
Sample Applications User Guide
Release 2.1.0

August 17, 2015

CONTENTS

1 Introduction 2
1.1 Documentation Roadmap . 2

2 Command Line Sample Application 3
2.1 Overview . 3
2.2 Compiling the Application . 3
2.3 Running the Application . 4
2.4 Explanation . 4

3 Exception Path Sample Application 6
3.1 Overview . 6
3.2 Compiling the Application . 7
3.3 Running the Application . 7
3.4 Explanation . 8

4 Hello World Sample Application 11
4.1 Compiling the Application . 11
4.2 Running the Application . 11
4.3 Explanation . 11

5 Basic Forwarding Sample Application 13
5.1 Compiling the Application . 13
5.2 Running the Application . 13
5.3 Explanation . 13

6 RX/TX Callbacks Sample Application 18
6.1 Compiling the Application . 18
6.2 Running the Application . 18
6.3 Explanation . 19

7 IP Fragmentation Sample Application 22
7.1 Overview . 22
7.2 Building the Application . 22
7.3 Running the Application . 23

8 IPv4 Multicast Sample Application 25
8.1 Overview . 25
8.2 Building the Application . 25
8.3 Running the Application . 26
8.4 Explanation . 26

i

9 IP Reassembly Sample Application 31
9.1 Overview . 31
9.2 The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to

store/lookup an outgoing port number, associated with that IPv4 address. Any
unmatched packets are forwarded to the originating port.Compiling the Appli-
cation . 31

9.3 Running the Application . 32
9.4 Explanation . 33

10 Kernel NIC Interface Sample Application 36
10.1 Overview . 36
10.2 Compiling the Application . 37
10.3 Loading the Kernel Module . 37
10.4 Running the Application . 38
10.5 KNI Operations . 39
10.6 Explanation . 39

11 L2 Forwarding Sample Application (in Real and Virtualized Environments) with
core load statistics. 46
11.1 Overview . 46
11.2 Compiling the Application . 48
11.3 Running the Application . 48
11.4 Explanation . 48

12 L2 Forwarding Sample Application (in Real and Virtualized Environments) 57
12.1 Overview . 57
12.2 Compiling the Application . 59
12.3 Running the Application . 59
12.4 Explanation . 59

13 L3 Forwarding Sample Application 66
13.1 Overview . 66
13.2 Compiling the Application . 66
13.3 Running the Application . 67
13.4 Explanation . 68

14 L3 Forwarding with Power Management Sample Application 72
14.1 Introduction . 72
14.2 Overview . 72
14.3 Compiling the Application . 73
14.4 Running the Application . 73
14.5 Explanation . 74

15 L3 Forwarding with Access Control Sample Application 79
15.1 Overview . 79
15.2 Compiling the Application . 83
15.3 Running the Application . 83
15.4 Explanation . 84

16 L3 Forwarding in a Virtualization Environment Sample Application 86
16.1 Overview . 86
16.2 Compiling the Application . 86
16.3 Running the Application . 87

ii

16.4 Explanation . 88

17 Link Status Interrupt Sample Application 89
17.1 Overview . 89
17.2 Compiling the Application . 89
17.3 Running the Application . 90
17.4 Explanation . 90

18 Load Balancer Sample Application 96
18.1 Overview . 96
18.2 Compiling the Application . 97
18.3 Running the Application . 97
18.4 Explanation . 98

19 Multi-process Sample Application 101
19.1 Example Applications . 101

20 QoS Metering Sample Application 116
20.1 Overview . 116
20.2 Compiling the Application . 116
20.3 Running the Application . 117
20.4 Explanation . 117

21 QoS Scheduler Sample Application 119
21.1 Overview . 119
21.2 Compiling the Application . 119
21.3 Running the Application . 120
21.4 Explanation . 123

22 Intel® QuickAssist Technology Sample Application 125
22.1 Overview . 125
22.2 Building the Application . 127
22.3 Running the Application . 127

23 Quota and Watermark Sample Application 129
23.1 Overview . 129
23.2 Compiling the Application . 131
23.3 Running the Application . 131
23.4 Code Overview . 132

24 Timer Sample Application 139
24.1 Compiling the Application . 139
24.2 Running the Application . 139
24.3 Explanation . 139

25 Packet Ordering Application 142
25.1 Overview . 142
25.2 Compiling the Application . 142
25.3 Running the Application . 142

26 VMDQ and DCB Forwarding Sample Application 144
26.1 Overview . 144
26.2 Compiling the Application . 145

iii

26.3 Running the Application . 145
26.4 Explanation . 146

27 Vhost Sample Application 148
27.1 Background . 148
27.2 Sample Code Overview . 150
27.3 Supported Distributions . 150
27.4 Prerequisites . 150
27.5 Compiling the Sample Code . 155
27.6 Running the Sample Code . 155
27.7 Running the Virtual Machine (QEMU) . 157
27.8 Running DPDK in the Virtual Machine . 161
27.9 Passing Traffic to the Virtual Machine Device . 163

28 Netmap Compatibility Sample Application 164
28.1 Introduction . 164
28.2 Available APIs . 164
28.3 Caveats . 164
28.4 Porting Netmap Applications . 165
28.5 Compiling the “bridge” Sample Application . 166
28.6 Running the “bridge” Sample Application . 166

29 Internet Protocol (IP) Pipeline Application 167
29.1 Application overview . 167
29.2 Design goals . 168
29.3 Running the application . 171
29.4 Application stages . 172
29.5 Configuration file syntax . 173
29.6 Library of pipeline types . 180
29.7 Command Line Interface (CLI) . 186

30 Test Pipeline Application 188
30.1 Overview . 188
30.2 Compiling the Application . 188
30.3 Running the Application . 189

31 Distributor Sample Application 192
31.1 Overview . 192
31.2 Compiling the Application . 193
31.3 Running the Application . 193
31.4 Explanation . 193
31.5 Debug Logging Support . 194
31.6 Statistics . 194
31.7 Application Initialization . 195

32 VM Power Management Application 196
32.1 Introduction . 196
32.2 Overview . 198
32.3 Configuration . 199
32.4 Compiling and Running the Host Application . 200
32.5 Compiling and Running the Guest Applications 201

33 TEP termination Sample Application 203

iv

33.1 Background . 203
33.2 Sample Code Overview . 204
33.3 Supported Distributions . 204
33.4 Prerequisites . 206
33.5 Compiling the Sample Code . 206
33.6 Running the Sample Code . 206
33.7 Running the Virtual Machine (QEMU) . 208
33.8 Running DPDK in the Virtual Machine . 208
33.9 Passing Traffic to the Virtual Machine Device . 208

34 proc_info Application 209
34.1 Running the Application . 209

v

Sample Applications User Guide, Release 2.1.0

August 17, 2015

Contents

CONTENTS 1

CHAPTER

ONE

INTRODUCTION

This document describes the sample applications that are included in the Data Plane Devel-
opment Kit (DPDK). Each chapter describes a sample application that showcases specific
functionality and provides instructions on how to compile, run and use the sample application.

1.1 Documentation Roadmap

The following is a list of DPDK documents in suggested reading order:

• Release Notes : Provides release-specific information, including supported features,
limitations, fixed issues, known issues and so on. Also, provides the answers to frequently
asked questions in FAQ format.

• Getting Started Guides : Describes how to install and configure the DPDK software for
your operating system; designed to get users up and running quickly with the software.

• Programmer’s Guide: Describes:

– The software architecture and how to use it (through examples), specifically in a
Linux* application (linuxapp) environment.

– The content of the DPDK, the build system (including the commands that can be
used in the root DPDK Makefile to build the development kit and an application) and
guidelines for porting an application.

– Optimizations used in the software and those that should be considered for new
development

A glossary of terms is also provided.

• API Reference : Provides detailed information about DPDK functions, data structures
and other programming constructs.

• Sample Applications User Guide : Describes a set of sample applications. Each chap-
ter describes a sample application that showcases specific functionality and provides
instructions on how to compile, run and use the sample application.

2

CHAPTER

TWO

COMMAND LINE SAMPLE APPLICATION

This chapter describes the Command Line sample application that is part of the Data Plane
Development Kit (DPDK).

2.1 Overview

The Command Line sample application is a simple application that demonstrates the use of
the command line interface in the DPDK. This application is a readline-like interface that can
be used to debug a DPDK application, in a Linux* application environment.

Note: The rte_cmdline library should not be used in production code since it is not validated
to the same standard as other Intel® DPDK libraries. See also the “rte_cmdline library should
not be used in production code due to limited testing” item in the “Known Issues” section of the
Release Notes.

The Command Line sample application supports some of the features of the GNU readline
library such as, completion, cut/paste and some other special bindings that make configuration
and debug faster and easier.

The application shows how the rte_cmdline application can be extended to handle a list of
objects. There are three simple commands:

• add obj_name IP: Add a new object with an IP/IPv6 address associated to it.

• del obj_name: Delete the specified object.

• show obj_name: Show the IP associated with the specified object.

Note: To terminate the application, use Ctrl-d.

2.2 Compiling the Application

1. Go to example directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/cmdline
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
Refer to the DPDK Getting Started Guide for possible RTE_TARGET values.

3

Sample Applications User Guide, Release 2.1.0

3. Build the application:

make

2.3 Running the Application

To run the application in linuxapp environment, issue the following command:

$./build/cmdline -c f -n 4
Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

2.4 Explanation

The following sections provide some explanation of the code.

2.4.1 EAL Initialization and cmdline Start

The first task is the initialization of the Environment Abstraction Layer (EAL). This is achieved
as follows:

int main(int argc, char **argv){ ret = rte_eal_init(argc, argv);
if (ret < 0)rte_panic("Cannot init EAL\n");

Then, a new command line object is created and started to interact with the user through the
console:

cl = cmdline_stdin_new(main_ctx, "example> ");cmdline_interact(cl);cmdline_stdin_exit(cl);
The cmd line_interact() function returns when the user types Ctrl-d and in this case, the appli-
cation exits.

2.4.2 Defining a cmdline Context

A cmdline context is a list of commands that are listed in a NULL-terminated table, for example:

cmdline_parse_ctx_t main_ctx[] = {(cmdline_parse_inst_t *) &cmd_obj_del_show,(cmdline_parse_inst_t *) &cmd_obj_add,(cmdline_parse_inst_t *) &cmd_help,NULL,};
Each command (of type cmdline_parse_inst_t) is defined statically. It contains a pointer to a
callback function that is executed when the command is parsed, an opaque pointer, a help
string and a list of tokens in a NULL-terminated table.

The rte_cmdline application provides a list of pre-defined token types:

• String Token: Match a static string, a list of static strings or any string.

2.3. Running the Application 4

Sample Applications User Guide, Release 2.1.0

• Number Token: Match a number that can be signed or unsigned, from 8-bit to 32-bit.

• IP Address Token: Match an IPv4 or IPv6 address or network.

• Ethernet* Address Token: Match a MAC address.

In this example, a new token type obj_list is defined and implemented in the parse_obj_list.c
and parse_obj_list.h files.

For example, the cmd_obj_del_show command is defined as shown below:

struct cmd_obj_add_result {
cmdline_fixed_string_t action;
cmdline_fixed_string_t name;
struct object *obj;};

static void cmd_obj_del_show_parsed(void *parsed_result, struct cmdline *cl, attribute ((unused)) void *data){ /* ... */}
cmdline_parse_token_string_t cmd_obj_action = TOKEN_STRING_INITIALIZER(struct cmd_obj_del_show_result, action, "show#del");
parse_token_obj_list_t cmd_obj_obj = TOKEN_OBJ_LIST_INITIALIZER(struct cmd_obj_del_show_result, obj, &global_obj_list);
cmdline_parse_inst_t cmd_obj_del_show = {.f = cmd_obj_del_show_parsed, /* function to call */.data = NULL, /* 2nd arg of func */.help_str = "Show/del an object",.tokens = { /* token list, NULL terminated */(void *)&cmd_obj_action,(void *)&cmd_obj_obj,NULL,},};

This command is composed of two tokens:

• The first token is a string token that can be show or del.

• The second token is an object that was previously added using the add command in the
global_obj_list variable.

Once the command is parsed, the rte_cmdline application fills a cmd_obj_del_show_result
structure. A pointer to this structure is given as an argument to the callback function and can
be used in the body of this function.

2.4. Explanation 5

CHAPTER

THREE

EXCEPTION PATH SAMPLE APPLICATION

The Exception Path sample application is a simple example that demonstrates the use of the
DPDK to set up an exception path for packets to go through the Linux* kernel. This is done
by using virtual TAP network interfaces. These can be read from and written to by the DPDK
application and appear to the kernel as a standard network interface.

3.1 Overview

The application creates two threads for each NIC port being used. One thread reads from
the port and writes the data unmodified to a thread-specific TAP interface. The second thread
reads from a TAP interface and writes the data unmodified to the NIC port.

The packet flow through the exception path application is as shown in the following figure.

Port0

Port1

PortN

CoreA0

CoreA1

CoreAN

CoreB0

CoreB1

CoreBN

tapA0

tapA1

tapAN

tapB0

tapB1

tapBN

Kernel-space:
bridging/forwarding

Traffic
Generator

User-space:
DPDK application

Fig. 3.1: Packet Flow

To make throughput measurements, kernel bridges must be setup to forward data between the
bridges appropriately.

6

Sample Applications User Guide, Release 2.1.0

3.2 Compiling the Application

1. Go to example directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/exception_path
2. Set the target (a default target will be used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
This application is intended as a linuxapp only. See the DPDK Getting Started Guide for
possible RTE_TARGET values.

1. Build the application:

make

3.3 Running the Application

The application requires a number of command line options:

.build/exception_path [EAL options] -- -p PORTMASK -i IN_CORES -o OUT_CORES
where:

• -p PORTMASK: A hex bitmask of ports to use

• -i IN_CORES: A hex bitmask of cores which read from NIC

• -o OUT_CORES: A hex bitmask of cores which write to NIC

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

The number of bits set in each bitmask must be the same. The coremask -c parameter of
the EAL options should include IN_CORES and OUT_CORES. The same bit must not be set
in IN_CORES and OUT_CORES. The affinities between ports and cores are set beginning
with the least significant bit of each mask, that is, the port represented by the lowest bit in
PORTMASK is read from by the core represented by the lowest bit in IN_CORES, and written
to by the core represented by the lowest bit in OUT_CORES.

For example to run the application with two ports and four cores:

./build/exception_path -c f -n 4 -- -p 3 -i 3 -o c

3.3.1 Getting Statistics

While the application is running, statistics on packets sent and received can be displayed by
sending the SIGUSR1 signal to the application from another terminal:

killall -USR1 exception_path
The statistics can be reset by sending a SIGUSR2 signal in a similar way.

3.2. Compiling the Application 7

Sample Applications User Guide, Release 2.1.0

3.4 Explanation

The following sections provide some explanation of the code.

3.4.1 Initialization

Setup of the mbuf pool, driver and queues is similar to the setup done in the L2 Forwarding
sample application (see Chapter 9 “L2 forwarding Sample Application (in Real and Virtualized
Environments” for details). In addition, the TAP interfaces must also be created. A TAP inter-
face is created for each lcore that is being used. The code for creating the TAP interface is as
follows:

/** Create a tap network interface, or use existing one with same name.* If name[0]='\0' then a name is automatically assigned and returned in name.*/
static int tap_create(char *name){

struct ifreq ifr;
int fd, ret;
fd = open("/dev/net/tun", O_RDWR);
if (fd < 0)

return fd;
memset(&ifr, 0, sizeof(ifr));
/* TAP device without packet information */
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
if (name && *name)rte_snprinf(ifr.ifr_name, IFNAMSIZ, name);
ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
if (ret < 0) {close(fd);

return ret;
}
if (name)rte_snprintf(name, IFNAMSIZ, ifr.ifr_name);
return fd;}

The other step in the initialization process that is unique to this sample application is the asso-
ciation of each port with two cores:

• One core to read from the port and write to a TAP interface

• A second core to read from a TAP interface and write to the port

This is done using an array called port_ids[], which is indexed by the lcore IDs. The population
of this array is shown below:

tx_port = 0;rx_port = 0;

3.4. Explanation 8

Sample Applications User Guide, Release 2.1.0

RTE_LCORE_FOREACH(i) {
if (input_cores_mask & (1ULL << i)) {/* Skip ports that are not enabled */

while ((ports_mask & (1 << rx_port)) == 0) {rx_port++;
if (rx_port > (sizeof(ports_mask) * 8))

goto fail; /* not enough ports */}port_ids[i] = rx_port++;} else if (output_cores_mask & (1ULL << i)) {/* Skip ports that are not enabled */
while ((ports_mask & (1 << tx_port)) == 0) {tx_port++;

if (tx_port > (sizeof(ports_mask) * 8))
goto fail; /* not enough ports */}port_ids[i] = tx_port++;}}

3.4.2 Packet Forwarding

After the initialization steps are complete, the main_loop() function is run on each lcore.
This function first checks the lcore_id against the user provided input_cores_mask and out-
put_cores_mask to see if this core is reading from or writing to a TAP interface.

For the case that reads from a NIC port, the packet reception is the same as in the L2 For-
warding sample application (see Section 9.4.6, “Receive, Process and Transmit Packets”). The
packet transmission is done by calling write() with the file descriptor of the appropriate TAP in-
terface and then explicitly freeing the mbuf back to the pool.

/* Loop forever reading from NIC and writing to tap */
for (;;) {

struct rte_mbuf *pkts_burst[PKT_BURST_SZ];
unsigned i;
const unsigned nb_rx = rte_eth_rx_burst(port_ids[lcore_id], 0, pkts_burst, PKT_BURST_SZ);
lcore_stats[lcore_id].rx += nb_rx;
for (i = 0; likely(i < nb_rx); i++) {

struct rte_mbuf *m = pkts_burst[i];
int ret = write(tap_fd, rte_pktmbuf_mtod(m, void*),
rte_pktmbuf_data_len(m));rte_pktmbuf_free(m);
if (unlikely(ret<0))lcore_stats[lcore_id].dropped++;
elselcore_stats[lcore_id].tx++;}}

For the other case that reads from a TAP interface and writes to a NIC port, packets are
retrieved by doing a read() from the file descriptor of the appropriate TAP interface. This fills in
the data into the mbuf, then other fields are set manually. The packet can then be transmitted
as normal.

3.4. Explanation 9

Sample Applications User Guide, Release 2.1.0

/* Loop forever reading from tap and writing to NIC */
for (;;) {

int ret;
struct rte_mbuf *m = rte_pktmbuf_alloc(pktmbuf_pool);
if (m == NULL)

continue;
ret = read(tap_fd, m->pkt.data, MAX_PACKET_SZ); lcore_stats[lcore_id].rx++;
if (unlikely(ret < 0)) {FATAL_ERROR("Reading from %s interface failed", tap_name);}
m->pkt.nb_segs = 1;m->pkt.next = NULL;m->pkt.data_len = (uint16_t)ret;
ret = rte_eth_tx_burst(port_ids[lcore_id], 0, &m, 1);
if (unlikely(ret < 1)) {rte_pktmuf_free(m);lcore_stats[lcore_id].dropped++;}
else {lcore_stats[lcore_id].tx++;}}

To set up loops for measuring throughput, TAP interfaces can be connected using bridging.
The steps to do this are described in the section that follows.

3.4.3 Managing TAP Interfaces and Bridges

The Exception Path sample application creates TAP interfaces with names of the format
tap_dpdk_nn, where nn is the lcore ID. These TAP interfaces need to be configured for use:

ifconfig tap_dpdk_00 up
To set up a bridge between two interfaces so that packets sent to one interface can be read
from another, use the brctl tool:

brctl addbr "br0"brctl addif br0 tap_dpdk_00brctl addif br0 tap_dpdk_03ifconfig br0 up
The TAP interfaces created by this application exist only when the application is running, so
the steps above need to be repeated each time the application is run. To avoid this, persistent
TAP interfaces can be created using openvpn:

openvpn --mktun --dev tap_dpdk_00
If this method is used, then the steps above have to be done only once and the same TAP
interfaces can be reused each time the application is run. To remove bridges and persistent
TAP interfaces, the following commands are used:

ifconfig br0 downbrctl delbr br0openvpn --rmtun --dev tap_dpdk_00

3.4. Explanation 10

CHAPTER

FOUR

HELLO WORLD SAMPLE APPLICATION

The Hello World sample application is an example of the simplest DPDK application that can
be written. The application simply prints an “helloworld” message on every enabled lcore.

4.1 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/helloworld
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

4.2 Running the Application

To run the example in a linuxapp environment:

$./build/helloworld -c f -n 4
Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

4.3 Explanation

The following sections provide some explanation of code.

4.3.1 EAL Initialization

The first task is to initialize the Environment Abstraction Layer (EAL). This is done in the main()
function using the following code:

11

Sample Applications User Guide, Release 2.1.0

int

main(int argc, char **argv)
{ ret = rte_eal_init(argc, argv);

if (ret < 0)rte_panic("Cannot init EAL\n");
This call finishes the initialization process that was started before main() is called (in case
of a Linuxapp environment). The argc and argv arguments are provided to the rte_eal_init()
function. The value returned is the number of parsed arguments.

4.3.2 Starting Application Unit Lcores

Once the EAL is initialized, the application is ready to launch a function on an lcore. In this
example, lcore_hello() is called on every available lcore. The following is the definition of the
function:

static intlcore_hello(attribute ((unused)) void *arg){
unsigned lcore_id;
lcore_id = rte_lcore_id();printf("hello from core %u\n", lcore_id);
return 0;}

The code that launches the function on each lcore is as follows:

/* call lcore_hello() on every slave lcore */
RTE_LCORE_FOREACH_SLAVE(lcore_id) {rte_eal_remote_launch(lcore_hello, NULL, lcore_id);}
/* call it on master lcore too */
lcore_hello(NULL);

The following code is equivalent and simpler:

rte_eal_mp_remote_launch(lcore_hello, NULL, CALL_MASTER);
Refer to the DPDK API Reference for detailed information on the rte_eal_mp_remote_launch()
function.

4.3. Explanation 12

CHAPTER

FIVE

BASIC FORWARDING SAMPLE APPLICATION

The Basic Forwarding sample application is a simple skeleton example of a forwarding appli-
cation.

It is intended as a demonstration of the basic components of a DPDK forwarding application.
For more detailed implementations see the L2 and L3 forwarding sample applications.

5.1 Compiling the Application

To compile the application export the path to the DPDK source tree and go to the example
directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/skeleton

Set the target, for example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

Build the application as follows:

make

5.2 Running the Application

To run the example in a linuxapp environment:

./build/basicfwd -c 2 -n 4
Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

5.3 Explanation

The following sections provide an explanation of the main components of the code.

All DPDK library functions used in the sample code are prefixed with rte_ and are explained
in detail in the DPDK API Documentation.

13

Sample Applications User Guide, Release 2.1.0

5.3.1 The Main Function

The main() function performs the initialization and calls the execution threads for each lcore.

