
HowTo Guides
Release 19.11.14

Dec 15, 2022

CONTENTS

1 Live Migration of VM with SR-IOV VF 1
1.1 Overview . 1
1.2 Test Setup . 1
1.3 Live Migration steps . 1
1.4 Sample host scripts . 6
1.5 Sample VM scripts . 8
1.6 Sample switch configuration . 9

2 Live Migration of VM with Virtio on host running vhost_user 11
2.1 Overview . 11
2.2 Test Setup . 11
2.3 Live Migration steps . 11
2.4 Sample host scripts . 14
2.5 Sample VM scripts . 16

3 Flow Bifurcation How-to Guide 18
3.1 Using Flow Bifurcation on Mellanox ConnectX . 18
3.2 Using Flow Bifurcation on IXGBE in Linux . 19
3.3 Using Flow Bifurcation on I40E in Linux . 20

4 Generic flow API - examples 23
4.1 Simple IPv4 drop . 23
4.2 Range IPv4 drop . 24
4.3 Send vlan to queue . 26

5 PVP reference benchmark setup using testpmd 28
5.1 Setup overview . 28
5.2 Host setup . 28
5.3 Guest setup . 32
5.4 Results template . 33

6 VF daemon (VFd) 34
6.1 Preparing . 35
6.2 Common functions of IXGBE and I40E . 35
6.3 The IXGBE specific VFd functions . 37
6.4 The I40E specific VFd functions . 38

7 Virtio_user for Container Networking 40
7.1 Overview . 40
7.2 Sample Usage . 41

i

7.3 Limitations . 42

8 Virtio_user as Exceptional Path 43
8.1 Sample Usage . 43
8.2 Limitations . 45

9 DPDK pdump Library and pdump Tool 46
9.1 Introduction . 46
9.2 Test Environment . 47
9.3 Configuration . 47
9.4 Running the Application . 47

10 DPDK Telemetry API User Guide 49
10.1 Introduction . 49
10.2 Test Environment . 49
10.3 Configuration . 49
10.4 Running the Application . 50

11 Debug & Troubleshoot guide 51
11.1 Application Overview . 51
11.2 Bottleneck Analysis . 52
11.3 How to develop a custom code to debug? . 59

ii

CHAPTER

ONE

LIVE MIGRATION OF VM WITH SR-IOV VF

1.1 Overview

It is not possible to migrate a Virtual Machine which has an SR-IOV Virtual Function (VF).

To get around this problem the bonding PMD is used.

The following sections show an example of how to do this.

1.2 Test Setup

A bonded device is created in the VM. The virtio and VF PMD’s are added as slaves to the bonded
device. The VF is set as the primary slave of the bonded device.

A bridge must be set up on the Host connecting the tap device, which is the backend of the Virtio device
and the Physical Function (PF) device.

To test the Live Migration two servers with identical operating systems installed are used. KVM and
Qemu 2.3 is also required on the servers.

In this example, the servers have Niantic and or Fortville NIC’s installed. The NIC’s on both servers are
connected to a switch which is also connected to the traffic generator.

The switch is configured to broadcast traffic on all the NIC ports. A Sample switch configuration can be
found in this section.

The host is running the Kernel PF driver (ixgbe or i40e).

The ip address of host_server_1 is 10.237.212.46

The ip address of host_server_2 is 10.237.212.131

1.3 Live Migration steps

The sample scripts mentioned in the steps below can be found in the Sample host scripts and Sample
VM scripts sections.

1.3.1 On host_server_1: Terminal 1
cd /root/dpdk/host_scripts
./setup_vf_on_212_46.sh

For Fortville NIC

./vm_virtio_vf_i40e_212_46.sh

1

HowTo Guides, Release 19.11.14

VM 1

Switch with 10Gb ports

Server 1 Server 2

 10 Gb Traffic Generator

VM 2

Linux, KVM, QEMU Linux, KVM, QEMU

10 Gb NIC 10 Gb NIC

10 Gb NIC 10 Gb NIC

DPDK Testpmd App.

bonded device with
virtio and VF slaves

DPDK Testpmd App.

bonded device with
virtio and VF slaves

Kernel PF driver Kernel PF driver

SW bridge with Tap
and PF connected

NFS Server
VM disk image

SW bridge with Tap
and PF connected

10 Gb Migration Link

For Niantic NIC

./vm_virtio_vf_one_212_46.sh

1.3.2 On host_server_1: Terminal 2
cd /root/dpdk/host_scripts
./setup_bridge_on_212_46.sh
./connect_to_qemu_mon_on_host.sh
(qemu)

1.3.3 On host_server_1: Terminal 1

In VM on host_server_1:
cd /root/dpdk/vm_scripts
./setup_dpdk_in_vm.sh
./run_testpmd_bonding_in_vm.sh

testpmd> show port info all

The mac_addr command only works with kernel PF for Niantic

testpmd> mac_addr add port 1 vf 0 AA:BB:CC:DD:EE:FF

The syntax of the testpmd command is:

Create bonded device (mode) (socket).

Mode 1 is active backup.

1.3. Live Migration steps 2

HowTo Guides, Release 19.11.14

Virtio is port 0 (P0).

VF is port 1 (P1).

Bonding is port 2 (P2).

testpmd> create bonded device 1 0
Created new bonded device net_bond_testpmd_0 on (port 2).
testpmd> add bonding slave 0 2
testpmd> add bonding slave 1 2
testpmd> show bonding config 2

The syntax of the testpmd command is:

set bonding primary (slave id) (port id)

Set primary to P1 before starting bonding port.

testpmd> set bonding primary 1 2
testpmd> show bonding config 2
testpmd> port start 2
Port 2: 02:09:C0:68:99:A5
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex

testpmd> show bonding config 2

Primary is now P1. There are 2 active slaves.

Use P2 only for forwarding.

testpmd> set portlist 2
testpmd> show config fwd
testpmd> set fwd mac
testpmd> start
testpmd> show bonding config 2

Primary is now P1. There are 2 active slaves.

testpmd> show port stats all

VF traffic is seen at P1 and P2.

testpmd> clear port stats all
testpmd> set bonding primary 0 2
testpmd> remove bonding slave 1 2
testpmd> show bonding config 2

Primary is now P0. There is 1 active slave.

testpmd> clear port stats all
testpmd> show port stats all

No VF traffic is seen at P0 and P2, VF MAC address still present.

testpmd> port stop 1
testpmd> port close 1

Port close should remove VF MAC address, it does not remove perm_addr.

The mac_addr command only works with the kernel PF for Niantic.

testpmd> mac_addr remove 1 AA:BB:CC:DD:EE:FF
testpmd> port detach 1
Port '0000:00:04.0' is detached. Now total ports is 2
testpmd> show port stats all

1.3. Live Migration steps 3

HowTo Guides, Release 19.11.14

No VF traffic is seen at P0 and P2.

1.3.4 On host_server_1: Terminal 2
(qemu) device_del vf1

1.3.5 On host_server_1: Terminal 1

In VM on host_server_1:
testpmd> show bonding config 2

Primary is now P0. There is 1 active slave.

testpmd> show port info all
testpmd> show port stats all

1.3.6 On host_server_2: Terminal 1
cd /root/dpdk/host_scripts
./setup_vf_on_212_131.sh
./vm_virtio_one_migrate.sh

1.3.7 On host_server_2: Terminal 2
./setup_bridge_on_212_131.sh
./connect_to_qemu_mon_on_host.sh
(qemu) info status
VM status: paused (inmigrate)
(qemu)

1.3.8 On host_server_1: Terminal 2

Check that the switch is up before migrating.

(qemu) migrate tcp:10.237.212.131:5555
(qemu) info status
VM status: paused (postmigrate)

For the Niantic NIC.

(qemu) info migrate
capabilities: xbzrle: off rdma-pin-all: off auto-converge: off zero-blocks: off
Migration status: completed
total time: 11834 milliseconds
downtime: 18 milliseconds
setup: 3 milliseconds
transferred ram: 389137 kbytes
throughput: 269.49 mbps
remaining ram: 0 kbytes
total ram: 1590088 kbytes
duplicate: 301620 pages
skipped: 0 pages
normal: 96433 pages
normal bytes: 385732 kbytes
dirty sync count: 2
(qemu) quit

For the Fortville NIC.

(qemu) info migrate
capabilities: xbzrle: off rdma-pin-all: off auto-converge: off zero-blocks: off
Migration status: completed
total time: 11619 milliseconds

1.3. Live Migration steps 4

HowTo Guides, Release 19.11.14

downtime: 5 milliseconds
setup: 7 milliseconds
transferred ram: 379699 kbytes
throughput: 267.82 mbps
remaining ram: 0 kbytes
total ram: 1590088 kbytes
duplicate: 303985 pages
skipped: 0 pages
normal: 94073 pages
normal bytes: 376292 kbytes
dirty sync count: 2
(qemu) quit

1.3.9 On host_server_2: Terminal 1

In VM on host_server_2:

Hit Enter key. This brings the user to the testpmd prompt.

testpmd>

1.3.10 On host_server_2: Terminal 2
(qemu) info status
VM status: running

For the Niantic NIC.

(qemu) device_add pci-assign,host=06:10.0,id=vf1

For the Fortville NIC.

(qemu) device_add pci-assign,host=03:02.0,id=vf1

1.3.11 On host_server_2: Terminal 1

In VM on host_server_2:
testpmd> show port info all
testpmd> show port stats all
testpmd> show bonding config 2
testpmd> port attach 0000:00:04.0
Port 1 is attached.
Now total ports is 3
Done

testpmd> port start 1

The mac_addr command only works with the Kernel PF for Niantic.

testpmd> mac_addr add port 1 vf 0 AA:BB:CC:DD:EE:FF
testpmd> show port stats all.
testpmd> show config fwd
testpmd> show bonding config 2
testpmd> add bonding slave 1 2
testpmd> set bonding primary 1 2
testpmd> show bonding config 2
testpmd> show port stats all

VF traffic is seen at P1 (VF) and P2 (Bonded device).

testpmd> remove bonding slave 0 2
testpmd> show bonding config 2
testpmd> port stop 0
testpmd> port close 0

1.3. Live Migration steps 5

HowTo Guides, Release 19.11.14

testpmd> port detach 0
Port '0000:00:03.0' is detached. Now total ports is 2

testpmd> show port info all
testpmd> show config fwd
testpmd> show port stats all

VF traffic is seen at P1 (VF) and P2 (Bonded device).

1.4 Sample host scripts

1.4.1 setup_vf_on_212_46.sh

Set up Virtual Functions on host_server_1

#!/bin/sh
This script is run on the host 10.237.212.46 to setup the VF

set up Niantic VF
cat /sys/bus/pci/devices/0000\:09\:00.0/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000\:09\:00.0/sriov_numvfs
cat /sys/bus/pci/devices/0000\:09\:00.0/sriov_numvfs
rmmod ixgbevf

set up Fortville VF
cat /sys/bus/pci/devices/0000\:02\:00.0/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000\:02\:00.0/sriov_numvfs
cat /sys/bus/pci/devices/0000\:02\:00.0/sriov_numvfs
rmmod i40evf

1.4.2 vm_virtio_vf_one_212_46.sh

Setup Virtual Machine on host_server_1

#!/bin/sh

Path to KVM tool
KVM_PATH="/usr/bin/qemu-system-x86_64"

Guest Disk image
DISK_IMG="/home/username/disk_image/virt1_sml.disk"

Number of guest cpus
VCPUS_NR="4"

Memory
MEM=1536

taskset -c 1-5 $KVM_PATH \
-enable-kvm \
-m $MEM \
-smp $VCPUS_NR \
-cpu host \
-name VM1 \
-no-reboot \
-net none \
-vnc none -nographic \
-hda $DISK_IMG \
-netdev type=tap,id=net1,script=no,downscript=no,ifname=tap1 \
-device virtio-net-pci,netdev=net1,mac=CC:BB:BB:BB:BB:BB \
-device pci-assign,host=09:10.0,id=vf1 \
-monitor telnet::3333,server,nowait

1.4. Sample host scripts 6

HowTo Guides, Release 19.11.14

1.4.3 setup_bridge_on_212_46.sh

Setup bridge on host_server_1

#!/bin/sh
This script is run on the host 10.237.212.46 to setup the bridge
for the Tap device and the PF device.
This enables traffic to go from the PF to the Tap to the Virtio PMD in the VM.

