5 Compiling the Application . 183
39.6 Running the “bridge” Sample Application . 184

40 Internet Protocol (IP) Pipeline Application 185
40.1 Application overview . 185
40.2 Running the application . 185
40.3 Application stages . 186
40.4 Examples . 189
40.5 Command Line Interface (CLI) . 190

41 Test Pipeline Application 196
41.1 Overview . 196
41.2 Compiling the Application . 196
41.3 Running the Application . 197

42 Eventdev Pipeline Sample Application 200
42.1 Compiling the Application . 200
42.2 Running the Application . 200
42.3 Observing the Application . 201

43 Distributor Sample Application 203
43.1 Overview . 203
43.2 Compiling the Application . 204
43.3 Running the Application . 204
43.4 Explanation . 204
43.5 Intel SST-BF Support . 205
43.6 Debug Logging Support . 205
43.7 Statistics . 205
43.8 Application Initialization . 206

44 VM Power Management Application 207
44.1 Introduction . 207
44.2 Overview . 208
44.3 Configuration . 209
44.4 Compiling and Running the Host Application . 210
44.5 Compiling and Running the Guest Applications . 216

v

45 TEP termination Sample Application 219
45.1 Background . 219
45.2 Sample Code Overview . 220
45.3 Supported Distributions . 220
45.4 Compiling the Sample Code . 222
45.5 Running the Sample Code . 222
45.6 Running the Virtual Machine (QEMU) . 223
45.7 Running DPDK in the Virtual Machine . 223
45.8 Passing Traffic to the Virtual Machine Device . 223

46 PTP Client Sample Application 224
46.1 Limitations . 224
46.2 How the Application Works . 224
46.3 Compiling the Application . 225
46.4 Running the Application . 225
46.5 Code Explanation . 226

47 Performance Thread Sample Application 229
47.1 Overview . 229
47.2 Compiling the Application . 229
47.3 Running the Application . 230
47.4 Explanation . 232
47.5 The L-thread subsystem . 234

48 Federal Information Processing Standards (FIPS) CryptoDev Validation 246
48.1 Overview . 246
48.2 Limitations . 246
48.3 Application Information . 247
48.4 Compiling the Application . 247
48.5 Running the Application . 247

49 IPsec Security Gateway Sample Application 249
49.1 Overview . 249
49.2 Constraints . 250
49.3 Compiling the Application . 250
49.4 Running the Application . 250
49.5 Configurations . 252
49.6 Test directory . 259

50 Loop-back Sample Application using Baseband Device (bbdev) 261
50.1 Overview . 261
50.2 Limitations . 261
50.3 Compiling the Application . 261
50.4 Running the Application . 262
50.5 Using Packet Generator with baseband device sample application 262

51 NTB Sample Application 264
51.1 Compiling the Application . 264
51.2 Running the Application . 264
51.3 Using the application . 264

vi

CHAPTER

ONE

INTRODUCTION TO THE DPDK SAMPLE APPLICATIONS

The DPDK Sample Applications are small standalone applications which demonstrate various features
of DPDK. They can be considered as a cookbook of DPDK features. Users interested in getting started
with DPDK can take the applications, try out the features, and then extend them to fit their needs.

1.1 Running Sample Applications

Some sample applications may have their own command-line parameters described in their re-
spective guides, however all of them also share the same EAL parameters. Please refer to
../linux_gsg/linux_eal_parameters or ../freebsd_gsg/freebsd_eal_parameters for a list of available EAL
command-line options.

1.2 The DPDK Sample Applications

Table Table 1.1 shows a list of some of the main sample applications that are available in the examples
directory of DPDK:

Table 1.1: Some of the DPDK Sample applications
Bonding Netmap Compatibility
Command Line Packet Ordering
Distributor Performance Thread
Ethtool Precision Time Protocol (PTP) Client
Exception Path Quality of Service (QoS) Metering
Hello World QoS Scheduler
Internet Protocol (IP) Fragmentation Quota and Watermark
IP Pipeline RX/TX Callbacks
IP Reassembly Server node EFD
IPsec Security Gateway Basic Forwarding/Skeleton App
IPv4 multicast Tunnel End Point (TEP) termination
Kernel NIC Interface Timer
Network Layer 2 Forwarding + variants Vhost
Network Layer 3 Forwarding + variants Vhost Xen
Link Status Interrupt VMDQ Forwarding
Load Balancer VMDQ and DCB Forwarding
Multi-process VM Power Management

1

Sample Applications User Guides, Release 19.08.2

These examples range from simple to reasonably complex but most are designed to demonstrate one
particular feature of DPDK. Some of the more interesting examples are highlighted below.

• Hello World: As with most introductions to a programming framework a good place to start is
with the Hello World application. The Hello World example sets up the DPDK Environment Ab-
straction Layer (EAL), and prints a simple “Hello World” message to each of the DPDK enabled
cores. This application doesn’t do any packet forwarding but it is a good way to test if the DPDK
environment is compiled and set up properly.

• Basic Forwarding/Skeleton Application: The Basic Forwarding/Skeleton contains the minimum
amount of code required to enable basic packet forwarding with DPDK. This allows you to test if
your network interfaces are working with DPDK.

• Network Layer 2 forwarding: The Network Layer 2 forwarding, or l2fwd application does for-
warding based on Ethernet MAC addresses like a simple switch.

• Network Layer 3 forwarding: The Network Layer3 forwarding, or l3fwd application does for-
warding based on Internet Protocol, IPv4 or IPv6 like a simple router.

• Packet Distributor: The Packet Distributor demonstrates how to distribute packets arriving on an
Rx port to different cores for processing and transmission.

• Multi-Process Application: The multi-process application shows how two DPDK processes can
work together using queues and memory pools to share information.

• RX/TX callbacks Application: The RX/TX callbacks sample application is a packet forwarding
application that demonstrates the use of user defined callbacks on received and transmitted pack-
ets. The application calculates the latency of a packet between RX (packet arrival) and TX (packet
transmission) by adding callbacks to the RX and TX packet processing functions.

• IPsec Security Gateway: The IPsec Security Gateway application is minimal example of some-
thing closer to a real world example. This is also a good example of an application using the
DPDK Cryptodev framework.

• Precision Time Protocol (PTP) client: The PTP client is another minimal implementation of a real
world application. In this case the application is a PTP client that communicates with a PTP master
clock to synchronize time on a Network Interface Card (NIC) using the IEEE1588 protocol.

• Quality of Service (QoS) Scheduler: The QoS Scheduler application demonstrates the use of
DPDK to provide QoS scheduling.

There are many more examples shown in the following chapters. Each of the documented sample appli-
cations show how to compile, configure and run the application as well as explaining the main function-
ality of the code.

1.2. The DPDK Sample Applications 2

CHAPTER

TWO

COMPILING THE SAMPLE APPLICATIONS

This section explains how to compile the DPDK sample applications.

2.1 To compile all the sample applications

Set the path to DPDK source code if its not set:

export RTE_SDK=/path/to/rte_sdk

Go to DPDK source:

cd $RTE_SDK

Build DPDK:

make defconfig
make

Build the sample applications:

export RTE_TARGET=build
make -C examples

For other possible RTE_TARGET values and additional information on com-
piling see Compiling DPDK on Linux or Compiling DPDK on FreeBSD.
Applications are output to: $RTE_SDK/examples/app-dir/build or
$RTE_SDK/examples/app-dir/$RTE_TARGET.

In the example above the compiled application is written to the build subdirectory. To have the applica-
tions written to a different location, the O=/path/to/build/directory option may be specified
in the make command.

make O=/tmp

To build the applications for debugging use the DEBUG option. This option adds some extra flags,
disables compiler optimizations and sets verbose output.

make DEBUG=1

2.2 To compile a single application

Set the path to DPDK source code:

export RTE_SDK=/path/to/rte_sdk

Go to DPDK source:

3

Sample Applications User Guides, Release 19.08.2

cd $RTE_SDK

Build DPDK:

make defconfig
make

Go to the sample application directory. Unless otherwise specified the sample applications are located
in $RTE_SDK/examples/.

Build the application:

export RTE_TARGET=build
make

2.3 To cross compile the sample application(s)

For cross compiling the sample application(s), please append
‘CROSS=$(CROSS_COMPILER_PREFIX)’ to the ‘make’ command. In example of AARCH64
cross compiling:

export RTE_TARGET=build
export RTE_SDK=/path/to/rte_sdk
make -C examples CROSS=aarch64-linux-gnu-

or
make CROSS=aarch64-linux-gnu-

2.3. To cross compile the sample application(s) 4

CHAPTER

THREE

COMMAND LINE SAMPLE APPLICATION

This chapter describes the Command Line sample application that is part of the Data Plane Development
Kit (DPDK).

3.1 Overview

The Command Line sample application is a simple application that demonstrates the use of the command
line interface in the DPDK. This application is a readline-like interface that can be used to debug a DPDK
application, in a Linux* application environment.

Note: The rte_cmdline library should not be used in production code since it is not validated to the same
standard as other DPDK libraries. See also the “rte_cmdline library should not be used in production
code due to limited testing” item in the “Known Issues” section of the Release Notes.

The Command Line sample application supports some of the features of the GNU readline library such
as, completion, cut/paste and some other special bindings that make configuration and debug faster and
easier.

The application shows how the rte_cmdline application can be extended to handle a list of objects. There
are three simple commands:

• add obj_name IP: Add a new object with an IP/IPv6 address associated to it.

• del obj_name: Delete the specified object.

• show obj_name: Show the IP associated with the specified object.

Note: To terminate the application, use Ctrl-d.

3.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications

The application is located in the cmd_line sub-directory.

5

Sample Applications User Guides, Release 19.08.2

3.3 Running the Application

To run the application in linux environment, issue the following command:

$./build/cmdline -l 0-3 -n 4

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

3.4 Explanation

The following sections provide some explanation of the code.

3.4.1 EAL Initialization and cmdline Start

The first task is the initialization of the Environment Abstraction Layer (EAL). This is achieved as
follows:

int main(int argc, char **argv)
{

ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_panic("Cannot init EAL\n");

Then, a new command line object is created and started to interact with the user through the console:

cl = cmdline_stdin_new(main_ctx, "example> ");
cmdline_interact(cl);
cmdline_stdin_exit(cl);

The cmd line_interact() function returns when the user types Ctrl-d and in this case, the application
exits.

3.4.2 Defining a cmdline Context

A cmdline context is a list of commands that are listed in a NULL-terminated table, for example:

cmdline_parse_ctx_t main_ctx[] = {
(cmdline_parse_inst_t *) &cmd_obj_del_show,
(cmdline_parse_inst_t *) &cmd_obj_add,
(cmdline_parse_inst_t *) &cmd_help,
NULL,

};

Each command (of type cmdline_parse_inst_t) is defined statically. It contains a pointer to a callback
function that is executed when the command is parsed, an opaque pointer, a help string and a list of
tokens in a NULL-terminated table.

The rte_cmdline application provides a list of pre-defined token types:

• String Token: Match a static string, a list of static strings or any string.

• Number Token: Match a number that can be signed or unsigned, from 8-bit to 32-bit.

• IP Address Token: Match an IPv4 or IPv6 address or network.

• Ethernet* Address Token: Match a MAC address.

3.3. Running the Application 6

Sample Applications User Guides, Release 19.08.2

In this example, a new token type obj_list is defined and implemented in the parse_obj_list.c and
parse_obj_list.h files.

For example, the cmd_obj_del_show command is defined as shown below:

struct cmd_obj_add_result {
cmdline_fixed_string_t action;
cmdline_fixed_string_t name;
struct object *obj;

};

static void cmd_obj_del_show_parsed(void *parsed_result, struct cmdline *cl, attribute ((unused)) void *data)
{

/* ... */
}

cmdline_parse_token_string_t cmd_obj_action = TOKEN_STRING_INITIALIZER(struct cmd_obj_del_show_result, action, "show#del");

parse_token_obj_list_t cmd_obj_obj = TOKEN_OBJ_LIST_INITIALIZER(struct cmd_obj_del_show_result, obj, &global_obj_list);

cmdline_parse_inst_t cmd_obj_del_show = {
.f = cmd_obj_del_show_parsed, /* function to call */
.data = NULL, /* 2nd arg of func */
.help_str = "Show/del an object",
.tokens = { /* token list, NULL terminated */

(void *)&cmd_obj_action,
(void *)&cmd_obj_obj,
NULL,

},
};

This command is composed of two tokens:

• The first token is a string token that can be show or del.

• The second token is an object that was previously added using the add command in the
global_obj_list variable.

Once the command is parsed, the rte_cmdline application fills a cmd_obj_del_show_result structure. A
pointer to this structure is given as an argument to the callback function and can be used in the body of
this function.

3.4. Explanation 7

CHAPTER

FOUR

ETHTOOL SAMPLE APPLICATION

The Ethtool sample application shows an implementation of an ethtool-like API and provides a console
environment that allows its use to query and change Ethernet card parameters. The sample is based upon
a simple L2 frame reflector.

4.1 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ethtool sub-directory.

4.2 Running the Application

The application requires an available core for each port, plus one. The only available options are the
standard ones for the EAL:

./ethtool-app/ethtool-app/${RTE_TARGET}/ethtool [EAL options]

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

4.3 Using the application

The application is console-driven using the cmdline DPDK interface:

EthApp>

From this interface the available commands and descriptions of what they do as as follows:

• drvinfo: Print driver info

• eeprom: Dump EEPROM to file

• module-eeprom: Dump plugin module EEPROM to file

• link: Print port link states

• macaddr: Gets/sets MAC address

• mtu: Set NIC MTU

• open: Open port

8

Sample Applications User Guides, Release 19.08.2

• pause: Get/set port pause state

• portstats: Print port statistics

• regs: Dump port register(s) to file

• ringparam: Get/set ring parameters

• rxmode: Toggle port Rx mode

• stop: Stop port

• validate: Check that given MAC address is valid unicast address

• vlan: Add/remove VLAN id

• quit: Exit program

4.4 Explanation

The sample program has two parts: A background packet reflector that runs on a slave core, and a
foreground Ethtool Shell that runs on the master core. These are described below.

4.4.1 Packet Reflector

The background packet reflector is intended to demonstrate basic packet processing on NIC ports con-
trolled by the Ethtool shim. Each incoming MAC frame is rewritten so that it is returned to the sender,
using the port in question’s own MAC address as the source address, and is then sent out on the same
port.

4.4.2 Ethtool Shell

The foreground part of the Ethtool sample is a console-based interface that accepts commands as de-
scribed in using the application. Individual call-back functions handle the detail associated with each
command, which make use of the functions defined in the Ethtool interface to the DPDK functions.

4.5 Ethtool interface

The Ethtool interface is built as a separate library, and implements the following functions:

• rte_ethtool_get_drvinfo()

• rte_ethtool_get_regs_len()

• rte_ethtool_get_regs()

• rte_ethtool_get_link()

• rte_ethtool_get_eeprom_len()

• rte_ethtool_get_eeprom()

• rte_ethtool_set_eeprom()

• rte_ethtool_get_module_info()

4.4. Explanation 9

Sample Applications User Guides, Release 19.08.2

• rte_ethtool_get_module_eeprom()

• rte_ethtool_get_pauseparam()

• rte_ethtool_set_pauseparam()

• rte_ethtool_net_open()

• rte_ethtool_net_stop()

• rte_ethtool_net_get_mac_addr()

• rte_ethtool_net_set_mac_addr()

• rte_ethtool_net_validate_addr()

• rte_ethtool_net_change_mtu()

• rte_ethtool_net_get_stats64()

• rte_ethtool_net_vlan_rx_add_vid()

• rte_ethtool_net_vlan_rx_kill_vid()

• rte_ethtool_net_set_rx_mode()

• rte_ethtool_get_ringparam()

• rte_ethtool_set_ringparam()

4.5. Ethtool interface 10

CHAPTER

FIVE

EXCEPTION PATH SAMPLE APPLICATION

The Exception Path sample application is a simple example that demonstrates the use of the DPDK to
set up an exception path for packets to go through the Linux* kernel. This is done by using virtual TAP
network interfaces. These can be read from and written to by the DPDK application and appear to the
kernel as a standard network interface.

5.1 Overview

The application creates two threads for each NIC port being used. One thread reads from the port and
writes the data unmodified to a thread-specific TAP interface. The second thread reads from a TAP
interface and writes the data unmodified to the NIC port.

The packet flow through the exception path application is as shown in the following figure.

Port0

Port1

PortN

CoreA0

CoreA1

CoreAN

CoreB0

CoreB1

CoreBN

tapA0

tapA1

tapAN

tapB0

tapB1

tapBN

Kernel-space:
bridging/forwarding

Traffic
Generator

User-space:
DPDK application

Fig. 5.1: Packet Flow

To make throughput measurements, kernel bridges must be setup to forward data between the bridges
appropriately.

11

Sample Applications User Guides, Release 19.08.2

5.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the exception_path sub-directory.

5.3 Running the Application

The application requires a number of command line options:

.build/exception_path [EAL options] -- -p PORTMASK -i IN_CORES -o OUT_CORES

where:

• -p PORTMASK: A hex bitmask of ports to use

• -i IN_CORES: A hex bitmask of cores which read from NIC

• -o OUT_CORES: A hex bitmask of cores which write to NIC

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

The number of bits set in each bitmask must be the same. The coremask -c or the corelist -l parameter
of the EAL options should include IN_CORES and OUT_CORES. The same bit must not be set in
IN_CORES and OUT_CORES. The affinities between ports and cores are set beginning with the least
significant bit of each mask, that is, the port represented by the lowest bit in PORTMASK is read from
by the core represented by the lowest bit in IN_CORES, and written to by the core represented by the
lowest bit in OUT_CORES.

For example to run the application with two ports and four cores:

./build/exception_path -l 0-3 -n 4 -- -p 3 -i 3 -o c

5.3.1 Getting Statistics

While the application is running, statistics on packets sent and received can be displayed by sending the
SIGUSR1 signal to the application from another terminal:

killall -USR1 exception_path

The statistics can be reset by sending a SIGUSR2 signal in a similar way.

5.4 Explanation

The following sections provide some explanation of the code.

5.4.1 Initialization

Setup of the mbuf pool, driver and queues is similar to the setup done in the L2 Forwarding Sample
Application (in Real and Virtualized Environments). In addition, the TAP interfaces must also be created.
A TAP interface is created for each lcore that is being used. The code for creating the TAP interface is
as follows:

5.2. Compiling the Application 12

Sample Applications User Guides, Release 19.08.2

/*
* Create a tap network interface, or use existing one with same name.

* If name[0]='\0' then a name is automatically assigned and returned in name.

*/

static int tap_create(char *name)
{

struct ifreq ifr;
int fd, ret;

fd = open("/dev/net/tun", O_RDWR);
if (fd < 0)

return fd;

memset(&ifr, 0, sizeof(ifr));

/* TAP device without packet information */

ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
if (name && *name)

rte_snprinf(ifr.ifr_name, IFNAMSIZ, name);

ret = ioctl(fd, TUNSETIFF, (void *) &ifr);

if (ret < 0) {
close(fd);
return ret;

}

if (name)
snprintf(name, IFNAMSIZ, ifr.ifr_name);

return fd;
}

The other step in the initialization process that is unique to this sample application is the association of
each port with two cores:

• One core to read from the port and write to a TAP interface

• A second core to read from a TAP interface and write to the port

This is done using an array called port_ids[], which is indexed by the lcore IDs. The population of this
array is shown below:

tx_port = 0;
rx_port = 0;

RTE_LCORE_FOREACH(i) {
if (input_cores_mask & (1ULL << i)) {

/* Skip ports that are not enabled */
while ((ports_mask & (1 << rx_port)) == 0) {

rx_port++;
if (rx_port > (sizeof(ports_mask) * 8))

goto fail; /* not enough ports */
}
port_ids[i] = rx_port++;

} else if (output_cores_mask & (1ULL << i)) {
/* Skip ports that are not enabled */
while ((ports_mask & (1 << tx_port)) == 0) {

tx_port++;
if (tx_port > (sizeof(ports_mask) * 8))

goto fail; /* not enough ports */

5.4. Explanation 13

Sample Applications User Guides, Release 19.08.2

}
port_ids[i] = tx_port++;

}
}

5.4.2 Packet Forwarding

After the initialization steps are complete, the main_loop() function is run on each lcore. This function
first checks the lcore_id against the user provided input_cores_mask and output_cores_mask to see if
this core is reading from or writing to a TAP interface.

For the case that reads from a NIC port, the packet reception is the same as in the L2 Forwarding sample
application (see Receive, Process and Transmit Packets). The packet transmission is done by calling
write() with the file descriptor of the appropriate TAP interface and then explicitly freeing the mbuf
back to the pool.

/* Loop forever reading from NIC and writing to tap */

for (;;) {
struct rte_mbuf *pkts_burst[PKT_BURST_SZ];
unsigned i;

const unsigned nb_rx = rte_eth_rx_burst(port_ids[lcore_id], 0, pkts_burst, PKT_BURST_SZ);

lcore_stats[lcore_id].rx += nb_rx;

for (i = 0; likely(i < nb_rx); i++) {
struct rte_mbuf *m = pkts_burst[i];
int ret = write(tap_fd, rte_pktmbuf_mtod(m, void*),

rte_pktmbuf_data_len(m));
rte_pktmbuf_free(m);
if (unlikely(ret<0))

lcore_stats[lcore_id].dropped++;
else

lcore_stats[lcore_id].tx++;
}

}

For the other case that reads from a TAP interface and writes to a NIC port, packets are retrieved by
doing a read() from the file descriptor of the appropriate TAP interface. This fills in the data into the
mbuf, then other fields are set manually. The packet can then be transmitted as normal.

/* Loop forever reading from tap and writing to NIC */

for (;;) {
int ret;
struct rte_mbuf *m = rte_pktmbuf_alloc(pktmbuf_pool);

if (m == NULL)
continue;

ret = read(tap_fd, m->pkt.data, MAX_PACKET_SZ); lcore_stats[lcore_id].rx++;
if (unlikely(ret < 0)) {

FATAL_ERROR("Reading from %s interface failed", tap_name);
}

m->pkt.nb_segs = 1;
m->pkt.next = NULL;
m->pkt.data_len = (uint16_t)ret;

5.4. Explanation 14

Sample Applications User Guides, Release 19.08.2

ret = rte_eth_tx_burst(port_ids[lcore_id], 0, &m, 1);
if (unlikely(ret < 1)) {

rte_pktmuf_free(m);
lcore_stats[lcore_id].dropped++;

}
else {

lcore_stats[lcore_id].tx++;
}

}

To set up loops for measuring throughput, TAP interfaces can be connected using bridging. The steps to
do this are described in the section that follows.

5.4.3 Managing TAP Interfaces and Bridges

The Exception Path sample application creates TAP interfaces with names of the format tap_dpdk_nn,
where nn is the lcore ID. These TAP interfaces need to be configured for use:

ifconfig tap_dpdk_00 up

To set up a bridge between two interfaces so that packets sent to one interface can be read from another,
use the brctl tool:

brctl addbr "br0"
brctl addif br0 tap_dpdk_00
brctl addif br0 tap_dpdk_03
ifconfig br0 up

The TAP interfaces created by this application exist only when the application is running, so the steps
above need to be repeated each time the application is run. To avoid this, persistent TAP interfaces can
be created using openvpn:

openvpn --mktun --dev tap_dpdk_00

If this method is used, then the steps above have to be done only once and the same TAP interfaces
can be reused each time the application is run. To remove bridges and persistent TAP interfaces, the
following commands are used:

ifconfig br0 down
brctl delbr br0
openvpn --rmtun --dev tap_dpdk_00

5.4. Explanation 15

CHAPTER

SIX

HELLO WORLD SAMPLE APPLICATION

The Hello World sample application is an example of the simplest DPDK application that can be written.
The application simply prints an “helloworld” message on every enabled lcore.

6.1 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the helloworld sub-directory.

6.2 Running the Application

To run the example in a linux environment:

$./build/helloworld -l 0-3 -n 4

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

6.3 Explanation

The following sections provide some explanation of code.

6.3.1 EAL Initialization

The first task is to initialize the Environment Abstraction Layer (EAL). This is done in the main()
function using the following code:

int

main(int argc, char **argv)

{
ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_panic("Cannot init EAL\n");

This call finishes the initialization process that was started before main() is called (in case of a Linux
environment). The argc and argv arguments are provided to the rte_eal_init() function. The value
returned is the number of parsed arguments.

16

Sample Applications User Guides, Release 19.08.2

6.3.2 Starting Application Unit Lcores

Once the EAL is initialized, the application is ready to launch a function on an lcore. In this example,
lcore_hello() is called on every available lcore. The following is the definition of the function:

static int
lcore_hello(attribute ((unused)) void *arg)
{

unsigned lcore_id;

lcore_id = rte_lcore_id();
printf("hello from core %u\n", lcore_id);
return 0;

}

The code that launches the function on each lcore is as follows:

/* call lcore_hello() on every slave lcore */

RTE_LCORE_FOREACH_SLAVE(lcore_id) {
rte_eal_remote_launch(lcore_hello, NULL, lcore_id);

}

/* call it on master lcore too */

lcore_hello(NULL);

The following code is equivalent and simpler:

rte_eal_mp_remote_launch(lcore_hello, NULL, CALL_MASTER);

Refer to the DPDK API Reference for detailed information on the rte_eal_mp_remote_launch() function.

6.3. Explanation 17

CHAPTER

SEVEN

BASIC FORWARDING SAMPLE APPLICATION

The Basic Forwarding sample application is a simple skeleton example of a forwarding application.

It is intended as a demonstration of the basic components of a DPDK forwarding application. For more
detailed implementations see the L2 and L3 forwarding sample applications.

7.1 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the skeleton sub-directory.

7.2 Running the Application

To run the example in a linux environment:

./build/basicfwd -l 1 -n 4

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

7.3 Explanation

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte_ and are explained in detail
in the DPDK API Documentation.

7.3.1 The Main Function

The main() function performs the initialization and calls the execution threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv arguments
are provided to the rte_eal_init() function. The value returned is the number of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

The main() also allocates a mempool to hold the mbufs (Message Buffers) used by the application:

18

Sample Applications User Guides, Release 19.08.2

mbuf_pool = rte_mempool_create("MBUF_POOL",
NUM_MBUFS * nb_ports,
MBUF_SIZE,
MBUF_CACHE_SIZE,
sizeof(struct rte_pktmbuf_pool_private),
rte_pktmbuf_pool_init, NULL,
rte_pktmbuf_init, NULL,
rte_socket_id(),
0);

Mbufs are the packet buffer structure used by DPDK. They are explained in detail in the “Mbuf Library”
section of the DPDK Programmer’s Guide.

The main() function also initializes all the ports using the user defined port_init() function which
is explained in the next section:

RTE_ETH_FOREACH_DEV(portid) {
if (port_init(portid, mbuf_pool) != 0) {

rte_exit(EXIT_FAILURE,
"Cannot init port %" PRIu8 "\n", portid);

}
}

Once the initialization is complete, the application is ready to launch a function on an lcore. In this
example lcore_main() is called on a single lcore.

lcore_main();

The lcore_main() function is explained below.

7.3.2 The Port Initialization Function

The main functional part of the port initialization used in the Basic Forwarding application is shown
below:

static inline int
port_init(uint16_t port, struct rte_mempool *mbuf_pool)
{

struct rte_eth_conf port_conf = port_conf_default;
const uint16_t rx_rings = 1, tx_rings = 1;
struct rte_ether_addr addr;
int retval;
uint16_t q;

if (!rte_eth_dev_is_valid_port(port))
return -1;

/* Configure the Ethernet device. */
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)

return retval;

/* Allocate and set up 1 RX queue per Ethernet port. */
for (q = 0; q < rx_rings; q++) {

retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL, mbuf_pool);

if (retval < 0)
return retval;

}

/* Allocate and set up 1 TX queue per Ethernet port. */
for (q = 0; q < tx_rings; q++) {

7.3. Explanation 19

Sample Applications User Guides, Release 19.08.2

retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL);

if (retval < 0)
return retval;

}

/* Start the Ethernet port. */
retval = rte_eth_dev_start(port);
if (retval < 0)

return retval;

/* Enable RX in promiscuous mode for the Ethernet device. */
rte_eth_promiscuous_enable(port);

return 0;
}

The Ethernet ports are configured with default settings using the rte_eth_dev_configure()
function and the port_conf_default struct:

static const struct rte_eth_conf port_conf_default = {
.rxmode = { .max_rx_pkt_len = RTE_ETHER_MAX_LEN }

};

For this example the ports are set up with 1 RX and 1 TX queue using the
rte_eth_rx_queue_setup() and rte_eth_tx_queue_setup() functions.

The Ethernet port is then started:

retval = rte_eth_dev_start(port);

Finally the RX port is set in promiscuous mode:

rte_eth_promiscuous_enable(port);

7.3.3 The Lcores Main

As we saw above the main() function calls an application function on the available lcores. For the
Basic Forwarding application the lcore function looks like the following:

static __attribute__((noreturn)) void
lcore_main(void)
{

uint16_t port;

/*
* Check that the port is on the same NUMA node as the polling thread

* for best performance.

*/
RTE_ETH_FOREACH_DEV(port)

if (rte_eth_dev_socket_id(port) > 0 &&
rte_eth_dev_socket_id(port) !=

(int)rte_socket_id())
printf("WARNING, port %u is on remote NUMA node to "

"polling thread.\n\tPerformance will "
"not be optimal.\n", port);

printf("\nCore %u forwarding packets. [Ctrl+C to quit]\n",
rte_lcore_id());

/* Run until the application is quit or killed. */
for (;;) {

/*

7.3. Explanation 20

Sample Applications User Guides, Release 19.08.2

* Receive packets on a port and forward them on the paired

* port. The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.

*/
RTE_ETH_FOREACH_DEV(port) {

/* Get burst of RX packets, from first port of pair. */
struct rte_mbuf *bufs[BURST_SIZE];
const uint16_t nb_rx = rte_eth_rx_burst(port, 0,

bufs, BURST_SIZE);

if (unlikely(nb_rx == 0))
continue;

/* Send burst of TX packets, to second port of pair. */
const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,

bufs, nb_rx);

/* Free any unsent packets. */
if (unlikely(nb_tx < nb_rx)) {

uint16_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)

rte_pktmbuf_free(bufs[buf]);
}

}
}

}

The main work of the application is done within the loop:

for (;;) {
RTE_ETH_FOREACH_DEV(port) {

/* Get burst of RX packets, from first port of pair. */
struct rte_mbuf *bufs[BURST_SIZE];
const uint16_t nb_rx = rte_eth_rx_burst(port, 0,

bufs, BURST_SIZE);

if (unlikely(nb_rx == 0))
continue;

/* Send burst of TX packets, to second port of pair. */
const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,

bufs, nb_rx);

/* Free any unsent packets. */
if (unlikely(nb_tx < nb_rx)) {

uint16_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)

rte_pktmbuf_free(bufs[buf]);
}

}
}

Packets are received in bursts on the RX ports and transmitted in bursts on the TX ports. The ports are
grouped in pairs with a simple mapping scheme using the an XOR on the port number:

0 -> 1
1 -> 0

2 -> 3
3 -> 2

etc.

7.3. Explanation 21

Sample Applications User Guides, Release 19.08.2

The rte_eth_tx_burst() function frees the memory buffers of packets that are transmit-
ted. If packets fail to transmit, (nb_tx < nb_rx), then they must be freed explicitly using
rte_pktmbuf_free().

The forwarding loop can be interrupted and the application closed using Ctrl-C.

7.3. Explanation 22

CHAPTER

EIGHT

RX/TX CALLBACKS SAMPLE APPLICATION

The RX/TX Callbacks sample application is a packet forwarding application that demonstrates the use
of user defined callbacks on received and transmitted packets. The application performs a simple latency
check, using callbacks, to determine the time packets spend within the application.

In the sample application a user defined callback is applied to all received packets to add a timestamp.
A separate callback is applied to all packets prior to transmission to calculate the elapsed time, in CPU
cycles.

If hardware timestamping is supported by the NIC, the sample application will also display the average
latency since the packet was timestamped in hardware, on top of the latency since the packet was received
and processed by the RX callback.

8.1 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the rxtx_callbacks sub-directory.

The callbacks feature requires that the CONFIG_RTE_ETHDEV_RXTX_CALLBACKS setting is on in
the config/common_ config file that applies to the target. This is generally on by default:

CONFIG_RTE_ETHDEV_RXTX_CALLBACKS=y

8.2 Running the Application

To run the example in a linux environment:

./build/rxtx_callbacks -l 1 -n 4 -- [-t]

Use -t to enable hardware timestamping. If not supported by the NIC, an error will be displayed.

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

8.3 Explanation

The rxtx_callbacks application is mainly a simple forwarding application based on the Basic For-
warding Sample Application. See that section of the documentation for more details of the forwarding
part of the application.

23

Sample Applications User Guides, Release 19.08.2

The sections below explain the additional RX/TX callback code.

8.3.1 The Main Function

The main() function performs the application initialization and calls the execution threads for each
lcore. This function is effectively identical to the main() function explained in Basic Forwarding
Sample Application.

The lcore_main() function is also identical.

The main difference is in the user defined port_init() function where the callbacks are added. This
is explained in the next section:

8.3.2 The Port Initialization Function

The main functional part of the port initialization is shown below with comments:

static inline int
port_init(uint16_t port, struct rte_mempool *mbuf_pool)
{

struct rte_eth_conf port_conf = port_conf_default;
const uint16_t rx_rings = 1, tx_rings = 1;
struct rte_ether_addr addr;
int retval;
uint16_t q;

/* Configure the Ethernet device. */
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)

return retval;

/* Allocate and set up 1 RX queue per Ethernet port. */
for (q = 0; q < rx_rings; q++) {

retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL, mbuf_pool);

if (retval < 0)
return retval;

}

/* Allocate and set up 1 TX queue per Ethernet port. */
for (q = 0; q < tx_rings; q++) {

retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL);

if (retval < 0)
return retval;

}

/* Start the Ethernet port. */
retval = rte_eth_dev_start(port);
if (retval < 0)

return retval;

/* Enable RX in promiscuous mode for the Ethernet device. */
rte_eth_promiscuous_enable(port);

/* Add the callbacks for RX and TX.*/
rte_eth_add_rx_callback(port, 0, add_timestamps, NULL);
rte_eth_add_tx_callback(port, 0, calc_latency, NULL);

8.3. Explanation 24

Sample Applications User Guides, Release 19.08.2

return 0;
}

The RX and TX callbacks are added to the ports/queues as function pointers:

rte_eth_add_rx_callback(port, 0, add_timestamps, NULL);
rte_eth_add_tx_callback(port, 0, calc_latency, NULL);

More than one callback can be added and additional information can be passed to callback function
pointers as a void*. In the examples above NULL is used.

The add_timestamps() and calc_latency() functions are explained below.

8.3.3 The add_timestamps() Callback

The add_timestamps() callback is added to the RX port and is applied to all packets received:

static uint16_t
add_timestamps(uint16_t port __rte_unused, uint16_t qidx __rte_unused,

struct rte_mbuf **pkts, uint16_t nb_pkts, void *_ __rte_unused)
{

unsigned i;
uint64_t now = rte_rdtsc();

for (i = 0; i < nb_pkts; i++)
pkts[i]->udata64 = now;

return nb_pkts;
}

The DPDK function rte_rdtsc() is used to add a cycle count timestamp to each packet (see the
cycles section of the DPDK API Documentation for details).

8.3.4 The calc_latency() Callback

The calc_latency() callback is added to the TX port and is applied to all packets prior to trans-
mission:

static uint16_t
calc_latency(uint16_t port __rte_unused, uint16_t qidx __rte_unused,

struct rte_mbuf **pkts, uint16_t nb_pkts, void *_ __rte_unused)
{

uint64_t cycles = 0;
uint64_t now = rte_rdtsc();
unsigned i;

for (i = 0; i < nb_pkts; i++)
cycles += now - pkts[i]->udata64;

latency_numbers.total_cycles += cycles;
latency_numbers.total_pkts += nb_pkts;

if (latency_numbers.total_pkts > (100 * 1000 * 1000ULL)) {
printf("Latency = %"PRIu64" cycles\n",

latency_numbers.total_cycles / latency_numbers.total_pkts);

latency_numbers.total_cycles = latency_numbers.total_pkts = 0;
}

return nb_pkts;
}

8.3. Explanation 25

Sample Applications User Guides, Release 19.08.2

The calc_latency() function accumulates the total number of packets and the total number of
cycles used. Once more than 100 million packets have been transmitted the average cycle count per
packet is printed out and the counters are reset.

8.3. Explanation 26

CHAPTER

NINE

FLOW CLASSIFY SAMPLE APPLICATION

The Flow Classify sample application is based on the simple skeleton example of a forwarding applica-
tion.

It is intended as a demonstration of the basic components of a DPDK forwarding application which uses
the Flow Classify library API’s.

Please refer to the ../prog_guide/flow_classify_lib for more information.

9.1 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the flow_classify sub-directory.

9.2 Running the Application

To run the example in a linux environment:

cd ~/dpdk/examples/flow_classify
./build/flow_classify -c 4 -n 4 -- --rule_ipv4="../ipv4_rules_file.txt"

Please refer to the DPDK Getting Started Guide, section ../linux_gsg/build_sample_apps for general
information on running applications and the Environment Abstraction Layer (EAL) options.

9.3 Sample ipv4_rules_file.txt

#file format:
#src_ip/masklen dst_ip/masklen src_port : mask dst_port : mask proto/mask priority
#
2.2.2.3/24 2.2.2.7/24 32 : 0xffff 33 : 0xffff 17/0xff 0
9.9.9.3/24 9.9.9.7/24 32 : 0xffff 33 : 0xffff 17/0xff 1
9.9.9.3/24 9.9.9.7/24 32 : 0xffff 33 : 0xffff 6/0xff 2
9.9.8.3/24 9.9.8.7/24 32 : 0xffff 33 : 0xffff 6/0xff 3
6.7.8.9/24 2.3.4.5/24 32 : 0x0000 33 : 0x0000 132/0xff 4

9.4 Explanation

The following sections provide an explanation of the main components of the code.

27

Sample Applications User Guides, Release 19.08.2

All DPDK library functions used in the sample code are prefixed with rte_ and are explained in detail
in the DPDK API Documentation.

9.4.1 ACL field definitions for the IPv4 5 tuple rule

The following field definitions are used when creating the ACL table during initialisation of the Flow
Classify application..

enum {
PROTO_FIELD_IPV4,
SRC_FIELD_IPV4,
DST_FIELD_IPV4,
SRCP_FIELD_IPV4,
DSTP_FIELD_IPV4,
NUM_FIELDS_IPV4

};

enum {
PROTO_INPUT_IPV4,
SRC_INPUT_IPV4,
DST_INPUT_IPV4,
SRCP_DESTP_INPUT_IPV4

};

static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
/* first input field - always one byte long. */
{

.type = RTE_ACL_FIELD_TYPE_BITMASK,

.size = sizeof(uint8_t),

.field_index = PROTO_FIELD_IPV4,

.input_index = PROTO_INPUT_IPV4,

.offset = sizeof(struct rte_ether_hdr) +
offsetof(struct rte_ipv4_hdr, next_proto_id),

},
/* next input field (IPv4 source address) - 4 consecutive bytes. */
{

/* rte_flow uses a bit mask for IPv4 addresses */
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof(uint32_t),
.field_index = SRC_FIELD_IPV4,
.input_index = SRC_INPUT_IPV4,
.offset = sizeof(struct rte_ether_hdr) +

offsetof(struct rte_ipv4_hdr, src_addr),
},
/* next input field (IPv4 destination address) - 4 consecutive bytes. */
{

/* rte_flow uses a bit mask for IPv4 addresses */
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof(uint32_t),
.field_index = DST_FIELD_IPV4,
.input_index = DST_INPUT_IPV4,
.offset = sizeof(struct rte_ether_hdr) +

offsetof(struct rte_ipv4_hdr, dst_addr),
},
/*
* Next 2 fields (src & dst ports) form 4 consecutive bytes.

* They share the same input index.

*/
{

/* rte_flow uses a bit mask for protocol ports */
.type = RTE_ACL_FIELD_TYPE_BITMASK,

9.4. Explanation 28

Sample Applications User Guides, Release 19.08.2

.size = sizeof(uint16_t),

.field_index = SRCP_FIELD_IPV4,

.input_index = SRCP_DESTP_INPUT_IPV4,

.offset = sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr) +
offsetof(struct rte_tcp_hdr, src_port),

},
{

/* rte_flow uses a bit mask for protocol ports */
.type = RTE_ACL_FIELD_TYPE_BITMASK,
.size = sizeof(uint16_t),
.field_index = DSTP_FIELD_IPV4,
.input_index = SRCP_DESTP_INPUT_IPV4,
.offset = sizeof(struct rte_ether_hdr) +

sizeof(struct rte_ipv4_hdr) +
offsetof(struct rte_tcp_hdr, dst_port),

},
};

9.4.2 The Main Function

The main() function performs the initialization and calls the execution threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv arguments
are provided to the rte_eal_init() function. The value returned is the number of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

It then parses the flow_classify application arguments

ret = parse_args(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Invalid flow_classify parameters\n");

The main() function also allocates a mempool to hold the mbufs (Message Buffers) used by the appli-
cation:

mbuf_pool = rte_mempool_create("MBUF_POOL",
NUM_MBUFS * nb_ports,
MBUF_SIZE,
MBUF_CACHE_SIZE,
sizeof(struct rte_pktmbuf_pool_private),
rte_pktmbuf_pool_init, NULL,
rte_pktmbuf_init, NULL,
rte_socket_id(),
0);

mbufs are the packet buffer structure used by DPDK. They are explained in detail in the “Mbuf Library”
section of the DPDK Programmer’s Guide.

The main() function also initializes all the ports using the user defined port_init() function which
is explained in the next section:

RTE_ETH_FOREACH_DEV(portid) {
if (port_init(portid, mbuf_pool) != 0) {

rte_exit(EXIT_FAILURE,
"Cannot init port %" PRIu8 "\n", portid);

}
}

9.4. Explanation 29

Sample Applications User Guides, Release 19.08.2

The main() function creates the flow classifier object and adds an ACL table to the
flow classifier.

struct flow_classifier {
struct rte_flow_classifier *cls;

};

struct flow_classifier_acl {
struct flow_classifier cls;

} __rte_cache_aligned;

/* Memory allocation */
size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
cls_app = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);
if (cls_app == NULL)

rte_exit(EXIT_FAILURE, "Cannot allocate classifier memory\n");

cls_params.name = "flow_classifier";
cls_params.socket_id = socket_id;

cls_app->cls = rte_flow_classifier_create(&cls_params);
if (cls_app->cls == NULL) {

rte_free(cls_app);
rte_exit(EXIT_FAILURE, "Cannot create classifier\n");

}

/* initialise ACL table params */
table_acl_params.name = "table_acl_ipv4_5tuple";
table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));

/* initialise table create params */
cls_table_params.ops = &rte_table_acl_ops,
cls_table_params.arg_create = &table_acl_params,
cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;

ret = rte_flow_classify_table_create(cls_app->cls, &cls_table_params);
if (ret) {

rte_flow_classifier_free(cls_app->cls);
rte_free(cls);
rte_exit(EXIT_FAILURE, "Failed to create classifier table\n");

}

It then reads the ipv4_rules_file.txt file and initialises the parameters for the
rte_flow_classify_table_entry_add API. This API adds a rule to the ACL table.

if (add_rules(parm_config.rule_ipv4_name)) {
rte_flow_classifier_free(cls_app->cls);
rte_free(cls_app);
rte_exit(EXIT_FAILURE, "Failed to add rules\n");

}

Once the initialization is complete, the application is ready to launch a function on an lcore. In this
example lcore_main() is called on a single lcore.

lcore_main(cls_app);

The lcore_main() function is explained below.

9.4. Explanation 30

Sample Applications User Guides, Release 19.08.2

9.4.3 The Port Initialization Function

The main functional part of the port initialization used in the Basic Forwarding application is shown
below:

static inline int
port_init(uint8_t port, struct rte_mempool *mbuf_pool)
{

struct rte_eth_conf port_conf = port_conf_default;
const uint16_t rx_rings = 1, tx_rings = 1;
struct rte_ether_addr addr;
int retval;
uint16_t q;

/* Configure the Ethernet device. */
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)

return retval;

/* Allocate and set up 1 RX queue per Ethernet port. */
for (q = 0; q < rx_rings; q++) {

retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL, mbuf_pool);

if (retval < 0)
return retval;

}

/* Allocate and set up 1 TX queue per Ethernet port. */
for (q = 0; q < tx_rings; q++) {

retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,
rte_eth_dev_socket_id(port), NULL);

if (retval < 0)
return retval;

}

/* Start the Ethernet port. */
retval = rte_eth_dev_start(port);
if (retval < 0)

return retval;

/* Display the port MAC address. */
rte_eth_macaddr_get(port, &addr);
printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8

" %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\n",
port,
addr.addr_bytes[0], addr.addr_bytes[1],
addr.addr_bytes[2], addr.addr_bytes[3],
addr.addr_bytes[4], addr.addr_bytes[5]);

/* Enable RX in promiscuous mode for the Ethernet device. */
rte_eth_promiscuous_enable(port);

return 0;
}

The Ethernet ports are configured with default settings using the rte_eth_dev_configure()
function and the port_conf_default struct.

static const struct rte_eth_conf port_conf_default = {
.rxmode = { .max_rx_pkt_len = RTE_ETHER_MAX_LEN }

};

9.4. Explanation 31

Sample Applications User Guides, Release 19.08.2

For this example the ports are set up with 1 RX and 1 TX queue using the
rte_eth_rx_queue_setup() and rte_eth_tx_queue_setup() functions.

The Ethernet port is then started:

retval = rte_eth_dev_start(port);

Finally the RX port is set in promiscuous mode:

rte_eth_promiscuous_enable(port);

9.4.4 The Add Rules function

The add_rules function reads the ipv4_rules_file.txt file and calls the
add_classify_rule function which calls the rte_flow_classify_table_entry_add
API.

static int
add_rules(const char *rule_path)
{

FILE *fh;
char buff[LINE_MAX];
unsigned int i = 0;
unsigned int total_num = 0;
struct rte_eth_ntuple_filter ntuple_filter;

fh = fopen(rule_path, "rb");
if (fh == NULL)

rte_exit(EXIT_FAILURE, "%s: Open %s failed\n", __func__,
rule_path);

fseek(fh, 0, SEEK_SET);

i = 0;
while (fgets(buff, LINE_MAX, fh) != NULL) {

i++;

if (is_bypass_line(buff))
continue;

if (total_num >= FLOW_CLASSIFY_MAX_RULE_NUM - 1) {
printf("\nINFO: classify rule capacity %d reached\n",

total_num);
break;

}

if (parse_ipv4_5tuple_rule(buff, &ntuple_filter) != 0)
rte_exit(EXIT_FAILURE,

"%s Line %u: parse rules error\n",
rule_path, i);

if (add_classify_rule(&ntuple_filter) != 0)
rte_exit(EXIT_FAILURE, "add rule error\n");

total_num++;
}

fclose(fh);
return 0;

}

9.4. Explanation 32

Sample Applications User Guides, Release 19.08.2

9.4.5 The Lcore Main function

As we saw above the main() function calls an application function on the available lcores. The
lcore_main function calls the rte_flow_classifier_query API. For the Basic Forwarding
application the lcore_main function looks like the following:

/* flow classify data */
static int num_classify_rules;
static struct rte_flow_classify_rule *rules[MAX_NUM_CLASSIFY];
static struct rte_flow_classify_ipv4_5tuple_stats ntuple_stats;
static struct rte_flow_classify_stats classify_stats = {

.stats = (void *)&ntuple_stats
};

static __attribute__((noreturn)) void
lcore_main(cls_app)
{

uint16_t port;

/*
* Check that the port is on the same NUMA node as the polling thread

* for best performance.

*/
RTE_ETH_FOREACH_DEV(port)

if (rte_eth_dev_socket_id(port) > 0 &&
rte_eth_dev_socket_id(port) != (int)rte_socket_id()) {
printf("\n\n");
printf("WARNING: port %u is on remote NUMA node\n",

port);
printf("to polling thread.\n");
printf("Performance will not be optimal.\n");

printf("\nCore %u forwarding packets. \n",
rte_lcore_id());

printf("[Ctrl+C to quit]\n
}

/* Run until the application is quit or killed. */
for (;;) {

/*
* Receive packets on a port and forward them on the paired

* port. The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.

*/
RTE_ETH_FOREACH_DEV(port) {

/* Get burst of RX packets, from first port of pair. */
struct rte_mbuf *bufs[BURST_SIZE];
const uint16_t nb_rx = rte_eth_rx_burst(port, 0,

bufs, BURST_SIZE);

if (unlikely(nb_rx == 0))
continue;

for (i = 0; i < MAX_NUM_CLASSIFY; i++) {
if (rules[i]) {

ret = rte_flow_classifier_query(
cls_app->cls,
bufs, nb_rx, rules[i],
&classify_stats);

if (ret)
printf(

"rule [%d] query failed ret [%d]\n\n",
i, ret);

9.4. Explanation 33

Sample Applications User Guides, Release 19.08.2

else {
printf(

"rule[%d] count=%"PRIu64"\n",
i, ntuple_stats.counter1);

printf("proto = %d\n",
ntuple_stats.ipv4_5tuple.proto);

}
}

}

/* Send burst of TX packets, to second port of pair. */
const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,

bufs, nb_rx);

/* Free any unsent packets. */
if (unlikely(nb_tx < nb_rx)) {

uint16_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)

rte_pktmbuf_free(bufs[buf]);
}

}
}

}

The main work of the application is done within the loop:

for (;;) {
RTE_ETH_FOREACH_DEV(port) {

/* Get burst of RX packets, from first port of pair. */
struct rte_mbuf *bufs[BURST_SIZE];
const uint16_t nb_rx = rte_eth_rx_burst(port, 0,

bufs, BURST_SIZE);

if (unlikely(nb_rx == 0))
continue;

/* Send burst of TX packets, to second port of pair. */
const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,

bufs, nb_rx);

/* Free any unsent packets. */
if (unlikely(nb_tx < nb_rx)) {

uint16_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)

rte_pktmbuf_free(bufs[buf]);
}

}
}

Packets are received in bursts on the RX ports and transmitted in bursts on the TX ports. The ports are
grouped in pairs with a simple mapping scheme using the an XOR on the port number:

0 -> 1
1 -> 0

2 -> 3
3 -> 2

etc.

The rte_eth_tx_burst() function frees the memory buffers of packets that are transmit-
ted. If packets fail to transmit, (nb_tx < nb_rx), then they must be freed explicitly using

9.4. Explanation 34

Sample Applications User Guides, Release 19.08.2

rte_pktmbuf_free().

The forwarding loop can be interrupted and the application closed using Ctrl-C.

9.4. Explanation 35

CHAPTER

TEN

BASIC RTE FLOW FILTERING SAMPLE APPLICATION

The Basic RTE flow filtering sample application is a simple example of a creating a RTE flow rule.

It is intended as a demonstration of the basic components RTE flow rules.

10.1 Compiling the Application

To compile the application export the path to the DPDK source tree and go to the example directory:

export RTE_SDK=/path/to/rte_sdk

cd ${RTE_SDK}/examples/flow_filtering

Set the target, for example:

export RTE_TARGET=x86_64-native-linux-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

Build the application as follows:

make

10.2 Running the Application

To run the example in a linux environment:

./build/flow -l 1 -n 1

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

10.3 Explanation

The example is built from 2 files, main.c which holds the example logic and flow_blocks.c that
holds the implementation for building the flow rule.

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte_ and are explained in detail
in the DPDK API Documentation.

36

Sample Applications User Guides, Release 19.08.2

10.3.1 The Main Function

The main() function located in main.c file performs the initialization and runs the main loop func-
tion.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv arguments
are provided to the rte_eal_init() function. The value returned is the number of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

The main() also allocates a mempool to hold the mbufs (Message Buffers) used by the application:

mbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", 4096, 128, 0,
RTE_MBUF_DEFAULT_BUF_SIZE,
rte_socket_id());

Mbufs are the packet buffer structure used by DPDK. They are explained in detail in the “Mbuf Library”
section of the DPDK Programmer’s Guide.