The first task is to initialize the Environment Abstraction Layer (EAL). The argc and argv
arguments are provided to the rte_eal_init() function. The value returned is the number
of parsed arguments:

int ret = rte_eal_init(argc, argv);
if (ret < 0)rte_exit(EXIT_FAILURE, "Error with EAL initialization\n");

The main() also allocates a mempool to hold the mbufs (Message Buffers) used by the ap-
plication:

mbuf_pool = rte_mempool_create("MBUF_POOL",NUM_MBUFS * nb_ports,MBUF_SIZE,MBUF_CACHE_SIZE,
sizeof(struct rte_pktmbuf_pool_private),rte_pktmbuf_pool_init, NULL,rte_pktmbuf_init, NULL,rte_socket_id(),0);

Mbufs are the packet buffer structure used by DPDK. They are explained in detail in the “Mbuf
Library” section of the DPDK Programmer’s Guide.

The main() function also initializes all the ports using the user defined port_init() function
which is explained in the next section:

for (portid = 0; portid < nb_ports; portid++) {
if (port_init(portid, mbuf_pool) != 0) {rte_exit(EXIT_FAILURE,"Cannot init port %" PRIu8 "\n", portid);}}

Once the initialization is complete, the application is ready to launch a function on an lcore. In
this example lcore_main() is called on a single lcore.

lcore_main();
The lcore_main() function is explained below.

5.3.2 The Port Initialization Function

The main functional part of the port initialization used in the Basic Forwarding application is
shown below:

static inline intport_init(uint8_t port, struct rte_mempool *mbuf_pool){
struct rte_eth_conf port_conf = port_conf_default;
const uint16_t rx_rings = 1, tx_rings = 1;
struct ether_addr addr;
int retval;
uint16_t q;
if (port >= rte_eth_dev_count())

return -1;

5.3. Explanation 14

Sample Applications User Guide, Release 2.1.0

/* Configure the Ethernet device. */retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)

return retval;
/* Allocate and set up 1 RX queue per Ethernet port. */
for (q = 0; q < rx_rings; q++) {retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,rte_eth_dev_socket_id(port), NULL, mbuf_pool);

if (retval < 0)
return retval;}

/* Allocate and set up 1 TX queue per Ethernet port. */
for (q = 0; q < tx_rings; q++) {retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,rte_eth_dev_socket_id(port), NULL);

if (retval < 0)
return retval;}

/* Start the Ethernet port. */retval = rte_eth_dev_start(port);
if (retval < 0)

return retval;
/* Enable RX in promiscuous mode for the Ethernet device. */rte_eth_promiscuous_enable(port);
return 0;}

The Ethernet ports are configured with default settings using therte_eth_dev_configure() function and the port_conf_default struct:

static const struct rte_eth_conf port_conf_default = {.rxmode = { .max_rx_pkt_len = ETHER_MAX_LEN }};
For this example the ports are set up with 1 RX and 1 TX queue using therte_eth_rx_queue_setup() and rte_eth_tx_queue_setup() functions.

The Ethernet port is then started:

retval = rte_eth_dev_start(port);
Finally the RX port is set in promiscuous mode:

rte_eth_promiscuous_enable(port);

5.3.3 The Lcores Main

As we saw above the main() function calls an application function on the available lcores. For
the Basic Forwarding application the lcore function looks like the following:

static __attribute__((noreturn)) voidlcore_main(void){
const uint8_t nb_ports = rte_eth_dev_count();
uint8_t port;
/** Check that the port is on the same NUMA node as the polling thread

5.3. Explanation 15

Sample Applications User Guide, Release 2.1.0

* for best performance.*/
for (port = 0; port < nb_ports; port++)

if (rte_eth_dev_socket_id(port) > 0 &&rte_eth_dev_socket_id(port) !=(int)rte_socket_id())printf("WARNING, port %u is on remote NUMA node to ""polling thread.\n\tPerformance will ""not be optimal.\n", port);
printf("\nCore %u forwarding packets. [Ctrl+C to quit]\n",rte_lcore_id());
/* Run until the application is quit or killed. */
for (;;) {/** Receive packets on a port and forward them on the paired* port. The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.*/

for (port = 0; port < nb_ports; port++) {
/* Get burst of RX packets, from first port of pair. */
struct rte_mbuf *bufs[BURST_SIZE];
const uint16_t nb_rx = rte_eth_rx_burst(port, 0,bufs, BURST_SIZE);
if (unlikely(nb_rx == 0))

continue;
/* Send burst of TX packets, to second port of pair. */
const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,bufs, nb_rx);
/* Free any unsent packets. */
if (unlikely(nb_tx < nb_rx)) {

uint16_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)rte_pktmbuf_free(bufs[buf]);}}}}

The main work of the application is done within the loop:

for (;;) {
for (port = 0; port < nb_ports; port++) {

/* Get burst of RX packets, from first port of pair. */
struct rte_mbuf *bufs[BURST_SIZE];
const uint16_t nb_rx = rte_eth_rx_burst(port, 0,bufs, BURST_SIZE);
if (unlikely(nb_rx == 0))

continue;
/* Send burst of TX packets, to second port of pair. */
const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,bufs, nb_rx);
/* Free any unsent packets. */
if (unlikely(nb_tx < nb_rx)) {

uint16_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)

5.3. Explanation 16

Sample Applications User Guide, Release 2.1.0

rte_pktmbuf_free(bufs[buf]);}}}
Packets are received in bursts on the RX ports and transmitted in bursts on the TX ports.
The ports are grouped in pairs with a simple mapping scheme using the an XOR on the port
number:

0 -> 11 -> 0
2 -> 33 -> 2
etc.

The rte_eth_tx_burst() function frees the memory buffers of packets that are transmit-
ted. If packets fail to transmit, (nb_tx < nb_rx), then they must be freed explicitly usingrte_pktmbuf_free().

The forwarding loop can be interrupted and the application closed using Ctrl-C.

5.3. Explanation 17

CHAPTER

SIX

RX/TX CALLBACKS SAMPLE APPLICATION

The RX/TX Callbacks sample application is a packet forwarding application that demonstrates
the use of user defined callbacks on received and transmitted packets. The application per-
forms a simple latency check, using callbacks, to determine the time packets spend within the
application.

In the sample application a user defined callback is applied to all received packets to add a
timestamp. A separate callback is applied to all packets prior to transmission to calculate the
elapsed time, in CPU cycles.

6.1 Compiling the Application

To compile the application export the path to the DPDK source tree and go to the example
directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/rxtx_callbacks

Set the target, for example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

The callbacks feature requires that the CONFIG_RTE_ETHDEV_RXTX_CALLBACKS setting is
on in the config/common_ config file that applies to the target. This is generally on by default:

CONFIG_RTE_ETHDEV_RXTX_CALLBACKS=y
Build the application as follows:

make

6.2 Running the Application

To run the example in a linuxapp environment:

./build/rxtx_callbacks -c 2 -n 4
Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

18

Sample Applications User Guide, Release 2.1.0

6.3 Explanation

The rxtx_callbacks application is mainly a simple forwarding application based on the
Basic Forwarding Sample Application. See that section of the documentation for more details
of the forwarding part of the application.

The sections below explain the additional RX/TX callback code.

6.3.1 The Main Function

The main() function performs the application initialization and calls the execution threads for
each lcore. This function is effectively identical to the main() function explained in Basic
Forwarding Sample Application.

The lcore_main() function is also identical.

The main difference is in the user defined port_init() function where the callbacks are
added. This is explained in the next section:

6.3.2 The Port Initialization Function

The main functional part of the port initialization is shown below with comments:

static inline intport_init(uint8_t port, struct rte_mempool *mbuf_pool){
struct rte_eth_conf port_conf = port_conf_default;
const uint16_t rx_rings = 1, tx_rings = 1;
struct ether_addr addr;
int retval;
uint16_t q;
if (port >= rte_eth_dev_count())

return -1;
/* Configure the Ethernet device. */retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)

return retval;
/* Allocate and set up 1 RX queue per Ethernet port. */
for (q = 0; q < rx_rings; q++) {retval = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE,rte_eth_dev_socket_id(port), NULL, mbuf_pool);

if (retval < 0)
return retval;}

/* Allocate and set up 1 TX queue per Ethernet port. */
for (q = 0; q < tx_rings; q++) {retval = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE,rte_eth_dev_socket_id(port), NULL);

if (retval < 0)
return retval;}

/* Start the Ethernet port. */retval = rte_eth_dev_start(port);

6.3. Explanation 19

Sample Applications User Guide, Release 2.1.0

if (retval < 0)
return retval;

/* Enable RX in promiscuous mode for the Ethernet device. */rte_eth_promiscuous_enable(port);

/* Add the callbacks for RX and TX.*/rte_eth_add_rx_callback(port, 0, add_timestamps, NULL);rte_eth_add_tx_callback(port, 0, calc_latency, NULL);
return 0;}

The RX and TX callbacks are added to the ports/queues as function pointers:

rte_eth_add_rx_callback(port, 0, add_timestamps, NULL);rte_eth_add_tx_callback(port, 0, calc_latency, NULL);
More than one callback can be added and additional information can be passed to callback
function pointers as a void*. In the examples above NULL is used.

The add_timestamps() and calc_latency() functions are explained below.

6.3.3 The add_timestamps() Callback

The add_timestamps() callback is added to the RX port and is applied to all packets re-
ceived:

static uint16_tadd_timestamps(uint8_t port __rte_unused, uint16_t qidx __rte_unused,
struct rte_mbuf **pkts, uint16_t nb_pkts, void *_ __rte_unused){

unsigned i;
uint64_t now = rte_rdtsc();
for (i = 0; i < nb_pkts; i++)pkts[i]->udata64 = now;
return nb_pkts;}

The DPDK function rte_rdtsc() is used to add a cycle count timestamp to each packet (see
the cycles section of the DPDK API Documentation for details).

6.3.4 The calc_latency() Callback

The calc_latency() callback is added to the TX port and is applied to all packets prior to
transmission:

static uint16_tcalc_latency(uint8_t port __rte_unused, uint16_t qidx __rte_unused,
struct rte_mbuf **pkts, uint16_t nb_pkts, void *_ __rte_unused){

uint64_t cycles = 0;
uint64_t now = rte_rdtsc();
unsigned i;
for (i = 0; i < nb_pkts; i++)cycles += now - pkts[i]->udata64;

6.3. Explanation 20

Sample Applications User Guide, Release 2.1.0

latency_numbers.total_cycles += cycles;latency_numbers.total_pkts += nb_pkts;
if (latency_numbers.total_pkts > (100 * 1000 * 1000ULL)) {printf("Latency = %"PRIu64" cycles\n",latency_numbers.total_cycles / latency_numbers.total_pkts);

latency_numbers.total_cycles = latency_numbers.total_pkts = 0;}
return nb_pkts;}

The calc_latency() function accumulates the total number of packets and the total number
of cycles used. Once more than 100 million packets have been transmitted the average cycle
count per packet is printed out and the counters are reset.

6.3. Explanation 21

CHAPTER

SEVEN

IP FRAGMENTATION SAMPLE APPLICATION

The IPv4 Fragmentation application is a simple example of packet processing using the Data
Plane Development Kit (DPDK). The application does L3 forwarding with IPv4 and IPv6 packet
fragmentation.

7.1 Overview

The application demonstrates the use of zero-copy buffers for packet fragmentation. The ini-
tialization and run-time paths are very similar to those of the L2 forwarding application (see
Chapter 9 “L2 Forwarding Simple Application (in Real and Virtualized Environments)” for more
information). This guide highlights the differences between the two applications.

There are three key differences from the L2 Forwarding sample application:

• The first difference is that the IP Fragmentation sample application makes use of indirect
buffers.

• The second difference is that the forwarding decision is taken based on information read
from the input packet’s IP header.

• The third difference is that the application differentiates between IP and non-IP traffic by
means of offload flags.

The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to store/lookup an
outgoing port number, associated with that IP address. Any unmatched packets are forwarded
to the originating port.

By default, input frame sizes up to 9.5 KB are supported. Before forwarding, the input IP packet
is fragmented to fit into the “standard” Ethernet* v2 MTU (1500 bytes).

7.2 Building the Application

To build the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/ip_fragmentation
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

22

Sample Applications User Guide, Release 2.1.0

1. Build the application:

make

7.3 Running the Application

The LPM object is created and loaded with the pre-configured entries read from global
l3fwd_ipv4_route_array and l3fwd_ipv6_route_array tables. For each input packet, the packet
forwarding decision (that is, the identification of the output interface for the packet) is taken as
a result of LPM lookup. If the IP packet size is greater than default output MTU, then the input
packet is fragmented and several fragments are sent via the output interface.

Application usage:

./build/ip_fragmentation [EAL options] -- -p PORTMASK [-q NQ]
where:

• -p PORTMASK is a hexadecimal bitmask of ports to configure

• -q NQ is the number of queue (=ports) per lcore (the default is 1)

To run the example in linuxapp environment with 2 lcores (2,4) over 2 ports(0,2) with 1 RX
queue per lcore:

./build/ip_fragmentation -c 0x14 -n 3 -- -p 5EAL: coremask set to 14EAL: Detected lcore 0 on socket 0EAL: Detected lcore 1 on socket 1EAL: Detected lcore 2 on socket 0EAL: Detected lcore 3 on socket 1EAL: Detected lcore 4 on socket 0...
Initializing port 0 on lcore 2... Address:00:1B:21:76:FA:2C, rxq=0 txq=2,0 txq=4,1done: Link Up - speed 10000 Mbps - full-duplexSkipping disabled port 1Initializing port 2 on lcore 4... Address:00:1B:21:5C:FF:54, rxq=0 txq=2,0 txq=4,1done: Link Up - speed 10000 Mbps - full-duplexSkipping disabled port 3IP_FRAG: Socket 0: adding route 100.10.0.0/16 (port 0)IP_FRAG: Socket 0: adding route 100.20.0.0/16 (port 1)...IP_FRAG: Socket 0: adding route 0101:0101:0101:0101:0101:0101:0101:0101/48 (port 0)IP_FRAG: Socket 0: adding route 0201:0101:0101:0101:0101:0101:0101:0101/48 (port 1)...IP_FRAG: entering main loop on lcore 4IP_FRAG: -- lcoreid=4 portid=2IP_FRAG: entering main loop on lcore 2IP_FRAG: -- lcoreid=2 portid=0

To run the example in linuxapp environment with 1 lcore (4) over 2 ports(0,2) with 2 RX queues
per lcore:

./build/ip_fragmentation -c 0x10 -n 3 -- -p 5 -q 2
To test the application, flows should be set up in the flow generator that match the values in
the l3fwd_ipv4_route_array and/or l3fwd_ipv6_route_array table.

The default l3fwd_ipv4_route_array table is:

struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {{IPv4(100, 10, 0, 0), 16, 0},

7.3. Running the Application 23

Sample Applications User Guide, Release 2.1.0

{IPv4(100, 20, 0, 0), 16, 1},{IPv4(100, 30, 0, 0), 16, 2},{IPv4(100, 40, 0, 0), 16, 3},{IPv4(100, 50, 0, 0), 16, 4},{IPv4(100, 60, 0, 0), 16, 5},{IPv4(100, 70, 0, 0), 16, 6},{IPv4(100, 80, 0, 0), 16, 7},};
The default l3fwd_ipv6_route_array table is:

struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {{{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},{{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},{{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},{{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},{{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},{{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},{{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},{{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},};
For example, for the input IPv4 packet with destination address: 100.10.1.1 and packet length
9198 bytes, seven IPv4 packets will be sent out from port #0 to the destination address
100.10.1.1: six of those packets will have length 1500 bytes and one packet will have length
318 bytes. IP Fragmentation sample application provides basic NUMA support in that all the
memory structures are allocated on all sockets that have active lcores on them.

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

7.3. Running the Application 24

CHAPTER

EIGHT

IPV4 MULTICAST SAMPLE APPLICATION

The IPv4 Multicast application is a simple example of packet processing using the Data Plane
Development Kit (DPDK). The application performs L3 multicasting.

8.1 Overview

The application demonstrates the use of zero-copy buffers for packet forwarding. The initializa-
tion and run-time paths are very similar to those of the L2 forwarding application (see Chapter
9 “L2 Forwarding Sample Application (in Real and Virtualized Environments)” for details more
information). This guide highlights the differences between the two applications. There are two
key differences from the L2 Forwarding sample application:

• The IPv4 Multicast sample application makes use of indirect buffers.

• The forwarding decision is taken based on information read from the input packet’s IPv4
header.

The lookup method is the Four-byte Key (FBK) hash-based method. The lookup table is com-
posed of pairs of destination IPv4 address (the FBK) and a port mask associated with that IPv4
address.

For convenience and simplicity, this sample application does not take IANA-assigned multicast
addresses into account, but instead equates the last four bytes of the multicast group (that is,
the last four bytes of the destination IP address) with the mask of ports to multicast packets
to. Also, the application does not consider the Ethernet addresses; it looks only at the IPv4
destination address for any given packet.

8.2 Building the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/ipv4_multicast
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

1. Build the application:

25

Sample Applications User Guide, Release 2.1.0

make
Note: The compiled application is written to the build subdirectory. To have the application
written to a different location, the O=/path/to/build/directory option may be specified in the make
command.

8.3 Running the Application

The application has a number of command line options:

./build/ipv4_multicast [EAL options] -- -p PORTMASK [-q NQ]
where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -q NQ: determines the number of queues per lcore

Note: Unlike the basic L2/L3 Forwarding sample applications, NUMA support is not provided
in the IPv4 Multicast sample application.

Typically, to run the IPv4 Multicast sample application, issue the following command (as root):

./build/ipv4_multicast -c 0x00f -n 3 -- -p 0x3 -q 1
In this command:

• The -c option enables cores 0, 1, 2 and 3

• The -n option specifies 3 memory channels

• The -p option enables ports 0 and 1

• The -q option assigns 1 queue to each lcore

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

8.4 Explanation

The following sections provide some explanation of the code. As mentioned in the overview
section, the initialization and run-time paths are very similar to those of the L2 Forwarding
sample application (see Chapter 9 “L2 Forwarding Sample Application in Real and Virtualized
Environments” for more information). The following sections describe aspects that are specific
to the IPv4 Multicast sample application.

8.4.1 Memory Pool Initialization

The IPv4 Multicast sample application uses three memory pools. Two of the pools are for
indirect buffers used for packet duplication purposes. Memory pools for indirect buffers are
initialized differently from the memory pool for direct buffers:

8.3. Running the Application 26

Sample Applications User Guide, Release 2.1.0

packet_pool = rte_mempool_create("packet_pool", NB_PKT_MBUF, PKT_MBUF_SIZE, 32, sizeof(struct rte_pktmbuf_pool_private),rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL, rte_socket_id(), 0);
header_pool = rte_mempool_create("header_pool", NB_HDR_MBUF, HDR_MBUF_SIZE, 32, 0, NULL, NULL, rte_pktmbuf_init, NULL, rte_socket_id(), 0);clone_pool = rte_mempool_create("clone_pool", NB_CLONE_MBUF,CLONE_MBUF_SIZE, 32, 0, NULL, NULL, rte_pktmbuf_init, NULL, rte_socket_id(), 0);

The reason for this is because indirect buffers are not supposed to hold any packet data and
therefore can be initialized with lower amount of reserved memory for each buffer.

8.4.2 Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array:

static int

init_mcast_hash(void){
uint32_t i;mcast_hash_params.socket_id = rte_socket_id();
mcast_hash = rte_fbk_hash_create(&mcast_hash_params);
if (mcast_hash == NULL){

return -1;}
for (i = 0; i < N_MCAST_GROUPS; i ++){

if (rte_fbk_hash_add_key(mcast_hash, mcast_group_table[i].ip, mcast_group_table[i].port_mask) < 0) {
return -1;}}

return 0;}

8.4.3 Forwarding

All forwarding is done inside the mcast_forward() function. Firstly, the Ethernet* header is
removed from the packet and the IPv4 address is extracted from the IPv4 header:

/* Remove the Ethernet header from the input packet */
iphdr = (struct ipv4_hdr *)rte_pktmbuf_adj(m, sizeof(struct ether_hdr));RTE_MBUF_ASSERT(iphdr != NULL);dest_addr = rte_be_to_cpu_32(iphdr->dst_addr);

Then, the packet is checked to see if it has a multicast destination address and if the routing
table has any ports assigned to the destination address:

if (!IS_IPV4_MCAST(dest_addr) ||(hash = rte_fbk_hash_lookup(mcast_hash, dest_addr)) <= 0 ||(port_mask = hash & enabled_port_mask) == 0) {rte_pktmbuf_free(m);
return;}

Then, the number of ports in the destination portmask is calculated with the help of the bitcnt()
function:

/* Get number of bits set. */
static inline uint32_t bitcnt(uint32_t v)

8.4. Explanation 27

Sample Applications User Guide, Release 2.1.0

{
uint32_t n;
for (n = 0; v != 0; v &= v - 1, n++);
return (n);}

This is done to determine which forwarding algorithm to use. This is explained in more detail
in the next section.

Thereafter, a destination Ethernet address is constructed:

/* construct destination Ethernet address */
dst_eth_addr = ETHER_ADDR_FOR_IPV4_MCAST(dest_addr);

Since Ethernet addresses are also part of the multicast process, each outgoing packet carries
the same destination Ethernet address. The destination Ethernet address is constructed from
the lower 23 bits of the multicast group OR-ed with the Ethernet address 01:00:5e:00:00:00,
as per RFC 1112:

#define ETHER_ADDR_FOR_IPV4_MCAST(x) \(rte_cpu_to_be_64(0x01005e000000ULL | ((x) & 0x7fffff)) >> 16)
Then, packets are dispatched to the destination ports according to the portmask associated
with a multicast group:

for (port = 0; use_clone != port_mask; port_mask >>= 1, port++) {/* Prepare output packet and send it out. */
if ((port_mask & 1) != 0) {

if (likely ((mc = mcast_out_pkt(m, use_clone)) != NULL))mcast_send_pkt(mc, &dst_eth_addr.as_addr, qconf, port);
else if (use_clone == 0)rte_pktmbuf_free(m);}}

The actual packet transmission is done in the mcast_send_pkt() function:

static inline void mcast_send_pkt(struct rte_mbuf *pkt, struct ether_addr *dest_addr, struct lcore_queue_conf *qconf, uint8_t port){
struct ether_hdr *ethdr;
uint16_t len;
/* Construct Ethernet header. */
ethdr = (struct ether_hdr *)rte_pktmbuf_prepend(pkt, (uint16_t) sizeof(*ethdr));
RTE_MBUF_ASSERT(ethdr != NULL);
ether_addr_copy(dest_addr, ðdr->d_addr);ether_addr_copy(&ports_eth_addr[port], ðdr->s_addr);ethdr->ether_type = rte_be_to_cpu_16(ETHER_TYPE_IPv4);
/* Put new packet into the output queue */
len = qconf->tx_mbufs[port].len;qconf->tx_mbufs[port].m_table[len] = pkt;qconf->tx_mbufs[port].len = ++len;
/* Transmit packets */

8.4. Explanation 28

Sample Applications User Guide, Release 2.1.0

if (unlikely(MAX_PKT_BURST == len))send_burst(qconf, port);}

8.4.4 Buffer Cloning

This is the most important part of the application since it demonstrates the use of zero- copy
buffer cloning. There are two approaches for creating the outgoing packet and although both
are based on the data zero-copy idea, there are some differences in the detail.

The first approach creates a clone of the input packet, for example, walk though all segments
of the input packet and for each of segment, create a new buffer and attach that new buffer
to the segment (refer to rte_pktmbuf_clone() in the rte_mbuf library for more details). A new
buffer is then allocated for the packet header and is prepended to the cloned buffer.