ens3f0 is the Niantic NIC
ens6f0 is the Fortville NIC

ifconfig ens3f0 down
ifconfig tap1 down
ifconfig ens6f0 down
ifconfig virbr0 down

brctl show virbr0
brctl addif virbr0 ens3f0
brctl addif virbr0 ens6f0
brctl addif virbr0 tap1
brctl show virbr0

ifconfig ens3f0 up
ifconfig tap1 up
ifconfig ens6f0 up
ifconfig virbr0 up

1.4.4 connect_to_qemu_mon_on_host.sh
#!/bin/sh
This script is run on both hosts when the VM is up,
to connect to the Qemu Monitor.

telnet 0 3333

1.4.5 setup_vf_on_212_131.sh

Set up Virtual Functions on host_server_2

#!/bin/sh
This script is run on the host 10.237.212.131 to setup the VF

set up Niantic VF
cat /sys/bus/pci/devices/0000\:06\:00.0/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000\:06\:00.0/sriov_numvfs
cat /sys/bus/pci/devices/0000\:06\:00.0/sriov_numvfs
rmmod ixgbevf

set up Fortville VF
cat /sys/bus/pci/devices/0000\:03\:00.0/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000\:03\:00.0/sriov_numvfs
cat /sys/bus/pci/devices/0000\:03\:00.0/sriov_numvfs
rmmod i40evf

1.4.6 vm_virtio_one_migrate.sh

Setup Virtual Machine on host_server_2

#!/bin/sh
Start the VM on host_server_2 with the same parameters except without the VF
parameters, as the VM on host_server_1, in migration-listen mode
(-incoming tcp:0:5555)

1.4. Sample host scripts 7

HowTo Guides, Release 19.11.14

Path to KVM tool
KVM_PATH="/usr/bin/qemu-system-x86_64"

Guest Disk image
DISK_IMG="/home/username/disk_image/virt1_sml.disk"

Number of guest cpus
VCPUS_NR="4"

Memory
MEM=1536

taskset -c 1-5 $KVM_PATH \
-enable-kvm \
-m $MEM \
-smp $VCPUS_NR \
-cpu host \
-name VM1 \
-no-reboot \
-net none \
-vnc none -nographic \
-hda $DISK_IMG \
-netdev type=tap,id=net1,script=no,downscript=no,ifname=tap1 \
-device virtio-net-pci,netdev=net1,mac=CC:BB:BB:BB:BB:BB \
-incoming tcp:0:5555 \
-monitor telnet::3333,server,nowait

1.4.7 setup_bridge_on_212_131.sh

Setup bridge on host_server_2

#!/bin/sh
This script is run on the host to setup the bridge
for the Tap device and the PF device.
This enables traffic to go from the PF to the Tap to the Virtio PMD in the VM.

ens4f0 is the Niantic NIC
ens5f0 is the Fortville NIC

ifconfig ens4f0 down
ifconfig tap1 down
ifconfig ens5f0 down
ifconfig virbr0 down

brctl show virbr0
brctl addif virbr0 ens4f0
brctl addif virbr0 ens5f0
brctl addif virbr0 tap1
brctl show virbr0

ifconfig ens4f0 up
ifconfig tap1 up
ifconfig ens5f0 up
ifconfig virbr0 up

1.5 Sample VM scripts

1.5.1 setup_dpdk_in_vm.sh

Set up DPDK in the Virtual Machine

1.5. Sample VM scripts 8

HowTo Guides, Release 19.11.14

#!/bin/sh
this script matches the vm_virtio_vf_one script
virtio port is 03
vf port is 04

cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

ifconfig -a
/root/dpdk/usertools/dpdk-devbind.py --status

rmmod virtio-pci ixgbevf

modprobe uio
insmod /root/dpdk/x86_64-default-linux-gcc/kmod/igb_uio.ko

/root/dpdk/usertools/dpdk-devbind.py -b igb_uio 0000:00:03.0
/root/dpdk/usertools/dpdk-devbind.py -b igb_uio 0000:00:04.0

/root/dpdk/usertools/dpdk-devbind.py --status

1.5.2 run_testpmd_bonding_in_vm.sh

Run testpmd in the Virtual Machine.

#!/bin/sh
Run testpmd in the VM

The test system has 8 cpus (0-7), use cpus 2-7 for VM
Use taskset -pc <core number> <thread_id>

use for bonding of virtio and vf tests in VM

/root/dpdk/x86_64-default-linux-gcc/app/testpmd \
-l 0-3 -n 4 --socket-mem 350 -- --i --port-topology=chained

1.6 Sample switch configuration

The Intel switch is used to connect the traffic generator to the NIC’s on host_server_1 and host_server_2.

In order to run the switch configuration two console windows are required.

Log in as root in both windows.

TestPointShared, run_switch.sh and load /root/switch_config must be executed in the sequence below.

1.6.1 On Switch: Terminal 1

run TestPointShared

/usr/bin/TestPointShared

1.6.2 On Switch: Terminal 2

execute run_switch.sh

/root/run_switch.sh

1.6. Sample switch configuration 9

HowTo Guides, Release 19.11.14

1.6.3 On Switch: Terminal 1

load switch configuration

load /root/switch_config

1.6.4 Sample switch configuration script

The /root/switch_config script:

TestPoint History
show port 1,5,9,13,17,21,25
set port 1,5,9,13,17,21,25 up
show port 1,5,9,13,17,21,25
del acl 1
create acl 1
create acl-port-set
create acl-port-set
add port port-set 1 0
add port port-set 5,9,13,17,21,25 1
create acl-rule 1 1
add acl-rule condition 1 1 port-set 1
add acl-rule action 1 1 redirect 1
apply acl
create vlan 1000
add vlan port 1000 1,5,9,13,17,21,25
set vlan tagging 1000 1,5,9,13,17,21,25 tag
set switch config flood_ucast fwd
show port stats all 1,5,9,13,17,21,25

1.6. Sample switch configuration 10

CHAPTER

TWO

LIVE MIGRATION OF VM WITH VIRTIO ON HOST RUNNING
VHOST_USER

2.1 Overview

Live Migration of a VM with DPDK Virtio PMD on a host which is running the Vhost sample application
(vhost-switch) and using the DPDK PMD (ixgbe or i40e).

The Vhost sample application uses VMDQ so SRIOV must be disabled on the NIC’s.

The following sections show an example of how to do this migration.

2.2 Test Setup

To test the Live Migration two servers with identical operating systems installed are used. KVM and
QEMU is also required on the servers.

QEMU 2.5 is required for Live Migration of a VM with vhost_user running on the hosts.

In this example, the servers have Niantic and or Fortville NIC’s installed. The NIC’s on both servers are
connected to a switch which is also connected to the traffic generator.

The switch is configured to broadcast traffic on all the NIC ports.

The ip address of host_server_1 is 10.237.212.46

The ip address of host_server_2 is 10.237.212.131

2.3 Live Migration steps

The sample scripts mentioned in the steps below can be found in the Sample host scripts and Sample
VM scripts sections.

2.3.1 On host_server_1: Terminal 1

Setup DPDK on host_server_1

cd /root/dpdk/host_scripts
./setup_dpdk_on_host.sh

2.3.2 On host_server_1: Terminal 2

Bind the Niantic or Fortville NIC to igb_uio on host_server_1.

For Fortville NIC.

11

HowTo Guides, Release 19.11.14

VM 1

Switch with 10Gb ports

Server 1 Server 2

 10 Gb Traffic Generator

VM 2

Linux, KVM, QEMU 2.5

10 Gb NIC10 Gb NIC

10 Gb NIC 10 Gb NIC

DPDK Testpmd App

DPDK virtio PMD's

DPDK PF PMD and vhost_user DPDK PF PMD and vhost_user

NFS Server
VM disk image

10 Gb Migration Link

DPDK Testpmd App

DPDK virtio PMD's

Linux, KVM, QEMU 2.5

cd /root/dpdk/usertools
./dpdk-devbind.py -b igb_uio 0000:02:00.0

For Niantic NIC.

cd /root/dpdk/usertools
./dpdk-devbind.py -b igb_uio 0000:09:00.0

2.3.3 On host_server_1: Terminal 3

For Fortville and Niantic NIC’s reset SRIOV and run the vhost_user sample application (vhost-switch)
on host_server_1.

cd /root/dpdk/host_scripts
./reset_vf_on_212_46.sh
./run_vhost_switch_on_host.sh

2.3.4 On host_server_1: Terminal 1

Start the VM on host_server_1

./vm_virtio_vhost_user.sh

2.3.5 On host_server_1: Terminal 4

Connect to the QEMU monitor on host_server_1.

cd /root/dpdk/host_scripts
./connect_to_qemu_mon_on_host.sh
(qemu)

2.3. Live Migration steps 12

HowTo Guides, Release 19.11.14

2.3.6 On host_server_1: Terminal 1

In VM on host_server_1:

Setup DPDK in the VM and run testpmd in the VM.

cd /root/dpdk/vm_scripts
./setup_dpdk_in_vm.sh
./run_testpmd_in_vm.sh

testpmd> show port info all
testpmd> set fwd mac retry
testpmd> start tx_first
testpmd> show port stats all

Virtio traffic is seen at P1 and P2.

2.3.7 On host_server_2: Terminal 1

Set up DPDK on the host_server_2.

cd /root/dpdk/host_scripts
./setup_dpdk_on_host.sh

2.3.8 On host_server_2: Terminal 2

Bind the Niantic or Fortville NIC to igb_uio on host_server_2.

For Fortville NIC.

cd /root/dpdk/usertools
./dpdk-devbind.py -b igb_uio 0000:03:00.0

For Niantic NIC.

cd /root/dpdk/usertools
./dpdk-devbind.py -b igb_uio 0000:06:00.0

2.3.9 On host_server_2: Terminal 3

For Fortville and Niantic NIC’s reset SRIOV, and run the vhost_user sample application on
host_server_2.

cd /root/dpdk/host_scripts
./reset_vf_on_212_131.sh
./run_vhost_switch_on_host.sh

2.3.10 On host_server_2: Terminal 1

Start the VM on host_server_2.

./vm_virtio_vhost_user_migrate.sh

2.3.11 On host_server_2: Terminal 4

Connect to the QEMU monitor on host_server_2.

cd /root/dpdk/host_scripts
./connect_to_qemu_mon_on_host.sh
(qemu) info status
VM status: paused (inmigrate)
(qemu)

2.3. Live Migration steps 13

HowTo Guides, Release 19.11.14

2.3.12 On host_server_1: Terminal 4

Check that switch is up before migrating the VM.

(qemu) migrate tcp:10.237.212.131:5555
(qemu) info status
VM status: paused (postmigrate)

(qemu) info migrate
capabilities: xbzrle: off rdma-pin-all: off auto-converge: off zero-blocks: off
Migration status: completed
total time: 11619 milliseconds
downtime: 5 milliseconds
setup: 7 milliseconds
transferred ram: 379699 kbytes
throughput: 267.82 mbps
remaining ram: 0 kbytes
total ram: 1590088 kbytes
duplicate: 303985 pages
skipped: 0 pages
normal: 94073 pages
normal bytes: 376292 kbytes
dirty sync count: 2
(qemu) quit

2.3.13 On host_server_2: Terminal 1

In VM on host_server_2:

Hit Enter key. This brings the user to the testpmd prompt.

testpmd>

2.3.14 On host_server_2: Terminal 4

In QEMU monitor on host_server_2
(qemu) info status
VM status: running

2.3.15 On host_server_2: Terminal 1

In VM on host_server_2:
testpmd> show port info all
testpmd> show port stats all

Virtio traffic is seen at P0 and P1.