The main() function also initializes all the ports using the user defined init_port() function which
is explained in the next section:

init_port();

Once the initialization is complete, we set the flow rule using the following code:

/* create flow for send packet with */
flow = generate_ipv4_flow(port_id, selected_queue,

SRC_IP, EMPTY_MASK,
DEST_IP, FULL_MASK, &error);

if (!flow) {
printf("Flow can't be created %d message: %s\n",

error.type,
error.message ? error.message : "(no stated reason)");

rte_exit(EXIT_FAILURE, "error in creating flow");
}

In the last part the application is ready to launch the main_loop() function. Which is explained
below.

main_loop();

10.3.2 The Port Initialization Function

The main functional part of the port initialization used in the flow filtering application is shown below:

init_port(void)
{

int ret;
uint16_t i;
struct rte_eth_conf port_conf = {

.rxmode = {
.split_hdr_size = 0,
},

.txmode = {
.offloads =

DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |

10.3. Explanation 37

Sample Applications User Guides, Release 19.08.2

DEV_TX_OFFLOAD_TCP_TSO,
},

};
struct rte_eth_txconf txq_conf;
struct rte_eth_rxconf rxq_conf;
struct rte_eth_dev_info dev_info;

printf(":: initializing port: %d\n", port_id);
ret = rte_eth_dev_configure(port_id,

nr_queues, nr_queues, &port_conf);
if (ret < 0) {

rte_exit(EXIT_FAILURE,
":: cannot configure device: err=%d, port=%u\n",
ret, port_id);

}

rte_eth_dev_info_get(port_id, &dev_info);
rxq_conf = dev_info.default_rxconf;
rxq_conf.offloads = port_conf.rxmode.offloads;
/* only set Rx queues: something we care only so far */
for (i = 0; i < nr_queues; i++) {

ret = rte_eth_rx_queue_setup(port_id, i, 512,
rte_eth_dev_socket_id(port_id),
&rxq_conf,
mbuf_pool);

if (ret < 0) {
rte_exit(EXIT_FAILURE,

":: Rx queue setup failed: err=%d, port=%u\n",
ret, port_id);

}
}

txq_conf = dev_info.default_txconf;
txq_conf.offloads = port_conf.txmode.offloads;

for (i = 0; i < nr_queues; i++) {
ret = rte_eth_tx_queue_setup(port_id, i, 512,

rte_eth_dev_socket_id(port_id),
&txq_conf);

if (ret < 0) {
rte_exit(EXIT_FAILURE,

":: Tx queue setup failed: err=%d, port=%u\n",
ret, port_id);

}
}

rte_eth_promiscuous_enable(port_id);
ret = rte_eth_dev_start(port_id);
if (ret < 0) {

rte_exit(EXIT_FAILURE,
"rte_eth_dev_start:err=%d, port=%u\n",
ret, port_id);

}

assert_link_status();

printf(":: initializing port: %d done\n", port_id);
}

The Ethernet port is configured with default settings using the rte_eth_dev_configure() func-
tion and the port_conf_default struct:

10.3. Explanation 38

Sample Applications User Guides, Release 19.08.2

struct rte_eth_conf port_conf = {
.rxmode = {

.split_hdr_size = 0,
},

.txmode = {
.offloads =

DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_SCTP_CKSUM |
DEV_TX_OFFLOAD_TCP_TSO,

},
};

ret = rte_eth_dev_configure(port_id, nr_queues, nr_queues, &port_conf);
if (ret < 0) {

rte_exit(EXIT_FAILURE,
":: cannot configure device: err=%d, port=%u\n",
ret, port_id);

}
rte_eth_dev_info_get(port_id, &dev_info);
rxq_conf = dev_info.default_rxconf;
rxq_conf.offloads = port_conf.rxmode.offloads;

For this example we are configuring number of rx and tx queues that are connected to a single port.

for (i = 0; i < nr_queues; i++) {
ret = rte_eth_rx_queue_setup(port_id, i, 512,

rte_eth_dev_socket_id(port_id),
&rxq_conf,
mbuf_pool);

if (ret < 0) {
rte_exit(EXIT_FAILURE,

":: Rx queue setup failed: err=%d, port=%u\n",
ret, port_id);

}
}

for (i = 0; i < nr_queues; i++) {
ret = rte_eth_tx_queue_setup(port_id, i, 512,

rte_eth_dev_socket_id(port_id),
&txq_conf);

if (ret < 0) {
rte_exit(EXIT_FAILURE,

":: Tx queue setup failed: err=%d, port=%u\n",
ret, port_id);

}
}

In the next step we create and apply the flow rule. which is to send packets with destination ip equals
to 192.168.1.1 to queue number 1. The detail explanation of the generate_ipv4_flow() appears
later in this document:

flow = generate_ipv4_flow(port_id, selected_queue,
SRC_IP, EMPTY_MASK,
DEST_IP, FULL_MASK, &error);

We are setting the RX port to promiscuous mode:

rte_eth_promiscuous_enable(port_id);

The last step is to start the port.

10.3. Explanation 39

Sample Applications User Guides, Release 19.08.2

ret = rte_eth_dev_start(port_id);
if (ret < 0) {

rte_exit(EXIT_FAILURE, "rte_eth_dev_start:err%d, port=%u\n",
ret, port_id);

}

10.3.3 The main_loop function

As we saw above the main() function calls an application function to handle the main loop. For the
flow filtering application the main_loop function looks like the following:

static void
main_loop(void)
{

struct rte_mbuf *mbufs[32];
struct rte_ether_hdr *eth_hdr;
uint16_t nb_rx;
uint16_t i;
uint16_t j;

while (!force_quit) {
for (i = 0; i < nr_queues; i++) {

nb_rx = rte_eth_rx_burst(port_id,
i, mbufs, 32);

if (nb_rx) {
for (j = 0; j < nb_rx; j++) {

struct rte_mbuf *m = mbufs[j];

eth_hdr = rte_pktmbuf_mtod(m,
struct rte_ether_hdr *);

print_ether_addr("src=",
ð_hdr->s_addr);

print_ether_addr(" - dst=",
ð_hdr->d_addr);

printf(" - queue=0x%x",
(unsigned int)i);

printf("\n");
rte_pktmbuf_free(m);

}
}

}
}
/* closing and releasing resources */
rte_flow_flush(port_id, &error);
rte_eth_dev_stop(port_id);
rte_eth_dev_close(port_id);

}

The main work of the application is reading the packets from all queues and printing for each packet the
destination queue:

while (!force_quit) {
for (i = 0; i < nr_queues; i++) {

nb_rx = rte_eth_rx_burst(port_id, i, mbufs, 32);
if (nb_rx) {

for (j = 0; j < nb_rx; j++) {
struct rte_mbuf *m = mbufs[j];
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
print_ether_addr("src=", ð_hdr->s_addr);
print_ether_addr(" - dst=", ð_hdr->d_addr);
printf(" - queue=0x%x", (unsigned int)i);
printf("\n");

10.3. Explanation 40

Sample Applications User Guides, Release 19.08.2

rte_pktmbuf_free(m);
}

}
}

}

The forwarding loop can be interrupted and the application closed using Ctrl-C. Which results in
closing the port and the device using rte_eth_dev_stop and rte_eth_dev_close

10.3.4 The generate_ipv4_flow function

The generate_ipv4_flow function is responsible for creating the flow rule. This function is located in the
flow_blocks.c file.

static struct rte_flow *
generate_ipv4_flow(uint8_t port_id, uint16_t rx_q,

uint32_t src_ip, uint32_t src_mask,
uint32_t dest_ip, uint32_t dest_mask,
struct rte_flow_error *error)

{
struct rte_flow_attr attr;
struct rte_flow_item pattern[MAX_PATTERN_NUM];
struct rte_flow_action action[MAX_ACTION_NUM];
struct rte_flow *flow = NULL;
struct rte_flow_action_queue queue = { .index = rx_q };
struct rte_flow_item_ipv4 ip_spec;
struct rte_flow_item_ipv4 ip_mask;

memset(pattern, 0, sizeof(pattern));
memset(action, 0, sizeof(action));

/*
* set the rule attribute.

* in this case only ingress packets will be checked.

*/
memset(&attr, 0, sizeof(struct rte_flow_attr));
attr.ingress = 1;

/*
* create the action sequence.

* one action only, move packet to queue

*/
action[0].type = RTE_FLOW_ACTION_TYPE_QUEUE;
action[0].conf = &queue;
action[1].type = RTE_FLOW_ACTION_TYPE_END;

/*
* set the first level of the pattern (ETH).

* since in this example we just want to get the

* ipv4 we set this level to allow all.

*/
pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;

/*
* setting the second level of the pattern (IP).

* in this example this is the level we care about

* so we set it according to the parameters.

*/
memset(&ip_spec, 0, sizeof(struct rte_flow_item_ipv4));
memset(&ip_mask, 0, sizeof(struct rte_flow_item_ipv4));
ip_spec.hdr.dst_addr = htonl(dest_ip);
ip_mask.hdr.dst_addr = dest_mask;

10.3. Explanation 41

Sample Applications User Guides, Release 19.08.2

ip_spec.hdr.src_addr = htonl(src_ip);
ip_mask.hdr.src_addr = src_mask;
pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV4;
pattern[1].spec = &ip_spec;
pattern[1].mask = &ip_mask;

/* the final level must be always type end */
pattern[2].type = RTE_FLOW_ITEM_TYPE_END;

int res = rte_flow_validate(port_id, &attr, pattern, action, error);
if(!res)

flow = rte_flow_create(port_id, &attr, pattern, action, error);

return flow;
}

The first part of the function is declaring the structures that will be used.

struct rte_flow_attr attr;
struct rte_flow_item pattern[MAX_PATTERN_NUM];
struct rte_flow_action action[MAX_ACTION_NUM];
struct rte_flow *flow;
struct rte_flow_error error;
struct rte_flow_action_queue queue = { .index = rx_q };
struct rte_flow_item_ipv4 ip_spec;
struct rte_flow_item_ipv4 ip_mask;

The following part create the flow attributes, in our case ingress.

memset(&attr, 0, sizeof(struct rte_flow_attr));
attr.ingress = 1;

The third part defines the action to be taken when a packet matches the rule. In this case send the packet
to queue.

action[0].type = RTE_FLOW_ACTION_TYPE_QUEUE;
action[0].conf = &queue;
action[1].type = RTE_FLOW_ACTION_TYPE_END;

The fourth part is responsible for creating the pattern and is built from number of steps. In each step we
build one level of the pattern starting with the lowest one.

Setting the first level of the pattern ETH:

pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;

Setting the second level of the pattern IP:

memset(&ip_spec, 0, sizeof(struct rte_flow_item_ipv4));
memset(&ip_mask, 0, sizeof(struct rte_flow_item_ipv4));
ip_spec.hdr.dst_addr = htonl(dest_ip);
ip_mask.hdr.dst_addr = dest_mask;
ip_spec.hdr.src_addr = htonl(src_ip);
ip_mask.hdr.src_addr = src_mask;
pattern[1].type = RTE_FLOW_ITEM_TYPE_IPV4;
pattern[1].spec = &ip_spec;
pattern[1].mask = &ip_mask;

Closing the pattern part.

pattern[2].type = RTE_FLOW_ITEM_TYPE_END;

The last part of the function is to validate the rule and create it.

int res = rte_flow_validate(port_id, &attr, pattern, action, &error);
if (!res)

flow = rte_flow_create(port_id, &attr, pattern, action, &error);

10.3. Explanation 42

CHAPTER

ELEVEN

IP FRAGMENTATION SAMPLE APPLICATION

The IPv4 Fragmentation application is a simple example of packet processing using the Data Plane De-
velopment Kit (DPDK). The application does L3 forwarding with IPv4 and IPv6 packet fragmentation.

11.1 Overview

The application demonstrates the use of zero-copy buffers for packet fragmentation. The initialization
and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and
Virtualized Environments). This guide highlights the differences between the two applications.

There are three key differences from the L2 Forwarding sample application:

• The first difference is that the IP Fragmentation sample application makes use of indirect buffers.

• The second difference is that the forwarding decision is taken based on information read from the
input packet’s IP header.

• The third difference is that the application differentiates between IP and non-IP traffic by means
of offload flags.

The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to store/lookup an outgoing
port number, associated with that IP address. Any unmatched packets are forwarded to the originating
port.

By default, input frame sizes up to 9.5 KB are supported. Before forwarding, the input IP packet is
fragmented to fit into the “standard” Ethernet* v2 MTU (1500 bytes).

11.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ip_fragmentation sub-directory.

11.3 Running the Application

The LPM object is created and loaded with the pre-configured entries read from global
l3fwd_ipv4_route_array and l3fwd_ipv6_route_array tables. For each input packet, the packet forward-
ing decision (that is, the identification of the output interface for the packet) is taken as a result of LPM
lookup. If the IP packet size is greater than default output MTU, then the input packet is fragmented and
several fragments are sent via the output interface.

43

Sample Applications User Guides, Release 19.08.2

Application usage:

./build/ip_fragmentation [EAL options] -- -p PORTMASK [-q NQ]

where:

• -p PORTMASK is a hexadecimal bitmask of ports to configure

• -q NQ is the number of queue (=ports) per lcore (the default is 1)

To run the example in linux environment with 2 lcores (2,4) over 2 ports(0,2) with 1 RX queue per lcore:

./build/ip_fragmentation -l 2,4 -n 3 -- -p 5
EAL: coremask set to 14
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 1
EAL: Detected lcore 2 on socket 0
EAL: Detected lcore 3 on socket 1
EAL: Detected lcore 4 on socket 0
...

Initializing port 0 on lcore 2... Address:00:1B:21:76:FA:2C, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 1
Initializing port 2 on lcore 4... Address:00:1B:21:5C:FF:54, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 3IP_FRAG: Socket 0: adding route 100.10.0.0/16 (port 0)
IP_FRAG: Socket 0: adding route 100.20.0.0/16 (port 1)
...
IP_FRAG: Socket 0: adding route 0101:0101:0101:0101:0101:0101:0101:0101/48 (port 0)
IP_FRAG: Socket 0: adding route 0201:0101:0101:0101:0101:0101:0101:0101/48 (port 1)
...
IP_FRAG: entering main loop on lcore 4
IP_FRAG: -- lcoreid=4 portid=2
IP_FRAG: entering main loop on lcore 2
IP_FRAG: -- lcoreid=2 portid=0

To run the example in linux environment with 1 lcore (4) over 2 ports(0,2) with 2 RX queues per lcore:

./build/ip_fragmentation -l 4 -n 3 -- -p 5 -q 2

To test the application, flows should be set up in the flow generator that match the values in the
l3fwd_ipv4_route_array and/or l3fwd_ipv6_route_array table.

The default l3fwd_ipv4_route_array table is:

struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
{RTE_IPV4(100, 10, 0, 0), 16, 0},
{RTE_IPV4(100, 20, 0, 0), 16, 1},
{RTE_IPV4(100, 30, 0, 0), 16, 2},
{RTE_IPV4(100, 40, 0, 0), 16, 3},
{RTE_IPV4(100, 50, 0, 0), 16, 4},
{RTE_IPV4(100, 60, 0, 0), 16, 5},
{RTE_IPV4(100, 70, 0, 0), 16, 6},
{RTE_IPV4(100, 80, 0, 0), 16, 7},

};

The default l3fwd_ipv6_route_array table is:

struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
{{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},
{{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},
{{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},
{{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},
{{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},
{{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},

11.3. Running the Application 44

Sample Applications User Guides, Release 19.08.2

{{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
{{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},

};

For example, for the input IPv4 packet with destination address: 100.10.1.1 and packet length 9198
bytes, seven IPv4 packets will be sent out from port #0 to the destination address 100.10.1.1: six of
those packets will have length 1500 bytes and one packet will have length 318 bytes. IP Fragmentation
sample application provides basic NUMA support in that all the memory structures are allocated on all
sockets that have active lcores on them.

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

11.3. Running the Application 45

CHAPTER

TWELVE

IPV4 MULTICAST SAMPLE APPLICATION

The IPv4 Multicast application is a simple example of packet processing using the Data Plane Develop-
ment Kit (DPDK). The application performs L3 multicasting.

12.1 Overview

The application demonstrates the use of zero-copy buffers for packet forwarding. The initialization
and run-time paths are very similar to those of the L2 Forwarding Sample Application (in Real and
Virtualized Environments). This guide highlights the differences between the two applications. There
are two key differences from the L2 Forwarding sample application:

• The IPv4 Multicast sample application makes use of indirect buffers.

• The forwarding decision is taken based on information read from the input packet’s IPv4 header.

The lookup method is the Four-byte Key (FBK) hash-based method. The lookup table is composed of
pairs of destination IPv4 address (the FBK) and a port mask associated with that IPv4 address.

Note: The max port mask supported in the given hash table is 0xf, so only first four ports can be
supported. If using non-consecutive ports, use the destination IPv4 address accordingly.

For convenience and simplicity, this sample application does not take IANA-assigned multicast ad-
dresses into account, but instead equates the last four bytes of the multicast group (that is, the last four
bytes of the destination IP address) with the mask of ports to multicast packets to. Also, the application
does not consider the Ethernet addresses; it looks only at the IPv4 destination address for any given
packet.

12.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ipv4_multicast sub-directory.

12.3 Running the Application

The application has a number of command line options:

./build/ipv4_multicast [EAL options] -- -p PORTMASK [-q NQ]

46

Sample Applications User Guides, Release 19.08.2

where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -q NQ: determines the number of queues per lcore

Note: Unlike the basic L2/L3 Forwarding sample applications, NUMA support is not provided in the
IPv4 Multicast sample application.

Typically, to run the IPv4 Multicast sample application, issue the following command (as root):

./build/ipv4_multicast -l 0-3 -n 3 -- -p 0x3 -q 1

In this command:

• The -l option enables cores 0, 1, 2 and 3

• The -n option specifies 3 memory channels

• The -p option enables ports 0 and 1

• The -q option assigns 1 queue to each lcore

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

12.4 Explanation

The following sections provide some explanation of the code. As mentioned in the overview section,
the initialization and run-time paths are very similar to those of the L2 Forwarding Sample Application
(in Real and Virtualized Environments). The following sections describe aspects that are specific to the
IPv4 Multicast sample application.

12.4.1 Memory Pool Initialization

The IPv4 Multicast sample application uses three memory pools. Two of the pools are for indirect buffers
used for packet duplication purposes. Memory pools for indirect buffers are initialized differently from
the memory pool for direct buffers:

packet_pool = rte_pktmbuf_pool_create("packet_pool", NB_PKT_MBUF, 32,
0, PKT_MBUF_DATA_SIZE, rte_socket_id());

header_pool = rte_pktmbuf_pool_create("header_pool", NB_HDR_MBUF, 32,
0, HDR_MBUF_DATA_SIZE, rte_socket_id());

clone_pool = rte_pktmbuf_pool_create("clone_pool", NB_CLONE_MBUF, 32,
0, 0, rte_socket_id());

The reason for this is because indirect buffers are not supposed to hold any packet data and therefore
can be initialized with lower amount of reserved memory for each buffer.

12.4.2 Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array:

12.4. Explanation 47

Sample Applications User Guides, Release 19.08.2

static int

init_mcast_hash(void)
{

uint32_t i;
mcast_hash_params.socket_id = rte_socket_id();

mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
if (mcast_hash == NULL){

return -1;
}

for (i = 0; i < N_MCAST_GROUPS; i ++){
if (rte_fbk_hash_add_key(mcast_hash, mcast_group_table[i].ip, mcast_group_table[i].port_mask) < 0) {

return -1;
}

}
return 0;

}

12.4.3 Forwarding

All forwarding is done inside the mcast_forward() function. Firstly, the Ethernet* header is removed
from the packet and the IPv4 address is extracted from the IPv4 header:

/* Remove the Ethernet header from the input packet */

iphdr = (struct rte_ipv4_hdr *)rte_pktmbuf_adj(m, sizeof(struct rte_ether_hdr));
RTE_ASSERT(iphdr != NULL);
dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);

Then, the packet is checked to see if it has a multicast destination address and if the routing table has
any ports assigned to the destination address:

if (!RTE_IS_IPV4_MCAST(dest_addr) ||
(hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||
(port_mask = hash & enabled_port_mask) == 0) {

rte_pktmbuf_free(m);
return;

}

Then, the number of ports in the destination portmask is calculated with the help of the bitcnt() function:

/* Get number of bits set. */

static inline uint32_t bitcnt(uint32_t v)
{

uint32_t n;

for (n = 0; v != 0; v &= v - 1, n++)
;

return n;
}

This is done to determine which forwarding algorithm to use. This is explained in more detail in the
next section.

Thereafter, a destination Ethernet address is constructed:

/* construct destination Ethernet address */

dst_eth_addr = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);

12.4. Explanation 48

Sample Applications User Guides, Release 19.08.2

Since Ethernet addresses are also part of the multicast process, each outgoing packet carries the same
destination Ethernet address. The destination Ethernet address is constructed from the lower 23 bits of
the multicast group OR-ed with the Ethernet address 01:00:5e:00:00:00, as per RFC 1112:

#define ETHER_ADDR_FOR_IPV4_MCAST(x) \
(rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)

Then, packets are dispatched to the destination ports according to the portmask associated with a multi-
cast group:

for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {
/* Prepare output packet and send it out. */

if ((port_mask & 1) != 0) {
if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))

mcast_send_pkt(mc, &dst_eth_addr.as_addr, qconf, port);
else if (use_clone == 0)

rte_pktmbuf_free(m);
}

}

The actual packet transmission is done in the mcast_send_pkt() function:

static inline void mcast_send_pkt(struct rte_mbuf *pkt, struct rte_ether_addr *dest_addr, struct lcore_queue_conf *qconf, uint16_t port)
{

struct rte_ether_hdr *ethdr;
uint16_t len;

/* Construct Ethernet header. */

ethdr = (struct rte_ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t) sizeof(*ethdr));

RTE_ASSERT(ethdr != NULL);

rte_ether_addr_copy(dest_addr, ðdr->d_addr);
rte_ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr);
ethdr->ether_type = rte_be_to_cpu_16(RTE_ETHER_TYPE_IPV4);

/* Put new packet into the output queue */

len = qconf->tx_mbufs[port].len;
qconf->tx_mbufs[port].m_table[len] = pkt;
qconf->tx_mbufs[port].len = ++len;

/* Transmit packets */

if (unlikely(MAX_PKT_BURST == len))
send_burst(qconf, port);

}

12.4.4 Buffer Cloning

This is the most important part of the application since it demonstrates the use of zero- copy buffer
cloning. There are two approaches for creating the outgoing packet and although both are based on the
data zero-copy idea, there are some differences in the detail.

The first approach creates a clone of the input packet, for example, walk though all segments of the input
packet and for each of segment, create a new buffer and attach that new buffer to the segment (refer to
rte_pktmbuf_clone() in the rte_mbuf library for more details). A new buffer is then allocated for the
packet header and is prepended to the cloned buffer.

12.4. Explanation 49

Sample Applications User Guides, Release 19.08.2

The second approach does not make a clone, it just increments the reference counter for all input packet
segment, allocates a new buffer for the packet header and prepends it to the input packet.

Basically, the first approach reuses only the input packet’s data, but creates its own copy of packet’s
metadata. The second approach reuses both input packet’s data and metadata.

The advantage of first approach is that each outgoing packet has its own copy of the metadata, so we can
safely modify the data pointer of the input packet. That allows us to skip creation if the output packet
is for the last destination port and instead modify input packet’s header in place. For example, for N
destination ports, we need to invoke mcast_out_pkt() (N-1) times.

The advantage of the second approach is that there is less work to be done for each outgoing packet,
that is, the “clone” operation is skipped completely. However, there is a price to pay. The input packet’s
metadata must remain intact, so for N destination ports, we need to invoke mcast_out_pkt() (N) times.

Therefore, for a small number of outgoing ports (and segments in the input packet), first approach is
faster. As the number of outgoing ports (and/or input segments) grows, the second approach becomes
more preferable.

Depending on the number of segments or the number of ports in the outgoing portmask, either the first
(with cloning) or the second (without cloning) approach is taken:

use_clone = (port_num <= MCAST_CLONE_PORTS && m->pkt.nb_segs <= MCAST_CLONE_SEGS);

It is the mcast_out_pkt() function that performs the packet duplication (either with or without actually
cloning the buffers):

static inline struct rte_mbuf *mcast_out_pkt(struct rte_mbuf *pkt, int use_clone)
{

struct rte_mbuf *hdr;

/* Create new mbuf for the header. */

if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))
return NULL;

/* If requested, then make a new clone packet. */

if (use_clone != 0 && unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {
rte_pktmbuf_free(hdr);
return NULL;

}

/* prepend new header */

hdr->pkt.next = pkt;

/* update header's fields */

hdr->pkt.pkt_len = (uint16_t)(hdr->pkt.data_len + pkt->pkt.pkt_len);
hdr->pkt.nb_segs = pkt->pkt.nb_segs + 1;

/* copy metadata from source packet */

hdr->pkt.in_port = pkt->pkt.in_port;
hdr->pkt.vlan_macip = pkt->pkt.vlan_macip;
hdr->pkt.hash = pkt->pkt.hash;
rte_mbuf_sanity_check(hdr, RTE_MBUF_PKT, 1);

return hdr;
}

12.4. Explanation 50

CHAPTER

THIRTEEN

IP REASSEMBLY SAMPLE APPLICATION

The L3 Forwarding application is a simple example of packet processing using the DPDK. The applica-
tion performs L3 forwarding with reassembly for fragmented IPv4 and IPv6 packets.

13.1 Overview

The application demonstrates the use of the DPDK libraries to implement packet forwarding with re-
assembly for IPv4 and IPv6 fragmented packets. The initialization and run- time paths are very similar
to those of the L2 Forwarding Sample Application (in Real and Virtualized Environments). The main
difference from the L2 Forwarding sample application is that it reassembles fragmented IPv4 and IPv6
packets before forwarding. The maximum allowed size of reassembled packet is 9.5 KB.

There are two key differences from the L2 Forwarding sample application:

• The first difference is that the forwarding decision is taken based on information read from the
input packet’s IP header.

• The second difference is that the application differentiates between IP and non-IP traffic by means
of offload flags.

The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to store/lookup an outgoing
port number, associated with that IPv4 address. Any unmatched packets are forwarded to the originating
port.

13.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ip_reassembly sub-directory.

13.3 Running the Application

The application has a number of command line options:

./build/ip_reassembly [EAL options] -- -p PORTMASK [-q NQ] [--maxflows=FLOWS>] [--flowttl=TTL[(s|ms)]]

where:

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -q NQ: Number of RX queues per lcore

51

Sample Applications User Guides, Release 19.08.2

• –maxflows=FLOWS: determines maximum number of active fragmented flows (1-65535). De-
fault value: 4096.

• –flowttl=TTL[(s|ms)]: determines maximum Time To Live for fragmented packet. If all fragments
of the packet wouldn’t appear within given time-out, then they are considered as invalid and will
be dropped. Valid range is 1ms - 3600s. Default value: 1s.

To run the example in linux environment with 2 lcores (2,4) over 2 ports(0,2) with 1 RX queue per lcore:

./build/ip_reassembly -l 2,4 -n 3 -- -p 5
EAL: coremask set to 14
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 1
EAL: Detected lcore 2 on socket 0
EAL: Detected lcore 3 on socket 1
EAL: Detected lcore 4 on socket 0
...

Initializing port 0 on lcore 2... Address:00:1B:21:76:FA:2C, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 1
Initializing port 2 on lcore 4... Address:00:1B:21:5C:FF:54, rxq=0 txq=2,0 txq=4,1
done: Link Up - speed 10000 Mbps - full-duplex
Skipping disabled port 3IP_FRAG: Socket 0: adding route 100.10.0.0/16 (port 0)
IP_RSMBL: Socket 0: adding route 100.20.0.0/16 (port 1)
...

IP_RSMBL: Socket 0: adding route 0101:0101:0101:0101:0101:0101:0101:0101/48 (port 0)
IP_RSMBL: Socket 0: adding route 0201:0101:0101:0101:0101:0101:0101:0101/48 (port 1)
...

IP_RSMBL: entering main loop on lcore 4
IP_RSMBL: -- lcoreid=4 portid=2
IP_RSMBL: entering main loop on lcore 2
IP_RSMBL: -- lcoreid=2 portid=0

To run the example in linux environment with 1 lcore (4) over 2 ports(0,2) with 2 RX queues per lcore:

./build/ip_reassembly -l 4 -n 3 -- -p 5 -q 2

To test the application, flows should be set up in the flow generator that match the values in the
l3fwd_ipv4_route_array and/or l3fwd_ipv6_route_array table.

Please note that in order to test this application, the traffic generator should be generating valid frag-
mented IP packets. For IPv6, the only supported case is when no other extension headers other than
fragment extension header are present in the packet.

The default l3fwd_ipv4_route_array table is:

struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {
{RTE_IPV4(100, 10, 0, 0), 16, 0},
{RTE_IPV4(100, 20, 0, 0), 16, 1},
{RTE_IPV4(100, 30, 0, 0), 16, 2},
{RTE_IPV4(100, 40, 0, 0), 16, 3},
{RTE_IPV4(100, 50, 0, 0), 16, 4},
{RTE_IPV4(100, 60, 0, 0), 16, 5},
{RTE_IPV4(100, 70, 0, 0), 16, 6},
{RTE_IPV4(100, 80, 0, 0), 16, 7},

};

The default l3fwd_ipv6_route_array table is:

struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {
{{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},

13.3. Running the Application 52

Sample Applications User Guides, Release 19.08.2

{{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},
{{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},
{{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},
{{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},
{{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},
{{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},
{{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},

};

For example, for the fragmented input IPv4 packet with destination address: 100.10.1.1, a reassembled
IPv4 packet be sent out from port #0 to the destination address 100.10.1.1 once all the fragments are
collected.

13.4 Explanation

The following sections provide some explanation of the sample application code. As mentioned in the
overview section, the initialization and run-time paths are very similar to those of the L2 Forwarding
Sample Application (in Real and Virtualized Environments). The following sections describe aspects
that are specific to the IP reassemble sample application.

13.4.1 IPv4 Fragment Table Initialization

This application uses the rte_ip_frag library. Please refer to Programmer’s Guide for more detailed
explanation of how to use this library. Fragment table maintains information about already received
fragments of the packet. Each IP packet is uniquely identified by triple <Source IP address>, <Des-
tination IP address>, <ID>. To avoid lock contention, each RX queue has its own Fragment Table,
e.g. the application can’t handle the situation when different fragments of the same packet arrive
through different RX queues. Each table entry can hold information about packet consisting of up
to RTE_LIBRTE_IP_FRAG_MAX_FRAGS fragments.

frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * max_flow_ttl;

if ((qconf->frag_tbl[queue] = rte_ip_frag_tbl_create(max_flow_num, IPV4_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles, socket)) == NULL)
{

RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on " "lcore: %u for queue: %u failed\n", max_flow_num, lcore, queue);
return -1;

}

13.4.2 Mempools Initialization

The reassembly application demands a lot of mbuf’s to be allocated. At any given time up to
(2 * max_flow_num * RTE_LIBRTE_IP_FRAG_MAX_FRAGS * <maximum number of mbufs per
packet>) can be stored inside Fragment Table waiting for remaining fragments. To keep mempool size
under reasonable limits and to avoid situation when one RX queue can starve other queues, each RX
queue uses its own mempool.

nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * RTE_LIBRTE_IP_FRAG_MAX_FRAGS;
nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE;
nb_mbuf *= 2; /* ipv4 and ipv6 */
nb_mbuf += RTE_TEST_RX_DESC_DEFAULT + RTE_TEST_TX_DESC_DEFAULT;
nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF);

snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue);

13.4. Explanation 53

Sample Applications User Guides, Release 19.08.2

if ((rxq->pool = rte_mempool_create(buf, nb_mbuf, MBUF_SIZE, 0, sizeof(struct rte_pktmbuf_pool_private), rte_pktmbuf_pool_init, NULL,
rte_pktmbuf_init, NULL, socket, MEMPOOL_F_SP_PUT | MEMPOOL_F_SC_GET)) == NULL) {

RTE_LOG(ERR, IP_RSMBL, "mempool_create(%s) failed", buf);
return -1;

}

13.4.3 Packet Reassembly and Forwarding

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward() function.
If the packet is an IPv4 or IPv6 fragment, then it calls rte_ipv4_reassemble_packet() for IPv4 pack-
ets, or rte_ipv6_reassemble_packet() for IPv6 packets. These functions either return a pointer to valid
mbuf that contains reassembled packet, or NULL (if the packet can’t be reassembled for some reason).
Then l3fwd_simple_forward() continues with the code for the packet forwarding decision (that is, the
identification of the output interface for the packet) and actual transmit of the packet.

The rte_ipv4_reassemble_packet() or rte_ipv6_reassemble_packet() are responsible for:

1. Searching the Fragment Table for entry with packet’s <IP Source Address, IP Destination Address,
Packet ID>

2. If the entry is found, then check if that entry already timed-out. If yes, then free all previously
received fragments, and remove information about them from the entry.

3. If no entry with such key is found, then try to create a new one by one of two ways:

(a) Use as empty entry

(b) Delete a timed-out entry, free mbufs associated with it mbufs and store a new entry with
specified key in it.

4. Update the entry with new fragment information and check if a packet can be reassembled (the
packet’s entry contains all fragments).

(a) If yes, then, reassemble the packet, mark table’s entry as empty and return the reassembled
mbuf to the caller.

(b) If no, then just return a NULL to the caller.

If at any stage of packet processing a reassembly function encounters an error (can’t insert new entry
into the Fragment table, or invalid/timed-out fragment), then it will free all associated with the packet
fragments, mark the table entry as invalid and return NULL to the caller.

13.4.4 Debug logging and Statistics Collection

The RTE_LIBRTE_IP_FRAG_TBL_STAT controls statistics collection for the IP Fragment Table. This
macro is disabled by default. To make ip_reassembly print the statistics to the standard output, the
user must send either an USR1, INT or TERM signal to the process. For all of these signals, the
ip_reassembly process prints Fragment table statistics for each RX queue, plus the INT and TERM will
cause process termination as usual.

13.4. Explanation 54

CHAPTER

FOURTEEN

KERNEL NIC INTERFACE SAMPLE APPLICATION

The Kernel NIC Interface (KNI) is a DPDK control plane solution that allows userspace applications to
exchange packets with the kernel networking stack. To accomplish this, DPDK userspace applications
use an IOCTL call to request the creation of a KNI virtual device in the Linux* kernel. The IOCTL
call provides interface information and the DPDK’s physical address space, which is re-mapped into the
kernel address space by the KNI kernel loadable module that saves the information to a virtual device
context. The DPDK creates FIFO queues for packet ingress and egress to the kernel module for each
device allocated.

The KNI kernel loadable module is a standard net driver, which upon receiving the IOCTL call access
the DPDK’s FIFO queue to receive/transmit packets from/to the DPDK userspace application. The FIFO
queues contain pointers to data packets in the DPDK. This:

• Provides a faster mechanism to interface with the kernel net stack and eliminates system calls

• Facilitates the DPDK using standard Linux* userspace net tools (tshark, rsync, and so on)

• Eliminate the copy_to_user and copy_from_user operations on packets.

The Kernel NIC Interface sample application is a simple example that demonstrates the use of the DPDK
to create a path for packets to go through the Linux* kernel. This is done by creating one or more kernel
net devices for each of the DPDK ports. The application allows the use of standard Linux tools (ethtool,
iproute, tshark) with the DPDK ports and also the exchange of packets between the DPDK application
and the Linux* kernel.

The Kernel NIC Interface sample application requires that the KNI kernel module rte_kni be loaded
into the kernel. See ../prog_guide/kernel_nic_interface for more information on loading the rte_kni
kernel module.

14.1 Overview

The Kernel NIC Interface sample application kni allocates one or more KNI interfaces for each physical
NIC port. For each physical NIC port, kni uses two DPDK threads in user space; one thread reads
from the port and writes to the corresponding KNI interfaces and the other thread reads from the KNI
interfaces and writes the data unmodified to the physical NIC port.

It is recommended to configure one KNI interface for each physical NIC port. The application can be
configured with more than one KNI interface for each physical NIC port for performance testing or it
can work together with VMDq support in future.

The packet flow through the Kernel NIC Interface application is as shown in the following figure.

If link monitoring is enabled with the -m command line flag, one additional pthread is launched which
will check the link status of each physical NIC port and will update the carrier status of the corresponding

55

Sample Applications User Guides, Release 19.08.2

Fig. 14.1: Kernel NIC Application Packet Flow

KNI interface(s) to match the physical NIC port’s state. This means that the KNI interface(s) will be
disabled automatically when the Ethernet link goes down and enabled when the Ethernet link goes up.

If link monitoring is enabled, the rte_kni kernel module should be loaded such that the default carrier
state is set to off. This ensures that the KNI interface is only enabled after the Ethernet link of the
corresponding NIC port has reached the linkup state.

If link monitoring is not enabled, the rte_kni kernel module should be loaded with the default carrier
state set to on. This sets the carrier state of the KNI interfaces to on when the KNI interfaces are
enabled without regard to the actual link state of the corresponding NIC port. This is useful for testing
in loopback mode where the NIC port may not be physically connected to anything.

14.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the examples/kni sub-directory.

Note: This application is intended as a linux only.

14.3 Running the kni Example Application

The kni example application requires a number of command line options:

kni [EAL options] -- -p PORTMASK --config="(port,lcore_rx,lcore_tx[,lcore_kthread,...])[,(port,lcore_rx,lcore_tx[,lcore_kthread,...])]" [-P] [-m]

Where:

14.2. Compiling the Application 56

Sample Applications User Guides, Release 19.08.2

• -p PORTMASK:

Hexadecimal bitmask of ports to configure.

• --config="(port,lcore_rx,lcore_tx[,lcore_kthread,...])[,(port,lcore_rx,lcore_tx[,lcore_kthread,...])]":

Determines which lcores the Rx and Tx DPDK tasks, and (optionally) the KNI kernel thread(s)
are bound to for each physical port.

• -P:

Optional flag to set all ports to promiscuous mode so that packets are accepted regardless of the
packet’s Ethernet MAC destination address. Without this option, only packets with the Ethernet
MAC destination address set to the Ethernet address of the port are accepted.

• -m:

Optional flag to enable monitoring and updating of the Ethernet carrier state. With this option
set, a thread will be started which will periodically check the Ethernet link status of the physical
Ethernet ports and set the carrier state of the corresponding KNI network interface to match it.
This means that the KNI interface will be disabled automatically when the Ethernet link goes
down and enabled when the Ethernet link goes up.

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

The -c coremask or -l corelist parameter of the EAL options must include the lcores spec-
ified by lcore_rx and lcore_tx for each port, but does not need to include lcores specified by
lcore_kthread as those cores are used to pin the kernel threads in the rte_kni kernel module.

The --config parameter must include a set of (port,lcore_rx,lcore_tx,[lcore_kthread,...])
values for each physical port specified in the -p PORTMASK parameter.

The optional lcore_kthread lcore ID parameter in --config can be specified zero, one or more
times for each physical port.

If no lcore ID is specified for lcore_kthread, one KNI interface will be created for the physical port
port and the KNI kernel thread(s) will have no specific core affinity.

If one or more lcore IDs are specified for lcore_kthread, a KNI interface will be created for each
lcore ID specified, bound to the physical port port. If the rte_kni kernel module is loaded in multiple
kernel thread mode, a kernel thread will be created for each KNI interface and bound to the specified
core. If the rte_kni kernel module is loaded in single kernel thread mode, only one kernel thread is
started for all KNI interfaces. The kernel thread will be bound to the first lcore_kthread lcore ID
specified.

14.3.1 Example Configurations

The following commands will first load the rte_kni kernel module in multiple kernel thread mode.
The kni application is then started using two ports; Port 0 uses lcore 4 for the Rx task, lcore 6 for the
Tx task, and will create a single KNI interface vEth0_0 with the kernel thread bound to lcore 8. Port
1 uses lcore 5 for the Rx task, lcore 7 for the Tx task, and will create a single KNI interface vEth1_0
with the kernel thread bound to lcore 9.

rmmod rte_kni
insmod kmod/rte_kni.ko kthread_mode=multiple
./build/kni -l 4-7 -n 4 -- -P -p 0x3 -m --config="(0,4,6,8),(1,5,7,9)"

14.3. Running the kni Example Application 57

Sample Applications User Guides, Release 19.08.2

The following example is identical, except an additional lcore_kthread core is specified per physi-
cal port. In this case, kni will create four KNI interfaces: vEth0_0/vEth0_1 bound to physical port
0 and vEth1_0/vEth1_1 bound to physical port 1.

The kernel thread for each interface will be bound as follows:

• vEth0_0 - bound to lcore 8.

• vEth0_1 - bound to lcore 10.

• vEth1_0 - bound to lcore 9.

• vEth1_1 - bound to lcore 11

rmmod rte_kni
insmod kmod/rte_kni.ko kthread_mode=multiple
./build/kni -l 4-7 -n 4 -- -P -p 0x3 -m --config="(0,4,6,8,10),(1,5,7,9,11)"

The following example can be used to test the interface between the kni test application and the
rte_kni kernel module. In this example, the rte_kni kernel module is loaded in single kernel
thread mode, loopback mode enabled, and the default carrier state is set to on so that the corresponding
physical NIC port does not have to be connected in order to use the KNI interface. One KNI interface
vEth0_0 is created for port 0 and one KNI interface vEth1_0 is created for port 1. Since rte_kni
is loaded in “single kernel thread” mode, the one kernel thread is bound to lcore 8.

Since the physical NIC ports are not being used, link monitoring can be disabled by not specifying the
-m flag to kni:

rmmod rte_kni
insmod kmod/rte_kni.ko lo_mode=lo_mode_fifo carrier=on
./build/kni -l 4-7 -n 4 -- -P -p 0x3 --config="(0,4,6,8),(1,5,7,9)"

14.4 KNI Operations

Once the kni application is started, the user can use the normal Linux commands to manage the KNI
interfaces as if they were any other Linux network interface.

Enable KNI interface and assign an IP address:

ip addr add dev vEth0_0 192.168.0.1

Show KNI interface configuration and statistics:

ip -s -d addr show vEth0_0

The user can also check and reset the packet statistics inside the kni application by sending the app the
USR1 and USR2 signals:

Print statistics
pkill -USR1 kni

Zero statistics
pkill -USR2 kni

Dump network traffic:

tshark -n -i vEth0_0

The normal Linux commands can also be used to change the MAC address and MTU size used by
the physical NIC which corresponds to the KNI interface. However, if more than one KNI interface is
configured for a physical port, these commands will only work on the first KNI interface for that port.

14.4. KNI Operations 58

Sample Applications User Guides, Release 19.08.2

Change the MAC address:

ip link set dev vEth0_0 lladdr 0C:01:02:03:04:08

Change the MTU size:

ip link set dev vEth0_0 mtu 1450

Limited ethtool support:

ethtool -i vEth0_0

When the kni application is closed, all the KNI interfaces are deleted from the Linux kernel.

14.5 Explanation

The following sections provide some explanation of code.

14.5.1 Initialization

Setup of mbuf pool, driver and queues is similar to the setup done in the L2 Forwarding Sample Ap-
plication (in Real and Virtualized Environments).. In addition, one or more kernel NIC interfaces are
allocated for each of the configured ports according to the command line parameters.

The code for allocating the kernel NIC interfaces for a specific port is in the function kni_alloc.

The other step in the initialization process that is unique to this sample application is the association of
each port with lcores for RX, TX and kernel threads.

• One lcore to read from the port and write to the associated one or more KNI devices

• Another lcore to read from one or more KNI devices and write to the port

• Other lcores for pinning the kernel threads on one by one

This is done by using the kni_port_params_array[] array, which is indexed by the port ID. The
code is in the function parse_config.

14.5.2 Packet Forwarding

After the initialization steps are completed, the main_loop() function is run on each lcore. This function
first checks the lcore_id against the user provided lcore_rx and lcore_tx to see if this lcore is reading
from or writing to kernel NIC interfaces.

For the case that reads from a NIC port and writes to the kernel NIC interfaces (kni_ingress),
the packet reception is the same as in L2 Forwarding sample application (see Receive, Process and
Transmit Packets). The packet transmission is done by sending mbufs into the kernel NIC interfaces by
rte_kni_tx_burst(). The KNI library automatically frees the mbufs after the kernel successfully
copied the mbufs.

For the other case that reads from kernel NIC interfaces and writes to a physical NIC
port (kni_egress), packets are retrieved by reading mbufs from kernel NIC interfaces by
rte_kni_rx_burst(). The packet transmission is the same as in the L2 Forwarding sample ap-
plication (see Receive, Process and Transmit Packets).

14.5. Explanation 59

CHAPTER

FIFTEEN

KEEP ALIVE SAMPLE APPLICATION

The Keep Alive application is a simple example of a heartbeat/watchdog for packet processing cores. It
demonstrates how to detect ‘failed’ DPDK cores and notify a fault management entity of this failure. Its
purpose is to ensure the failure of the core does not result in a fault that is not detectable by a management
entity.

15.1 Overview

The application demonstrates how to protect against ‘silent outages’ on packet processing cores. A
Keep Alive Monitor Agent Core (master) monitors the state of packet processing cores (worker cores)
by dispatching pings at a regular time interval (default is 5ms) and monitoring the state of the cores.
Cores states are: Alive, MIA, Dead or Buried. MIA indicates a missed ping, and Dead indicates two
missed pings within the specified time interval. When a core is Dead, a callback function is invoked
to restart the packet processing core; A real life application might use this callback function to notify a
higher level fault management entity of the core failure in order to take the appropriate corrective action.

Note: Only the worker cores are monitored. A local (on the host) mechanism or agent to supervise the
Keep Alive Monitor Agent Core DPDK core is required to detect its failure.

Note: This application is based on the L2 Forwarding Sample Application (in Real and Virtualized Envi-
ronments). As such, the initialization and run-time paths are very similar to those of the L2 forwarding
application.

15.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l2fwd_keep_alive sub-directory.

15.3 Running the Application

The application has a number of command line options:

./build/l2fwd-keepalive [EAL options] \
-- -p PORTMASK [-q NQ] [-K PERIOD] [-T PERIOD]

where,

• p PORTMASK: A hexadecimal bitmask of the ports to configure

60

Sample Applications User Guides, Release 19.08.2

• q NQ: A number of queues (=ports) per lcore (default is 1)

• K PERIOD: Heartbeat check period in ms(5ms default; 86400 max)

• T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default, 86400
maximum).

To run the application in linux environment with 4 lcores, 16 ports 8 RX queues per lcore and a ping
interval of 10ms, issue the command:

./build/l2fwd-keepalive -l 0-3 -n 4 -- -q 8 -p ffff -K 10

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

15.4 Explanation

The following sections provide some explanation of the The Keep-Alive/’Liveliness’ conceptual scheme.
As mentioned in the overview section, the initialization and run-time paths are very similar to those of
the L2 Forwarding Sample Application (in Real and Virtualized Environments).

The Keep-Alive/’Liveliness’ conceptual scheme:

• A Keep- Alive Agent Runs every N Milliseconds.

• DPDK Cores respond to the keep-alive agent.

• If keep-alive agent detects time-outs, it notifies the fault management entity through a callback
function.

The following sections provide some explanation of the code aspects that are specific to the Keep Alive
sample application.

The keepalive functionality is initialized with a struct rte_keepalive and the callback function to invoke
in the case of a timeout.

rte_global_keepalive_info = rte_keepalive_create(&dead_core, NULL);
if (rte_global_keepalive_info == NULL)

rte_exit(EXIT_FAILURE, "keepalive_create() failed");

The function that issues the pings keepalive_dispatch_pings() is configured to run every check_period
milliseconds.

if (rte_timer_reset(&hb_timer,
(check_period * rte_get_timer_hz()) / 1000,
PERIODICAL,
rte_lcore_id(),
&rte_keepalive_dispatch_pings,
rte_global_keepalive_info
) != 0)

rte_exit(EXIT_FAILURE, "Keepalive setup failure.\n");

The rest of the initialization and run-time path follows the same paths as the L2 forwarding application.
The only addition to the main processing loop is the mark alive functionality and the example random
failures.

rte_keepalive_mark_alive(&rte_global_keepalive_info);
cur_tsc = rte_rdtsc();

/* Die randomly within 7 secs for demo purposes.. */

15.4. Explanation 61

Sample Applications User Guides, Release 19.08.2

if (cur_tsc - tsc_initial > tsc_lifetime)
break;

The rte_keepalive_mark_alive function simply sets the core state to alive.

static inline void
rte_keepalive_mark_alive(struct rte_keepalive *keepcfg)
{

keepcfg->live_data[rte_lcore_id()].core_state = RTE_KA_STATE_ALIVE;
}

15.4. Explanation 62

CHAPTER

SIXTEEN

L2 FORWARDING WITH CRYPTO SAMPLE APPLICATION

The L2 Forwarding with Crypto (l2fwd-crypto) sample application is a simple example of packet pro-
cessing using the Data Plane Development Kit (DPDK), in conjunction with the Cryptodev library.

16.1 Overview

The L2 Forwarding with Crypto sample application performs a crypto operation (cipher/hash) specified
by the user from command line (or using the default values), with a crypto device capable of doing that
operation, for each packet that is received on a RX_PORT and performs L2 forwarding. The destination
port is the adjacent port from the enabled portmask, that is, if the first four ports are enabled (portmask
0xf), ports 0 and 1 forward into each other, and ports 2 and 3 forward into each other. Also, if MAC
addresses updating is enabled, the MAC addresses are affected as follows:

• The source MAC address is replaced by the TX_PORT MAC address

• The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

16.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l2fwd-crypt sub-directory.

16.3 Running the Application

The application requires a number of command line options:

./build/l2fwd-crypto [EAL options] -- [-p PORTMASK] [-q NQ] [-s] [-T PERIOD] /
[--cdev_type HW/SW/ANY] [--chain HASH_CIPHER/CIPHER_HASH/CIPHER_ONLY/HASH_ONLY/AEAD] /
[--cipher_algo ALGO] [--cipher_op ENCRYPT/DECRYPT] [--cipher_key KEY] /
[--cipher_key_random_size SIZE] [--cipher_iv IV] [--cipher_iv_random_size SIZE] /
[--auth_algo ALGO] [--auth_op GENERATE/VERIFY] [--auth_key KEY] /
[--auth_key_random_size SIZE] [--auth_iv IV] [--auth_iv_random_size SIZE] /
[--aead_algo ALGO] [--aead_op ENCRYPT/DECRYPT] [--aead_key KEY] /
[--aead_key_random_size SIZE] [--aead_iv] [--aead_iv_random_size SIZE] /
[--aad AAD] [--aad_random_size SIZE] /
[--digest size SIZE] [--sessionless] [--cryptodev_mask MASK] /
[--mac-updating] [--no-mac-updating]

where,

63

Sample Applications User Guides, Release 19.08.2

• p PORTMASK: A hexadecimal bitmask of the ports to configure (default is all the ports)

• q NQ: A number of queues (=ports) per lcore (default is 1)

• s: manage all ports from single core

• T PERIOD: statistics will be refreshed each PERIOD seconds

(0 to disable, 10 default, 86400 maximum)

• cdev_type: select preferred crypto device type: HW, SW or anything (ANY)

(default is ANY)

• chain: select the operation chaining to perform: Cipher->Hash (CIPHER_HASH),

Hash->Cipher (HASH_CIPHER), Cipher (CIPHER_ONLY), Hash (HASH_ONLY)

or AEAD (AEAD)

(default is Cipher->Hash)

• cipher_algo: select the ciphering algorithm (default is aes-cbc)

• cipher_op: select the ciphering operation to perform: ENCRYPT or DECRYPT

(default is ENCRYPT)

• cipher_key: set the ciphering key to be used. Bytes has to be separated with ”:”

• cipher_key_random_size: set the size of the ciphering key,

which will be generated randomly.

Note that if –cipher_key is used, this will be ignored.

• cipher_iv: set the cipher IV to be used. Bytes has to be separated with ”:”

• cipher_iv_random_size: set the size of the cipher IV, which will be generated randomly.

Note that if –cipher_iv is used, this will be ignored.

• auth_algo: select the authentication algorithm (default is sha1-hmac)

• auth_op: select the authentication operation to perform: GENERATE or VERIFY

(default is GENERATE)

• auth_key: set the authentication key to be used. Bytes has to be separated with ”:”

• auth_key_random_size: set the size of the authentication key,

which will be generated randomly.

Note that if –auth_key is used, this will be ignored.

• auth_iv: set the auth IV to be used. Bytes has to be separated with ”:”

• auth_iv_random_size: set the size of the auth IV, which will be generated randomly.

Note that if –auth_iv is used, this will be ignored.

• aead_algo: select the AEAD algorithm (default is aes-gcm)

• aead_op: select the AEAD operation to perform: ENCRYPT or DECRYPT

(default is ENCRYPT)

16.3. Running the Application 64

Sample Applications User Guides, Release 19.08.2

• aead_key: set the AEAD key to be used. Bytes has to be separated with ”:”

• aead_key_random_size: set the size of the AEAD key,

which will be generated randomly.

Note that if –aead_key is used, this will be ignored.

• aead_iv: set the AEAD IV to be used. Bytes has to be separated with ”:”

• aead_iv_random_size: set the size of the AEAD IV, which will be generated randomly.

Note that if –aead_iv is used, this will be ignored.

• aad: set the AAD to be used. Bytes has to be separated with ”:”

• aad_random_size: set the size of the AAD, which will be generated randomly.

Note that if –aad is used, this will be ignored.

• digest_size: set the size of the digest to be generated/verified.

• sessionless: no crypto session will be created.

• cryptodev_mask: A hexadecimal bitmask of the cryptodevs to be used by the application.

(default is all cryptodevs).

• [no-]mac-updating: Enable or disable MAC addresses updating (enabled by default).

The application requires that crypto devices capable of performing the specified crypto operation are
available on application initialization. This means that HW crypto device/s must be bound to a DPDK
driver or a SW crypto device/s (virtual crypto PMD) must be created (using –vdev).

To run the application in linux environment with 2 lcores, 2 ports and 2 crypto devices, issue the com-
mand:

$./build/l2fwd-crypto -l 0-1 -n 4 --vdev "crypto_aesni_mb0" \
--vdev "crypto_aesni_mb1" -- -p 0x3 --chain CIPHER_HASH \
--cipher_op ENCRYPT --cipher_algo aes-cbc \
--cipher_key 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f \
--auth_op GENERATE --auth_algo aes-xcbc-mac \
--auth_key 10:11:12:13:14:15:16:17:18:19:1a:1b:1c:1d:1e:1f

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

Note:

• The l2fwd-crypto sample application requires IPv4 packets for crypto operation.

• If multiple Ethernet ports is passed, then equal number of crypto devices are to be passed.

• All crypto devices shall use the same session.

16.4 Explanation

The L2 forward with Crypto application demonstrates the performance of a crypto operation on a packet
received on a RX PORT before forwarding it to a TX PORT.

16.4. Explanation 65

Sample Applications User Guides, Release 19.08.2

The following figure illustrates a sample flow of a packet in the application, from reception until trans-
mission.

RX P0 Q0 RX CRYPTO DEQCRYPTO ENQ TX P0 Q0MACPAD TX

Stage 2: Pad packets and enqueue crypto operations
Stage 1: Read packets from port

Stage 3: Dequeue processed crypto operations Stage 4: Modify Packet MAC header and transmit

Fig. 16.1: Encryption flow Through the L2 Forwarding with Crypto Application

The following sections provide some explanation of the application.

16.4.1 Crypto operation specification

All the packets received in all the ports get transformed by the crypto device/s (ciphering and/or authen-
tication). The crypto operation to be performed on the packet is parsed from the command line (go to
“Running the Application section for all the options).

If no parameter is passed, the default crypto operation is:

• Encryption with AES-CBC with 128 bit key.

• Authentication with SHA1-HMAC (generation).

• Keys, IV and AAD are generated randomly.

There are two methods to pass keys, IV and ADD from the command line:

• Passing the full key, separated bytes by ”:”:

--cipher_key 00:11:22:33:44

• Passing the size, so key is generated randomly:

--cipher_key_random_size 16

Note: If full key is passed (first method) and the size is passed as well (second method), the latter will
be ignored.