The second approach does not make a clone, it just increments the reference counter for all
input packet segment, allocates a new buffer for the packet header and prepends it to the input
packet.

Basically, the first approach reuses only the input packet’s data, but creates its own copy of
packet’s metadata. The second approach reuses both input packet’s data and metadata.

The advantage of first approach is that each outgoing packet has its own copy of the metadata,
so we can safely modify the data pointer of the input packet. That allows us to skip creation
if the output packet is for the last destination port and instead modify input packet’s header in
place. For example, for N destination ports, we need to invoke mcast_out_pkt() (N-1) times.

The advantage of the second approach is that there is less work to be done for each outgoing
packet, that is, the “clone” operation is skipped completely. However, there is a price to pay.
The input packet’s metadata must remain intact, so for N destination ports, we need to invoke
mcast_out_pkt() (N) times.

Therefore, for a small number of outgoing ports (and segments in the input packet), first ap-
proach is faster. As the number of outgoing ports (and/or input segments) grows, the second
approach becomes more preferable.

Depending on the number of segments or the number of ports in the outgoing portmask, either
the first (with cloning) or the second (without cloning) approach is taken:

use_clone = (port_num <= MCAST_CLONE_PORTS && m->pkt.nb_segs <= MCAST_CLONE_SEGS);
It is the mcast_out_pkt() function that performs the packet duplication (either with or without
actually cloning the buffers):

static inline struct rte_mbuf *mcast_out_pkt(struct rte_mbuf *pkt, int use_clone){
struct rte_mbuf *hdr;
/* Create new mbuf for the header. */
if (unlikely ((hdr = rte_pktmbuf_alloc(header_pool)) == NULL))

return (NULL);
/* If requested, then make a new clone packet. */
if (use_clone != 0 && unlikely ((pkt = rte_pktmbuf_clone(pkt, clone_pool)) == NULL)) {rte_pktmbuf_free(hdr);

return (NULL);}

8.4. Explanation 29

Sample Applications User Guide, Release 2.1.0

/* prepend new header */
hdr->pkt.next = pkt;
/* update header's fields */
hdr->pkt.pkt_len = (uint16_t)(hdr->pkt.data_len + pkt->pkt.pkt_len);hdr->pkt.nb_segs = (uint8_t)(pkt->pkt.nb_segs + 1);
/* copy metadata from source packet */
hdr->pkt.in_port = pkt->pkt.in_port;hdr->pkt.vlan_macip = pkt->pkt.vlan_macip;hdr->pkt.hash = pkt->pkt.hash;hdr->ol_flags = pkt->ol_flags;rte_mbuf_sanity_check(hdr, RTE_MBUF_PKT, 1);
return (hdr);}

8.4. Explanation 30

CHAPTER

NINE

IP REASSEMBLY SAMPLE APPLICATION

The L3 Forwarding application is a simple example of packet processing using the DPDK. The
application performs L3 forwarding with reassembly for fragmented IPv4 and IPv6 packets.

9.1 Overview

The application demonstrates the use of the DPDK libraries to implement packet forwarding
with reassembly for IPv4 and IPv6 fragmented packets. The initialization and run- time paths
are very similar to those of the L2 forwarding application (see Chapter 9 “L2 Forwarding Sam-
ple Application” for more information). The main difference from the L2 Forwarding sample
application is that it reassembles fragmented IPv4 and IPv6 packets before forwarding. The
maximum allowed size of reassembled packet is 9.5 KB.

There are two key differences from the L2 Forwarding sample application:

• The first difference is that the forwarding decision is taken based on information read
from the input packet’s IP header.

• The second difference is that the application differentiates between IP and non-IP traffic
by means of offload flags.

9.2 The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table
is used to store/lookup an outgoing port number, associated
with that IPv4 address. Any unmatched packets are forwarded
to the originating port.Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/ip_reassembly
1. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

1. Build the application:

make

31

Sample Applications User Guide, Release 2.1.0

9.3 Running the Application

The application has a number of command line options:

./build/ip_reassembly [EAL options] -- -p PORTMASK [-q NQ] [--maxflows=FLOWS>] [--flowttl=TTL[(s|ms)]]
where:

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -q NQ: Number of RX queues per lcore

• –maxflows=FLOWS: determines maximum number of active fragmented flows (1-65535).
Default value: 4096.

• –flowttl=TTL[(s|ms)]: determines maximum Time To Live for fragmented packet. If all
fragments of the packet wouldn’t appear within given time-out, then they are considered
as invalid and will be dropped. Valid range is 1ms - 3600s. Default value: 1s.

To run the example in linuxapp environment with 2 lcores (2,4) over 2 ports(0,2) with 1 RX
queue per lcore:

./build/ip_reassembly -c 0x14 -n 3 -- -p 5EAL: coremask set to 14EAL: Detected lcore 0 on socket 0EAL: Detected lcore 1 on socket 1EAL: Detected lcore 2 on socket 0EAL: Detected lcore 3 on socket 1EAL: Detected lcore 4 on socket 0...
Initializing port 0 on lcore 2... Address:00:1B:21:76:FA:2C, rxq=0 txq=2,0 txq=4,1done: Link Up - speed 10000 Mbps - full-duplexSkipping disabled port 1Initializing port 2 on lcore 4... Address:00:1B:21:5C:FF:54, rxq=0 txq=2,0 txq=4,1done: Link Up - speed 10000 Mbps - full-duplexSkipping disabled port 3IP_FRAG: Socket 0: adding route 100.10.0.0/16 (port 0)IP_RSMBL: Socket 0: adding route 100.20.0.0/16 (port 1)...
IP_RSMBL: Socket 0: adding route 0101:0101:0101:0101:0101:0101:0101:0101/48 (port 0)IP_RSMBL: Socket 0: adding route 0201:0101:0101:0101:0101:0101:0101:0101/48 (port 1)...
IP_RSMBL: entering main loop on lcore 4IP_RSMBL: -- lcoreid=4 portid=2IP_RSMBL: entering main loop on lcore 2IP_RSMBL: -- lcoreid=2 portid=0

To run the example in linuxapp environment with 1 lcore (4) over 2 ports(0,2) with 2 RX queues
per lcore:

./build/ip_reassembly -c 0x10 -n 3 -- -p 5 -q 2
To test the application, flows should be set up in the flow generator that match the values in
the l3fwd_ipv4_route_array and/or l3fwd_ipv6_route_array table.

Please note that in order to test this application, the traffic generator should be generating valid
fragmented IP packets. For IPv6, the only supported case is when no other extension headers
other than fragment extension header are present in the packet.

The default l3fwd_ipv4_route_array table is:

9.3. Running the Application 32

Sample Applications User Guide, Release 2.1.0

struct l3fwd_ipv4_route l3fwd_ipv4_route_array[] = {{IPv4(100, 10, 0, 0), 16, 0},{IPv4(100, 20, 0, 0), 16, 1},{IPv4(100, 30, 0, 0), 16, 2},{IPv4(100, 40, 0, 0), 16, 3},{IPv4(100, 50, 0, 0), 16, 4},{IPv4(100, 60, 0, 0), 16, 5},{IPv4(100, 70, 0, 0), 16, 6},{IPv4(100, 80, 0, 0), 16, 7},};
The default l3fwd_ipv6_route_array table is:

struct l3fwd_ipv6_route l3fwd_ipv6_route_array[] = {{{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 0},{{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 1},{{3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 2},{{4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 3},{{5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 4},{{6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 5},{{7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 6},{{8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, 48, 7},};
For example, for the fragmented input IPv4 packet with destination address: 100.10.1.1, a
reassembled IPv4 packet be sent out from port #0 to the destination address 100.10.1.1 once
all the fragments are collected.

9.4 Explanation

The following sections provide some explanation of the sample application code. As mentioned
in the overview section, the initialization and run-time paths are very similar to those of the L2
forwarding application (see Chapter 9 “L2 Forwarding Sample Application” for more informa-
tion). The following sections describe aspects that are specific to the IP reassemble sample
application.

9.4.1 IPv4 Fragment Table Initialization

This application uses the rte_ip_frag library. Please refer to Programmer’s Guide for more
detailed explanation of how to use this library. Fragment table maintains information about al-
ready received fragments of the packet. Each IP packet is uniquely identified by triple <Source
IP address>, <Destination IP address>, <ID>. To avoid lock contention, each RX queue has its
own Fragment Table, e.g. the application can’t handle the situation when different fragments
of the same packet arrive through different RX queues. Each table entry can hold information
about packet consisting of up to RTE_LIBRTE_IP_FRAG_MAX_FRAGS fragments.

frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * max_flow_ttl;
if ((qconf->frag_tbl[queue] = rte_ip_frag_tbl_create(max_flow_num, IPV4_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles, socket)) == NULL){ RTE_LOG(ERR, IP_RSMBL, "ip_frag_tbl_create(%u) on " "lcore: %u for queue: %u failed\n", max_flow_num, lcore, queue);

return -1;}

9.4. Explanation 33

Sample Applications User Guide, Release 2.1.0

9.4.2 Mempools Initialization

The reassembly application demands a lot of mbuf’s to be allocated. At any given time up to
(2 * max_flow_num * RTE_LIBRTE_IP_FRAG_MAX_FRAGS * <maximum number of mbufs
per packet>) can be stored inside Fragment Table waiting for remaining fragments. To keep
mempool size under reasonable limits and to avoid situation when one RX queue can starve
other queues, each RX queue uses its own mempool.

nb_mbuf = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * RTE_LIBRTE_IP_FRAG_MAX_FRAGS;nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE;nb_mbuf *= 2; /* ipv4 and ipv6 */nb_mbuf += RTE_TEST_RX_DESC_DEFAULT + RTE_TEST_TX_DESC_DEFAULT;nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)NB_MBUF);
rte_snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue);
if ((rxq->pool = rte_mempool_create(buf, nb_mbuf, MBUF_SIZE, 0, sizeof(struct rte_pktmbuf_pool_private), rte_pktmbuf_pool_init, NULL,rte_pktmbuf_init, NULL, socket, MEMPOOL_F_SP_PUT | MEMPOOL_F_SC_GET)) == NULL) {

RTE_LOG(ERR, IP_RSMBL, "mempool_create(%s) failed", buf);
return -1;}

9.4.3 Packet Reassembly and Forwarding

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward()
function. If the packet is an IPv4 or IPv6 fragment, then it calls rte_ipv4_reassemble_packet()
for IPv4 packets, or rte_ipv6_reassemble_packet() for IPv6 packets. These functions either
return a pointer to valid mbuf that contains reassembled packet, or NULL (if the packet can’t
be reassembled for some reason). Then l3fwd_simple_forward() continues with the code for
the packet forwarding decision (that is, the identification of the output interface for the packet)
and actual transmit of the packet.

The rte_ipv4_reassemble_packet() or rte_ipv6_reassemble_packet() are responsible for:

1. Searching the Fragment Table for entry with packet’s <IP Source Address, IP Destination
Address, Packet ID>

2. If the entry is found, then check if that entry already timed-out. If yes, then free all
previously received fragments, and remove information about them from the entry.

3. If no entry with such key is found, then try to create a new one by one of two ways:

(a) Use as empty entry

(b) Delete a timed-out entry, free mbufs associated with it mbufs and store a new entry
with specified key in it.

4. Update the entry with new fragment information and check if a packet can be reassem-
bled (the packet’s entry contains all fragments).

(a) If yes, then, reassemble the packet, mark table’s entry as empty and return the
reassembled mbuf to the caller.

(b) If no, then just return a NULL to the caller.

If at any stage of packet processing a reassembly function encounters an error (can’t insert
new entry into the Fragment table, or invalid/timed-out fragment), then it will free all associated
with the packet fragments, mark the table entry as invalid and return NULL to the caller.

9.4. Explanation 34

Sample Applications User Guide, Release 2.1.0

9.4.4 Debug logging and Statistics Collection

The RTE_LIBRTE_IP_FRAG_TBL_STAT controls statistics collection for the IP Fragment Ta-
ble. This macro is disabled by default. To make ip_reassembly print the statistics to the stan-
dard output, the user must send either an USR1, INT or TERM signal to the process. For all of
these signals, the ip_reassembly process prints Fragment table statistics for each RX queue,
plus the INT and TERM will cause process termination as usual.

9.4. Explanation 35

CHAPTER

TEN

KERNEL NIC INTERFACE SAMPLE APPLICATION

The Kernel NIC Interface (KNI) is a DPDK control plane solution that allows userspace ap-
plications to exchange packets with the kernel networking stack. To accomplish this, DPDK
userspace applications use an IOCTL call to request the creation of a KNI virtual device in the
Linux* kernel. The IOCTL call provides interface information and the DPDK’s physical address
space, which is re-mapped into the kernel address space by the KNI kernel loadable module
that saves the information to a virtual device context. The DPDK creates FIFO queues for
packet ingress and egress to the kernel module for each device allocated.

The KNI kernel loadable module is a standard net driver, which upon receiving the IOCTL
call access the DPDK’s FIFO queue to receive/transmit packets from/to the DPDK userspace
application. The FIFO queues contain pointers to data packets in the DPDK. This:

• Provides a faster mechanism to interface with the kernel net stack and eliminates system
calls

• Facilitates the DPDK using standard Linux* userspace net tools (tcpdump, ftp, and so on)

• Eliminate the copy_to_user and copy_from_user operations on packets.

The Kernel NIC Interface sample application is a simple example that demonstrates the use of
the DPDK to create a path for packets to go through the Linux* kernel. This is done by creating
one or more kernel net devices for each of the DPDK ports. The application allows the use of
standard Linux tools (ethtool, ifconfig, tcpdump) with the DPDK ports and also the exchange
of packets between the DPDK application and the Linux* kernel.

10.1 Overview

The Kernel NIC Interface sample application uses two threads in user space for each physical
NIC port being used, and allocates one or more KNI device for each physical NIC port with
kernel module’s support. For a physical NIC port, one thread reads from the port and writes to
KNI devices, and another thread reads from KNI devices and writes the data unmodified to the
physical NIC port. It is recommended to configure one KNI device for each physical NIC port.
If configured with more than one KNI devices for a physical NIC port, it is just for performance
testing, or it can work together with VMDq support in future.

The packet flow through the Kernel NIC Interface application is as shown in the following figure.

36

Sample Applications User Guide, Release 2.1.0

Fig. 10.1: Kernel NIC Application Packet Flow

10.2 Compiling the Application

Compile the application as follows:

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk cd
${RTE_SDK}/examples/kni

2. Set the target (a default target is used if not specified)

Note: This application is intended as a linuxapp only.

export RTE_TARGET=x86_64-native-linuxapp-gcc
3. Build the application:

make

10.3 Loading the Kernel Module

Loading the KNI kernel module without any parameter is the typical way a DPDK application
gets packets into and out of the kernel net stack. This way, only one kernel thread is created
for all KNI devices for packet receiving in kernel side:

#insmod rte_kni.ko
Pinning the kernel thread to a specific core can be done using a taskset command such as
following:

#taskset -p 100000 pgrep --fl kni_thread | awk '{print $1}'

10.2. Compiling the Application 37

Sample Applications User Guide, Release 2.1.0

This command line tries to pin the specific kni_thread on the 20th lcore (lcore numbering starts
at 0), which means it needs to check if that lcore is available on the board. This command must
be sent after the application has been launched, as insmod does not start the kni thread.

For optimum performance, the lcore in the mask must be selected to be on the same socket
as the lcores used in the KNI application.

To provide flexibility of performance, the kernel module of the KNI, located in the kmod sub-
directory of the DPDK target directory, can be loaded with parameter of kthread_mode as
follows:

• #insmod rte_kni.ko kthread_mode=single

This mode will create only one kernel thread for all KNI devices for packet receiving in
kernel side. By default, it is in this single kernel thread mode. It can set core affinity for
this kernel thread by using Linux command taskset.

• #insmod rte_kni.ko kthread_mode =multiple

This mode will create a kernel thread for each KNI device for packet receiving in ker-
nel side. The core affinity of each kernel thread is set when creating the KNI device.
The lcore ID for each kernel thread is provided in the command line of launching the
application. Multiple kernel thread mode can provide scalable higher performance.

To measure the throughput in a loopback mode, the kernel module of the KNI, located in the
kmod sub-directory of the DPDK target directory, can be loaded with parameters as follows:

• #insmod rte_kni.ko lo_mode=lo_mode_fifo

This loopback mode will involve ring enqueue/dequeue operations in kernel space.

• #insmod rte_kni.ko lo_mode=lo_mode_fifo_skb

This loopback mode will involve ring enqueue/dequeue operations and sk buffer copies
in kernel space.

10.4 Running the Application

The application requires a number of command line options:

kni [EAL options] -- -P -p PORTMASK --config="(port,lcore_rx,lcore_tx[,lcore_kthread,...])[,port,lcore_rx,lcore_tx[,lcore_kthread,...]]"
Where:

• -P: Set all ports to promiscuous mode so that packets are accepted regardless of the
packet’s Ethernet MAC destination address. Without this option, only packets with the
Ethernet MAC destination address set to the Ethernet address of the port are accepted.

• -p PORTMASK: Hexadecimal bitmask of ports to configure.

• –config=”(port,lcore_rx, lcore_tx[,lcore_kthread, ...]) [, port,lcore_rx,
lcore_tx[,lcore_kthread, ...]]”: Determines which lcores of RX, TX, kernel thread
are mapped to which ports.

Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

The -c coremask parameter of the EAL options should include the lcores indicated by the
lcore_rx and lcore_tx, but does not need to include lcores indicated by lcore_kthread as they

10.4. Running the Application 38

Sample Applications User Guide, Release 2.1.0

are used to pin the kernel thread on. The -p PORTMASK parameter should include the ports
indicated by the port in –config, neither more nor less.

The lcore_kthread in –config can be configured none, one or more lcore IDs. In multiple kernel
thread mode, if configured none, a KNI device will be allocated for each port, while no specific
lcore affinity will be set for its kernel thread. If configured one or more lcore IDs, one or more
KNI devices will be allocated for each port, while specific lcore affinity will be set for its kernel
thread. In single kernel thread mode, if configured none, a KNI device will be allocated for each
port. If configured one or more lcore IDs, one or more KNI devices will be allocated for each
port while no lcore affinity will be set as there is only one kernel thread for all KNI devices.

For example, to run the application with two ports served by six lcores, one lcore of RX, one
lcore of TX, and one lcore of kernel thread for each port:

./build/kni -c 0xf0 -n 4 -- -P -p 0x3 -config="(0,4,6,8),(1,5,7,9)"

10.5 KNI Operations

Once the KNI application is started, one can use different Linux* commands to manage the
net interfaces. If more than one KNI devices configured for a physical port, only the first KNI
device will be paired to the physical device. Operations on other KNI devices will not affect the
physical port handled in user space application.

Assigning an IP address:

#ifconfig vEth0_0 192.168.0.1
Displaying the NIC registers:

#ethtool -d vEth0_0
Dumping the network traffic:

#tcpdump -i vEth0_0
When the DPDK userspace application is closed, all the KNI devices are deleted from Linux*.

10.6 Explanation

The following sections provide some explanation of code.

10.6.1 Initialization

Setup of mbuf pool, driver and queues is similar to the setup done in the L2 Forwarding sample
application (see Chapter 9 “L2 Forwarding Sample Application (in Real and Virtualized Envi-
ronments” for details). In addition, one or more kernel NIC interfaces are allocated for each of
the configured ports according to the command line parameters.

The code for creating the kernel NIC interface for a specific port is as follows:

kni = rte_kni_create(port, MAX_PACKET_SZ, pktmbuf_pool, &kni_ops);
if (kni == NULL)rte_exit(EXIT_FAILURE, "Fail to create kni dev ""for port: %d\n", port);

The code for allocating the kernel NIC interfaces for a specific port is as follows:

10.5. KNI Operations 39

Sample Applications User Guide, Release 2.1.0

static intkni_alloc(uint8_t port_id){
uint8_t i;
struct rte_kni *kni;
struct rte_kni_conf conf;
struct kni_port_params **params = kni_port_params_array;
if (port_id >= RTE_MAX_ETHPORTS || !params[port_id])

return -1;
params[port_id]->nb_kni = params[port_id]->nb_lcore_k ? params[port_id]->nb_lcore_k : 1;
for (i = 0; i < params[port_id]->nb_kni; i++) {

/* Clear conf at first */
memset(&conf, 0, sizeof(conf));
if (params[port_id]->nb_lcore_k) {rte_snprintf(conf.name, RTE_KNI_NAMESIZE, "vEth%u_%u", port_id, i);conf.core_id = params[port_id]->lcore_k[i];conf.force_bind = 1;} elserte_snprintf(conf.name, RTE_KNI_NAMESIZE, "vEth%u", port_id);conf.group_id = (uint16_t)port_id;conf.mbuf_size = MAX_PACKET_SZ;

/** The first KNI device associated to a port* is the master, for multiple kernel thread* environment.*/
if (i == 0) {

struct rte_kni_ops ops;
struct rte_eth_dev_info dev_info;
memset(&dev_info, 0, sizeof(dev_info)); rte_eth_dev_info_get(port_id, &dev_info);
conf.addr = dev_info.pci_dev->addr;conf.id = dev_info.pci_dev->id;
memset(&ops, 0, sizeof(ops));
ops.port_id = port_id;ops.change_mtu = kni_change_mtu;ops.config_network_if = kni_config_network_interface;
kni = rte_kni_alloc(pktmbuf_pool, &conf, &ops);} elsekni = rte_kni_alloc(pktmbuf_pool, &conf, NULL);

if (!kni)rte_exit(EXIT_FAILURE, "Fail to create kni for ""port: %d\n", port_id);
params[port_id]->kni[i] = kni;}

return 0;}
The other step in the initialization process that is unique to this sample application is the asso-
ciation of each port with lcores for RX, TX and kernel threads.