2.4 Sample host scripts

2.4.1 reset_vf_on_212_46.sh
#!/bin/sh
This script is run on the host 10.237.212.46 to reset SRIOV

BDF for Fortville NIC is 0000:02:00.0
cat /sys/bus/pci/devices/0000\:02\:00.0/max_vfs
echo 0 > /sys/bus/pci/devices/0000\:02\:00.0/max_vfs
cat /sys/bus/pci/devices/0000\:02\:00.0/max_vfs

BDF for Niantic NIC is 0000:09:00.0

2.4. Sample host scripts 14

HowTo Guides, Release 19.11.14

cat /sys/bus/pci/devices/0000\:09\:00.0/max_vfs
echo 0 > /sys/bus/pci/devices/0000\:09\:00.0/max_vfs
cat /sys/bus/pci/devices/0000\:09\:00.0/max_vfs

2.4.2 vm_virtio_vhost_user.sh
#/bin/sh
Script for use with vhost_user sample application
The host system has 8 cpu's (0-7)

Path to KVM tool
KVM_PATH="/usr/bin/qemu-system-x86_64"

Guest Disk image
DISK_IMG="/home/user/disk_image/virt1_sml.disk"

Number of guest cpus
VCPUS_NR="6"

Memory
MEM=1024

VIRTIO_OPTIONS="csum=off,gso=off,guest_tso4=off,guest_tso6=off,guest_ecn=off"

Socket Path
SOCKET_PATH="/root/dpdk/host_scripts/usvhost"

taskset -c 2-7 $KVM_PATH \
-enable-kvm \
-m $MEM \
-smp $VCPUS_NR \
-object memory-backend-file,id=mem,size=1024M,mem-path=/mnt/huge,share=on \
-numa node,memdev=mem,nodeid=0 \
-cpu host \
-name VM1 \
-no-reboot \
-net none \
-vnc none \
-nographic \
-hda $DISK_IMG \
-chardev socket,id=chr0,path=$SOCKET_PATH \
-netdev type=vhost-user,id=net1,chardev=chr0,vhostforce \
-device virtio-net-pci,netdev=net1,mac=CC:BB:BB:BB:BB:BB,$VIRTIO_OPTIONS \
-chardev socket,id=chr1,path=$SOCKET_PATH \
-netdev type=vhost-user,id=net2,chardev=chr1,vhostforce \
-device virtio-net-pci,netdev=net2,mac=DD:BB:BB:BB:BB:BB,$VIRTIO_OPTIONS \
-monitor telnet::3333,server,nowait

2.4.3 connect_to_qemu_mon_on_host.sh
#!/bin/sh
This script is run on both hosts when the VM is up,
to connect to the Qemu Monitor.

telnet 0 3333

2.4.4 reset_vf_on_212_131.sh
#!/bin/sh
This script is run on the host 10.237.212.131 to reset SRIOV

BDF for Niantic NIC is 0000:06:00.0

2.4. Sample host scripts 15

HowTo Guides, Release 19.11.14

cat /sys/bus/pci/devices/0000\:06\:00.0/max_vfs
echo 0 > /sys/bus/pci/devices/0000\:06\:00.0/max_vfs
cat /sys/bus/pci/devices/0000\:06\:00.0/max_vfs

BDF for Fortville NIC is 0000:03:00.0
cat /sys/bus/pci/devices/0000\:03\:00.0/max_vfs
echo 0 > /sys/bus/pci/devices/0000\:03\:00.0/max_vfs
cat /sys/bus/pci/devices/0000\:03\:00.0/max_vfs

2.4.5 vm_virtio_vhost_user_migrate.sh
#/bin/sh
Script for use with vhost user sample application
The host system has 8 cpu's (0-7)

Path to KVM tool
KVM_PATH="/usr/bin/qemu-system-x86_64"

Guest Disk image
DISK_IMG="/home/user/disk_image/virt1_sml.disk"

Number of guest cpus
VCPUS_NR="6"

Memory
MEM=1024

VIRTIO_OPTIONS="csum=off,gso=off,guest_tso4=off,guest_tso6=off,guest_ecn=off"

Socket Path
SOCKET_PATH="/root/dpdk/host_scripts/usvhost"

taskset -c 2-7 $KVM_PATH \
-enable-kvm \
-m $MEM \
-smp $VCPUS_NR \
-object memory-backend-file,id=mem,size=1024M,mem-path=/mnt/huge,share=on \
-numa node,memdev=mem,nodeid=0 \
-cpu host \
-name VM1 \
-no-reboot \
-net none \
-vnc none \
-nographic \
-hda $DISK_IMG \
-chardev socket,id=chr0,path=$SOCKET_PATH \
-netdev type=vhost-user,id=net1,chardev=chr0,vhostforce \
-device virtio-net-pci,netdev=net1,mac=CC:BB:BB:BB:BB:BB,$VIRTIO_OPTIONS \
-chardev socket,id=chr1,path=$SOCKET_PATH \
-netdev type=vhost-user,id=net2,chardev=chr1,vhostforce \
-device virtio-net-pci,netdev=net2,mac=DD:BB:BB:BB:BB:BB,$VIRTIO_OPTIONS \
-incoming tcp:0:5555 \
-monitor telnet::3333,server,nowait

2.5 Sample VM scripts

2.5.1 setup_dpdk_virtio_in_vm.sh
#!/bin/sh
this script matches the vm_virtio_vhost_user script
virtio port is 03
virtio port is 04

2.5. Sample VM scripts 16

HowTo Guides, Release 19.11.14

cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

ifconfig -a
/root/dpdk/usertools/dpdk-devbind.py --status

rmmod virtio-pci

modprobe uio
insmod /root/dpdk/x86_64-default-linux-gcc/kmod/igb_uio.ko

/root/dpdk/usertools/dpdk-devbind.py -b igb_uio 0000:00:03.0
/root/dpdk/usertools/dpdk-devbind.py -b igb_uio 0000:00:04.0

/root/dpdk/usertools/dpdk-devbind.py --status

2.5.2 run_testpmd_in_vm.sh
#!/bin/sh
Run testpmd for use with vhost_user sample app.
test system has 8 cpus (0-7), use cpus 2-7 for VM

/root/dpdk/x86_64-default-linux-gcc/app/testpmd \
-l 0-5 -n 4 --socket-mem 350 -- --burst=64 --i

2.5. Sample VM scripts 17

CHAPTER

THREE

FLOW BIFURCATION HOW-TO GUIDE

Flow Bifurcation is a mechanism which uses hardware capable Ethernet devices to split traffic between
Linux user space and kernel space. Since it is a hardware assisted feature this approach can provide line
rate processing capability. Other than KNI, the software is just required to enable device configuration,
there is no need to take care of the packet movement during the traffic split. This can yield better
performance with less CPU overhead.

The Flow Bifurcation splits the incoming data traffic to user space applications (such as DPDK appli-
cations) and/or kernel space programs (such as the Linux kernel stack). It can direct some traffic, for
example data plane traffic, to DPDK, while directing some other traffic, for example control plane traffic,
to the traditional Linux networking stack.

There are a number of technical options to achieve this. A typical example is to combine the technology
of SR-IOV and packet classification filtering.

SR-IOV is a PCI standard that allows the same physical adapter to be split as multiple virtual functions.
Each virtual function (VF) has separated queues with physical functions (PF). The network adapter will
direct traffic to a virtual function with a matching destination MAC address. In a sense, SR-IOV has the
capability for queue division.

Packet classification filtering is a hardware capability available on most network adapters. Filters can
be configured to direct specific flows to a given receive queue by hardware. Different NICs may have
different filter types to direct flows to a Virtual Function or a queue that belong to it.

In this way the Linux networking stack can receive specific traffic through the kernel driver while a
DPDK application can receive specific traffic bypassing the Linux kernel by using drivers like VFIO or
the DPDK igb_uio module.

3.1 Using Flow Bifurcation on Mellanox ConnectX

The Mellanox devices are natively bifurcated, so there is no need to split into SR-IOV PF/VF in order
to get the flow bifurcation mechanism. The full device is already shared with the kernel driver.

The DPDK application can setup some flow steering rules, and let the rest go to the kernel stack. In
order to define the filters strictly with flow rules, the flow_isolated_mode can be configured.

There is no specific instructions to follow. The recommended reading is the ../prog_guide/rte_flow
guide. Below is an example of testpmd commands for receiving VXLAN 42 in 4 queues of the DPDK
port 0, while all other packets go to the kernel:

testpmd> flow isolate 0 true
testpmd> flow create 0 ingress pattern eth / ipv4 / udp / vxlan vni is 42 / end \

actions rss queues 0 1 2 3 end / end

18

HowTo Guides, Release 19.11.14

NIC

LINUX

Kernel pf driver
Filters support traffic
steering to VF

Rx Queues
(0-N)
 PF

Rx Queues
(0-M)
VF(vf0)

filters

Tools to
program filters

inspecified VF

Director flows
to queue index
in specified VF

DPDKSocket

Fig. 3.1: Flow Bifurcation Overview

3.2 Using Flow Bifurcation on IXGBE in Linux

On Intel 82599 10 Gigabit Ethernet Controller series NICs Flow Bifurcation can be achieved by SR-IOV
and Intel Flow Director technologies. Traffic can be directed to queues by the Flow Director capability,
typically by matching 5-tuple of UDP/TCP packets.

The typical procedure to achieve this is as follows:

1. Boot the system without iommu, or with iommu=pt.

2. Create Virtual Functions:

echo 2 > /sys/bus/pci/devices/0000:01:00.0/sriov_numvfs

3. Enable and set flow filters:

ethtool -K eth1 ntuple on
ethtool -N eth1 flow-type udp4 src-ip 192.0.2.2 dst-ip 198.51.100.2 \

action $queue_index_in_VF0
ethtool -N eth1 flow-type udp4 src-ip 198.51.100.2 dst-ip 192.0.2.2 \

action $queue_index_in_VF1

Where:

• $queue_index_in_VFn: Bits 39:32 of the variable defines VF id + 1; the lower 32 bits
indicates the queue index of the VF. Thus:

– $queue_index_in_VF0 = (0x1 & 0xFF) << 32 + [queue index].

– $queue_index_in_VF1 = (0x2 & 0xFF) << 32 + [queue index].

0x000000 VF ID + 1 Queue Index

0313963

3.2. Using Flow Bifurcation on IXGBE in Linux 19

HowTo Guides, Release 19.11.14

4. Compile the DPDK application and insert igb_uio or probe the vfio-pci kernel modules as
normal.

5. Bind the virtual functions:

modprobe vfio-pci
dpdk-devbind.py -b vfio-pci 01:10.0
dpdk-devbind.py -b vfio-pci 01:10.1

6. Run a DPDK application on the VFs:

testpmd -l 0-7 -n 4 -- -i -w 01:10.0 -w 01:10.1 --forward-mode=mac

In this example, traffic matching the rules will go through the VF by matching the filter rule. All other
traffic, not matching the rules, will go through the default queue or scaling on queues in the PF. That is
to say UDP packets with the specified IP source and destination addresses will go through the DPDK
application. All other traffic, with different hosts or different protocols, will go through the Linux
networking stack.

Note:

• The above steps work on the Linux kernel v4.2.

• The Flow Bifurcation is implemented in Linux kernel and ixgbe kernel driver using the following
patches:

– ethtool: Add helper routines to pass vf to rx_flow_spec

– ixgbe: Allow flow director to use entire queue space

• The Ethtool version used in this example is 3.18.

3.3 Using Flow Bifurcation on I40E in Linux

On Intel X710/XL710 series Ethernet Controllers Flow Bifurcation can be achieved by SR-IOV, Cloud
Filter and L3 VEB switch. The traffic can be directed to queues by the Cloud Filter and L3 VEB switch’s
matching rule.

• L3 VEB filters work for non-tunneled packets. It can direct a packet just by the Destination IP
address to a queue in a VF.

• Cloud filters work for the following types of tunneled packets.

– Inner mac.

– Inner mac + VNI.

– Outer mac + Inner mac + VNI.

– Inner mac + Inner vlan + VNI.

– Inner mac + Inner vlan.

The typical procedure to achieve this is as follows:

1. Boot the system without iommu, or with iommu=pt.

2. Build and insert the i40e.ko module.

3. Create Virtual Functions:

3.3. Using Flow Bifurcation on I40E in Linux 20

https://patchwork.ozlabs.org/patch/476511/
https://patchwork.ozlabs.org/patch/476516/

HowTo Guides, Release 19.11.14

echo 2 > /sys/bus/pci/devices/0000:01:00.0/sriov_numvfs

4. Add udp port offload to the NIC if using cloud filter:

ip li add vxlan0 type vxlan id 42 group 239.1.1.1 local 10.16.43.214 dev <name>
ifconfig vxlan0 up
ip -d li show vxlan0

Note: Output such as add vxlan port 8472,index 0 success should be found in
the system log.