Size of these keys are checked (regardless the method), before starting the app, to make sure that it is
supported by the crypto devices.

16.4.2 Crypto device initialization

Once the encryption operation is defined, crypto devices are initialized. The crypto devices must be
either bound to a DPDK driver (if they are physical devices) or created using the EAL option –vdev (if
they are virtual devices), when running the application.

The initialize_cryptodevs() function performs the device initialization. It iterates through the list of the
available crypto devices and check which ones are capable of performing the operation. Each device
has a set of capabilities associated with it, which are stored in the device info structure, so the function
checks if the operation is within the structure of each device.

16.4. Explanation 66

Sample Applications User Guides, Release 19.08.2

The following code checks if the device supports the specified cipher algorithm (similar for the authen-
tication algorithm):

/* Check if device supports cipher algo */
i = 0;
opt_cipher_algo = options->cipher_xform.cipher.algo;
cap = &dev_info.capabilities[i];
while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {

cap_cipher_algo = cap->sym.cipher.algo;
if (cap->sym.xform_type ==

RTE_CRYPTO_SYM_XFORM_CIPHER) {
if (cap_cipher_algo == opt_cipher_algo) {

if (check_type(options, &dev_info) == 0)
break;

}
}
cap = &dev_info.capabilities[++i];

}

If a capable crypto device is found, key sizes are checked to see if they are supported (cipher key and IV
for the ciphering):

/*
* Check if length of provided cipher key is supported

* by the algorithm chosen.

*/
if (options->ckey_param) {

if (check_supported_size(
options->cipher_xform.cipher.key.length,
cap->sym.cipher.key_size.min,
cap->sym.cipher.key_size.max,
cap->sym.cipher.key_size.increment)

!= 0) {
printf("Unsupported cipher key length\n");
return -1;

}
/*
* Check if length of the cipher key to be randomly generated

* is supported by the algorithm chosen.

*/
} else if (options->ckey_random_size != -1) {

if (check_supported_size(options->ckey_random_size,
cap->sym.cipher.key_size.min,
cap->sym.cipher.key_size.max,
cap->sym.cipher.key_size.increment)

!= 0) {
printf("Unsupported cipher key length\n");
return -1;

}
options->cipher_xform.cipher.key.length =

options->ckey_random_size;
/* No size provided, use minimum size. */
} else

options->cipher_xform.cipher.key.length =
cap->sym.cipher.key_size.min;

After all the checks, the device is configured and it is added to the crypto device list.

Note: The number of crypto devices that supports the specified crypto operation must be at least the
number of ports to be used.

16.4. Explanation 67

Sample Applications User Guides, Release 19.08.2

16.4.3 Session creation

The crypto operation has a crypto session associated to it, which contains information such as the trans-
form chain to perform (e.g. ciphering then hashing), pointers to the keys, lengths... etc.

This session is created and is later attached to the crypto operation:

static struct rte_cryptodev_sym_session *
initialize_crypto_session(struct l2fwd_crypto_options *options,

uint8_t cdev_id)
{

struct rte_crypto_sym_xform *first_xform;
struct rte_cryptodev_sym_session *session;
uint8_t socket_id = rte_cryptodev_socket_id(cdev_id);
struct rte_mempool *sess_mp = session_pool_socket[socket_id];

if (options->xform_chain == L2FWD_CRYPTO_AEAD) {
first_xform = &options->aead_xform;

} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
first_xform = &options->cipher_xform;
first_xform->next = &options->auth_xform;

} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
first_xform = &options->auth_xform;
first_xform->next = &options->cipher_xform;

} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
first_xform = &options->cipher_xform;

} else {
first_xform = &options->auth_xform;

}

session = rte_cryptodev_sym_session_create(sess_mp);

if (session == NULL)
return NULL;

if (rte_cryptodev_sym_session_init(cdev_id, session,
first_xform, sess_mp) < 0)

return NULL;

return session;
}

...

port_cparams[i].session = initialize_crypto_session(options,
port_cparams[i].dev_id);

16.4.4 Crypto operation creation

Given N packets received from a RX PORT, N crypto operations are allocated and filled:

if (nb_rx) {
/*
* If we can't allocate a crypto_ops, then drop

* the rest of the burst and dequeue and

* process the packets to free offload structs

*/
if (rte_crypto_op_bulk_alloc(

l2fwd_crypto_op_pool,
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
ops_burst, nb_rx) !=

16.4. Explanation 68

Sample Applications User Guides, Release 19.08.2

nb_rx) {
for (j = 0; j < nb_rx; j++)

rte_pktmbuf_free(pkts_burst[i]);

nb_rx = 0;
}

After filling the crypto operation (including session attachment), the mbuf which will be transformed is
attached to it:

op->sym->m_src = m;

Since no destination mbuf is set, the source mbuf will be overwritten after the operation is done (in-
place).

16.4.5 Crypto operation enqueuing/dequeuing

Once the operation has been created, it has to be enqueued in one of the crypto devices. Before doing
so, for performance reasons, the operation stays in a buffer. When the buffer has enough operations
(MAX_PKT_BURST), they are enqueued in the device, which will perform the operation at that mo-
ment:

static int
l2fwd_crypto_enqueue(struct rte_crypto_op *op,

struct l2fwd_crypto_params *cparams)
{

unsigned lcore_id, len;
struct lcore_queue_conf *qconf;

lcore_id = rte_lcore_id();

qconf = &lcore_queue_conf[lcore_id];
len = qconf->op_buf[cparams->dev_id].len;
qconf->op_buf[cparams->dev_id].buffer[len] = op;
len++;

/* enough ops to be sent */
if (len == MAX_PKT_BURST) {

l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
len = 0;

}

qconf->op_buf[cparams->dev_id].len = len;
return 0;

}

...

static int
l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,

struct l2fwd_crypto_params *cparams)
{

struct rte_crypto_op **op_buffer;
unsigned ret;

op_buffer = (struct rte_crypto_op **)
qconf->op_buf[cparams->dev_id].buffer;

ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
cparams->qp_id, op_buffer, (uint16_t) n);

16.4. Explanation 69

Sample Applications User Guides, Release 19.08.2

crypto_statistics[cparams->dev_id].enqueued += ret;
if (unlikely(ret < n)) {

crypto_statistics[cparams->dev_id].errors += (n - ret);
do {

rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
rte_crypto_op_free(op_buffer[ret]);

} while (++ret < n);
}

return 0;
}

After this, the operations are dequeued from the device, and the transformed mbuf is extracted from the
operation. Then, the operation is freed and the mbuf is forwarded as it is done in the L2 forwarding
application.

/* Dequeue packets from Crypto device */
do {

nb_rx = rte_cryptodev_dequeue_burst(
cparams->dev_id, cparams->qp_id,
ops_burst, MAX_PKT_BURST);

crypto_statistics[cparams->dev_id].dequeued +=
nb_rx;

/* Forward crypto'd packets */
for (j = 0; j < nb_rx; j++) {

m = ops_burst[j]->sym->m_src;

rte_crypto_op_free(ops_burst[j]);
l2fwd_simple_forward(m, portid);

}
} while (nb_rx == MAX_PKT_BURST);

16.4. Explanation 70

CHAPTER

SEVENTEEN

L2 FORWARDING SAMPLE APPLICATION (IN REAL AND
VIRTUALIZED ENVIRONMENTS) WITH CORE LOAD STATISTICS.

The L2 Forwarding sample application is a simple example of packet processing using the Data Plane
Development Kit (DPDK) which also takes advantage of Single Root I/O Virtualization (SR-IOV) fea-
tures in a virtualized environment.

Note: This application is a variation of L2 Forwarding sample application. It demonstrate possible
scheme of job stats library usage therefore some parts of this document is identical with original L2
forwarding application.

17.1 Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments, performs
L2 forwarding for each packet that is received. The destination port is the adjacent port from the enabled
portmask, that is, if the first four ports are enabled (portmask 0xf), ports 1 and 2 forward into each other,
and ports 3 and 4 forward into each other. Also, the MAC addresses are affected as follows:

• The source MAC address is replaced by the TX port MAC address

• The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as shown in the Fig.
17.1.

The application can also be used in a virtualized environment as shown in Fig. 17.2.

The L2 Forwarding application can also be used as a starting point for developing a new application
based on the DPDK.

17.1.1 Virtual Function Setup Instructions

This application can use the virtual function available in the system and therefore can be used in a
virtual machine without passing through the whole Network Device into a guest machine in a virtualized
scenario. The virtual functions can be enabled in the host machine or the hypervisor with the respective
physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the following
command:

modprobe ixgbe max_vfs=2,2

71

Sample Applications User Guides, Release 19.08.2

Traffic
Generator

NUT
(RTE)

Flow 0

Flow 1

Flow 2

Flow 3

0

1

2

3

0

1

2

3

...

Fig. 17.1: Performance Benchmark Setup (Basic Environment)

Fig. 17.2: Performance Benchmark Setup (Virtualized Environment)

17.1. Overview 72

Sample Applications User Guides, Release 19.08.2

This command enables two Virtual Functions on each of Physical Function of the NIC, with two physical
ports in the PCI configuration space. It is important to note that enabled Virtual Function 0 and 2 would
belong to Physical Function 0 and Virtual Function 1 and 3 would belong to Physical Function 1, in this
case enabling a total of four Virtual Functions.

17.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l2fwd-jobstats sub-directory.

17.3 Running the Application

The application requires a number of command line options:

./build/l2fwd-jobstats [EAL options] -- -p PORTMASK [-q NQ] [-l]

where,

• p PORTMASK: A hexadecimal bitmask of the ports to configure

• q NQ: A number of queues (=ports) per lcore (default is 1)

• l: Use locale thousands separator when formatting big numbers.

To run the application in linux environment with 4 lcores, 16 ports, 8 RX queues per lcore and thousands
separator printing, issue the command:

$./build/l2fwd-jobstats -l 0-3 -n 4 -- -q 8 -p ffff -l

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

17.4 Explanation

The following sections provide some explanation of the code.

17.4.1 Command Line Arguments

The L2 Forwarding sample application takes specific parameters, in addition to Environment Abstraction
Layer (EAL) arguments (see Running the Application). The preferred way to parse parameters is to use
the getopt() function, since it is part of a well-defined and portable library.

The parsing of arguments is done in the l2fwd_parse_args() function. The method of argument parsing
is not described here. Refer to the glibc getopt(3) man page for details.

EAL arguments are parsed first, then application-specific arguments. This is done at the beginning of
the main() function:

/* init EAL */

ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

17.2. Compiling the Application 73

Sample Applications User Guides, Release 19.08.2

argc -= ret;
argv += ret;

/* parse application arguments (after the EAL ones) */

ret = l2fwd_parse_args(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");

17.4.2 Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created. The mbuf pool contains a set of mbuf objects
that will be used by the driver and the application to store network packet data:

/* create the mbuf pool */
l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF,

MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
rte_socket_id());

if (l2fwd_pktmbuf_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot init mbuf pool\n");

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is necessary
to create a pool that will be used by the driver. The number of allocated pkt mbufs is NB_MBUF,
with a data room size of RTE_MBUF_DEFAULT_BUF_SIZE each. A per-lcore cache of MEM-
POOL_CACHE_SIZE mbufs is kept. The memory is allocated in rte_socket_id() socket, but it is possi-
ble to extend this code to allocate one mbuf pool per socket.

The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf initializers, respectively
rte_pktmbuf_pool_init() and rte_pktmbuf_init(). An advanced application may want to use the mempool
API to create the mbuf pool with more control.

17.4.3 Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully
understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the
DPDK Programmer’s Guide and the DPDK API Reference.

/* reset l2fwd_dst_ports */

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
l2fwd_dst_ports[portid] = 0;

last_port = 0;

/*
* Each logical core is assigned a dedicated TX queue on each port.

*/
RTE_ETH_FOREACH_DEV(portid) {

/* skip ports that are not enabled */
if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)

continue;

if (nb_ports_in_mask % 2) {
l2fwd_dst_ports[portid] = last_port;
l2fwd_dst_ports[last_port] = portid;

}
else

17.4. Explanation 74

Sample Applications User Guides, Release 19.08.2

last_port = portid;

nb_ports_in_mask++;

rte_eth_dev_info_get((uint8_t) portid, &dev_info);
}

The next step is to configure the RX and TX queues. For each port, there is only one RX queue (only
one lcore is able to poll a given port). The number of TX queues depends on the number of available
lcores. The rte_eth_dev_configure() function is used to configure the number of queues for a port:

ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Cannot configure device: "
"err=%d, port=%u\n",
ret, portid);

17.4.4 RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option, which specifies
the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore. If there
are 16 ports on the target (and if the portmask argument is -p ffff), the application will need four lcores
to poll all the ports.

ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
rte_eth_dev_socket_id(portid),
NULL,
l2fwd_pktmbuf_pool);

if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup:err=%d, port=%u\n",

ret, (unsigned) portid);

The list of queues that must be polled for a given lcore is stored in a private structure called struct
lcore_queue_conf.

struct lcore_queue_conf {
unsigned n_rx_port;
unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
truct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];

struct rte_timer rx_timers[MAX_RX_QUEUE_PER_LCORE];
struct rte_jobstats port_fwd_jobs[MAX_RX_QUEUE_PER_LCORE];

struct rte_timer flush_timer;
struct rte_jobstats flush_job;
struct rte_jobstats idle_job;
struct rte_jobstats_context jobs_context;

rte_atomic16_t stats_read_pending;
rte_spinlock_t lock;

} __rte_cache_aligned;

Values of struct lcore_queue_conf:

• n_rx_port and rx_port_list[] are used in the main packet processing loop (see Section Receive,
Process and Transmit Packets later in this chapter).

• rx_timers and flush_timer are used to ensure forced TX on low packet rate.

17.4. Explanation 75

Sample Applications User Guides, Release 19.08.2

• flush_job, idle_job and jobs_context are librte_jobstats objects used for managing l2fwd jobs.

• stats_read_pending and lock are used during job stats read phase.

17.4.5 TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized.

/* init one TX queue on each port */

fflush(stdout);
ret = rte_eth_tx_queue_setup(portid, 0, nb_txd,

rte_eth_dev_socket_id(portid),
NULL);

if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n",

ret, (unsigned) portid);

17.4.6 Jobs statistics initialization

There are several statistics objects available:

• Flush job statistics

rte_jobstats_init(&qconf->flush_job, "flush", drain_tsc, drain_tsc,
drain_tsc, 0);

rte_timer_init(&qconf->flush_timer);
ret = rte_timer_reset(&qconf->flush_timer, drain_tsc, PERIODICAL,

lcore_id, &l2fwd_flush_job, NULL);

if (ret < 0) {
rte_exit(1, "Failed to reset flush job timer for lcore %u: %s",

lcore_id, rte_strerror(-ret));
}

• Statistics per RX port

rte_jobstats_init(job, name, 0, drain_tsc, 0, MAX_PKT_BURST);
rte_jobstats_set_update_period_function(job, l2fwd_job_update_cb);

rte_timer_init(&qconf->rx_timers[i]);
ret = rte_timer_reset(&qconf->rx_timers[i], 0, PERIODICAL, lcore_id,

l2fwd_fwd_job, (void *)(uintptr_t)i);

if (ret < 0) {
rte_exit(1, "Failed to reset lcore %u port %u job timer: %s",

lcore_id, qconf->rx_port_list[i], rte_strerror(-ret));
}

Following parameters are passed to rte_jobstats_init():

• 0 as minimal poll period

• drain_tsc as maximum poll period

• MAX_PKT_BURST as desired target value (RX burst size)

17.4. Explanation 76

Sample Applications User Guides, Release 19.08.2

17.4.7 Main loop

The forwarding path is reworked comparing to original L2 Forwarding application. In the
l2fwd_main_loop() function three loops are placed.

for (;;) {
rte_spinlock_lock(&qconf->lock);

do {
rte_jobstats_context_start(&qconf->jobs_context);

/* Do the Idle job:

* - Read stats_read_pending flag

* - check if some real job need to be executed

*/
rte_jobstats_start(&qconf->jobs_context, &qconf->idle_job);

do {
uint8_t i;
uint64_t now = rte_get_timer_cycles();

need_manage = qconf->flush_timer.expire < now;
/* Check if we was esked to give a stats. */
stats_read_pending =

rte_atomic16_read(&qconf->stats_read_pending);
need_manage |= stats_read_pending;

for (i = 0; i < qconf->n_rx_port && !need_manage; i++)
need_manage = qconf->rx_timers[i].expire < now;

} while (!need_manage);
rte_jobstats_finish(&qconf->idle_job, qconf->idle_job.target);

rte_timer_manage();
rte_jobstats_context_finish(&qconf->jobs_context);

} while (likely(stats_read_pending == 0));

rte_spinlock_unlock(&qconf->lock);
rte_pause();

}

First infinite for loop is to minimize impact of stats reading. Lock is only locked/unlocked when asked.

Second inner while loop do the whole jobs management. When any job is ready, the use
rte_timer_manage() is used to call the job handler. In this place functions l2fwd_fwd_job() and
l2fwd_flush_job() are called when needed. Then rte_jobstats_context_finish() is called to mark loop
end - no other jobs are ready to execute. By this time stats are ready to be read and if stats_read_pending
is set, loop breaks allowing stats to be read.

Third do-while loop is the idle job (idle stats counter). Its only purpose is monitoring if any job is ready
or stats job read is pending for this lcore. Statistics from this part of code is considered as the headroom
available for additional processing.

17.4.8 Receive, Process and Transmit Packets

The main task of l2fwd_fwd_job() function is to read ingress packets from the RX queue of particular
port and forward it. This is done using the following code:

total_nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst,
MAX_PKT_BURST);

17.4. Explanation 77

Sample Applications User Guides, Release 19.08.2

for (j = 0; j < total_nb_rx; j++) {
m = pkts_burst[j];
rte_prefetch0(rte_pktmbuf_mtod(m, void *));
l2fwd_simple_forward(m, portid);

}

Packets are read in a burst of size MAX_PKT_BURST. Then, each mbuf in the table is processed by
the l2fwd_simple_forward() function. The processing is very simple: process the TX port from the RX
port, then replace the source and destination MAC addresses.

The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number of
available mbufs in the table.

After first read second try is issued.

if (total_nb_rx == MAX_PKT_BURST) {
const uint16_t nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst,

MAX_PKT_BURST);

total_nb_rx += nb_rx;
for (j = 0; j < nb_rx; j++) {

m = pkts_burst[j];
rte_prefetch0(rte_pktmbuf_mtod(m, void *));
l2fwd_simple_forward(m, portid);

}
}

This second read is important to give job stats library a feedback how many packets was processed.

/* Adjust period time in which we are running here. */
if (rte_jobstats_finish(job, total_nb_rx) != 0) {

rte_timer_reset(&qconf->rx_timers[port_idx], job->period, PERIODICAL,
lcore_id, l2fwd_fwd_job, arg);

}

To maximize performance exactly MAX_PKT_BURST is expected (the target value) to be read for each
l2fwd_fwd_job() call. If total_nb_rx is smaller than target value job->period will be increased. If it is
greater the period will be decreased.

Note: In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that
for each source port, a destination port is assigned that is either the next or previous enabled port from
the portmask. Naturally, the number of ports in the portmask must be even, otherwise, the application
exits.

static void
l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
{

struct rte_ether_hdr *eth;
void *tmp;
unsigned dst_port;

dst_port = l2fwd_dst_ports[portid];

eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);

/* 02:00:00:00:00:xx */

tmp = ð->d_addr.addr_bytes[0];

17.4. Explanation 78

Sample Applications User Guides, Release 19.08.2

*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);

/* src addr */

rte_ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr);

l2fwd_send_packet(m, (uint8_t) dst_port);
}

Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function. For this test application,
the processing is exactly the same for all packets arriving on the same RX port. Therefore, it would
have been possible to call the l2fwd_send_burst() function directly from the main loop to send all the
received packets on the same TX port, using the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded on the
same port as packet N-1. The application is implemented to illustrate that, so the same approach can be
reused in a more complex application.

The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table. If the table is
full, the whole packets table is transmitted using the l2fwd_send_burst() function:

/* Send the packet on an output interface */

static int
l2fwd_send_packet(struct rte_mbuf *m, uint16_t port)
{

unsigned lcore_id, len;
struct lcore_queue_conf *qconf;

lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
len = qconf->tx_mbufs[port].len;
qconf->tx_mbufs[port].m_table[len] = m;
len++;

/* enough pkts to be sent */

if (unlikely(len == MAX_PKT_BURST)) {
l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
len = 0;

}

qconf->tx_mbufs[port].len = len; return 0;
}

To ensure that no packets remain in the tables, the flush job exists. The l2fwd_flush_job() is called
periodically to for each lcore draining TX queue of each port. This technique introduces some latency
when there are not many packets to send, however it improves performance:

static void
l2fwd_flush_job(__rte_unused struct rte_timer *timer, __rte_unused void *arg)
{

uint64_t now;
unsigned lcore_id;
struct lcore_queue_conf *qconf;
struct mbuf_table *m_table;
uint16_t portid;

lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];

rte_jobstats_start(&qconf->jobs_context, &qconf->flush_job);

17.4. Explanation 79

Sample Applications User Guides, Release 19.08.2

now = rte_get_timer_cycles();
lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {

m_table = &qconf->tx_mbufs[portid];
if (m_table->len == 0 || m_table->next_flush_time <= now)

continue;

l2fwd_send_burst(qconf, portid);
}

/* Pass target to indicate that this job is happy of time interval

* in which it was called. */
rte_jobstats_finish(&qconf->flush_job, qconf->flush_job.target);

}

17.4. Explanation 80

CHAPTER

EIGHTEEN

L2 FORWARDING SAMPLE APPLICATION (IN REAL AND
VIRTUALIZED ENVIRONMENTS)

The L2 Forwarding sample application is a simple example of packet processing using the Data Plane
Development Kit (DPDK) which also takes advantage of Single Root I/O Virtualization (SR-IOV) fea-
tures in a virtualized environment.

Note: Please note that previously a separate L2 Forwarding in Virtualized Environments sample appli-
cation was used, however, in later DPDK versions these sample applications have been merged.

18.1 Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments, performs
L2 forwarding for each packet that is received on an RX_PORT. The destination port is the adjacent port
from the enabled portmask, that is, if the first four ports are enabled (portmask 0xf), ports 1 and 2
forward into each other, and ports 3 and 4 forward into each other. Also, if MAC addresses updating is
enabled, the MAC addresses are affected as follows:

• The source MAC address is replaced by the TX_PORT MAC address

• The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as shown in the Fig.
18.1, or in a virtualized environment as shown in Fig. 18.2.

This application may be used for basic VM to VM communication as shown in Fig. 18.3, when MAC
addresses updating is disabled.

The L2 Forwarding application can also be used as a starting point for developing a new application
based on the DPDK.

18.1.1 Virtual Function Setup Instructions

This application can use the virtual function available in the system and therefore can be used in a
virtual machine without passing through the whole Network Device into a guest machine in a virtualized
scenario. The virtual functions can be enabled in the host machine or the hypervisor with the respective
physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the following
command:

81

Sample Applications User Guides, Release 19.08.2

Traffic
Generator

NUT
(RTE)

Flow 0

Flow 1

Flow 2

Flow 3

0

1

2

3

0

1

2

3

...

Fig. 18.1: Performance Benchmark Setup (Basic Environment)

Fig. 18.2: Performance Benchmark Setup (Virtualized Environment)

18.1. Overview 82

Sample Applications User Guides, Release 19.08.2

Host
Guest1 Guest2

L2FWD

Fig. 18.3: Virtual Machine to Virtual Machine communication.

18.1. Overview 83

Sample Applications User Guides, Release 19.08.2

modprobe ixgbe max_vfs=2,2

This command enables two Virtual Functions on each of Physical Function of the NIC, with two physical
ports in the PCI configuration space. It is important to note that enabled Virtual Function 0 and 2 would
belong to Physical Function 0 and Virtual Function 1 and 3 would belong to Physical Function 1, in this
case enabling a total of four Virtual Functions.

18.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l2fwd sub-directory.

18.3 Running the Application

The application requires a number of command line options:

./build/l2fwd [EAL options] -- -p PORTMASK [-q NQ] --[no-]mac-updating

where,

• p PORTMASK: A hexadecimal bitmask of the ports to configure

• q NQ: A number of queues (=ports) per lcore (default is 1)

• –[no-]mac-updating: Enable or disable MAC addresses updating (enabled by default).

To run the application in linux environment with 4 lcores, 16 ports and 8 RX queues per lcore and MAC
address updating enabled, issue the command:

$./build/l2fwd -l 0-3 -n 4 -- -q 8 -p ffff

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

18.4 Explanation

The following sections provide some explanation of the code.

18.4.1 Command Line Arguments

The L2 Forwarding sample application takes specific parameters, in addition to Environment Abstraction
Layer (EAL) arguments. The preferred way to parse parameters is to use the getopt() function, since it
is part of a well-defined and portable library.

The parsing of arguments is done in the l2fwd_parse_args() function. The method of argument parsing
is not described here. Refer to the glibc getopt(3) man page for details.

EAL arguments are parsed first, then application-specific arguments. This is done at the beginning of
the main() function:

18.2. Compiling the Application 84

Sample Applications User Guides, Release 19.08.2

/* init EAL */

ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

argc -= ret;
argv += ret;

/* parse application arguments (after the EAL ones) */

ret = l2fwd_parse_args(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");

18.4.2 Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created. The mbuf pool contains a set of mbuf objects
that will be used by the driver and the application to store network packet data:

/* create the mbuf pool */

l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF,
MEMPOOL_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE,
rte_socket_id());

if (l2fwd_pktmbuf_pool == NULL)
rte_panic("Cannot init mbuf pool\n");

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is necessary to
create a pool that will be used by the driver. The number of allocated pkt mbufs is NB_MBUF, with
a data room size of RTE_MBUF_DEFAULT_BUF_SIZE each. A per-lcore cache of 32 mbufs is kept.
The memory is allocated in NUMA socket 0, but it is possible to extend this code to allocate one mbuf
pool per socket.

The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf initializers, respectively
rte_pktmbuf_pool_init() and rte_pktmbuf_init(). An advanced application may want to use the mempool
API to create the mbuf pool with more control.

18.4.3 Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully
understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the
DPDK Programmer’s Guide - Rel 1.4 EAR and the DPDK API Reference.

if (rte_pci_probe() < 0)
rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");

/* reset l2fwd_dst_ports */

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
l2fwd_dst_ports[portid] = 0;

last_port = 0;

/*
* Each logical core is assigned a dedicated TX queue on each port.

*/

18.4. Explanation 85

Sample Applications User Guides, Release 19.08.2

RTE_ETH_FOREACH_DEV(portid) {
/* skip ports that are not enabled */

if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
continue;

if (nb_ports_in_mask % 2) {
l2fwd_dst_ports[portid] = last_port;
l2fwd_dst_ports[last_port] = portid;

}
else

last_port = portid;

nb_ports_in_mask++;

rte_eth_dev_info_get((uint8_t) portid, &dev_info);
}

Observe that:

• rte_igb_pmd_init_all() simultaneously registers the driver as a PCI driver and as an Ethernet* Poll
Mode Driver.

• rte_pci_probe() parses the devices on the PCI bus and initializes recognized devices.

The next step is to configure the RX and TX queues. For each port, there is only one RX queue (only
one lcore is able to poll a given port). The number of TX queues depends on the number of available
lcores. The rte_eth_dev_configure() function is used to configure the number of queues for a port:

ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Cannot configure device: "
"err=%d, port=%u\n",
ret, portid);

18.4.4 RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option, which specifies
the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore. If there
are 16 ports on the target (and if the portmask argument is -p ffff), the application will need four lcores
to poll all the ports.

ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, l2fwd_pktmbuf_pool);
if (ret < 0)

rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: "
"err=%d, port=%u\n",
ret, portid);

The list of queues that must be polled for a given lcore is stored in a private structure called struct
lcore_queue_conf.

struct lcore_queue_conf {
unsigned n_rx_port;
unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];

} rte_cache_aligned;

struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];

18.4. Explanation 86

Sample Applications User Guides, Release 19.08.2

The values n_rx_port and rx_port_list[] are used in the main packet processing loop (see Receive, Pro-
cess and Transmit Packets).

18.4.5 TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized.

/* init one TX queue on each port */

fflush(stdout);

ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
if (ret < 0)

rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid);

The global configuration for TX queues is stored in a static structure:

static const struct rte_eth_txconf tx_conf = {
.tx_thresh = {

.pthresh = TX_PTHRESH,

.hthresh = TX_HTHRESH,

.wthresh = TX_WTHRESH,
},
.tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */

};

18.4.6 Receive, Process and Transmit Packets

In the l2fwd_main_loop() function, the main task is to read ingress packets from the RX queues. This is
done using the following code:

/*
* Read packet from RX queues

*/

for (i = 0; i < qconf->n_rx_port; i++) {
portid = qconf->rx_port_list[i];
nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);

for (j = 0; j < nb_rx; j++) {
m = pkts_burst[j];
rte_prefetch0[rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid);

}
}

Packets are read in a burst of size MAX_PKT_BURST. The rte_eth_rx_burst() function writes the mbuf
pointers in a local table and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the l2fwd_simple_forward() function. The processing
is very simple: process the TX port from the RX port, then replace the source and destination MAC
addresses if MAC addresses updating is enabled.

Note: In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled such that
for each source port, a destination port is assigned that is either the next or previous enabled port from

18.4. Explanation 87

Sample Applications User Guides, Release 19.08.2

the portmask. Naturally, the number of ports in the portmask must be even, otherwise, the application
exits.

static void
l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
{

struct rte_ether_hdr *eth;
void *tmp;
unsigned dst_port;

dst_port = l2fwd_dst_ports[portid];

eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);

/* 02:00:00:00:00:xx */

tmp = ð->d_addr.addr_bytes[0];

*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);

/* src addr */

rte_ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr);

l2fwd_send_packet(m, (uint8_t) dst_port);
}

Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function. For this test application,
the processing is exactly the same for all packets arriving on the same RX port. Therefore, it would
have been possible to call the l2fwd_send_burst() function directly from the main loop to send all the
received packets on the same TX port, using the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded on the
same port as packet N-1. The application is implemented to illustrate that, so the same approach can be
reused in a more complex application.

The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table. If the table is
full, the whole packets table is transmitted using the l2fwd_send_burst() function:

/* Send the packet on an output interface */

static int
l2fwd_send_packet(struct rte_mbuf *m, uint16_t port)
{

unsigned lcore_id, len;
struct lcore_queue_conf *qconf;

lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
len = qconf->tx_mbufs[port].len;
qconf->tx_mbufs[port].m_table[len] = m;
len++;

/* enough pkts to be sent */

if (unlikely(len == MAX_PKT_BURST)) {
l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
len = 0;

}

qconf->tx_mbufs[port].len = len; return 0;
}

18.4. Explanation 88

Sample Applications User Guides, Release 19.08.2

To ensure that no packets remain in the tables, each lcore does a draining of TX queue in its main loop.
This technique introduces some latency when there are not many packets to send, however it improves
performance:

cur_tsc = rte_rdtsc();

/*
* TX burst queue drain

*/

diff_tsc = cur_tsc - prev_tsc;

if (unlikely(diff_tsc > drain_tsc)) {
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {

if (qconf->tx_mbufs[portid].len == 0)
continue;

l2fwd_send_burst(&lcore_queue_conf[lcore_id], qconf->tx_mbufs[portid].len, (uint8_t) portid);

qconf->tx_mbufs[portid].len = 0;
}

/* if timer is enabled */

if (timer_period > 0) {
/* advance the timer */

timer_tsc += diff_tsc;

/* if timer has reached its timeout */

if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
/* do this only on master core */

if (lcore_id == rte_get_master_lcore()) {
print_stats();

/* reset the timer */
timer_tsc = 0;

}
}

}

prev_tsc = cur_tsc;
}

18.4. Explanation 89

CHAPTER

NINETEEN

L2 FORWARDING SAMPLE APPLICATION WITH CACHE
ALLOCATION TECHNOLOGY (CAT)

Basic Forwarding sample application is a simple skeleton example of a forwarding application. It has
been extended to make use of CAT via extended command line options and linking against the libpqos
library.

It is intended as a demonstration of the basic components of a DPDK forwarding application and use of
the libpqos library to program CAT. For more detailed implementations see the L2 and L3 forwarding
sample applications.

CAT and Code Data Prioritization (CDP) features allow management of the CPU’s last level cache. CAT
introduces classes of service (COS) that are essentially bitmasks. In current CAT implementations, a bit
in a COS bitmask corresponds to one cache way in last level cache. A CPU core is always assigned to
one of the CAT classes. By programming CPU core assignment and COS bitmasks, applications can be
given exclusive, shared, or mixed access to the CPU’s last level cache. CDP extends CAT so that there
are two bitmasks per COS, one for data and one for code. The number of classes and number of valid
bits in a COS bitmask is CPU model specific and COS bitmasks need to be contiguous. Sample code
calls this bitmask cbm or capacity bitmask. By default, after reset, all CPU cores are assigned to COS 0
and all classes are programmed to allow fill into all cache ways. CDP is off by default.

For more information about CAT please see:

• https://github.com/01org/intel-cmt-cat

White paper demonstrating example use case:

• Increasing Platform Determinism with Platform Quality of Service for the Data Plane Develop-
ment Kit

19.1 Compiling the Application

Note: Requires libpqos from Intel’s intel-cmt-cat software package hosted on GitHub repository.
For installation notes, please see README file.

GIT:

• https://github.com/01org/intel-cmt-cat

1. To compile the application export the path to PQoS lib and the DPDK source tree and go to the
example directory:

export PQOS_INSTALL_PATH=/path/to/libpqos

90

https://github.com/01org/intel-cmt-cat
http://www.intel.com/content/www/us/en/communications/increasing-platform-determinism-pqos-dpdk-white-paper.html
http://www.intel.com/content/www/us/en/communications/increasing-platform-determinism-pqos-dpdk-white-paper.html
https://github.com/01org/intel-cmt-cat
https://github.com/01org/intel-cmt-cat

Sample Applications User Guides, Release 19.08.2

To compile the sample application see Compiling the Sample Applications.

The application is located in the l2fwd-cat sub-directory.

19.2 Running the Application

To run the example in a linux environment and enable CAT on cpus 0-2:

./build/l2fwd-cat -l 1 -n 4 -- --l3ca="0x3@(0-2)"

or to enable CAT and CDP on cpus 1,3:

./build/l2fwd-cat -l 1 -n 4 -- --l3ca="(0x00C00,0x00300)@(1,3)"

If CDP is not supported it will fail with following error message:

PQOS: CDP requested but not supported.
PQOS: Requested CAT configuration is not valid!
PQOS: Shutting down PQoS library...
EAL: Error - exiting with code: 1

Cause: PQOS: L3CA init failed!

The option to enable CAT is:

• --l3ca='<common_cbm@cpus>[,<(code_cbm,data_cbm)@cpus>...]':

where cbm stands for capacity bitmask and must be expressed in hexadecimal form.

common_cbm is a single mask, for a CDP enabled system, a group of two masks (code_cbm
and data_cbm) is used.

(and) are necessary if it’s a group.

cpus could be a single digit/range or a group and must be expressed in decimal form.

(and) are necessary if it’s a group.

e.g. --l3ca='0x00F00@(1,3),0x0FF00@(4-6),0xF0000@7'

– cpus 1 and 3 share its 4 ways with cpus 4, 5 and 6;

– cpus 4, 5 and 6 share half (4 out of 8 ways) of its L3 with cpus 1 and 3;

– cpus 4, 5 and 6 have exclusive access to 4 out of 8 ways;

– cpu 7 has exclusive access to all of its 4 ways;

e.g. --l3ca='(0x00C00,0x00300)@(1,3)' for CDP enabled system

– cpus 1 and 3 have access to 2 ways for code and 2 ways for data, code and data ways are not
overlapping.

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

To reset or list CAT configuration and control CDP please use pqos tool from Intel’s intel-cmt-cat
software package.

To enabled or disable CDP:

sudo ./pqos -S cdp-on

sudo ./pqos -S cdp-off

19.2. Running the Application 91

https://github.com/01org/intel-cmt-cat
https://github.com/01org/intel-cmt-cat

Sample Applications User Guides, Release 19.08.2

to reset CAT configuration:

sudo ./pqos -R

to list CAT config:

sudo ./pqos -s

For more info about pqos tool please see its man page or intel-cmt-cat wiki.

19.3 Explanation

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte_ and are explained in detail
in the DPDK API Documentation.

19.3.1 The Main Function

The main() function performs the initialization and calls the execution threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv arguments
are provided to the rte_eal_init() function. The value returned is the number of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

The next task is to initialize the PQoS library and configure CAT. The argc and argv arguments are
provided to the cat_init() function. The value returned is the number of parsed arguments:

int ret = cat_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "PQOS: L3CA init failed!\n");

cat_init() is a wrapper function which parses the command, validates the requested parameters and
configures CAT accordingly.

Parsing of command line arguments is done in parse_args(...). libpqos is then initialized with the
pqos_init(...) call. Next, libpqos is queried for system CPU information and L3CA capabilities
via pqos_cap_get(...) and pqos_cap_get_type(...,PQOS_CAP_TYPE_L3CA,...)
calls. When all capability and topology information is collected, the requested CAT configuration is
validated. A check is then performed (on per socket basis) for a sufficient number of un-associated COS.
COS are selected and configured via the pqos_l3ca_set(...) call. Finally, COS are associated to
relevant CPUs via pqos_l3ca_assoc_set(...) calls.

atexit(...) is used to register cat_exit(...) to be called on a clean exit.
cat_exit(...) performs a simple CAT clean-up, by associating COS 0 to all involved CPUs via
pqos_l3ca_assoc_set(...) calls.

19.3. Explanation 92

https://github.com/01org/intel-cmt-cat/wiki

CHAPTER

TWENTY

L3 FORWARDING SAMPLE APPLICATION

The L3 Forwarding application is a simple example of packet processing using the DPDK. The applica-
tion performs L3 forwarding.

20.1 Overview

The application demonstrates the use of the hash and LPM libraries in the DPDK to implement packet
forwarding. The initialization and run-time paths are very similar to those of the L2 Forwarding Sam-
ple Application (in Real and Virtualized Environments). The main difference from the L2 Forwarding
sample application is that the forwarding decision is made based on information read from the input
packet.

The lookup method is either hash-based or LPM-based and is selected at run time. When the selected
lookup method is hash-based, a hash object is used to emulate the flow classification stage. The hash
object is used in correlation with a flow table to map each input packet to its flow at runtime.

The hash lookup key is represented by a DiffServ 5-tuple composed of the following fields read from the
input packet: Source IP Address, Destination IP Address, Protocol, Source Port and Destination Port.
The ID of the output interface for the input packet is read from the identified flow table entry. The set
of flows used by the application is statically configured and loaded into the hash at initialization time.
When the selected lookup method is LPM based, an LPM object is used to emulate the forwarding stage
for IPv4 packets. The LPM object is used as the routing table to identify the next hop for each input
packet at runtime.

The LPM lookup key is represented by the Destination IP Address field read from the input packet.
The ID of the output interface for the input packet is the next hop returned by the LPM lookup. The
set of LPM rules used by the application is statically configured and loaded into the LPM object at
initialization time.

In the sample application, hash-based forwarding supports IPv4 and IPv6. LPM-based forwarding sup-
ports IPv4 only.

20.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l3fwd sub-directory.

93

Sample Applications User Guides, Release 19.08.2

20.3 Running the Application

The application has a number of command line options:

./l3fwd [EAL options] -- -p PORTMASK
[-P]
[-E]
[-L]
--config(port,queue,lcore)[,(port,queue,lcore)]
[--eth-dest=X,MM:MM:MM:MM:MM:MM]
[--enable-jumbo [--max-pkt-len PKTLEN]]
[--no-numa]
[--hash-entry-num]
[--ipv6]
[--parse-ptype]
[--per-port-pool]

Where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -P: Optional, sets all ports to promiscuous mode so that packets are accepted regardless of the
packet’s Ethernet MAC destination address. Without this option, only packets with the Ethernet
MAC destination address set to the Ethernet address of the port are accepted.

• -E: Optional, enable exact match.

• -L: Optional, enable longest prefix match.

• --config (port,queue,lcore)[,(port,queue,lcore)]: Determines which
queues from which ports are mapped to which cores.

• --eth-dest=X,MM:MM:MM:MM:MM:MM: Optional, ethernet destination for port X.

• --enable-jumbo: Optional, enables jumbo frames.

• --max-pkt-len: Optional, under the premise of enabling jumbo, maximum packet length in
decimal (64-9600).

• --no-numa: Optional, disables numa awareness.

• --hash-entry-num: Optional, specifies the hash entry number in hexadecimal to be setup.

• --ipv6: Optional, set if running ipv6 packets.

• --parse-ptype: Optional, set to use software to analyze packet type. Without this option,
hardware will check the packet type.

• --per-port-pool: Optional, set to use independent buffer pools per port. Without this op-
tion, single buffer pool is used for all ports.

For example, consider a dual processor socket platform with 8 physical cores, where cores 0-7 and 16-23
appear on socket 0, while cores 8-15 and 24-31 appear on socket 1.

To enable L3 forwarding between two ports, assuming that both ports are in the same socket, using two
cores, cores 1 and 2, (which are in the same socket too), use the following command:

./build/l3fwd -l 1,2 -n 4 -- -p 0x3 --config="(0,0,1),(1,0,2)"

In this command:

• The -l option enables cores 1, 2

• The -p option enables ports 0 and 1

20.3. Running the Application 94

Sample Applications User Guides, Release 19.08.2

• The –config option enables one queue on each port and maps each (port,queue) pair to a specific
core. The following table shows the mapping in this example:

Port Queue lcore Description
0 0 1 Map queue 0 from port 0 to lcore 1.
1 0 2 Map queue 0 from port 1 to lcore 2.

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

20.4 Explanation

The following sections provide some explanation of the sample application code. As mentioned in the
overview section, the initialization and run-time paths are very similar to those of the L2 Forwarding
Sample Application (in Real and Virtualized Environments). The following sections describe aspects
that are specific to the L3 Forwarding sample application.

20.4.1 Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array, and then
generate the expected 5-tuple as key to keep consistence with those of real flow for the convenience to
execute hash performance test on 4M/8M/16M flows.

Note: The Hash initialization will setup both ipv4 and ipv6 hash table, and populate the either table
depending on the value of variable ipv6. To support the hash performance test with up to 8M single
direction flows/16M bi-direction flows, populate_ipv4_many_flow_into_table() function will populate
the hash table with specified hash table entry number(default 4M).

Note: Value of global variable ipv6 can be specified with –ipv6 in the command line. Value of global
variable hash_entry_number, which is used to specify the total hash entry number for all used ports
in hash performance test, can be specified with –hash-entry-num VALUE in command line, being its
default value 4.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)

static void
setup_hash(int socketid)
{

// ...

if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
if (ipv6 == 0) {

/* populate the ipv4 hash */
populate_ipv4_many_flow_into_table(ipv4_l3fwd_lookup_struct[socketid], hash_entry_number);

} else {
/* populate the ipv6 hash */
populate_ipv6_many_flow_into_table(ipv6_l3fwd_lookup_struct[socketid], hash_entry_number);

}
} else

if (ipv6 == 0) {
/* populate the ipv4 hash */

20.4. Explanation 95

Sample Applications User Guides, Release 19.08.2

populate_ipv4_few_flow_into_table(ipv4_l3fwd_lookup_struct[socketid]);
} else {

/* populate the ipv6 hash */
populate_ipv6_few_flow_into_table(ipv6_l3fwd_lookup_struct[socketid]);

}
}

}
#endif

20.4.2 LPM Initialization

The LPM object is created and loaded with the pre-configured entries read from a global array.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)

static void
setup_lpm(int socketid)
{

unsigned i;
int ret;
char s[64];

/* create the LPM table */

snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);

ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid, IPV4_L3FWD_LPM_MAX_RULES, 0);

if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"

" on socket %d\n", socketid);

/* populate the LPM table */

for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
/* skip unused ports */

if ((1 << ipv4_l3fwd_route_array[i].if_out & enabled_port_mask) == 0)
continue;

ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], ipv4_l3fwd_route_array[i].ip,
ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out);

if (ret < 0) {
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "

"l3fwd LPM table on socket %d\n", i, socketid);
}

printf("LPM: Adding route 0x%08x / %d (%d)\n",
(unsigned)ipv4_l3fwd_route_array[i].ip, ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out);

}
}
#endif

20.4.3 Packet Forwarding for Hash-based Lookups

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward() or sim-
ple_ipv4_fwd_4pkts() function for IPv4 packets or the simple_ipv6_fwd_4pkts() function for IPv6
packets. The l3fwd_simple_forward() function provides the basic functionality for both IPv4 and

20.4. Explanation 96

Sample Applications User Guides, Release 19.08.2

IPv6 packet forwarding for any number of burst packets received, and the packet forwarding decision
(that is, the identification of the output interface for the packet) for hash-based lookups is done by the
get_ipv4_dst_port() or get_ipv6_dst_port() function. The get_ipv4_dst_port() function is shown below:

static inline uint8_t
get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct)
{

int ret = 0;
union ipv4_5tuple_host key;

ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct rte_ipv4_hdr, time_to_live);

m128i data = _mm_loadu_si128((m128i*)(ipv4_hdr));

/* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol */

key.xmm = _mm_and_si128(data, mask0);

/* Find destination port */

ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);

return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
}

The get_ipv6_dst_port() function is similar to the get_ipv4_dst_port() function.

The simple_ipv4_fwd_4pkts() and simple_ipv6_fwd_4pkts() function are optimized for continuous
4 valid ipv4 and ipv6 packets, they leverage the multiple buffer optimization to boost the perfor-
mance of forwarding packets with the exact match on hash table. The key code snippet of sim-
ple_ipv4_fwd_4pkts() is shown below:

static inline void
simple_ipv4_fwd_4pkts(struct rte_mbuf* m[4], uint16_t portid, struct lcore_conf *qconf)
{

// ...

data[0] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[0], unsigned char *) + sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live)));
data[1] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[1], unsigned char *) + sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live)));
data[2] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[2], unsigned char *) + sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live)));
data[3] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[3], unsigned char *) + sizeof(struct rte_ether_hdr) + offsetof(struct rte_ipv4_hdr, time_to_live)));

key[0].xmm = _mm_and_si128(data[0], mask0);
key[1].xmm = _mm_and_si128(data[1], mask0);
key[2].xmm = _mm_and_si128(data[2], mask0);
key[3].xmm = _mm_and_si128(data[3], mask0);

const void *key_array[4] = {&key[0], &key[1], &key[2],&key[3]};

rte_hash_lookup_bulk(qconf->ipv4_lookup_struct, &key_array[0], 4, ret);

dst_port[0] = (ret[0] < 0)? portid:ipv4_l3fwd_out_if[ret[0]];
dst_port[1] = (ret[1] < 0)? portid:ipv4_l3fwd_out_if[ret[1]];
dst_port[2] = (ret[2] < 0)? portid:ipv4_l3fwd_out_if[ret[2]];
dst_port[3] = (ret[3] < 0)? portid:ipv4_l3fwd_out_if[ret[3]];

// ...
}

The simple_ipv6_fwd_4pkts() function is similar to the simple_ipv4_fwd_4pkts() function.

Known issue: IP packets with extensions or IP packets which are not TCP/UDP cannot work well at this
mode.

20.4. Explanation 97

Sample Applications User Guides, Release 19.08.2

20.4.4 Packet Forwarding for LPM-based Lookups

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward() function,
but the packet forwarding decision (that is, the identification of the output interface for the packet) for
LPM-based lookups is done by the get_ipv4_dst_port() function below:

static inline uint16_t
get_ipv4_dst_port(struct rte_ipv4_hdr *ipv4_hdr, uint16_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct)
{

uint8_t next_hop;

return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)? next_hop : portid);
}

20.4. Explanation 98

CHAPTER

TWENTYONE

L3 FORWARDING WITH POWER MANAGEMENT SAMPLE
APPLICATION

21.1 Introduction

The L3 Forwarding with Power Management application is an example of power-aware packet process-
ing using the DPDK. The application is based on existing L3 Forwarding sample application, with the
power management algorithms to control the P-states and C-states of the Intel processor via a power
management library.

21.2 Overview

The application demonstrates the use of the Power libraries in the DPDK to implement packet for-
warding. The initialization and run-time paths are very similar to those of the L3 Forwarding Sample
Application. The main difference from the L3 Forwarding sample application is that this application
introduces power-aware optimization algorithms by leveraging the Power library to control P-state and
C-state of processor based on packet load.

The DPDK includes poll-mode drivers to configure Intel NIC devices and their receive (Rx) and transmit
(Tx) queues. The design principle of this PMD is to access the Rx and Tx descriptors directly without
any interrupts to quickly receive, process and deliver packets in the user space.

In general, the DPDK executes an endless packet processing loop on dedicated IA cores that include the
following steps:

• Retrieve input packets through the PMD to poll Rx queue

• Process each received packet or provide received packets to other processing cores through soft-
ware queues

• Send pending output packets to Tx queue through the PMD

In this way, the PMD achieves better performance than a traditional interrupt-mode driver, at the cost
of keeping cores active and running at the highest frequency, hence consuming the maximum power all
the time. However, during the period of processing light network traffic, which happens regularly in
communication infrastructure systems due to well-known “tidal effect”, the PMD is still busy waiting
for network packets, which wastes a lot of power.

Processor performance states (P-states) are the capability of an Intel processor to switch between differ-
ent supported operating frequencies and voltages. If configured correctly, according to system workload,
this feature provides power savings. CPUFreq is the infrastructure provided by the Linux* kernel to con-
trol the processor performance state capability. CPUFreq supports a user space governor that enables
setting frequency via manipulating the virtual file device from a user space application. The Power

99

Sample Applications User Guides, Release 19.08.2

library in the DPDK provides a set of APIs for manipulating a virtual file device to allow user space
application to set the CPUFreq governor and set the frequency of specific cores.

This application includes a P-state power management algorithm to generate a frequency hint to be sent
to CPUFreq. The algorithm uses the number of received and available Rx packets on recent polls to
make a heuristic decision to scale frequency up/down. Specifically, some thresholds are checked to see
whether a specific core running an DPDK polling thread needs to increase frequency a step up based on
the near to full trend of polled Rx queues. Also, it decreases frequency a step if packet processed per
loop is far less than the expected threshold or the thread’s sleeping time exceeds a threshold.

C-States are also known as sleep states. They allow software to put an Intel core into a low power idle
state from which it is possible to exit via an event, such as an interrupt. However, there is a tradeoff
between the power consumed in the idle state and the time required to wake up from the idle state (exit
latency). Therefore, as you go into deeper C-states, the power consumed is lower but the exit latency is
increased. Each C-state has a target residency. It is essential that when entering into a C-state, the core
remains in this C-state for at least as long as the target residency in order to fully realize the benefits of
entering the C-state. CPUIdle is the infrastructure provide by the Linux kernel to control the processor
C-state capability. Unlike CPUFreq, CPUIdle does not provide a mechanism that allows the application
to change C-state. It actually has its own heuristic algorithms in kernel space to select target C-state to
enter by executing privileged instructions like HLT and MWAIT, based on the speculative sleep duration
of the core. In this application, we introduce a heuristic algorithm that allows packet processing cores
to sleep for a short period if there is no Rx packet received on recent polls. In this way, CPUIdle
automatically forces the corresponding cores to enter deeper C-states instead of always running to the
C0 state waiting for packets.

Note: To fully demonstrate the power saving capability of using C-states, it is recommended to enable
deeper C3 and C6 states in the BIOS during system boot up.

21.3 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l3fwd-power sub-directory.

21.4 Running the Application

The application has a number of command line options:

./build/l3fwd_power [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue,lcore)] [--enable-jumbo [--max-pkt-len PKTLEN]] [--no-numa]

where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -P: Sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s
Ethernet MAC destination address. Without this option, only packets with the Ethernet MAC
destination address set to the Ethernet address of the port are accepted.

• –config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which ports are
mapped to which cores.

• –enable-jumbo: optional, enables jumbo frames

21.3. Compiling the Application 100

Sample Applications User Guides, Release 19.08.2

• –max-pkt-len: optional, maximum packet length in decimal (64-9600)

• –no-numa: optional, disables numa awareness

• –empty-poll: Traffic Aware power management. See below for details

• –telemetry: Telemetry mode.

See L3 Forwarding Sample Application for details. The L3fwd-power example reuses the L3fwd com-
mand line options.

21.5 Explanation

The following sections provide some explanation of the sample application code. As mentioned in
the overview section, the initialization and run-time paths are identical to those of the L3 forwarding
application. The following sections describe aspects that are specific to the L3 Forwarding with Power
Management sample application.

21.5.1 Power Library Initialization

The Power library is initialized in the main routine. It changes the P-state governor to userspace for
specific cores that are under control. The Timer library is also initialized and several timers are created
later on, responsible for checking if it needs to scale down frequency at run time by checking CPU
utilization statistics.

Note: Only the power management related initialization is shown.

int main(int argc, char **argv)
{

struct lcore_conf *qconf;
int ret;
unsigned nb_ports;
uint16_t queueid, portid;
unsigned lcore_id;
uint64_t hz;
uint32_t n_tx_queue, nb_lcores;
uint8_t nb_rx_queue, queue, socketid;

// ...

/* init RTE timer library to be used to initialize per-core timers */

rte_timer_subsystem_init();

// ...

/* per-core initialization */

for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)

continue;

/* init power management library for a specified core */

ret = rte_power_init(lcore_id);

21.5. Explanation 101

Sample Applications User Guides, Release 19.08.2

if (ret)
rte_exit(EXIT_FAILURE, "Power management library "

"initialization failed on core%d\n", lcore_id);

/* init timer structures for each enabled lcore */

rte_timer_init(&power_timers[lcore_id]);

hz = rte_get_hpet_hz();

rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id, power_timer_cb, NULL);

// ...
}

// ...
}

21.5.2 Monitoring Loads of Rx Queues

In general, the polling nature of the DPDK prevents the OS power management subsystem from knowing
if the network load is actually heavy or light. In this sample, sampling network load work is done by
monitoring received and available descriptors on NIC Rx queues in recent polls. Based on the number
of returned and available Rx descriptors, this example implements algorithms to generate frequency
scaling hints and speculative sleep duration, and use them to control P-state and C-state of processors
via the power management library. Frequency (P-state) control and sleep state (C-state) control work
individually for each logical core, and the combination of them contributes to a power efficient packet
processing solution when serving light network loads.