10.6. Explanation 40

Sample Applications User Guide, Release 2.1.0

• One lcore to read from the port and write to the associated one or more KNI devices

• Another lcore to read from one or more KNI devices and write to the port

• Other lcores for pinning the kernel threads on one by one

This is done by using the‘kni_port_params_array[]‘ array, which is indexed by the port ID. The
code is as follows:

static intparse_config(const char *arg){ const char *p, *p0 = arg;char s[256], *end;unsigned size;enum fieldnames {FLD_PORT = 0,FLD_LCORE_RX,FLD_LCORE_TX,_NUM_FLD = KNI_MAX_KTHREAD + 3,};int i, j, nb_token;char *str_fld[_NUM_FLD];unsigned long int_fld[_NUM_FLD];uint8_t port_id, nb_kni_port_params = 0;
memset(&kni_port_params_array, 0, sizeof(kni_port_params_array));
while (((p = strchr(p0, '(')) != NULL) && nb_kni_port_params < RTE_MAX_ETHPORTS) {p++;if ((p0 = strchr(p, ')')) == NULL)goto fail;

size = p0 - p;
if (size >= sizeof(s)) {printf("Invalid config parameters\n");goto fail;}
rte_snprintf(s, sizeof(s), "%.*s", size, p);nb_token = rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',');
if (nb_token <= FLD_LCORE_TX) {printf("Invalid config parameters\n");goto fail;}
for (i = 0; i < nb_token; i++) {errno = 0;int_fld[i] = strtoul(str_fld[i], &end, 0);if (errno != 0 || end == str_fld[i]) {printf("Invalid config parameters\n");goto fail;}}
i = 0;port_id = (uint8_t)int_fld[i++];
if (port_id >= RTE_MAX_ETHPORTS) {printf("Port ID %u could not exceed the maximum %u\n", port_id, RTE_MAX_ETHPORTS);goto fail;}

10.6. Explanation 41

Sample Applications User Guide, Release 2.1.0

if (kni_port_params_array[port_id]) {printf("Port %u has been configured\n", port_id);goto fail;}
kni_port_params_array[port_id] = (struct kni_port_params*)rte_zmalloc("KNI_port_params", sizeof(struct kni_port_params), RTE_CACHE_LINE_SIZE);kni_port_params_array[port_id]->port_id = port_id;kni_port_params_array[port_id]->lcore_rx = (uint8_t)int_fld[i++];kni_port_params_array[port_id]->lcore_tx = (uint8_t)int_fld[i++];
if (kni_port_params_array[port_id]->lcore_rx >= RTE_MAX_LCORE || kni_port_params_array[port_id]->lcore_tx >= RTE_MAX_LCORE) {printf("lcore_rx %u or lcore_tx %u ID could not ""exceed the maximum %u\n",kni_port_params_array[port_id]->lcore_rx, kni_port_params_array[port_id]->lcore_tx, RTE_MAX_LCORE);goto fail;}

for (j = 0; i < nb_token && j < KNI_MAX_KTHREAD; i++, j++)kni_port_params_array[port_id]->lcore_k[j] = (uint8_t)int_fld[i];kni_port_params_array[port_id]->nb_lcore_k = j;}
print_config();
return 0;

fail:
for (i = 0; i < RTE_MAX_ETHPORTS; i++) {if (kni_port_params_array[i]) {rte_free(kni_port_params_array[i]);kni_port_params_array[i] = NULL;}}
return -1;

}

10.6.2 Packet Forwarding

After the initialization steps are completed, the main_loop() function is run on each lcore. This
function first checks the lcore_id against the user provided lcore_rx and lcore_tx to see if this
lcore is reading from or writing to kernel NIC interfaces.

For the case that reads from a NIC port and writes to the kernel NIC interfaces, the packet
reception is the same as in L2 Forwarding sample application (see Section 9.4.6 “Receive,
Process and Transmit Packets”). The packet transmission is done by sending mbufs into the
kernel NIC interfaces by rte_kni_tx_burst(). The KNI library automatically frees the mbufs after
the kernel successfully copied the mbufs.

/*** Interface to burst rx and enqueue mbufs into rx_q*/
static voidkni_ingress(struct kni_port_params *p){

uint8_t i, nb_kni, port_id;
unsigned nb_rx, num;

10.6. Explanation 42

Sample Applications User Guide, Release 2.1.0

struct rte_mbuf *pkts_burst[PKT_BURST_SZ];
if (p == NULL)

return;
nb_kni = p->nb_kni;port_id = p->port_id;
for (i = 0; i < nb_kni; i++) {/* Burst rx from eth */nb_rx = rte_eth_rx_burst(port_id, 0, pkts_burst, PKT_BURST_SZ);

if (unlikely(nb_rx > PKT_BURST_SZ)) {RTE_LOG(ERR, APP, "Error receiving from eth\n");
return;}

/* Burst tx to kni */num = rte_kni_tx_burst(p->kni[i], pkts_burst, nb_rx);kni_stats[port_id].rx_packets += num;rte_kni_handle_request(p->kni[i]);
if (unlikely(num < nb_rx)) {/* Free mbufs not tx to kni interface */kni_burst_free_mbufs(&pkts_burst[num], nb_rx - num);kni_stats[port_id].rx_dropped += nb_rx - num;}}}

For the other case that reads from kernel NIC interfaces and writes to a physical NIC port,
packets are retrieved by reading mbufs from kernel NIC interfaces by rte_kni_rx_burst(). The
packet transmission is the same as in the L2 Forwarding sample application (see Section 9.4.6
“Receive, Process and Transmit Packet’s”).

/*** Interface to dequeue mbufs from tx_q and burst tx*/
static void

kni_egress(struct kni_port_params *p){
uint8_t i, nb_kni, port_id;
unsigned nb_tx, num;
struct rte_mbuf *pkts_burst[PKT_BURST_SZ];
if (p == NULL)

return;
nb_kni = p->nb_kni;port_id = p->port_id;
for (i = 0; i < nb_kni; i++) {/* Burst rx from kni */num = rte_kni_rx_burst(p->kni[i], pkts_burst, PKT_BURST_SZ);

if (unlikely(num > PKT_BURST_SZ)) {RTE_LOG(ERR, APP, "Error receiving from KNI\n");
return;}

/* Burst tx to eth */
nb_tx = rte_eth_tx_burst(port_id, 0, pkts_burst, (uint16_t)num);

10.6. Explanation 43

Sample Applications User Guide, Release 2.1.0

kni_stats[port_id].tx_packets += nb_tx;
if (unlikely(nb_tx < num)) {/* Free mbufs not tx to NIC */kni_burst_free_mbufs(&pkts_burst[nb_tx], num - nb_tx);kni_stats[port_id].tx_dropped += num - nb_tx;}}}

10.6.3 Callbacks for Kernel Requests

To execute specific PMD operations in user space requested by some Linux* commands, call-
backs must be implemented and filled in the struct rte_kni_ops structure. Currently, setting a
new MTU and configuring the network interface (up/ down) are supported.

static struct rte_kni_ops kni_ops = {.change_mtu = kni_change_mtu,.config_network_if = kni_config_network_interface,};
/* Callback for request of changing MTU */
static intkni_change_mtu(uint8_t port_id, unsigned new_mtu){

int ret;
struct rte_eth_conf conf;
if (port_id >= rte_eth_dev_count()) {RTE_LOG(ERR, APP, "Invalid port id %d\n", port_id);

return -EINVAL;}
RTE_LOG(INFO, APP, "Change MTU of port %d to %u\n", port_id, new_mtu);
/* Stop specific port */
rte_eth_dev_stop(port_id);
memcpy(&conf, &port_conf, sizeof(conf));
/* Set new MTU */
if (new_mtu > ETHER_MAX_LEN)conf.rxmode.jumbo_frame = 1;
elseconf.rxmode.jumbo_frame = 0;
/* mtu + length of header + length of FCS = max pkt length */
conf.rxmode.max_rx_pkt_len = new_mtu + KNI_ENET_HEADER_SIZE + KNI_ENET_FCS_SIZE;
ret = rte_eth_dev_configure(port_id, 1, 1, &conf);
if (ret < 0) {RTE_LOG(ERR, APP, "Fail to reconfigure port %d\n", port_id);

return ret;}
/* Restart specific port */

10.6. Explanation 44

Sample Applications User Guide, Release 2.1.0

ret = rte_eth_dev_start(port_id);
if (ret < 0) {RTE_LOG(ERR, APP, "Fail to restart port %d\n", port_id);

return ret;}
return 0;}

/* Callback for request of configuring network interface up/down */
static intkni_config_network_interface(uint8_t port_id, uint8_t if_up){

int ret = 0;
if (port_id >= rte_eth_dev_count() || port_id >= RTE_MAX_ETHPORTS) {RTE_LOG(ERR, APP, "Invalid port id %d\n", port_id);

return -EINVAL;}
RTE_LOG(INFO, APP, "Configure network interface of %d %s\n",
port_id, if_up ? "up" : "down");
if (if_up != 0) {/* Configure network interface up */rte_eth_dev_stop(port_id);ret = rte_eth_dev_start(port_id);} else /* Configure network interface down */rte_eth_dev_stop(port_id);
if (ret < 0)RTE_LOG(ERR, APP, "Failed to start port %d\n", port_id);
return ret;}

10.6. Explanation 45

CHAPTER

ELEVEN

L2 FORWARDING SAMPLE APPLICATION (IN REAL AND
VIRTUALIZED ENVIRONMENTS) WITH CORE LOAD STATISTICS.

The L2 Forwarding sample application is a simple example of packet processing using the Data
Plane Development Kit (DPDK) which also takes advantage of Single Root I/O Virtualization
(SR-IOV) features in a virtualized environment.

Note: This application is a variation of L2 Forwarding sample application. It demonstrate
possible scheme of job stats library usage therefore some parts of this document is identical
with original L2 forwarding application.

11.1 Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments,
performs L2 forwarding for each packet that is received. The destination port is the adjacent
port from the enabled portmask, that is, if the first four ports are enabled (portmask 0xf), ports
1 and 2 forward into each other, and ports 3 and 4 forward into each other. Also, the MAC
addresses are affected as follows:

• The source MAC address is replaced by the TX port MAC address

• The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as shown in
the Fig. 11.1.

The application can also be used in a virtualized environment as shown in Fig. 11.2.

The L2 Forwarding application can also be used as a starting point for developing a new appli-
cation based on the DPDK.

11.1.1 Virtual Function Setup Instructions

This application can use the virtual function available in the system and therefore can be used
in a virtual machine without passing through the whole Network Device into a guest machine
in a virtualized scenario. The virtual functions can be enabled in the host machine or the
hypervisor with the respective physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the
following command:

modprobe ixgbe max_vfs=2,2

46

Sample Applications User Guide, Release 2.1.0

Traffic
Generator

NUT
(RTE)

Flow 0

Flow 1

Flow 2

Flow 3

0

1

2

3

0

1

2

3

...

Fig. 11.1: Performance Benchmark Setup (Basic Environment)

Fig. 11.2: Performance Benchmark Setup (Virtualized Environment)

11.1. Overview 47

Sample Applications User Guide, Release 2.1.0

This command enables two Virtual Functions on each of Physical Function of the NIC, with
two physical ports in the PCI configuration space. It is important to note that enabled Virtual
Function 0 and 2 would belong to Physical Function 0 and Virtual Function 1 and 3 would
belong to Physical Function 1, in this case enabling a total of four Virtual Functions.

11.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk cd ${RTE_SDK}/examples/l2fwd-jobstats
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

11.3 Running the Application

The application requires a number of command line options:

./build/l2fwd-jobstats [EAL options] -- -p PORTMASK [-q NQ] [-l]
where,

• p PORTMASK: A hexadecimal bitmask of the ports to configure

• q NQ: A number of queues (=ports) per lcore (default is 1)

• l: Use locale thousands separator when formatting big numbers.

To run the application in linuxapp environment with 4 lcores, 16 ports, 8 RX queues per lcore
and thousands separator printing, issue the command:

$./build/l2fwd-jobstats -c f -n 4 -- -q 8 -p ffff -l
Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

11.4 Explanation

The following sections provide some explanation of the code.

11.4.1 Command Line Arguments

The L2 Forwarding sample application takes specific parameters, in addition to Environment
Abstraction Layer (EAL) arguments (see Section 9.3). The preferred way to parse parameters
is to use the getopt() function, since it is part of a well-defined and portable library.

The parsing of arguments is done in the l2fwd_parse_args() function. The method of argument
parsing is not described here. Refer to the glibc getopt(3) man page for details.

11.2. Compiling the Application 48

Sample Applications User Guide, Release 2.1.0

EAL arguments are parsed first, then application-specific arguments. This is done at the be-
ginning of the main() function:

/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
argc -= ret;argv += ret;
/* parse application arguments (after the EAL ones) */
ret = l2fwd_parse_args(argc, argv);
if (ret < 0)rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");

11.4.2 Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created. The mbuf pool contains a set of
mbuf objects that will be used by the driver and the application to store network packet data:

/* create the mbuf pool */l2fwd_pktmbuf_pool =rte_mempool_create("mbuf_pool", NB_MBUF,MBUF_SIZE, 32,
sizeof(struct rte_pktmbuf_pool_private),rte_pktmbuf_pool_init, NULL,rte_pktmbuf_init, NULL,rte_socket_id(), 0);

if (l2fwd_pktmbuf_pool == NULL)rte_exit(EXIT_FAILURE, "Cannot init mbuf pool\n");
The rte_mempool is a generic structure used to handle pools of objects. In this case, it is
necessary to create a pool that will be used by the driver, which expects to have some reserved
space in the mempool structure, sizeof(struct rte_pktmbuf_pool_private) bytes. The number of
allocated pkt mbufs is NB_MBUF, with a size of MBUF_SIZE each. A per-lcore cache of 32
mbufs is kept. The memory is allocated in rte_socket_id() socket, but it is possible to extend
this code to allocate one mbuf pool per socket.

Two callback pointers are also given to the rte_mempool_create() function:

• The first callback pointer is to rte_pktmbuf_pool_init() and is used to initialize the private
data of the mempool, which is needed by the driver. This function is provided by the mbuf
API, but can be copied and extended by the developer.

• The second callback pointer given to rte_mempool_create() is the mbuf initializer. The
default is used, that is, rte_pktmbuf_init(), which is provided in the rte_mbuf library. If a
more complex application wants to extend the rte_pktmbuf structure for its own needs, a
new function derived from rte_pktmbuf_init() can be created.

11.4.3 Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully
understand this code, it is recommended to study the chapters that related to the Poll Mode
Driver in the DPDK Programmer’s Guide and the DPDK API Reference.

11.4. Explanation 49

Sample Applications User Guide, Release 2.1.0

nb_ports = rte_eth_dev_count();
if (nb_ports == 0)rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");
if (nb_ports > RTE_MAX_ETHPORTS)nb_ports = RTE_MAX_ETHPORTS;
/* reset l2fwd_dst_ports */
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)l2fwd_dst_ports[portid] = 0;
last_port = 0;
/** Each logical core is assigned a dedicated TX queue on each port.*/
for (portid = 0; portid < nb_ports; portid++) {/* skip ports that are not enabled */

if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
continue;

if (nb_ports_in_mask % 2) {l2fwd_dst_ports[portid] = last_port;l2fwd_dst_ports[last_port] = portid;}
elselast_port = portid;
nb_ports_in_mask++;
rte_eth_dev_info_get((uint8_t) portid, &dev_info);}

The next step is to configure the RX and TX queues. For each port, there is only one RX queue
(only one lcore is able to poll a given port). The number of TX queues depends on the number
of available lcores. The rte_eth_dev_configure() function is used to configure the number of
queues for a port:

ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
if (ret < 0)rte_exit(EXIT_FAILURE, "Cannot configure device: ""err=%d, port=%u\n",ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {.rxmode = {.split_hdr_size = 0,.header_split = 0, /**< Header Split disabled */.hw_ip_checksum = 0, /**< IP checksum offload disabled */.hw_vlan_filter = 0, /**< VLAN filtering disabled */.jumbo_frame = 0, /**< Jumbo Frame Support disabled */.hw_strip_crc= 0, /**< CRC stripped by hardware */},
.txmode = {.mq_mode = ETH_DCB_NONE},};

11.4. Explanation 50

Sample Applications User Guide, Release 2.1.0

11.4.4 RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option, which
specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
If there are 16 ports on the target (and if the portmask argument is -p ffff), the application will
need four lcores to poll all the ports.

ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,rte_eth_dev_socket_id(portid),NULL,l2fwd_pktmbuf_pool);
if (ret < 0)rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup:err=%d, port=%u\n",ret, (unsigned) portid);

The list of queues that must be polled for a given lcore is stored in a private structure called
struct lcore_queue_conf.

struct lcore_queue_conf {
unsigned n_rx_port;
unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];truct mbuf_table tx_mbufs[RTE_MAX_ETHPORTS];
struct rte_timer rx_timers[MAX_RX_QUEUE_PER_LCORE];
struct rte_jobstats port_fwd_jobs[MAX_RX_QUEUE_PER_LCORE];
struct rte_timer flush_timer;
struct rte_jobstats flush_job;
struct rte_jobstats idle_job;
struct rte_jobstats_context jobs_context;
rte_atomic16_t stats_read_pending;
rte_spinlock_t lock;} __rte_cache_aligned;

Values of struct lcore_queue_conf:

• n_rx_port and rx_port_list[] are used in the main packet processing loop (see Section
9.4.6 “Receive, Process and Transmit Packets” later in this chapter).

• rx_timers and flush_timer are used to ensure forced TX on low packet rate.

• flush_job, idle_job and jobs_context are librte_jobstats objects used for managing l2fwd
jobs.

• stats_read_pending and lock are used during job stats read phase.

11.4.5 TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is
initialized.

/* init one TX queue on each port */
fflush(stdout);ret = rte_eth_tx_queue_setup(portid, 0, nb_txd,rte_eth_dev_socket_id(portid),NULL);

11.4. Explanation 51

Sample Applications User Guide, Release 2.1.0

if (ret < 0)rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n",ret, (unsigned) portid);

11.4.6 Jobs statistics initialization

There are several statistics objects available:

• Flush job statistics

rte_jobstats_init(&qconf->flush_job, "flush", drain_tsc, drain_tsc,drain_tsc, 0);
rte_timer_init(&qconf->flush_timer);ret = rte_timer_reset(&qconf->flush_timer, drain_tsc, PERIODICAL,lcore_id, &l2fwd_flush_job, NULL);
if (ret < 0) {rte_exit(1, "Failed to reset flush job timer for lcore %u: %s",lcore_id, rte_strerror(-ret));}
• Statistics per RX port

rte_jobstats_init(job, name, 0, drain_tsc, 0, MAX_PKT_BURST);rte_jobstats_set_update_period_function(job, l2fwd_job_update_cb);
rte_timer_init(&qconf->rx_timers[i]);ret = rte_timer_reset(&qconf->rx_timers[i], 0, PERIODICAL, lcore_id,l2fwd_fwd_job, (void *)(uintptr_t)i);
if (ret < 0) {rte_exit(1, "Failed to reset lcore %u port %u job timer: %s",lcore_id, qconf->rx_port_list[i], rte_strerror(-ret));}

Following parameters are passed to rte_jobstats_init():

• 0 as minimal poll period

• drain_tsc as maximum poll period

• MAX_PKT_BURST as desired target value (RX burst size)

11.4.7 Main loop

The forwarding path is reworked comparing to original L2 Forwarding application. In the
l2fwd_main_loop() function three loops are placed.

for (;;) {rte_spinlock_lock(&qconf->lock);
do {rte_jobstats_context_start(&qconf->jobs_context);

/* Do the Idle job:* - Read stats_read_pending flag* - check if some real job need to be executed*/rte_jobstats_start(&qconf->jobs_context, &qconf->idle_job);

11.4. Explanation 52

Sample Applications User Guide, Release 2.1.0

do {
uint8_t i;
uint64_t now = rte_get_timer_cycles();
need_manage = qconf->flush_timer.expire < now;/* Check if we was esked to give a stats. */stats_read_pending =rte_atomic16_read(&qconf->stats_read_pending);need_manage |= stats_read_pending;
for (i = 0; i < qconf->n_rx_port && !need_manage; i++)need_manage = qconf->rx_timers[i].expire < now;

} while (!need_manage);rte_jobstats_finish(&qconf->idle_job, qconf->idle_job.target);
rte_timer_manage();rte_jobstats_context_finish(&qconf->jobs_context);} while (likely(stats_read_pending == 0));

rte_spinlock_unlock(&qconf->lock);rte_pause();}
First infinite for loop is to minimize impact of stats reading. Lock is only locked/unlocked when
asked.

Second inner while loop do the whole jobs management. When any job is ready, the use
rte_timer_manage() is used to call the job handler. In this place functions l2fwd_fwd_job() and
l2fwd_flush_job() are called when needed. Then rte_jobstats_context_finish() is called to mark
loop end - no other jobs are ready to execute. By this time stats are ready to be read and if
stats_read_pending is set, loop breaks allowing stats to be read.

Third do-while loop is the idle job (idle stats counter). Its only purpose is monitoring if any job
is ready or stats job read is pending for this lcore. Statistics from this part of code is considered
as the headroom available for additional processing.

11.4.8 Receive, Process and Transmit Packets

The main task of l2fwd_fwd_job() function is to read ingress packets from the RX queue of
particular port and forward it. This is done using the following code:

total_nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst,MAX_PKT_BURST);
for (j = 0; j < total_nb_rx; j++) {m = pkts_burst[j];rte_prefetch0(rte_pktmbuf_mtod(m, void *));l2fwd_simple_forward(m, portid);}

Packets are read in a burst of size MAX_PKT_BURST. Then, each mbuf in the table is pro-
cessed by the l2fwd_simple_forward() function. The processing is very simple: process the TX
port from the RX port, then replace the source and destination MAC addresses.

The rte_eth_rx_burst() function writes the mbuf pointers in a local table and returns the number
of available mbufs in the table.

After first read second try is issued.

11.4. Explanation 53

Sample Applications User Guide, Release 2.1.0

if (total_nb_rx == MAX_PKT_BURST) {
const uint16_t nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst,MAX_PKT_BURST);
total_nb_rx += nb_rx;
for (j = 0; j < nb_rx; j++) {m = pkts_burst[j];rte_prefetch0(rte_pktmbuf_mtod(m, void *));l2fwd_simple_forward(m, portid);}}

This second read is important to give job stats library a feedback how many packets was
processed.

/* Adjust period time in which we are running here. */
if (rte_jobstats_finish(job, total_nb_rx) != 0) {rte_timer_reset(&qconf->rx_timers[port_idx], job->period, PERIODICAL,lcore_id, l2fwd_fwd_job, arg);}

To maximize performance exactly MAX_PKT_BURST is expected (the target value) to be read
for each l2fwd_fwd_job() call. If total_nb_rx is smaller than target value job->period will be
increased. If it is greater the period will be decreased.

Note: In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled
such that for each source port, a destination port is assigned that is either the next or previous
enabled port from the portmask. Naturally, the number of ports in the portmask must be even,
otherwise, the application exits.

static voidl2fwd_simple_forward(struct rte_mbuf *m, unsigned portid){
struct ether_hdr *eth;
void *tmp;
unsigned dst_port;
dst_port = l2fwd_dst_ports[portid];
eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
/* 02:00:00:00:00:xx */
tmp = ð->d_addr.addr_bytes[0];
*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);
/* src addr */
ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr);
l2fwd_send_packet(m, (uint8_t) dst_port);}

Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function. For this test
application, the processing is exactly the same for all packets arriving on the same RX port.
Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the
main loop to send all the received packets on the same TX port, using the burst-oriented send
function, which is more efficient.

11.4. Explanation 54

Sample Applications User Guide, Release 2.1.0

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded
on the same port as packet N-1. The application is implemented to illustrate that, so the same
approach can be reused in a more complex application.