5. Examples of enabling and setting flow filters:

• L3 VEB filter, for a route whose destination IP is 192.168.50.108 to VF 0’s queue 2.

ethtool -N <dev_name> flow-type ip4 dst-ip 192.168.50.108 \
user-def 0xffffffff00000000 action 2 loc 8

• Inner mac, for a route whose inner destination mac is 0:0:0:0:9:0 to PF’s queue 6.

ethtool -N <dev_name> flow-type ether dst 00:00:00:00:00:00 \
m ff:ff:ff:ff:ff:ff src 00:00:00:00:09:00 m 00:00:00:00:00:00 \
user-def 0xffffffff00000003 action 6 loc 1

• Inner mac + VNI, for a route whose inner destination mac is 0:0:0:0:9:0 and VNI is 8 to PF’s
queue 4.

ethtool -N <dev_name> flow-type ether dst 00:00:00:00:00:00 \
m ff:ff:ff:ff:ff:ff src 00:00:00:00:09:00 m 00:00:00:00:00:00 \
user-def 0x800000003 action 4 loc 4

• Outer mac + Inner mac + VNI, for a route whose outer mac is 68:05:ca:24:03:8b, inner
destination mac is c2:1a:e1:53:bc:57, and VNI is 8 to PF’s queue 2.

ethtool -N <dev_name> flow-type ether dst 68:05:ca:24:03:8b \
m 00:00:00:00:00:00 src c2:1a:e1:53:bc:57 m 00:00:00:00:00:00 \
user-def 0x800000003 action 2 loc 2

• Inner mac + Inner vlan + VNI, for a route whose inner destination mac is 00:00:00:00:20:00,
inner vlan is 10, and VNI is 8 to VF 0’s queue 1.

ethtool -N <dev_name> flow-type ether dst 00:00:00:00:01:00 \
m ff:ff:ff:ff:ff:ff src 00:00:00:00:20:00 m 00:00:00:00:00:00 \
vlan 10 user-def 0x800000000 action 1 loc 5

• Inner mac + Inner vlan, for a route whose inner destination mac is 00:00:00:00:20:00, and
inner vlan is 10 to VF 0’s queue 1.

ethtool -N <dev_name> flow-type ether dst 00:00:00:00:01:00 \
m ff:ff:ff:ff:ff:ff src 00:00:00:00:20:00 m 00:00:00:00:00:00 \
vlan 10 user-def 0xffffffff00000000 action 1 loc 5

Note:

• If the upper 32 bits of ‘user-def’ are 0xffffffff, then the filter can be used for program-
ming an L3 VEB filter, otherwise the upper 32 bits of ‘user-def’ can carry the tenant ID/VNI
if specified/required.

• Cloud filters can be defined with inner mac, outer mac, inner ip, inner vlan and VNI as part
of the cloud tuple. It is always the destination (not source) mac/ip that these filters use. For
all these examples dst and src mac address fields are overloaded dst == outer, src == inner.

3.3. Using Flow Bifurcation on I40E in Linux 21

HowTo Guides, Release 19.11.14

• The filter will direct a packet matching the rule to a vf id specified in the lower 32 bit of
user-def to the queue specified by ‘action’.

• If the vf id specified by the lower 32 bit of user-def is greater than or equal to max_vfs,
then the filter is for the PF queues.

6. Compile the DPDK application and insert igb_uio or probe the vfio-pci kernel modules as
normal.

7. Bind the virtual function:

modprobe vfio-pci
dpdk-devbind.py -b vfio-pci 01:10.0
dpdk-devbind.py -b vfio-pci 01:10.1

8. run DPDK application on VFs:

testpmd -l 0-7 -n 4 -- -i -w 01:10.0 -w 01:10.1 --forward-mode=mac

Note:

• The above steps work on the i40e Linux kernel driver v1.5.16.

• The Ethtool version used in this example is 3.18. The mask ff means ‘not involved’, while 00 or
no mask means ‘involved’.

• For more details of the configuration, refer to the cloud filter test plan

3.3. Using Flow Bifurcation on I40E in Linux 22

http://git.dpdk.org/tools/dts/tree/test_plans/cloud_filter_test_plan.rst

CHAPTER

FOUR

GENERIC FLOW API - EXAMPLES

This document demonstrates some concrete examples for programming flow rules with the rte_flow
APIs.

• Detail of the rte_flow APIs can be found in the following link: ../prog_guide/rte_flow.

• Details of the TestPMD commands to set the flow rules can be found in the following link:
TestPMD Flow rules

4.1 Simple IPv4 drop

4.1.1 Description

In this example we will create a simple rule that drops packets whose IPv4 destination equals
192.168.3.2. This code is equivalent to the following testpmd command (wrapped for clarity):

testpmd> flow create 0 ingress pattern eth / vlan /
ipv4 dst is 192.168.3.2 / end actions drop / end

4.1.2 Code
/* create the attribute structure */
struct rte_flow_attr attr = { .ingress = 1 };
struct rte_flow_item pattern[MAX_PATTERN_IN_FLOW];
struct rte_flow_action actions[MAX_ACTIONS_IN_FLOW];
struct rte_flow_item_eth eth;
struct rte_flow_item_vlan vlan;
struct rte_flow_item_ipv4 ipv4;
struct rte_flow *flow;
struct rte_flow_error error;

/* setting the eth to pass all packets */
pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;
pattern[0].spec = ð

/* set the vlan to pass all packets */
pattern[1] = RTE_FLOW_ITEM_TYPE_VLAN;
pattern[1].spec = &vlan;

/* set the dst ipv4 packet to the required value */
ipv4.hdr.dst_addr = htonl(0xc0a80302);
pattern[2].type = RTE_FLOW_ITEM_TYPE_IPV4;
pattern[2].spec = &ipv4;

/* end the pattern array */
pattern[3].type = RTE_FLOW_ITEM_TYPE_END;

/* create the drop action */

23

HowTo Guides, Release 19.11.14

actions[0].type = RTE_FLOW_ACTION_TYPE_DROP;
actions[1].type = RTE_FLOW_ACTION_TYPE_END;

/* validate and create the flow rule */
if (!rte_flow_validate(port_id, &attr, pattern, actions, &error))

flow = rte_flow_create(port_id, &attr, pattern, actions, &error);

4.1.3 Output

Terminal 1: running sample app with the flow rule disabled:

./filter-program disable
[waiting for packets]

Terminal 2: running scapy:

$scapy
welcome to Scapy
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.4', dst='192.168.3.1'), \

iface='some interface', count=1)
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.5', dst='192.168.3.2'), \

iface='some interface', count=1)

Terminal 1: output log:

received packet with src ip = 176.80.50.4
received packet with src ip = 176.80.50.5

Terminal 1: running sample the app flow rule enabled:

./filter-program enabled
[waiting for packets]

Terminal 2: running scapy:

$scapy
welcome to Scapy
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.4', dst='192.168.3.1'), \

iface='some interface', count=1)
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.5', dst ='192.168.3.2'), \

iface='some interface', count=1)

Terminal 1: output log:

received packet with src ip = 176.80.50.4

4.2 Range IPv4 drop

4.2.1 Description

In this example we will create a simple rule that drops packets whose IPv4 destination is in the range
192.168.3.0 to 192.168.3.255. This is done using a mask.

This code is equivalent to the following testpmd command (wrapped for clarity):

testpmd> flow create 0 ingress pattern eth / vlan /
ipv4 dst spec 192.168.3.0 dst mask 255.255.255.0 /
end actions drop / end

4.2.2 Code
struct rte_flow_attr attr = {.ingress = 1};
struct rte_flow_item pattern[MAX_PATTERN_IN_FLOW];
struct rte_flow_action actions[MAX_ACTIONS_IN_FLOW];

4.2. Range IPv4 drop 24

HowTo Guides, Release 19.11.14

struct rte_flow_item_eth eth;
struct rte_flow_item_vlan vlan;
struct rte_flow_item_ipv4 ipv4;
struct rte_flow_item_ipv4 ipv4_mask;
struct rte_flow *flow;
struct rte_flow_error error;

/* setting the eth to pass all packets */
pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;
pattern[0].spec = ð

/* set the vlan to pass all packets */
pattern[1] = RTE_FLOW_ITEM_TYPE_VLAN;
pattern[1].spec = &vlan;

/* set the dst ipv4 packet to the required value */
ipv4.hdr.dst_addr = htonl(0xc0a80300);
ipv4_mask.hdr.dst_addr = htonl(0xffffff00);
pattern[2].type = RTE_FLOW_ITEM_TYPE_IPV4;
pattern[2].spec = &ipv4;
pattern[2].mask = &ipv4_mask;

/* end the pattern array */
pattern[3].type = RTE_FLOW_ITEM_TYPE_END;

/* create the drop action */
actions[0].type = RTE_FLOW_ACTION_TYPE_DROP;
actions[1].type = RTE_FLOW_ACTION_TYPE_END;

/* validate and create the flow rule */
if (!rte_flow_validate(port_id, &attr, pattern, actions, &error))

flow = rte_flow_create(port_id, &attr, pattern, actions, &error);

4.2.3 Output

Terminal 1: running sample app flow rule disabled:

./filter-program disable
[waiting for packets]

Terminal 2: running scapy:

$scapy
welcome to Scapy
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.4', dst='192.168.3.1'), \

iface='some interface', count=1)
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.5', dst='192.168.3.2'), \

iface='some interface', count=1)
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.6', dst='192.168.5.2'), \

iface='some interface', count=1)

Terminal 1: output log:

received packet with src ip = 176.80.50.4
received packet with src ip = 176.80.50.5
received packet with src ip = 176.80.50.6

Terminal 1: running sample app flow rule enabled:

./filter-program enabled
[waiting for packets]

Terminal 2: running scapy:

4.2. Range IPv4 drop 25

HowTo Guides, Release 19.11.14

$scapy
welcome to Scapy
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.4', dst='192.168.3.1'), \

iface='some interface', count=1)
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.5', dst='192.168.3.2'), \

iface='some interface', count=1)
>> sendp(Ether()/Dot1Q()/IP(src='176.80.50.6', dst='192.168.5.2'), \

iface='some interface', count=1)

Terminal 1: output log:

received packet with src ip = 176.80.50.6

4.3 Send vlan to queue

4.3.1 Description

In this example we will create a rule that routes all vlan id 123 to queue 3.

This code is equivalent to the following testpmd command (wrapped for clarity):

testpmd> flow create 0 ingress pattern eth / vlan vid spec 123 /
end actions queue index 3 / end

4.3.2 Code
struct rte_flow_attr attr = { .ingress = 1 };
struct rte_flow_item pattern[MAX_PATTERN_IN_FLOW];
struct rte_flow_action actions[MAX_ACTIONS_IN_FLOW];
struct rte_flow_item_eth eth;
struct rte_flow_item_vlan vlan;
struct rte_flow_action_queue queue = { .index = 3 };
struct rte_flow *flow;
struct rte_flow_error error;

/* setting the eth to pass all packets */
pattern[0].type = RTE_FLOW_ITEM_TYPE_ETH;
pattern[0].spec = ð

/* set the vlan to pas all packets */
vlan.vid = 123;
pattern[1] = RTE_FLOW_ITEM_TYPE_VLAN;
pattern[1].spec = &vlan;

/* end the pattern array */
pattern[2].type = RTE_FLOW_ITEM_TYPE_END;

/* create the queue action */
actions[0].type = RTE_FLOW_ACTION_TYPE_QUEUE;
actions[0].conf = &queue;
actions[1].type = RTE_FLOW_ACTION_TYPE_END;

/* validate and create the flow rule */
if (!rte_flow_validate(port_id, &attr, pattern, actions, &error))

flow = rte_flow_create(port_id, &attr, pattern, actions, &error);

4.3.3 Output

Terminal 1: running sample app flow rule disabled:

./filter-program disable
[waiting for packets]

4.3. Send vlan to queue 26

HowTo Guides, Release 19.11.14

Terminal 2: running scapy:

$scapy
welcome to Scapy
>> sendp(Ether()/Dot1Q(vlan=123)/IP(src='176.80.50.4', dst='192.168.3.1'), \

iface='some interface', count=1)
>> sendp(Ether()/Dot1Q(vlan=50)/IP(src='176.80.50.5', dst='192.168.3.2'), \

iface='some interface', count=1)
>> sendp(Ether()/Dot1Q(vlan=123)/IP(src='176.80.50.6', dst='192.168.5.2'), \

iface='some interface', count=1)

Terminal 1: output log:

received packet with src ip = 176.80.50.4 sent to queue 2
received packet with src ip = 176.80.50.5 sent to queue 1
received packet with src ip = 176.80.50.6 sent to queue 0

Terminal 1: running sample app flow rule enabled:

./filter-program enabled
[waiting for packets]

Terminal 2: running scapy:

$scapy
welcome to Scapy
>> sendp(Ether()/Dot1Q(vlan=123)/IP(src='176.80.50.4', dst='192.168.3.1'), \

iface='some interface', count=1)
>> sendp(Ether()/Dot1Q(vlan=50)/IP(src='176.80.50.5', dst='192.168.3.2'), \

iface='some interface', count=1)
>> sendp(Ether()/Dot1Q(vlan=123)/IP(src='176.80.50.6', dst='192.168.5.2'), \

iface='some interface', count=1)

Terminal 1: output log:

received packet with src ip = 176.80.50.4 sent to queue 3
received packet with src ip = 176.80.50.5 sent to queue 1
received packet with src ip = 176.80.50.6 sent to queue 3

4.3. Send vlan to queue 27

CHAPTER

FIVE

PVP REFERENCE BENCHMARK SETUP USING TESTPMD

This guide lists the steps required to setup a PVP benchmark using testpmd as a simple forwarder
between NICs and Vhost interfaces. The goal of this setup is to have a reference PVP benchmark
without using external vSwitches (OVS, VPP, ...) to make it easier to obtain reproducible results and to
facilitate continuous integration testing.