The rte_eth_rx_burst() function and the newly-added rte_eth_rx_queue_count() function are used in the
endless packet processing loop to return the number of received and available Rx descriptors. And those
numbers of specific queue are passed to P-state and C-state heuristic algorithms to generate hints based
on recent network load trends.

Note: Only power control related code is shown.

static
attribute ((noreturn)) int main_loop(attribute ((unused)) void *dummy)
{

// ...

while (1) {
// ...

/**
* Read packet from RX queues

*/

lcore_scaleup_hint = FREQ_CURRENT;
lcore_rx_idle_count = 0;

for (i = 0; i < qconf->n_rx_queue; ++i)
{

rx_queue = &(qconf->rx_queue_list[i]);
rx_queue->idle_hint = 0;
portid = rx_queue->port_id;
queueid = rx_queue->queue_id;

21.5. Explanation 102

Sample Applications User Guides, Release 19.08.2

nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, MAX_PKT_BURST);
stats[lcore_id].nb_rx_processed += nb_rx;

if (unlikely(nb_rx == 0)) {
/**
* no packet received from rx queue, try to

* sleep for a while forcing CPU enter deeper

* C states.

*/

rx_queue->zero_rx_packet_count++;

if (rx_queue->zero_rx_packet_count <= MIN_ZERO_POLL_COUNT)
continue;

rx_queue->idle_hint = power_idle_heuristic(rx_queue->zero_rx_packet_count);
lcore_rx_idle_count++;

} else {
rx_ring_length = rte_eth_rx_queue_count(portid, queueid);

rx_queue->zero_rx_packet_count = 0;

/**
* do not scale up frequency immediately as

* user to kernel space communication is costly

* which might impact packet I/O for received

* packets.

*/

rx_queue->freq_up_hint = power_freq_scaleup_heuristic(lcore_id, rx_ring_length);
}

/* Prefetch and forward packets */

// ...
}

if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
for (i = 1, lcore_scaleup_hint = qconf->rx_queue_list[0].freq_up_hint; i < qconf->n_rx_queue; ++i) {

x_queue = &(qconf->rx_queue_list[i]);

if (rx_queue->freq_up_hint > lcore_scaleup_hint)

lcore_scaleup_hint = rx_queue->freq_up_hint;
}

if (lcore_scaleup_hint == FREQ_HIGHEST)

rte_power_freq_max(lcore_id);

else if (lcore_scaleup_hint == FREQ_HIGHER)
rte_power_freq_up(lcore_id);

} else {
/**
* All Rx queues empty in recent consecutive polls,

* sleep in a conservative manner, meaning sleep as

* less as possible.

*/

for (i = 1, lcore_idle_hint = qconf->rx_queue_list[0].idle_hint; i < qconf->n_rx_queue; ++i) {
rx_queue = &(qconf->rx_queue_list[i]);
if (rx_queue->idle_hint < lcore_idle_hint)

21.5. Explanation 103

Sample Applications User Guides, Release 19.08.2

lcore_idle_hint = rx_queue->idle_hint;
}

if (lcore_idle_hint < SLEEP_GEAR1_THRESHOLD)
/**
* execute "pause" instruction to avoid context

* switch for short sleep.

*/
rte_delay_us(lcore_idle_hint);

else
/* long sleep force ruining thread to suspend */
usleep(lcore_idle_hint);

stats[lcore_id].sleep_time += lcore_idle_hint;
}

}
}

21.5.3 P-State Heuristic Algorithm

The power_freq_scaleup_heuristic() function is responsible for generating a frequency hint for the spec-
ified logical core according to available descriptor number returned from rte_eth_rx_queue_count(). On
every poll for new packets, the length of available descriptor on an Rx queue is evaluated, and the
algorithm used for frequency hinting is as follows:

• If the size of available descriptors exceeds 96, the maximum frequency is hinted.

• If the size of available descriptors exceeds 64, a trend counter is incremented by 100.

• If the length of the ring exceeds 32, the trend counter is incremented by 1.

• When the trend counter reached 10000 the frequency hint is changed to the next higher frequency.

Note: The assumption is that the Rx queue size is 128 and the thresholds specified above must
be adjusted accordingly based on actual hardware Rx queue size, which are configured via the
rte_eth_rx_queue_setup() function.

In general, a thread needs to poll packets from multiple Rx queues. Most likely, different queue have
different load, so they would return different frequency hints. The algorithm evaluates all the hints and
then scales up frequency in an aggressive manner by scaling up to highest frequency as long as one Rx
queue requires. In this way, we can minimize any negative performance impact.

On the other hand, frequency scaling down is controlled in the timer callback function. Specifically, if
the sleep times of a logical core indicate that it is sleeping more than 25% of the sampling period, or if
the average packet per iteration is less than expectation, the frequency is decreased by one step.

21.5.4 C-State Heuristic Algorithm

Whenever recent rte_eth_rx_burst() polls return 5 consecutive zero packets, an idle counter begins in-
crementing for each successive zero poll. At the same time, the function power_idle_heuristic() is called
to generate speculative sleep duration in order to force logical to enter deeper sleeping C-state. There
is no way to control C- state directly, and the CPUIdle subsystem in OS is intelligent enough to select
C-state to enter based on actual sleep period time of giving logical core. The algorithm has the following
sleeping behavior depending on the idle counter:

21.5. Explanation 104

Sample Applications User Guides, Release 19.08.2

• If idle count less than 100, the counter value is used as a microsecond sleep value through
rte_delay_us() which execute pause instructions to avoid costly context switch but saving power
at the same time.

• If idle count is between 100 and 999, a fixed sleep interval of 100 𝜇s is used. A 100 𝜇s sleep
interval allows the core to enter the C1 state while keeping a fast response time in case new traffic
arrives.

• If idle count is greater than 1000, a fixed sleep value of 1 ms is used until the next timer expiration
is used. This allows the core to enter the C3/C6 states.

Note: The thresholds specified above need to be adjusted for different Intel processors and traffic
profiles.

If a thread polls multiple Rx queues and different queue returns different sleep duration values, the
algorithm controls the sleep time in a conservative manner by sleeping for the least possible time in
order to avoid a potential performance impact.

21.6 Empty Poll Mode

Additionally, there is a traffic aware mode of operation called “Empty Poll” where the number of empty
polls can be monitored to keep track of how busy the application is. Empty poll mode can be enabled by
the command line option –empty-poll.

See Power Management chapter in the DPDK Programmer’s Guide for empty poll mode details.

./l3fwd-power -l xxx -n 4 -w 0000:xx:00.0 -w 0000:xx:00.1 -- -p 0x3 -P --config="(0,0,xx),(1,0,xx)" --empty-poll="0,0,0" -l 14 -m 9 -h 1

Where,

–empty-poll: Enable the empty poll mode instead of original algorithm

–empty-poll=”training_flag, med_threshold, high_threshold”

• training_flag : optional, enable/disable training mode. Default value is 0. If the train-
ing_flag is set as 1(true), then the application will start in training mode and print out the trained
threshold values. If the training_flag is set as 0(false), the application will start in normal mode,
and will use either the default thresholds or those supplied on the command line. The trained
threshold values are specific to the user’s system, may give a better power profile when compared
to the default threshold values.

• med_threshold : optional, sets the empty poll threshold of a modestly busy system state. If
this is not supplied, the application will apply the default value of 350000.

• high_threshold : optional, sets the empty poll threshold of a busy system state. If this is not
supplied, the application will apply the default value of 580000.

• -l : optional, set up the LOW power state frequency index

• -m : optional, set up the MED power state frequency index

• -h : optional, set up the HIGH power state frequency index

21.6. Empty Poll Mode 105

Sample Applications User Guides, Release 19.08.2

21.6.1 Empty Poll Mode Example Usage

To initially obtain the ideal thresholds for the system, the training mode should be run first. This is
achieved by running the l3fwd-power app with the training flag set to “1”, and the other parameters set
to 0.

./examples/l3fwd-power/build/l3fwd-power -l 1-3 -- -p 0x0f --config="(0,0,2),(0,1,3)" --empty-poll "1,0,0" -P

This will run the training algorithm for x seconds on each core (cores 2 and 3), and then print out the
recommended threshold values for those cores. The thresholds should be very similar for each core.

POWER: Bring up the Timer
POWER: set the power freq to MED
POWER: Low threshold is 230277
POWER: MED threshold is 335071
POWER: HIGH threshold is 523769
POWER: Training is Complete for 2
POWER: set the power freq to MED
POWER: Low threshold is 236814
POWER: MED threshold is 344567
POWER: HIGH threshold is 538580
POWER: Training is Complete for 3

Once the values have been measured for a particular system, the app can then be started without the
training mode so traffic can start immediately.

./examples/l3fwd-power/build/l3fwd-power -l 1-3 -- -p 0x0f --config="(0,0,2),(0,1,3)" --empty-poll "0,340000,540000" -P

21.7 Telemetry Mode

The telemetry mode support for l3fwd-power is a standalone mode, in this mode l3fwd-power
does simple l3fwding along with calculating empty polls, full polls, and busy percentage for each for-
warding core. The aggregation of these values of all cores is reported as application level telemetry to
metric library for every 500ms from the master core.

The busy percentage is calculated by recording the poll_count and when the count reaches a defined
value the total cycles it took is measured and compared with minimum and maximum reference cycles
and accordingly busy rate is set to either 0% or 50% or 100%.

Note:

• The CONFIG_RTE_LIBRTE_TELEMETRY should be set in order to get the stats in
DPDK telemetry.

./examples/l3fwd-power/build/l3fwd-power --telemetry -l 1-3 -- -p 0x0f --config="(0,0,2),(0,1,3)" --telemetry

The new stats empty_poll , full_poll and busy_percent can be viewed by running the
script /usertools/dpdk-telemetry-client.py and selecting the menu option Send for
global Metrics.

21.7. Telemetry Mode 106

CHAPTER

TWENTYTWO

L3 FORWARDING WITH ACCESS CONTROL SAMPLE
APPLICATION

The L3 Forwarding with Access Control application is a simple example of packet processing using the
DPDK. The application performs a security check on received packets. Packets that are in the Access
Control List (ACL), which is loaded during initialization, are dropped. Others are forwarded to the
correct port.

22.1 Overview

The application demonstrates the use of the ACL library in the DPDK to implement access control and
packet L3 forwarding. The application loads two types of rules at initialization:

• Route information rules, which are used for L3 forwarding

• Access Control List (ACL) rules that blacklist (or block) packets with a specific characteristic

When packets are received from a port, the application extracts the necessary information from the
TCP/IP header of the received packet and performs a lookup in the rule database to figure out whether
the packets should be dropped (in the ACL range) or forwarded to desired ports. The initialization
and run-time paths are similar to those of the L3 Forwarding Sample Application. However, there are
significant differences in the two applications. For example, the original L3 forwarding application uses
either LPM or an exact match algorithm to perform forwarding port lookup, while this application uses
the ACL library to perform both ACL and route entry lookup. The following sections provide more
detail.

Classification for both IPv4 and IPv6 packets is supported in this application. The application also
assumes that all the packets it processes are TCP/UDP packets and always extracts source/destination
port information from the packets.

22.1.1 Tuple Packet Syntax

The application implements packet classification for the IPv4/IPv6 5-tuple syntax specifically. The 5-
tuple syntax consist of a source IP address, a destination IP address, a source port, a destination port and
a protocol identifier. The fields in the 5-tuple syntax have the following formats:

• Source IP address and destination IP address : Each is either a 32-bit field (for IPv4), or a set
of 4 32-bit fields (for IPv6) represented by a value and a mask length. For example, an IPv4 range
of 192.168.1.0 to 192.168.1.255 could be represented by a value = [192, 168, 1, 0] and a mask
length = 24.

107

Sample Applications User Guides, Release 19.08.2

• Source port and destination port : Each is a 16-bit field, represented by a lower start and a
higher end. For example, a range of ports 0 to 8192 could be represented by lower = 0 and higher
= 8192.

• Protocol identifier : An 8-bit field, represented by a value and a mask, that covers a range of
values. To verify that a value is in the range, use the following expression: “(VAL & mask) ==
value”

The trick in how to represent a range with a mask and value is as follows. A range can be enumerated in
binary numbers with some bits that are never changed and some bits that are dynamically changed. Set
those bits that dynamically changed in mask and value with 0. Set those bits that never changed in the
mask with 1, in value with number expected. For example, a range of 6 to 7 is enumerated as 0b110 and
0b111. Bit 1-7 are bits never changed and bit 0 is the bit dynamically changed. Therefore, set bit 0 in
mask and value with 0, set bits 1-7 in mask with 1, and bits 1-7 in value with number 0b11. So, mask is
0xfe, value is 0x6.

Note: The library assumes that each field in the rule is in LSB or Little Endian order when creating
the database. It internally converts them to MSB or Big Endian order. When performing a lookup, the
library assumes the input is in MSB or Big Endian order.

22.1.2 Access Rule Syntax

In this sample application, each rule is a combination of the following:

• 5-tuple field: This field has a format described in Section.

• priority field: A weight to measure the priority of the rules. The rule with the higher priority will
ALWAYS be returned if the specific input has multiple matches in the rule database. Rules with
lower priority will NEVER be returned in any cases.

• userdata field: A user-defined field that could be any value. It can be the forwarding port number
if the rule is a route table entry or it can be a pointer to a mapping address if the rule is used for
address mapping in the NAT application. The key point is that it is a useful reserved field for user
convenience.

22.1.3 ACL and Route Rules

The application needs to acquire ACL and route rules before it runs. Route rules are mandatory, while
ACL rules are optional. To simplify the complexity of the priority field for each rule, all ACL and
route entries are assumed to be in the same file. To read data from the specified file successfully, the
application assumes the following:

• Each rule occupies a single line.

• Only the following four rule line types are valid in this application:

• ACL rule line, which starts with a leading character ‘@’

• Route rule line, which starts with a leading character ‘R’

• Comment line, which starts with a leading character ‘#’

• Empty line, which consists of a space, form-feed (‘f’), newline (‘n’), carriage return (‘r’), hori-
zontal tab (‘t’), or vertical tab (‘v’).

22.1. Overview 108

Sample Applications User Guides, Release 19.08.2

Other lines types are considered invalid.

• Rules are organized in descending order of priority, which means rules at the head of the file
always have a higher priority than those further down in the file.

• A typical IPv4 ACL rule line should have a format as shown below:

Fig. 22.1: A typical IPv4 ACL rule

IPv4 addresses are specified in CIDR format as specified in RFC 4632. They consist of the dot notation
for the address and a prefix length separated by ‘/’. For example, 192.168.0.34/32, where the address is
192.168.0.34 and the prefix length is 32.

Ports are specified as a range of 16-bit numbers in the format MIN:MAX, where MIN and MAX are the
inclusive minimum and maximum values of the range. The range 0:65535 represents all possible ports
in a range. When MIN and MAX are the same value, a single port is represented, for example, 20:20.

The protocol identifier is an 8-bit value and a mask separated by ‘/’. For example: 6/0xfe matches
protocol values 6 and 7.

• Route rules start with a leading character ‘R’ and have the same format as ACL rules except an
extra field at the tail that indicates the forwarding port number.

22.1.4 Rules File Example

Fig. 22.2: Rules example

Each rule is explained as follows:

• Rule 1 (the first line) tells the application to drop those packets with source IP address = [1.2.3.*],
destination IP address = [192.168.0.36], protocol = [6]/[7]

• Rule 2 (the second line) is similar to Rule 1, except the source IP address is ignored. It tells the
application to forward packets with destination IP address = [192.168.0.36], protocol = [6]/[7],
destined to port 1.

• Rule 3 (the third line) tells the application to forward all packets to port 0. This is something like
a default route entry.

As described earlier, the application assume rules are listed in descending order of priority, therefore
Rule 1 has the highest priority, then Rule 2, and finally, Rule 3 has the lowest priority.

Consider the arrival of the following three packets:

22.1. Overview 109

Sample Applications User Guides, Release 19.08.2

• Packet 1 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and protocol
= [6]

• Packet 2 has source IP address = [1.2.4.4], destination IP address = [192.168.0.36], and protocol
= [6]

• Packet 3 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and protocol
= [8]

Observe that:

• Packet 1 matches all of the rules

• Packet 2 matches Rule 2 and Rule 3

• Packet 3 only matches Rule 3

For priority reasons, Packet 1 matches Rule 1 and is dropped. Packet 2 matches Rule 2 and is forwarded
to port 1. Packet 3 matches Rule 3 and is forwarded to port 0.

For more details on the rule file format, please refer to rule_ipv4.db and rule_ipv6.db files (inside
<RTE_SDK>/examples/l3fwd-acl/).

22.1.5 Application Phases

Once the application starts, it transitions through three phases:

• Initialization Phase - Perform the following tasks:

• Parse command parameters. Check the validity of rule file(s) name(s), number of logical cores,
receive and transmit queues. Bind ports, queues and logical cores. Check ACL search options,
and so on.

• Call Environmental Abstraction Layer (EAL) and Poll Mode Driver (PMD) functions to initialize
the environment and detect possible NICs. The EAL creates several threads and sets affinity
to a specific hardware thread CPU based on the configuration specified by the command line
arguments.

• Read the rule files and format the rules into the representation that the ACL library can recognize.
Call the ACL library function to add the rules into the database and compile them as a trie of
pattern sets. Note that application maintains a separate AC contexts for IPv4 and IPv6 rules.

• Runtime Phase - Process the incoming packets from a port. Packets are processed in three steps:

– Retrieval: Gets a packet from the receive queue. Each logical core may process several
queues for different ports. This depends on the configuration specified by command line
arguments.

– Lookup: Checks that the packet type is supported (IPv4/IPv6) and performs a 5-tuple lookup
over corresponding AC context. If an ACL rule is matched, the packets will be dropped and
return back to step 1. If a route rule is matched, it indicates the packet is not in the ACL list
and should be forwarded. If there is no matches for the packet, then the packet is dropped.

– Forwarding: Forwards the packet to the corresponding port.

• Final Phase - Perform the following tasks:

Calls the EAL, PMD driver and ACL library to free resource, then quits.

22.1. Overview 110

Sample Applications User Guides, Release 19.08.2

22.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l3fwd-acl sub-directory.

22.3 Running the Application

The application has a number of command line options:

./build/l3fwd-acl [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue,lcore)] --rule_ipv4 FILENAME rule_ipv6 FILENAME [--scalar] [--enable-jumbo [--max-pkt-len PKTLEN]] [--no-numa]

where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -P: Sets all ports to promiscuous mode so that packets are accepted regardless of the packet’s
Ethernet MAC destination address. Without this option, only packets with the Ethernet MAC
destination address set to the Ethernet address of the port are accepted.

• –config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which ports are
mapped to which cores

• –rule_ipv4 FILENAME: Specifies the IPv4 ACL and route rules file

• –rule_ipv6 FILENAME: Specifies the IPv6 ACL and route rules file

• –scalar: Use a scalar function to perform rule lookup

• –enable-jumbo: optional, enables jumbo frames

• –max-pkt-len: optional, maximum packet length in decimal (64-9600)

• –no-numa: optional, disables numa awareness

For example, consider a dual processor socket platform with 8 physical cores, where cores 0-7 and 16-23
appear on socket 0, while cores 8-15 and 24-31 appear on socket 1.

To enable L3 forwarding between two ports, assuming that both ports are in the same socket, using two
cores, cores 1 and 2, (which are in the same socket too), use the following command:

./build/l3fwd-acl -l 1,2 -n 4 -- -p 0x3 --config="(0,0,1),(1,0,2)" --rule_ipv4="./rule_ipv4.db" -- rule_ipv6="./rule_ipv6.db" --scalar

In this command:

• The -l option enables cores 1, 2

• The -p option enables ports 0 and 1

• The –config option enables one queue on each port and maps each (port,queue) pair to a specific
core. The following table shows the mapping in this example:

Port Queue lcore Description
0 0 1 Map queue 0 from port 0 to lcore 1.
1 0 2 Map queue 0 from port 1 to lcore 2.

• The –rule_ipv4 option specifies the reading of IPv4 rules sets from the ./ rule_ipv4.db file.

• The –rule_ipv6 option specifies the reading of IPv6 rules sets from the ./ rule_ipv6.db file.

• The –scalar option specifies the performing of rule lookup with a scalar function.

22.2. Compiling the Application 111

Sample Applications User Guides, Release 19.08.2

22.4 Explanation

The following sections provide some explanation of the sample application code. The aspects of port,
device and CPU configuration are similar to those of the L3 Forwarding Sample Application. The
following sections describe aspects that are specific to L3 forwarding with access control.

22.4.1 Parse Rules from File

As described earlier, both ACL and route rules are assumed to be saved in the same file. The application
parses the rules from the file and adds them to the database by calling the ACL library function. It
ignores empty and comment lines, and parses and validates the rules it reads. If errors are detected, the
application exits with messages to identify the errors encountered.

The application needs to consider the userdata and priority fields. The ACL rules save the index to
the specific rules in the userdata field, while route rules save the forwarding port number. In order to
differentiate the two types of rules, ACL rules add a signature in the userdata field. As for the priority
field, the application assumes rules are organized in descending order of priority. Therefore, the code
only decreases the priority number with each rule it parses.

22.4.2 Setting Up the ACL Context

For each supported AC rule format (IPv4 5-tuple, IPv6 6-tuple) application creates a separate context
handler from the ACL library for each CPU socket on the board and adds parsed rules into that context.

Note, that for each supported rule type, application needs to calculate the expected offset of the fields
from the start of the packet. That’s why only packets with fixed IPv4/ IPv6 header are supported. That
allows to perform ACL classify straight over incoming packet buffer - no extra protocol field retrieval
need to be performed.

Subsequently, the application checks whether NUMA is enabled. If it is, the application records the
socket IDs of the CPU cores involved in the task.

Finally, the application creates contexts handler from the ACL library, adds rules parsed from the file
into the database and build an ACL trie. It is important to note that the application creates an independent
copy of each database for each socket CPU involved in the task to reduce the time for remote memory
access.

22.4. Explanation 112

CHAPTER

TWENTYTHREE

L3 FORWARDING IN A VIRTUALIZATION ENVIRONMENT SAMPLE
APPLICATION

The L3 Forwarding in a Virtualization Environment sample application is a simple example of packet
processing using the DPDK. The application performs L3 forwarding that takes advantage of Single
Root I/O Virtualization (SR-IOV) features in a virtualized environment.

23.1 Overview

The application demonstrates the use of the hash and LPM libraries in the DPDK to implement packet
forwarding. The initialization and run-time paths are very similar to those of the L3 Forwarding Sample
Application. The forwarding decision is taken based on information read from the input packet.

The lookup method is either hash-based or LPM-based and is selected at compile time. When the
selected lookup method is hash-based, a hash object is used to emulate the flow classification stage. The
hash object is used in correlation with the flow table to map each input packet to its flow at runtime.

The hash lookup key is represented by the DiffServ 5-tuple composed of the following fields read from
the input packet: Source IP Address, Destination IP Address, Protocol, Source Port and Destination
Port. The ID of the output interface for the input packet is read from the identified flow table entry. The
set of flows used by the application is statically configured and loaded into the hash at initialization time.
When the selected lookup method is LPM based, an LPM object is used to emulate the forwarding stage
for IPv4 packets. The LPM object is used as the routing table to identify the next hop for each input
packet at runtime.

The LPM lookup key is represented by the Destination IP Address field read from the input packet.
The ID of the output interface for the input packet is the next hop returned by the LPM lookup. The
set of LPM rules used by the application is statically configured and loaded into the LPM object at the
initialization time.

Note: Please refer to Virtual Function Setup Instructions for virtualized test case setup.

23.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the l3fwd-vf sub-directory.

113

Sample Applications User Guides, Release 19.08.2

23.3 Running the Application

The application has a number of command line options:

./build/l3fwd-vf [EAL options] -- -p PORTMASK --config(port,queue,lcore)[,(port,queue,lcore)] [--no-numa]

where,

• –p PORTMASK: Hexadecimal bitmask of ports to configure

• –config (port,queue,lcore)[,(port,queue,lcore]: determines which queues from which ports are
mapped to which cores

• –no-numa: optional, disables numa awareness

For example, consider a dual processor socket platform with 8 physical cores, where cores 0-7 and 16-23
appear on socket 0, while cores 8-15 and 24-31 appear on socket 1.

To enable L3 forwarding between two ports, assuming that both ports are in the same socket, using two
cores, cores 1 and 2, (which are in the same socket too), use the following command:

./build/l3fwd-vf -l 1,2 -n 4 -- -p 0x3 --config="(0,0,1),(1,0,2)"

In this command:

• The -l option enables cores 1 and 2

• The -p option enables ports 0 and 1

• The –config option enables one queue on each port and maps each (port,queue) pair to a specific
core. The following table shows the mapping in this example:

Port Queue lcore Description
0 0 1 Map queue 0 from port 0 to lcore 1
1 0 2 Map queue 0 from port 1 to lcore 2

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

23.4 Explanation

The operation of this application is similar to that of the basic L3 Forwarding Sample Application. See
Explanation for more information.

23.3. Running the Application 114

CHAPTER

TWENTYFOUR

LINK STATUS INTERRUPT SAMPLE APPLICATION

The Link Status Interrupt sample application is a simple example of packet processing using the Data
Plane Development Kit (DPDK) that demonstrates how network link status changes for a network port
can be captured and used by a DPDK application.

24.1 Overview

The Link Status Interrupt sample application registers a user space callback for the link status interrupt
of each port and performs L2 forwarding for each packet that is received on an RX_PORT. The following
operations are performed:

• RX_PORT and TX_PORT are paired with available ports one-by-one according to the core mask

• The source MAC address is replaced by the TX_PORT MAC address

• The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to demonstrate the usage of link status interrupt and its user space callbacks
and the behavior of L2 forwarding each time the link status changes.

24.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the link_status_interrupt sub-directory.

24.3 Running the Application

The application requires a number of command line options:

./build/link_status_interrupt [EAL options] -- -p PORTMASK [-q NQ][-T PERIOD]

where,

• -p PORTMASK: A hexadecimal bitmask of the ports to configure

• -q NQ: A number of queues (=ports) per lcore (default is 1)

• -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default)

To run the application in a linux environment with 4 lcores, 4 memory channels, 16 ports and 8 RX
queues per lcore, issue the command:

115

Sample Applications User Guides, Release 19.08.2

$./build/link_status_interrupt -l 0-3 -n 4-- -q 8 -p ffff

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

24.4 Explanation

The following sections provide some explanation of the code.

24.4.1 Command Line Arguments

The Link Status Interrupt sample application takes specific parameters, in addition to Environment Ab-
straction Layer (EAL) arguments (see Section Running the Application).

Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application.
See Command Line Arguments for more information.

24.4.2 Mbuf Pool Initialization

Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application.
See Mbuf Pool Initialization for more information.

24.4.3 Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully
understand this code, it is recommended to study the chapters that related to the Poll Mode Driver in the
DPDK Programmer’s Guide and the DPDK API Reference.

if (rte_pci_probe() < 0)
rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");

/*
* Each logical core is assigned a dedicated TX queue on each port.

*/

RTE_ETH_FOREACH_DEV(portid) {
/* skip ports that are not enabled */

if ((lsi_enabled_port_mask & (1 << portid)) == 0)
continue;

/* save the destination port id */

if (nb_ports_in_mask % 2) {
lsi_dst_ports[portid] = portid_last;
lsi_dst_ports[portid_last] = portid;

}
else

portid_last = portid;

nb_ports_in_mask++;

rte_eth_dev_info_get((uint8_t) portid, &dev_info);
}

24.4. Explanation 116

Sample Applications User Guides, Release 19.08.2

Observe that:

• rte_pci_probe() parses the devices on the PCI bus and initializes recognized devices.

The next step is to configure the RX and TX queues. For each port, there is only one RX queue (only
one lcore is able to poll a given port). The number of TX queues depends on the number of available
lcores. The rte_eth_dev_configure() function is used to configure the number of queues for a port:

ret = rte_eth_dev_configure((uint8_t) portid, 1, 1, &port_conf);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {
.rxmode = {

.split_hdr_size = 0,
},
.txmode = {},
.intr_conf = {

.lsc = 1, /**< link status interrupt feature enabled */
},

};

Configuring lsc to 0 (the default) disables the generation of any link status change interrupts in kernel
space and no user space interrupt event is received. The public interface rte_eth_link_get() accesses the
NIC registers directly to update the link status. Configuring lsc to non-zero enables the generation of
link status change interrupts in kernel space when a link status change is present and calls the user space
callbacks registered by the application. The public interface rte_eth_link_get() just reads the link status
in a global structure that would be updated in the interrupt host thread only.

24.4.4 Interrupt Callback Registration

The application can register one or more callbacks to a specific port and interrupt event. An example
callback function that has been written as indicated below.

static void
lsi_event_callback(uint16_t port_id, enum rte_eth_event_type type, void *param)
{

struct rte_eth_link link;

RTE_SET_USED(param);

printf("\n\nIn registered callback...\n");

printf("Event type: %s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt" : "unknown event");

rte_eth_link_get_nowait(port_id, &link);

if (link.link_status) {
printf("Port %d Link Up - speed %u Mbps - %s\n\n", port_id, (unsigned)link.link_speed,

(link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex"));
} else

printf("Port %d Link Down\n\n", port_id);
}

This function is called when a link status interrupt is present for the right port. The port_id indicates
which port the interrupt applies to. The type parameter identifies the interrupt event type, which currently
can be RTE_ETH_EVENT_INTR_LSC only, but other types can be added in the future. The param
parameter is the address of the parameter for the callback. This function should be implemented with

24.4. Explanation 117

Sample Applications User Guides, Release 19.08.2

care since it will be called in the interrupt host thread, which is different from the main thread of its
caller.

The application registers the lsi_event_callback and a NULL parameter to the link status interrupt event
on each port:

rte_eth_dev_callback_register((uint8_t)portid, RTE_ETH_EVENT_INTR_LSC, lsi_event_callback, NULL);

This registration can be done only after calling the rte_eth_dev_configure() function and before calling
any other function. If lsc is initialized with 0, the callback is never called since no interrupt event would
ever be present.

24.4.5 RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option, which specifies
the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore. If there
are 16 ports on the target (and if the portmask argument is -p ffff), the application will need four lcores
to poll all the ports.

ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, lsi_pktmbuf_pool);
if (ret < 0)

rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid);

The list of queues that must be polled for a given lcore is stored in a private structure called struct
lcore_queue_conf.

struct lcore_queue_conf {
unsigned n_rx_port;
unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned tx_queue_id;
struct mbuf_table tx_mbufs[LSI_MAX_PORTS];

} rte_cache_aligned;

struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];

The n_rx_port and rx_port_list[] fields are used in the main packet processing loop (see Receive, Process
and Transmit Packets).

The global configuration for the RX queues is stored in a static structure:

static const struct rte_eth_rxconf rx_conf = {
.rx_thresh = {

.pthresh = RX_PTHRESH,

.hthresh = RX_HTHRESH,

.wthresh = RX_WTHRESH,
},

};

24.4.6 TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is initialized.

/* init one TX queue logical core on each port */

fflush(stdout);

ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
if (ret < 0)

rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d,port=%u\n", ret, (unsigned) portid);

24.4. Explanation 118

Sample Applications User Guides, Release 19.08.2

The global configuration for TX queues is stored in a static structure:

static const struct rte_eth_txconf tx_conf = {
.tx_thresh = {

.pthresh = TX_PTHRESH,

.hthresh = TX_HTHRESH,

.wthresh = TX_WTHRESH,
},
.tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */

};

24.4.7 Receive, Process and Transmit Packets

In the lsi_main_loop() function, the main task is to read ingress packets from the RX queues. This is
done using the following code:

/*
* Read packet from RX queues

*/

for (i = 0; i < qconf->n_rx_port; i++) {
portid = qconf->rx_port_list[i];
nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);
port_statistics[portid].rx += nb_rx;

for (j = 0; j < nb_rx; j++) {
m = pkts_burst[j];
rte_prefetch0(rte_pktmbuf_mtod(m, void *));
lsi_simple_forward(m, portid);

}
}

Packets are read in a burst of size MAX_PKT_BURST. The rte_eth_rx_burst() function writes the mbuf
pointers in a local table and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the lsi_simple_forward() function. The processing is very
simple: processes the TX port from the RX port and then replaces the source and destination MAC
addresses.

Note: In the following code, the two lines for calculating the output port require some explanation. If
portId is even, the first line does nothing (as portid & 1 will be 0), and the second line adds 1. If portId
is odd, the first line subtracts one and the second line does nothing. Therefore, 0 goes to 1, and 1 to 0, 2
goes to 3 and 3 to 2, and so on.

static void
lsi_simple_forward(struct rte_mbuf *m, unsigned portid)
{

struct rte_ether_hdr *eth;
void *tmp;
unsigned dst_port = lsi_dst_ports[portid];

eth = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);

/* 02:00:00:00:00:xx */

tmp = ð->d_addr.addr_bytes[0];

*((uint64_t *)tmp) = 0x000000000002 + (dst_port << 40);

24.4. Explanation 119

Sample Applications User Guides, Release 19.08.2

/* src addr */
rte_ether_addr_copy(&lsi_ports_eth_addr[dst_port], ð->s_addr);

lsi_send_packet(m, dst_port);
}

Then, the packet is sent using the lsi_send_packet(m, dst_port) function. For this test application, the
processing is exactly the same for all packets arriving on the same RX port. Therefore, it would have
been possible to call the lsi_send_burst() function directly from the main loop to send all the received
packets on the same TX port using the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded on the
same port as packet N-1. The application is implemented to illustrate that so the same approach can be
reused in a more complex application.

The lsi_send_packet() function stores the packet in a per-lcore and per-txport table. If the table is full,
the whole packets table is transmitted using the lsi_send_burst() function:

/* Send the packet on an output interface */

static int
lsi_send_packet(struct rte_mbuf *m, uint16_t port)
{

unsigned lcore_id, len;
struct lcore_queue_conf *qconf;

lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
len = qconf->tx_mbufs[port].len;
qconf->tx_mbufs[port].m_table[len] = m;
len++;

/* enough pkts to be sent */

if (unlikely(len == MAX_PKT_BURST)) {
lsi_send_burst(qconf, MAX_PKT_BURST, port);
len = 0;

}
qconf->tx_mbufs[port].len = len;

return 0;
}

To ensure that no packets remain in the tables, each lcore does a draining of the TX queue in its main
loop. This technique introduces some latency when there are not many packets to send. However, it
improves performance:

cur_tsc = rte_rdtsc();

/*
* TX burst queue drain

*/

diff_tsc = cur_tsc - prev_tsc;

if (unlikely(diff_tsc > drain_tsc)) {
/* this could be optimized (use queueid instead of * portid), but it is not called so often */

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
if (qconf->tx_mbufs[portid].len == 0)

continue;

lsi_send_burst(&lcore_queue_conf[lcore_id],

24.4. Explanation 120

Sample Applications User Guides, Release 19.08.2

qconf->tx_mbufs[portid].len, (uint8_t) portid);
qconf->tx_mbufs[portid].len = 0;

}

/* if timer is enabled */

if (timer_period > 0) {
/* advance the timer */

timer_tsc += diff_tsc;

/* if timer has reached its timeout */

if (unlikely(timer_tsc >= (uint64_t) timer_period)) {
/* do this only on master core */

if (lcore_id == rte_get_master_lcore()) {
print_stats();

/* reset the timer */
timer_tsc = 0;

}
}

}
prev_tsc = cur_tsc;

}

24.4. Explanation 121

CHAPTER

TWENTYFIVE

LOAD BALANCER SAMPLE APPLICATION

The Load Balancer sample application demonstrates the concept of isolating the packet I/O task from
the application-specific workload. Depending on the performance target, a number of logical cores
(lcores) are dedicated to handle the interaction with the NIC ports (I/O lcores), while the rest of the
lcores are dedicated to performing the application processing (worker lcores). The worker lcores are
totally oblivious to the intricacies of the packet I/O activity and use the NIC-agnostic interface provided
by software rings to exchange packets with the I/O cores.

25.1 Overview

The architecture of the Load Balance application is presented in the following figure.

Fig. 25.1: Load Balancer Application Architecture

For the sake of simplicity, the diagram illustrates a specific case of two I/O RX and two I/O TX lcores
off loading the packet I/O overhead incurred by four NIC ports from four worker cores, with each I/O
lcore handling RX/TX for two NIC ports.

122

Sample Applications User Guides, Release 19.08.2

25.1.1 I/O RX Logical Cores

Each I/O RX lcore performs packet RX from its assigned NIC RX rings and then distributes the received
packets to the worker threads. The application allows each I/O RX lcore to communicate with any of
the worker threads, therefore each (I/O RX lcore, worker lcore) pair is connected through a dedicated
single producer - single consumer software ring.

The worker lcore to handle the current packet is determined by reading a predefined 1-byte field from
the input packet:

worker_id = packet[load_balancing_field] % n_workers

Since all the packets that are part of the same traffic flow are expected to have the same value for the
load balancing field, this scheme also ensures that all the packets that are part of the same traffic flow
are directed to the same worker lcore (flow affinity) in the same order they enter the system (packet
ordering).

25.1.2 I/O TX Logical Cores

Each I/O lcore owns the packet TX for a predefined set of NIC ports. To enable each worker thread to
send packets to any NIC TX port, the application creates a software ring for each (worker lcore, NIC TX
port) pair, with each I/O TX core handling those software rings that are associated with NIC ports that
it handles.

25.1.3 Worker Logical Cores

Each worker lcore reads packets from its set of input software rings and routes them to the NIC ports for
transmission by dispatching them to output software rings. The routing logic is LPM based, with all the
worker threads sharing the same LPM rules.

25.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the load_balancer sub-directory.

25.3 Running the Application

To successfully run the application, the command line used to start the application has to be in sync with
the traffic flows configured on the traffic generator side.

For examples of application command lines and traffic generator flows, please refer to the DPDK Test
Report. For more details on how to set up and run the sample applications provided with DPDK package,
please refer to the DPDK Getting Started Guide.

25.2. Compiling the Application 123

Sample Applications User Guides, Release 19.08.2

25.4 Explanation

25.4.1 Application Configuration

The application run-time configuration is done through the application command line parameters. Any
parameter that is not specified as mandatory is optional, with the default value hard-coded in the main.h
header file from the application folder.

The list of application command line parameters is listed below:

1. –rx “(PORT, QUEUE, LCORE), ...”: The list of NIC RX ports and queues handled by the I/O
RX lcores. This parameter also implicitly defines the list of I/O RX lcores. This is a mandatory
parameter.

2. –tx “(PORT, LCORE), ... ”: The list of NIC TX ports handled by the I/O TX lcores. This
parameter also implicitly defines the list of I/O TX lcores. This is a mandatory parameter.

3. –w “LCORE, ...”: The list of the worker lcores. This is a mandatory parameter.

4. –lpm “IP / PREFIX => PORT; ...”: The list of LPM rules used by the worker lcores for packet
forwarding. This is a mandatory parameter.

5. –rsz “A, B, C, D”: Ring sizes:

(a) A = The size (in number of buffer descriptors) of each of the NIC RX rings read by the I/O
RX lcores.

(b) B = The size (in number of elements) of each of the software rings used by the I/O RX lcores
to send packets to worker lcores.

(c) C = The size (in number of elements) of each of the software rings used by the worker lcores
to send packets to I/O TX lcores.

(d) D = The size (in number of buffer descriptors) of each of the NIC TX rings written by I/O
TX lcores.

6. –bsz “(A, B), (C, D), (E, F)”: Burst sizes:

(a) A = The I/O RX lcore read burst size from NIC RX.

(b) B = The I/O RX lcore write burst size to the output software rings.

(c) C = The worker lcore read burst size from the input software rings.

(d) D = The worker lcore write burst size to the output software rings.

(e) E = The I/O TX lcore read burst size from the input software rings.

(f) F = The I/O TX lcore write burst size to the NIC TX.

7. –pos-lb POS: The position of the 1-byte field within the input packet used by the I/O RX lcores to
identify the worker lcore for the current packet. This field needs to be within the first 64 bytes of
the input packet.

The infrastructure of software rings connecting I/O lcores and worker lcores is built by the application
as a result of the application configuration provided by the user through the application command line
parameters.

A specific lcore performing the I/O RX role for a specific set of NIC ports can also perform the I/O TX
role for the same or a different set of NIC ports. A specific lcore cannot perform both the I/O role (either
RX or TX) and the worker role during the same session.

25.4. Explanation 124

Sample Applications User Guides, Release 19.08.2

Example:

./load_balancer -l 3-7 -n 4 -- --rx "(0,0,3),(1,0,3)" --tx "(0,3),(1,3)" --w "4,5,6,7" --lpm "1.0.0.0/24=>0; 1.0.1.0/24=>1;" --pos-lb 29

There is a single I/O lcore (lcore 3) that handles RX and TX for two NIC ports (ports 0 and 1) that
handles packets to/from four worker lcores (lcores 4, 5, 6 and 7) that are assigned worker IDs 0 to 3
(worker ID for lcore 4 is 0, for lcore 5 is 1, for lcore 6 is 2 and for lcore 7 is 3).

Assuming that all the input packets are IPv4 packets with no VLAN label and the source IP address of
the current packet is A.B.C.D, the worker lcore for the current packet is determined by byte D (which is
byte 29). There are two LPM rules that are used by each worker lcore to route packets to the output NIC
ports.

The following table illustrates the packet flow through the system for several possible traffic flows:

Flow
#

Source IP
Address

Destination IP
Address

Worker ID (Worker
lcore)

Output NIC
Port

1 0.0.0.0 1.0.0.1 0 (4) 0
2 0.0.0.1 1.0.1.2 1 (5) 1
3 0.0.0.14 1.0.0.3 2 (6) 0
4 0.0.0.15 1.0.1.4 3 (7) 1

25.4.2 NUMA Support

The application has built-in performance enhancements for the NUMA case:

1. One buffer pool per each CPU socket.

2. One LPM table per each CPU socket.

3. Memory for the NIC RX or TX rings is allocated on the same socket with the lcore handling the
respective ring.

In the case where multiple CPU sockets are used in the system, it is recommended to enable at least one
lcore to fulfill the I/O role for the NIC ports that are directly attached to that CPU socket through the
PCI Express* bus. It is always recommended to handle the packet I/O with lcores from the same CPU
socket as the NICs.

Depending on whether the I/O RX lcore (same CPU socket as NIC RX), the worker lcore and the I/O
TX lcore (same CPU socket as NIC TX) handling a specific input packet, are on the same or different
CPU sockets, the following run-time scenarios are possible:

1. AAA: The packet is received, processed and transmitted without going across CPU sockets.

2. AAB: The packet is received and processed on socket A, but as it has to be transmitted on a NIC
port connected to socket B, the packet is sent to socket B through software rings.

3. ABB: The packet is received on socket A, but as it has to be processed by a worker lcore on socket
B, the packet is sent to socket B through software rings. The packet is transmitted by a NIC port
connected to the same CPU socket as the worker lcore that processed it.

4. ABC: The packet is received on socket A, it is processed by an lcore on socket B, then it has to
be transmitted out by a NIC connected to socket C. The performance price for crossing the CPU
socket boundary is paid twice for this packet.

25.4. Explanation 125

CHAPTER

TWENTYSIX

SERVER-NODE EFD SAMPLE APPLICATION

This sample application demonstrates the use of EFD library as a flow-level load balancer, for more
information about the EFD Library please refer to the DPDK programmer’s guide.

This sample application is a variant of the client-server sample application where a specific target node
is specified for every and each flow (not in a round-robin fashion as the original load balancing sample
application).

26.1 Overview

The architecture of the EFD flow-based load balancer sample application is presented in the following
figure.

Key 1Action 1Key 2Action 2

Key xAction xKey yAction yKey zAction z

Key NAction N

Local Table for N Specific Flows Serviced at Node 1

EFD Table

Group_id Hash index

Supports X*N Flows

Frontend Serveror Load Balancer

Backend Server 1

Backend Server 2

Backend Server X

Key 1Action 1Key 2Action 2

Key xAction xKey yAction yKey zAction z

Key NAction N

Local Table for N Specific Flows Serviced at Node X

Supports N Flows

Fig. 26.1: Using EFD as a Flow-Level Load Balancer

As shown in Fig. 26.1, the sample application consists of a front-end node (server) using the EFD library
to create a load-balancing table for flows, for each flow a target backend worker node is specified. The
EFD table does not store the flow key (unlike a regular hash table), and hence, it can individually load-
balance millions of flows (number of targets * maximum number of flows fit in a flow table per target)
while still fitting in CPU cache.

126

Sample Applications User Guides, Release 19.08.2

It should be noted that although they are referred to as nodes, the frontend server and worker nodes are
processes running on the same platform.

26.1.1 Front-end Server

Upon initializing, the frontend server node (process) creates a flow distributor table (based on the EFD
library) which is populated with flow information and its intended target node.

The sample application assigns a specific target node_id (process) for each of the IP destination ad-
dresses as follows:

node_id = i % num_nodes; /* Target node id is generated */
ip_dst = rte_cpu_to_be_32(i); /* Specific ip destination address is

assigned to this target node */

then the pair of <key,target> is inserted into the flow distribution table.

The main loop of the server process receives a burst of packets, then for each packet, a flow key (IP
destination address) is extracted. The flow distributor table is looked up and the target node id is returned.
Packets are then enqueued to the specified target node id.

It should be noted that flow distributor table is not a membership test table. I.e. if the key has already
been inserted the target node id will be correct, but for new keys the flow distributor table will return a
value (which can be valid).

26.1.2 Backend Worker Nodes

Upon initializing, the worker node (process) creates a flow table (a regular hash table that stores the key
default size 1M flows) which is populated with only the flow information that is serviced at this node.
This flow key is essential to point out new keys that have not been inserted before.

The worker node’s main loop is simply receiving packets then doing a hash table lookup. If a match
occurs then statistics are updated for flows serviced by this node. If no match is found in the local hash
table then this indicates that this is a new flow, which is dropped.

26.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the server_node_efd sub-directory.

26.3 Running the Application

The application has two binaries to be run: the front-end server and the back-end node.

The frontend server (server) has the following command line options:

./server [EAL options] -- -p PORTMASK -n NUM_NODES -f NUM_FLOWS

Where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -n NUM_NODES: Number of back-end nodes that will be used

26.2. Compiling the Application 127

Sample Applications User Guides, Release 19.08.2

• -f NUM_FLOWS: Number of flows to be added in the EFD table (1 million, by default)

The back-end node (node) has the following command line options:

./node [EAL options] -- -n NODE_ID

Where,

• -n NODE_ID: Node ID, which cannot be equal or higher than NUM_MODES

First, the server app must be launched, with the number of nodes that will be run. Once it has been
started, the node instances can be run, with different NODE_ID. These instances have to be run as
secondary processes, with --proc-type=secondary in the EAL options, which will attach to the
primary process memory, and therefore, they can access the queues created by the primary process to
distribute packets.

To successfully run the application, the command line used to start the application has to be in sync with
the traffic flows configured on the traffic generator side.

For examples of application command lines and traffic generator flows, please refer to the DPDK Test
Report. For more details on how to set up and run the sample applications provided with DPDK pack-
age, please refer to the DPDK Getting Started Guide for Linux and DPDK Getting Started Guide for
FreeBSD.

26.4 Explanation

As described in previous sections, there are two processes in this example.

The first process, the front-end server, creates and populates the EFD table, which is used to distribute
packets to nodes, which the number of flows specified in the command line (1 million, by default).

static void
create_efd_table(void)
{

uint8_t socket_id = rte_socket_id();

/* create table */
efd_table = rte_efd_create("flow table", num_flows * 2, sizeof(uint32_t),

1 << socket_id, socket_id);

if (efd_table == NULL)
rte_exit(EXIT_FAILURE, "Problem creating the flow table\n");

}

static void
populate_efd_table(void)
{

unsigned int i;
int32_t ret;
uint32_t ip_dst;
uint8_t socket_id = rte_socket_id();
uint64_t node_id;

/* Add flows in table */
for (i = 0; i < num_flows; i++) {

node_id = i % num_nodes;

ip_dst = rte_cpu_to_be_32(i);
ret = rte_efd_update(efd_table, socket_id,

(void *)&ip_dst, (efd_value_t)node_id);

26.4. Explanation 128

Sample Applications User Guides, Release 19.08.2

if (ret < 0)
rte_exit(EXIT_FAILURE, "Unable to add entry %u in "

"EFD table\n", i);
}

printf("EFD table: Adding 0x%x keys\n", num_flows);
}

After initialization, packets are received from the enabled ports, and the IPv4 address from the packets
is used as a key to look up in the EFD table, which tells the node where the packet has to be distributed.

static void
process_packets(uint32_t port_num __rte_unused, struct rte_mbuf *pkts[],

uint16_t rx_count, unsigned int socket_id)
{

uint16_t i;
uint8_t node;
efd_value_t data[EFD_BURST_MAX];
const void *key_ptrs[EFD_BURST_MAX];

struct rte_ipv4_hdr *ipv4_hdr;
uint32_t ipv4_dst_ip[EFD_BURST_MAX];

for (i = 0; i < rx_count; i++) {
/* Handle IPv4 header.*/
ipv4_hdr = rte_pktmbuf_mtod_offset(pkts[i], struct rte_ipv4_hdr *,

sizeof(struct rte_ether_hdr));
ipv4_dst_ip[i] = ipv4_hdr->dst_addr;
key_ptrs[i] = (void *)&ipv4_dst_ip[i];

}

rte_efd_lookup_bulk(efd_table, socket_id, rx_count,
(const void **) key_ptrs, data);

for (i = 0; i < rx_count; i++) {
node = (uint8_t) ((uintptr_t)data[i]);

if (node >= num_nodes) {
/*
* Node is out of range, which means that

* flow has not been inserted

*/
flow_dist_stats.drop++;
rte_pktmbuf_free(pkts[i]);

} else {
flow_dist_stats.distributed++;
enqueue_rx_packet(node, pkts[i]);

}
}

for (i = 0; i < num_nodes; i++)
flush_rx_queue(i);

}

The burst of packets received is enqueued in temporary buffers (per node), and enqueued in the shared
ring between the server and the node. After this, a new burst of packets is received and this process is
repeated infinitely.

static void
flush_rx_queue(uint16_t node)
{

uint16_t j;
struct node *cl;

if (cl_rx_buf[node].count == 0)

26.4. Explanation 129

Sample Applications User Guides, Release 19.08.2

return;

cl = &nodes[node];
if (rte_ring_enqueue_bulk(cl->rx_q, (void **)cl_rx_buf[node].buffer,

cl_rx_buf[node].count, NULL) != cl_rx_buf[node].count){
for (j = 0; j < cl_rx_buf[node].count; j++)

rte_pktmbuf_free(cl_rx_buf[node].buffer[j]);
cl->stats.rx_drop += cl_rx_buf[node].count;

} else
cl->stats.rx += cl_rx_buf[node].count;

cl_rx_buf[node].count = 0;
}

The second process, the back-end node, receives the packets from the shared ring with the server and
send them out, if they belong to the node.