The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table. If the
table is full, the whole packets table is transmitted using the l2fwd_send_burst() function:

/* Send the packet on an output interface */
static intl2fwd_send_packet(struct rte_mbuf *m, uint8_t port){

unsigned lcore_id, len;
struct lcore_queue_conf *qconf;
lcore_id = rte_lcore_id();qconf = &lcore_queue_conf[lcore_id];len = qconf->tx_mbufs[port].len;qconf->tx_mbufs[port].m_table[len] = m;len++;
/* enough pkts to be sent */
if (unlikely(len == MAX_PKT_BURST)) {l2fwd_send_burst(qconf, MAX_PKT_BURST, port);len = 0;}
qconf->tx_mbufs[port].len = len; return 0;}

To ensure that no packets remain in the tables, the flush job exists. The l2fwd_flush_job() is
called periodically to for each lcore draining TX queue of each port. This technique introduces
some latency when there are not many packets to send, however it improves performance:

static voidl2fwd_flush_job(__rte_unused struct rte_timer *timer, __rte_unused void *arg){
uint64_t now;
unsigned lcore_id;
struct lcore_queue_conf *qconf;
struct mbuf_table *m_table;
uint8_t portid;
lcore_id = rte_lcore_id();qconf = &lcore_queue_conf[lcore_id];
rte_jobstats_start(&qconf->jobs_context, &qconf->flush_job);
now = rte_get_timer_cycles();lcore_id = rte_lcore_id();qconf = &lcore_queue_conf[lcore_id];
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {m_table = &qconf->tx_mbufs[portid];

if (m_table->len == 0 || m_table->next_flush_time <= now)
continue;

l2fwd_send_burst(qconf, portid);}

/* Pass target to indicate that this job is happy of time interval* in which it was called. */

11.4. Explanation 55

Sample Applications User Guide, Release 2.1.0

rte_jobstats_finish(&qconf->flush_job, qconf->flush_job.target);}

11.4. Explanation 56

CHAPTER

TWELVE

L2 FORWARDING SAMPLE APPLICATION (IN REAL AND
VIRTUALIZED ENVIRONMENTS)

The L2 Forwarding sample application is a simple example of packet processing using the Data
Plane Development Kit (DPDK) which also takes advantage of Single Root I/O Virtualization
(SR-IOV) features in a virtualized environment.

Note: Please note that previously a separate L2 Forwarding in Virtualized Environments
sample application was used, however, in later DPDK versions these sample applications have
been merged.

12.1 Overview

The L2 Forwarding sample application, which can operate in real and virtualized environments,
performs L2 forwarding for each packet that is received on an RX_PORT. The destination port is
the adjacent port from the enabled portmask, that is, if the first four ports are enabled (portmask
0xf), ports 1 and 2 forward into each other, and ports 3 and 4 forward into each other. Also, the
MAC addresses are affected as follows:

• The source MAC address is replaced by the TX_PORT MAC address

• The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as shown in
the Fig. 12.1.

The application can also be used in a virtualized environment as shown in Fig. 12.2.

The L2 Forwarding application can also be used as a starting point for developing a new appli-
cation based on the DPDK.

12.1.1 Virtual Function Setup Instructions

This application can use the virtual function available in the system and therefore can be used
in a virtual machine without passing through the whole Network Device into a guest machine
in a virtualized scenario. The virtual functions can be enabled in the host machine or the
hypervisor with the respective physical function driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using the
following command:

modprobe ixgbe max_vfs=2,2

57

Sample Applications User Guide, Release 2.1.0

Traffic
Generator

NUT
(RTE)

Flow 0

Flow 1

Flow 2

Flow 3

0

1

2

3

0

1

2

3

...

Fig. 12.1: Performance Benchmark Setup (Basic Environment)

Fig. 12.2: Performance Benchmark Setup (Virtualized Environment)

12.1. Overview 58

Sample Applications User Guide, Release 2.1.0

This command enables two Virtual Functions on each of Physical Function of the NIC, with
two physical ports in the PCI configuration space. It is important to note that enabled Virtual
Function 0 and 2 would belong to Physical Function 0 and Virtual Function 1 and 3 would
belong to Physical Function 1, in this case enabling a total of four Virtual Functions.

12.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk cd ${RTE_SDK}/examples/l2fwd
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

12.3 Running the Application

The application requires a number of command line options:

./build/l2fwd [EAL options] -- -p PORTMASK [-q NQ]
where,

• p PORTMASK: A hexadecimal bitmask of the ports to configure

• q NQ: A number of queues (=ports) per lcore (default is 1)

To run the application in linuxapp environment with 4 lcores, 16 ports and 8 RX queues per
lcore, issue the command:

$./build/l2fwd -c f -n 4 -- -q 8 -p ffff
Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

12.4 Explanation

The following sections provide some explanation of the code.

12.4.1 Command Line Arguments

The L2 Forwarding sample application takes specific parameters, in addition to Environment
Abstraction Layer (EAL) arguments (see Section 9.3). The preferred way to parse parameters
is to use the getopt() function, since it is part of a well-defined and portable library.

The parsing of arguments is done in the l2fwd_parse_args() function. The method of argument
parsing is not described here. Refer to the glibc getopt(3) man page for details.

12.2. Compiling the Application 59

Sample Applications User Guide, Release 2.1.0

EAL arguments are parsed first, then application-specific arguments. This is done at the be-
ginning of the main() function:

/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
argc -= ret;argv += ret;
/* parse application arguments (after the EAL ones) */
ret = l2fwd_parse_args(argc, argv);
if (ret < 0)rte_exit(EXIT_FAILURE, "Invalid L2FWD arguments\n");

12.4.2 Mbuf Pool Initialization

Once the arguments are parsed, the mbuf pool is created. The mbuf pool contains a set of
mbuf objects that will be used by the driver and the application to store network packet data:

/* create the mbuf pool */
l2fwd_pktmbuf_pool = rte_mempool_create("mbuf_pool", NB_MBUF, MBUF_SIZE, 32, sizeof(struct rte_pktmbuf_pool_private),rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL, SOCKET0, 0);
if (l2fwd_pktmbuf_pool == NULL)rte_panic("Cannot init mbuf pool\n");

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is
necessary to create a pool that will be used by the driver, which expects to have some reserved
space in the mempool structure, sizeof(struct rte_pktmbuf_pool_private) bytes. The number of
allocated pkt mbufs is NB_MBUF, with a size of MBUF_SIZE each. A per-lcore cache of 32
mbufs is kept. The memory is allocated in NUMA socket 0, but it is possible to extend this code
to allocate one mbuf pool per socket.

Two callback pointers are also given to the rte_mempool_create() function:

• The first callback pointer is to rte_pktmbuf_pool_init() and is used to initialize the private
data of the mempool, which is needed by the driver. This function is provided by the mbuf
API, but can be copied and extended by the developer.

• The second callback pointer given to rte_mempool_create() is the mbuf initializer. The
default is used, that is, rte_pktmbuf_init(), which is provided in the rte_mbuf library. If a
more complex application wants to extend the rte_pktmbuf structure for its own needs, a
new function derived from rte_pktmbuf_init() can be created.

12.4.3 Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully
understand this code, it is recommended to study the chapters that related to the Poll Mode
Driver in the DPDK Programmer’s Guide - Rel 1.4 EAR and the DPDK API Reference.

if (rte_eal_pci_probe() < 0)rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");

12.4. Explanation 60

Sample Applications User Guide, Release 2.1.0

nb_ports = rte_eth_dev_count();
if (nb_ports == 0)rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");
if (nb_ports > RTE_MAX_ETHPORTS)nb_ports = RTE_MAX_ETHPORTS;
/* reset l2fwd_dst_ports */
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)l2fwd_dst_ports[portid] = 0;
last_port = 0;
/** Each logical core is assigned a dedicated TX queue on each port.*/
for (portid = 0; portid < nb_ports; portid++) {/* skip ports that are not enabled */

if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
continue;

if (nb_ports_in_mask % 2) {l2fwd_dst_ports[portid] = last_port;l2fwd_dst_ports[last_port] = portid;}
elselast_port = portid;
nb_ports_in_mask++;
rte_eth_dev_info_get((uint8_t) portid, &dev_info);}

Observe that:

• rte_igb_pmd_init_all() simultaneously registers the driver as a PCI driver and as an Eth-
ernet* Poll Mode Driver.

• rte_eal_pci_probe() parses the devices on the PCI bus and initializes recognized devices.

The next step is to configure the RX and TX queues. For each port, there is only one RX queue
(only one lcore is able to poll a given port). The number of TX queues depends on the number
of available lcores. The rte_eth_dev_configure() function is used to configure the number of
queues for a port:

ret = rte_eth_dev_configure((uint8_t)portid, 1, 1, &port_conf);
if (ret < 0)rte_exit(EXIT_FAILURE, "Cannot configure device: ""err=%d, port=%u\n",ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {.rxmode = {.split_hdr_size = 0,.header_split = 0, /**< Header Split disabled */.hw_ip_checksum = 0, /**< IP checksum offload disabled */.hw_vlan_filter = 0, /**< VLAN filtering disabled */.jumbo_frame = 0, /**< Jumbo Frame Support disabled */

12.4. Explanation 61

Sample Applications User Guide, Release 2.1.0

.hw_strip_crc= 0, /**< CRC stripped by hardware */},
.txmode = {.mq_mode = ETH_DCB_NONE},};

12.4.4 RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option, which
specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
If there are 16 ports on the target (and if the portmask argument is -p ffff), the application will
need four lcores to poll all the ports.

ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, l2fwd_pktmbuf_pool);
if (ret < 0)

rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: ""err=%d, port=%u\n",ret, portid);
The list of queues that must be polled for a given lcore is stored in a private structure called
struct lcore_queue_conf.

struct lcore_queue_conf {
unsigned n_rx_port;
unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];} rte_cache_aligned;

struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
The values n_rx_port and rx_port_list[] are used in the main packet processing loop (see Sec-
tion 9.4.6 “Receive, Process and Transmit Packets” later in this chapter).

The global configuration for the RX queues is stored in a static structure:

static const struct rte_eth_rxconf rx_conf = {.rx_thresh = {.pthresh = RX_PTHRESH,.hthresh = RX_HTHRESH,.wthresh = RX_WTHRESH,},};

12.4.5 TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is
initialized.

/* init one TX queue on each port */
fflush(stdout);
ret = rte_eth_tx_queue_setup((uint8_t) portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
if (ret < 0)rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup:err=%d, port=%u\n", ret, (unsigned) portid);

12.4. Explanation 62

Sample Applications User Guide, Release 2.1.0

The global configuration for TX queues is stored in a static structure:

static const struct rte_eth_txconf tx_conf = {.tx_thresh = {.pthresh = TX_PTHRESH,.hthresh = TX_HTHRESH,.wthresh = TX_WTHRESH,},.tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */};

12.4.6 Receive, Process and Transmit Packets

In the l2fwd_main_loop() function, the main task is to read ingress packets from the RX queues.
This is done using the following code:

/** Read packet from RX queues*/
for (i = 0; i < qconf->n_rx_port; i++) {portid = qconf->rx_port_list[i];nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);

for (j = 0; j < nb_rx; j++) {m = pkts_burst[j];rte_prefetch0[rte_pktmbuf_mtod(m, void *)); l2fwd_simple_forward(m, portid);}}
Packets are read in a burst of size MAX_PKT_BURST. The rte_eth_rx_burst() function writes
the mbuf pointers in a local table and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the l2fwd_simple_forward() function. The pro-
cessing is very simple: process the TX port from the RX port, then replace the source and
destination MAC addresses.

Note: In the following code, one line for getting the output port requires some explanation.

During the initialization process, a static array of destination ports (l2fwd_dst_ports[]) is filled
such that for each source port, a destination port is assigned that is either the next or previous
enabled port from the portmask. Naturally, the number of ports in the portmask must be even,
otherwise, the application exits.

static voidl2fwd_simple_forward(struct rte_mbuf *m, unsigned portid){
struct ether_hdr *eth;
void *tmp;
unsigned dst_port;
dst_port = l2fwd_dst_ports[portid];
eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
/* 02:00:00:00:00:xx */
tmp = ð->d_addr.addr_bytes[0];
*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t) dst_port << 40);

12.4. Explanation 63

Sample Applications User Guide, Release 2.1.0

/* src addr */
ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], ð->s_addr);
l2fwd_send_packet(m, (uint8_t) dst_port);}

Then, the packet is sent using the l2fwd_send_packet (m, dst_port) function. For this test
application, the processing is exactly the same for all packets arriving on the same RX port.
Therefore, it would have been possible to call the l2fwd_send_burst() function directly from the
main loop to send all the received packets on the same TX port, using the burst-oriented send
function, which is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded
on the same port as packet N-1. The application is implemented to illustrate that, so the same
approach can be reused in a more complex application.

The l2fwd_send_packet() function stores the packet in a per-lcore and per-txport table. If the
table is full, the whole packets table is transmitted using the l2fwd_send_burst() function:

/* Send the packet on an output interface */
static intl2fwd_send_packet(struct rte_mbuf *m, uint8_t port){ unsigned lcore_id, len;struct lcore_queue_conf *qconf;

lcore_id = rte_lcore_id();qconf = &lcore_queue_conf[lcore_id];len = qconf->tx_mbufs[port].len;qconf->tx_mbufs[port].m_table[len] = m;len++;
/* enough pkts to be sent */
if (unlikely(len == MAX_PKT_BURST)) {l2fwd_send_burst(qconf, MAX_PKT_BURST, port);len = 0;}
qconf->tx_mbufs[port].len = len; return 0;}

To ensure that no packets remain in the tables, each lcore does a draining of TX queue in its
main loop. This technique introduces some latency when there are not many packets to send,
however it improves performance:

cur_tsc = rte_rdtsc();
/** TX burst queue drain*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
if (qconf->tx_mbufs[portid].len == 0)

continue;

12.4. Explanation 64

Sample Applications User Guide, Release 2.1.0

l2fwd_send_burst(&lcore_queue_conf[lcore_id], qconf->tx_mbufs[portid].len, (uint8_t) portid);
qconf->tx_mbufs[portid].len = 0;}

/* if timer is enabled */
if (timer_period > 0) {/* advance the timer */

timer_tsc += diff_tsc;
/* if timer has reached its timeout */
if (unlikely(timer_tsc >= (uint64_t) timer_period)) {/* do this only on master core */

if (lcore_id == rte_get_master_lcore()) {print_stats();
/* reset the timer */timer_tsc = 0;}}}

prev_tsc = cur_tsc;}

12.4. Explanation 65

CHAPTER

THIRTEEN

L3 FORWARDING SAMPLE APPLICATION

The L3 Forwarding application is a simple example of packet processing using the DPDK. The
application performs L3 forwarding.

13.1 Overview

The application demonstrates the use of the hash and LPM libraries in the DPDK to imple-
ment packet forwarding. The initialization and run-time paths are very similar to those of the
L2 forwarding application (see Chapter 9 “L2 Forwarding Sample Application (in Real and Vir-
tualized Environments)” for more information). The main difference from the L2 Forwarding
sample application is that the forwarding decision is made based on information read from the
input packet.

The lookup method is either hash-based or LPM-based and is selected at compile time. When
the selected lookup method is hash-based, a hash object is used to emulate the flow classifi-
cation stage. The hash object is used in correlation with a flow table to map each input packet
to its flow at runtime.

The hash lookup key is represented by a DiffServ 5-tuple composed of the following fields read
from the input packet: Source IP Address, Destination IP Address, Protocol, Source Port and
Destination Port. The ID of the output interface for the input packet is read from the identified
flow table entry. The set of flows used by the application is statically configured and loaded
into the hash at initialization time. When the selected lookup method is LPM based, an LPM
object is used to emulate the forwarding stage for IPv4 packets. The LPM object is used as the
routing table to identify the next hop for each input packet at runtime.

The LPM lookup key is represented by the Destination IP Address field read from the input
packet. The ID of the output interface for the input packet is the next hop returned by the LPM
lookup. The set of LPM rules used by the application is statically configured and loaded into
the LPM object at initialization time.

In the sample application, hash-based forwarding supports IPv4 and IPv6. LPM-based for-
warding supports IPv4 only.

13.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk cd ${RTE_SDK}/examples/l3fwd

66

Sample Applications User Guide, Release 2.1.0

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

13.3 Running the Application

The application has a number of command line options:

./build/l3fwd [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue,lcore)] [--enable-jumbo [--max-pkt-len PKTLEN]] [--no-numa][--hash-entry-num][--ipv6]
where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -P: optional, sets all ports to promiscuous mode so that packets are accepted regardless
of the packet’s Ethernet MAC destination address. Without this option, only packets
with the Ethernet MAC destination address set to the Ethernet address of the port are
accepted.

• –config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which
ports are mapped to which cores

• –enable-jumbo: optional, enables jumbo frames

• –max-pkt-len: optional, maximum packet length in decimal (64-9600)

• –no-numa: optional, disables numa awareness

• –hash-entry-num: optional, specifies the hash entry number in hexadecimal to be setup

• –ipv6: optional, set it if running ipv6 packets

For example, consider a dual processor socket platform where cores 0-7 and 16-23 appear
on socket 0, while cores 8-15 and 24-31 appear on socket 1. Let’s say that the programmer
wants to use memory from both NUMA nodes, the platform has only two ports, one connected
to each NUMA node, and the programmer wants to use two cores from each processor socket
to do the packet processing.

To enable L3 forwarding between two ports, using two cores, cores 1 and 2, from each pro-
cessor, while also taking advantage of local memory access by optimizing around NUMA, the
programmer must enable two queues from each port, pin to the appropriate cores and allocate
memory from the appropriate NUMA node. This is achieved using the following command:

./build/l3fwd -c 606 -n 4 -- -p 0x3 --config="(0,0,1),(0,1,2),(1,0,9),(1,1,10)"
In this command:

• The -c option enables cores 0, 1, 2, 3

• The -p option enables ports 0 and 1

• The –config option enables two queues on each port and maps each (port,queue) pair to
a specific core. Logic to enable multiple RX queues using RSS and to allocate memory
from the correct NUMA nodes is included in the application and is done transparently.
The following table shows the mapping in this example:

13.3. Running the Application 67

Sample Applications User Guide, Release 2.1.0

Port Queue lcore Description
0 0 0 Map queue 0 from port 0 to lcore 0.
0 1 2 Map queue 1 from port 0 to lcore 2.
1 0 1 Map queue 0 from port 1 to lcore 1.
1 1 3 Map queue 1 from port 1 to lcore 3.

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

13.4 Explanation

The following sections provide some explanation of the sample application code. As mentioned
in the overview section, the initialization and run-time paths are very similar to those of the
L2 forwarding application (see Chapter 9 “L2 Forwarding Sample Application (in Real and
Virtualized Environments)” for more information). The following sections describe aspects that
are specific to the L3 Forwarding sample application.

13.4.1 Hash Initialization

The hash object is created and loaded with the pre-configured entries read from a global array,
and then generate the expected 5-tuple as key to keep consistence with those of real flow for
the convenience to execute hash performance test on 4M/8M/16M flows.

Note: The Hash initialization will setup both ipv4 and ipv6 hash table, and populate the either
table depending on the value of variable ipv6. To support the hash performance test with
up to 8M single direction flows/16M bi-direction flows, populate_ipv4_many_flow_into_table()
function will populate the hash table with specified hash table entry number(default 4M).

Note: Value of global variable ipv6 can be specified with –ipv6 in the command line. Value
of global variable hash_entry_number, which is used to specify the total hash entry number
for all used ports in hash performance test, can be specified with –hash-entry-num VALUE in
command line, being its default value 4.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
static voidsetup_hash(int socketid){ // ...

if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
if (ipv6 == 0) {/* populate the ipv4 hash */populate_ipv4_many_flow_into_table(ipv4_l3fwd_lookup_struct[socketid], hash_entry_number);} else {/* populate the ipv6 hash */populate_ipv6_many_flow_into_table(ipv6_l3fwd_lookup_struct[socketid], hash_entry_number);}} else
if (ipv6 == 0) {/* populate the ipv4 hash */populate_ipv4_few_flow_into_table(ipv4_l3fwd_lookup_struct[socketid]);} else {

13.4. Explanation 68

Sample Applications User Guide, Release 2.1.0

/* populate the ipv6 hash */populate_ipv6_few_flow_into_table(ipv6_l3fwd_lookup_struct[socketid]);}}}#endif

13.4.2 LPM Initialization

The LPM object is created and loaded with the pre-configured entries read from a global array.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
static voidsetup_lpm(int socketid){

unsigned i;
int ret;
char s[64];
/* create the LPM table */
rte_snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid, IPV4_L3FWD_LPM_MAX_RULES, 0);
if (ipv4_l3fwd_lookup_struct[socketid] == NULL)rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"" on socket %d\n", socketid);
/* populate the LPM table */
for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {/* skip unused ports */

if ((1 << ipv4_l3fwd_route_array[i].if_out & enabled_port_mask) == 0)
continue;

ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid], ipv4_l3fwd_route_array[i].ip,ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out);
if (ret < 0) {rte_exit(EXIT_FAILURE, "Unable to add entry %u to the ""l3fwd LPM table on socket %d\n", i, socketid);}
printf("LPM: Adding route 0x%08x / %d (%d)\n",(unsigned)ipv4_l3fwd_route_array[i].ip, ipv4_l3fwd_route_array[i].depth, ipv4_l3fwd_route_array[i].if_out);}}#endif

13.4.3 Packet Forwarding for Hash-based Lookups

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward()
or simple_ipv4_fwd_4pkts() function for IPv4 packets or the simple_ipv6_fwd_4pkts() func-
tion for IPv6 packets. The l3fwd_simple_forward() function provides the basic functionality
for both IPv4 and IPv6 packet forwarding for any number of burst packets received, and the
packet forwarding decision (that is, the identification of the output interface for the packet) for

13.4. Explanation 69

Sample Applications User Guide, Release 2.1.0

hash-based lookups is done by the get_ipv4_dst_port() or get_ipv6_dst_port() function. The
get_ipv4_dst_port() function is shown below:

static inline uint8_tget_ipv4_dst_port(void *ipv4_hdr, uint8_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct){ int ret = 0;union ipv4_5tuple_host key;
ipv4_hdr = (uint8_t *)ipv4_hdr + offsetof(struct ipv4_hdr, time_to_live);
m128i data = _mm_loadu_si128((m128i*)(ipv4_hdr));
/* Get 5 tuple: dst port, src port, dst IP address, src IP address and protocol */
key.xmm = _mm_and_si128(data, mask0);
/* Find destination port */
ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);}

The get_ipv6_dst_port() function is similar to the get_ipv4_dst_port() function.

The simple_ipv4_fwd_4pkts() and simple_ipv6_fwd_4pkts() function are optimized for contin-
uous 4 valid ipv4 and ipv6 packets, they leverage the multiple buffer optimization to boost the
performance of forwarding packets with the exact match on hash table. The key code snippet
of simple_ipv4_fwd_4pkts() is shown below:

static inline voidsimple_ipv4_fwd_4pkts(struct rte_mbuf* m[4], uint8_t portid, struct lcore_conf *qconf){ // ...
data[0] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[0], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));data[1] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[1], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));data[2] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[2], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));data[3] = _mm_loadu_si128((m128i*)(rte_pktmbuf_mtod(m[3], unsigned char *) + sizeof(struct ether_hdr) + offsetof(struct ipv4_hdr, time_to_live)));
key[0].xmm = _mm_and_si128(data[0], mask0);key[1].xmm = _mm_and_si128(data[1], mask0);key[2].xmm = _mm_and_si128(data[2], mask0);key[3].xmm = _mm_and_si128(data[3], mask0);
const void *key_array[4] = {&key[0], &key[1], &key[2],&key[3]};
rte_hash_lookup_multi(qconf->ipv4_lookup_struct, &key_array[0], 4, ret);
dst_port[0] = (ret[0] < 0)? portid:ipv4_l3fwd_out_if[ret[0]];dst_port[1] = (ret[1] < 0)? portid:ipv4_l3fwd_out_if[ret[1]];dst_port[2] = (ret[2] < 0)? portid:ipv4_l3fwd_out_if[ret[2]];dst_port[3] = (ret[3] < 0)? portid:ipv4_l3fwd_out_if[ret[3]];
// ...}

The simple_ipv6_fwd_4pkts() function is similar to the simple_ipv4_fwd_4pkts() function.