The guide covers two ways of launching the VM, either by directly calling the QEMU command line,
or by relying on libvirt. It has been tested with DPDK v16.11 using RHEL7 for both host and guest.

5.1 Setup overview

In this diagram, each red arrow represents one logical core. This use case requires 6 dedicated logical
cores. A forwarding configuration with a single NIC is also possible, requiring 3 logical cores.

5.2 Host setup

In this setup, we isolate 6 cores (from CPU2 to CPU7) on the same NUMA node. Two cores are assigned
to the VM vCPUs running testpmd and four are assigned to testpmd on the host.

5.2.1 Host tuning

1. On BIOS, disable turbo-boost and hyper-threads.

2. Append these options to Kernel command line:

intel_pstate=disable mce=ignore_ce default_hugepagesz=1G hugepagesz=1G hugepages=6 isolcpus=2-7 rcu_nocbs=2-7 nohz_full=2-7 iommu=pt intel_iommu=on

3. Disable hyper-threads at runtime if necessary or if BIOS is not accessible:

cat /sys/devices/system/cpu/cpu*[0-9]/topology/thread_siblings_list \
| sort | uniq \
| awk -F, '{system("echo 0 > /sys/devices/system/cpu/cpu"$2"/online")}'

4. Disable NMIs:

echo 0 > /proc/sys/kernel/nmi_watchdog

5. Exclude isolated CPUs from the writeback cpumask:

echo ffffff03 > /sys/bus/workqueue/devices/writeback/cpumask

6. Isolate CPUs from IRQs:

clear_mask=0xfc #Isolate CPU2 to CPU7 from IRQs
for i in /proc/irq/*/smp_affinity
do

echo "obase=16;$((0x$(cat $i) & ~$clear_mask))" | bc > $i
done

28

HowTo Guides, Release 19.11.14

TE

10G NIC

Moongen

DUT

VM

10G NIC

TestPMD
(macswap)

TestPMD
(io)

10G NIC

10G NIC

Fig. 5.1: PVP setup using 2 NICs

5.2. Host setup 29

HowTo Guides, Release 19.11.14

5.2.2 Qemu build

Build Qemu:

git clone git://git.qemu.org/qemu.git
cd qemu
mkdir bin
cd bin
../configure --target-list=x86_64-softmmu
make

5.2.3 DPDK build

Build DPDK:

git clone git://dpdk.org/dpdk
cd dpdk
export RTE_SDK=$PWD
make install T=x86_64-native-linux-gcc DESTDIR=install

5.2.4 Testpmd launch

1. Assign NICs to DPDK:

modprobe vfio-pci
$RTE_SDK/install/sbin/dpdk-devbind -b vfio-pci 0000:11:00.0 0000:11:00.1

Note: The Sandy Bridge family seems to have some IOMMU limitations giving poor perfor-
mance results. To achieve good performance on these machines consider using UIO instead.

2. Launch the testpmd application:

$RTE_SDK/install/bin/testpmd -l 0,2,3,4,5 --socket-mem=1024 -n 4 \
--vdev 'net_vhost0,iface=/tmp/vhost-user1' \
--vdev 'net_vhost1,iface=/tmp/vhost-user2' -- \
--portmask=f -i --rxq=1 --txq=1 \
--nb-cores=4 --forward-mode=io

With this command, isolated CPUs 2 to 5 will be used as lcores for PMD threads.

3. In testpmd interactive mode, set the portlist to obtain the correct port chaining:

set portlist 0,2,1,3
start

5.2.5 VM launch

The VM may be launched either by calling QEMU directly, or by using libvirt.

Qemu way

Launch QEMU with two Virtio-net devices paired to the vhost-user sockets created by testpmd. Below
example uses default Virtio-net options, but options may be specified, for example to disable mergeable
buffers or indirect descriptors.

<QEMU path>/bin/x86_64-softmmu/qemu-system-x86_64 \
-enable-kvm -cpu host -m 3072 -smp 3 \
-chardev socket,id=char0,path=/tmp/vhost-user1 \
-netdev type=vhost-user,id=mynet1,chardev=char0,vhostforce \
-device virtio-net-pci,netdev=mynet1,mac=52:54:00:02:d9:01,addr=0x10 \
-chardev socket,id=char1,path=/tmp/vhost-user2 \

5.2. Host setup 30

HowTo Guides, Release 19.11.14

-netdev type=vhost-user,id=mynet2,chardev=char1,vhostforce \
-device virtio-net-pci,netdev=mynet2,mac=52:54:00:02:d9:02,addr=0x11 \
-object memory-backend-file,id=mem,size=3072M,mem-path=/dev/hugepages,share=on \
-numa node,memdev=mem -mem-prealloc \
-net user,hostfwd=tcp::1002$1-:22 -net nic \
-qmp unix:/tmp/qmp.socket,server,nowait \
-monitor stdio <vm_image>.qcow2

You can use this qmp-vcpu-pin script to pin vCPUs.

It can be used as follows, for example to pin 3 vCPUs to CPUs 1, 6 and 7, where isolated CPUs 6 and 7
will be used as lcores for Virtio PMDs:

export PYTHONPATH=$PYTHONPATH:<QEMU path>/scripts/qmp
./qmp-vcpu-pin -s /tmp/qmp.socket 1 6 7

Libvirt way

Some initial steps are required for libvirt to be able to connect to testpmd’s sockets.

First, SELinux policy needs to be set to permissive, since testpmd is generally run as root (note, as reboot
is required):

cat /etc/selinux/config

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=permissive

SELINUXTYPE= can take one of three two values:
targeted - Targeted processes are protected,
minimum - Modification of targeted policy.
Only selected processes are protected.
mls - Multi Level Security protection.
SELINUXTYPE=targeted

Also, Qemu needs to be run as root, which has to be specified in /etc/libvirt/qemu.conf:

user = "root"

Once the domain created, the following snippet is an extract of he most important information
(hugepages, vCPU pinning, Virtio PCI devices):

<domain type='kvm'>
<memory unit='KiB'>3145728</memory>
<currentMemory unit='KiB'>3145728</currentMemory>
<memoryBacking>
<hugepages>
<page size='1048576' unit='KiB' nodeset='0'/>

</hugepages>
<locked/>

</memoryBacking>
<vcpu placement='static'>3</vcpu>
<cputune>
<vcpupin vcpu='0' cpuset='1'/>
<vcpupin vcpu='1' cpuset='6'/>
<vcpupin vcpu='2' cpuset='7'/>
<emulatorpin cpuset='0'/>

</cputune>
<numatune>
<memory mode='strict' nodeset='0'/>

5.2. Host setup 31

https://patchwork.kernel.org/patch/9361617/

HowTo Guides, Release 19.11.14

</numatune>
<os>
<type arch='x86_64' machine='pc-i440fx-rhel7.0.0'>hvm</type>
<boot dev='hd'/>

</os>
<cpu mode='host-passthrough'>
<topology sockets='1' cores='3' threads='1'/>
<numa>
<cell id='0' cpus='0-2' memory='3145728' unit='KiB' memAccess='shared'/>

</numa>
</cpu>
<devices>
<interface type='vhostuser'>

<mac address='56:48:4f:53:54:01'/>
<source type='unix' path='/tmp/vhost-user1' mode='client'/>
<model type='virtio'/>
<driver name='vhost' rx_queue_size='256' />
<address type='pci' domain='0x0000' bus='0x00' slot='0x10' function='0x0'/>

</interface>
<interface type='vhostuser'>

<mac address='56:48:4f:53:54:02'/>
<source type='unix' path='/tmp/vhost-user2' mode='client'/>
<model type='virtio'/>
<driver name='vhost' rx_queue_size='256' />
<address type='pci' domain='0x0000' bus='0x00' slot='0x11' function='0x0'/>

</interface>
</devices>

</domain>

5.3 Guest setup

5.3.1 Guest tuning

1. Append these options to the Kernel command line:

default_hugepagesz=1G hugepagesz=1G hugepages=1 intel_iommu=on iommu=pt isolcpus=1,2 rcu_nocbs=1,2 nohz_full=1,2

2. Disable NMIs:

echo 0 > /proc/sys/kernel/nmi_watchdog

3. Exclude isolated CPU1 and CPU2 from the writeback cpumask:

echo 1 > /sys/bus/workqueue/devices/writeback/cpumask

4. Isolate CPUs from IRQs:

clear_mask=0x6 #Isolate CPU1 and CPU2 from IRQs
for i in /proc/irq/*/smp_affinity
do

echo "obase=16;$((0x$(cat $i) & ~$clear_mask))" | bc > $i
done

5.3.2 DPDK build

Build DPDK:

git clone git://dpdk.org/dpdk
cd dpdk
export RTE_SDK=$PWD
make install T=x86_64-native-linux-gcc DESTDIR=install

5.3. Guest setup 32

HowTo Guides, Release 19.11.14

5.3.3 Testpmd launch

Probe vfio module without iommu:

modprobe -r vfio_iommu_type1
modprobe -r vfio
modprobe vfio enable_unsafe_noiommu_mode=1
cat /sys/module/vfio/parameters/enable_unsafe_noiommu_mode
modprobe vfio-pci

Bind the virtio-net devices to DPDK:

$RTE_SDK/usertools/dpdk-devbind.py -b vfio-pci 0000:00:10.0 0000:00:11.0

Start testpmd:

$RTE_SDK/install/bin/testpmd -l 0,1,2 --socket-mem 1024 -n 4 \
--proc-type auto --file-prefix pg -- \
--portmask=3 --forward-mode=macswap --port-topology=chained \
--disable-rss -i --rxq=1 --txq=1 \
--rxd=256 --txd=256 --nb-cores=2 --auto-start

5.4 Results template

Below template should be used when sharing results:

Traffic Generator: <Test equipment (e.g. IXIA, Moongen, ...)>
Acceptable Loss: <n>%
Validation run time: <n>min
Host DPDK version/commit: <version, SHA-1>
Guest DPDK version/commit: <version, SHA-1>
Patches applied: <link to patchwork>
QEMU version/commit: <version>
Virtio features: <features (e.g. mrg_rxbuf='off', leave empty if default)>
CPU: <CPU model>, <CPU frequency>
NIC: <NIC model>
Result: <n> Mpps

5.4. Results template 33

CHAPTER

SIX

VF DAEMON (VFD)

VFd (the VF daemon) is a mechanism which can be used to configure features on a VF (SR-IOV Virtual
Function) without direct access to the PF (SR-IOV Physical Function). VFd is an EXPERIMENTAL
feature which can only be used in the scenario of DPDK PF with a DPDK VF. If the PF port is driven
by the Linux kernel driver then the VFd feature will not work. Currently VFd is only supported by the
ixgbe and i40e drivers.

In general VF features cannot be configured directly by an end user application since they are under the
control of the PF. The normal approach to configuring a feature on a VF is that an application would
call the APIs provided by the VF driver. If the required feature cannot be configured by the VF directly
(the most common case) the VF sends a message to the PF through the mailbox on ixgbe and i40e.
This means that the availability of the feature depends on whether the appropriate mailbox messages are
defined.

DPDK leverages the mailbox interface defined by the Linux kernel driver so that compatibility with
the kernel driver can be guaranteed. The downside of this approach is that the availability of messages
supported by the kernel become a limitation when the user wants to configure features on the VF.

VFd is a new method of controlling the features on a VF. The VF driver doesn’t talk directly to the PF
driver when configuring a feature on the VF. When a VF application (i.e., an application using the VF
ports) wants to enable a VF feature, it can send a message to the PF application (i.e., the application
using the PF port, which can be the same as the VF application). The PF application will configure the
feature for the VF. Obviously, the PF application can also configure the VF features without a request
from the VF application.