At initialization, it attaches to the server process memory, to have access to the shared ring, parameters
and statistics.

rx_ring = rte_ring_lookup(get_rx_queue_name(node_id));
if (rx_ring == NULL)

rte_exit(EXIT_FAILURE, "Cannot get RX ring - "
"is server process running?\n");

mp = rte_mempool_lookup(PKTMBUF_POOL_NAME);
if (mp == NULL)

rte_exit(EXIT_FAILURE, "Cannot get mempool for mbufs\n");

mz = rte_memzone_lookup(MZ_SHARED_INFO);
if (mz == NULL)

rte_exit(EXIT_FAILURE, "Cannot get port info structure\n");
info = mz->addr;
tx_stats = &(info->tx_stats[node_id]);
filter_stats = &(info->filter_stats[node_id]);

Then, the hash table that contains the flows that will be handled by the node is created and populated.

static struct rte_hash *
create_hash_table(const struct shared_info *info)
{

uint32_t num_flows_node = info->num_flows / info->num_nodes;
char name[RTE_HASH_NAMESIZE];
struct rte_hash *h;

/* create table */
struct rte_hash_parameters hash_params = {

.entries = num_flows_node * 2, /* table load = 50% */

.key_len = sizeof(uint32_t), /* Store IPv4 dest IP address */

.socket_id = rte_socket_id(),

.hash_func_init_val = 0,
};

snprintf(name, sizeof(name), "hash_table_%d", node_id);
hash_params.name = name;
h = rte_hash_create(&hash_params);

if (h == NULL)
rte_exit(EXIT_FAILURE,

"Problem creating the hash table for node %d\n",
node_id);

return h;
}

26.4. Explanation 130

Sample Applications User Guides, Release 19.08.2

static void
populate_hash_table(const struct rte_hash *h, const struct shared_info *info)
{

unsigned int i;
int32_t ret;
uint32_t ip_dst;
uint32_t num_flows_node = 0;
uint64_t target_node;

/* Add flows in table */
for (i = 0; i < info->num_flows; i++) {

target_node = i % info->num_nodes;
if (target_node != node_id)

continue;

ip_dst = rte_cpu_to_be_32(i);

ret = rte_hash_add_key(h, (void *) &ip_dst);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Unable to add entry %u "
"in hash table\n", i);

else
num_flows_node++;

}

printf("Hash table: Adding 0x%x keys\n", num_flows_node);
}

After initialization, packets are dequeued from the shared ring (from the server) and, like in the server
process, the IPv4 address from the packets is used as a key to look up in the hash table. If there is a hit,
packet is stored in a buffer, to be eventually transmitted in one of the enabled ports. If key is not there,
packet is dropped, since the flow is not handled by the node.

static inline void
handle_packets(struct rte_hash *h, struct rte_mbuf **bufs, uint16_t num_packets)
{

struct rte_ipv4_hdr *ipv4_hdr;
uint32_t ipv4_dst_ip[PKT_READ_SIZE];
const void *key_ptrs[PKT_READ_SIZE];
unsigned int i;
int32_t positions[PKT_READ_SIZE] = {0};

for (i = 0; i < num_packets; i++) {
/* Handle IPv4 header.*/
ipv4_hdr = rte_pktmbuf_mtod_offset(bufs[i], struct rte_ipv4_hdr *,

sizeof(struct rte_ether_hdr));
ipv4_dst_ip[i] = ipv4_hdr->dst_addr;
key_ptrs[i] = &ipv4_dst_ip[i];

}
/* Check if packets belongs to any flows handled by this node */
rte_hash_lookup_bulk(h, key_ptrs, num_packets, positions);

for (i = 0; i < num_packets; i++) {
if (likely(positions[i] >= 0)) {

filter_stats->passed++;
transmit_packet(bufs[i]);

} else {
filter_stats->drop++;
/* Drop packet, as flow is not handled by this node */
rte_pktmbuf_free(bufs[i]);

}
}

26.4. Explanation 131

Sample Applications User Guides, Release 19.08.2

}

Finally, note that both processes updates statistics, such as transmitted, received and dropped packets,
which are shown and refreshed by the server app.

static void
do_stats_display(void)
{

unsigned int i, j;
const char clr[] = {27, '[', '2', 'J', '\0'};
const char topLeft[] = {27, '[', '1', ';', '1', 'H', '\0'};
uint64_t port_tx[RTE_MAX_ETHPORTS], port_tx_drop[RTE_MAX_ETHPORTS];
uint64_t node_tx[MAX_NODES], node_tx_drop[MAX_NODES];

/* to get TX stats, we need to do some summing calculations */
memset(port_tx, 0, sizeof(port_tx));
memset(port_tx_drop, 0, sizeof(port_tx_drop));
memset(node_tx, 0, sizeof(node_tx));
memset(node_tx_drop, 0, sizeof(node_tx_drop));

for (i = 0; i < num_nodes; i++) {
const struct tx_stats *tx = &info->tx_stats[i];

for (j = 0; j < info->num_ports; j++) {
const uint64_t tx_val = tx->tx[info->id[j]];
const uint64_t drop_val = tx->tx_drop[info->id[j]];

port_tx[j] += tx_val;
port_tx_drop[j] += drop_val;
node_tx[i] += tx_val;
node_tx_drop[i] += drop_val;

}
}

/* Clear screen and move to top left */
printf("%s%s", clr, topLeft);

printf("PORTS\n");
printf("-----\n");
for (i = 0; i < info->num_ports; i++)

printf("Port %u: '%s'\t", (unsigned int)info->id[i],
get_printable_mac_addr(info->id[i]));

printf("\n\n");
for (i = 0; i < info->num_ports; i++) {

printf("Port %u - rx: %9"PRIu64"\t"
"tx: %9"PRIu64"\n",
(unsigned int)info->id[i], info->rx_stats.rx[i],
port_tx[i]);

}

printf("\nSERVER\n");
printf("-----\n");
printf("distributed: %9"PRIu64", drop: %9"PRIu64"\n",

flow_dist_stats.distributed, flow_dist_stats.drop);

printf("\nNODES\n");
printf("-------\n");
for (i = 0; i < num_nodes; i++) {

const unsigned long long rx = nodes[i].stats.rx;
const unsigned long long rx_drop = nodes[i].stats.rx_drop;
const struct filter_stats *filter = &info->filter_stats[i];

printf("Node %2u - rx: %9llu, rx_drop: %9llu\n"

26.4. Explanation 132

Sample Applications User Guides, Release 19.08.2

" tx: %9"PRIu64", tx_drop: %9"PRIu64"\n"
" filter_passed: %9"PRIu64", "
"filter_drop: %9"PRIu64"\n",
i, rx, rx_drop, node_tx[i], node_tx_drop[i],
filter->passed, filter->drop);

}

printf("\n");
}

26.4. Explanation 133

CHAPTER

TWENTYSEVEN

SERVICE CORES SAMPLE APPLICATION

The service cores sample application demonstrates the service cores capabilities of DPDK. The service
cores infrastructure is part of the DPDK EAL, and allows any DPDK component to register a service. A
service is a work item or task, that requires CPU time to perform its duty.

This sample application registers 5 dummy services. These 5 services are used to show how the ser-
vice_cores API can be used to orchestrate these services to run on different service lcores. This orches-
tration is done by calling the service cores APIs, however the sample application introduces a “profile”
concept to contain the service mapping details. Note that the profile concept is application specific, and
not a part of the service cores API.

27.1 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/service_cores

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linux-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

27.2 Running the Application

To run the example, just execute the binary. Since the application dynamically adds service cores in
the application code itself, there is no requirement to pass a service core-mask as an EAL argument at
startup time.

$./build/service_cores

27.3 Explanation

The following sections provide some explanation of code focusing on registering applications from an
applications point of view, and modifying the service core counts and mappings at runtime.

134

Sample Applications User Guides, Release 19.08.2

27.3.1 Registering a Service

The following code section shows how to register a service as an application. Note that the
service component header must be included by the application in order to register services:
rte_service_component.h, in addition to the ordinary service cores header rte_service.h
which provides the runtime functions to add, remove and remap service cores.

struct rte_service_spec service = {
.name = "service_name",

};
int ret = rte_service_component_register(services, &id);
if (ret)

return -1;

/* set the service itself to be ready to run. In the case of

* ethdev, eventdev etc PMDs, this will be set when the

* appropriate configure or setup function is called.

*/
rte_service_component_runstate_set(id, 1);

/* Collect statistics for the service */
rte_service_set_stats_enable(id, 1);

/* The application sets the service to running state. Note that this

* function enables the service to run - while the 'component' version

* of this function (as above) marks the service itself as ready */
ret = rte_service_runstate_set(id, 1);

27.3.2 Controlling A Service Core

This section demonstrates how to add a service core. The rte_service.h header file provides the
functions for dynamically adding and removing cores. The APIs to add and remove cores use lcore IDs
similar to existing DPDK functions.

These are the functions to start a service core, and have it run a service:

/* the lcore ID to use as a service core */
uint32_t service_core_id = 7;
ret = rte_service_lcore_add(service_core_id);
if(ret)

return -1;

/* service cores are in "stopped" state when added, so start it */
ret = rte_service_lcore_start(service_core_id);
if(ret)

return -1;

/* map a service to the service core, causing it to run the service */
uint32_t service_id; /* ID of a registered service */
uint32_t enable = 1; /* 1 maps the service, 0 unmaps */
ret = rte_service_map_lcore_set(service_id, service_core_id, enable);
if(ret)

return -1;

27.3.3 Removing A Service Core

To remove a service core, the steps are similar to adding but in reverse order. Note that it is not allowed
to remove a service core if the service is running, and the service-core is the only core running that
service (see documentation for rte_service_lcore_stop function for details).

27.3. Explanation 135

Sample Applications User Guides, Release 19.08.2

27.3.4 Conclusion

The service cores infrastructure provides DPDK with two main features. The first is to abstract away
hardware differences: the service core can CPU cycles to a software fallback implementation, allowing
the application to be abstracted from the difference in HW / SW availability. The second feature is a
flexible method of registering functions to be run, allowing the running of the functions to be scaled
across multiple CPUs.

27.3. Explanation 136

CHAPTER

TWENTYEIGHT

MULTI-PROCESS SAMPLE APPLICATION

This chapter describes the example applications for multi-processing that are included in the DPDK.

28.1 Example Applications

28.1.1 Building the Sample Applications

The multi-process example applications are built in the same way as other sample applications, and as
documented in the DPDK Getting Started Guide.

To compile the sample application see Compiling the Sample Applications.

The applications are located in the multi_process sub-directory.

Note: If just a specific multi-process application needs to be built, the final make command can be run
just in that application’s directory, rather than at the top-level multi-process directory.

28.1.2 Basic Multi-process Example

The examples/simple_mp folder in the DPDK release contains a basic example application to demon-
strate how two DPDK processes can work together using queues and memory pools to share information.

Running the Application

To run the application, start one copy of the simple_mp binary in one terminal, passing at least two cores
in the coremask/corelist, as follows:

./build/simple_mp -l 0-1 -n 4 --proc-type=primary

For the first DPDK process run, the proc-type flag can be omitted or set to auto, since all DPDK processes
will default to being a primary instance, meaning they have control over the hugepage shared memory
regions. The process should start successfully and display a command prompt as follows:

$./build/simple_mp -l 0-1 -n 4 --proc-type=primary
EAL: coremask set to 3
EAL: Detected lcore 0 on socket 0
EAL: Detected lcore 1 on socket 0
EAL: Detected lcore 2 on socket 0
EAL: Detected lcore 3 on socket 0
...

137

Sample Applications User Guides, Release 19.08.2

EAL: Requesting 2 pages of size 1073741824
EAL: Requesting 768 pages of size 2097152
EAL: Ask a virtual area of 0x40000000 bytes
EAL: Virtual area found at 0x7ff200000000 (size = 0x40000000)
...

EAL: check igb_uio module
EAL: check module finished
EAL: Master core 0 is ready (tid=54e41820)
EAL: Core 1 is ready (tid=53b32700)

Starting core 1

simple_mp >

To run the secondary process to communicate with the primary process, again run the same binary setting
at least two cores in the coremask/corelist:

./build/simple_mp -l 2-3 -n 4 --proc-type=secondary

When running a secondary process such as that shown above, the proc-type parameter can again be
specified as auto. However, omitting the parameter altogether will cause the process to try and start as a
primary rather than secondary process.

Once the process type is specified correctly, the process starts up, displaying largely similar status mes-
sages to the primary instance as it initializes. Once again, you will be presented with a command prompt.

Once both processes are running, messages can be sent between them using the send command. At any
stage, either process can be terminated using the quit command.

EAL: Master core 10 is ready (tid=b5f89820) EAL: Master core 8 is ready (tid=864a3820)
EAL: Core 11 is ready (tid=84ffe700) EAL: Core 9 is ready (tid=85995700)
Starting core 11 Starting core 9
simple_mp > send hello_secondary simple_mp > core 9: Received 'hello_secondary'
simple_mp > core 11: Received 'hello_primary' simple_mp > send hello_primary
simple_mp > quit simple_mp > quit

Note: If the primary instance is terminated, the secondary instance must also be shut-down and restarted
after the primary. This is necessary because the primary instance will clear and reset the shared memory
regions on startup, invalidating the secondary process’s pointers. The secondary process can be stopped
and restarted without affecting the primary process.

How the Application Works

The core of this example application is based on using two queues and a single memory pool in shared
memory. These three objects are created at startup by the primary process, since the secondary process
cannot create objects in memory as it cannot reserve memory zones, and the secondary process then
uses lookup functions to attach to these objects as it starts up.

if (rte_eal_process_type() == RTE_PROC_PRIMARY){
send_ring = rte_ring_create(_PRI_2_SEC, ring_size, SOCKET0, flags);
recv_ring = rte_ring_create(_SEC_2_PRI, ring_size, SOCKET0, flags);
message_pool = rte_mempool_create(_MSG_POOL, pool_size, string_size, pool_cache, priv_data_sz, NULL, NULL, NULL, NULL, SOCKET0, flags);

} else {
recv_ring = rte_ring_lookup(_PRI_2_SEC);
send_ring = rte_ring_lookup(_SEC_2_PRI);

28.1. Example Applications 138

Sample Applications User Guides, Release 19.08.2

message_pool = rte_mempool_lookup(_MSG_POOL);
}

Note, however, that the named ring structure used as send_ring in the primary process is the recv_ring
in the secondary process.

Once the rings and memory pools are all available in both the primary and secondary processes, the
application simply dedicates two threads to sending and receiving messages respectively. The receive
thread simply dequeues any messages on the receive ring, prints them, and frees the buffer space used
by the messages back to the memory pool. The send thread makes use of the command-prompt library
to interactively request user input for messages to send. Once a send command is issued by the user,
a buffer is allocated from the memory pool, filled in with the message contents, then enqueued on the
appropriate rte_ring.

28.1.3 Symmetric Multi-process Example

The second example of DPDK multi-process support demonstrates how a set of processes can run in
parallel, with each process performing the same set of packet- processing operations. (Since each process
is identical in functionality to the others, we refer to this as symmetric multi-processing, to differentiate it
from asymmetric multi- processing - such as a client-server mode of operation seen in the next example,
where different processes perform different tasks, yet co-operate to form a packet-processing system.)
The following diagram shows the data-flow through the application, using two processes.

Fig. 28.1: Example Data Flow in a Symmetric Multi-process Application

28.1. Example Applications 139

Sample Applications User Guides, Release 19.08.2

As the diagram shows, each process reads packets from each of the network ports in use. RSS is used
to distribute incoming packets on each port to different hardware RX queues. Each process reads a
different RX queue on each port and so does not contend with any other process for that queue access.
Similarly, each process writes outgoing packets to a different TX queue on each port.

Running the Application

As with the simple_mp example, the first instance of the symmetric_mp process must be run as the
primary instance, though with a number of other application- specific parameters also provided after the
EAL arguments. These additional parameters are:

• -p <portmask>, where portmask is a hexadecimal bitmask of what ports on the system are to be
used. For example: -p 3 to use ports 0 and 1 only.

• –num-procs <N>, where N is the total number of symmetric_mp instances that will be run side-
by-side to perform packet processing. This parameter is used to configure the appropriate number
of receive queues on each network port.

• –proc-id <n>, where n is a numeric value in the range 0 <= n < N (number of processes, specified
above). This identifies which symmetric_mp instance is being run, so that each process can read
a unique receive queue on each network port.

The secondary symmetric_mp instances must also have these parameters specified, and the first two
must be the same as those passed to the primary instance, or errors result.

For example, to run a set of four symmetric_mp instances, running on lcores 1-4, all performing level-2
forwarding of packets between ports 0 and 1, the following commands can be used (assuming run as
root):

./build/symmetric_mp -l 1 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=0
./build/symmetric_mp -l 2 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=1
./build/symmetric_mp -l 3 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=2
./build/symmetric_mp -l 4 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=3

Note: In the above example, the process type can be explicitly specified as primary or secondary,
rather than auto. When using auto, the first process run creates all the memory structures needed for all
processes - irrespective of whether it has a proc-id of 0, 1, 2 or 3.

Note: For the symmetric multi-process example, since all processes work in the same manner, once the
hugepage shared memory and the network ports are initialized, it is not necessary to restart all processes
if the primary instance dies. Instead, that process can be restarted as a secondary, by explicitly setting
the proc-type to secondary on the command line. (All subsequent instances launched will also need this
explicitly specified, as auto-detection will detect no primary processes running and therefore attempt to
re-initialize shared memory.)

How the Application Works

The initialization calls in both the primary and secondary instances are the same for the most part, calling
the rte_eal_init(), 1 G and 10 G driver initialization and then rte_pci_probe() functions. Thereafter, the
initialization done depends on whether the process is configured as a primary or secondary instance.

28.1. Example Applications 140

Sample Applications User Guides, Release 19.08.2

In the primary instance, a memory pool is created for the packet mbufs and the network ports to be
used are initialized - the number of RX and TX queues per port being determined by the num-procs
parameter passed on the command-line. The structures for the initialized network ports are stored in
shared memory and therefore will be accessible by the secondary process as it initializes.

if (num_ports & 1)
rte_exit(EXIT_FAILURE, "Application must use an even number of ports\n");

for(i = 0; i < num_ports; i++){
if(proc_type == RTE_PROC_PRIMARY)

if (smp_port_init(ports[i], mp, (uint16_t)num_procs) < 0)
rte_exit(EXIT_FAILURE, "Error initializing ports\n");

}

In the secondary instance, rather than initializing the network ports, the port information exported by
the primary process is used, giving the secondary process access to the hardware and software rings for
each network port. Similarly, the memory pool of mbufs is accessed by doing a lookup for it by name:

mp = (proc_type == RTE_PROC_SECONDARY) ? rte_mempool_lookup(_SMP_MBUF_POOL) : rte_mempool_create(_SMP_MBUF_POOL, NB_MBUFS, MBUF_SIZE, ...)

Once this initialization is complete, the main loop of each process, both primary and secondary, is exactly
the same - each process reads from each port using the queue corresponding to its proc-id parameter,
and writes to the corresponding transmit queue on the output port.

28.1.4 Client-Server Multi-process Example

The third example multi-process application included with the DPDK shows how one can use a client-
server type multi-process design to do packet processing. In this example, a single server process per-
forms the packet reception from the ports being used and distributes these packets using round-robin
ordering among a set of client processes, which perform the actual packet processing. In this case, the
client applications just perform level-2 forwarding of packets by sending each packet out on a different
network port.

The following diagram shows the data-flow through the application, using two client processes.

Fig. 28.2: Example Data Flow in a Client-Server Symmetric Multi-process Application

28.1. Example Applications 141

Sample Applications User Guides, Release 19.08.2

Running the Application

The server process must be run initially as the primary process to set up all memory structures for use
by the clients. In addition to the EAL parameters, the application- specific parameters are:

• -p <portmask >, where portmask is a hexadecimal bitmask of what ports on the system are to be
used. For example: -p 3 to use ports 0 and 1 only.

• -n <num-clients>, where the num-clients parameter is the number of client processes that will
process the packets received by the server application.

Note: In the server process, a single thread, the master thread, that is, the lowest numbered lcore in the
coremask/corelist, performs all packet I/O. If a coremask/corelist is specified with more than a single
lcore bit set in it, an additional lcore will be used for a thread to periodically print packet count statistics.

Since the server application stores configuration data in shared memory, including the network ports to
be used, the only application parameter needed by a client process is its client instance ID. Therefore,
to run a server application on lcore 1 (with lcore 2 printing statistics) along with two client processes
running on lcores 3 and 4, the following commands could be used:

./mp_server/build/mp_server -l 1-2 -n 4 -- -p 3 -n 2
./mp_client/build/mp_client -l 3 -n 4 --proc-type=auto -- -n 0
./mp_client/build/mp_client -l 4 -n 4 --proc-type=auto -- -n 1

Note: If the server application dies and needs to be restarted, all client applications also need to be
restarted, as there is no support in the server application for it to run as a secondary process. Any client
processes that need restarting can be restarted without affecting the server process.

How the Application Works

The server process performs the network port and data structure initialization much as the symmet-
ric multi-process application does when run as primary. One additional enhancement in this sample
application is that the server process stores its port configuration data in a memory zone in hugepage
shared memory. This eliminates the need for the client processes to have the portmask parameter passed
into them on the command line, as is done for the symmetric multi-process application, and therefore
eliminates mismatched parameters as a potential source of errors.

In the same way that the server process is designed to be run as a primary process instance only, the client
processes are designed to be run as secondary instances only. They have no code to attempt to create
shared memory objects. Instead, handles to all needed rings and memory pools are obtained via calls to
rte_ring_lookup() and rte_mempool_lookup(). The network ports for use by the processes are obtained
by loading the network port drivers and probing the PCI bus, which will, as in the symmetric multi-
process example, automatically get access to the network ports using the settings already configured by
the primary/server process.

Once all applications are initialized, the server operates by reading packets from each network port in
turn and distributing those packets to the client queues (software rings, one for each client process) in
round-robin order. On the client side, the packets are read from the rings in as big of bursts as possible,
then routed out to a different network port. The routing used is very simple. All packets received on the
first NIC port are transmitted back out on the second port and vice versa. Similarly, packets are routed

28.1. Example Applications 142

Sample Applications User Guides, Release 19.08.2

between the 3rd and 4th network ports and so on. The sending of packets is done by writing the packets
directly to the network ports; they are not transferred back via the server process.

In both the server and the client processes, outgoing packets are buffered before being sent, so as to
allow the sending of multiple packets in a single burst to improve efficiency. For example, the client
process will buffer packets to send, until either the buffer is full or until we receive no further packets
from the server.

28.1. Example Applications 143

CHAPTER

TWENTYNINE

QOS METERING SAMPLE APPLICATION

The QoS meter sample application is an example that demonstrates the use of DPDK to provide QoS
marking and metering, as defined by RFC2697 for Single Rate Three Color Marker (srTCM) and RFC
2698 for Two Rate Three Color Marker (trTCM) algorithm.

29.1 Overview

The application uses a single thread for reading the packets from the RX port, metering, marking them
with the appropriate color (green, yellow or red) and writing them to the TX port.

A policing scheme can be applied before writing the packets to the TX port by dropping or changing the
color of the packet in a static manner depending on both the input and output colors of the packets that
are processed by the meter.

The operation mode can be selected as compile time out of the following options:

• Simple forwarding

• srTCM color blind

• srTCM color aware

• srTCM color blind

• srTCM color aware

Please refer to RFC2697 and RFC2698 for details about the srTCM and trTCM configurable parameters
(CIR, CBS and EBS for srTCM; CIR, PIR, CBS and PBS for trTCM).

The color blind modes are functionally equivalent with the color-aware modes when all the incoming
packets are colored as green.

29.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the qos_meter sub-directory.

29.3 Running the Application

The application execution command line is as below:

144

Sample Applications User Guides, Release 19.08.2

./qos_meter [EAL options] -- -p PORTMASK

The application is constrained to use a single core in the EAL core mask and 2 ports only in the applica-
tion port mask (first port from the port mask is used for RX and the other port in the core mask is used
for TX).

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

29.4 Explanation

Selecting one of the metering modes is done with these defines:

#define APP_MODE_FWD 0
#define APP_MODE_SRTCM_COLOR_BLIND 1
#define APP_MODE_SRTCM_COLOR_AWARE 2
#define APP_MODE_TRTCM_COLOR_BLIND 3
#define APP_MODE_TRTCM_COLOR_AWARE 4

#define APP_MODE APP_MODE_SRTCM_COLOR_BLIND

To simplify debugging (for example, by using the traffic generator RX side MAC address based packet
filtering feature), the color is defined as the LSB byte of the destination MAC address.

The traffic meter parameters are configured in the application source code with following default values:

struct rte_meter_srtcm_params app_srtcm_params[] = {

{.cir = 1000000 * 46, .cbs = 2048, .ebs = 2048},

};

struct rte_meter_trtcm_params app_trtcm_params[] = {

{.cir = 1000000 * 46, .pir = 1500000 * 46, .cbs = 2048, .pbs = 2048},

};

Assuming the input traffic is generated at line rate and all packets are 64 bytes Ethernet frames (IPv4
packet size of 46 bytes) and green, the expected output traffic should be marked as shown in the following
table:

Table 29.1: Output Traffic Marking

Mode Green (Mpps) Yellow (Mpps) Red (Mpps)
srTCM blind 1 1 12.88
srTCM color 1 1 12.88
trTCM blind 1 0.5 13.38
trTCM color 1 0.5 13.38
FWD 14.88 0 0

To set up the policing scheme as desired, it is necessary to modify the main.h source file, where this
policy is implemented as a static structure, as follows:

int policer_table[e_RTE_METER_COLORS][e_RTE_METER_COLORS] =
{

{ GREEN, RED, RED},
{ DROP, YELLOW, RED},

29.4. Explanation 145

Sample Applications User Guides, Release 19.08.2

{ DROP, DROP, RED}
};

Where rows indicate the input color, columns indicate the output color, and the value that is stored in
the table indicates the action to be taken for that particular case.

There are four different actions:

• GREEN: The packet’s color is changed to green.

• YELLOW: The packet’s color is changed to yellow.

• RED: The packet’s color is changed to red.

• DROP: The packet is dropped.

In this particular case:

• Every packet which input and output color are the same, keeps the same color.

• Every packet which color has improved is dropped (this particular case can’t happen, so these
values will not be used).

• For the rest of the cases, the color is changed to red.

Note:

• In color blind mode, first row GREEN color is only valid.

• To drop the packet, policer_table action has to be set to DROP.

29.4. Explanation 146

CHAPTER

THIRTY

QOS SCHEDULER SAMPLE APPLICATION

The QoS sample application demonstrates the use of the DPDK to provide QoS scheduling.

30.1 Overview

The architecture of the QoS scheduler application is shown in the following figure.

Fig. 30.1: QoS Scheduler Application Architecture

There are two flavors of the runtime execution for this application, with two or three threads per each
packet flow configuration being used. The RX thread reads packets from the RX port, classifies the
packets based on the double VLAN (outer and inner) and the lower two bytes of the IP destination
address and puts them into the ring queue. The worker thread dequeues the packets from the ring and
calls the QoS scheduler enqueue/dequeue functions. If a separate TX core is used, these are sent to the
TX ring. Otherwise, they are sent directly to the TX port. The TX thread, if present, reads from the TX
ring and write the packets to the TX port.

30.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the qos_sched sub-directory.

147

Sample Applications User Guides, Release 19.08.2

Note: This application is intended as a linux only.

Note: To get statistics on the sample app using the command line interface as described in the next
section, DPDK must be compiled defining CONFIG_RTE_SCHED_COLLECT_STATS, which can be
done by changing the configuration file for the specific target to be compiled.

30.3 Running the Application

Note: In order to run the application, a total of at least 4 G of huge pages must be set up for each of the
used sockets (depending on the cores in use).

The application has a number of command line options:

./qos_sched [EAL options] -- <APP PARAMS>

Mandatory application parameters include:

• –pfc “RX PORT, TX PORT, RX LCORE, WT LCORE, TX CORE”: Packet flow configuration.
Multiple pfc entities can be configured in the command line, having 4 or 5 items (if TX core
defined or not).

Optional application parameters include:

• -i: It makes the application to start in the interactive mode. In this mode, the application shows
a command line that can be used for obtaining statistics while scheduling is taking place (see
interactive mode below for more information).

• –mst n: Master core index (the default value is 1).

• –rsz “A, B, C”: Ring sizes:

• A = Size (in number of buffer descriptors) of each of the NIC RX rings read by the I/O RX lcores
(the default value is 128).

• B = Size (in number of elements) of each of the software rings used by the I/O RX lcores to send
packets to worker lcores (the default value is 8192).

• C = Size (in number of buffer descriptors) of each of the NIC TX rings written by worker lcores
(the default value is 256)

• –bsz “A, B, C, D”: Burst sizes

• A = I/O RX lcore read burst size from the NIC RX (the default value is 64)

• B = I/O RX lcore write burst size to the output software rings, worker lcore read burst size from
input software rings,QoS enqueue size (the default value is 64)

• C = QoS dequeue size (the default value is 32)

• D = Worker lcore write burst size to the NIC TX (the default value is 64)

• –msz M: Mempool size (in number of mbufs) for each pfc (default 2097152)

• –rth “A, B, C”: The RX queue threshold parameters

30.3. Running the Application 148

Sample Applications User Guides, Release 19.08.2

• A = RX prefetch threshold (the default value is 8)

• B = RX host threshold (the default value is 8)

• C = RX write-back threshold (the default value is 4)

• –tth “A, B, C”: TX queue threshold parameters

• A = TX prefetch threshold (the default value is 36)

• B = TX host threshold (the default value is 0)

• C = TX write-back threshold (the default value is 0)

• –cfg FILE: Profile configuration to load

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

The profile configuration file defines all the port/subport/pipe/traffic class/queue parameters needed for
the QoS scheduler configuration.

The profile file has the following format:

; port configuration [port]

frame overhead = 24
number of subports per port = 1
number of pipes per subport = 4096
queue sizes = 64 64 64 64

; Subport configuration

[subport 0]
tb rate = 1250000000; Bytes per second
tb size = 1000000; Bytes
tc 0 rate = 1250000000; Bytes per second
tc 1 rate = 1250000000; Bytes per second
tc 2 rate = 1250000000; Bytes per second
tc 3 rate = 1250000000; Bytes per second
tc period = 10; Milliseconds
tc oversubscription period = 10; Milliseconds

pipe 0-4095 = 0; These pipes are configured with pipe profile 0

; Pipe configuration

[pipe profile 0]
tb rate = 305175; Bytes per second
tb size = 1000000; Bytes

tc 0 rate = 305175; Bytes per second
tc 1 rate = 305175; Bytes per second
tc 2 rate = 305175; Bytes per second
tc 3 rate = 305175; Bytes per second
tc period = 40; Milliseconds

tc 0 oversubscription weight = 1
tc 1 oversubscription weight = 1
tc 2 oversubscription weight = 1
tc 3 oversubscription weight = 1

tc 0 wrr weights = 1 1 1 1
tc 1 wrr weights = 1 1 1 1
tc 2 wrr weights = 1 1 1 1

30.3. Running the Application 149

Sample Applications User Guides, Release 19.08.2

tc 3 wrr weights = 1 1 1 1

; RED params per traffic class and color (Green / Yellow / Red)

[red]
tc 0 wred min = 48 40 32
tc 0 wred max = 64 64 64
tc 0 wred inv prob = 10 10 10
tc 0 wred weight = 9 9 9

tc 1 wred min = 48 40 32
tc 1 wred max = 64 64 64
tc 1 wred inv prob = 10 10 10
tc 1 wred weight = 9 9 9

tc 2 wred min = 48 40 32
tc 2 wred max = 64 64 64
tc 2 wred inv prob = 10 10 10
tc 2 wred weight = 9 9 9

tc 3 wred min = 48 40 32
tc 3 wred max = 64 64 64
tc 3 wred inv prob = 10 10 10
tc 3 wred weight = 9 9 9

30.3.1 Interactive mode

These are the commands that are currently working under the command line interface:

• Control Commands

• –quit: Quits the application.

• General Statistics

– stats app: Shows a table with in-app calculated statistics.

– stats port X subport Y: For a specific subport, it shows the number of packets that went
through the scheduler properly and the number of packets that were dropped. The same in-
formation is shown in bytes. The information is displayed in a table separating it in different
traffic classes.

– stats port X subport Y pipe Z: For a specific pipe, it shows the number of packets that
went through the scheduler properly and the number of packets that were dropped. The
same information is shown in bytes. This information is displayed in a table separating it in
individual queues.

• Average queue size

All of these commands work the same way, averaging the number of packets throughout a specific subset
of queues.

Two parameters can be configured for this prior to calling any of these commands:

• qavg n X: n is the number of times that the calculation will take place. Bigger numbers provide
higher accuracy. The default value is 10.

• qavg period X: period is the number of microseconds that will be allowed between each calcula-
tion. The default value is 100.

The commands that can be used for measuring average queue size are:

30.3. Running the Application 150

Sample Applications User Guides, Release 19.08.2

• qavg port X subport Y: Show average queue size per subport.

• qavg port X subport Y tc Z: Show average queue size per subport for a specific traffic class.

• qavg port X subport Y pipe Z: Show average queue size per pipe.

• qavg port X subport Y pipe Z tc A: Show average queue size per pipe for a specific traffic class.

• qavg port X subport Y pipe Z tc A q B: Show average queue size of a specific queue.

30.3.2 Example

The following is an example command with a single packet flow configuration:

./qos_sched -l 1,5,7 -n 4 -- --pfc "3,2,5,7" --cfg ./profile.cfg

This example uses a single packet flow configuration which creates one RX thread on lcore 5 reading
from port 3 and a worker thread on lcore 7 writing to port 2.

Another example with 2 packet flow configurations using different ports but sharing the same core for
QoS scheduler is given below:

./qos_sched -l 1,2,6,7 -n 4 -- --pfc "3,2,2,6,7" --pfc "1,0,2,6,7" --cfg ./profile.cfg

Note that independent cores for the packet flow configurations for each of the RX, WT and TX thread
are also supported, providing flexibility to balance the work.

The EAL coremask/corelist is constrained to contain the default mastercore 1 and the RX, WT and TX
cores only.

30.4 Explanation

The Port/Subport/Pipe/Traffic Class/Queue are the hierarchical entities in a typical QoS application:

• A subport represents a predefined group of users.

• A pipe represents an individual user/subscriber.

• A traffic class is the representation of a different traffic type with a specific loss rate, delay and
jitter requirements; such as data voice, video or data transfers.

• A queue hosts packets from one or multiple connections of the same type belonging to the same
user.

The traffic flows that need to be configured are application dependent. This application classifies based
on the QinQ double VLAN tags and the IP destination address as indicated in the following table.

30.4. Explanation 151

Sample Applications User Guides, Release 19.08.2

Table 30.1: Entity Types

Level Name Siblings per Parent QoS Functional De-
scription

Selected By

Port • Ethernet port Physical port

Subport Config (8) Traffic shaped (token
bucket)

Outer VLAN tag

Pipe Config (4k) Traffic shaped (token
bucket)

Inner VLAN tag

Traffic Class 4 TCs of the same pipe
services in strict priority

Destination IP address
(0.0.X.0)

Queue 4 Queue of the same TC
serviced in WRR

Destination IP address
(0.0.0.X)

Please refer to the “QoS Scheduler” chapter in the DPDK Programmer’s Guide for more information
about these parameters.

30.4. Explanation 152

CHAPTER

THIRTYONE

QUOTA AND WATERMARK SAMPLE APPLICATION

The Quota and Watermark sample application is a simple example of packet processing using Data
Plane Development Kit (DPDK) that showcases the use of a quota as the maximum number of packets
enqueue/dequeue at a time and low and high thresholds, or watermarks, to signal low and high ring
usage respectively.

Additionally, it shows how the thresholds can be used to feedback congestion notifications to data pro-
ducers by temporarily stopping processing overloaded rings and sending Ethernet flow control frames.

This sample application is split in two parts:

• qw - The core quota and watermark sample application

• qwctl - A command line tool to alter quota and watermarks while qw is running

31.1 Overview

The Quota and Watermark sample application performs forwarding for each packet that is received on a
given port. The destination port is the adjacent port from the enabled port mask, that is, if the first four
ports are enabled (port mask 0xf), ports 0 and 1 forward into each other, and ports 2 and 3 forward into
each other. The MAC addresses of the forwarded Ethernet frames are not affected.

Internally, packets are pulled from the ports by the master logical core and put on a variable length
processing pipeline, each stage of which being connected by rings, as shown in Fig. 31.1.

An adjustable quota value controls how many packets are being moved through the pipeline per enqueue
and dequeue. Adjustable threshold values associated with the rings control a back-off mechanism that
tries to prevent the pipeline from being overloaded by:

• Stopping enqueuing on rings for which the usage has crossed the high watermark threshold

• Sending Ethernet pause frames

• Only resuming enqueuing on a ring once its usage goes below a global low watermark threshold

This mechanism allows congestion notifications to go up the ring pipeline and eventually lead to an
Ethernet flow control frame being send to the source.

On top of serving as an example of quota and watermark usage, this application can be used to bench-
mark ring based processing pipelines performance using a traffic- generator, as shown in Fig. 31.2.

153

Sample Applications User Guides, Release 19.08.2

Fig. 31.1: Pipeline Overview

31.1. Overview 154

Sample Applications User Guides, Release 19.08.2

Fig. 31.2: Ring-based Processing Pipeline Performance Setup

31.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the quota_watermark sub-directory.

31.3 Running the Application

The core application, qw, has to be started first.

Once it is up and running, one can alter quota and watermarks while it runs using the control application,
qwctl.

31.3.1 Running the Core Application

The application requires a single command line option:

./qw/build/qw [EAL options] -- -p PORTMASK

where,

-p PORTMASK: A hexadecimal bitmask of the ports to configure

To run the application in a linux environment with four logical cores and ports 0 and 2, issue the follow-
ing command:

31.2. Compiling the Application 155

Sample Applications User Guides, Release 19.08.2

./qw/build/qw -l 0-3 -n 4 -- -p 5

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

31.3.2 Running the Control Application

The control application requires a number of command line options:

./qwctl/build/qwctl [EAL options] --proc-type=secondary

The –proc-type=secondary option is necessary for the EAL to properly initialize the control application
to use the same huge pages as the core application and thus be able to access its rings.

To run the application in a linux environment on logical core 0, issue the following command:

./qwctl/build/qwctl -l 0 -n 4 --proc-type=secondary

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

qwctl is an interactive command line that let the user change variables in a running instance of qw. The
help command gives a list of available commands:

$ qwctl > help

31.4 Code Overview

The following sections provide a quick guide to the application’s source code.

31.4.1 Core Application - qw

EAL and Drivers Setup

The EAL arguments are parsed at the beginning of the main() function:

ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Cannot initialize EAL\n");

argc -= ret;
argv += ret;

Then, a call to init_dpdk(), defined in init.c, is made to initialize the poll mode drivers:

void
init_dpdk(void)
{

int ret;

/* Bind the drivers to usable devices */

ret = rte_pci_probe();
if (ret < 0)

rte_exit(EXIT_FAILURE, "rte_pci_probe(): error %d\n", ret);

if (rte_eth_dev_count_avail() < 2)

31.4. Code Overview 156

Sample Applications User Guides, Release 19.08.2

rte_exit(EXIT_FAILURE, "Not enough Ethernet port available\n");
}

To fully understand this code, it is recommended to study the chapters that relate to the Poll Mode Driver
in the DPDK Getting Started Guide and the DPDK API Reference.

Shared Variables Setup

The quota and high and low watermark shared variables are put into an rte_memzone using a call to
setup_shared_variables():

void
setup_shared_variables(void)
{

const struct rte_memzone *qw_memzone;

qw_memzone = rte_memzone_reserve(QUOTA_WATERMARK_MEMZONE_NAME,
3 * sizeof(int), rte_socket_id(), 0);

if (qw_memzone == NULL)
rte_exit(EXIT_FAILURE, "%s\n", rte_strerror(rte_errno));

quota = qw_memzone->addr;
low_watermark = (unsigned int *) qw_memzone->addr + 1;
high_watermark = (unsigned int *) qw_memzone->addr + 2;

}

These three variables are initialized to a default value in main() and can be changed while qw is running
using the qwctl control program.

Application Arguments

The qw application only takes one argument: a port mask that specifies which ports should be used by
the application. At least two ports are needed to run the application and there should be an even number
of ports given in the port mask.

The port mask parsing is done in parse_qw_args(), defined in args.c.

Mbuf Pool Initialization

Once the application’s arguments are parsed, an mbuf pool is created. It contains a set of mbuf objects
that are used by the driver and the application to store network packets:

/* Create a pool of mbuf to store packets */
mbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", MBUF_PER_POOL, 32, 0,

MBUF_DATA_SIZE, rte_socket_id());

if (mbuf_pool == NULL)
rte_panic("%s\n", rte_strerror(rte_errno));

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is necessary to
create a pool that will be used by the driver.

The number of allocated pkt mbufs is MBUF_PER_POOL, with a data room size of
MBUF_DATA_SIZE each. A per-lcore cache of 32 mbufs is kept. The memory is allocated in on
the master lcore’s socket, but it is possible to extend this code to allocate one mbuf pool per socket.

31.4. Code Overview 157

Sample Applications User Guides, Release 19.08.2

The rte_pktmbuf_pool_create() function uses the default mbuf pool and mbuf initializers, respectively
rte_pktmbuf_pool_init() and rte_pktmbuf_init(). An advanced application may want to use the mempool
API to create the mbuf pool with more control.

Ports Configuration and Pairing

Each port in the port mask is configured and a corresponding ring is created in the master lcore’s array
of rings. This ring is the first in the pipeline and will hold the packets directly coming from the port.

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++)
if (is_bit_set(port_id, portmask)) {

configure_eth_port(port_id);
init_ring(master_lcore_id, port_id);

}

pair_ports();

The configure_eth_port() and init_ring() functions are used to configure a port and a ring respectively
and are defined in init.c. They make use of the DPDK APIs defined in rte_eth.h and rte_ring.h.

pair_ports() builds the port_pairs[] array so that its key-value pairs are a mapping between reception and
transmission ports. It is defined in init.c.

Logical Cores Assignment

The application uses the master logical core to poll all the ports for new packets and enqueue them on a
ring associated with the port.

Each logical core except the last runs pipeline_stage() after a ring for each used port is initialized on that
core. pipeline_stage() on core X dequeues packets from core X-1’s rings and enqueue them on its own
rings. See Fig. 31.3.

/* Start pipeline_stage() on all the available slave lcore but the last */

for (lcore_id = 0 ; lcore_id < last_lcore_id; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) && lcore_id != master_lcore_id) {

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++)
if (is_bit_set(port_id, portmask))

init_ring(lcore_id, port_id);

rte_eal_remote_launch(pipeline_stage, NULL, lcore_id);
}

}

The last available logical core runs send_stage(), which is the last stage of the pipeline dequeuing packets
from the last ring in the pipeline and sending them out on the destination port setup by pair_ports().

/* Start send_stage() on the last slave core */

rte_eal_remote_launch(send_stage, NULL, last_lcore_id);

Receive, Process and Transmit Packets

In the receive_stage() function running on the master logical core, the main task is to read ingress packets
from the RX ports and enqueue them on the port’s corresponding first ring in the pipeline. This is done
using the following code:

31.4. Code Overview 158

Sample Applications User Guides, Release 19.08.2

Fig. 31.3: Threads and Pipelines

31.4. Code Overview 159

Sample Applications User Guides, Release 19.08.2

lcore_id = rte_lcore_id();

/* Process each port round robin style */

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++) {
if (!is_bit_set(port_id, portmask))

continue;

ring = rings[lcore_id][port_id];

if (ring_state[port_id] != RING_READY) {
if (rte_ring_count(ring) > *low_watermark)

continue;
else

ring_state[port_id] = RING_READY;
}

/* Enqueue received packets on the RX ring */
nb_rx_pkts = rte_eth_rx_burst(port_id, 0, pkts,

(uint16_t) *quota);
ret = rte_ring_enqueue_bulk(ring, (void *) pkts,

nb_rx_pkts, &free);
if (RING_SIZE - free > *high_watermark) {

ring_state[port_id] = RING_OVERLOADED;
send_pause_frame(port_id, 1337);

}

if (ret == 0) {

/*
* Return mbufs to the pool,

* effectively dropping packets

*/
for (i = 0; i < nb_rx_pkts; i++)

rte_pktmbuf_free(pkts[i]);
}

}

For each port in the port mask, the corresponding ring’s pointer is fetched into ring and that ring’s state
is checked:

• If it is in the RING_READY state, *quota packets are grabbed from the port and put on the
ring. Should this operation make the ring’s usage cross its high watermark, the ring is marked as
overloaded and an Ethernet flow control frame is sent to the source.

• If it is not in the RING_READY state, this port is ignored until the ring’s usage crosses the
*low_watermark value.

The pipeline_stage() function’s task is to process and move packets from the preceding pipeline stage.
This thread is running on most of the logical cores to create and arbitrarily long pipeline.

lcore_id = rte_lcore_id();

previous_lcore_id = get_previous_lcore_id(lcore_id);

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++) {
if (!is_bit_set(port_id, portmask))

continue;

tx = rings[lcore_id][port_id];
rx = rings[previous_lcore_id][port_id];

if (ring_state[port_id] != RING_READY) {

31.4. Code Overview 160

Sample Applications User Guides, Release 19.08.2

if (rte_ring_count(tx) > *low_watermark)
continue;

else
ring_state[port_id] = RING_READY;

}

/* Dequeue up to quota mbuf from rx */
nb_dq_pkts = rte_ring_dequeue_burst(rx, pkts,

*quota, NULL);
if (unlikely(nb_dq_pkts < 0))

continue;

/* Enqueue them on tx */
ret = rte_ring_enqueue_bulk(tx, pkts,

nb_dq_pkts, &free);
if (RING_SIZE - free > *high_watermark)

ring_state[port_id] = RING_OVERLOADED;

if (ret == 0) {

/*
* Return mbufs to the pool,

* effectively dropping packets

*/
for (i = 0; i < nb_dq_pkts; i++)

rte_pktmbuf_free(pkts[i]);
}

}

The thread’s logic works mostly like receive_stage(), except that packets are moved from ring to ring
instead of port to ring.

In this example, no actual processing is done on the packets, but pipeline_stage() is an ideal place to
perform any processing required by the application.

Finally, the send_stage() function’s task is to read packets from the last ring in a pipeline and send them
on the destination port defined in the port_pairs[] array. It is running on the last available logical core
only.

lcore_id = rte_lcore_id();

previous_lcore_id = get_previous_lcore_id(lcore_id);

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++) {
if (!is_bit_set(port_id, portmask)) continue;

dest_port_id = port_pairs[port_id];
tx = rings[previous_lcore_id][port_id];

if (rte_ring_empty(tx)) continue;

/* Dequeue packets from tx and send them */

nb_dq_pkts = rte_ring_dequeue_burst(tx, (void *) tx_pkts, *quota);
nb_tx_pkts = rte_eth_tx_burst(dest_port_id, 0, tx_pkts, nb_dq_pkts);

}

For each port in the port mask, up to *quota packets are pulled from the last ring in its pipeline and sent
on the destination port paired with the current port.

31.4. Code Overview 161

Sample Applications User Guides, Release 19.08.2

31.4.2 Control Application - qwctl

The qwctl application uses the rte_cmdline library to provide the user with an interactive command line
that can be used to modify and inspect parameters in a running qw application. Those parameters are
the global quota and low_watermark value as well as each ring’s built-in high watermark.

Command Definitions

The available commands are defined in commands.c.

It is advised to use the cmdline sample application user guide as a reference for everything related to the
rte_cmdline library.

Accessing Shared Variables

The setup_shared_variables() function retrieves the shared variables quota and low_watermark from the
rte_memzone previously created by qw.

static void
setup_shared_variables(void)
{

const struct rte_memzone *qw_memzone;

qw_memzone = rte_memzone_lookup(QUOTA_WATERMARK_MEMZONE_NAME);
if (qw_memzone == NULL)

rte_exit(EXIT_FAILURE, "Couldn't find memzone\n");

quota = qw_memzone->addr;

low_watermark = (unsigned int *) qw_memzone->addr + 1;
high_watermark = (unsigned int *) qw_memzone->addr + 2;

}

31.4. Code Overview 162

CHAPTER

THIRTYTWO

TIMER SAMPLE APPLICATION

The Timer sample application is a simple application that demonstrates the use of a timer in a DPDK
application. This application prints some messages from different lcores regularly, demonstrating the
use of timers.

32.1 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the timer sub-directory.

32.2 Running the Application

To run the example in linux environment:

$./build/timer -l 0-3 -n 4

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

32.3 Explanation

The following sections provide some explanation of the code.

32.3.1 Initialization and Main Loop

In addition to EAL initialization, the timer subsystem must be initialized, by calling the
rte_timer_subsystem_init() function.

/* init EAL */

ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_panic("Cannot init EAL\n");

/* init RTE timer library */

rte_timer_subsystem_init();

163

Sample Applications User Guides, Release 19.08.2

After timer creation (see the next paragraph), the main loop is executed on each slave lcore using the
well-known rte_eal_remote_launch() and also on the master.

/* call lcore_mainloop() on every slave lcore */

RTE_LCORE_FOREACH_SLAVE(lcore_id) {
rte_eal_remote_launch(lcore_mainloop, NULL, lcore_id);

}

/* call it on master lcore too */

(void) lcore_mainloop(NULL);

The main loop is very simple in this example:

while (1) {
/*
* Call the timer handler on each core: as we don't

* need a very precise timer, so only call

* rte_timer_manage() every ~10ms (at 2 GHz). In a real

* application, this will enhance performances as

* reading the HPET timer is not efficient.

*/

cur_tsc = rte_rdtsc();

diff_tsc = cur_tsc - prev_tsc;

if (diff_tsc > TIMER_RESOLUTION_CYCLES) {
rte_timer_manage();
prev_tsc = cur_tsc;

}
}

As explained in the comment, it is better to use the TSC register (as it is a per-lcore register) to check if
the rte_timer_manage() function must be called or not. In this example, the resolution of the timer is 10
milliseconds.

32.3.2 Managing Timers

In the main() function, the two timers are initialized. This call to rte_timer_init() is necessary before
doing any other operation on the timer structure.

/* init timer structures */

rte_timer_init(&timer0);
rte_timer_init(&timer1);

Then, the two timers are configured:

• The first timer (timer0) is loaded on the master lcore and expires every second. Since the PE-
RIODICAL flag is provided, the timer is reloaded automatically by the timer subsystem. The
callback function is timer0_cb().

• The second timer (timer1) is loaded on the next available lcore every 333 ms. The SINGLE flag
means that the timer expires only once and must be reloaded manually if required. The callback
function is timer1_cb().

/* load timer0, every second, on master lcore, reloaded automatically */

hz = rte_get_hpet_hz();

32.3. Explanation 164

Sample Applications User Guides, Release 19.08.2

lcore_id = rte_lcore_id();

rte_timer_reset(&timer0, hz, PERIODICAL, lcore_id, timer0_cb, NULL);

/* load timer1, every second/3, on next lcore, reloaded manually */

lcore_id = rte_get_next_lcore(lcore_id, 0, 1);

rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);

The callback for the first timer (timer0) only displays a message until a global counter reaches 20 (after
20 seconds). In this case, the timer is stopped using the rte_timer_stop() function.

/* timer0 callback */

static void
timer0_cb(attribute ((unused)) struct rte_timer *tim, __attribute ((unused)) void *arg)
{

static unsigned counter = 0;

unsigned lcore_id = rte_lcore_id();

printf("%s() on lcore %u\n", FUNCTION , lcore_id);

/* this timer is automatically reloaded until we decide to stop it, when counter reaches 20. */

if ((counter ++) == 20)
rte_timer_stop(tim);

}

The callback for the second timer (timer1) displays a message and reloads the timer on the next lcore,
using the rte_timer_reset() function:

/* timer1 callback */

static void
timer1_cb(attribute ((unused)) struct rte_timer *tim, _attribute ((unused)) void *arg)
{

unsigned lcore_id = rte_lcore_id();
uint64_t hz;

printf("%s() on lcore %u\\n", FUNCTION , lcore_id);

/* reload it on another lcore */

hz = rte_get_hpet_hz();

lcore_id = rte_get_next_lcore(lcore_id, 0, 1);

rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);
}

32.3. Explanation 165

CHAPTER

THIRTYTHREE

PACKET ORDERING APPLICATION

The Packet Ordering sample app simply shows the impact of reordering a stream. It’s meant to stress
the library with different configurations for performance.

33.1 Overview

The application uses at least three CPU cores:

• RX core (maser core) receives traffic from the NIC ports and feeds Worker cores with traffic
through SW queues.

• Worker core (slave core) basically do some light work on the packet. Currently it modifies the
output port of the packet for configurations with more than one port enabled.

• TX Core (slave core) receives traffic from Worker cores through software queues, inserts out-of-
order packets into reorder buffer, extracts ordered packets from the reorder buffer and sends them
to the NIC ports for transmission.

33.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the packet_ordering sub-directory.

33.3 Running the Application

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

33.3.1 Application Command Line

The application execution command line is:

./packet_ordering [EAL options] -- -p PORTMASK [--disable-reorder] [--insight-worker]

The -c EAL CPU_COREMASK option has to contain at least 3 CPU cores. The first CPU core in the
core mask is the master core and would be assigned to RX core, the last to TX core and the rest to
Worker cores.

166

Sample Applications User Guides, Release 19.08.2

The PORTMASK parameter must contain either 1 or even enabled port numbers. When setting more
than 1 port, traffic would be forwarded in pairs. For example, if we enable 4 ports, traffic from port 0 to
1 and from 1 to 0, then the other pair from 2 to 3 and from 3 to 2, having [0,1] and [2,3] pairs.

The disable-reorder long option does, as its name implies, disable the reordering of traffic, which should
help evaluate reordering performance impact.

The insight-worker long option enables output the packet statistics of each worker thread.

33.3. Running the Application 167

CHAPTER

THIRTYFOUR

VMDQ AND DCB FORWARDING SAMPLE APPLICATION

The VMDQ and DCB Forwarding sample application is a simple example of packet processing using
the DPDK. The application performs L2 forwarding using VMDQ and DCB to divide the incoming
traffic into queues. The traffic splitting is performed in hardware by the VMDQ and DCB features of
the Intel® 82599 and X710/XL710 Ethernet Controllers.

34.1 Overview

This sample application can be used as a starting point for developing a new application that is based on
the DPDK and uses VMDQ and DCB for traffic partitioning.

The VMDQ and DCB filters work on MAC and VLAN traffic to divide the traffic into input queues on
the basis of the Destination MAC address, VLAN ID and VLAN user priority fields. VMDQ filters split
the traffic into 16 or 32 groups based on the Destination MAC and VLAN ID. Then, DCB places each
packet into one of queues within that group, based upon the VLAN user priority field.

All traffic is read from a single incoming port (port 0) and output on port 1, without any processing being
performed. With Intel® 82599 NIC, for example, the traffic is split into 128 queues on input, where each
thread of the application reads from multiple queues. When run with 8 threads, that is, with the -c FF
option, each thread receives and forwards packets from 16 queues.

As supplied, the sample application configures the VMDQ feature to have 32 pools with 4 queues each
as indicated in Fig. 34.1. The Intel® 82599 10 Gigabit Ethernet Controller NIC also supports the split-
ting of traffic into 16 pools of 8 queues. While the Intel® X710 or XL710 Ethernet Controller NICs
support many configurations of VMDQ pools of 4 or 8 queues each. For simplicity, only 16 or 32 pools
is supported in this sample. And queues numbers for each VMDQ pool can be changed by setting CON-
FIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM in config/common_* file. The nb-pools, nb-tcs
and enable-rss parameters can be passed on the command line, after the EAL parameters:

./build/vmdq_dcb [EAL options] -- -p PORTMASK --nb-pools NP --nb-tcs TC --enable-rss

where, NP can be 16 or 32, TC can be 4 or 8, rss is disabled by default.

In Linux* user space, the application can display statistics with the number of packets received on each
queue. To have the application display the statistics, send a SIGHUP signal to the running application
process.

The VMDQ and DCB Forwarding sample application is in many ways simpler than the L2 Forwarding
application (see L2 Forwarding Sample Application (in Real and Virtualized Environments)) as it per-
forms unidirectional L2 forwarding of packets from one port to a second port. No command-line options
are taken by this application apart from the standard EAL command-line options.

168

Sample Applications User Guides, Release 19.08.2

NIC Port 0
RX

NIC Port 0
TX

HW RX Queue 0
(VLAN 0, Prio 0)

HW TX Queue 0

HW TX Queue 15

User Thread
0

User Thread
15

HW RX Queue 7
(VLAN 0, Prio 7)

HW RX Queue 120
(VLAN 15, Prio 0)

HW RX Queue 127
(VLAN 15, Prio 7)

Fig. 34.1: Packet Flow Through the VMDQ and DCB Sample Application

Note: Since VMD queues are being used for VMM, this application works correctly when VTd is
disabled in the BIOS or Linux* kernel (intel_iommu=off).

34.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the vmdq_dcb sub-directory.