13.4. Explanation 70

Sample Applications User Guide, Release 2.1.0

13.4.4 Packet Forwarding for LPM-based Lookups

For each input packet, the packet forwarding operation is done by the l3fwd_simple_forward()
function, but the packet forwarding decision (that is, the identification of the output interface for
the packet) for LPM-based lookups is done by the get_ipv4_dst_port() function below:

static inline uint8_tget_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, lookup_struct_t *ipv4_l3fwd_lookup_struct){
uint8_t next_hop;
return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)? next_hop : portid);}

13.4. Explanation 71

CHAPTER

FOURTEEN

L3 FORWARDING WITH POWER MANAGEMENT SAMPLE
APPLICATION

14.1 Introduction

The L3 Forwarding with Power Management application is an example of power-aware packet
processing using the DPDK. The application is based on existing L3 Forwarding sample appli-
cation, with the power management algorithms to control the P-states and C-states of the Intel
processor via a power management library.

14.2 Overview

The application demonstrates the use of the Power libraries in the DPDK to implement packet
forwarding. The initialization and run-time paths are very similar to those of the L3 forwarding
sample application (see Chapter 10 “L3 Forwarding Sample Application” for more information).
The main difference from the L3 Forwarding sample application is that this application intro-
duces power-aware optimization algorithms by leveraging the Power library to control P-state
and C-state of processor based on packet load.

The DPDK includes poll-mode drivers to configure Intel NIC devices and their receive (Rx) and
transmit (Tx) queues. The design principle of this PMD is to access the Rx and Tx descriptors
directly without any interrupts to quickly receive, process and deliver packets in the user space.

In general, the DPDK executes an endless packet processing loop on dedicated IA cores that
include the following steps:

• Retrieve input packets through the PMD to poll Rx queue

• Process each received packet or provide received packets to other processing cores
through software queues

• Send pending output packets to Tx queue through the PMD

In this way, the PMD achieves better performance than a traditional interrupt-mode driver, at
the cost of keeping cores active and running at the highest frequency, hence consuming the
maximum power all the time. However, during the period of processing light network traffic,
which happens regularly in communication infrastructure systems due to well-known “tidal ef-
fect”, the PMD is still busy waiting for network packets, which wastes a lot of power.

Processor performance states (P-states) are the capability of an Intel processor to switch be-
tween different supported operating frequencies and voltages. If configured correctly, accord-
ing to system workload, this feature provides power savings. CPUFreq is the infrastructure
provided by the Linux* kernel to control the processor performance state capability. CPUFreq

72

Sample Applications User Guide, Release 2.1.0

supports a user space governor that enables setting frequency via manipulating the virtual file
device from a user space application. The Power library in the DPDK provides a set of APIs for
manipulating a virtual file device to allow user space application to set the CPUFreq governor
and set the frequency of specific cores.

This application includes a P-state power management algorithm to generate a frequency hint
to be sent to CPUFreq. The algorithm uses the number of received and available Rx packets
on recent polls to make a heuristic decision to scale frequency up/down. Specifically, some
thresholds are checked to see whether a specific core running an DPDK polling thread needs
to increase frequency a step up based on the near to full trend of polled Rx queues. Also, it
decreases frequency a step if packet processed per loop is far less than the expected threshold
or the thread’s sleeping time exceeds a threshold.

C-States are also known as sleep states. They allow software to put an Intel core into a low
power idle state from which it is possible to exit via an event, such as an interrupt. However,
there is a tradeoff between the power consumed in the idle state and the time required to wake
up from the idle state (exit latency). Therefore, as you go into deeper C-states, the power
consumed is lower but the exit latency is increased. Each C-state has a target residency. It is
essential that when entering into a C-state, the core remains in this C-state for at least as long
as the target residency in order to fully realize the benefits of entering the C-state. CPUIdle is
the infrastructure provide by the Linux kernel to control the processor C-state capability. Unlike
CPUFreq, CPUIdle does not provide a mechanism that allows the application to change C-
state. It actually has its own heuristic algorithms in kernel space to select target C-state to
enter by executing privileged instructions like HLT and MWAIT, based on the speculative sleep
duration of the core. In this application, we introduce a heuristic algorithm that allows packet
processing cores to sleep for a short period if there is no Rx packet received on recent polls.
In this way, CPUIdle automatically forces the corresponding cores to enter deeper C-states
instead of always running to the C0 state waiting for packets.

Note: To fully demonstrate the power saving capability of using C-states, it is recommended
to enable deeper C3 and C6 states in the BIOS during system boot up.

14.3 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk cd ${RTE_SDK}/examples/l3fwd-power
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

14.4 Running the Application

The application has a number of command line options:

14.3. Compiling the Application 73

Sample Applications User Guide, Release 2.1.0

./build/l3fwd_power [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue,lcore)] [--enable-jumbo [--max-pkt-len PKTLEN]] [--no-numa]
where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -P: Sets all ports to promiscuous mode so that packets are accepted regardless of the
packet’s Ethernet MAC destination address. Without this option, only packets with the
Ethernet MAC destination address set to the Ethernet address of the port are accepted.

• –config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which
ports are mapped to which cores.

• –enable-jumbo: optional, enables jumbo frames

• –max-pkt-len: optional, maximum packet length in decimal (64-9600)

• –no-numa: optional, disables numa awareness

See Chapter 10 “L3 Forwarding Sample Application” for details. The L3fwd-power example
reuses the L3fwd command line options.

14.5 Explanation

The following sections provide some explanation of the sample application code. As mentioned
in the overview section, the initialization and run-time paths are identical to those of the L3
forwarding application. The following sections describe aspects that are specific to the L3
Forwarding with Power Management sample application.

14.5.1 Power Library Initialization

The Power library is initialized in the main routine. It changes the P-state governor to userspace
for specific cores that are under control. The Timer library is also initialized and several timers
are created later on, responsible for checking if it needs to scale down frequency at run time
by checking CPU utilization statistics.

Note: Only the power management related initialization is shown.

int main(int argc, char **argv){
struct lcore_conf *qconf;
int ret;
unsigned nb_ports;
uint16_t queueid;
unsigned lcore_id;
uint64_t hz;
uint32_t n_tx_queue, nb_lcores;
uint8_t portid, nb_rx_queue, queue, socketid;
// ...
/* init RTE timer library to be used to initialize per-core timers */
rte_timer_subsystem_init();
// ...

14.5. Explanation 74

Sample Applications User Guide, Release 2.1.0

/* per-core initialization */
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {

if (rte_lcore_is_enabled(lcore_id) == 0)
continue;

/* init power management library for a specified core */
ret = rte_power_init(lcore_id);
if (ret)rte_exit(EXIT_FAILURE, "Power management library ""initialization failed on core%d\n", lcore_id);
/* init timer structures for each enabled lcore */
rte_timer_init(&power_timers[lcore_id]);
hz = rte_get_hpet_hz();
rte_timer_reset(&power_timers[lcore_id], hz/TIMER_NUMBER_PER_SECOND, SINGLE, lcore_id, power_timer_cb, NULL);
// ...}

// ...}

14.5.2 Monitoring Loads of Rx Queues

In general, the polling nature of the DPDK prevents the OS power management subsystem
from knowing if the network load is actually heavy or light. In this sample, sampling network
load work is done by monitoring received and available descriptors on NIC Rx queues in recent
polls. Based on the number of returned and available Rx descriptors, this example implements
algorithms to generate frequency scaling hints and speculative sleep duration, and use them
to control P-state and C-state of processors via the power management library. Frequency (P-
state) control and sleep state (C-state) control work individually for each logical core, and the
combination of them contributes to a power efficient packet processing solution when serving
light network loads.

The rte_eth_rx_burst() function and the newly-added rte_eth_rx_queue_count() function are
used in the endless packet processing loop to return the number of received and available Rx
descriptors. And those numbers of specific queue are passed to P-state and C-state heuristic
algorithms to generate hints based on recent network load trends.

Note: Only power control related code is shown.

staticattribute ((noreturn)) int main_loop(attribute ((unused)) void *dummy){ // ...
while (1) {// ...
/*** Read packet from RX queues*/

14.5. Explanation 75

Sample Applications User Guide, Release 2.1.0

lcore_scaleup_hint = FREQ_CURRENT;lcore_rx_idle_count = 0;
for (i = 0; i < qconf->n_rx_queue; ++i){ rx_queue = &(qconf->rx_queue_list[i]);rx_queue->idle_hint = 0;portid = rx_queue->port_id;queueid = rx_queue->queue_id;

nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, MAX_PKT_BURST);stats[lcore_id].nb_rx_processed += nb_rx;
if (unlikely(nb_rx == 0)) {/*** no packet received from rx queue, try to* sleep for a while forcing CPU enter deeper* C states.*/

rx_queue->zero_rx_packet_count++;
if (rx_queue->zero_rx_packet_count <= MIN_ZERO_POLL_COUNT)

continue;
rx_queue->idle_hint = power_idle_heuristic(rx_queue->zero_rx_packet_count);lcore_rx_idle_count++;} else {rx_ring_length = rte_eth_rx_queue_count(portid, queueid);
rx_queue->zero_rx_packet_count = 0;
/*** do not scale up frequency immediately as* user to kernel space communication is costly* which might impact packet I/O for received* packets.*/
rx_queue->freq_up_hint = power_freq_scaleup_heuristic(lcore_id, rx_ring_length);}

/* Prefetch and forward packets */
// ...}

if (likely(lcore_rx_idle_count != qconf->n_rx_queue)) {
for (i = 1, lcore_scaleup_hint = qconf->rx_queue_list[0].freq_up_hint; i < qconf->n_rx_queue; ++i) {x_queue = &(qconf->rx_queue_list[i]);

if (rx_queue->freq_up_hint > lcore_scaleup_hint)
lcore_scaleup_hint = rx_queue->freq_up_hint;}

if (lcore_scaleup_hint == FREQ_HIGHEST)
rte_power_freq_max(lcore_id);

else if (lcore_scaleup_hint == FREQ_HIGHER)rte_power_freq_up(lcore_id);

14.5. Explanation 76

Sample Applications User Guide, Release 2.1.0

} else {/*** All Rx queues empty in recent consecutive polls,* sleep in a conservative manner, meaning sleep as* less as possible.*/
for (i = 1, lcore_idle_hint = qconf->rx_queue_list[0].idle_hint; i < qconf->n_rx_queue; ++i) {rx_queue = &(qconf->rx_queue_list[i]);

if (rx_queue->idle_hint < lcore_idle_hint)lcore_idle_hint = rx_queue->idle_hint;}
if (lcore_idle_hint < SLEEP_GEAR1_THRESHOLD)/*** execute "pause" instruction to avoid context* switch for short sleep.*/rte_delay_us(lcore_idle_hint);
else/* long sleep force ruining thread to suspend */usleep(lcore_idle_hint);

stats[lcore_id].sleep_time += lcore_idle_hint;}}}

14.5.3 P-State Heuristic Algorithm

The power_freq_scaleup_heuristic() function is responsible for generating a frequency hint
for the specified logical core according to available descriptor number returned from
rte_eth_rx_queue_count(). On every poll for new packets, the length of available descriptor
on an Rx queue is evaluated, and the algorithm used for frequency hinting is as follows:

• If the size of available descriptors exceeds 96, the maximum frequency is hinted.

• If the size of available descriptors exceeds 64, a trend counter is incremented by 100.

• If the length of the ring exceeds 32, the trend counter is incremented by 1.

• When the trend counter reached 10000 the frequency hint is changed to the next higher
frequency.

Note: The assumption is that the Rx queue size is 128 and the thresholds specified above
must be adjusted accordingly based on actual hardware Rx queue size, which are configured
via the rte_eth_rx_queue_setup() function.

In general, a thread needs to poll packets from multiple Rx queues. Most likely, different queue
have different load, so they would return different frequency hints. The algorithm evaluates
all the hints and then scales up frequency in an aggressive manner by scaling up to highest
frequency as long as one Rx queue requires. In this way, we can minimize any negative
performance impact.

On the other hand, frequency scaling down is controlled in the timer callback function. Specif-
ically, if the sleep times of a logical core indicate that it is sleeping more than 25% of the
sampling period, or if the average packet per iteration is less than expectation, the frequency
is decreased by one step.

14.5. Explanation 77

Sample Applications User Guide, Release 2.1.0

14.5.4 C-State Heuristic Algorithm

Whenever recent rte_eth_rx_burst() polls return 5 consecutive zero packets, an idle counter
begins incrementing for each successive zero poll. At the same time, the function
power_idle_heuristic() is called to generate speculative sleep duration in order to force log-
ical to enter deeper sleeping C-state. There is no way to control C- state directly, and the
CPUIdle subsystem in OS is intelligent enough to select C-state to enter based on actual sleep
period time of giving logical core. The algorithm has the following sleeping behavior depending
on the idle counter:

• If idle count less than 100, the counter value is used as a microsecond sleep value
through rte_delay_us() which execute pause instructions to avoid costly context switch
but saving power at the same time.

• If idle count is between 100 and 999, a fixed sleep interval of 100 𝜇s is used. A 100 𝜇s
sleep interval allows the core to enter the C1 state while keeping a fast response time in
case new traffic arrives.

• If idle count is greater than 1000, a fixed sleep value of 1 ms is used until the next timer
expiration is used. This allows the core to enter the C3/C6 states.

Note: The thresholds specified above need to be adjusted for different Intel processors and
traffic profiles.

If a thread polls multiple Rx queues and different queue returns different sleep duration values,
the algorithm controls the sleep time in a conservative manner by sleeping for the least possible
time in order to avoid a potential performance impact.

14.5. Explanation 78

CHAPTER

FIFTEEN

L3 FORWARDING WITH ACCESS CONTROL SAMPLE
APPLICATION

The L3 Forwarding with Access Control application is a simple example of packet processing
using the DPDK. The application performs a security check on received packets. Packets that
are in the Access Control List (ACL), which is loaded during initialization, are dropped. Others
are forwarded to the correct port.

15.1 Overview

The application demonstrates the use of the ACL library in the DPDK to implement access
control and packet L3 forwarding. The application loads two types of rules at initialization:

• Route information rules, which are used for L3 forwarding

• Access Control List (ACL) rules that blacklist (or block) packets with a specific character-
istic

When packets are received from a port, the application extracts the necessary information
from the TCP/IP header of the received packet and performs a lookup in the rule database to
figure out whether the packets should be dropped (in the ACL range) or forwarded to desired
ports. The initialization and run-time paths are similar to those of the L3 forwarding application
(see Chapter 10, “L3 Forwarding Sample Application” for more information). However, there
are significant differences in the two applications. For example, the original L3 forwarding
application uses either LPM or an exact match algorithm to perform forwarding port lookup,
while this application uses the ACL library to perform both ACL and route entry lookup. The
following sections provide more detail.

Classification for both IPv4 and IPv6 packets is supported in this application. The application
also assumes that all the packets it processes are TCP/UDP packets and always extracts
source/destination port information from the packets.

15.1.1 Tuple Packet Syntax

The application implements packet classification for the IPv4/IPv6 5-tuple syntax specifically.
The 5-tuple syntax consist of a source IP address, a destination IP address, a source port, a
destination port and a protocol identifier. The fields in the 5-tuple syntax have the following
formats:

• Source IP address and destination IP address : Each is either a 32-bit field (for IPv4),
or a set of 4 32-bit fields (for IPv6) represented by a value and a mask length. For

79

Sample Applications User Guide, Release 2.1.0

example, an IPv4 range of 192.168.1.0 to 192.168.1.255 could be represented by a value
= [192, 168, 1, 0] and a mask length = 24.

• Source port and destination port : Each is a 16-bit field, represented by a lower start
and a higher end. For example, a range of ports 0 to 8192 could be represented by lower
= 0 and higher = 8192.

• Protocol identifier : An 8-bit field, represented by a value and a mask, that covers a
range of values. To verify that a value is in the range, use the following expression: “(VAL
& mask) == value”

The trick in how to represent a range with a mask and value is as follows. A range can be
enumerated in binary numbers with some bits that are never changed and some bits that are
dynamically changed. Set those bits that dynamically changed in mask and value with 0. Set
those bits that never changed in the mask with 1, in value with number expected. For example,
a range of 6 to 7 is enumerated as 0b110 and 0b111. Bit 1-7 are bits never changed and bit
0 is the bit dynamically changed. Therefore, set bit 0 in mask and value with 0, set bits 1-7 in
mask with 1, and bits 1-7 in value with number 0b11. So, mask is 0xfe, value is 0x6.

Note: The library assumes that each field in the rule is in LSB or Little Endian order when cre-
ating the database. It internally converts them to MSB or Big Endian order. When performing
a lookup, the library assumes the input is in MSB or Big Endian order.

15.1.2 Access Rule Syntax

In this sample application, each rule is a combination of the following:

• 5-tuple field: This field has a format described in Section.

• priority field: A weight to measure the priority of the rules. The rule with the higher priority
will ALWAYS be returned if the specific input has multiple matches in the rule database.
Rules with lower priority will NEVER be returned in any cases.

• userdata field: A user-defined field that could be any value. It can be the forwarding port
number if the rule is a route table entry or it can be a pointer to a mapping address if
the rule is used for address mapping in the NAT application. The key point is that it is a
useful reserved field for user convenience.

15.1.3 ACL and Route Rules

The application needs to acquire ACL and route rules before it runs. Route rules are manda-
tory, while ACL rules are optional. To simplify the complexity of the priority field for each rule,
all ACL and route entries are assumed to be in the same file. To read data from the specified
file successfully, the application assumes the following:

• Each rule occupies a single line.

• Only the following four rule line types are valid in this application:

• ACL rule line, which starts with a leading character ‘@’

• Route rule line, which starts with a leading character ‘R’

• Comment line, which starts with a leading character ‘#’

15.1. Overview 80

Sample Applications User Guide, Release 2.1.0

• Empty line, which consists of a space, form-feed (‘f’), newline (‘n’), carriage return (‘r’),
horizontal tab (‘t’), or vertical tab (‘v’).

Other lines types are considered invalid.

• Rules are organized in descending order of priority, which means rules at the head of the
file always have a higher priority than those further down in the file.

• A typical IPv4 ACL rule line should have a format as shown below:

Fig. 15.1: A typical IPv4 ACL rule

IPv4 addresses are specified in CIDR format as specified in RFC 4632. They consist of the dot
notation for the address and a prefix length separated by ‘/’. For example, 192.168.0.34/32,
where the address is 192.168.0.34 and the prefix length is 32.

Ports are specified as a range of 16-bit numbers in the format MIN:MAX, where MIN and MAX
are the inclusive minimum and maximum values of the range. The range 0:65535 represents all
possible ports in a range. When MIN and MAX are the same value, a single port is represented,
for example, 20:20.

The protocol identifier is an 8-bit value and a mask separated by ‘/’. For example: 6/0xfe
matches protocol values 6 and 7.

• Route rules start with a leading character ‘R’ and have the same format as ACL rules
except an extra field at the tail that indicates the forwarding port number.

15.1.4 Rules File Example

Fig. 15.2: Rules example

Each rule is explained as follows:

• Rule 1 (the first line) tells the application to drop those packets with source IP address =
[1.2.3.*], destination IP address = [192.168.0.36], protocol = [6]/[7]

• Rule 2 (the second line) is similar to Rule 1, except the source IP address is ignored.
It tells the application to forward packets with destination IP address = [192.168.0.36],
protocol = [6]/[7], destined to port 1.

• Rule 3 (the third line) tells the application to forward all packets to port 0. This is some-
thing like a default route entry.

15.1. Overview 81

Sample Applications User Guide, Release 2.1.0

As described earlier, the application assume rules are listed in descending order of priority,
therefore Rule 1 has the highest priority, then Rule 2, and finally, Rule 3 has the lowest priority.

Consider the arrival of the following three packets:

• Packet 1 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and
protocol = [6]

• Packet 2 has source IP address = [1.2.4.4], destination IP address = [192.168.0.36], and
protocol = [6]

• Packet 3 has source IP address = [1.2.3.4], destination IP address = [192.168.0.36], and
protocol = [8]

Observe that:

• Packet 1 matches all of the rules

• Packet 2 matches Rule 2 and Rule 3

• Packet 3 only matches Rule 3

For priority reasons, Packet 1 matches Rule 1 and is dropped. Packet 2 matches Rule 2 and
is forwarded to port 1. Packet 3 matches Rule 3 and is forwarded to port 0.

For more details on the rule file format, please refer to rule_ipv4.db and rule_ipv6.db files
(inside <RTE_SDK>/examples/l3fwd-acl/).

15.1.5 Application Phases

Once the application starts, it transitions through three phases:

• Initialization Phase - Perform the following tasks:

• Parse command parameters. Check the validity of rule file(s) name(s), number of logical
cores, receive and transmit queues. Bind ports, queues and logical cores. Check ACL
search options, and so on.

• Call Environmental Abstraction Layer (EAL) and Poll Mode Driver (PMD) functions to
initialize the environment and detect possible NICs. The EAL creates several threads
and sets affinity to a specific hardware thread CPU based on the configuration specified
by the command line arguments.

• Read the rule files and format the rules into the representation that the ACL library can
recognize. Call the ACL library function to add the rules into the database and compile
them as a trie of pattern sets. Note that application maintains a separate AC contexts for
IPv4 and IPv6 rules.

• Runtime Phase - Process the incoming packets from a port. Packets are processed in
three steps:

– Retrieval: Gets a packet from the receive queue. Each logical core may process
several queues for different ports. This depends on the configuration specified by
command line arguments.

– Lookup: Checks that the packet type is supported (IPv4/IPv6) and performs a 5-
tuple lookup over corresponding AC context. If an ACL rule is matched, the packets
will be dropped and return back to step 1. If a route rule is matched, it indicates the

15.1. Overview 82

Sample Applications User Guide, Release 2.1.0

packet is not in the ACL list and should be forwarded. If there is no matches for the
packet, then the packet is dropped.

– Forwarding: Forwards the packet to the corresponding port.

• Final Phase - Perform the following tasks:

Calls the EAL, PMD driver and ACL library to free resource, then quits.

15.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/l3fwd-acl
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK IPL Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

15.3 Running the Application

The application has a number of command line options:

./build/l3fwd-acl [EAL options] -- -p PORTMASK [-P] --config(port,queue,lcore)[,(port,queue,lcore)] --rule_ipv4 FILENAME rule_ipv6 FILENAME [--scalar] [--enable-jumbo [--max-pkt-len PKTLEN]] [--no-numa]
where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• -P: Sets all ports to promiscuous mode so that packets are accepted regardless of the
packet’s Ethernet MAC destination address. Without this option, only packets with the
Ethernet MAC destination address set to the Ethernet address of the port are accepted.