Compared with the traditional approach the VFd moves the negotiation between VF and PF from the
driver level to application level. So the application should define how the negotiation between the VF
and PF works, or even if the control should be limited to the PF.

It is the application’s responsibility to use VFd. Consider for example a KVM migration, the VF ap-
plication may transfer from one VM to another. It is recommended in this case that the PF control the
VF features without participation from the VF. Then the VF application has no capability to configure
the features. So the user doesn’t need to define the interface between the VF application and the PF
application. The service provider should take the control of all the features.

The following sections describe the VFd functionality.

Note: Although VFd is supported by both ixgbe and i40e, please be aware that since the hardware
capability is different, the functions supported by ixgbe and i40e are not the same.

34

HowTo Guides, Release 19.11.14

VM

VF Application

DPDK

Virtual ethdev

VF driver

Host

PF Application

DPDK

Ethdev

PF driver

Fig. 6.1: VF daemon (VFd) Overview

6.1 Preparing

VFd only can be used in the scenario of DPDK PF + DPDK VF. Users should bind the PF port to
igb_uio, then create the VFs based on the DPDK PF host.

The typical procedure to achieve this is as follows:

1. Boot the system without iommu, or with iommu=pt.

2. Bind the PF port to igb_uio, for example:

dpdk-devbind.py -b igb_uio 01:00.0

3. Create a Virtual Function:

echo 1 > /sys/bus/pci/devices/0000:01:00.0/max_vfs

4. Start a VM with the new VF port bypassed to it.

5. Run a DPDK application on the PF in the host:

testpmd -l 0-7 -n 4 -- -i --txqflags=0

6. Bind the VF port to igb_uio in the VM:

dpdk-devbind.py -b igb_uio 03:00.0

7. Run a DPDK application on the VF in the VM:

testpmd -l 0-7 -n 4 -- -i --txqflags=0

6.2 Common functions of IXGBE and I40E

The following sections show how to enable PF/VF functionality based on the above testpmd setup.

6.2.1 TX loopback

Run a testpmd runtime command on the PF to set TX loopback:

6.1. Preparing 35

HowTo Guides, Release 19.11.14

set tx loopback 0 on|off

This sets whether the PF port and all the VF ports that belong to it are allowed to send the packets to
other virtual ports.

Although it is a VFd function, it is the global setting for the whole physical port. When using this
function, the PF and all the VFs TX loopback will be enabled/disabled.

6.2.2 VF MAC address setting

Run a testpmd runtime command on the PF to set the MAC address for a VF port:

set vf mac addr 0 0 A0:36:9F:7B:C3:51

This testpmd runtime command will change the MAC address of the VF port to this new address. If any
other addresses are set before, they will be overwritten.

6.2.3 VF MAC anti-spoofing

Run a testpmd runtime command on the PF to enable/disable the MAC anti-spoofing for a VF port:

set vf mac antispoof 0 0 on|off

When enabling the MAC anti-spoofing, the port will not forward packets whose source MAC address is
not the same as the port.

6.2.4 VF VLAN anti-spoofing

Run a testpmd runtime command on the PF to enable/disable the VLAN anti-spoofing for a VF port:

set vf vlan antispoof 0 0 on|off

When enabling the VLAN anti-spoofing, the port will not send packets whose VLAN ID does not belong
to VLAN IDs that this port can receive.

6.2.5 VF VLAN insertion

Run a testpmd runtime command on the PF to set the VLAN insertion for a VF port:

set vf vlan insert 0 0 1

When using this testpmd runtime command, an assigned VLAN ID can be inserted to the transmitted
packets by the hardware.

The assigned VLAN ID can be 0. It means disabling the VLAN insertion.

6.2.6 VF VLAN stripping

Run a testpmd runtime command on the PF to enable/disable the VLAN stripping for a VF port:

set vf vlan stripq 0 0 on|off

This testpmd runtime command is used to enable/disable the RX VLAN stripping for a specific VF port.

6.2.7 VF VLAN filtering

Run a testpmd runtime command on the PF to set the VLAN filtering for a VF port:

rx_vlan add 1 port 0 vf 1
rx_vlan rm 1 port 0 vf 1

6.2. Common functions of IXGBE and I40E 36

HowTo Guides, Release 19.11.14

These two testpmd runtime commands can be used to add or remove the VLAN filter for several VF
ports. When the VLAN filters are added only the packets that have the assigned VLAN IDs can be
received. Other packets will be dropped by hardware.

6.3 The IXGBE specific VFd functions

The functions in this section are specific to the ixgbe driver.

6.3.1 All queues drop

Run a testpmd runtime command on the PF to enable/disable the all queues drop:

set all queues drop on|off

This is a global setting for the PF and all the VF ports of the physical port.

Enabling the all queues drop feature means that when there is no available descriptor for the
received packets they are dropped. The all queues drop feature should be enabled in SR-IOV
mode to avoid one queue blocking others.

6.3.2 VF packet drop

Run a testpmd runtime command on the PF to enable/disable the packet drop for a specific VF:

set vf split drop 0 0 on|off

This is a similar function as all queues drop. The difference is that this function is per VF setting
and the previous function is a global setting.

6.3.3 VF rate limit

Run a testpmd runtime command on the PF to all queues’ rate limit for a specific VF:

set port 0 vf 0 rate 10 queue_mask 1

This is a function to set the rate limit for all the queues in the queue_mask bitmap. It is not used to set
the summary of the rate limit. The rate limit of every queue will be set equally to the assigned rate limit.

6.3.4 VF RX enabling

Run a testpmd runtime command on the PF to enable/disable packet receiving for a specific VF:

set port 0 vf 0 rx on|off

This function can be used to stop/start packet receiving on a VF.

6.3.5 VF TX enabling

Run a testpmd runtime command on the PF to enable/disable packet transmitting for a specific VF:

set port 0 vf 0 tx on|off

This function can be used to stop/start packet transmitting on a VF.

6.3.6 VF RX mode setting

Run a testpmd runtime command on the PF to set the RX mode for a specific VF:

set port 0 vf 0 rxmode AUPE|ROPE|BAM|MPE on|off

This function can be used to enable/disable some RX modes on the VF, including:

6.3. The IXGBE specific VFd functions 37

HowTo Guides, Release 19.11.14

• If it accept untagged packets.

• If it accepts packets matching the MAC filters.

• If it accept MAC broadcast packets,

• If it enables MAC multicast promiscuous mode.

6.4 The I40E specific VFd functions

The functions in this section are specific to the i40e driver.

6.4.1 VF statistics

This provides an API to get the a specific VF’s statistic from PF.

6.4.2 VF statistics resetting

This provides an API to rest the a specific VF’s statistic from PF.

6.4.3 VF link status change notification

This provide an API to let a specific VF know if the physical link status changed.

Normally if a VF received this notification, the driver should notify the application to reset the VF port.

6.4.4 VF MAC broadcast setting

Run a testpmd runtime command on the PF to enable/disable MAC broadcast packet receiving for a
specific VF:

set vf broadcast 0 0 on|off

6.4.5 VF MAC multicast promiscuous mode

Run a testpmd runtime command on the PF to enable/disable MAC multicast promiscuous mode for a
specific VF:

set vf allmulti 0 0 on|off

6.4.6 VF MAC unicast promiscuous mode

Run a testpmd runtime command on the PF to enable/disable MAC unicast promiscuous mode for a
specific VF:

set vf promisc 0 0 on|off

6.4.7 VF max bandwidth

Run a testpmd runtime command on the PF to set the TX maximum bandwidth for a specific VF:

set vf tx max-bandwidth 0 0 2000

The maximum bandwidth is an absolute value in Mbps.

6.4. The I40E specific VFd functions 38

HowTo Guides, Release 19.11.14

6.4.8 VF TC bandwidth allocation

Run a testpmd runtime command on the PF to set the TCs (traffic class) TX bandwidth allocation for a
specific VF:

set vf tc tx min-bandwidth 0 0 (20,20,20,40)

The allocated bandwidth should be set for all the TCs. The allocated bandwidth is a relative value as a
percentage. The sum of all the bandwidth should be 100.

6.4.9 VF TC max bandwidth

Run a testpmd runtime command on the PF to set the TCs TX maximum bandwidth for a specific VF:

set vf tc tx max-bandwidth 0 0 0 10000

The maximum bandwidth is an absolute value in Mbps.

6.4.10 TC strict priority scheduling

Run a testpmd runtime command on the PF to enable/disable several TCs TX strict priority scheduling:

set tx strict-link-priority 0 0x3

The 0 in the TC bitmap means disabling the strict priority scheduling for this TC. To enable use a value
of 1.

6.4. The I40E specific VFd functions 39

CHAPTER

SEVEN

VIRTIO_USER FOR CONTAINER NETWORKING

Container becomes more and more popular for strengths, like low overhead, fast boot-up time, and easy
to deploy, etc. How to use DPDK to accelerate container networking becomes a common question for
users. There are two use models of running DPDK inside containers, as shown in Fig. 7.1.

Container

Host kernel

NIC
PF VF

Hardware virtual switch

Container

VF

PF driver

DPDK DPDK
Virtual

Appliance
VM +

Container

Container

DPDK

Host kernel

vSwitch
or

vRouter

DPDK

NIC

(1) Slicing (2) Aggregation

Fig. 7.1: Use models of running DPDK inside container

This page will only cover aggregation model.

7.1 Overview

The virtual device, virtio-user, with unmodified vhost-user backend, is designed for high performance
user space container networking or inter-process communication (IPC).

The overview of accelerating container networking by virtio-user is shown in Fig. 7.2.

Different virtio PCI devices we usually use as a para-virtualization I/O in the context of QEMU/VM, the
basic idea here is to present a kind of virtual devices, which can be attached and initialized by DPDK.
The device emulation layer by QEMU in VM’s context is saved by just registering a new kind of virtual
device in DPDK’s ether layer. And to minimize the change, we reuse already-existing virtio PMD code
(driver/net/virtio/).

Virtio, in essence, is a shm-based solution to transmit/receive packets. How is memory shared? In VM’s
case, qemu always shares the whole physical layout of VM to vhost backend. But it’s not feasible for a
container, as a process, to share all virtual memory regions to backend. So only those virtual memory
regions (aka, hugepages initialized in DPDK) are sent to backend. It restricts that only addresses in these
areas can be used to transmit or receive packets.

40

HowTo Guides, Release 19.11.14

ethdev

virtio PMD

virtio-user
(virtual device)

NIC

virtio
(PCI device)

vSwitch
or

vRouter

DPDK

Container/App

v
irtio

v
h
o
st

unix socket filevhost-user
adapter

Fig. 7.2: Overview of accelerating container networking by virtio-user

7.2 Sample Usage

Here we use Docker as container engine. It also applies to LXC, Rocket with some minor changes.

1. Compile DPDK.

make install RTE_SDK=`pwd` T=x86_64-native-linux-gcc

2. Write a Dockerfile like below.

cat <<EOT >> Dockerfile
FROM ubuntu:latest
WORKDIR /usr/src/dpdk
COPY . /usr/src/dpdk
ENV PATH "$PATH:/usr/src/dpdk/x86_64-native-linux-gcc/app/"
EOT

3. Build a Docker image.

docker build -t dpdk-app-testpmd .

4. Start a testpmd on the host with a vhost-user port.

$(testpmd) -l 0-1 -n 4 --socket-mem 1024,1024 \
--vdev 'eth_vhost0,iface=/tmp/sock0' \
--file-prefix=host --no-pci -- -i

5. Start a container instance with a virtio-user port.

docker run -i -t -v /tmp/sock0:/var/run/usvhost \
-v /dev/hugepages:/dev/hugepages \
dpdk-app-testpmd testpmd -l 6-7 -n 4 -m 1024 --no-pci \
--vdev=virtio_user0,path=/var/run/usvhost \
--file-prefix=container \
-- -i

7.2. Sample Usage 41

HowTo Guides, Release 19.11.14

Note: If we run all above setup on the host, it’s a shm-based IPC.

7.3 Limitations

We have below limitations in this solution:

• Cannot work with –huge-unlink option. As we need to reopen the hugepage file to share
with vhost backend.

• Cannot work with –no-huge option. Currently, DPDK uses anonymous mapping under this
option which cannot be reopened to share with vhost backend.