34.3 Running the Application

To run the example in a linux environment:

user@target:~$./build/vmdq_dcb -l 0-3 -n 4 -- -p 0x3 --nb-pools 32 --nb-tcs 4

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

34.4 Explanation

The following sections provide some explanation of the code.

34.2. Compiling the Application 169

Sample Applications User Guides, Release 19.08.2

34.4.1 Initialization

The EAL, driver and PCI configuration is performed largely as in the L2 Forwarding sample application,
as is the creation of the mbuf pool. See L2 Forwarding Sample Application (in Real and Virtualized
Environments). Where this example application differs is in the configuration of the NIC port for RX.

The VMDQ and DCB hardware feature is configured at port initialization time by setting the appro-
priate values in the rte_eth_conf structure passed to the rte_eth_dev_configure() API. Initially in the
application, a default structure is provided for VMDQ and DCB configuration to be filled in later by the
application.

/* empty vmdq+dcb configuration structure. Filled in programmatically */
static const struct rte_eth_conf vmdq_dcb_conf_default = {

.rxmode = {
.mq_mode = ETH_MQ_RX_VMDQ_DCB,
.split_hdr_size = 0,

},
.txmode = {

.mq_mode = ETH_MQ_TX_VMDQ_DCB,
},
/*
* should be overridden separately in code with

* appropriate values

*/
.rx_adv_conf = {

.vmdq_dcb_conf = {
.nb_queue_pools = ETH_32_POOLS,
.enable_default_pool = 0,
.default_pool = 0,
.nb_pool_maps = 0,
.pool_map = {{0, 0},},
.dcb_tc = {0},

},
.dcb_rx_conf = {

.nb_tcs = ETH_4_TCS,
/** Traffic class each UP mapped to. */
.dcb_tc = {0},

},
.vmdq_rx_conf = {

.nb_queue_pools = ETH_32_POOLS,

.enable_default_pool = 0,

.default_pool = 0,

.nb_pool_maps = 0,

.pool_map = {{0, 0},},
},

},
.tx_adv_conf = {

.vmdq_dcb_tx_conf = {
.nb_queue_pools = ETH_32_POOLS,
.dcb_tc = {0},

},
},

};

The get_eth_conf() function fills in an rte_eth_conf structure with the appropriate values, based on the
global vlan_tags array, and dividing up the possible user priority values equally among the individual
queues (also referred to as traffic classes) within each pool. With Intel® 82599 NIC, if the number of
pools is 32, then the user priority fields are allocated 2 to a queue. If 16 pools are used, then each of
the 8 user priority fields is allocated to its own queue within the pool. With Intel® X710/XL710 NICs,
if number of tcs is 4, and number of queues in pool is 8, then the user priority fields are allocated 2 to
one tc, and a tc has 2 queues mapping to it, then RSS will determine the destination queue in 2. For the

34.4. Explanation 170

Sample Applications User Guides, Release 19.08.2

VLAN IDs, each one can be allocated to possibly multiple pools of queues, so the pools parameter in the
rte_eth_vmdq_dcb_conf structure is specified as a bitmask value. For destination MAC, each VMDQ
pool will be assigned with a MAC address. In this sample, each VMDQ pool is assigned to the MAC like
52:54:00:12:<port_id>:<pool_id>, that is, the MAC of VMDQ pool 2 on port 1 is 52:54:00:12:01:02.

const uint16_t vlan_tags[] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31

};

/* pool mac addr template, pool mac addr is like: 52 54 00 12 port# pool# */
static struct rte_ether_addr pool_addr_template = {

.addr_bytes = {0x52, 0x54, 0x00, 0x12, 0x00, 0x00}
};

/* Builds up the correct configuration for vmdq+dcb based on the vlan tags array

* given above, and the number of traffic classes available for use. */
static inline int
get_eth_conf(struct rte_eth_conf *eth_conf)
{

struct rte_eth_vmdq_dcb_conf conf;
struct rte_eth_vmdq_rx_conf vmdq_conf;
struct rte_eth_dcb_rx_conf dcb_conf;
struct rte_eth_vmdq_dcb_tx_conf tx_conf;
uint8_t i;

conf.nb_queue_pools = (enum rte_eth_nb_pools)num_pools;
vmdq_conf.nb_queue_pools = (enum rte_eth_nb_pools)num_pools;
tx_conf.nb_queue_pools = (enum rte_eth_nb_pools)num_pools;
conf.nb_pool_maps = num_pools;
vmdq_conf.nb_pool_maps = num_pools;
conf.enable_default_pool = 0;
vmdq_conf.enable_default_pool = 0;
conf.default_pool = 0; /* set explicit value, even if not used */
vmdq_conf.default_pool = 0;

for (i = 0; i < conf.nb_pool_maps; i++) {
conf.pool_map[i].vlan_id = vlan_tags[i];
vmdq_conf.pool_map[i].vlan_id = vlan_tags[i];
conf.pool_map[i].pools = 1UL << i ;
vmdq_conf.pool_map[i].pools = 1UL << i;

}
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++){

conf.dcb_tc[i] = i % num_tcs;
dcb_conf.dcb_tc[i] = i % num_tcs;
tx_conf.dcb_tc[i] = i % num_tcs;

}
dcb_conf.nb_tcs = (enum rte_eth_nb_tcs)num_tcs;
(void)(rte_memcpy(eth_conf, &vmdq_dcb_conf_default, sizeof(*eth_conf)));
(void)(rte_memcpy(ð_conf->rx_adv_conf.vmdq_dcb_conf, &conf,

sizeof(conf)));
(void)(rte_memcpy(ð_conf->rx_adv_conf.dcb_rx_conf, &dcb_conf,

sizeof(dcb_conf)));
(void)(rte_memcpy(ð_conf->rx_adv_conf.vmdq_rx_conf, &vmdq_conf,

sizeof(vmdq_conf)));
(void)(rte_memcpy(ð_conf->tx_adv_conf.vmdq_dcb_tx_conf, &tx_conf,

sizeof(tx_conf)));
if (rss_enable) {

eth_conf->rxmode.mq_mode= ETH_MQ_RX_VMDQ_DCB_RSS;
eth_conf->rx_adv_conf.rss_conf.rss_hf = ETH_RSS_IP |

ETH_RSS_UDP |

34.4. Explanation 171

Sample Applications User Guides, Release 19.08.2

ETH_RSS_TCP |
ETH_RSS_SCTP;

}
return 0;

}

......

/* Set mac for each pool.*/
for (q = 0; q < num_pools; q++) {

struct rte_ether_addr mac;
mac = pool_addr_template;
mac.addr_bytes[4] = port;
mac.addr_bytes[5] = q;
printf("Port %u vmdq pool %u set mac %02x:%02x:%02x:%02x:%02x:%02x\n",

port, q,
mac.addr_bytes[0], mac.addr_bytes[1],
mac.addr_bytes[2], mac.addr_bytes[3],
mac.addr_bytes[4], mac.addr_bytes[5]);

retval = rte_eth_dev_mac_addr_add(port, &mac,
q + vmdq_pool_base);

if (retval) {
printf("mac addr add failed at pool %d\n", q);
return retval;

}
}

Once the network port has been initialized using the correct VMDQ and DCB values, the initialization
of the port’s RX and TX hardware rings is performed similarly to that in the L2 Forwarding sample
application. See L2 Forwarding Sample Application (in Real and Virtualized Environments) for more
information.

34.4.2 Statistics Display

When run in a linux environment, the VMDQ and DCB Forwarding sample application can display
statistics showing the number of packets read from each RX queue. This is provided by way of a signal
handler for the SIGHUP signal, which simply prints to standard output the packet counts in grid form.
Each row of the output is a single pool with the columns being the queue number within that pool.

To generate the statistics output, use the following command:

user@host$ sudo killall -HUP vmdq_dcb_app

Please note that the statistics output will appear on the terminal where the vmdq_dcb_app is running,
rather than the terminal from which the HUP signal was sent.

34.4. Explanation 172

CHAPTER

THIRTYFIVE

VHOST SAMPLE APPLICATION

The vhost sample application demonstrates integration of the Data Plane Development Kit (DPDK)
with the Linux* KVM hypervisor by implementing the vhost-net offload API. The sample application
performs simple packet switching between virtual machines based on Media Access Control (MAC)
address or Virtual Local Area Network (VLAN) tag. The splitting of Ethernet traffic from an external
switch is performed in hardware by the Virtual Machine Device Queues (VMDQ) and Data Center
Bridging (DCB) features of the Intel® 82599 10 Gigabit Ethernet Controller.

35.1 Testing steps

This section shows the steps how to test a typical PVP case with this vhost-switch sample, whereas
packets are received from the physical NIC port first and enqueued to the VM’s Rx queue. Through the
guest testpmd’s default forwarding mode (io forward), those packets will be put into the Tx queue. The
vhost-switch example, in turn, gets the packets and puts back to the same physical NIC port.

35.1.1 Build

To compile the sample application see Compiling the Sample Applications.

The application is located in the vhost sub-directory.

Note: In this example, you need build DPDK both on the host and inside guest.

35.1.2 Start the vswitch example

./vhost-switch -l 0-3 -n 4 --socket-mem 1024 \
-- --socket-file /tmp/sock0 --client \
...

Check the Parameters section for the explanations on what do those parameters mean.

35.1.3 Start the VM

qemu-system-x86_64 -machine accel=kvm -cpu host \
-m $mem -object memory-backend-file,id=mem,size=$mem,mem-path=/dev/hugepages,share=on \

-mem-prealloc -numa node,memdev=mem \
\
-chardev socket,id=char1,path=/tmp/sock0,server \

173

Sample Applications User Guides, Release 19.08.2

-netdev type=vhost-user,id=hostnet1,chardev=char1 \
-device virtio-net-pci,netdev=hostnet1,id=net1,mac=52:54:00:00:00:14 \
...

Note: For basic vhost-user support, QEMU 2.2 (or above) is required. For some specific features, a
higher version might be need. Such as QEMU 2.7 (or above) for the reconnect feature.

35.1.4 Run testpmd inside guest

Make sure you have DPDK built inside the guest. Also make sure the corresponding virtio-net PCI
device is bond to a uio driver, which could be done by:

modprobe uio_pci_generic
$RTE_SDK/usertools/dpdk-devbind.py -b uio_pci_generic 0000:00:04.0

Then start testpmd for packet forwarding testing.

./x86_64-native-gcc/app/testpmd -l 0-1 -- -i
> start tx_first

35.2 Inject packets

While a virtio-net is connected to vhost-switch, a VLAN tag starts with 1000 is assigned to it. So make
sure configure your packet generator with the right MAC and VLAN tag, you should be able to see
following log from the vhost-switch console. It means you get it work:

VHOST_DATA: (0) mac 52:54:00:00:00:14 and vlan 1000 registered

35.3 Parameters

–socket-file path Specifies the vhost-user socket file path.

–client DPDK vhost-user will act as the client mode when such option is given. In the client mode,
QEMU will create the socket file. Otherwise, DPDK will create it. Put simply, it’s the server to create
the socket file.

–vm2vm mode The vm2vm parameter sets the mode of packet switching between guests in the host.

• 0 disables vm2vm, implying that VM’s packets will always go to the NIC port.

• 1 means a normal mac lookup packet routing.

• 2 means hardware mode packet forwarding between guests, it allows packets go to the NIC port,
hardware L2 switch will determine which guest the packet should forward to or need send to
external, which bases on the packet destination MAC address and VLAN tag.

–mergeable 0|1 Set 0/1 to disable/enable the mergeable Rx feature. It’s disabled by default.

–stats interval The stats parameter controls the printing of virtio-net device statistics. The parame-
ter specifies an interval (in unit of seconds) to print statistics, with an interval of 0 seconds disabling
statistics.

35.2. Inject packets 174

Sample Applications User Guides, Release 19.08.2

–rx-retry 0|1 The rx-retry option enables/disables enqueue retries when the guests Rx queue is full. This
feature resolves a packet loss that is observed at high data rates, by allowing it to delay and retry in the
receive path. This option is enabled by default.

–rx-retry-num num The rx-retry-num option specifies the number of retries on an Rx burst, it takes
effect only when rx retry is enabled. The default value is 4.

–rx-retry-delay msec The rx-retry-delay option specifies the timeout (in micro seconds) between retries
on an RX burst, it takes effect only when rx retry is enabled. The default value is 15.

–dequeue-zero-copy Dequeue zero copy will be enabled when this option is given. it is worth to note
that if NIC is bound to driver with iommu enabled, dequeue zero copy cannot work at VM2NIC mode
(vm2vm=0) due to currently we don’t setup iommu dma mapping for guest memory.

–vlan-strip 0|1 VLAN strip option is removed, because different NICs have different behaviors when
disabling VLAN strip. Such feature, which heavily depends on hardware, should be removed from this
example to reduce confusion. Now, VLAN strip is enabled and cannot be disabled.

–builtin-net-driver A very simple vhost-user net driver which demonstrates how to use the generic
vhost APIs will be used when this option is given. It is disabled by default.

35.4 Common Issues

• QEMU fails to allocate memory on hugetlbfs, with an error like the following:

file_ram_alloc: can't mmap RAM pages: Cannot allocate memory

When running QEMU the above error indicates that it has failed to allocate memory for the Virtual
Machine on the hugetlbfs. This is typically due to insufficient hugepages being free to support the
allocation request. The number of free hugepages can be checked as follows:

cat /sys/kernel/mm/hugepages/hugepages-<pagesize>/nr_hugepages

The command above indicates how many hugepages are free to support QEMU’s allocation re-
quest.

• Failed to build DPDK in VM

Make sure “-cpu host” QEMU option is given.

• Device start fails if NIC’s max queues > the default number of 128

mbuf pool size is dependent on the MAX_QUEUES configuration, if NIC’s max queue number is
larger than 128, device start will fail due to insufficient mbuf.

Change the default number to make it work as below, just set the number according to the NIC’s
property.

make EXTRA_CFLAGS="-DMAX_QUEUES=320"

• Option “builtin-net-driver” is incompatible with QEMU

QEMU vhost net device start will fail if protocol feature is not negotiated. DPDK virtio-user pmd
can be the replacement of QEMU.

35.4. Common Issues 175

CHAPTER

THIRTYSIX

VHOST_SCSI SAMPLE APPLICATION

The vhost_scsi sample application implemented a simple SCSI block device, which used as the backend
of Qemu vhost-user-scsi device. Users can extend the exist example to use other type of block device(e.g.
AIO) besides memory based block device. Similar with vhost-user-net device, the sample application
used domain socket to communicate with Qemu, and the virtio ring was processed by vhost_scsi sample
application.

The sample application reuse lots codes from SPDK(Storage Performance Development Kit, https://
github.com/spdk/spdk) vhost-user-scsi target, for DPDK vhost library used in storage area, user can take
SPDK as reference as well.

36.1 Testing steps

This section shows the steps how to start a VM with the block device as fast data path for critical
application.

36.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the examples sub-directory.

You will also need to build DPDK both on the host and inside the guest

36.2.1 Start the vhost_scsi example

./vhost_scsi -m 1024

36.2.2 Start the VM

qemu-system-x86_64 -machine accel=kvm \
-m $mem -object memory-backend-file,id=mem,size=$mem,\
mem-path=/dev/hugepages,share=on -numa node,memdev=mem \
-drive file=os.img,if=none,id=disk \
-device ide-hd,drive=disk,bootindex=0 \
-chardev socket,id=char0,path=/tmp/vhost.socket \
-device vhost-user-scsi-pci,chardev=char0,bootindex=2 \
...

176

https://github.com/spdk/spdk
https://github.com/spdk/spdk

Sample Applications User Guides, Release 19.08.2

Note: You must check whether your Qemu can support “vhost-user-scsi” or not, Qemu v2.10 or newer
version is required.

36.3 Vhost_scsi Common Issues

• vhost_scsi can not start with block size 512 Bytes:

Currently DPDK vhost library was designed for NET device(although the APIs are generic now),
for 512 Bytes block device, Qemu BIOS(x86 BIOS Enhanced Disk Device) will enumerate all
block device and do some IOs to those block devices with 512 Bytes sector size. DPDK vhost
library can not process such scenarios(both BIOS and OS will enumerate the block device), so as
a workaround, the vhost_scsi example application hardcoded the block size with 4096 Bytes.

• vhost_scsi can only support the block device as fast data disk(non OS image):

Make sure bootindex=2 Qemu option is given to vhost-user-scsi-pci device.

36.3. Vhost_scsi Common Issues 177

CHAPTER

THIRTYSEVEN

VHOST_CRYPTO SAMPLE APPLICATION

The vhost_crypto sample application implemented a simple Crypto device, which used as the backend
of Qemu vhost-user-crypto device. Similar with vhost-user-net and vhost-user-scsi device, the sam-
ple application used domain socket to communicate with Qemu, and the virtio ring was processed by
vhost_crypto sample application.

37.1 Testing steps

This section shows the steps how to start a VM with the crypto device as fast data path for critical
application.

37.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the examples sub-directory.

37.2.1 Start the vhost_crypto example

./vhost_crypto [EAL options] --
--config (lcore,cdev-id,queue-id)[,(lcore,cdev-id,queue-id)]
--socket-file lcore,PATH
[--zero-copy]
[--guest-polling]

where,

• config (lcore,cdev-id,queue-id): build the lcore-cryptodev id-queue id connection. Once specified,
the specified lcore will only work with specified cryptodev’s queue.

• socket-file lcore,PATH: the path of UNIX socket file to be created and the lcore id that will deal
with the all workloads of the socket. Multiple instances of this config item is supported and one
lcore supports processing multiple sockets.

• zero-copy: the presence of this item means the ZERO-COPY feature will be enabled. Otherwise
it is disabled. PLEASE NOTE the ZERO-COPY feature is still in experimental stage and may
cause the problem like segmentation fault. If the user wants to use LKCF in the guest, this feature
shall be turned off.

• guest-polling: the presence of this item means the application assumes the guest works in polling
mode, thus will NOT notify the guest completion of processing.

178

Sample Applications User Guides, Release 19.08.2

The application requires that crypto devices capable of performing the specified crypto operation are
available on application initialization. This means that HW crypto device/s must be bound to a DPDK
driver or a SW crypto device/s (virtual crypto PMD) must be created (using –vdev).

37.2.2 Start the VM

qemu-system-x86_64 -machine accel=kvm \
-m $mem -object memory-backend-file,id=mem,size=$mem,\
mem-path=/dev/hugepages,share=on -numa node,memdev=mem \
-drive file=os.img,if=none,id=disk \
-device ide-hd,drive=disk,bootindex=0 \
-chardev socket,id={chardev_id},path={PATH} \
-object cryptodev-vhost-user,id={obj_id},chardev={chardev_id} \
-device virtio-crypto-pci,id={dev_id},cryptodev={obj_id} \
...

Note: You must check whether your Qemu can support “vhost-user-crypto” or not.

37.2. Compiling the Application 179

CHAPTER

THIRTYEIGHT

VDPA SAMPLE APPLICATION

The vdpa sample application creates vhost-user sockets by using the vDPA backend. vDPA stands for
vhost Data Path Acceleration which utilizes virtio ring compatible devices to serve virtio driver directly
to enable datapath acceleration. As vDPA driver can help to set up vhost datapath, this application
doesn’t need to launch dedicated worker threads for vhost enqueue/dequeue operations.

38.1 Testing steps

This section shows the steps of how to start VMs with vDPA vhost-user backend and verify network
connection & live migration.

38.1.1 Build

To compile the sample application see Compiling the Sample Applications.

The application is located in the vdpa sub-directory.

38.1.2 Start the vdpa example

./vdpa [EAL options] -- [--client] [--interactive|-i] or [--iface SOCKET_PATH]

where

• –client means running vdpa app in client mode, in the client mode, QEMU needs to run as the
server mode and take charge of socket file creation.

• –iface specifies the path prefix of the UNIX domain socket file, e.g. /tmp/vhost-user-, then the
socket files will be named as /tmp/vhost-user-<n> (n starts from 0).

• –interactive means run the vdpa sample in interactive mode, currently 4 internal cmds are sup-
ported:

1. help: show help message

2. list: list all available vdpa devices

3. create: create a new vdpa port with socket file and vdpa device address

4. quit: unregister vhost driver and exit the application

Take IFCVF driver for example:

180

Sample Applications User Guides, Release 19.08.2

./vdpa -c 0x2 -n 4 --socket-mem 1024,1024 \
-w 0000:06:00.3,vdpa=1 -w 0000:06:00.4,vdpa=1 \
-- --interactive

Note: Here 0000:06:00.3 and 0000:06:00.4 refer to virtio ring compatible devices, and we need to bind
vfio-pci to them before running vdpa sample.

• modprobe vfio-pci

• ./usertools/dpdk-devbind.py -b vfio-pci 06:00.3 06:00.4

Then we can create 2 vdpa ports in interactive cmdline.

vdpa> list
device id device address queue num supported features
0 0000:06:00.3 1 0x14c238020
1 0000:06:00.4 1 0x14c238020
2 0000:06:00.5 1 0x14c238020

vdpa> create /tmp/vdpa-socket0 0000:06:00.3
vdpa> create /tmp/vdpa-socket1 0000:06:00.4

38.1.3 Start the VMs

qemu-system-x86_64 -cpu host -enable-kvm \
<snip>
-mem-prealloc \
-chardev socket,id=char0,path=<socket_file created in above steps> \
-netdev type=vhost-user,id=vdpa,chardev=char0 \
-device virtio-net-pci,netdev=vdpa,mac=00:aa:bb:cc:dd:ee,page-per-vq=on \

After the VMs launches, we can login the VMs and configure the ip, verify the network connection via
ping or netperf.

Note: Suggest to use QEMU 3.0.0 which extends vhost-user for vDPA.

38.1.4 Live Migration

vDPA supports cross-backend live migration, user can migrate SW vhost backend VM to vDPA backend
VM and vice versa. Here are the detailed steps. Assume A is the source host with SW vhost VM and B
is the destination host with vDPA.

1. Start vdpa sample and launch a VM with exact same parameters as the VM on A, in migration-
listen mode:

B: <qemu-command-line> -incoming tcp:0:4444 (or other PORT))

2. Start the migration (on source host):

A: (qemu) migrate -d tcp:<B ip>:4444 (or other PORT)

3. Check the status (on source host):

A: (qemu) info migrate

38.1. Testing steps 181

CHAPTER

THIRTYNINE

NETMAP COMPATIBILITY SAMPLE APPLICATION

39.1 Introduction

The Netmap compatibility library provides a minimal set of APIs to give programs written against the
Netmap APIs the ability to be run, with minimal changes to their source code, using the DPDK to
perform the actual packet I/O.

Since Netmap applications use regular system calls, like open(), ioctl() and mmap() to communi-
cate with the Netmap kernel module performing the packet I/O, the compat_netmap library provides
a set of similar APIs to use in place of those system calls, effectively turning a Netmap application into
a DPDK application.

The provided library is currently minimal and doesn’t support all the features that Netmap supports, but
is enough to run simple applications, such as the bridge example detailed below.

Knowledge of Netmap is required to understand the rest of this section. Please refer to the Netmap
distribution for details about Netmap.

39.2 Available APIs

The library provides the following drop-in replacements for system calls usually used in Netmap appli-
cations:

• rte_netmap_close()

• rte_netmap_ioctl()

• rte_netmap_open()

• rte_netmap_mmap()

• rte_netmap_poll()

They use the same signature as their libc counterparts, and can be used as drop-in replacements in most
cases.

39.3 Caveats

Given the difference between the way Netmap and the DPDK approach packet I/O, there are caveats and
limitations to be aware of when trying to use the compat_netmap library, the most important of these
are listed below. These may change as the library is updated:

182

Sample Applications User Guides, Release 19.08.2

• Any system call that can potentially affect file descriptors cannot be used with a descriptor returned
by the rte_netmap_open() function.

Note that:

• The rte_netmap_mmap() function merely returns the address of a DPDK memzone. The
address, length, flags, offset, and other arguments are ignored.

• The rte_netmap_poll() function only supports infinite (negative) or zero time outs. It ef-
fectively turns calls to the poll() system call made in a Netmap application into polling of the
DPDK ports, changing the semantics of the usual POSIX defined poll.

• Not all of Netmap’s features are supported: host rings, slot flags and so on are not supported or
are simply not relevant in the DPDK model.

• The Netmap manual page states that “a device obtained through /dev/netmap also supports the
ioctl supported by network devices”. This is not the case with this compatibility layer.

• The Netmap kernel module exposes a sysfs interface to change some internal parameters, such as
the size of the shared memory region. This interface is not available when using this compatibility
layer.

39.4 Porting Netmap Applications

Porting Netmap applications typically involves two major steps:

• Changing the system calls to use their compat_netmap library counterparts.

• Adding further DPDK initialization code.

Since the compat_netmap functions have the same signature as the usual libc calls, the change is
trivial in most cases.

The usual DPDK initialization code involving rte_eal_init() and rte_pci_probe() has to
be added to the Netmap application in the same way it is used in all other DPDK sample applications.
Please refer to the DPDK Programmer’s Guide and example source code for details about initialization.

In addition of the regular DPDK initialization code, the ported application needs to call ini-
tialization functions for the compat_netmap library, namely rte_netmap_init() and
rte_netmap_init_port().

These two initialization functions take compat_netmap specific data structures as parameters:
struct rte_netmap_conf and struct rte_netmap_port_conf. The structures’ fields
are Netmap related and are self-explanatory for developers familiar with Netmap. They are defined in
$RTE_SDK/examples/netmap_compat/lib/compat_netmap.h.

The bridge application is an example largely based on the bridge example shipped with
the Netmap distribution. It shows how a minimal Netmap application with minimal and
straightforward source code changes can be run on top of the DPDK. Please refer to
$RTE_SDK/examples/netmap_compat/bridge/bridge.c for an example of a ported ap-
plication.

39.5 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

39.4. Porting Netmap Applications 183

Sample Applications User Guides, Release 19.08.2

The application is located in the netmap_compat sub-directory.

39.6 Running the “bridge” Sample Application

The application requires a single command line option:

./build/bridge [EAL options] -- -i INTERFACE_A [-i INTERFACE_B]

where,

• -i INTERFACE: Interface (DPDK port number) to use.

If a single -i parameter is given, the interface will send back all the traffic it receives. If two -i
parameters are given, the two interfaces form a bridge, where traffic received on one interface is
replicated and sent to the other interface.

For example, to run the application in a linux environment using port 0 and 2:

./build/bridge [EAL options] -- -i 0 -i 2

Refer to the DPDK Getting Started Guide for Linux for general information on running applications and
the Environment Abstraction Layer (EAL) options.

Note that unlike a traditional bridge or the l2fwd sample application, no MAC address changes are
done on the frames. Do not forget to take this into account when configuring a traffic generators and
testing this sample application.

39.6. Running the “bridge” Sample Application 184

CHAPTER

FORTY

INTERNET PROTOCOL (IP) PIPELINE APPLICATION

40.1 Application overview

The Internet Protocol (IP) Pipeline application is intended to be a vehicle for rapid development of
packet processing applications on multi-core CPUs.

Following OpenFlow and P4 design principles, the application can be used to create functional blocks
called pipelines out of input/output ports, tables and actions in a modular way. Multiple pipelines can
be inter-connected through packet queues to create complete applications (super-pipelines).

The pipelines are mapped to application threads, with each pipeline executed by a single thread and each
thread able to run one or several pipelines. The possibilities of creating pipelines out of ports, tables
and actions, connecting multiple pipelines together and mapping the pipelines to execution threads are
endless, therefore this application can be seen as a true application generator.

Pipelines are created and managed through Command Line Interface (CLI):

• Any standard TCP client (e.g. telnet, netcat, custom script, etc) is typically able to connect to the
application, send commands through the network and wait for the response before pushing the
next command.

• All the application objects are created and managed through CLI commands:

– ‘Primitive’ objects used to create pipeline ports: memory pools, links (i.e. network
interfaces), SW queues, traffic managers, etc.

– Action profiles: used to define the actions to be executed by pipeline input/output ports
and tables.

– Pipeline components: input/output ports, tables, pipelines, mapping of pipelines to ex-
ecution threads.

40.2 Running the application

The application startup command line is:

ip_pipeline [EAL_ARGS] -- [-s SCRIPT_FILE] [-h HOST] [-p PORT]

The application startup arguments are:

-s SCRIPT_FILE

• Optional: Yes

• Default: Not present

185

Sample Applications User Guides, Release 19.08.2

• Argument: Path to the CLI script file to be run at application startup. No CLI script file will run
at startup if this argument is not present.

-h HOST

• Optional: Yes

• Default: 0.0.0.0

• Argument: IP Address of the host running ip pipeline application to be used by remote TCP based
client (telnet, netcat, etc.) for connection.

-p PORT

• Optional: Yes

• Default: 8086

• Argument: TCP port number at which the ip pipeline is running. This port number should be used
by remote TCP client (such as telnet, netcat, etc.) to connect to host application.

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

The following is an example command to run ip pipeline application configured for layer 2 forwarding:

$./build/ip_pipeline -c 0x3 -- -s examples/route_ecmp.cli

The application should start successfully and display as follows:

EAL: Detected 40 lcore(s)
EAL: Detected 2 NUMA nodes
EAL: Multi-process socket /var/run/.rte_unix
EAL: Probing VFIO support...
EAL: PCI device 0000:02:00.0 on NUMA socket 0
EAL: probe driver: 8086:10fb net_ixgbe
...

To run remote client (e.g. telnet) to communicate with the ip pipeline application:

$ telnet 127.0.0.1 8086

When running a telnet client as above, command prompt is displayed:

Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.

Welcome to IP Pipeline!

pipeline>

Once application and telnet client start running, messages can be sent from client to application. At any
stage, telnet client can be terminated using the quit command.

40.3 Application stages

40.3.1 Initialization

During this stage, EAL layer is initialised and application specific arguments are parsed. Furthermore,
the data structures (i.e. linked lists) for application objects are initialized. In case of any initialization
error, an error message is displayed and the application is terminated.

40.3. Application stages 186

Sample Applications User Guides, Release 19.08.2

40.3.2 Run-time

The master thread is creating and managing all the application objects based on CLI input.

Each data plane thread runs one or several pipelines previously assigned to it in round-robin order. Each
data plane thread executes two tasks in time-sharing mode:

1. Packet processing task: Process bursts of input packets read from the pipeline input ports.

2. Message handling task: Periodically, the data plane thread pauses the packet processing task and
polls for request messages send by the master thread. Examples: add/remove pipeline to/from
current data plane thread, add/delete rules to/from given table of a specific pipeline owned by the
current data plane thread, read statistics, etc.

40.3. Application stages 187

Sample Applications User Guides, Release 19.08.2

40.3. Application stages 188

Sample Applications User Guides, Release 19.08.2

40.4 Examples

Table 40.1: Pipeline examples provided with the application

Name Table(s) Actions Messages
L2fwd
Note: Implemented
using pipeline with
a simple pass-
through connection
between input and
output ports.

Stub Forward
1. Mempool create
2. Link create
3. Pipeline create
4. Pipeline port in/out
5. Pipeline table
6. Pipeline port in ta-

ble
7. Pipeline enable
8. Pipeline table rule

add

Flow classification Exact match
• Key = byte array (16

bytes)
• Offset = 278
• Table size = 64K

Forward
1. Mempool create
2. Link create
3. Pipeline create
4. Pipeline port in/out
5. Pipeline table
6. Pipeline port in ta-

ble
7. Pipeline enable
8. Pipeline table rule

add default
9. Pipeline table rule

add

KNI Stub Forward
1. Mempool create
2. Link create
3. Pipeline create
4. Pipeline port in/out
5. Pipeline table
6. Pipeline port in ta-

ble
7. Pipeline enable
8. Pipeline table rule

add

Firewall ACL
• Key = n-tuple
• Offset = 270
• Table size = 4K

Allow/Drop
1. Mempool create
2. Link create
3. Pipeline create
4. Pipeline port in/out
5. Pipeline table
6. Pipeline port in ta-

ble
7. Pipeline enable
8. Pipeline table rule

add default
9. Pipeline table rule

add

IP routing LPM (IPv4)
• Key = IP dest addr
• Offset = 286
• Table size = 4K

Forward
1. Mempool Create
2. Link create
3. Pipeline create
4. Pipeline port in/out
5. Pipeline table
6. Pipeline port in ta-

ble
7. Pipeline enable
8. Pipeline table rule

add default
9. Pipeline table rule

add

Equal-cost multi-
path routing
(ECMP)

LPM (IPv4)
• Key = IP dest addr
• Offset = 286
• Table size = 4K

Array
• Key = Array index
• Offset = 256
• Size = 64K

Forward, load balance,
encap ether 1. Mempool Create

2. Link create
3. Pipeline create
4. Pipeline port in/out
5. Pipeline table

(LPM)
6. Pipeline table (Ar-

ray)
7. Pipeline port in ta-

ble (LPM)
8. Pipeline enable
9. Pipeline table rule

add default
10. Pipeline table rule

add(LPM)
11. Pipeline table rule

add(Array)

40.4. Examples 189

Sample Applications User Guides, Release 19.08.2

40.5 Command Line Interface (CLI)

40.5.1 Link

Link configuration

link <link_name>
dev <device_name>|port <port_id>
rxq <n_queues> <queue_size> <mempool_name>
txq <n_queues> <queue_size> promiscuous on | off
[rss <qid_0> ... <qid_n>]

Note: The PCI device name must be specified in the Domain:Bus:Device.Function format.

40.5.2 Mempool

Mempool create

mempool <mempool_name> buffer <buffer_size>
pool <pool_size> cache <cache_size> cpu <cpu_id>

40.5.3 Software queue

Create software queue

swq <swq_name> size <size> cpu <cpu_id>

40.5.4 Traffic manager

Add traffic manager subport profile

tmgr subport profile
<tb_rate> <tb_size>
<tc0_rate> <tc1_rate> <tc2_rate> <tc3_rate>
<tc_period>

Add traffic manager pipe profile

tmgr pipe profile
<tb_rate> <tb_size>
<tc0_rate> <tc1_rate> <tc2_rate> <tc3_rate>
<tc_period>
<tc_ov_weight> <wrr_weight0..15>

Create traffic manager port

tmgr <tmgr_name>
rate <rate>
spp <n_subports_per_port>
pps <n_pipes_per_subport>
qsize <qsize_tc0>
<qsize_tc1> <qsize_tc2> <qsize_tc3>
fo <frame_overhead> mtu <mtu> cpu <cpu_id>

Configure traffic manager subport

tmgr <tmgr_name>
subport <subport_id>
profile <subport_profile_id>

40.5. Command Line Interface (CLI) 190

Sample Applications User Guides, Release 19.08.2

Configure traffic manager pipe

tmgr <tmgr_name>
subport <subport_id>
pipe from <pipe_id_first> to <pipe_id_last>
profile <pipe_profile_id>

40.5.5 Tap

Create tap port

tap <name>

40.5.6 Kni

Create kni port

kni <kni_name>
link <link_name>
mempool <mempool_name>
[thread <thread_id>]

40.5.7 Cryptodev

Create cryptodev port

cryptodev <cryptodev_name>
dev <DPDK Cryptodev PMD name>
queue <n_queues> <queue_size>

40.5.8 Action profile

Create action profile for pipeline input port

port in action profile <profile_name>
[filter match | mismatch offset <key_offset> mask <key_mask> key <key_value> port <port_id>]
[balance offset <key_offset> mask <key_mask> port <port_id0> ... <port_id15>]

Create action profile for the pipeline table

table action profile <profile_name>
ipv4 | ipv6
offset <ip_offset>
fwd
[balance offset <key_offset> mask <key_mask> outoffset <out_offset>]
[meter srtcm | trtcm

tc <n_tc>
stats none | pkts | bytes | both]

[tm spp <n_subports_per_port> pps <n_pipes_per_subport>]
[encap ether | vlan | qinq | mpls | pppoe]
[nat src | dst

proto udp | tcp]
[ttl drop | fwd

stats none | pkts]
[stats pkts | bytes | both]
[sym_crypto cryptodev <cryptodev_name>

mempool_create <mempool_name> mempool_init <mempool_name>]
[time]

40.5. Command Line Interface (CLI) 191

Sample Applications User Guides, Release 19.08.2

40.5.9 Pipeline

Create pipeline

pipeline <pipeline_name>
period <timer_period_ms>
offset_port_id <offset_port_id>
cpu <cpu_id>

Create pipeline input port

pipeline <pipeline_name> port in
bsz <burst_size>
link <link_name> rxq <queue_id>
| swq <swq_name>
| tmgr <tmgr_name>
| tap <tap_name> mempool <mempool_name> mtu <mtu>
| kni <kni_name>
| source mempool <mempool_name> file <file_name> bpp <n_bytes_per_pkt>
[action <port_in_action_profile_name>]
[disabled]

Create pipeline output port

pipeline <pipeline_name> port out
bsz <burst_size>
link <link_name> txq <txq_id>
| swq <swq_name>
| tmgr <tmgr_name>
| tap <tap_name>
| kni <kni_name>
| sink [file <file_name> pkts <max_n_pkts>]

Create pipeline table

pipeline <pipeline_name> table
match
acl

ipv4 | ipv6
offset <ip_header_offset>
size <n_rules>

| array
offset <key_offset>
size <n_keys>

| hash
ext | lru
key <key_size>
mask <key_mask>
offset <key_offset>
buckets <n_buckets>
size <n_keys>

| lpm
ipv4 | ipv6
offset <ip_header_offset>
size <n_rules>

| stub
[action <table_action_profile_name>]

Connect pipeline input port to table

pipeline <pipeline_name> port in <port_id> table <table_id>

Display statistics for specific pipeline input port, output port or table

pipeline <pipeline_name> port in <port_id> stats read [clear]
pipeline <pipeline_name> port out <port_id> stats read [clear]

40.5. Command Line Interface (CLI) 192

Sample Applications User Guides, Release 19.08.2

pipeline <pipeline_name> table <table_id> stats read [clear]

Enable given input port for specific pipeline instance

pipeline <pipeline_name> port out <port_id> disable

Disable given input port for specific pipeline instance

pipeline <pipeline_name> port out <port_id> disable

Add default rule to table for specific pipeline instance

pipeline <pipeline_name> table <table_id> rule add
match

default
action

fwd
drop
| port <port_id>
| meta
| table <table_id>

Add rule to table for specific pipeline instance

pipeline <pipeline_name> table <table_id> rule add

match
acl

priority <priority>
ipv4 | ipv6 <sa> <sa_depth> <da> <da_depth>
<sp0> <sp1> <dp0> <dp1> <proto>

| array <pos>
| hash

raw <key>
| ipv4_5tuple <sa> <da> <sp> <dp> <proto>
| ipv6_5tuple <sa> <da> <sp> <dp> <proto>
| ipv4_addr <addr>
| ipv6_addr <addr>
| qinq <svlan> <cvlan>

| lpm
ipv4 | ipv6 <addr> <depth>

action
fwd

drop
| port <port_id>
| meta
| table <table_id>

[balance <out0> ... <out7>]
[meter

tc0 meter <meter_profile_id> policer g <pa> y <pa> r <pa>
[tc1 meter <meter_profile_id> policer g <pa> y <pa> r <pa>
tc2 meter <meter_profile_id> policer g <pa> y <pa> r <pa>
tc3 meter <meter_profile_id> policer g <pa> y <pa> r <pa>]]

[tm subport <subport_id> pipe <pipe_id>]
[encap

ether <da> <sa>
| vlan <da> <sa> <pcp> <dei> <vid>
| qinq <da> <sa> <pcp> <dei> <vid> <pcp> <dei> <vid>
| mpls unicast | multicast

<da> <sa>
label0 <label> <tc> <ttl>
[label1 <label> <tc> <ttl>
[label2 <label> <tc> <ttl>
[label3 <label> <tc> <ttl>]]]

40.5. Command Line Interface (CLI) 193

Sample Applications User Guides, Release 19.08.2

| pppoe <da> <sa> <session_id>]
[nat ipv4 | ipv6 <addr> <port>]
[ttl dec | keep]
[stats]
[time]
[sym_crypto

encrypt | decrypt
type
| cipher

cipher_algo <algo> cipher_key <key> cipher_iv <iv>
| cipher_auth

cipher_algo <algo> cipher_key <key> cipher_iv <iv>
auth_algo <algo> auth_key <key> digest_size <size>

| aead
aead_algo <algo> aead_key <key> aead_iv <iv> aead_aad <aad>
digest_size <size>

data_offset <data_offset>]

where:
<pa> ::= g | y | r | drop

Add bulk rules to table for specific pipeline instance

pipeline <pipeline_name> table <table_id> rule add bulk <file_name> <n_rules>

Where:
- file_name = path to file
- File line format = match <match> action <action>

Delete table rule for specific pipeline instance

pipeline <pipeline_name> table <table_id> rule delete
match <match>

Delete default table rule for specific pipeline instance

pipeline <pipeline_name> table <table_id> rule delete
match

default

Add meter profile to the table for specific pipeline instance

pipeline <pipeline_name> table <table_id> meter profile <meter_profile_id>
add srtcm cir <cir> cbs <cbs> ebs <ebs>
| trtcm cir <cir> pir <pir> cbs <cbs> pbs <pbs>

Delete meter profile from the table for specific pipeline instance

pipeline <pipeline_name> table <table_id>
meter profile <meter_profile_id> delete

Update the dscp table for meter or traffic manager action for specific pipeline instance

pipeline <pipeline_name> table <table_id> dscp <file_name>

Where:
- file_name = path to file
- exactly 64 lines
- File line format = <tc_id> <tc_queue_id> <color>, with <color> as: g | y | r

40.5.10 Pipeline enable/disable

Enable given pipeline instance for specific data plane thread

thread <thread_id> pipeline <pipeline_name> enable

40.5. Command Line Interface (CLI) 194

Sample Applications User Guides, Release 19.08.2

Disable given pipeline instance for specific data plane thread

thread <thread_id> pipeline <pipeline_name> disable

40.5. Command Line Interface (CLI) 195

CHAPTER

FORTYONE

TEST PIPELINE APPLICATION

The Test Pipeline application illustrates the use of the DPDK Packet Framework tool suite. Its purpose
is to demonstrate the performance of single-table DPDK pipelines.

41.1 Overview

The application uses three CPU cores:

• Core A (“RX core”) receives traffic from the NIC ports and feeds core B with traffic through SW
queues.

• Core B (“Pipeline core”) implements a single-table DPDK pipeline whose type is selectable
through specific command line parameter. Core B receives traffic from core A through software
queues, processes it according to the actions configured in the table entries that are hit by the input
packets and feeds it to core C through another set of software queues.

• Core C (“TX core”) receives traffic from core B through software queues and sends it to the NIC
ports for transmission.

Fig. 41.1: Test Pipeline Application

41.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications

The application is located in the $RTE_SDK/app/test-pipeline directory.

196

Sample Applications User Guides, Release 19.08.2

41.3 Running the Application

41.3.1 Application Command Line

The application execution command line is:

./test-pipeline [EAL options] -- -p PORTMASK --TABLE_TYPE

The -c or -l EAL CPU coremask/corelist option has to contain exactly 3 CPU cores. The first CPU core
in the core mask is assigned for core A, the second for core B and the third for core C.

The PORTMASK parameter must contain 2 or 4 ports.

41.3.2 Table Types and Behavior

Table 41.1 describes the table types used and how they are populated.

The hash tables are pre-populated with 16 million keys. For hash tables, the following parameters can
be selected:

• Configurable key size implementation or fixed (specialized) key size implementation (e.g.
hash-8-ext or hash-spec-8-ext). The key size specialized implementations are expected to pro-
vide better performance for 8-byte and 16-byte key sizes, while the key-size-non-specialized im-
plementation is expected to provide better performance for larger key sizes;

• Key size (e.g. hash-spec-8-ext or hash-spec-16-ext). The available options are 8, 16 and 32
bytes;

• Table type (e.g. hash-spec-16-ext or hash-spec-16-lru). The available options are ext (extend-
able bucket) or lru (least recently used).

41.3. Running the Application 197

Sample Applications User Guides, Release 19.08.2

Table 41.1: Table Types

TABLE_TYPE Description of Core
B Table

Pre-added Table En-
tries

1 none Core B is not im-
plementing a DPDK
pipeline. Core B is
implementing a pass-
through from its input
set of software queues to
its output set of software
queues.

N/A

2 stub Stub table. Core B is
implementing the same
pass-through functional-
ity as described for the
“none” option by us-
ing the DPDK Packet
Framework by using one
stub table for each input
NIC port.

N/A

3 hash-[spec]-8-lru LRU hash table with 8-
byte key size and 16 mil-
lion entries.

16 million entries are
successfully added to
the hash table with the
following key format:
[4-byte index, 4 bytes of
0]
The action configured
for all table entries is
“Sendto output port”,
with the output port
index uniformly dis-
tributed for the range of
output ports.
The default table rule
(used in the case of a
lookup miss) is to drop
the packet.
At run time, core A
is creating the following
lookup key and storing it
into the packet meta data
for core B to use for ta-
ble lookup:
[destination IPv4 ad-
dress, 4 bytes of 0]

4 hash-[spec]-8-ext Extendable bucket hash
table with 8-byte key
size and 16 million en-
tries.

Same as hash-[spec]-8-
lru table entries, above.

5 hash-[spec]-16-lru LRU hash table with 16-
byte key size and 16 mil-
lion entries.

16 million entries are
successfully added to
the hash table with the
following key format:
[4-byte index, 12 bytes
of 0]
The action configured
for all table entries is
“Send to output port”,
with the output port
index uniformly dis-
tributed for the range of
output ports.
The default table rule
(used in the case of a
lookup miss) is to drop
the packet.
At run time, core A
is creating the following
lookup key and storing it
into the packet meta data
for core B to use for ta-
ble lookup:
[destination IPv4 ad-
dress, 12 bytes of
0]

6 hash-[spec]-16-ext Extendable bucket hash
table with 16-byte key
size and 16 million en-
tries.

Same as hash-[spec]-16-
lru table entries, above.

7 hash-[spec]-32-lru LRU hash table with 32-
byte key size and 16 mil-
lion entries.

16 million entries are
successfully added to
the hash table with the
following key format:
[4-byte index, 28 bytes
of 0].
The action configured
for all table entries is
“Send to output port”,
with the output port
index uniformly dis-
tributed for the range of
output ports.
The default table rule
(used in the case of a
lookup miss) is to drop
the packet.
At run time, core A
is creating the following
lookup key and storing it
into the packet meta data
for Lpmcore B to use for
table lookup:
[destination IPv4 ad-
dress, 28 bytes of
0]

8 hash-[spec]-32-ext Extendable bucket hash
table with 32-byte key
size and 16 million en-
tries.

Same as hash-[spec]-32-
lru table entries, above.

9 lpm Longest Prefix Match
(LPM) IPv4 table.

In the case of two ports,
two routes are added to
the table:
[0.0.0.0/9 => send to
output port 0]
[0.128.0.0/9 => send to
output port 1]
In case of four ports,
four entries are added to
the table:
[0.0.0.0/10 => send to
output port 0]
[0.64.0.0/10 => send to
output port 1]
[0.128.0.0/10 => send to
output port 2]
[0.192.0.0/10 => send to
output port 3]
The default table rule
(used in the case of a
lookup miss) is to drop
the packet.
At run time, core A is
storing the IPv4 desti-
nation within the packet
meta data to be later
used by core B as the
lookup key.

10 acl Access Control List
(ACL) table

In the case of two ports,
two ACL rules are added
to the table:
[priority = 0 (highest),
IPv4 source = ANY,
IPv4 destination =
0.0.0.0/9,
L4 protocol = ANY,
TCP source port = ANY,
TCP destination port =
ANY
=> send to output port 0]
[priority = 0 (highest),
IPv4 source = ANY,
IPv4 destination =
0.128.0.0/9,
L4 protocol = ANY,
TCP source port = ANY,
TCP destination port =
ANY
=> send to output port
0].
The default table rule
(used in the case of a
lookup miss) is to drop
the packet.

41.3. Running the Application 198

Sample Applications User Guides, Release 19.08.2

41.3.3 Input Traffic

Regardless of the table type used for the core B pipeline, the same input traffic can be used to hit all
table entries with uniform distribution, which results in uniform distribution of packets sent out on the
set of output NIC ports. The profile for input traffic is TCP/IPv4 packets with:

• destination IP address as A.B.C.D with A fixed to 0 and B, C,D random

• source IP address fixed to 0.0.0.0

• destination TCP port fixed to 0

• source TCP port fixed to 0

41.3. Running the Application 199

CHAPTER

FORTYTWO

EVENTDEV PIPELINE SAMPLE APPLICATION

The eventdev pipeline sample application is a sample app that demonstrates the usage of the eventdev
API using the software PMD. It shows how an application can configure a pipeline and assign a set of
worker cores to perform the processing required.

The application has a range of command line arguments allowing it to be configured for various numbers
worker cores, stages,queue depths and cycles per stage of work. This is useful for performance testing
as well as quickly testing a particular pipeline configuration.

42.1 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the examples sub-directory.

42.2 Running the Application

The application has a lot of command line options. This allows specification of the eventdev PMD to
use, and a number of attributes of the processing pipeline options.

An example eventdev pipeline running with the software eventdev PMD using these settings is shown
below:

• -r1: core mask 0x1 for RX

• -t1: core mask 0x1 for TX

• -e4: core mask 0x4 for the software scheduler

• -w FF00: core mask for worker cores, 8 cores from 8th to 16th

• -s4: 4 atomic stages

• -n0: process infinite packets (run forever)

• -c32: worker dequeue depth of 32

• -W1000: do 1000 cycles of work per packet in each stage

• -D: dump statistics on exit

./build/eventdev_pipeline --vdev event_sw0 -- -r1 -t1 -e4 -w FF00 -s4 -n0 -c32 -W1000 -D

The application has some sanity checking built-in, so if there is a function (e.g.; the RX core) which
doesn’t have a cpu core mask assigned, the application will print an error message:

200

Sample Applications User Guides, Release 19.08.2

Core part of pipeline was not assigned any cores. This will stall the
pipeline, please check core masks (use -h for details on setting core masks):

rx: 0
tx: 1

Configuration of the eventdev is covered in detail in the programmers guide, see the Event Device
Library section.

42.3 Observing the Application

At runtime the eventdev pipeline application prints out a summary of the configuration, and some run-
time statistics like packets per second. On exit the worker statistics are printed, along with a full dump of
the PMD statistics if required. The following sections show sample output for each of the output types.

42.3.1 Configuration

This provides an overview of the pipeline, scheduling type at each stage, and parameters to options such
as how many flows to use and what eventdev PMD is in use. See the following sample output for details:

Config:
ports: 2
workers: 8
packets: 0
priorities: 1
Queue-prio: 0
qid0 type: atomic
Cores available: 44
Cores used: 10
Eventdev 0: event_sw

Stages:
Stage 0, Type Atomic Priority = 128
Stage 1, Type Atomic Priority = 128
Stage 2, Type Atomic Priority = 128
Stage 3, Type Atomic Priority = 128

42.3.2 Runtime

At runtime, the statistics of the consumer are printed, stating the number of packets received, runtime in
milliseconds, average mpps, and current mpps.

consumer RX= xxxxxxx, time yyyy ms, avg z.zzz mpps [current w.www mpps]

42.3.3 Shutdown

At shutdown, the application prints the number of packets received and transmitted, and an overview of
the distribution of work across worker cores.

Signal 2 received, preparing to exit...
worker 12 thread done. RX=4966581 TX=4966581
worker 13 thread done. RX=4963329 TX=4963329
worker 14 thread done. RX=4953614 TX=4953614
worker 0 thread done. RX=0 TX=0
worker 11 thread done. RX=4970549 TX=4970549
worker 10 thread done. RX=4986391 TX=4986391
worker 9 thread done. RX=4970528 TX=4970528

42.3. Observing the Application 201

Sample Applications User Guides, Release 19.08.2

worker 15 thread done. RX=4974087 TX=4974087
worker 8 thread done. RX=4979908 TX=4979908
worker 2 thread done. RX=0 TX=0

Port Workload distribution:
worker 0 : 12.5 % (4979876 pkts)
worker 1 : 12.5 % (4970497 pkts)
worker 2 : 12.5 % (4986359 pkts)
worker 3 : 12.5 % (4970517 pkts)
worker 4 : 12.5 % (4966566 pkts)
worker 5 : 12.5 % (4963297 pkts)
worker 6 : 12.5 % (4953598 pkts)
worker 7 : 12.5 % (4974055 pkts)

To get a full dump of the state of the eventdev PMD, pass the -D flag to this application. When the app
is terminated using Ctrl+C, the rte_event_dev_dump() function is called, resulting in a dump
of the statistics that the PMD provides. The statistics provided depend on the PMD used, see the Event
Device Drivers section for a list of eventdev PMDs.

42.3. Observing the Application 202

CHAPTER

FORTYTHREE

DISTRIBUTOR SAMPLE APPLICATION

The distributor sample application is a simple example of packet distribution to cores using the Data
Plane Development Kit (DPDK). It also makes use of Intel Speed Select Technology - Base Frequency
(Intel SST-BF) to pin the distributor to the higher frequency core if available.

43.1 Overview

The distributor application performs the distribution of packets that are received on an RX_PORT to
different cores. When processed by the cores, the destination port of a packet is the port from the
enabled port mask adjacent to the one on which the packet was received, that is, if the first four ports are
enabled (port mask 0xf), ports 0 and 1 RX/TX into each other, and ports 2 and 3 RX/TX into each other.

This application can be used to benchmark performance using the traffic generator as shown in the figure
below.

Port2

Port0

DPDK boardTraffic Generator

Port1

Port3

Port2

Port0

Port1

Port3

Fig. 43.1: Performance Benchmarking Setup (Basic Environment)

203

Sample Applications User Guides, Release 19.08.2

43.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the distributor sub-directory.

43.3 Running the Application

1. The application has a number of command line options:

./build/distributor_app [EAL options] -- -p PORTMASK

where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

2. To run the application in linux environment with 10 lcores, 4 ports, issue the command:

$./build/distributor_app -l 1-9,22 -n 4 -- -p f

3. Refer to the DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

43.4 Explanation

The distributor application consists of four types of threads: a receive thread (lcore_rx()), a
distributor thread (lcore_dist()), a set of worker threads (lcore_worker()), and a transmit
thread(lcore_tx()). How these threads work together is shown in Fig. 43.2 below. The main()
function launches threads of these four types. Each thread has a while loop which will be doing process-
ing and which is terminated only upon SIGINT or ctrl+C.