• –config (port,queue,lcore)[,(port,queue,lcore)]: determines which queues from which
ports are mapped to which cores

• –rule_ipv4 FILENAME: Specifies the IPv4 ACL and route rules file

• –rule_ipv6 FILENAME: Specifies the IPv6 ACL and route rules file

• –scalar: Use a scalar function to perform rule lookup

• –enable-jumbo: optional, enables jumbo frames

• –max-pkt-len: optional, maximum packet length in decimal (64-9600)

• –no-numa: optional, disables numa awareness

As an example, consider a dual processor socket platform where cores 0, 2, 4, 6, 8 and 10
appear on socket 0, while cores 1, 3, 5, 7, 9 and 11 appear on socket 1. Let’s say that the user
wants to use memory from both NUMA nodes, the platform has only two ports and the user
wants to use two cores from each processor socket to do the packet processing.

15.2. Compiling the Application 83

Sample Applications User Guide, Release 2.1.0

To enable L3 forwarding between two ports, using two cores from each processor, while also
taking advantage of local memory access by optimizing around NUMA, the user must enable
two queues from each port, pin to the appropriate cores and allocate memory from the appro-
priate NUMA node. This is achieved using the following command:

./build/l3fwd-acl -c f -n 4 -- -p 0x3 --config="(0,0,0),(0,1,2),(1,0,1),(1,1,3)" --rule_ipv4="./rule_ipv4.db" -- rule_ipv6="./rule_ipv6.db" --scalar
In this command:

• The -c option enables cores 0, 1, 2, 3

• The -p option enables ports 0 and 1

• The –config option enables two queues on each port and maps each (port,queue) pair to
a specific core. Logic to enable multiple RX queues using RSS and to allocate memory
from the correct NUMA nodes is included in the application and is done transparently.
The following table shows the mapping in this example:

Port Queue lcore Description
0 0 0 Map queue 0 from port 0 to lcore 0.
0 1 2 Map queue 1 from port 0 to lcore 2.
1 0 1 Map queue 0 from port 1 to lcore 1.
1 1 3 Map queue 1 from port 1 to lcore 3.

• The –rule_ipv4 option specifies the reading of IPv4 rules sets from the ./ rule_ipv4.db file.

• The –rule_ipv6 option specifies the reading of IPv6 rules sets from the ./ rule_ipv6.db file.

• The –scalar option specifies the performing of rule lookup with a scalar function.

15.4 Explanation

The following sections provide some explanation of the sample application code. The aspects
of port, device and CPU configuration are similar to those of the L3 forwarding application (see
Chapter 10, “L3 Forwarding Sample Application” for more information). The following sections
describe aspects that are specific to L3 forwarding with access control.

15.4.1 Parse Rules from File

As described earlier, both ACL and route rules are assumed to be saved in the same file. The
application parses the rules from the file and adds them to the database by calling the ACL li-
brary function. It ignores empty and comment lines, and parses and validates the rules it reads.
If errors are detected, the application exits with messages to identify the errors encountered.

The application needs to consider the userdata and priority fields. The ACL rules save the index
to the specific rules in the userdata field, while route rules save the forwarding port number.
In order to differentiate the two types of rules, ACL rules add a signature in the userdata field.
As for the priority field, the application assumes rules are organized in descending order of
priority. Therefore, the code only decreases the priority number with each rule it parses.

15.4.2 Setting Up the ACL Context

For each supported AC rule format (IPv4 5-tuple, IPv6 6-tuple) application creates a separate
context handler from the ACL library for each CPU socket on the board and adds parsed rules

15.4. Explanation 84

Sample Applications User Guide, Release 2.1.0

into that context.

Note, that for each supported rule type, application needs to calculate the expected offset of
the fields from the start of the packet. That’s why only packets with fixed IPv4/ IPv6 header are
supported. That allows to perform ACL classify straight over incoming packet buffer - no extra
protocol field retrieval need to be performed.

Subsequently, the application checks whether NUMA is enabled. If it is, the application records
the socket IDs of the CPU cores involved in the task.

Finally, the application creates contexts handler from the ACL library, adds rules parsed from
the file into the database and build an ACL trie. It is important to note that the application
creates an independent copy of each database for each socket CPU involved in the task to
reduce the time for remote memory access.

15.4. Explanation 85

CHAPTER

SIXTEEN

L3 FORWARDING IN A VIRTUALIZATION ENVIRONMENT SAMPLE
APPLICATION

The L3 Forwarding in a Virtualization Environment sample application is a simple example of
packet processing using the DPDK. The application performs L3 forwarding that takes advan-
tage of Single Root I/O Virtualization (SR-IOV) features in a virtualized environment.

16.1 Overview

The application demonstrates the use of the hash and LPM libraries in the DPDK to implement
packet forwarding. The initialization and run-time paths are very similar to those of the L3 for-
warding application (see Chapter 10 “L3 Forwarding Sample Application” for more information).
The forwarding decision is taken based on information read from the input packet.

The lookup method is either hash-based or LPM-based and is selected at compile time. When
the selected lookup method is hash-based, a hash object is used to emulate the flow classifica-
tion stage. The hash object is used in correlation with the flow table to map each input packet
to its flow at runtime.

The hash lookup key is represented by the DiffServ 5-tuple composed of the following fields
read from the input packet: Source IP Address, Destination IP Address, Protocol, Source Port
and Destination Port. The ID of the output interface for the input packet is read from the
identified flow table entry. The set of flows used by the application is statically configured and
loaded into the hash at initialization time. When the selected lookup method is LPM based, an
LPM object is used to emulate the forwarding stage for IPv4 packets. The LPM object is used
as the routing table to identify the next hop for each input packet at runtime.

The LPM lookup key is represented by the Destination IP Address field read from the input
packet. The ID of the output interface for the input packet is the next hop returned by the LPM
lookup. The set of LPM rules used by the application is statically configured and loaded into
the LPM object at the initialization time.

Note: Please refer to Section 9.1.1 “Virtual Function Setup Instructions” for virtualized test
case setup.

16.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

86

Sample Applications User Guide, Release 2.1.0

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/l3fwd-vf
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make
Note: The compiled application is written to the build subdirectory. To have the application
written to a different location, the O=/path/to/build/directory option may be specified in the make
command.

16.3 Running the Application

The application has a number of command line options:

./build/l3fwd-vf [EAL options] -- -p PORTMASK --config(port,queue,lcore)[,(port,queue,lcore)] [--no-numa]
where,

• –p PORTMASK: Hexadecimal bitmask of ports to configure

• –config (port,queue,lcore)[,(port,queue,lcore]: determines which queues from which
ports are mapped to which cores

• –no-numa: optional, disables numa awareness

For example, consider a dual processor socket platform where cores 0,2,4,6, 8, and 10 appear
on socket 0, while cores 1,3,5,7,9, and 11 appear on socket 1. Let’s say that the programmer
wants to use memory from both NUMA nodes, the platform has only two ports and the pro-
grammer wants to use one core from each processor socket to do the packet processing since
only one Rx/Tx queue pair can be used in virtualization mode.

To enable L3 forwarding between two ports, using one core from each processor, while also
taking advantage of local memory accesses by optimizing around NUMA, the programmer can
pin to the appropriate cores and allocate memory from the appropriate NUMA node. This is
achieved using the following command:

./build/l3fwd-vf -c 0x03 -n 3 -- -p 0x3 --config="(0,0,0),(1,0,1)"
In this command:

• The -c option enables cores 0 and 1

• The -p option enables ports 0 and 1

• The –config option enables one queue on each port and maps each (port,queue) pair to
a specific core. Logic to enable multiple RX queues using RSS and to allocate memory
from the correct NUMA nodes is included in the application and is done transparently.
The following table shows the mapping in this example:

Port Queue lcore Description
0 0 0 Map queue 0 from port 0 to lcore 0
1 1 1 Map queue 0 from port 1 to lcore 1

16.3. Running the Application 87

Sample Applications User Guide, Release 2.1.0

Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

16.4 Explanation

The operation of this application is similar to that of the basic L3 Forwarding Sample Applica-
tion. See Section 10.4 “Explanation” for more information.

16.4. Explanation 88

CHAPTER

SEVENTEEN

LINK STATUS INTERRUPT SAMPLE APPLICATION

The Link Status Interrupt sample application is a simple example of packet processing using
the Data Plane Development Kit (DPDK) that demonstrates how network link status changes
for a network port can be captured and used by a DPDK application.

17.1 Overview

The Link Status Interrupt sample application registers a user space callback for the link sta-
tus interrupt of each port and performs L2 forwarding for each packet that is received on an
RX_PORT. The following operations are performed:

• RX_PORT and TX_PORT are paired with available ports one-by-one according to the
core mask

• The source MAC address is replaced by the TX_PORT MAC address

• The destination MAC address is replaced by 02:00:00:00:00:TX_PORT_ID

This application can be used to demonstrate the usage of link status interrupt and its user
space callbacks and the behavior of L2 forwarding each time the link status changes.

17.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/link_status_interrupt
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make
Note: The compiled application is written to the build subdirectory. To have the application
written to a different location, the O=/path/to/build/directory option may be specified on the
make command line.

89

Sample Applications User Guide, Release 2.1.0

17.3 Running the Application

The application requires a number of command line options:

./build/link_status_interrupt [EAL options] -- -p PORTMASK [-q NQ][-T PERIOD]
where,

• -p PORTMASK: A hexadecimal bitmask of the ports to configure

• -q NQ: A number of queues (=ports) per lcore (default is 1)

• -T PERIOD: statistics will be refreshed each PERIOD seconds (0 to disable, 10 default)

To run the application in a linuxapp environment with 4 lcores, 4 memory channels, 16 ports
and 8 RX queues per lcore, issue the command:

$./build/link_status_interrupt -c f -n 4-- -q 8 -p ffff
Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

17.4 Explanation

The following sections provide some explanation of the code.

17.4.1 Command Line Arguments

The Link Status Interrupt sample application takes specific parameters, in addition to Environ-
ment Abstraction Layer (EAL) arguments (see Section 13.3).

Command line parsing is done in the same way as it is done in the L2 Forwarding Sample
Application. See Section 9.4.1, “Command Line Arguments” for more information.

17.4.2 Mbuf Pool Initialization

Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample
Application. See Section 9.4.2, “Mbuf Pool Initialization” for more information.

17.4.3 Driver Initialization

The main part of the code in the main() function relates to the initialization of the driver. To fully
understand this code, it is recommended to study the chapters that related to the Poll Mode
Driver in the DPDK Programmer’s Guide and the DPDK API Reference.

if (rte_eal_pci_probe() < 0)rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");
nb_ports = rte_eth_dev_count();
if (nb_ports == 0)rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");
if (nb_ports > RTE_MAX_ETHPORTS)nb_ports = RTE_MAX_ETHPORTS;

17.3. Running the Application 90

Sample Applications User Guide, Release 2.1.0

/** Each logical core is assigned a dedicated TX queue on each port.*/
for (portid = 0; portid < nb_ports; portid++) {/* skip ports that are not enabled */

if ((lsi_enabled_port_mask & (1 << portid)) == 0)
continue;

/* save the destination port id */
if (nb_ports_in_mask % 2) {lsi_dst_ports[portid] = portid_last;lsi_dst_ports[portid_last] = portid;}
elseportid_last = portid;
nb_ports_in_mask++;
rte_eth_dev_info_get((uint8_t) portid, &dev_info);}

Observe that:

• rte_eal_pci_probe() parses the devices on the PCI bus and initializes recognized devices.

The next step is to configure the RX and TX queues. For each port, there is only one RX queue
(only one lcore is able to poll a given port). The number of TX queues depends on the number
of available lcores. The rte_eth_dev_configure() function is used to configure the number of
queues for a port:

ret = rte_eth_dev_configure((uint8_t) portid, 1, 1, &port_conf);
if (ret < 0)rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n", ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {.rxmode = {.split_hdr_size = 0,.header_split = 0, /**< Header Split disabled */.hw_ip_checksum = 0, /**< IP checksum offload disabled */.hw_vlan_filter = 0, /**< VLAN filtering disabled */.hw_strip_crc= 0, /**< CRC stripped by hardware */},.txmode = {},.intr_conf = {.lsc = 1, /**< link status interrupt feature enabled */},};
Configuring lsc to 0 (the default) disables the generation of any link status change inter-
rupts in kernel space and no user space interrupt event is received. The public interface
rte_eth_link_get() accesses the NIC registers directly to update the link status. Configuring
lsc to non-zero enables the generation of link status change interrupts in kernel space when a
link status change is present and calls the user space callbacks registered by the application.
The public interface rte_eth_link_get() just reads the link status in a global structure that would
be updated in the interrupt host thread only.

17.4. Explanation 91

Sample Applications User Guide, Release 2.1.0

17.4.4 Interrupt Callback Registration

The application can register one or more callbacks to a specific port and interrupt event. An
example callback function that has been written as indicated below.

static voidlsi_event_callback(uint8_t port_id, enum rte_eth_event_type type, void *param){
struct rte_eth_link link;
RTE_SET_USED(param);
printf("\n\nIn registered callback...\n");
printf("Event type: %s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt" : "unknown event");
rte_eth_link_get_nowait(port_id, &link);
if (link.link_status) {printf("Port %d Link Up - speed %u Mbps - %s\n\n", port_id, (unsigned)link.link_speed,(link.link_duplex == ETH_LINK_FULL_DUPLEX) ? ("full-duplex") : ("half-duplex"));} elseprintf("Port %d Link Down\n\n", port_id);}

This function is called when a link status interrupt is present for the right port. The port_id
indicates which port the interrupt applies to. The type parameter identifies the interrupt event
type, which currently can be RTE_ETH_EVENT_INTR_LSC only, but other types can be added
in the future. The param parameter is the address of the parameter for the callback. This
function should be implemented with care since it will be called in the interrupt host thread,
which is different from the main thread of its caller.

The application registers the lsi_event_callback and a NULL parameter to the link status inter-
rupt event on each port:

rte_eth_dev_callback_register((uint8_t)portid, RTE_ETH_EVENT_INTR_LSC, lsi_event_callback, NULL);
This registration can be done only after calling the rte_eth_dev_configure() function and before
calling any other function. If lsc is initialized with 0, the callback is never called since no interrupt
event would ever be present.

17.4.5 RX Queue Initialization

The application uses one lcore to poll one or several ports, depending on the -q option, which
specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with one lcore.
If there are 16 ports on the target (and if the portmask argument is -p ffff), the application will
need four lcores to poll all the ports.

ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd, SOCKET0, &rx_conf, lsi_pktmbuf_pool);
if (ret < 0)rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d, port=%u\n", ret, portid);

The list of queues that must be polled for a given lcore is stored in a private structure called
struct lcore_queue_conf.

struct lcore_queue_conf {
unsigned n_rx_port;
unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE]; unsigned tx_queue_id;

17.4. Explanation 92

Sample Applications User Guide, Release 2.1.0

struct mbuf_table tx_mbufs[LSI_MAX_PORTS];} rte_cache_aligned;
struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];

The n_rx_port and rx_port_list[] fields are used in the main packet processing loop (see Section
13.4.7, “Receive, Process and Transmit Packets” later in this chapter).

The global configuration for the RX queues is stored in a static structure:

static const struct rte_eth_rxconf rx_conf = {.rx_thresh = {.pthresh = RX_PTHRESH,.hthresh = RX_HTHRESH,.wthresh = RX_WTHRESH,},};

17.4.6 TX Queue Initialization

Each lcore should be able to transmit on any port. For every port, a single TX queue is
initialized.

/* init one TX queue logical core on each port */
fflush(stdout);
ret = rte_eth_tx_queue_setup(portid, 0, nb_txd, rte_eth_dev_socket_id(portid), &tx_conf);
if (ret < 0)rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d,port=%u\n", ret, (unsigned) portid);

The global configuration for TX queues is stored in a static structure:

static const struct rte_eth_txconf tx_conf = {.tx_thresh = {.pthresh = TX_PTHRESH,.hthresh = TX_HTHRESH,.wthresh = TX_WTHRESH,},.tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */};

17.4.7 Receive, Process and Transmit Packets

In the lsi_main_loop() function, the main task is to read ingress packets from the RX queues.
This is done using the following code:

/** Read packet from RX queues*/
for (i = 0; i < qconf->n_rx_port; i++) {portid = qconf->rx_port_list[i];nb_rx = rte_eth_rx_burst((uint8_t) portid, 0, pkts_burst, MAX_PKT_BURST);port_statistics[portid].rx += nb_rx;

for (j = 0; j < nb_rx; j++) {m = pkts_burst[j];rte_prefetch0(rte_pktmbuf_mtod(m, void *));lsi_simple_forward(m, portid);

17.4. Explanation 93

Sample Applications User Guide, Release 2.1.0

}}
Packets are read in a burst of size MAX_PKT_BURST. The rte_eth_rx_burst() function writes
the mbuf pointers in a local table and returns the number of available mbufs in the table.

Then, each mbuf in the table is processed by the lsi_simple_forward() function. The processing
is very simple: processes the TX port from the RX port and then replaces the source and
destination MAC addresses.

Note: In the following code, the two lines for calculating the output port require some expla-
nation. If portId is even, the first line does nothing (as portid & 1 will be 0), and the second line
adds 1. If portId is odd, the first line subtracts one and the second line does nothing. Therefore,
0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2, and so on.

static voidlsi_simple_forward(struct rte_mbuf *m, unsigned portid){
struct ether_hdr *eth;
void *tmp;
unsigned dst_port = lsi_dst_ports[portid];
eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
/* 02:00:00:00:00:xx */
tmp = ð->d_addr.addr_bytes[0];
*((uint64_t *)tmp) = 0x000000000002 + (dst_port << 40);
/* src addr */ether_addr_copy(&lsi_ports_eth_addr[dst_port], ð->s_addr);
lsi_send_packet(m, dst_port);}

Then, the packet is sent using the lsi_send_packet(m, dst_port) function. For this test applica-
tion, the processing is exactly the same for all packets arriving on the same RX port. Therefore,
it would have been possible to call the lsi_send_burst() function directly from the main loop to
send all the received packets on the same TX port using the burst-oriented send function,
which is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily forwarded
on the same port as packet N-1. The application is implemented to illustrate that so the same
approach can be reused in a more complex application.

The lsi_send_packet() function stores the packet in a per-lcore and per-txport table. If the table
is full, the whole packets table is transmitted using the lsi_send_burst() function:

/* Send the packet on an output interface */
static intlsi_send_packet(struct rte_mbuf *m, uint8_t port){

unsigned lcore_id, len;
struct lcore_queue_conf *qconf;
lcore_id = rte_lcore_id();qconf = &lcore_queue_conf[lcore_id];len = qconf->tx_mbufs[port].len;

17.4. Explanation 94

Sample Applications User Guide, Release 2.1.0

qconf->tx_mbufs[port].m_table[len] = m;len++;
/* enough pkts to be sent */
if (unlikely(len == MAX_PKT_BURST)) {lsi_send_burst(qconf, MAX_PKT_BURST, port);len = 0;}qconf->tx_mbufs[port].len = len;
return 0;}

To ensure that no packets remain in the tables, each lcore does a draining of the TX queue
in its main loop. This technique introduces some latency when there are not many packets to
send. However, it improves performance:

cur_tsc = rte_rdtsc();
/** TX burst queue drain*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {/* this could be optimized (use queueid instead of * portid), but it is not called so often */

for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
if (qconf->tx_mbufs[portid].len == 0)

continue;
lsi_send_burst(&lcore_queue_conf[lcore_id],qconf->tx_mbufs[portid].len, (uint8_t) portid);qconf->tx_mbufs[portid].len = 0;}

/* if timer is enabled */
if (timer_period > 0) {/* advance the timer */

timer_tsc += diff_tsc;
/* if timer has reached its timeout */
if (unlikely(timer_tsc >= (uint64_t) timer_period)) {/* do this only on master core */

if (lcore_id == rte_get_master_lcore()) {print_stats();
/* reset the timer */timer_tsc = 0;}}}prev_tsc = cur_tsc;}

17.4. Explanation 95

CHAPTER

EIGHTEEN

LOAD BALANCER SAMPLE APPLICATION

The Load Balancer sample application demonstrates the concept of isolating the packet I/O
task from the application-specific workload. Depending on the performance target, a number
of logical cores (lcores) are dedicated to handle the interaction with the NIC ports (I/O lcores),
while the rest of the lcores are dedicated to performing the application processing (worker
lcores). The worker lcores are totally oblivious to the intricacies of the packet I/O activity and
use the NIC-agnostic interface provided by software rings to exchange packets with the I/O
cores.

18.1 Overview

The architecture of the Load Balance application is presented in the following figure.

Fig. 18.1: Load Balancer Application Architecture

For the sake of simplicity, the diagram illustrates a specific case of two I/O RX and two I/O TX
lcores off loading the packet I/O overhead incurred by four NIC ports from four worker cores,
with each I/O lcore handling RX/TX for two NIC ports.

96

Sample Applications User Guide, Release 2.1.0

18.1.1 I/O RX Logical Cores

Each I/O RX lcore performs packet RX from its assigned NIC RX rings and then distributes
the received packets to the worker threads. The application allows each I/O RX lcore to com-
municate with any of the worker threads, therefore each (I/O RX lcore, worker lcore) pair is
connected through a dedicated single producer - single consumer software ring.

The worker lcore to handle the current packet is determined by reading a predefined 1-byte
field from the input packet:

worker_id = packet[load_balancing_field] % n_workers

Since all the packets that are part of the same traffic flow are expected to have the same value
for the load balancing field, this scheme also ensures that all the packets that are part of the
same traffic flow are directed to the same worker lcore (flow affinity) in the same order they
enter the system (packet ordering).

18.1.2 I/O TX Logical Cores

Each I/O lcore owns the packet TX for a predefined set of NIC ports. To enable each worker
thread to send packets to any NIC TX port, the application creates a software ring for each
(worker lcore, NIC TX port) pair, with each I/O TX core handling those software rings that are
associated with NIC ports that it handles.

18.1.3 Worker Logical Cores

Each worker lcore reads packets from its set of input software rings and routes them to the NIC
ports for transmission by dispatching them to output software rings. The routing logic is LPM
based, with all the worker threads sharing the same LPM rules.

18.2 Compiling the Application

The sequence of steps used to build the application is:

1. Export the required environment variables:

export RTE_SDK=<Path to the DPDK installation folder>export RTE_TARGET=x86_64-native-linuxapp-gcc
2. Build the application executable file:

cd ${RTE_SDK}/examples/load_balancer make
For more details on how to build the DPDK libraries and sample applications, please refer
to the DPDK Getting Started Guide.

18.3 Running the Application

To successfully run the application, the command line used to start the application has to be in
sync with the traffic flows configured on the traffic generator side.

18.2. Compiling the Application 97

Sample Applications User Guide, Release 2.1.0

For examples of application command lines and traffic generator flows, please refer to the
DPDK Test Report. For more details on how to set up and run the sample applications provided
with DPDK package, please refer to the DPDK Getting Started Guide.

18.4 Explanation

18.4.1 Application Configuration

The application run-time configuration is done through the application command line param-
eters. Any parameter that is not specified as mandatory is optional, with the default value
hard-coded in the main.h header file from the application folder.

The list of application command line parameters is listed below:

1. –rx “(PORT, QUEUE, LCORE), ...”: The list of NIC RX ports and queues handled by the
I/O RX lcores. This parameter also implicitly defines the list of I/O RX lcores. This is a
mandatory parameter.

2. –tx “(PORT, LCORE), ... ”: The list of NIC TX ports handled by the I/O TX lcores. This
parameter also implicitly defines the list of I/O TX lcores. This is a mandatory parameter.

3. –w “LCORE, ...”: The list of the worker lcores. This is a mandatory parameter.