• Cannot work when there are more than VHOST_MEMORY_MAX_NREGIONS(8)
hugepages. If you have more regions (especially when 2MB hugepages are used), the option,
–single-file-segments, can help to reduce the number of shared files.

• Applications should not use file name like HUGEFILE_FMT (“%smap_%d”). That will
bring confusion when sharing hugepage files with backend by name.

• Root privilege is a must. DPDK resolves physical addresses of hugepages which seems not
necessary, and some discussions are going on to remove this restriction.

7.3. Limitations 42

CHAPTER

EIGHT

VIRTIO_USER AS EXCEPTIONAL PATH

The virtual device, virtio-user, was originally introduced with vhost-user backend, as a high performance
solution for IPC (Inter-Process Communication) and user space container networking.

Virtio_user with vhost-kernel backend is a solution for exceptional path, such as KNI which exchanges
packets with kernel networking stack. This solution is very promising in:

• Maintenance

All kernel modules needed by this solution, vhost and vhost-net (kernel), are upstreamed and
extensively used kernel module.

• Features

vhost-net is born to be a networking solution, which has lots of networking related features, like
multi queue, tso, multi-seg mbuf, etc.

• Performance

similar to KNI, this solution would use one or more kthreads to send/receive packets to/from user
space DPDK applications, which has little impact on user space polling thread (except that it
might enter into kernel space to wake up those kthreads if necessary).

The overview of an application using virtio-user as exceptional path is shown in Fig. 8.1.

8.1 Sample Usage

As a prerequisite, the vhost/vhost-net kernel CONFIG should be chosen before compiling the kernel and
those kernel modules should be inserted.

1. Compile DPDK and bind a physical NIC to igb_uio/uio_pci_generic/vfio-pci.

This physical NIC is for communicating with outside.

2. Run testpmd.

$(testpmd) -l 2-3 -n 4 \
--vdev=virtio_user0,path=/dev/vhost-net,queue_size=1024 \
-- -i --tx-offloads=0x0000002c --enable-lro \
--txd=1024 --rxd=1024

This command runs testpmd with two ports, one physical NIC to communicate with outside, and
one virtio-user to communicate with kernel.

• --enable-lro

43

HowTo Guides, Release 19.11.14

tap

vhost ko

Kernel space User space

ETHDEV

virtio PMD other PMDs

virtio-user

vhost adapter

NIC

Fig. 8.1: Overview of a DPDK app using virtio-user as exceptional path

This is used to negotiate VIRTIO_NET_F_GUEST_TSO4 and VIR-
TIO_NET_F_GUEST_TSO6 feature so that large packets from kernel can be
transmitted to DPDK application and further TSOed by physical NIC.

• queue_size

256 by default. To avoid shortage of descriptors, we can increase it to 1024.

• queues

Number of multi-queues. Each queue will be served by a kthread. For example:

$(testpmd) -l 2-3 -n 4 \
--vdev=virtio_user0,path=/dev/vhost-net,queues=2,queue_size=1024 \
-- -i --tx-offloads=0x0000002c --enable-lro \
--txq=2 --rxq=2 --txd=1024 --rxd=1024

1. Enable Rx checksum offloads in testpmd:

(testpmd) port stop 0
(testpmd) port config 0 rx_offload tcp_cksum on
(testpmd) port config 0 rx_offload udp_cksum on
(testpmd) port start 0

2. Start testpmd:

(testpmd) start

3. Configure IP address and start tap:

ifconfig tap0 1.1.1.1/24 up

Note: The tap device will be named tap0, tap1, etc, by kernel.

8.1. Sample Usage 44

HowTo Guides, Release 19.11.14

Then, all traffic from physical NIC can be forwarded into kernel stack, and all traffic on the tap0 can be
sent out from physical NIC.

8.2 Limitations

This solution is only available on Linux systems.

8.2. Limitations 45

CHAPTER

NINE

DPDK PDUMP LIBRARY AND PDUMP TOOL

This document describes how the Data Plane Development Kit (DPDK) Packet Capture Framework is
used for capturing packets on DPDK ports. It is intended for users of DPDK who want to know more
about the Packet Capture feature and for those who want to monitor traffic on DPDK-controlled devices.

The DPDK packet capture framework was introduced in DPDK v16.07. The DPDK packet capture
framework consists of the DPDK pdump library and DPDK pdump tool.

9.1 Introduction

The librte_pdump library provides the APIs required to allow users to initialize the packet capture frame-
work and to enable or disable packet capture. The library works on a client/server model and its usage
is recommended for debugging purposes.

The dpdk-pdump tool is developed based on the librte_pdump library. It runs as a DPDK secondary
process and is capable of enabling or disabling packet capture on DPDK ports. The dpdk-pdump tool
provides command-line options with which users can request enabling or disabling of the packet capture
on DPDK ports.

The application which initializes the packet capture framework will act as a server and the application
that enables or disables the packet capture will act as a client. The server sends the Rx and Tx packets
from the DPDK ports to the client.

In DPDK the testpmd application can be used to initialize the packet capture framework and act as
a server, and the dpdk-pdump tool acts as a client. To view Rx or Tx packets of testpmd, the
application should be launched first, and then the dpdk-pdump tool. Packets from testpmd will be
sent to the tool, which then sends them on to the Pcap PMD device and that device writes them to the
Pcap file or to an external interface depending on the command-line option used.

Some things to note:

• The dpdk-pdump tool can only be used in conjunction with a primary application which has
the packet capture framework initialized already. In dpdk, only testpmd is modified to initial-
ize packet capture framework, other applications remain untouched. So, if the dpdk-pdump
tool has to be used with any application other than the testpmd, the user needs to explicitly
modify that application to call the packet capture framework initialization code. Refer to the
app/test-pmd/testpmd.c code and look for pdump keyword to see how this is done.

• The dpdk-pdump tool depends on the libpcap based PMD which is disabled by default in the
build configuration files, owing to an external dependency on the libpcap development files. Once
the libpcap development files are installed, the libpcap based PMD can be enabled by setting
CONFIG_RTE_LIBRTE_PMD_PCAP=y and recompiling the DPDK.

46

HowTo Guides, Release 19.11.14

9.2 Test Environment

The overview of using the Packet Capture Framework and the dpdk-pdump tool for packet capturing
on the DPDK port in Fig. 9.1.

9.3 Configuration

Modify the DPDK primary application to initialize the packet capture framework as mentioned in the
above notes and enable the following config options and build DPDK:

CONFIG_RTE_LIBRTE_PMD_PCAP=y
CONFIG_RTE_LIBRTE_PDUMP=y

9.4 Running the Application

The following steps demonstrate how to run the dpdk-pdump tool to capture Rx side packets on
dpdk_port0 in Fig. 9.1 and inspect them using tcpdump.

1. Launch testpmd as the primary application:

sudo ./app/testpmd -c 0xf0 -n 4 -- -i --port-topology=chained

2. Launch the pdump tool as follows:

sudo ./build/app/dpdk-pdump -- \
--pdump 'port=0,queue=*,rx-dev=/tmp/capture.pcap'

3. Send traffic to dpdk_port0 from traffic generator. Inspect packets captured in the file capture.pcap
using a tool that can interpret Pcap files, for example tcpdump:

$tcpdump -nr /tmp/capture.pcap
reading from file /tmp/capture.pcap, link-type EN10MB (Ethernet)
11:11:36.891404 IP 4.4.4.4.whois++ > 3.3.3.3.whois++: UDP, length 18
11:11:36.891442 IP 4.4.4.4.whois++ > 3.3.3.3.whois++: UDP, length 18
11:11:36.891445 IP 4.4.4.4.whois++ > 3.3.3.3.whois++: UDP, length 18

9.2. Test Environment 47

HowTo Guides, Release 19.11.14

DPDK Primary Application

dpdk-pdump
tool

PCAP PMD

dpdk_port0

librte_pdump

capture.pcapTraffic Generator

Fig. 9.1: Packet capturing on a DPDK port using the dpdk-pdump tool.

9.4. Running the Application 48

CHAPTER

TEN

DPDK TELEMETRY API USER GUIDE

This document describes how the Data Plane Development Kit(DPDK) Telemetry API is used for query-
ing port statistics from incoming traffic.

10.1 Introduction

The librte_telemetry provides the functionality so that users may query metrics from incoming
port traffic and global stats(application stats). The application which initializes packet forwarding will
act as the server, sending metrics to the requesting application which acts as the client.

In DPDK, applications are used to initialize the telemetry. To view incoming traffic on featured
ports, the application should be run first (ie. after ports are configured). Once the application is running,
the service assurance agent (for example the collectd plugin) should be run to begin querying the API.

A client connects their Service Assurance application to the DPDK application via a UNIX socket.
Once a connection is established, a client can send JSON messages to the DPDK application requesting
metrics via another UNIX client. This request is then handled and parsed if valid. The response is then
formatted in JSON and sent back to the requesting client.

10.1.1 Pre-requisites

• Python >= 2.5

• Jansson library for JSON serialization

10.2 Test Environment

telemetry offers a range of selftests that a client can run within the DPDK application.

Selftests are disabled by default. They can be enabled by setting the ‘selftest’ variable to 1 in
rte_telemetry_initial_accept().

Note: this ‘hardcoded’ value is temporary.

10.3 Configuration

Enable the telemetry API by modifying the following config option before building DPDK:

CONFIG_RTE_LIBRTE_TELEMETRY=y

Note: Meson will pick this up automatically if libjansson is available.

49

HowTo Guides, Release 19.11.14

10.4 Running the Application

The following steps demonstrate how to run the telemetry API to query all statistics on all active
ports, using the telemetry_client python script to query. Note: This guide assumes packet gen-
eration is applicable and the user is testing with testpmd as a DPDK primary application to forward
packets, although any DPDK application is applicable.

1. Launch testpmd as the primary application with telemetry.:

./app/testpmd --telemetry

2. Launch the telemetry python script with a client filepath.:

python usertools/telemetry_client.py /var/run/some_client

The client filepath is going to be used to setup our UNIX connection with the DPDK primary
application, in this case testpmd This will initialize a menu where a client can proceed to recur-
sively query statistics, request statistics once or unregister the file_path, thus exiting the menu.

3. Send traffic to any or all available ports from a traffic generator. Select a query option(recursive
or singular polling or global stats). The metrics will then be displayed on the client terminal in
JSON format.

4. Once finished, unregister the client using the menu command.

10.4. Running the Application 50

CHAPTER

ELEVEN

DEBUG & TROUBLESHOOT GUIDE

DPDK applications can be designed to have simple or complex pipeline processing stages making use of
single or multiple threads. Applications can use poll mode hardware devices which helps in offloading
CPU cycles too. It is common to find solutions designed with

• single or multiple primary processes

• single primary and single secondary

• single primary and multiple secondaries

In all the above cases, it is tedious to isolate, debug, and understand various behaviors which occur
randomly or periodically. The goal of the guide is to consolidate a few commonly seen issues for
reference. Then, isolate to identify the root cause through step by step debug at various stages.

Note: It is difficult to cover all possible issues; in a single attempt. With feedback and suggestions from
the community, more cases can be covered.

11.1 Application Overview

By making use of the application model as a reference, we can discuss multiple causes of issues in the
guide. Let us assume the sample makes use of a single primary process, with various processing stages
running on multiple cores. The application may also make uses of Poll Mode Driver, and libraries like
service cores, mempool, mbuf, eventdev, cryptodev, QoS, and ethdev.

The overview of an application modeled using PMD is shown in Fig. 11.1.

Health Check

core 7

Stats Collector

RX

NIC 1
NIC 2

core0

TX

core1

NIC 1
NIC 2

QoSCrypto

Worker 1

Worker 2

Worker 3

Worker 1

Worker 2

Worker 3

Device

core 2,3,4
core 5 core 6

core 2,3,4

PKT classify

Distribute

Fig. 11.1: Overview of pipeline stage of an application

51

HowTo Guides, Release 19.11.14

11.2 Bottleneck Analysis

A couple of factors that lead the design decision could be the platform, scale factor, and target. This
distinct preference leads to multiple combinations, that are built using PMD and libraries of DPDK.
While the compiler, library mode, and optimization flags are the components are to be constant, that
affects the application too.

11.2.1 Is there mismatch in packet (received < desired) rate?

RX Port and associated core Fig. 11.2.

RX

Core0

NIC1
NIC2

NIC3

Fig. 11.2: RX packet rate compared against received rate.

1. Is the configuration for the RX setup correctly?

• Identify if port Speed and Duplex is matching to desired values with
rte_eth_link_get.