The receive thread receives the packets using rte_eth_rx_burst() and will enqueue them to an
rte_ring. The distributor thread will dequeue the packets from the ring and assign them to workers
(using rte_distributor_process() API). This assignment is based on the tag (or flow ID) of
the packet - indicated by the hash field in the mbuf. For IP traffic, this field is automatically filled by
the NIC with the “usr” hash value for the packet, which works as a per-flow tag. The distributor thread
communicates with the worker threads using a cache-line swapping mechanism, passing up to 8 mbuf
pointers at a time (one cache line) to each worker.

More than one worker thread can exist as part of the application, and these worker threads do simple
packet processing by requesting packets from the distributor, doing a simple XOR operation on the input
port mbuf field (to indicate the output port which will be used later for packet transmission) and then
finally returning the packets back to the distributor thread.

The distributor thread will then call the distributor api rte_distributor_returned_pkts() to
get the processed packets, and will enqueue them to another rte_ring for transfer to the TX thread for
transmission on the output port. The transmit thread will dequeue the packets from the ring and transmit
them on the output port specified in packet mbuf.

Users who wish to terminate the running of the application have to press ctrl+C (or send SIGINT to the
app). Upon this signal, a signal handler provided in the application will terminate all running threads
gracefully and print final statistics to the user.

43.2. Compiling the Application 204

Sample Applications User Guides, Release 19.08.2

Request burst

Mbuf Pointers
WorkerThread1

WorkerThread2

WorkerThreadN

TX thread

Distributor Thread

Mbufs In

Mbufs Out

SW Ring

RX thread

SW Ring

Stats thread
(to console)

Fig. 43.2: Distributor Sample Application Layout

43.5 Intel SST-BF Support

In DPDK 19.05, support was added to the power management library for Intel-SST-BF, a technology
that allows some cores to run at a higher frequency than others. An application note for Intel SST-BF is
available, and is entitled Intel Speed Select Technology – Base Frequency - Enhancing Performance

The distributor application was also enhanced to be aware of these higher frequency SST-BF cores,
and when starting the application, if high frequency SST-BF cores are present in the core mask, the
application will identify these cores and pin the workloads appropriately. The distributor core is usually
the bottleneck, so this is given first choice of the high frequency SST-BF cores, followed by the rx core
and the tx core.

43.6 Debug Logging Support

Debug logging is provided as part of the application; the user needs to uncomment the line “#define
DEBUG” defined in start of the application in main.c to enable debug logs.

43.7 Statistics

The main function will print statistics on the console every second. These statistics include the number
of packets enqueued and dequeued at each stage in the application, and also key statistics per worker,
including how many packets of each burst size (1-8) were sent to each worker thread.

43.5. Intel SST-BF Support 205

https://builders.intel.com/docs/networkbuilders/intel-speed-select-technology-base-frequency-enhancing-performance.pdf

Sample Applications User Guides, Release 19.08.2

43.8 Application Initialization

Command line parsing is done in the same way as it is done in the L2 Forwarding Sample Application.
See Command Line Arguments.

Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample Application.
See Mbuf Pool Initialization.

Driver Initialization is done in same way as it is done in the L2 Forwarding Sample Application. See
Driver Initialization.

RX queue initialization is done in the same way as it is done in the L2 Forwarding Sample Application.
See RX Queue Initialization.

TX queue initialization is done in the same way as it is done in the L2 Forwarding Sample Application.
See TX Queue Initialization.

43.8. Application Initialization 206

CHAPTER

FORTYFOUR

VM POWER MANAGEMENT APPLICATION

44.1 Introduction

Applications running in Virtual Environments have an abstract view of the underlying hardware on the
Host, in particular applications cannot see the binding of virtual to physical hardware. When looking
at CPU resourcing, the pinning of Virtual CPUs(vCPUs) to Host Physical CPUs(pCPUS) is not ap-
parent to an application and this pinning may change over time. Furthermore, Operating Systems on
virtual machines do not have the ability to govern their own power policy; the Machine Specific Reg-
isters (MSRs) for enabling P-State transitions are not exposed to Operating Systems running on Virtual
Machines(VMs).

The Virtual Machine Power Management solution shows an example of how a DPDK application can
indicate its processing requirements using VM local only information(vCPU/lcore, etc.) to a Host based
Monitor which is responsible for accepting requests for frequency changes for a vCPU, translating the
vCPU to a pCPU via libvirt and affecting the change in frequency.

The solution is comprised of two high-level components:

1. Example Host Application

Using a Command Line Interface(CLI) for VM->Host communication channel management al-
lows adding channels to the Monitor, setting and querying the vCPU to pCPU pinning, inspecting
and manually changing the frequency for each CPU. The CLI runs on a single lcore while the
thread responsible for managing VM requests runs on a second lcore.

VM requests arriving on a channel for frequency changes are passed to the librte_power ACPI
cpufreq sysfs based library. The Host Application relies on both qemu-kvm and libvirt to function.

This monitoring application is responsible for:

• Accepting requests from client applications: Client applications can request frequency
changes for a vCPU, translating the vCPU to a pCPU via libvirt and affecting the change
in frequency.

• Accepting policies from client applications: Client application can send a policy to the host
application. The host application will then apply the rules of the policy independent of the
application. For example, the policy can contain time-of-day information for busy/quiet
periods, and the host application can scale up/down the relevant cores when required. See
the details of the guest application below for more information on setting the policy values.

• Out-of-band monitoring of workloads via cores hardware event counters: The host applica-
tion can manage power for an application in a virtualised OR non-virtualised environment
by looking at the event counters of the cores and taking action based on the branch hit/miss
ratio. See the host application ‘–core-list’ command line parameter below.

207

Sample Applications User Guides, Release 19.08.2

2. librte_power for Virtual Machines

Using an alternate implementation for the librte_power API, requests for frequency changes are
forwarded to the host monitor rather than the APCI cpufreq sysfs interface used on the host.

The l3fwd-power application will use this implementation when deployed on a VM (see L3 For-
warding with Power Management Sample Application).

Host

VM 0

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Virtual Core 0 Virtual Core 1 Virtual Core 2 Virtual Core 3

DPDK Application

VM 1

Virtual Core 0 Virtual Core 1

DPDK Application DPDK VM Application · Reuse librte_power interface, but provides a new implementation that forwards frequency set requests to host via Virtio-Serial channel · Each lcore has exclusive access to a single channel · Sample application re-uses l3fwd_power · A CLI for changing frequency from within a VM is also included.

OS/Hypervisor

Linux “userspace” power governor /sys/devices/system/cpu/cpuN/cpufreq/

VM Power Monitor · Accepts VM Commands over Virtio Serial endpoints, monitored via epoll · Commands include the virtual core to be modified, using libvirt to get physical core mapping · Uses librte_power to affect frequency changes via Linux userspace power governor(APCI cpufreq) · CLI: For adding VM channels to monitor, inspecting and changing channel state, manually altering CPU frequency. Also allows for the changing of vCPU to pCPU pinning.

VM Power Monitor Application

librte_power(vm)
lcore channel 0

librte_power(vm)
lcore channel 1 lcore channel 2 lcore channel 3 lcore channel 0 lcore channel 1

Endpoint Monitor(lcore channels)

Channel Manager

QEMU

libvirt

librte_power(Host)

Map vCPU to pCPU

VM Power CLI

Fig. 44.1: Highlevel Solution

44.2 Overview

VM Power Management employs qemu-kvm to provide communications channels between the host and
VMs in the form of Virtio-Serial which appears as a paravirtualized serial device on a VM and can be
configured to use various backends on the host. For this example each Virtio-Serial endpoint on the host
is configured as AF_UNIX file socket, supporting poll/select and epoll for event notification. In this
example each channel endpoint on the host is monitored via epoll for EPOLLIN events. Each channel is
specified as qemu-kvm arguments or as libvirt XML for each VM, where each VM can have a number
of channels up to a maximum of 64 per VM, in this example each DPDK lcore on a VM has exclusive
access to a channel.

To enable frequency changes from within a VM, a request via the librte_power interface is forwarded via
Virtio-Serial to the host, each request contains the vCPU and power command(scale up/down/min/max).
The API for host and guest librte_power is consistent across environments, with the selection of VM or
Host Implementation determined at automatically at runtime based on the environment.

44.2. Overview 208

Sample Applications User Guides, Release 19.08.2

Upon receiving a request, the host translates the vCPU to a pCPU via the libvirt API before forwarding
to the host librte_power.

Loop: for each epoll event

librte_power(VM)

Sequence

guest_channel(VM) channel_monitor(Host) channel_manager(Host) power_manager(Host)

process_request

get_pcpu_mask()

pcpu_mask

librte_power(Host)

scale_freq_up(pcpu_mask)

rte_power_freq_up()

guest_channel_send_msg()

statusstatus

rte_power_freq_up()

status

Fig. 44.2: VM request to scale frequency

44.2.1 Performance Considerations

While Haswell Microarchitecture allows for independent power control for each core, earlier Microarch-
tectures do not offer such fine grained control. When deployed on pre-Haswell platforms greater care
must be taken in selecting which cores are assigned to a VM, for instance a core will not scale down
until its sibling is similarly scaled.

44.3 Configuration

44.3.1 BIOS

Enhanced Intel SpeedStep® Technology must be enabled in the platform BIOS if the power management
feature of DPDK is to be used. Otherwise, the sys file folder /sys/devices/system/cpu/cpu0/cpufreq will
not exist, and the CPU frequency-based power management cannot be used. Consult the relevant BIOS
documentation to determine how these settings can be accessed.

44.3. Configuration 209

Sample Applications User Guides, Release 19.08.2

44.3.2 Host Operating System

The DPDK Power Library can use either the acpi_cpufreq or intel_pstate kernel driver for the man-
agement of core frequencies. In many cases the intel_pstate driver is the default Power Management
environment.

Should the acpi-cpufreq driver be required, the intel_pstate module must be disabled, and apci_cpufreq
module loaded in its place.

To disable intel_pstate driver, add the following to the grub Linux command line:

intel_pstate=disable

Upon rebooting, load the acpi_cpufreq module:

modprobe acpi_cpufreq

44.3.3 Hypervisor Channel Configuration

Virtio-Serial channels are configured via libvirt XML:

<name>{vm_name}</name>
<controller type='virtio-serial' index='0'>

<address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
</controller>
<channel type='unix'>

<source mode='bind' path='/tmp/powermonitor/{vm_name}.{channel_num}'/>
<target type='virtio' name='virtio.serial.port.poweragent.{vm_channel_num}'/>
<address type='virtio-serial' controller='0' bus='0' port='{N}'/>

</channel>

Where a single controller of type virtio-serial is created and up to 32 channels can be associated with a
single controller and multiple controllers can be specified. The convention is to use the name of the VM
in the host path {vm_name} and to increment {channel_num} for each channel, likewise the port value
{N} must be incremented for each channel.

Each channel on the host will appear in path, the directory /tmp/powermonitor/ must first be created and
given qemu permissions

mkdir /tmp/powermonitor/
chown qemu:qemu /tmp/powermonitor

Note that files and directories within /tmp are generally removed upon rebooting the host and the above
steps may need to be carried out after each reboot.

The serial device as it appears on a VM is configured with the target element attribute name and must
be in the form of virtio.serial.port.poweragent.{vm_channel_num}, where vm_channel_num is typically
the lcore channel to be used in DPDK VM applications.

Each channel on a VM will be present at /dev/virtio-ports/virtio.serial.port.poweragent.{vm_channel_num}

44.4 Compiling and Running the Host Application

44.4.1 Compiling

For information on compiling DPDK and the sample applications see Compiling the Sample Applica-
tions.

44.4. Compiling and Running the Host Application 210

Sample Applications User Guides, Release 19.08.2

The application is located in the vm_power_manager sub-directory.

To build just the vm_power_manager application using make:

export RTE_SDK=/path/to/rte_sdk
export RTE_TARGET=build
cd ${RTE_SDK}/examples/vm_power_manager/
make

The resulting binary will be ${RTE_SDK}/build/examples/vm_power_manager

To build just the vm_power_manager application using meson/ninja:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}
meson build
cd build
ninja
meson configure -Dexamples=vm_power_manager
ninja

The resulting binary will be ${RTE_SDK}/build/examples/dpdk-vm_power_manager

44.4.2 Running

The application does not have any specific command line options other than EAL:

./build/vm_power_mgr [EAL options]

The application requires exactly two cores to run, one core is dedicated to the CLI, while the other is
dedicated to the channel endpoint monitor, for example to run on cores 0 & 1 on a system with 4 memory
channels:

./build/vm_power_mgr -l 0-1 -n 4

After successful initialization the user is presented with VM Power Manager CLI:

vm_power>

Virtual Machines can now be added to the VM Power Manager:

vm_power> add_vm {vm_name}

When a {vm_name} is specified with the add_vm command a lookup is performed with libvirt to ensure
that the VM exists, {vm_name} is used as an unique identifier to associate channels with a particular
VM and for executing operations on a VM within the CLI. VMs do not have to be running in order to
add them.

A number of commands can be issued via the CLI in relation to VMs:

Remove a Virtual Machine identified by {vm_name} from the VM Power Manager.

rm_vm {vm_name}

Add communication channels for the specified VM, the virtio channels must be enabled
in the VM configuration(qemu/libvirt) and the associated VM must be active. {list} is a
comma-separated list of channel numbers to add, using the keyword ‘all’ will attempt to
add all channels for the VM:

add_channels {vm_name} {list}|all

44.4. Compiling and Running the Host Application 211

Sample Applications User Guides, Release 19.08.2

Enable or disable the communication channels in {list}(comma-separated) for the specified
VM, alternatively list can be replaced with keyword ‘all’. Disabled channels will still re-
ceive packets on the host, however the commands they specify will be ignored. Set status
to ‘enabled’ to begin processing requests again:

set_channel_status {vm_name} {list}|all enabled|disabled

Print to the CLI the information on the specified VM, the information lists the number of
vCPUS, the pinning to pCPU(s) as a bit mask, along with any communication channels
associated with each VM, along with the status of each channel:

show_vm {vm_name}

Set the binding of Virtual CPU on VM with name {vm_name} to the Physical CPU mask:

set_pcpu_mask {vm_name} {vcpu} {pcpu}

Set the binding of Virtual CPU on VM to the Physical CPU:

set_pcpu {vm_name} {vcpu} {pcpu}

Manual control and inspection can also be carried in relation CPU frequency scaling:

Get the current frequency for each core specified in the mask:

show_cpu_freq_mask {mask}

Set the current frequency for the cores specified in {core_mask} by scaling each
up/down/min/max:

set_cpu_freq {core_mask} up|down|min|max

Get the current frequency for the specified core:

show_cpu_freq {core_num}

Set the current frequency for the specified core by scaling up/down/min/max:

set_cpu_freq {core_num} up|down|min|max

There are also some command line parameters for enabling the out-of-band monitoring of branch ratio
on cores doing busy polling via PMDs.

--core-list {list of cores}

When this parameter is used, the list of cores specified will monitor the ratio between branch
hits and branch misses. A tightly polling PMD thread will have a very low branch ratio, so
the core frequency will be scaled down to the minimum allowed value. When packets are
received, the code path will alter, causing the branch ratio to increase. When the ratio goes
above the ratio threshold, the core frequency will be scaled up to the maximum allowed
value.

--branch-ratio {ratio}

The branch ratio is a floating point number that specifies the threshold at which to scale
up or down for the given workload. The default branch ratio is 0.01, and will need to be
adjusted for different workloads.

44.4.3 JSON API

In addition to the command line interface for host command and a virtio-serial interface for VM power
policies, there is also a JSON interface through which power commands and policies can be sent. This
functionality adds a dependency on the Jansson library, and the Jansson development package must be

44.4. Compiling and Running the Host Application 212

Sample Applications User Guides, Release 19.08.2

installed on the system before the JSON parsing functionality is included in the app. This is achieved
by:

apt-get install libjansson-dev

The command and package name may be different depending on your operating system. It’s worth
noting that the app will successfully build without this package present, but a warning is shown during
compilation, and the JSON parsing functionality will not be present in the app.

Sending a command or policy to the power manager application is achieved by simply opening a fifo
file, writing a JSON string to that fifo, and closing the file. In actual implementation every core has
own dedicated fifo[0..n], where n is number of the last available core. Having a dedicated fifo file per
core allows using standard filesystem permissions to ensure a given container can only write JSON
commands into fifos it is allowed to use.

The fifo is at /tmp/powermonitor/fifo[0..n]

For example all cmds put to the /tmp/powermonitor/fifo7, will have effect only on CPU[7].

The JSON string can be a policy or instruction, and takes the following format:

{"packet_type": {
"pair_1": value,
"pair_2": value

}}

The ‘packet_type’ header can contain one of two values, depending on whether a policy or power com-
mand is being sent. The two possible values are “policy” and “instruction”, and the expected name-value
pairs is different depending on which type is being sent.

The pairs are the format of standard JSON name-value pairs. The value type varies between the different
name/value pairs, and may be integers, strings, arrays, etc. Examples of policies follow later in this
document. The allowed names and value types are as follows:

Pair Name “command”

Description The type of packet we’re sending to the power manager. We can be creating
or destroying a policy, or sending a direct command to adjust the frequency of a core,
similar to the command line interface.

Type string

Values

CREATE used when creating a new policy,

DESTROY used when removing a policy,

POWER used when sending an immediate command, max, min, etc.

Required yes

Example
"command", "CREATE"

Pair Name “policy_type”

Description Type of policy to apply. Please see vm_power_manager documentation for
more information on the types of policies that may be used.

Type string

Values

44.4. Compiling and Running the Host Application 213

Sample Applications User Guides, Release 19.08.2

TIME Time-of-day policy. Frequencies of the relevant cores are scaled
up/down depending on busy and quiet hours.

TRAFFIC This policy takes statistics from the NIC and scales up and down
accordingly.

WORKLOAD This policy looks at how heavily loaded the cores are, and
scales up and down accordingly.

BRANCH_RATIO This out-of-band policy can look at the ratio between
branch hits and misses on a core, and is useful for detecting how much
packet processing a core is doing.

Required only for CREATE/DESTROY command

Example
"policy_type", "TIME"

Pair Name “busy_hours”

Description The hours of the day in which we scale up the cores for busy times.

Type array of integers

Values array with list of hour numbers, (0-23)

Required only for TIME policy

Example
"busy_hours":[17, 18, 19, 20, 21, 22, 23]

Pair Name “quiet_hours”

Description The hours of the day in which we scale down the cores for quiet times.

Type array of integers

Values array with list of hour numbers, (0-23)

Required only for TIME policy

Example
"quiet_hours":[2, 3, 4, 5, 6]

Pair Name “avg_packet_thresh”

Description Threshold below which the frequency will be set to min for the TRAFFIC
policy. If the traffic rate is above this and below max, the frequency will be set to
medium.

Type integer

Values The number of packets below which the TRAFFIC policy applies the minimum
frequency, or medium frequency if between avg and max thresholds.

Required only for TRAFFIC policy

Example
"avg_packet_thresh": 100000

Pair Name “max_packet_thresh”

44.4. Compiling and Running the Host Application 214

Sample Applications User Guides, Release 19.08.2

Description Threshold above which the frequency will be set to max for the TRAFFIC
policy

Type integer

Values The number of packets per interval above which the TRAFFIC policy applies the
maximum frequency

Required only for TRAFFIC policy

Example
"max_packet_thresh": 500000

Pair Name “workload”

Description When our policy is of type WORKLOAD, we need to specify how heavy our
workload is.

Type string

Values

HIGH For cores running workloads that require high frequencies

MEDIUM For cores running workloads that require medium frequencies

LOW For cores running workloads that require low frequencies

Required only for WORKLOAD policy types

Example
"workload", "MEDIUM"

Pair Name “mac_list”

Description When our policy is of type TRAFFIC, we need to specify the MAC addresses
that the host needs to monitor

Type string

Values array with a list of mac address strings.

Required only for TRAFFIC policy types

Example
"mac_list":["de:ad:be:ef:01:01", "de:ad:be:ef:01:02"]

Pair Name “unit”

Description the type of power operation to apply in the command

Type string

Values

SCALE_MAX Scale frequency of this core to maximum

SCALE_MIN Scale frequency of this core to minimum

SCALE_UP Scale up frequency of this core

SCALE_DOWN Scale down frequency of this core

ENABLE_TURBO Enable Turbo Boost for this core

44.4. Compiling and Running the Host Application 215

Sample Applications User Guides, Release 19.08.2

DISABLE_TURBO Disable Turbo Boost for this core

Required only for POWER instruction

Example
"unit", "SCALE_MAX"

44.4.4 JSON API Examples

Profile create example:

{"policy": {
"command": "create",
"policy_type": "TIME",
"busy_hours":[17, 18, 19, 20, 21, 22, 23],
"quiet_hours":[2, 3, 4, 5, 6]

}}

Profile destroy example:

{"policy": {
"command": "destroy"

}}

Power command example:

{"instruction": {
"command": "power",
"unit": "SCALE_MAX"

}}

To send a JSON string to the Power Manager application, simply paste the example JSON string into a
text file and cat it into the proper fifo:

cat file.json >/tmp/powermonitor/fifo[0..n]

The console of the Power Manager application should indicate the command that was just received via
the fifo.

44.5 Compiling and Running the Guest Applications

l3fwd-power is one sample application that can be used with vm_power_manager.

A guest CLI is also provided for validating the setup.

For both l3fwd-power and guest CLI, the channels for the VM must be monitored by the host application
using the add_channels command on the host. This typically uses the following commands in the host
application:

vm_power> add_vm vmname
vm_power> add_channels vmname all
vm_power> set_channel_status vmname all enabled
vm_power> show_vm vmname

44.5.1 Compiling

For information on compiling DPDK and the sample applications see Compiling the Sample Applica-
tions.

44.5. Compiling and Running the Guest Applications 216

Sample Applications User Guides, Release 19.08.2

For compiling and running l3fwd-power, see L3 Forwarding with Power Management Sample Applica-
tion.

The application is located in the guest_cli sub-directory under vm_power_manager.

To build just the guest_vm_power_manager application using make:

export RTE_SDK=/path/to/rte_sdk
export RTE_TARGET=build
cd ${RTE_SDK}/examples/vm_power_manager/guest_cli/
make

The resulting binary will be ${RTE_SDK}/build/examples/guest_cli

Note: This sample application conditionally links in the Jansson JSON library, so if you are using a
multilib or cross compile environment you may need to set the PKG_CONFIG_LIBDIR environmental
variable to point to the relevant pkgconfig folder so that the correct library is linked in.

For example, if you are building for a 32-bit target, you could find the correct directory using the fol-
lowing find command:

find /usr -type d -name pkgconfig
/usr/lib/i386-linux-gnu/pkgconfig
/usr/lib/x86_64-linux-gnu/pkgconfig

Then use:

export PKG_CONFIG_LIBDIR=/usr/lib/i386-linux-gnu/pkgconfig

You then use the make command as normal, which should find the 32-bit version of the library, if it
installed. If not, the application will be built without the JSON interface functionality.

To build just the vm_power_manager application using meson/ninja:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}
meson build
cd build
ninja
meson configure -Dexamples=vm_power_manager/guest_cli
ninja

The resulting binary will be ${RTE_SDK}/build/examples/guest_cli

44.5.2 Running

The standard EAL command line parameters are required:

./build/guest_vm_power_mgr [EAL options] -- [guest options]

The guest example uses a channel for each lcore enabled. For example, to run on cores 0,1,2,3:

./build/guest_vm_power_mgr -l 0-3

Optionally, there is a list of command line parameter should the user wish to send a power policy down
to the host application. These parameters are as follows:

--vm-name {name of guest vm}

This parameter allows the user to change the Virtual Machine name passed down to the host
application via the power policy. The default is “ubuntu2”

44.5. Compiling and Running the Guest Applications 217

Sample Applications User Guides, Release 19.08.2

--vcpu-list {list vm cores}

A comma-separated list of cores in the VM that the user wants the host application to
monitor. The list of cores in any vm starts at zero, and these are mapped to the physical cores
by the host application once the policy is passed down. Valid syntax includes individual
cores ‘2,3,4’, or a range of cores ‘2-4’, or a combination of both ‘1,3,5-7’

--busy-hours {list of busy hours}

A comma-separated list of hours within which to set the core frequency to maximum. Valid
syntax includes individual hours ‘2,3,4’, or a range of hours ‘2-4’, or a combination of both
‘1,3,5-7’. Valid hours are 0 to 23.

--quiet-hours {list of quiet hours}

A comma-separated list of hours within which to set the core frequency to minimum. Valid
syntax includes individual hours ‘2,3,4’, or a range of hours ‘2-4’, or a combination of both
‘1,3,5-7’. Valid hours are 0 to 23.

--policy {policy type}

The type of policy. This can be one of the following values: TRAFFIC - based on incoming
traffic rates on the NIC. TIME - busy/quiet hours policy. BRANCH_RATIO - uses branch
ratio counters to determine core busyness. Not all parameters are needed for all policy
types. For example, BRANCH_RATIO only needs the vcpu-list parameter, not any of the
hours.

After successful initialization the user is presented with VM Power Manager Guest CLI:

vm_power(guest)>

To change the frequency of a lcore, use the set_cpu_freq command. Where {core_num} is the lcore and
channel to change frequency by scaling up/down/min/max.

set_cpu_freq {core_num} up|down|min|max

To start the application and configure the power policy, and send it to the host:

./build/guest_vm_power_mgr -l 0-3 -n 4 -- --vm-name=ubuntu --policy=BRANCH_RATIO --vcpu-list=2-4

Once the VM Power Manager Guest CLI appears, issuing the ‘send_policy now’ command will send
the policy to the host:

send_policy now

Once the policy is sent to the host, the host application takes over the power monitoring of the specified
cores in the policy.

44.5. Compiling and Running the Guest Applications 218

CHAPTER

FORTYFIVE

TEP TERMINATION SAMPLE APPLICATION

The TEP (Tunnel End point) termination sample application simulates a VXLAN Tunnel Endpoint
(VTEP) termination in DPDK, which is used to demonstrate the offload and filtering capabilities of
Intel® XL710 10/40 Gigabit Ethernet Controller for VXLAN packet. This sample uses the basic virtio
devices management mechanism from vhost example, and also uses the us-vHost interface and tunnel
filtering mechanism to direct a specified traffic to a specific VM. In addition, this sample is also designed
to show how tunneling protocols can be handled.

45.1 Background

With virtualization, overlay networks allow a network structure to be built or imposed across physical
nodes which is abstracted away from the actual underlining physical network connections. This allows
network isolation, QOS, etc to be provided on a per client basis.

Host

VM
VNID 100

IP Network

VM VNID 101

Host

VM
VNID 100

VM VNID 101

Host

VMVNID 100

VM
VNID 101

Host

VMVNID 100

VMVNID 102

VNID 102
VM

TEP

TEP
TEP

TEP

Fig. 45.1: Overlay Networking.

In a typical setup, the network overlay tunnel is terminated at the Virtual/Tunnel End Point (VEP/TEP).

219

Sample Applications User Guides, Release 19.08.2

The TEP is normally located at the physical host level ideally in the software switch. Due to processing
constraints and the inevitable bottleneck that the switch becomes, the ability to offload overlay support
features becomes an important requirement. Intel® XL710 10/40 Gigabit Ethernet network card pro-
vides hardware filtering and offload capabilities to support overlay networks implementations such as
MAC in UDP and MAC in GRE.

45.2 Sample Code Overview

The DPDK TEP termination sample code demonstrates the offload and filtering capabilities of Intel®
XL710 10/40 Gigabit Ethernet Controller for VXLAN packet.

The sample code is based on vhost library. The vhost library is developed for user space Ethernet switch
to easily integrate with vhost functionality.

The sample will support the followings:

• Tunneling packet recognition.

• The port of UDP tunneling is configurable

• Directing incoming traffic to the correct queue based on the tunnel filter type. The supported filter
type are listed below.

– Inner MAC and VLAN and tenant ID

– Inner MAC and tenant ID, and Outer MAC

– Inner MAC and tenant ID

The tenant ID will be assigned from a static internal table based on the us-vhost device ID. Each
device will receive a unique device ID. The inner MAC will be learned by the first packet trans-
mitted from a device.

• Decapsulation of RX VXLAN traffic. This is a software only operation.

• Encapsulation of TX VXLAN traffic. This is a software only operation.

• Inner IP and inner L4 checksum offload.

• TSO offload support for tunneling packet.

The following figure shows the framework of the TEP termination sample application based on DPDK
vhost lib.

45.3 Supported Distributions

The example in this section have been validated with the following distributions:

• Fedora* 18

• Fedora* 19

• Fedora* 20

45.2. Sample Code Overview 220

Sample Applications User Guides, Release 19.08.2

Userspace vhost Interface

EncapsulationDecapsulation

Inner IP/L4 checksum offload

UDP port configuration

Inner IP/L4csum verify

Tunnel Filter

Packet Type

DPDK Application

VXLAN Tunnel

NIC

WAN/LAN

TEP

VM-2 (VNID:200)VM-1 (VNID: 100)

vport-0 vport-1 vport-0 vport-1

Guest

TSO offload

Fig. 45.2: TEP termination Framework Overview

45.3. Supported Distributions 221

Sample Applications User Guides, Release 19.08.2

45.4 Compiling the Sample Code

To enable vhost, turn on vhost library in the configure file config/common_linux.

CONFIG_RTE_LIBRTE_VHOST=y

Then following the to compile the sample application shown in Compiling the Sample Applications.

45.5 Running the Sample Code

1. Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/tep_termination

2. Run the tep_termination sample code:

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
-p 0x1 --dev-basename tep-termination --nb-devices 4
--udp-port 4789 --filter-type 1

Note: Please note the huge-dir parameter instructs the DPDK to allocate its memory from the 2 MB
page hugetlbfs.

45.5.1 Parameters

The same parameters with the vhost sample.

Refer to Parameters for detailed explanation.

Number of Devices.

The nb-devices option specifies the number of virtIO device. The default value is 2.

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
--nb-devices 2

Tunneling UDP port.

The udp-port option is used to specify the destination UDP number for UDP tunneling packet. The
default value is 4789.

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
--nb-devices 2 --udp-port 4789

Filter Type.

The filter-type option is used to specify which filter type is used to filter UDP tunneling packet to a
specified queue. The default value is 1, which means the filter type of inner MAC and tenant ID is used.

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
--nb-devices 2 --udp-port 4789 --filter-type 1

TX Checksum.

The tx-checksum option is used to enable or disable the inner header checksum offload. The default
value is 0, which means the checksum offload is disabled.

45.4. Compiling the Sample Code 222

Sample Applications User Guides, Release 19.08.2

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
--nb-devices 2 --tx-checksum

TCP segment size.

The tso-segsz option specifies the TCP segment size for TSO offload for tunneling packet. The default
value is 0, which means TSO offload is disabled.

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
--tx-checksum --tso-segsz 800

Decapsulation option.

The decap option is used to enable or disable decapsulation operation for received VXLAN packet. The
default value is 1.

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
--nb-devices 4 --udp-port 4789 --decap 1

Encapsulation option.

The encap option is used to enable or disable encapsulation operation for transmitted packet. The default
value is 1.

user@target:~$./build/app/tep_termination -l 0-3 -n 4 --huge-dir /mnt/huge --
--nb-devices 4 --udp-port 4789 --encap 1

45.6 Running the Virtual Machine (QEMU)

Refer to Start the VM.

45.7 Running DPDK in the Virtual Machine

Refer to Run testpmd inside guest.

45.8 Passing Traffic to the Virtual Machine Device

For a virtio-net device to receive traffic, the traffic’s Layer 2 header must include both the virtio-net
device’s MAC address. The DPDK sample code behaves in a similar manner to a learning switch in
that it learns the MAC address of the virtio-net devices from the first transmitted packet. On learning
the MAC address, the DPDK vhost sample code prints a message with the MAC address and tenant ID
virtio-net device. For example:

DATA: (0) MAC_ADDRESS cc:bb:bb:bb:bb:bb and VNI 1000 registered

The above message indicates that device 0 has been registered with MAC address cc:bb:bb:bb:bb:bb and
VNI 1000. Any packets received on the NIC with these values are placed on the devices receive queue.

45.6. Running the Virtual Machine (QEMU) 223

CHAPTER

FORTYSIX

PTP CLIENT SAMPLE APPLICATION

The PTP (Precision Time Protocol) client sample application is a simple example of using the DPDK
IEEE1588 API to communicate with a PTP master clock to synchronize the time on the NIC and,
optionally, on the Linux system.

Note, PTP is a time syncing protocol and cannot be used within DPDK as a time-stamping mechanism.
See the following for an explanation of the protocol: Precision Time Protocol.

46.1 Limitations

The PTP sample application is intended as a simple reference implementation of a PTP client using the
DPDK IEEE1588 API. In order to keep the application simple the following assumptions are made:

• The first discovered master is the master for the session.

• Only L2 PTP packets are supported.

• Only the PTP v2 protocol is supported.

• Only the slave clock is implemented.

46.2 How the Application Works

The PTP synchronization in the sample application works as follows:

• Master sends Sync message - the slave saves it as T2.

• Master sends Follow Up message and sends time of T1.

• Slave sends Delay Request frame to PTP Master and stores T3.

• Master sends Delay Response T4 time which is time of received T3.

The adjustment for slave can be represented as:

adj = -[(T2-T1)-(T4 - T3)]/2

If the command line parameter -T 1 is used the application also synchronizes the PTP PHC clock with
the Linux kernel clock.

224

https://en.wikipedia.org/wiki/Precision_Time_Protocol

Sample Applications User Guides, Release 19.08.2

T2
FOLLOW UP:T1

DELAY REQUEST T3

T4

T1

DELAY RESPONSE:T4

tim
e

master slave

SYNC

Fig. 46.1: PTP Synchronization Protocol

46.3 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ptpclient sub-directory.

Note: To compile the application edit the config/common_linux configuration file to enable
IEEE1588 and then recompile DPDK:

CONFIG_RTE_LIBRTE_IEEE1588=y

46.4 Running the Application

To run the example in a linux environment:

./build/ptpclient -l 1 -n 4 -- -p 0x1 -T 0

Refer to DPDK Getting Started Guide for general information on running applications and the Environ-
ment Abstraction Layer (EAL) options.

• -p portmask: Hexadecimal portmask.

• -T 0: Update only the PTP slave clock.

• -T 1: Update the PTP slave clock and synchronize the Linux Kernel to the PTP clock.

46.3. Compiling the Application 225

Sample Applications User Guides, Release 19.08.2

46.5 Code Explanation

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte_ and are explained in detail
in the DPDK API Documentation.

46.5.1 The Main Function

The main() function performs the initialization and calls the execution threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv arguments
are provided to the rte_eal_init() function. The value returned is the number of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

And than we parse application specific arguments

argc -= ret;
argv += ret;

ret = ptp_parse_args(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Error with PTP initialization\n");

The main() also allocates a mempool to hold the mbufs (Message Buffers) used by the application:

mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());

Mbufs are the packet buffer structure used by DPDK. They are explained in detail in the “Mbuf Library”
section of the DPDK Programmer’s Guide.

The main() function also initializes all the ports using the user defined port_init() function with
portmask provided by user:

for (portid = 0; portid < nb_ports; portid++)
if ((ptp_enabled_port_mask & (1 << portid)) != 0) {

if (port_init(portid, mbuf_pool) == 0) {
ptp_enabled_ports[ptp_enabled_port_nb] = portid;
ptp_enabled_port_nb++;

} else {
rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu8 "\n",

portid);
}

}

Once the initialization is complete, the application is ready to launch a function on an lcore. In this
example lcore_main() is called on a single lcore.

lcore_main();

The lcore_main() function is explained below.

46.5.2 The Lcores Main

As we saw above the main() function calls an application function on the available lcores.

46.5. Code Explanation 226

Sample Applications User Guides, Release 19.08.2

The main work of the application is done within the loop:

for (portid = 0; portid < ptp_enabled_port_nb; portid++) {

portid = ptp_enabled_ports[portid];
nb_rx = rte_eth_rx_burst(portid, 0, &m, 1);

if (likely(nb_rx == 0))
continue;

if (m->ol_flags & PKT_RX_IEEE1588_PTP)
parse_ptp_frames(portid, m);

rte_pktmbuf_free(m);
}

Packets are received one by one on the RX ports and, if required, PTP response packets are transmitted
on the TX ports.

If the offload flags in the mbuf indicate that the packet is a PTP packet then the packet is parsed to
determine which type:

if (m->ol_flags & PKT_RX_IEEE1588_PTP)
parse_ptp_frames(portid, m);

All packets are freed explicitly using rte_pktmbuf_free().

The forwarding loop can be interrupted and the application closed using Ctrl-C.

46.5.3 PTP parsing

The parse_ptp_frames() function processes PTP packets, implementing slave PTP IEEE1588 L2
functionality.

void
parse_ptp_frames(uint16_t portid, struct rte_mbuf *m) {

struct ptp_header *ptp_hdr;
struct rte_ether_hdr *eth_hdr;
uint16_t eth_type;

eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
eth_type = rte_be_to_cpu_16(eth_hdr->ether_type);

if (eth_type == PTP_PROTOCOL) {
ptp_data.m = m;
ptp_data.portid = portid;
ptp_hdr = (struct ptp_header *)(rte_pktmbuf_mtod(m, char *)

+ sizeof(struct rte_ether_hdr));

switch (ptp_hdr->msgtype) {
case SYNC:

parse_sync(&ptp_data);
break;

case FOLLOW_UP:
parse_fup(&ptp_data);
break;

case DELAY_RESP:
parse_drsp(&ptp_data);
print_clock_info(&ptp_data);
break;

default:
break;

46.5. Code Explanation 227

Sample Applications User Guides, Release 19.08.2

}
}

}

There are 3 types of packets on the RX path which we must parse to create a minimal implementation
of the PTP slave client:

• SYNC packet.

• FOLLOW UP packet

• DELAY RESPONSE packet.

When we parse the FOLLOW UP packet we also create and send a DELAY_REQUEST packet. Also
when we parse the DELAY RESPONSE packet, and all conditions are met we adjust the PTP slave clock.

46.5. Code Explanation 228

CHAPTER

FORTYSEVEN

PERFORMANCE THREAD SAMPLE APPLICATION

The performance thread sample application is a derivative of the standard L3 forwarding application that
demonstrates different threading models.

47.1 Overview

For a general description of the L3 forwarding applications capabilities please refer to the documentation
of the standard application in L3 Forwarding Sample Application.

The performance thread sample application differs from the standard L3 forwarding example in that it
divides the TX and RX processing between different threads, and makes it possible to assign individual
threads to different cores.

Three threading models are considered:

1. When there is one EAL thread per physical core.

2. When there are multiple EAL threads per physical core.

3. When there are multiple lightweight threads per EAL thread.

Since DPDK release 2.0 it is possible to launch applications using the --lcores EAL parameter,
specifying cpu-sets for a physical core. With the performance thread sample application its is now also
possible to assign individual RX and TX functions to different cores.

As an alternative to dividing the L3 forwarding work between different EAL threads the performance
thread sample introduces the possibility to run the application threads as lightweight threads (L-threads)
within one or more EAL threads.

In order to facilitate this threading model the example includes a primitive cooperative scheduler (L-
thread) subsystem. More details of the L-thread subsystem can be found in The L-thread subsystem.

Note: Whilst theoretically possible it is not anticipated that multiple L-thread schedulers would be run
on the same physical core, this mode of operation should not be expected to yield useful performance
and is considered invalid.

47.2 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the performance-thread/l3fwd-thread sub-directory.

229

Sample Applications User Guides, Release 19.08.2

47.3 Running the Application

The application has a number of command line options:

./build/l3fwd-thread [EAL options] --
-p PORTMASK [-P]
--rx(port,queue,lcore,thread)[,(port,queue,lcore,thread)]
--tx(lcore,thread)[,(lcore,thread)]
[--enable-jumbo] [--max-pkt-len PKTLEN]] [--no-numa]
[--hash-entry-num] [--ipv6] [--no-lthreads] [--stat-lcore lcore]
[--parse-ptype]

Where:

• -p PORTMASK: Hexadecimal bitmask of ports to configure.

• -P: optional, sets all ports to promiscuous mode so that packets are accepted regardless of the
packet’s Ethernet MAC destination address. Without this option, only packets with the Ethernet
MAC destination address set to the Ethernet address of the port are accepted.

• --rx (port,queue,lcore,thread)[,(port,queue,lcore,thread)]: the list
of NIC RX ports and queues handled by the RX lcores and threads. The parameters are explained
below.

• --tx (lcore,thread)[,(lcore,thread)]: the list of TX threads identifying the lcore
the thread runs on, and the id of RX thread with which it is associated. The parameters are
explained below.

• --enable-jumbo: optional, enables jumbo frames.

• --max-pkt-len: optional, maximum packet length in decimal (64-9600).

• --no-numa: optional, disables numa awareness.

• --hash-entry-num: optional, specifies the hash entry number in hex to be setup.

• --ipv6: optional, set it if running ipv6 packets.

• --no-lthreads: optional, disables l-thread model and uses EAL threading model. See below.

• --stat-lcore: optional, run CPU load stats collector on the specified lcore.

• --parse-ptype: optional, set to use software to analyze packet type. Without this option,
hardware will check the packet type.

The parameters of the --rx and --tx options are:

• --rx parameters

port RX port
queue RX queue that will be read on the specified RX port
lcore Core to use for the thread
thread Thread id (continuously from 0 to N)

• --tx parameters

lcore Core to use for L3 route match and transmit
thread Id of RX thread to be associated with this TX thread

The l3fwd-thread application allows you to start packet processing in two threading models: L-
Threads (default) and EAL Threads (when the --no-lthreads parameter is used). For consistency
all parameters are used in the same way for both models.

47.3. Running the Application 230

Sample Applications User Guides, Release 19.08.2

47.3.1 Running with L-threads

When the L-thread model is used (default option), lcore and thread parameters in --rx/--tx are used
to affinitize threads to the selected scheduler.

For example, the following places every l-thread on different lcores:

l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)"

The following places RX l-threads on lcore 0 and TX l-threads on lcore 1 and 2 and so on:

l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,0,1)" \
--tx="(1,0)(2,1)"

47.3.2 Running with EAL threads

When the --no-lthreads parameter is used, the L-threading model is turned off and EAL threads are
used for all processing. EAL threads are enumerated in the same way as L-threads, but the --lcores
EAL parameter is used to affinitize threads to the selected cpu-set (scheduler). Thus it is possible to
place every RX and TX thread on different lcores.

For example, the following places every EAL thread on different lcores:

l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)" \
--no-lthreads

To affinitize two or more EAL threads to one cpu-set, the EAL --lcores parameter is used.

The following places RX EAL threads on lcore 0 and TX EAL threads on lcore 1 and 2 and so on:

l3fwd-thread -l 0-7 -n 2 --lcores="(0,1)@0,(2,3)@1" -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)" \
--no-lthreads

47.3.3 Examples

For selected scenarios the command line configuration of the application for L-threads and its corre-
sponding EAL threads command line can be realized as follows:

1. Start every thread on different scheduler (1:1):

l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)"

EAL thread equivalent:

l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)" \
--no-lthreads

2. Start all threads on one core (N:1).

Start 4 L-threads on lcore 0:

47.3. Running the Application 231

Sample Applications User Guides, Release 19.08.2

l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,0,1)" \
--tx="(0,0)(0,1)"

Start 4 EAL threads on cpu-set 0:

l3fwd-thread -l 0-7 -n 2 --lcores="(0-3)@0" -- -P -p 3 \
--rx="(0,0,0,0)(1,0,0,1)" \
--tx="(2,0)(3,1)" \
--no-lthreads

3. Start threads on different cores (N:M).

Start 2 L-threads for RX on lcore 0, and 2 L-threads for TX on lcore 1:

l3fwd-thread -l 0-7 -n 2 -- -P -p 3 \
--rx="(0,0,0,0)(1,0,0,1)" \
--tx="(1,0)(1,1)"

Start 2 EAL threads for RX on cpu-set 0, and 2 EAL threads for TX on cpu-set 1:

l3fwd-thread -l 0-7 -n 2 --lcores="(0-1)@0,(2-3)@1" -- -P -p 3 \
--rx="(0,0,0,0)(1,0,1,1)" \
--tx="(2,0)(3,1)" \
--no-lthreads

47.4 Explanation

To a great extent the sample application differs little from the standard L3 forwarding application, and
readers are advised to familiarize themselves with the material covered in the L3 Forwarding Sample
Application documentation before proceeding.

The following explanation is focused on the way threading is handled in the performance thread example.

47.4.1 Mode of operation with EAL threads

The performance thread sample application has split the RX and TX functionality into two different
threads, and the RX and TX threads are interconnected via software rings. With respect to these rings
the RX threads are producers and the TX threads are consumers.

On initialization the TX and RX threads are started according to the command line parameters.

The RX threads poll the network interface queues and post received packets to a TX thread via a corre-
sponding software ring.

The TX threads poll software rings, perform the L3 forwarding hash/LPM match, and assemble packet
bursts before performing burst transmit on the network interface.

As with the standard L3 forward application, burst draining of residual packets is performed periodically
with the period calculated from elapsed time using the timestamps counter.

The diagram below illustrates a case with two RX threads and three TX threads.

47.4.2 Mode of operation with L-threads

Like the EAL thread configuration the application has split the RX and TX functionality into different
threads, and the pairs of RX and TX threads are interconnected via software rings.

47.4. Explanation 232

Sample Applications User Guides, Release 19.08.2

Po
rt

 1
Po

rt
 2

rx-thread

rings

rx-thread

Po
rt

 1
Po

rt
 2

tx-thread

tx-thread

tx-thread

On initialization an L-thread scheduler is started on every EAL thread. On all but the master EAL thread
only a a dummy L-thread is initially started. The L-thread started on the master EAL thread then spawns
other L-threads on different L-thread schedulers according the command line parameters.

The RX threads poll the network interface queues and post received packets to a TX thread via the
corresponding software ring.

The ring interface is augmented by means of an L-thread condition variable that enables the TX thread
to be suspended when the TX ring is empty. The RX thread signals the condition whenever it posts to
the TX ring, causing the TX thread to be resumed.

Additionally the TX L-thread spawns a worker L-thread to take care of polling the software rings, whilst
it handles burst draining of the transmit buffer.

The worker threads poll the software rings, perform L3 route lookup and assemble packet bursts. If the
TX ring is empty the worker thread suspends itself by waiting on the condition variable associated with
the ring.

Burst draining of residual packets, less than the burst size, is performed by the TX thread which sleeps
(using an L-thread sleep function) and resumes periodically to flush the TX buffer.

This design means that L-threads that have no work, can yield the CPU to other L-threads and avoid
having to constantly poll the software rings.

The diagram below illustrates a case with two RX threads and three TX functions (each comprising
a thread that processes forwarding and a thread that periodically drains the output buffer of residual
packets).

Po
rt

 1
Po

rt
 2

rx-thread

rings

rx-thread

Po
rt

 1
Po

rt
 2

tx-thread

tx-drain

tx-thread

tx-drain

tx-thread

tx-drain

47.4. Explanation 233

Sample Applications User Guides, Release 19.08.2

47.4.3 CPU load statistics

It is possible to display statistics showing estimated CPU load on each core. The statistics indicate the
percentage of CPU time spent: processing received packets (forwarding), polling queues/rings (waiting
for work), and doing any other processing (context switch and other overhead).

When enabled statistics are gathered by having the application threads set and clear flags when they
enter and exit pertinent code sections. The flags are then sampled in real time by a statistics collector
thread running on another core. This thread displays the data in real time on the console.

This feature is enabled by designating a statistics collector core, using the --stat-lcore parameter.

47.5 The L-thread subsystem

The L-thread subsystem resides in the examples/performance-thread/common directory and is built and
linked automatically when building the l3fwd-thread example.

The subsystem provides a simple cooperative scheduler to enable arbitrary functions to run as coopera-
tive threads within a single EAL thread. The subsystem provides a pthread like API that is intended to
assist in reuse of legacy code written for POSIX pthreads.

The following sections provide some detail on the features, constraints, performance and porting con-
siderations when using L-threads.

47.5.1 Comparison between L-threads and POSIX pthreads

The fundamental difference between the L-thread and pthread models is the way in which threads are
scheduled. The simplest way to think about this is to consider the case of a processor with a single CPU.
To run multiple threads on a single CPU, the scheduler must frequently switch between the threads, in
order that each thread is able to make timely progress. This is the basis of any multitasking operating
system.

This section explores the differences between the pthread model and the L-thread model as implemented
in the provided L-thread subsystem. If needed a theoretical discussion of preemptive vs cooperative
multi-threading can be found in any good text on operating system design.

Scheduling and context switching

The POSIX pthread library provides an application programming interface to create and synchronize
threads. Scheduling policy is determined by the host OS, and may be configurable. The OS may use
sophisticated rules to determine which thread should be run next, threads may suspend themselves or
make other threads ready, and the scheduler may employ a time slice giving each thread a maximum time
quantum after which it will be preempted in favor of another thread that is ready to run. To complicate
matters further threads may be assigned different scheduling priorities.

By contrast the L-thread subsystem is considerably simpler. Logically the L-thread scheduler per-
forms the same multiplexing function for L-threads within a single pthread as the OS scheduler does
for pthreads within an application process. The L-thread scheduler is simply the main loop of a pthread,
and in so far as the host OS is concerned it is a regular pthread just like any other. The host OS is
oblivious about the existence of and not at all involved in the scheduling of L-threads.

47.5. The L-thread subsystem 234

Sample Applications User Guides, Release 19.08.2

The other and most significant difference between the two models is that L-threads are scheduled coop-
eratively. L-threads cannot not preempt each other, nor can the L-thread scheduler preempt a running
L-thread (i.e. there is no time slicing). The consequence is that programs implemented with L-threads
must possess frequent rescheduling points, meaning that they must explicitly and of their own volition
return to the scheduler at frequent intervals, in order to allow other L-threads an opportunity to proceed.

In both models switching between threads requires that the current CPU context is saved and a new
context (belonging to the next thread ready to run) is restored. With pthreads this context switching is
handled transparently and the set of CPU registers that must be preserved between context switches is
as per an interrupt handler.

An L-thread context switch is achieved by the thread itself making a function call to the L-thread sched-
uler. Thus it is only necessary to preserve the callee registers. The caller is responsible to save and
restore any other registers it is using before a function call, and restore them on return, and this is han-
dled by the compiler. For X86_64 on both Linux and BSD the System V calling convention is used,
this defines registers RSP, RBP, and R12-R15 as callee-save registers (for more detailed discussion a
good reference is X86 Calling Conventions).

Taking advantage of this, and due to the absence of preemption, an L-thread context switch is achieved
with less than 20 load/store instructions.

The scheduling policy for L-threads is fixed, there is no prioritization of L-threads, all L-threads are
equal and scheduling is based on a FIFO ready queue.

An L-thread is a struct containing the CPU context of the thread (saved on context switch) and other
useful items. The ready queue contains pointers to threads that are ready to run. The L-thread scheduler
is a simple loop that polls the ready queue, reads from it the next thread ready to run, which it resumes
by saving the current context (the current position in the scheduler loop) and restoring the context of the
next thread from its thread struct. Thus an L-thread is always resumed at the last place it yielded.

A well behaved L-thread will call the context switch regularly (at least once in its main loop) thus
returning to the scheduler’s own main loop. Yielding inserts the current thread at the back of the ready
queue, and the process of servicing the ready queue is repeated, thus the system runs by flipping back
and forth the between L-threads and scheduler loop.

In the case of pthreads, the preemptive scheduling, time slicing, and support for thread prioritization
means that progress is normally possible for any thread that is ready to run. This comes at the price of a
relatively heavier context switch and scheduling overhead.

With L-threads the progress of any particular thread is determined by the frequency of rescheduling
opportunities in the other L-threads. This means that an errant L-thread monopolizing the CPU might
cause scheduling of other threads to be stalled. Due to the lower cost of context switching, however,
voluntary rescheduling to ensure progress of other threads, if managed sensibly, is not a prohibitive
overhead, and overall performance can exceed that of an application using pthreads.

Mutual exclusion

With pthreads preemption means that threads that share data must observe some form of mutual exclu-
sion protocol.

The fact that L-threads cannot preempt each other means that in many cases mutual exclusion devices
can be completely avoided.

Locking to protect shared data can be a significant bottleneck in multi-threaded applications so a care-
fully designed cooperatively scheduled program can enjoy significant performance advantages.

47.5. The L-thread subsystem 235

https://en.wikipedia.org/wiki/X86_calling_conventions

Sample Applications User Guides, Release 19.08.2

So far we have considered only the simplistic case of a single core CPU, when multiple CPUs are
considered things are somewhat more complex.

First of all it is inevitable that there must be multiple L-thread schedulers, one running on each EAL
thread. So long as these schedulers remain isolated from each other the above assertions about the
potential advantages of cooperative scheduling hold true.

A configuration with isolated cooperative schedulers is less flexible than the pthread model where
threads can be affinitized to run on any CPU. With isolated schedulers scaling of applications to uti-
lize fewer or more CPUs according to system demand is very difficult to achieve.

The L-thread subsystem makes it possible for L-threads to migrate between schedulers running on dif-
ferent CPUs. Needless to say if the migration means that threads that share data end up running on
different CPUs then this will introduce the need for some kind of mutual exclusion system.

Of course rte_ring software rings can always be used to interconnect threads running on different
cores, however to protect other kinds of shared data structures, lock free constructs or else explicit
locking will be required. This is a consideration for the application design.

In support of this extended functionality, the L-thread subsystem implements thread safe mutexes and
condition variables.

The cost of affinitizing and of condition variable signaling is significantly lower than the equivalent
pthread operations, and so applications using these features will see a performance benefit.

Thread local storage

As with applications written for pthreads an application written for L-threads can take advantage of
thread local storage, in this case local to an L-thread. An application may save and retrieve a single
pointer to application data in the L-thread struct.

For legacy and backward compatibility reasons two alternative methods are also offered, the first
is modeled directly on the pthread get/set specific APIs, the second approach is modeled on the
RTE_PER_LCORE macros, whereby PER_LTHREAD macros are introduced, in both cases the storage
is local to the L-thread.

47.5.2 Constraints and performance implications when using L-threads

API compatibility

The L-thread subsystem provides a set of functions that are logically equivalent to the corresponding
functions offered by the POSIX pthread library, however not all pthread functions have a corresponding
L-thread equivalent, and not all features available to pthreads are implemented for L-threads.

The pthread library offers considerable flexibility via programmable attributes that can be associated
with threads, mutexes, and condition variables.

By contrast the L-thread subsystem has fixed functionality, the scheduler policy cannot be varied, and
L-threads cannot be prioritized. There are no variable attributes associated with any L-thread objects.
L-threads, mutexes and conditional variables, all have fixed functionality. (Note: reserved parameters
are included in the APIs to facilitate possible future support for attributes).

The table below lists the pthread and equivalent L-thread APIs with notes on differences and/or con-
straints. Where there is no L-thread entry in the table, then the L-thread subsystem provides no equiva-
lent function.

47.5. The L-thread subsystem 236

Sample Applications User Guides, Release 19.08.2

Table 47.1: Pthread and equivalent L-thread APIs.

Pthread function L-thread function Notes
pthread_barrier_destroy
pthread_barrier_init
pthread_barrier_wait
pthread_cond_broadcast lthread_cond_broadcast See note 1
pthread_cond_destroy lthread_cond_destroy
pthread_cond_init lthread_cond_init
pthread_cond_signal lthread_cond_signal See note 1
pthread_cond_timedwait
pthread_cond_wait lthread_cond_wait See note 5
pthread_create lthread_create See notes 2, 3
pthread_detach lthread_detach See note 4
pthread_equal
pthread_exit lthread_exit
pthread_getspecific lthread_getspecific
pthread_getcpuclockid
pthread_join lthread_join
pthread_key_create lthread_key_create
pthread_key_delete lthread_key_delete
pthread_mutex_destroy lthread_mutex_destroy
pthread_mutex_init lthread_mutex_init
pthread_mutex_lock lthread_mutex_lock See note 6
pthread_mutex_trylock lthread_mutex_trylock See note 6
pthread_mutex_timedlock
pthread_mutex_unlock lthread_mutex_unlock
pthread_once
pthread_rwlock_destroy
pthread_rwlock_init
pthread_rwlock_rdlock
pthread_rwlock_timedrdlock
pthread_rwlock_timedwrlock
pthread_rwlock_tryrdlock
pthread_rwlock_trywrlock
pthread_rwlock_unlock
pthread_rwlock_wrlock
pthread_self lthread_current
pthread_setspecific lthread_setspecific
pthread_spin_init See note 10
pthread_spin_destroy See note 10
pthread_spin_lock See note 10
pthread_spin_trylock See note 10
pthread_spin_unlock See note 10
pthread_cancel lthread_cancel
pthread_setcancelstate
pthread_setcanceltype
pthread_testcancel
pthread_getschedparam

Continued on next page

47.5. The L-thread subsystem 237

Sample Applications User Guides, Release 19.08.2

Table 47.1 – continued from previous page
Pthread function L-thread function Notes
pthread_setschedparam
pthread_yield lthread_yield See note 7
pthread_setaffinity_np lthread_set_affinity See notes 2, 3, 8

lthread_sleep See note 9
lthread_sleep_clks See note 9

Note 1:

Neither lthread signal nor broadcast may be called concurrently by L-threads running on different sched-
ulers, although multiple L-threads running in the same scheduler may freely perform signal or broadcast
operations. L-threads running on the same or different schedulers may always safely wait on a condition
variable.

Note 2:

Pthread attributes may be used to affinitize a pthread with a cpu-set. The L-thread subsystem does not
support a cpu-set. An L-thread may be affinitized only with a single CPU at any time.

Note 3:

If an L-thread is intended to run on a different NUMA node than the node that creates the thread then,
when calling lthread_create() it is advantageous to specify the destination core as a parameter
of lthread_create(). See Memory allocation and NUMA awareness for details.

Note 4:

An L-thread can only detach itself, and cannot detach other L-threads.

Note 5:

A wait operation on a pthread condition variable is always associated with and protected by a mutex
which must be owned by the thread at the time it invokes pthread_wait(). By contrast L-thread
condition variables are thread safe (for waiters) and do not use an associated mutex. Multiple L-threads
(including L-threads running on other schedulers) can safely wait on a L-thread condition variable. As
a consequence the performance of an L-thread condition variables is typically an order of magnitude
faster than its pthread counterpart.

Note 6:

Recursive locking is not supported with L-threads, attempts to take a lock recursively will be detected
and rejected.

Note 7:

lthread_yield() will save the current context, insert the current thread to the back of the ready
queue, and resume the next ready thread. Yielding increases ready queue backlog, see Ready queue
backlog for more details about the implications of this.

N.B. The context switch time as measured from immediately before the call to lthread_yield() to
the point at which the next ready thread is resumed, can be an order of magnitude faster that the same
measurement for pthread_yield.

Note 8:

lthread_set_affinity() is similar to a yield apart from the fact that the yielding thread is in-
serted into a peer ready queue of another scheduler. The peer ready queue is actually a separate thread

47.5. The L-thread subsystem 238

Sample Applications User Guides, Release 19.08.2

safe queue, which means that threads appearing in the peer ready queue can jump any backlog in the
local ready queue on the destination scheduler.

The context switch time as measured from the time just before the call to
lthread_set_affinity() to just after the same thread is resumed on the new scheduler
can be orders of magnitude faster than the same measurement for pthread_setaffinity_np().

Note 9:

Although there is no pthread_sleep() function, lthread_sleep() and
lthread_sleep_clks() can be used wherever sleep(), usleep() or nanosleep()
might ordinarily be used. The L-thread sleep functions suspend the current thread, start an rte_timer
and resume the thread when the timer matures. The rte_timer_manage() entry point is called on
every pass of the scheduler loop. This means that the worst case jitter on timer expiry is determined by
the longest period between context switches of any running L-threads.

In a synthetic test with many threads sleeping and resuming then the measured jitter is typically orders
of magnitude lower than the same measurement made for nanosleep().

Note 10:

Spin locks are not provided because they are problematical in a cooperative environment, see Locks and
spinlocks for a more detailed discussion on how to avoid spin locks.

Thread local storage

Of the three L-thread local storage options the simplest and most efficient is storing a single application
data pointer in the L-thread struct.

The PER_LTHREAD macros involve a run time computation to obtain the address of the variable being
saved/retrieved and also require that the accesses are de-referenced via a pointer. This means that code
that has used RTE_PER_LCORE macros being ported to L-threads might need some slight adjustment
(see Thread local storage for hints about porting code that makes use of thread local storage).

The get/set specific APIs are consistent with their pthread counterparts both in use and in performance.

Memory allocation and NUMA awareness

All memory allocation is from DPDK huge pages, and is NUMA aware. Each scheduler maintains its
own caches of objects: lthreads, their stacks, TLS, mutexes and condition variables. These caches are
implemented as unbounded lock free MPSC queues. When objects are created they are always allocated
from the caches on the local core (current EAL thread).

If an L-thread has been affinitized to a different scheduler, then it can always safely free resources to the
caches from which they originated (because the caches are MPSC queues).

If the L-thread has been affinitized to a different NUMA node then the memory resources associated
with it may incur longer access latency.

The commonly used pattern of setting affinity on entry to a thread after it has started, means that memory
allocation for both the stack and TLS will have been made from caches on the NUMA node on which
the threads creator is running. This has the side effect that access latency will be sub-optimal after
affinitizing.

This side effect can be mitigated to some extent (although not completely) by specifying the destination
CPU as a parameter of lthread_create() this causes the L-thread’s stack and TLS to be allocated

47.5. The L-thread subsystem 239

Sample Applications User Guides, Release 19.08.2

when it is first scheduled on the destination scheduler, if the destination is a on another NUMA node it
results in a more optimal memory allocation.

Note that the lthread struct itself remains allocated from memory on the creating node, this is unavoidable
because an L-thread is known everywhere by the address of this struct.

Object cache sizing

The per lcore object caches pre-allocate objects in bulk whenever a request to allocate an object finds
a cache empty. By default 100 objects are pre-allocated, this is defined by LTHREAD_PREALLOC in
the public API header file lthread_api.h. This means that the caches constantly grow to meet system
demand.

In the present implementation there is no mechanism to reduce the cache sizes if system demand reduces.
Thus the caches will remain at their maximum extent indefinitely.

A consequence of the bulk pre-allocation of objects is that every 100 (default value) additional new
object create operations results in a call to rte_malloc(). For creation of objects such as L-threads,
which trigger the allocation of even more objects (i.e. their stacks and TLS) then this can cause outliers
in scheduling performance.

If this is a problem the simplest mitigation strategy is to dimension the system, by setting the bulk object
pre-allocation size to some large number that you do not expect to be exceeded. This means the caches
will be populated once only, the very first time a thread is created.

Ready queue backlog

One of the more subtle performance considerations is managing the ready queue backlog. The fewer
threads that are waiting in the ready queue then the faster any particular thread will get serviced.

In a naive L-thread application with N L-threads simply looping and yielding, this backlog will always
be equal to the number of L-threads, thus the cost of a yield to a particular L-thread will be N times the
context switch time.

This side effect can be mitigated by arranging for threads to be suspended and wait to be resumed, rather
than polling for work by constantly yielding. Blocking on a mutex or condition variable or even more
obviously having a thread sleep if it has a low frequency workload are all mechanisms by which a thread
can be excluded from the ready queue until it really does need to be run. This can have a significant
positive impact on performance.

Initialization, shutdown and dependencies

The L-thread subsystem depends on DPDK for huge page allocation and depends on the rte_timer
subsystem. The DPDK EAL initialization and rte_timer_subsystem_init() MUST be
completed before the L-thread sub system can be used.

Thereafter initialization of the L-thread subsystem is largely transparent to the application. Constructor
functions ensure that global variables are properly initialized. Other than global variables each scheduler
is initialized independently the first time that an L-thread is created by a particular EAL thread.

If the schedulers are to be run as isolated and independent schedulers, with no intention that L-threads
running on different schedulers will migrate between schedulers or synchronize with L-threads running

47.5. The L-thread subsystem 240

Sample Applications User Guides, Release 19.08.2

on other schedulers, then initialization consists simply of creating an L-thread, and then running the
L-thread scheduler.

If there will be interaction between L-threads running on different schedulers, then it is important that
the starting of schedulers on different EAL threads is synchronized.

To achieve this an additional initialization step is necessary, this is simply to set the number of schedulers
by calling the API function lthread_num_schedulers_set(n), where n is the number of EAL
threads that will run L-thread schedulers. Setting the number of schedulers to a number greater than 0
will cause all schedulers to wait until the others have started before beginning to schedule L-threads.

The L-thread scheduler is started by calling the function lthread_run() and should be called from
the EAL thread and thus become the main loop of the EAL thread.

The function lthread_run(), will not return until all threads running on the
scheduler have exited, and the scheduler has been explicitly stopped by calling
lthread_scheduler_shutdown(lcore) or lthread_scheduler_shutdown_all().

All these function do is tell the scheduler that it can exit when there are no longer any running L-threads,
neither function forces any running L-thread to terminate. Any desired application shutdown behavior
must be designed and built into the application to ensure that L-threads complete in a timely manner.

Important Note: It is assumed when the scheduler exits that the application is terminating for good, the
scheduler does not free resources before exiting and running the scheduler a subsequent time will result
in undefined behavior.

47.5.3 Porting legacy code to run on L-threads

Legacy code originally written for a pthread environment may be ported to L-threads if the considera-
tions about differences in scheduling policy, and constraints discussed in the previous sections can be
accommodated.

This section looks in more detail at some of the issues that may have to be resolved when porting code.

pthread API compatibility

The first step is to establish exactly which pthread APIs the legacy application uses, and to understand
the requirements of those APIs. If there are corresponding L-lthread APIs, and where the default pthread
functionality is used by the application then, notwithstanding the other issues discussed here, it should
be feasible to run the application with L-threads. If the legacy code modifies the default behavior using
attributes then if may be necessary to make some adjustments to eliminate those requirements.

Blocking system API calls

It is important to understand what other system services the application may be using, bearing in mind
that in a cooperatively scheduled environment a thread cannot block without stalling the scheduler and
with it all other cooperative threads. Any kind of blocking system call, for example file or socket IO, is
a potential problem, a good tool to analyze the application for this purpose is the strace utility.

There are many strategies to resolve these kind of issues, each with it merits. Possible solutions include:

• Adopting a polled mode of the system API concerned (if available).

47.5. The L-thread subsystem 241

Sample Applications User Guides, Release 19.08.2

• Arranging for another core to perform the function and synchronizing with that core via constructs
that will not block the L-thread.

• Affinitizing the thread to another scheduler devoted (as a matter of policy) to handling threads
wishing to make blocking calls, and then back again when finished.

Locks and spinlocks

Locks and spinlocks are another source of blocking behavior that for the same reasons as system calls
will need to be addressed.

If the application design ensures that the contending L-threads will always run on the same scheduler
then it its probably safe to remove locks and spin locks completely.

The only exception to the above rule is if for some reason the code performs any kind of context switch
whilst holding the lock (e.g. yield, sleep, or block on a different lock, or on a condition variable). This
will need to determined before deciding to eliminate a lock.

If a lock cannot be eliminated then an L-thread mutex can be substituted for either kind of lock.

An L-thread blocking on an L-thread mutex will be suspended and will cause another ready L-thread
to be resumed, thus not blocking the scheduler. When default behavior is required, it can be used as a
direct replacement for a pthread mutex lock.

Spin locks are typically used when lock contention is likely to be rare and where the period during
which the lock may be held is relatively short. When the contending L-threads are running on the same
scheduler then an L-thread blocking on a spin lock will enter an infinite loop stopping the scheduler
completely (see Infinite loops below).

If the application design ensures that contending L-threads will always run on different schedulers then
it might be reasonable to leave a short spin lock that rarely experiences contention in place.

If after all considerations it appears that a spin lock can neither be eliminated completely, replaced
with an L-thread mutex, or left in place as is, then an alternative is to loop on a flag, with a call to
lthread_yield() inside the loop (n.b. if the contending L-threads might ever run on different
schedulers the flag will need to be manipulated atomically).

Spinning and yielding is the least preferred solution since it introduces ready queue backlog (see also
Ready queue backlog).

Sleeps and delays

Yet another kind of blocking behavior (albeit momentary) are delay functions like sleep(),
usleep(), nanosleep() etc. All will have the consequence of stalling the L-thread scheduler
and unless the delay is very short (e.g. a very short nanosleep) calls to these functions will need to be
eliminated.

The simplest mitigation strategy is to use the L-thread sleep API functions, of which two variants exist,
lthread_sleep() and lthread_sleep_clks(). These functions start an rte_timer against the
L-thread, suspend the L-thread and cause another ready L-thread to be resumed. The suspended L-thread
is resumed when the rte_timer matures.

47.5. The L-thread subsystem 242

Sample Applications User Guides, Release 19.08.2

Infinite loops

Some applications have threads with loops that contain no inherent rescheduling opportunity, and rely
solely on the OS time slicing to share the CPU. In a cooperative environment this will stop everything
dead. These kind of loops are not hard to identify, in a debug session you will find the debugger is
always stopping in the same loop.

The simplest solution to this kind of problem is to insert an explicit lthread_yield() or
lthread_sleep() into the loop. Another solution might be to include the function performed by
the loop into the execution path of some other loop that does in fact yield, if this is possible.

Thread local storage

If the application uses thread local storage, the use case should be studied carefully.

In a legacy pthread application either or both the __thread prefix, or the pthread set/get specific APIs
may have been used to define storage local to a pthread.

In some applications it may be a reasonable assumption that the data could or in fact most likely should
be placed in L-thread local storage.

If the application (like many DPDK applications) has assumed a certain relationship between a pthread
and the CPU to which it is affinitized, there is a risk that thread local storage may have been used to save
some data items that are correctly logically associated with the CPU, and others items which relate to
application context for the thread. Only a good understanding of the application will reveal such cases.

If the application requires an that an L-thread is to be able to move between schedulers then care should
be taken to separate these kinds of data, into per lcore, and per L-thread storage. In this way a migrating
thread will bring with it the local data it needs, and pick up the new logical core specific values from
pthread local storage at its new home.

47.5.4 Pthread shim

A convenient way to get something working with legacy code can be to use a shim that adapts pthread
API calls to the corresponding L-thread ones. This approach will not mitigate any of the porting con-
siderations mentioned in the previous sections, but it will reduce the amount of code churn that would
otherwise been involved. It is a reasonable approach to evaluate L-threads, before investing effort in
porting to the native L-thread APIs.

Overview

The L-thread subsystem includes an example pthread shim. This is a partial implementation but does
contain the API stubs needed to get basic applications running. There is a simple “hello world” applica-
tion that demonstrates the use of the pthread shim.

A subtlety of working with a shim is that the application will still need to make use of the genuine
pthread library functions, at the very least in order to create the EAL threads in which the L-thread
schedulers will run. This is the case with DPDK initialization, and exit.

To deal with the initialization and shutdown scenarios, the shim is capable of switching on or
off its adaptor functionality, an application can control this behavior by the calling the function
pt_override_set(). The default state is disabled.

47.5. The L-thread subsystem 243

Sample Applications User Guides, Release 19.08.2

The pthread shim uses the dynamic linker loader and saves the loaded addresses of the genuine pthread
API functions in an internal table, when the shim functionality is enabled it performs the adaptor func-
tion, when disabled it invokes the genuine pthread function.

The function pthread_exit() has additional special handling. The standard system header file
pthread.h declares pthread_exit() with __attribute__((noreturn)) this is an optimiza-
tion that is possible because the pthread is terminating and this enables the compiler to omit the normal
handling of stack and protection of registers since the function is not expected to return, and in fact
the thread is being destroyed. These optimizations are applied in both the callee and the caller of the
pthread_exit() function.

In our cooperative scheduling environment this behavior is inadmissible. The pthread is the L-thread
scheduler thread, and, although an L-thread is terminating, there must be a return to the scheduler in
order that the system can continue to run. Further, returning from a function with attribute noreturn
is invalid and may result in undefined behavior.

The solution is to redefine the pthread_exit function with a macro, causing it to be mapped to a
stub function in the shim that does not have the noreturn attribute. This macro is defined in the file
pthread_shim.h. The stub function is otherwise no different than any of the other stub functions
in the shim, and will switch between the real pthread_exit() function or the lthread_exit()
function as required. The only difference is that the mapping to the stub by macro substitution.

A consequence of this is that the file pthread_shim.h must be included in legacy code wishing to
make use of the shim. It also means that dynamic linkage of a pre-compiled binary that did not include
pthread_shim.h is not be supported.

Given the requirements for porting legacy code outlined in Porting legacy code to run on L-threads most
applications will require at least some minimal adjustment and recompilation to run on L-threads so
pre-compiled binaries are unlikely to be met in practice.

In summary the shim approach adds some overhead but can be a useful tool to help establish the feasi-
bility of a code reuse project. It is also a fairly straightforward task to extend the shim if necessary.

Note: Bearing in mind the preceding discussions about the impact of making blocking calls then switch-
ing the shim in and out on the fly to invoke any pthread API this might block is something that should
typically be avoided.

Building and running the pthread shim

The shim example application is located in the sample application in the performance-thread folder

To build and run the pthread shim example

1. Go to the example applications folder

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/performance-thread/pthread_shim

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linux-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

4. To run the pthread_shim example

47.5. The L-thread subsystem 244

Sample Applications User Guides, Release 19.08.2

lthread-pthread-shim -c core_mask -n number_of_channels

47.5.5 L-thread Diagnostics

When debugging you must take account of the fact that the L-threads are run in a single pthread.
The current scheduler is defined by RTE_PER_LCORE(this_sched), and the current lthread
is stored at RTE_PER_LCORE(this_sched)->current_lthread. Thus on a breakpoint
in a GDB session the current lthread can be obtained by displaying the pthread local variable
per_lcore_this_sched->current_lthread.

Another useful diagnostic feature is the possibility to trace significant events in the life of an L-
thread, this feature is enabled by changing the value of LTHREAD_DIAG from 0 to 1 in the file
lthread_diag_api.h.

Tracing of events can be individually masked, and the mask may be programmed at run time. An
unmasked event results in a callback that provides information about the event. The default callback
simply prints trace information. The default mask is 0 (all events off) the mask can be modified by
calling the function lthread_diagniostic_set_mask().

It is possible register a user callback function to implement more sophisticated diagnostic functions.
Object creation events (lthread, mutex, and condition variable) accept, and store in the created object, a
user supplied reference value returned by the callback function.

The lthread reference value is passed back in all subsequent event callbacks, the mutex and APIs are
provided to retrieve the reference value from mutexes and condition variables. This enables a user to
monitor, count, or filter for specific events, on specific objects, for example to monitor for a specific
thread signaling a specific condition variable, or to monitor on all timer events, the possibilities and
combinations are endless.

The callback function can be set by calling the function lthread_diagnostic_enable() sup-
plying a callback function pointer and an event mask.

Setting LTHREAD_DIAG also enables counting of statistics about cache and queue usage, and these
statistics can be displayed by calling the function lthread_diag_stats_display(). This func-
tion also performs a consistency check on the caches and queues. The function should only be called
from the master EAL thread after all slave threads have stopped and returned to the C main program,
otherwise the consistency check will fail.

47.5. The L-thread subsystem 245

CHAPTER

FORTYEIGHT

FEDERAL INFORMATION PROCESSING STANDARDS (FIPS)
CRYPTODEV VALIDATION

48.1 Overview

Federal Information Processing Standards (FIPS) are publicly announced standards developed by the
United States federal government for use in computer systems by non-military government agencies and
government contractors.

This application is used to parse and perform symmetric cryptography computation to the NIST Cryp-
tographic Algorithm Validation Program (CAVP) test vectors.

For an algorithm implementation to be listed on a cryptographic module validation certificate as an
Approved security function, the algorithm implementation must meet all the requirements of FIPS 140-
2 and must successfully complete the cryptographic algorithm validation process.

48.2 Limitations

• Only NIST CAVP request files are parsed by this application.

• The version of request file supported is CAVS 21.0

• If the header comment in a .req file does not contain a Algo tag i.e AES,TDES,GCM you need
to manually add it into the header comment for example:

VARIABLE KEY - KAT for CBC / # TDES VARIABLE KEY - KAT for CBC

• The application does not supply the test vectors. The user is expected to obtain the test vector files
from NIST website. To obtain the .req files you need to email a person from the NIST website
and pay for the .req files. The .rsp files from the site can be used to validate and compare with
the .rsp files created by the FIPS application.

• Supported test vectors

– AES-CBC (128,192,256) - GFSbox, KeySbox, MCT, MMT

– AES-GCM (128,192,256) - EncryptExtIV, Decrypt

– AES-CCM (128) - VADT, VNT, VPT, VTT, DVPT

– AES-CMAC (128) - Generate, Verify

– HMAC (SHA1, SHA224, SHA256, SHA384, SHA512)

– TDES-CBC (1 Key, 2 Keys, 3 Keys) - MMT, Monte, Permop, Subkey, Varkey, VarText

246

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/block-ciphers

Sample Applications User Guides, Release 19.08.2

48.3 Application Information

If a .req is used as the input file after the application is finished running it will generate a response file
or .rsp. Differences between the two files are, the .req file has missing information for instance if
doing encryption you will not have the cipher text and that will be generated in the response file. Also
if doing decryption it will not have the plain text until it finished the work and in the response file it will
be added onto the end of each operation.

The application can be run with a .rsp file and what the outcome of that will be is it will add a extra
line in the generated .rsp which should be the same as the .rsp used to run the application, this is
useful for validating if the application has done the operation correctly.

48.4 Compiling the Application

• Compile Application

make -C examples/fips_validation

• Run dos2unix on the request files

dos2unix AES/req/*
dos2unix AES_GCM/req/*
dos2unix CCM/req/*
dos2unix CMAC/req/*
dos2unix HMAC/req/*
dos2unix TDES/req/*

48.5 Running the Application

The application requires a number of command line options:

./fips_validation [EAL options]
-- --req-file FILE_PATH/FOLDER_PATH
--rsp-file FILE_PATH/FOLDER_PATH
[--cryptodev DEVICE_NAME] [--cryptodev-id ID] [--path-is-folder]

where,

• req-file: The path of the request file or folder, separated by path-is-folder option.

• rsp-file: The path that the response file or folder is stored. separated by path-is-folder
option.

• cryptodev: The name of the target DPDK Crypto device to be validated.

• cryptodev-id: The id of the target DPDK Crypto device to be validated.

• path-is-folder: If presented the application expects req-file and rsp-file are folder paths.

To run the application in linux environment to test one AES FIPS test data file for crypto_aesni_mb
PMD, issue the command:

$./fips_validation --vdev crypto_aesni_mb --
--req-file /PATH/TO/REQUEST/FILE.req --rsp-file ./PATH/TO/RESPONSE/FILE.rsp
--cryptodev crypto_aesni_mb

To run the application in linux environment to test all AES-GCM FIPS test data files in one folder for
crypto_aesni_gcm PMD, issue the command:

48.3. Application Information 247

Sample Applications User Guides, Release 19.08.2

$./fips_validation --vdev crypto_aesni_gcm0 --
--req-file /PATH/TO/REQUEST/FILE/FOLDER/
--rsp-file ./PATH/TO/RESPONSE/FILE/FOLDER/
--cryptodev-id 0 --path-is-folder

48.5. Running the Application 248

CHAPTER

FORTYNINE

IPSEC SECURITY GATEWAY SAMPLE APPLICATION

The IPsec Security Gateway application is an example of a “real world” application using DPDK cryp-
todev framework.

49.1 Overview

The application demonstrates the implementation of a Security Gateway (not IPsec compliant, see the
Constraints section below) using DPDK based on RFC4301, RFC4303, RFC3602 and RFC2404.

Internet Key Exchange (IKE) is not implemented, so only manual setting of Security Policies and Secu-
rity Associations is supported.

The Security Policies (SP) are implemented as ACL rules, the Security Associations (SA) are stored in
a table and the routing is implemented using LPM.

The application classifies the ports as Protected and Unprotected. Thus, traffic received on an Unpro-
tected or Protected port is consider Inbound or Outbound respectively.

The application also supports complete IPsec protocol offload to hardware (Look aside crypto acceler-
ator or using ethernet device). It also support inline ipsec processing by the supported ethernet device
during transmission. These modes can be selected during the SA creation configuration.

In case of complete protocol offload, the processing of headers(ESP and outer IP header) is done by the
hardware and the application does not need to add/remove them during outbound/inbound processing.

For inline offloaded outbound traffic, the application will not do the LPM lookup for routing, as the port
on which the packet has to be forwarded will be part of the SA. Security parameters will be configured
on that port only, and sending the packet on other ports could result in unencrypted packets being sent
out.

The Path for IPsec Inbound traffic is:

• Read packets from the port.

• Classify packets between IPv4 and ESP.

• Perform Inbound SA lookup for ESP packets based on their SPI.

• Perform Verification/Decryption (Not needed in case of inline ipsec).

• Remove ESP and outer IP header (Not needed in case of protocol offload).

• Inbound SP check using ACL of decrypted packets and any other IPv4 packets.

• Routing.

249

Sample Applications User Guides, Release 19.08.2

• Write packet to port.

The Path for the IPsec Outbound traffic is:

• Read packets from the port.

• Perform Outbound SP check using ACL of all IPv4 traffic.

• Perform Outbound SA lookup for packets that need IPsec protection.

• Add ESP and outer IP header (Not needed in case protocol offload).

• Perform Encryption/Digest (Not needed in case of inline ipsec).

• Routing.

• Write packet to port.

49.2 Constraints

• No IPv6 options headers.

• No AH mode.

• Supported algorithms: AES-CBC, AES-CTR, AES-GCM, 3DES-CBC, HMAC-SHA1 and
NULL.

• Each SA must be handle by a unique lcore (1 RX queue per port).

49.3 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ipsec-secgw sub-directory.

1. [Optional] Build the application for debugging: This option adds some extra flags, disables com-
piler optimizations and is verbose:

make DEBUG=1

49.4 Running the Application

The application has a number of command line options:

./build/ipsec-secgw [EAL options] --
-p PORTMASK -P -u PORTMASK -j FRAMESIZE
-l -w REPLAY_WINOW_SIZE -e -a
--config (port,queue,lcore)[,(port,queue,lcore]
--single-sa SAIDX
--rxoffload MASK
--txoffload MASK
--mtu MTU
--reassemble NUM
-f CONFIG_FILE_PATH

Where:

• -p PORTMASK: Hexadecimal bitmask of ports to configure.

49.2. Constraints 250

Sample Applications User Guides, Release 19.08.2

• -P: optional. Sets all ports to promiscuous mode so that packets are accepted regardless of the
packet’s Ethernet MAC destination address. Without this option, only packets with the Ethernet
MAC destination address set to the Ethernet address of the port are accepted (default is enabled).

• -u PORTMASK: hexadecimal bitmask of unprotected ports

• -j FRAMESIZE: optional. data buffer size (in bytes), in other words maximum data size
for one segment. Packets with length bigger then FRAMESIZE still can be received, but will
be segmented. Default value: RTE_MBUF_DEFAULT_BUF_SIZE (2176) Minimum value:
RTE_MBUF_DEFAULT_BUF_SIZE (2176) Maximum value: UINT16_MAX (65535).

• -l: enables code-path that uses librte_ipsec.

• -w REPLAY_WINOW_SIZE: specifies the IPsec sequence number replay window size for each
Security Association (available only with librte_ipsec code path).

• -e: enables Security Association extended sequence number processing (available only with li-
brte_ipsec code path).

• -a: enables Security Association sequence number atomic behavior (available only with li-
brte_ipsec code path).

• --config (port,queue,lcore)[,(port,queue,lcore)]: determines which
queues from which ports are mapped to which cores.

• --single-sa SAIDX: use a single SA for outbound traffic, bypassing the SP on both Inbound
and Outbound. This option is meant for debugging/performance purposes.

• --rxoffload MASK: RX HW offload capabilities to enable/use on this port (bitmask of
DEV_RX_OFFLOAD_* values). It is an optional parameter and allows user to disable some
of the RX HW offload capabilities. By default all HW RX offloads are enabled.

• --txoffload MASK: TX HW offload capabilities to enable/use on this port (bitmask of
DEV_TX_OFFLOAD_* values). It is an optional parameter and allows user to disable some
of the TX HW offload capabilities. By default all HW TX offloads are enabled.

• --mtu MTU: MTU value (in bytes) on all attached ethernet ports. Outgoing packets with length
bigger then MTU will be fragmented. Incoming packets with length bigger then MTU will be
discarded. Default value: 1500.

• --reassemble NUM: max number of entries in reassemble fragment table. Zero value disables
reassembly functionality. Default value: 0.

• -f CONFIG_FILE_PATH: the full path of text-based file containing all configuration
items for running the application (See Configuration file syntax section below). -f
CONFIG_FILE_PATH must be specified. ONLY the UNIX format configuration file is ac-
cepted.

The mapping of lcores to port/queues is similar to other l3fwd applications.

For example, given the following command line:

./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \
--vdev "crypto_null" -- -p 0xf -P -u 0x3 \
--config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \
-f /path/to/config_file \

where each options means:

• The -l option enables cores 20 and 21.

49.4. Running the Application 251

Sample Applications User Guides, Release 19.08.2

• The -n option sets memory 4 channels.

• The --socket-mem to use 2GB on socket 1.

• The --vdev "crypto_null" option creates virtual NULL cryptodev PMD.

• The -p option enables ports (detected) 0, 1, 2 and 3.

• The -P option enables promiscuous mode.

• The -u option sets ports 1 and 2 as unprotected, leaving 2 and 3 as protected.

• The --config option enables one queue per port with the following mapping:

Port Queue lcore Description
0 0 20 Map queue 0 from port 0 to lcore 20.
1 0 20 Map queue 0 from port 1 to lcore 20.
2 0 21 Map queue 0 from port 2 to lcore 21.
3 0 21 Map queue 0 from port 3 to lcore 21.

• The -f /path/to/config_file option enables the application read and parse the configu-
ration file specified, and configures the application with a given set of SP, SA and Routing entries
accordingly. The syntax of the configuration file will be explained below in more detail. Please
note the parser only accepts UNIX format text file. Other formats such as DOS/MAC format will
cause a parse error.

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

The application would do a best effort to “map” crypto devices to cores, with hardware devices having
priority. Basically, hardware devices if present would be assigned to a core before software ones. This
means that if the application is using a single core and both hardware and software crypto devices are
detected, hardware devices will be used.

A way to achieve the case where you want to force the use of virtual crypto devices is to whitelist the
Ethernet devices needed and therefore implicitly blacklisting all hardware crypto devices.

For example, something like the following command line:

./build/ipsec-secgw -l 20,21 -n 4 --socket-mem 0,2048 \
-w 81:00.0 -w 81:00.1 -w 81:00.2 -w 81:00.3 \
--vdev "crypto_aesni_mb" --vdev "crypto_null" \
-- \
-p 0xf -P -u 0x3 --config="(0,0,20),(1,0,20),(2,0,21),(3,0,21)" \
-f sample.cfg

49.5 Configurations

The following sections provide the syntax of configurations to initialize your SP, SA, Routing and Neigh-
bour tables. Configurations shall be specified in the configuration file to be passed to the application.
The file is then parsed by the application. The successful parsing will result in the appropriate rules
being applied to the tables accordingly.

49.5.1 Configuration File Syntax

As mention in the overview, the Security Policies are ACL rules. The application parsers the rules
specified in the configuration file and passes them to the ACL table, and replicates them per socket in

49.5. Configurations 252

Sample Applications User Guides, Release 19.08.2

use.

Following are the configuration file syntax.

General rule syntax

The parse treats one line in the configuration file as one configuration item (unless the line concatenation
symbol exists). Every configuration item shall follow the syntax of either SP, SA, Routing or Neighbour
rules specified below.

The configuration parser supports the following special symbols:

• Comment symbol #. Any character from this symbol to the end of line is treated as comment and
will not be parsed.

• Line concatenation symbol \. This symbol shall be placed in the end of the line to be concatenated
to the line below. Multiple lines’ concatenation is supported.

SP rule syntax

The SP rule syntax is shown as follows:

sp <ip_ver> <dir> esp <action> <priority> <src_ip> <dst_ip>
<proto> <sport> <dport>

where each options means:

<ip_ver>

• IP protocol version

• Optional: No

• Available options:

– ipv4: IP protocol version 4

– ipv6: IP protocol version 6

<dir>

• The traffic direction

• Optional: No

• Available options:

– in: inbound traffic

– out: outbound traffic

<action>

• IPsec action

• Optional: No

• Available options:

– protect <SA_idx>: the specified traffic is protected by SA rule with id SA_idx

– bypass: the specified traffic traffic is bypassed

49.5. Configurations 253

Sample Applications User Guides, Release 19.08.2

– discard: the specified traffic is discarded

<priority>

• Rule priority

• Optional: Yes, default priority 0 will be used

• Syntax: pri <id>

<src_ip>

• The source IP address and mask

• Optional: Yes, default address 0.0.0.0 and mask of 0 will be used

• Syntax:

– src X.X.X.X/Y for IPv4

– src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y for IPv6

<dst_ip>

• The destination IP address and mask

• Optional: Yes, default address 0.0.0.0 and mask of 0 will be used

• Syntax:

– dst X.X.X.X/Y for IPv4

– dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y for IPv6

<proto>

• The protocol start and end range

• Optional: yes, default range of 0 to 0 will be used

• Syntax: proto X:Y

<sport>

• The source port start and end range

• Optional: yes, default range of 0 to 0 will be used

• Syntax: sport X:Y

<dport>

• The destination port start and end range

• Optional: yes, default range of 0 to 0 will be used

• Syntax: dport X:Y

Example SP rules:

sp ipv4 out esp protect 105 pri 1 dst 192.168.115.0/24 sport 0:65535 \
dport 0:65535

sp ipv6 in esp bypass pri 1 dst 0000:0000:0000:0000:5555:5555:\
0000:0000/96 sport 0:65535 dport 0:65535

49.5. Configurations 254

Sample Applications User Guides, Release 19.08.2

SA rule syntax

The successfully parsed SA rules will be stored in an array table.

The SA rule syntax is shown as follows:

sa <dir> <spi> <cipher_algo> <cipher_key> <auth_algo> <auth_key>
<mode> <src_ip> <dst_ip> <action_type> <port_id>

where each options means:

<dir>

• The traffic direction

• Optional: No

• Available options:

– in: inbound traffic

– out: outbound traffic

<spi>

• The SPI number

• Optional: No

• Syntax: unsigned integer number

<cipher_algo>

• Cipher algorithm

• Optional: Yes, unless <aead_algo> is not used

• Available options:

– null: NULL algorithm

– aes-128-cbc: AES-CBC 128-bit algorithm

– aes-256-cbc: AES-CBC 256-bit algorithm

– aes-128-ctr: AES-CTR 128-bit algorithm

– 3des-cbc: 3DES-CBC 192-bit algorithm

• Syntax: cipher_algo <your algorithm>

<cipher_key>

• Cipher key, NOT available when ‘null’ algorithm is used

• Optional: Yes, unless <aead_algo> is not used. Must be followed by <cipher_algo> option

• Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ‘:’. The number of bytes
should be as same as the specified cipher algorithm key size.

For example: cipher_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: A1:B2:C3:D4

<auth_algo>

• Authentication algorithm

• Optional: Yes, unless <aead_algo> is not used

49.5. Configurations 255

Sample Applications User Guides, Release 19.08.2

• Available options:

– null: NULL algorithm

– sha1-hmac: HMAC SHA1 algorithm

<auth_key>

• Authentication key, NOT available when ‘null’ or ‘aes-128-gcm’ algorithm is used.

• Optional: Yes, unless <aead_algo> is not used. Must be followed by <auth_algo> option

• Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ‘:’. The number of bytes
should be as same as the specified authentication algorithm key size.

For example: auth_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4:
A1:B2:C3:D4

<aead_algo>

• AEAD algorithm

• Optional: Yes, unless <cipher_algo> and <auth_algo> are not used

• Available options:

– aes-128-gcm: AES-GCM 128-bit algorithm

• Syntax: cipher_algo <your algorithm>

<aead_key>

• Cipher key, NOT available when ‘null’ algorithm is used

• Optional: Yes, unless <cipher_algo> and <auth_algo> are not used. Must be followed by
<aead_algo> option

• Syntax: Hexadecimal bytes (0x0-0xFF) concatenate by colon symbol ‘:’. The number of bytes
should be as same as the specified AEAD algorithm key size.

For example: aead_key A1:B2:C3:D4:A1:B2:C3:D4:A1:B2:C3:D4: A1:B2:C3:D4

<mode>

• The operation mode

• Optional: No

• Available options:

– ipv4-tunnel: Tunnel mode for IPv4 packets

– ipv6-tunnel: Tunnel mode for IPv6 packets

– transport: transport mode

• Syntax: mode XXX

<src_ip>

• The source IP address. This option is not available when transport mode is used

• Optional: Yes, default address 0.0.0.0 will be used

• Syntax:

– src X.X.X.X for IPv4

49.5. Configurations 256

Sample Applications User Guides, Release 19.08.2

– src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX for IPv6

<dst_ip>

• The destination IP address. This option is not available when transport mode is used

• Optional: Yes, default address 0.0.0.0 will be used

• Syntax:

– dst X.X.X.X for IPv4

– dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX for IPv6

<type>

• Action type to specify the security action. This option specify the SA to be performed
with look aside protocol offload to HW accelerator or protocol offload on ethernet
device or inline crypto processing on the ethernet device during transmission.

• Optional: Yes, default type no-offload

• Available options:

– lookaside-protocol-offload: look aside protocol offload to HW accelerator

– inline-protocol-offload: inline protocol offload on ethernet device

– inline-crypto-offload: inline crypto processing on ethernet device

– no-offload: no offloading to hardware

<port_id>

• Port/device ID of the ethernet/crypto accelerator for which the SA is configured. For
inline-crypto-offload and inline-protocol-offload, this port will be used for routing.
The routing table will not be referred in this case.

• Optional: No, if type is not no-offload

• Syntax:

– port_id X X is a valid device number in decimal

Example SA rules:

sa out 5 cipher_algo null auth_algo null mode ipv4-tunnel \
src 172.16.1.5 dst 172.16.2.5

sa out 25 cipher_algo aes-128-cbc \
cipher_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \
auth_algo sha1-hmac \
auth_key c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3:c3 \
mode ipv6-tunnel \
src 1111:1111:1111:1111:1111:1111:1111:5555 \
dst 2222:2222:2222:2222:2222:2222:2222:5555

sa in 105 aead_algo aes-128-gcm \
aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \
mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5

sa out 5 cipher_algo aes-128-cbc cipher_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \
auth_algo sha1-hmac auth_key 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0 \
mode ipv4-tunnel src 172.16.1.5 dst 172.16.2.5 \
type lookaside-protocol-offload port_id 4

49.5. Configurations 257

Sample Applications User Guides, Release 19.08.2

sa in 35 aead_algo aes-128-gcm \
aead_key de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef:de:ad:be:ef \
mode ipv4-tunnel src 172.16.2.5 dst 172.16.1.5 \
type inline-crypto-offload port_id 0

Routing rule syntax

The Routing rule syntax is shown as follows:

rt <ip_ver> <src_ip> <dst_ip> <port>

where each options means:

<ip_ver>

• IP protocol version

• Optional: No

• Available options:

– ipv4: IP protocol version 4

– ipv6: IP protocol version 6

<src_ip>

• The source IP address and mask

• Optional: Yes, default address 0.0.0.0 and mask of 0 will be used

• Syntax:

– src X.X.X.X/Y for IPv4

– src XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y for IPv6

<dst_ip>

• The destination IP address and mask

• Optional: Yes, default address 0.0.0.0 and mask of 0 will be used

• Syntax:

– dst X.X.X.X/Y for IPv4

– dst XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX/Y for IPv6

<port>

• The traffic output port id

• Optional: yes, default output port 0 will be used

• Syntax: port X

Example SP rules:

rt ipv4 dst 172.16.1.5/32 port 0

rt ipv6 dst 1111:1111:1111:1111:1111:1111:1111:5555/116 port 0

49.5. Configurations 258

Sample Applications User Guides, Release 19.08.2

Neighbour rule syntax

The Neighbour rule syntax is shown as follows:

neigh <port> <dst_mac>

where each options means:

<port>

• The output port id

• Optional: No

• Syntax: port X

<dst_mac>

• The destination ethernet address to use for that port

• Optional: No

• Syntax:

– XX:XX:XX:XX:XX:XX

Example Neighbour rules:

neigh port 0 DE:AD:BE:EF:01:02

49.6 Test directory

The test directory contains scripts for testing the various encryption algorithms.

The purpose of the scripts is to automate ipsec-secgw testing using another system running linux as a
DUT.

The user must setup the following environment variables:

• SGW_PATH: path to the ipsec-secgw binary to test.

• REMOTE_HOST: IP address/hostname of the DUT.

• REMOTE_IFACE: interface name for the test-port on the DUT.

• ETH_DEV: ethernet device to be used on the SUT by DPDK (‘-w <pci-id>’)

Also the user can optionally setup:

• SGW_LCORE: lcore to run ipsec-secgw on (default value is 0)

• CRYPTO_DEV: crypto device to be used (‘-w <pci-id>’). If none specified appropriate vdevs will
be created by the script

Note that most of the tests require the appropriate crypto PMD/device to be available.

49.6.1 Server configuration

Two servers are required for the tests, SUT and DUT.

Make sure the user from the SUT can ssh to the DUT without entering the password. To enable this
feature keys must be setup on the DUT.

49.6. Test directory 259

Sample Applications User Guides, Release 19.08.2

ssh-keygen will make a private & public key pair on the SUT.

ssh-copy-id <user name>@<target host name> on the SUT will copy the public key to the DUT. It
will ask for credentials so that it can upload the public key.

The SUT and DUT are connected through at least 2 NIC ports.

One NIC port is expected to be managed by linux on both machines and will be used as a control path.

The second NIC port (test-port) should be bound to DPDK on the SUT, and should be managed by linux
on the DUT.

The script starts ipsec-secgw with 2 NIC devices: test-port and tap vdev.

It then configures the local tap interface and the remote interface and IPsec policies in the following
way:

Traffic going over the test-port in both directions has to be protected by IPsec.

Traffic going over the TAP port in both directions does not have to be protected.

i.e:

DUT OS(NIC1)–(IPsec)–>(NIC1)ipsec-secgw(TAP)–(plain)–>(TAP)SUT OS

SUT OS(TAP)–(plain)–>(TAP)psec-secgw(NIC1)–(IPsec)–>(NIC1)DUT OS

It then tries to perform some data transfer using the scheme described above.

49.6.2 usage

In the ipsec-secgw/test directory

to run one test for IPv4 or IPv6

/bin/bash linux_test(4|6).sh <ipsec_mode>

to run all tests for IPv4 or IPv6

/bin/bash run_test.sh -4|-6

For the list of available modes please refer to run_test.sh.

49.6. Test directory 260

CHAPTER

FIFTY

LOOP-BACK SAMPLE APPLICATION USING BASEBAND DEVICE
(BBDEV)

The baseband sample application is a simple example of packet processing using the Data Plane Devel-
opment Kit (DPDK) for baseband workloads using Wireless Device abstraction library.

50.1 Overview

The Baseband device sample application performs a loop-back operation using a baseband device ca-
pable of transceiving data packets. A packet is received on an ethernet port -> enqueued for downlink
baseband operation -> dequeued from the downlink baseband device -> enqueued for uplink baseband
operation -> dequeued from the baseband device -> then the received packet is compared with the base-
band operations output. Then it’s looped back to the ethernet port.

• The MAC header is preserved in the packet

50.2 Limitations

• Only one baseband device and one ethernet port can be used.

50.3 Compiling the Application

1. DPDK needs to be built with baseband_turbo_sw PMD driver enabled along with FLEXRAN
SDK Libraries. Refer to SW Turbo Poll Mode Driver documentation for more details on this.

2. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/bbdev_app

3. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linux-gcc

See the DPDK Getting Started Guide for possible RTE_TARGET values.

4. Build the application:

make

261

Sample Applications User Guides, Release 19.08.2

50.4 Running the Application

The application accepts a number of command line options:

$./build/bbdev [EAL options] -- [-e ENCODING_CORES] [-d DECODING_CORES] /
[-p ETH_PORT_ID] [-b BBDEV_ID]

where:

• e ENCODING_CORES: hexmask for encoding lcores (default = 0x2)

• d DECODING_CORES: hexmask for decoding lcores (default = 0x4)

• p ETH_PORT_ID: ethernet port ID (default = 0)

• b BBDEV_ID: BBDev ID (default = 0)

The application requires that baseband devices is capable of performing the specified baseband operation
are available on application initialization. This means that HW baseband device/s must be bound to a
DPDK driver or a SW baseband device/s (virtual BBdev) must be created (using –vdev).

To run the application in linux environment with the turbo_sw baseband device using the whitelisted
port running on 1 encoding lcore and 1 decoding lcore issue the command:

$./build/bbdev --vdev='baseband_turbo_sw' -w <NIC0PCIADDR> -c 0x38 --socket-mem=2,2 \
--file-prefix=bbdev -- -e 0x10 -d 0x20

where, NIC0PCIADDR is the PCI address of the Rx port

This command creates one virtual bbdev devices baseband_turbo_sw where the device gets linked
to a corresponding ethernet port as whitelisted by the parameter -w. 3 cores are allocated to the applica-
tion, and assigned as:

• core 3 is the master and used to print the stats live on screen,

• core 4 is the encoding lcore performing Rx and Turbo Encode operations

• core 5 is the downlink lcore performing Turbo Decode, validation and Tx operations

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

50.5 Using Packet Generator with baseband device sample appli-
cation

To allow the bbdev sample app to do the loopback, an influx of traffic is required. This can be done by
using DPDK Pktgen to burst traffic on two ethernet ports, and it will print the transmitted along with
the looped-back traffic on Rx ports. Executing the command below will generate traffic on the two
whitelisted ethernet ports.

$./pktgen-3.4.0/app/x86_64-native-linux-gcc/pktgen -c 0x3 \
--socket-mem=1,1 --file-prefix=pg -w <NIC1PCIADDR> -- -m 1.0 -P

where:

• -c COREMASK: A hexadecimal bitmask of cores to run on

• --socket-mem: Memory to allocate on specific sockets (use comma separated values)

• --file-prefix: Prefix for hugepage filenames

50.4. Running the Application 262

Sample Applications User Guides, Release 19.08.2

• -w <NIC1PCIADDR>: Add a PCI device in white list. The argument format is <[do-
main:]bus:devid.func>.

• -m <string>: Matrix for mapping ports to logical cores.

• -P: PROMISCUOUS mode

Refer to The Pktgen Application documents for general information on running Pktgen with DPDK
applications.

50.5. Using Packet Generator with baseband device sample application 263

CHAPTER

FIFTYONE

NTB SAMPLE APPLICATION

The ntb sample application shows how to use ntb rawdev driver. This sample provides interactive mode
to transmit file between two hosts.

51.1 Compiling the Application

To compile the sample application see Compiling the Sample Applications.

The application is located in the ntb sub-directory.

51.2 Running the Application

The application requires an available core for each port, plus one. The only available options are the
standard ones for the EAL:

./build/ntb_fwd -c 0xf -n 6 -- -i

Refer to the DPDK Getting Started Guide for general information on running applications and the En-
vironment Abstraction Layer (EAL) options.

51.3 Using the application

The application is console-driven using the cmdline DPDK interface:

ntb>

From this interface the available commands and descriptions of what they do as as follows:

• send [filepath]: Send file to the peer host.

• receive [filepath]: Receive file to [filepath]. Need the peer to send file successfully first.

• quit: Exit program

264

	Introduction to the DPDK Sample Applications
	Running Sample Applications
	The DPDK Sample Applications

	Compiling the Sample Applications
	To compile all the sample applications
	To compile a single application
	To cross compile the sample application(s)

	Command Line Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Ethtool Sample Application
	Compiling the Application
	Running the Application
	Using the application
	Explanation
	Ethtool interface

	Exception Path Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Hello World Sample Application
	Compiling the Application
	Running the Application
	Explanation

	Basic Forwarding Sample Application
	Compiling the Application
	Running the Application
	Explanation

	RX/TX Callbacks Sample Application
	Compiling the Application
	Running the Application
	Explanation

	Flow Classify Sample Application
	Compiling the Application
	Running the Application
	Sample ipv4_rules_file.txt
	Explanation

	Basic RTE Flow Filtering Sample Application
	Compiling the Application
	Running the Application
	Explanation

	IP Fragmentation Sample Application
	Overview
	Compiling the Application
	Running the Application

	IPv4 Multicast Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	IP Reassembly Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Kernel NIC Interface Sample Application
	Overview
	Compiling the Application
	Running the kni Example Application
	KNI Operations
	Explanation

	Keep Alive Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	L2 Forwarding with Crypto Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load statistics.
	Overview
	Compiling the Application
	Running the Application
	Explanation

	L2 Forwarding Sample Application (in Real and Virtualized Environments)
	Overview
	Compiling the Application
	Running the Application
	Explanation

	L2 Forwarding Sample Application with Cache Allocation Technology (CAT)
	Compiling the Application
	Running the Application
	Explanation

	L3 Forwarding Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	L3 Forwarding with Power Management Sample Application
	Introduction
	Overview
	Compiling the Application
	Running the Application
	Explanation
	Empty Poll Mode
	Telemetry Mode

	L3 Forwarding with Access Control Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	L3 Forwarding in a Virtualization Environment Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Link Status Interrupt Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Load Balancer Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Server-Node EFD Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Service Cores Sample Application
	Compiling the Application
	Running the Application
	Explanation

	Multi-process Sample Application
	Example Applications

	QoS Metering Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	QoS Scheduler Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Quota and Watermark Sample Application
	Overview
	Compiling the Application
	Running the Application
	Code Overview

	Timer Sample Application
	Compiling the Application
	Running the Application
	Explanation

	Packet Ordering Application
	Overview
	Compiling the Application
	Running the Application

	VMDQ and DCB Forwarding Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Vhost Sample Application
	Testing steps
	Inject packets
	Parameters
	Common Issues

	Vhost_scsi Sample Application
	Testing steps
	Compiling the Application
	Vhost_scsi Common Issues

	Vhost_Crypto Sample Application
	Testing steps
	Compiling the Application

	Vdpa Sample Application
	Testing steps

	Netmap Compatibility Sample Application
	Introduction
	Available APIs
	Caveats
	Porting Netmap Applications
	Compiling the Application
	Running the ``bridge'' Sample Application

	Internet Protocol (IP) Pipeline Application
	Application overview
	Running the application
	Application stages
	Examples
	Command Line Interface (CLI)

	Test Pipeline Application
	Overview
	Compiling the Application
	Running the Application

	Eventdev Pipeline Sample Application
	Compiling the Application
	Running the Application
	Observing the Application

	Distributor Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation
	Intel SST-BF Support
	Debug Logging Support
	Statistics
	Application Initialization

	VM Power Management Application
	Introduction
	Overview
	Configuration
	Compiling and Running the Host Application
	Compiling and Running the Guest Applications

	TEP termination Sample Application
	Background
	Sample Code Overview
	Supported Distributions
	Compiling the Sample Code
	Running the Sample Code
	Running the Virtual Machine (QEMU)
	Running DPDK in the Virtual Machine
	Passing Traffic to the Virtual Machine Device

	PTP Client Sample Application
	Limitations
	How the Application Works
	Compiling the Application
	Running the Application
	Code Explanation

	Performance Thread Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation
	The L-thread subsystem

	Federal Information Processing Standards (FIPS) CryptoDev Validation
	Overview
	Limitations
	Application Information
	Compiling the Application
	Running the Application

	IPsec Security Gateway Sample Application
	Overview
	Constraints
	Compiling the Application
	Running the Application
	Configurations
	Test directory

	Loop-back Sample Application using Baseband Device (bbdev)
	Overview
	Limitations
	Compiling the Application
	Running the Application
	Using Packet Generator with baseband device sample application

	NTB Sample Application
	Compiling the Application
	Running the Application
	Using the application