• Check DEV_RX_OFFLOAD_JUMBO_FRAME is set with rte_eth_dev_info_get.

• Check promiscuous mode if the drops do not occur for unique MAC address with
rte_eth_promiscuous_get.

2. Is the drop isolated to certain NIC only?

• Make use of rte_eth_dev_stats to identify the drops cause.

• If there are mbuf drops, check nb_desc for RX descriptor as it might not be sufficient for the
application.

• If rte_eth_dev_stats shows drops are on specific RX queues, ensure RX lcore threads
has enough cycles for rte_eth_rx_burst on the port queue pair.

• If there are redirect to a specific port queue pair with, ensure RX lcore threads gets enough
cycles.

• Check the RSS configuration rte_eth_dev_rss_hash_conf_get if the spread is not
even and causing drops.

• If PMD stats are not updating, then there might be offload or configuration which is dropping
the incoming traffic.

3. Is there drops still seen?

• If there are multiple port queue pair, it might be the RX thread, RX distributor, or event RX
adapter not having enough cycles.

11.2. Bottleneck Analysis 52

HowTo Guides, Release 19.11.14

• If there are drops seen for RX adapter or RX distributor, try using
rte_prefetch_non_temporal which intimates the core that the mbuf in the
cache is temporary.

11.2.2 Is there packet drops at receive or transmit?

RX-TX port and associated cores Fig. 11.3.

RX

Core0

NIC1
NIC2

NIC3

TX

Core1

NIC1
NIC2

NIC3

Fig. 11.3: RX-TX drops

1. At RX

• Identify if there are multiple RX queue configured for port by nb_rx_queues using
rte_eth_dev_info_get.

• Using rte_eth_dev_stats fetch drops in q_errors, check if RX thread is configured to
fetch packets from the port queue pair.

• Using rte_eth_dev_stats shows drops in rx_nombuf, check if RX thread has
enough cycles to consume the packets from the queue.

2. At TX

• If the TX rate is falling behind the application fill rate, identify if there are enough descriptors
with rte_eth_dev_info_get for TX.

• Check the nb_pkt in rte_eth_tx_burst is done for multiple packets.

• Check rte_eth_tx_burst invokes the vector function call for the PMD.

• If oerrors are getting incremented, TX packet validations are failing. Check if there queue
specific offload failures.

• If the drops occur for large size packets, check MTU and multi-segment support configured
for NIC.

11.2.3 Is there object drops in producer point for the ring library?

Producer point for ring Fig. 11.4.

1. Performance issue isolation at producer

• Use rte_ring_dump to validate for all single producer flag is set to RING_F_SP_ENQ.

• There should be sufficient rte_ring_free_count at any point in time.

• Extreme stalls in dequeue stage of the pipeline will cause rte_ring_full to be true.

11.2. Bottleneck Analysis 53

HowTo Guides, Release 19.11.14

Stage 1 Stage 2 Stage 3

Fig. 11.4: Producer point for Rings

11.2.4 Is there object drops in consumer point for the ring library?

Consumer point for ring Fig. 11.5.

Stage 1 Stage 2 Stage 3

Fig. 11.5: Consumer point for Rings

1. Performance issue isolation at consumer

• Use rte_ring_dump to validate for all single consumer flag is set to RING_F_SC_DEQ.

• If the desired burst dequeue falls behind the actual dequeue, the enqueue stage is not filling
up the ring as required.

• Extreme stall in the enqueue will lead to rte_ring_empty to be true.

11.2.5 Is there a variance in packet or object processing rate in the pipeline?

Memory objects close to NUMA Fig. 11.6.

MBUF pool

PayloadMetadatastruct mbuf

Fig. 11.6: Memory objects have to be close to the device per NUMA.

1. Stall in processing pipeline can be attributes of MBUF release delays. These can be narrowed
down to

• Heavy processing cycles at single or multiple processing stages.

• Cache is spread due to the increased stages in the pipeline.

• CPU thread responsible for TX is not able to keep up with the burst of traffic.

• Extra cycles to linearize multi-segment buffer and software offload like checksum, TSO, and
VLAN strip.

• Packet buffer copy in fast path also results in stalls in MBUF release if not done selectively.

11.2. Bottleneck Analysis 54

HowTo Guides, Release 19.11.14

• Application logic sets rte_pktmbuf_refcnt_set to higher than the desired value
and frequently uses rte_pktmbuf_prefree_seg and does not release MBUF back
to mempool.

2. Lower performance between the pipeline processing stages can be

• The NUMA instance for packets or objects from NIC, mempool, and ring should be the
same.

• Drops on a specific socket are due to insufficient objects in the pool. Use
rte_mempool_get_count or rte_mempool_avail_count to monitor when
drops occurs.

• Try prefetching the content in processing pipeline logic to minimize the stalls.

3. Performance issue can be due to special cases

• Check if MBUF continuous with rte_pktmbuf_is_contiguous as certain offload
requires the same.

• Use rte_mempool_cache_create for user threads require access to mempool objects.

• If the variance is absent for larger huge pages, then try rte_mem_lock_page on the objects,
packets, lookup tables to isolate the issue.

11.2.6 Is there a variance in cryptodev performance?

Crypto device and PMD Fig. 11.7.

Core 7

CRYPTO PMD

Device

Fig. 11.7: CRYPTO and interaction with PMD device.

1. Performance issue isolation for enqueue

• Ensure cryptodev, resources and enqueue is running on NUMA cores.

• Isolate if the cause of errors for err_count using rte_cryptodev_stats.

• Parallelize enqueue thread for varied multiple queue pair.

2. Performance issue isolation for dequeue

• Ensure cryptodev, resources and dequeue are running on NUMA cores.

• Isolate if the cause of errors for err_count using rte_cryptodev_stats.

11.2. Bottleneck Analysis 55

HowTo Guides, Release 19.11.14

• Parallelize dequeue thread for varied multiple queue pair.

3. Performance issue isolation for crypto operation

• If the cryptodev software-assist is in use, ensure the library is built with right (SIMD)
flags or check if the queue pair using CPU ISA for feature_flags AVX|SSE|NEON using
rte_cryptodev_info_get.

• If the cryptodev hardware-assist is in use, ensure both firmware and drivers are up to date.

4. Configuration issue isolation

• Identify cryptodev instances with rte_cryptodev_count and
rte_cryptodev_info_get.

11.2.7 Is user functions performance is not as expected?

Custom worker function Fig. 11.8.

PKT classify

Distribute
worker 1

worker 2

worker 3

worker 4

core 1

core 2,3,4,5

Fig. 11.8: Custom worker function performance drops.

1. Performance issue isolation

• The functions running on CPU cores without context switches are the performing sce-
narios. Identify lcore with rte_lcore and lcore index mapping with CPU using
rte_lcore_index.

• Use rte_thread_get_affinity to isolate functions running on the same CPU core.

2. Configuration issue isolation

• Identify core role using rte_eal_lcore_role to identify RTE, OFF and SERVICE.
Check performance functions are mapped to run on the cores.

• For high-performance execution logic ensure running it on correct NUMA and non-master
core.

• Analyze run logic with rte_dump_stack, rte_dump_registers and
rte_memdump for more insights.

• Make use of objdump to ensure opcode is matching to the desired state.

11.2. Bottleneck Analysis 56

HowTo Guides, Release 19.11.14

11.2.8 Is the execution cycles for dynamic service functions are not frequent?

service functions on service cores Fig. 11.9.

Health Check

core 6

Stats Collector

Fig. 11.9: functions running on service cores

1. Performance issue isolation

• Services configured for parallel execution should have rte_service_lcore_count
should be equal to rte_service_lcore_count_services.

• A service to run parallel on all cores should return RTE_SERVICE_CAP_MT_SAFE for
rte_service_probe_capability and rte_service_map_lcore_get returns
unique lcore.

• If service function execution cycles for dynamic service functions are not frequent?

• If services share the lcore, overall execution should fit budget.

2. Configuration issue isolation

• Check if service is running with rte_service_runstate_get.

• Generic debug via rte_service_dump.

11.2.9 Is there a bottleneck in the performance of eventdev?

1. Check for generic configuration

• Ensure the event devices created are right NUMA using rte_event_dev_count and
rte_event_dev_socket_id.

• Check for event stages if the events are looped back into the same queue.

• If the failure is on the enqueue stage for events, check if queue depth with
rte_event_dev_info_get.

2. If there are performance drops in the enqueue stage

• Use rte_event_dev_dump to dump the eventdev information.

• Periodically checks stats for queue and port to identify the starvation.

• Check the in-flight events for the desired queue for enqueue and dequeue.

11.2.10 Is there a variance in traffic manager?

Traffic Manager on TX interface Fig. 11.10.

11.2. Bottleneck Analysis 57

HowTo Guides, Release 19.11.14

TX

Core1

NIC1
NIC2

NIC3QoS

core 10

Fig. 11.10: Traffic Manager just before TX.

1. Identify the cause for a variance from expected behavior, is due to insufficient CPU cycles. Use
rte_tm_capabilities_get to fetch features for hierarchies, WRED and priority sched-
ulers to be offloaded hardware.

2. Undesired flow drops can be narrowed down to WRED, priority, and rates limiters.

3. Isolate the flow in which the undesired drops occur. Use
rte_tn_get_number_of_leaf_node and flow table to ping down the leaf where
drops occur.

4. Check the stats using rte_tm_stats_update and rte_tm_node_stats_read for drops
for hierarchy, schedulers and WRED configurations.

11.2.11 Is the packet in the unexpected format?

Packet capture before and after processing Fig. 11.11.

RX TX
Q1

Q2 Q4

Q3

Primary Secondary

Ring BufferQ

Core 0

Fig. 11.11: Capture points of Traffic at RX-TX.

1. To isolate the possible packet corruption in the processing pipeline, carefully staged capture pack-
ets are to be implemented.

• First, isolate at NIC entry and exit.

Use pdump in primary to allow secondary to access port-queue pair. The packets get copied
over in RX|TX callback by the secondary process using ring buffers.

• Second, isolate at pipeline entry and exit.

Using hooks or callbacks capture the packet middle of the pipeline stage to copy the packets,
which can be shared to the secondary debug process via user-defined custom rings.

Note: Use similar analysis to objects and metadata corruption.

11.2. Bottleneck Analysis 58

HowTo Guides, Release 19.11.14

11.2.12 Does the issue still persist?

The issue can be further narrowed down to the following causes.

1. If there are vendor or application specific metadata, check for errors due to META data error flags.
Dumping private meta-data in the objects can give insight into details for debugging.

2. If there are multi-process for either data or configuration, check for possible errors in the sec-
ondary process where the configuration fails and possible data corruption in the data plane.

3. Random drops in the RX or TX when opening other application is an indication of the effect
of a noisy neighbor. Try using the cache allocation technique to minimize the effect between
applications.

11.3 How to develop a custom code to debug?

1. For an application that runs as the primary process only, debug functionality is added in the same
process. These can be invoked by timer call-back, service core and signal handler.

2. For the application that runs as multiple processes. debug functionality in a standalone secondary
process.

11.3. How to develop a custom code to debug? 59

	Live Migration of VM with SR-IOV VF
	Overview
	Test Setup
	Live Migration steps
	Sample host scripts
	Sample VM scripts
	Sample switch configuration

	Live Migration of VM with Virtio on host running vhost_user
	Overview
	Test Setup
	Live Migration steps
	Sample host scripts
	Sample VM scripts

	Flow Bifurcation How-to Guide
	Using Flow Bifurcation on Mellanox ConnectX
	Using Flow Bifurcation on IXGBE in Linux
	Using Flow Bifurcation on I40E in Linux

	Generic flow API - examples
	Simple IPv4 drop
	Range IPv4 drop
	Send vlan to queue

	PVP reference benchmark setup using testpmd
	Setup overview
	Host setup
	Guest setup
	Results template

	VF daemon (VFd)
	Preparing
	Common functions of IXGBE and I40E
	The IXGBE specific VFd functions
	The I40E specific VFd functions

	Virtio_user for Container Networking
	Overview
	Sample Usage
	Limitations

	Virtio_user as Exceptional Path
	Sample Usage
	Limitations

	DPDK pdump Library and pdump Tool
	Introduction
	Test Environment
	Configuration
	Running the Application

	DPDK Telemetry API User Guide
	Introduction
	Test Environment
	Configuration
	Running the Application

	Debug & Troubleshoot guide
	Application Overview
	Bottleneck Analysis
	How to develop a custom code to debug?