4. –lpm “IP / PREFIX => PORT; ...”: The list of LPM rules used by the worker lcores for
packet forwarding. This is a mandatory parameter.

5. –rsz “A, B, C, D”: Ring sizes:

(a) A = The size (in number of buffer descriptors) of each of the NIC RX rings read by
the I/O RX lcores.

(b) B = The size (in number of elements) of each of the software rings used by the I/O
RX lcores to send packets to worker lcores.

(c) C = The size (in number of elements) of each of the software rings used by the
worker lcores to send packets to I/O TX lcores.

(d) D = The size (in number of buffer descriptors) of each of the NIC TX rings written by
I/O TX lcores.

6. –bsz “(A, B), (C, D), (E, F)”: Burst sizes:

(a) A = The I/O RX lcore read burst size from NIC RX.

(b) B = The I/O RX lcore write burst size to the output software rings.

(c) C = The worker lcore read burst size from the input software rings.

(d) D = The worker lcore write burst size to the output software rings.

(e) E = The I/O TX lcore read burst size from the input software rings.

(f) F = The I/O TX lcore write burst size to the NIC TX.

7. –pos-lb POS: The position of the 1-byte field within the input packet used by the I/O RX
lcores to identify the worker lcore for the current packet. This field needs to be within the
first 64 bytes of the input packet.

18.4. Explanation 98

Sample Applications User Guide, Release 2.1.0

The infrastructure of software rings connecting I/O lcores and worker lcores is built by the appli-
cation as a result of the application configuration provided by the user through the application
command line parameters.

A specific lcore performing the I/O RX role for a specific set of NIC ports can also perform the
I/O TX role for the same or a different set of NIC ports. A specific lcore cannot perform both
the I/O role (either RX or TX) and the worker role during the same session.

Example:

./load_balancer -c 0xf8 -n 4 -- --rx "(0,0,3),(1,0,3)" --tx "(0,3),(1,3)" --w "4,5,6,7" --lpm "1.0.0.0/24=>0; 1.0.1.0/24=>1;" --pos-lb 29
There is a single I/O lcore (lcore 3) that handles RX and TX for two NIC ports (ports 0 and 1)
that handles packets to/from four worker lcores (lcores 4, 5, 6 and 7) that are assigned worker
IDs 0 to 3 (worker ID for lcore 4 is 0, for lcore 5 is 1, for lcore 6 is 2 and for lcore 7 is 3).

Assuming that all the input packets are IPv4 packets with no VLAN label and the source IP
address of the current packet is A.B.C.D, the worker lcore for the current packet is determined
by byte D (which is byte 29). There are two LPM rules that are used by each worker lcore to
route packets to the output NIC ports.

The following table illustrates the packet flow through the system for several possible traffic
flows:

Flow
#

Source IP
Address

Destination IP
Address

Worker ID (Worker
lcore)

Output NIC
Port

1 0.0.0.0 1.0.0.1 0 (4) 0
2 0.0.0.1 1.0.1.2 1 (5) 1
3 0.0.0.14 1.0.0.3 2 (6) 0
4 0.0.0.15 1.0.1.4 3 (7) 1

18.4.2 NUMA Support

The application has built-in performance enhancements for the NUMA case:

1. One buffer pool per each CPU socket.

2. One LPM table per each CPU socket.

3. Memory for the NIC RX or TX rings is allocated on the same socket with the lcore han-
dling the respective ring.

In the case where multiple CPU sockets are used in the system, it is recommended to enable
at least one lcore to fulfill the I/O role for the NIC ports that are directly attached to that CPU
socket through the PCI Express* bus. It is always recommended to handle the packet I/O with
lcores from the same CPU socket as the NICs.

Depending on whether the I/O RX lcore (same CPU socket as NIC RX), the worker lcore and
the I/O TX lcore (same CPU socket as NIC TX) handling a specific input packet, are on the
same or different CPU sockets, the following run-time scenarios are possible:

1. AAA: The packet is received, processed and transmitted without going across CPU sock-
ets.

2. AAB: The packet is received and processed on socket A, but as it has to be transmitted
on a NIC port connected to socket B, the packet is sent to socket B through software
rings.

18.4. Explanation 99

Sample Applications User Guide, Release 2.1.0

3. ABB: The packet is received on socket A, but as it has to be processed by a worker
lcore on socket B, the packet is sent to socket B through software rings. The packet is
transmitted by a NIC port connected to the same CPU socket as the worker lcore that
processed it.

4. ABC: The packet is received on socket A, it is processed by an lcore on socket B, then
it has to be transmitted out by a NIC connected to socket C. The performance price for
crossing the CPU socket boundary is paid twice for this packet.

18.4. Explanation 100

CHAPTER

NINETEEN

MULTI-PROCESS SAMPLE APPLICATION

This chapter describes the example applications for multi-processing that are included in the
DPDK.

19.1 Example Applications

19.1.1 Building the Sample Applications

The multi-process example applications are built in the same way as other sample applications,
and as documented in the DPDK Getting Started Guide. To build all the example applications:

1. Set RTE_SDK and go to the example directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/multi_process
2. Set the target (a default target will be used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the applications:

make
Note: If just a specific multi-process application needs to be built, the final make command
can be run just in that application’s directory, rather than at the top-level multi-process directory.

19.1.2 Basic Multi-process Example

The examples/simple_mp folder in the DPDK release contains a basic example application to
demonstrate how two DPDK processes can work together using queues and memory pools to
share information.

Running the Application

To run the application, start one copy of the simple_mp binary in one terminal, passing at least
two cores in the coremask, as follows:

./build/simple_mp -c 3 -n 4 --proc-type=primary

101

Sample Applications User Guide, Release 2.1.0

For the first DPDK process run, the proc-type flag can be omitted or set to auto, since all
DPDK processes will default to being a primary instance, meaning they have control over
the hugepage shared memory regions. The process should start successfully and display a
command prompt as follows:

$./build/simple_mp -c 3 -n 4 --proc-type=primaryEAL: coremask set to 3EAL: Detected lcore 0 on socket 0EAL: Detected lcore 1 on socket 0EAL: Detected lcore 2 on socket 0EAL: Detected lcore 3 on socket 0...
EAL: Requesting 2 pages of size 1073741824EAL: Requesting 768 pages of size 2097152EAL: Ask a virtual area of 0x40000000 bytesEAL: Virtual area found at 0x7ff200000000 (size = 0x40000000)...
EAL: check igb_uio moduleEAL: check module finishedEAL: Master core 0 is ready (tid=54e41820)EAL: Core 1 is ready (tid=53b32700)
Starting core 1
simple_mp >

To run the secondary process to communicate with the primary process, again run the same
binary setting at least two cores in the coremask:

./build/simple_mp -c C -n 4 --proc-type=secondary
When running a secondary process such as that shown above, the proc-type parameter can
again be specified as auto. However, omitting the parameter altogether will cause the process
to try and start as a primary rather than secondary process.

Once the process type is specified correctly, the process starts up, displaying largely similar
status messages to the primary instance as it initializes. Once again, you will be presented
with a command prompt.

Once both processes are running, messages can be sent between them using the send com-
mand. At any stage, either process can be terminated using the quit command.

EAL: Master core 10 is ready (tid=b5f89820) EAL: Master core 8 is ready (tid=864a3820)EAL: Core 11 is ready (tid=84ffe700) EAL: Core 9 is ready (tid=85995700)Starting core 11 Starting core 9simple_mp > send hello_secondary simple_mp > core 9: Received 'hello_secondary'simple_mp > core 11: Received 'hello_primary' simple_mp > send hello_primarysimple_mp > quit simple_mp > quit
Note: If the primary instance is terminated, the secondary instance must also be shut-down
and restarted after the primary. This is necessary because the primary instance will clear and
reset the shared memory regions on startup, invalidating the secondary process’s pointers.
The secondary process can be stopped and restarted without affecting the primary process.

19.1. Example Applications 102

Sample Applications User Guide, Release 2.1.0

How the Application Works

The core of this example application is based on using two queues and a single memory pool
in shared memory. These three objects are created at startup by the primary process, since
the secondary process cannot create objects in memory as it cannot reserve memory zones,
and the secondary process then uses lookup functions to attach to these objects as it starts
up.

if (rte_eal_process_type() == RTE_PROC_PRIMARY){send_ring = rte_ring_create(_PRI_2_SEC, ring_size, SOCKET0, flags);recv_ring = rte_ring_create(_SEC_2_PRI, ring_size, SOCKET0, flags);message_pool = rte_mempool_create(_MSG_POOL, pool_size, string_size, pool_cache, priv_data_sz, NULL, NULL, NULL, NULL, SOCKET0, flags);} else {recv_ring = rte_ring_lookup(_PRI_2_SEC);send_ring = rte_ring_lookup(_SEC_2_PRI);message_pool = rte_mempool_lookup(_MSG_POOL);}
Note, however, that the named ring structure used as send_ring in the primary process is the
recv_ring in the secondary process.

Once the rings and memory pools are all available in both the primary and secondary pro-
cesses, the application simply dedicates two threads to sending and receiving messages re-
spectively. The receive thread simply dequeues any messages on the receive ring, prints them,
and frees the buffer space used by the messages back to the memory pool. The send thread
makes use of the command-prompt library to interactively request user input for messages to
send. Once a send command is issued by the user, a buffer is allocated from the memory pool,
filled in with the message contents, then enqueued on the appropriate rte_ring.

19.1.3 Symmetric Multi-process Example

The second example of DPDK multi-process support demonstrates how a set of processes can
run in parallel, with each process performing the same set of packet- processing operations.
(Since each process is identical in functionality to the others, we refer to this as symmetric
multi-processing, to differentiate it from asymmetric multi- processing - such as a client-server
mode of operation seen in the next example, where different processes perform different tasks,
yet co-operate to form a packet-processing system.) The following diagram shows the data-
flow through the application, using two processes.

As the diagram shows, each process reads packets from each of the network ports in use.
RSS is used to distribute incoming packets on each port to different hardware RX queues.
Each process reads a different RX queue on each port and so does not contend with any other
process for that queue access. Similarly, each process writes outgoing packets to a different
TX queue on each port.

Running the Application

As with the simple_mp example, the first instance of the symmetric_mp process must be run
as the primary instance, though with a number of other application- specific parameters also
provided after the EAL arguments. These additional parameters are:

• -p <portmask>, where portmask is a hexadecimal bitmask of what ports on the system
are to be used. For example: -p 3 to use ports 0 and 1 only.

19.1. Example Applications 103

Sample Applications User Guide, Release 2.1.0

Fig. 19.1: Example Data Flow in a Symmetric Multi-process Application

19.1. Example Applications 104

Sample Applications User Guide, Release 2.1.0

• –num-procs <N>, where N is the total number of symmetric_mp instances that will be
run side-by-side to perform packet processing. This parameter is used to configure the
appropriate number of receive queues on each network port.

• –proc-id <n>, where n is a numeric value in the range 0 <= n < N (number of processes,
specified above). This identifies which symmetric_mp instance is being run, so that each
process can read a unique receive queue on each network port.

The secondary symmetric_mp instances must also have these parameters specified, and the
first two must be the same as those passed to the primary instance, or errors result.

For example, to run a set of four symmetric_mp instances, running on lcores 1-4, all performing
level-2 forwarding of packets between ports 0 and 1, the following commands can be used
(assuming run as root):

./build/symmetric_mp -c 2 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=0
./build/symmetric_mp -c 4 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=1
./build/symmetric_mp -c 8 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=2
./build/symmetric_mp -c 10 -n 4 --proc-type=auto -- -p 3 --num-procs=4 --proc-id=3

Note: In the above example, the process type can be explicitly specified as primary or sec-
ondary, rather than auto. When using auto, the first process run creates all the memory struc-
tures needed for all processes - irrespective of whether it has a proc-id of 0, 1, 2 or 3.

Note: For the symmetric multi-process example, since all processes work in the same manner,
once the hugepage shared memory and the network ports are initialized, it is not necessary
to restart all processes if the primary instance dies. Instead, that process can be restarted
as a secondary, by explicitly setting the proc-type to secondary on the command line. (All
subsequent instances launched will also need this explicitly specified, as auto-detection will
detect no primary processes running and therefore attempt to re-initialize shared memory.)

How the Application Works

The initialization calls in both the primary and secondary instances are the same for the most
part, calling the rte_eal_init(), 1 G and 10 G driver initialization and then rte_eal_pci_probe()
functions. Thereafter, the initialization done depends on whether the process is configured as
a primary or secondary instance.

In the primary instance, a memory pool is created for the packet mbufs and the network ports
to be used are initialized - the number of RX and TX queues per port being determined by the
num-procs parameter passed on the command-line. The structures for the initialized network
ports are stored in shared memory and therefore will be accessible by the secondary process
as it initializes.

if (num_ports & 1)rte_exit(EXIT_FAILURE, "Application must use an even number of ports\n");
for(i = 0; i < num_ports; i++){

if(proc_type == RTE_PROC_PRIMARY)
if (smp_port_init(ports[i], mp, (uint16_t)num_procs) < 0)rte_exit(EXIT_FAILURE, "Error initializing ports\n");}

In the secondary instance, rather than initializing the network ports, the port information ex-
ported by the primary process is used, giving the secondary process access to the hardware

19.1. Example Applications 105

Sample Applications User Guide, Release 2.1.0

and software rings for each network port. Similarly, the memory pool of mbufs is accessed by
doing a lookup for it by name:

mp = (proc_type == RTE_PROC_SECONDARY) ? rte_mempool_lookup(_SMP_MBUF_POOL) : rte_mempool_create(_SMP_MBUF_POOL, NB_MBUFS, MBUF_SIZE, ...)
Once this initialization is complete, the main loop of each process, both primary and secondary,
is exactly the same - each process reads from each port using the queue corresponding to its
proc-id parameter, and writes to the corresponding transmit queue on the output port.

19.1.4 Client-Server Multi-process Example

The third example multi-process application included with the DPDK shows how one can use
a client-server type multi-process design to do packet processing. In this example, a single
server process performs the packet reception from the ports being used and distributes these
packets using round-robin ordering among a set of client processes, which perform the ac-
tual packet processing. In this case, the client applications just perform level-2 forwarding of
packets by sending each packet out on a different network port.

The following diagram shows the data-flow through the application, using two client processes.

Fig. 19.2: Example Data Flow in a Client-Server Symmetric Multi-process Application

Running the Application

The server process must be run initially as the primary process to set up all memory structures
for use by the clients. In addition to the EAL parameters, the application- specific parameters
are:

• -p <portmask >, where portmask is a hexadecimal bitmask of what ports on the system
are to be used. For example: -p 3 to use ports 0 and 1 only.

• -n <num-clients>, where the num-clients parameter is the number of client processes that
will process the packets received by the server application.

19.1. Example Applications 106

Sample Applications User Guide, Release 2.1.0

Note: In the server process, a single thread, the master thread, that is, the lowest numbered
lcore in the coremask, performs all packet I/O. If a coremask is specified with more than a
single lcore bit set in it, an additional lcore will be used for a thread to periodically print packet
count statistics.

Since the server application stores configuration data in shared memory, including the network
ports to be used, the only application parameter needed by a client process is its client instance
ID. Therefore, to run a server application on lcore 1 (with lcore 2 printing statistics) along with
two client processes running on lcores 3 and 4, the following commands could be used:

./mp_server/build/mp_server -c 6 -n 4 -- -p 3 -n 2
./mp_client/build/mp_client -c 8 -n 4 --proc-type=auto -- -n 0
./mp_client/build/mp_client -c 10 -n 4 --proc-type=auto -- -n 1

Note: If the server application dies and needs to be restarted, all client applications also need
to be restarted, as there is no support in the server application for it to run as a secondary
process. Any client processes that need restarting can be restarted without affecting the server
process.

How the Application Works

The server process performs the network port and data structure initialization much as the
symmetric multi-process application does when run as primary. One additional enhancement
in this sample application is that the server process stores its port configuration data in a
memory zone in hugepage shared memory. This eliminates the need for the client processes
to have the portmask parameter passed into them on the command line, as is done for the
symmetric multi-process application, and therefore eliminates mismatched parameters as a
potential source of errors.

In the same way that the server process is designed to be run as a primary process instance
only, the client processes are designed to be run as secondary instances only. They have
no code to attempt to create shared memory objects. Instead, handles to all needed rings
and memory pools are obtained via calls to rte_ring_lookup() and rte_mempool_lookup(). The
network ports for use by the processes are obtained by loading the network port drivers and
probing the PCI bus, which will, as in the symmetric multi-process example, automatically
get access to the network ports using the settings already configured by the primary/server
process.

Once all applications are initialized, the server operates by reading packets from each network
port in turn and distributing those packets to the client queues (software rings, one for each
client process) in round-robin order. On the client side, the packets are read from the rings in
as big of bursts as possible, then routed out to a different network port. The routing used is
very simple. All packets received on the first NIC port are transmitted back out on the second
port and vice versa. Similarly, packets are routed between the 3rd and 4th network ports and
so on. The sending of packets is done by writing the packets directly to the network ports; they
are not transferred back via the server process.

In both the server and the client processes, outgoing packets are buffered before being sent, so
as to allow the sending of multiple packets in a single burst to improve efficiency. For example,
the client process will buffer packets to send, until either the buffer is full or until we receive no
further packets from the server.

19.1. Example Applications 107

Sample Applications User Guide, Release 2.1.0

19.1.5 Master-slave Multi-process Example

The fourth example of DPDK multi-process support demonstrates a master-slave model that
provide the capability of application recovery if a slave process crashes or meets unexpected
conditions. In addition, it also demonstrates the floating process, which can run among different
cores in contrast to the traditional way of binding a process/thread to a specific CPU core, using
the local cache mechanism of mempool structures.

This application performs the same functionality as the L2 Forwarding sample application,
therefore this chapter does not cover that part but describes functionality that is introduced in
this multi-process example only. Please refer to Chapter 9, “L2 Forwarding Sample Application
(in Real and Virtualized Environments)” for more information.

Unlike previous examples where all processes are started from the command line with input
arguments, in this example, only one process is spawned from the command line and that
process creates other processes. The following section describes this in more detail.

Master-slave Process Models

The process spawned from the command line is called the master process in this document. A
process created by the master is called a slave process. The application has only one master
process, but could have multiple slave processes.

Once the master process begins to run, it tries to initialize all the resources such as memory,
CPU cores, driver, ports, and so on, as the other examples do. Thereafter, it creates slave
processes, as shown in the following figure.

Fig. 19.3: Master-slave Process Workflow

The master process calls the rte_eal_mp_remote_launch() EAL function to launch an appli-
cation function for each pinned thread through the pipe. Then, it waits to check if any slave
processes have exited. If so, the process tries to re-initialize the resources that belong to that

19.1. Example Applications 108

Sample Applications User Guide, Release 2.1.0

slave and launch them in the pinned thread entry again. The following section describes the
recovery procedures in more detail.

For each pinned thread in EAL, after reading any data from the pipe, it tries to call the function
that the application specified. In this master specified function, a fork() call creates a slave
process that performs the L2 forwarding task. Then, the function waits until the slave exits, is
killed or crashes. Thereafter, it notifies the master of this event and returns. Finally, the EAL
pinned thread waits until the new function is launched.

After discussing the master-slave model, it is necessary to mention another issue, global and
static variables.

For multiple-thread cases, all global and static variables have only one copy and they can be
accessed by any thread if applicable. So, they can be used to sync or share data among
threads.

In the previous examples, each process has separate global and static variables in memory and
are independent of each other. If it is necessary to share the knowledge, some communication
mechanism should be deployed, such as, memzone, ring, shared memory, and so on. The
global or static variables are not a valid approach to share data among processes. For variables
in this example, on the one hand, the slave process inherits all the knowledge of these variables
after being created by the master. On the other hand, other processes cannot know if one or
more processes modifies them after slave creation since that is the nature of a multiple process
address space. But this does not mean that these variables cannot be used to share or sync
data; it depends on the use case. The following are the possible use cases:

1. The master process starts and initializes a variable and it will never be changed after
slave processes created. This case is OK.

2. After the slave processes are created, the master or slave cores need to change a vari-
able, but other processes do not need to know the change. This case is also OK.

3. After the slave processes are created, the master or a slave needs to change a variable.
In the meantime, one or more other process needs to be aware of the change. In this
case, global and static variables cannot be used to share knowledge. Another communi-
cation mechanism is needed. A simple approach without lock protection can be a heap
buffer allocated by rte_malloc or mem zone.

Slave Process Recovery Mechanism

Before talking about the recovery mechanism, it is necessary to know what is needed before a
new slave instance can run if a previous one exited.

When a slave process exits, the system returns all the resources allocated for this process
automatically. However, this does not include the resources that were allocated by the DPDK.
All the hardware resources are shared among the processes, which include memzone, mem-
pool, ring, a heap buffer allocated by the rte_malloc library, and so on. If the new instance runs
and the allocated resource is not returned, either resource allocation failed or the hardware
resource is lost forever.

When a slave process runs, it may have dependencies on other processes. They could have
execution sequence orders; they could share the ring to communicate; they could share the
same port for reception and forwarding; they could use lock structures to do exclusive access
in some critical path. What happens to the dependent process(es) if the peer leaves? The
consequence are varied since the dependency cases are complex. It depends on what the

19.1. Example Applications 109

Sample Applications User Guide, Release 2.1.0

processed had shared. However, it is necessary to notify the peer(s) if one slave exited. Then,
the peer(s) will be aware of that and wait until the new instance begins to run.

Therefore, to provide the capability to resume the new slave instance if the previous one exited,
it is necessary to provide several mechanisms:

1. Keep a resource list for each slave process. Before a slave process run, the master
should prepare a resource list. After it exits, the master could either delete the allocated
resources and create new ones, or re-initialize those for use by the new instance.

2. Set up a notification mechanism for slave process exit cases. After the specific slave
leaves, the master should be notified and then help to create a new instance. This mech-
anism is provided in Section 15.1.5.1, “Master-slave Process Models”.

3. Use a synchronization mechanism among dependent processes. The master should
have the capability to stop or kill slave processes that have a dependency on the one
that has exited. Then, after the new instance of exited slave process begins to run,
the dependency ones could resume or run from the start. The example sends a STOP
command to slave processes dependent on the exited one, then they will exit. Thereafter,
the master creates new instances for the exited slave processes.

The following diagram describes slave process recovery.

Fig. 19.4: Slave Process Recovery Process Flow

Floating Process Support

When the DPDK application runs, there is always a -c option passed in to indicate the cores
that are enabled. Then, the DPDK creates a thread for each enabled core. By doing so, it
creates a 1:1 mapping between the enabled core and each thread. The enabled core always
has an ID, therefore, each thread has a unique core ID in the DPDK execution environment.
With the ID, each thread can easily access the structures or resources exclusively belonging
to it without using function parameter passing. It can easily use the rte_lcore_id() function to
get the value in every function that is called.

For threads/processes not created in that way, either pinned to a core or not, they will not own a
unique ID and the rte_lcore_id() function will not work in the correct way. However, sometimes
these threads/processes still need the unique ID mechanism to do easy access on structures
or resources. For example, the DPDK mempool library provides a local cache mechanism
(refer to DPDK Programmer’s Guide , Section 6.4, “Local Cache”) for fast element allocation
and freeing. If using a non-unique ID or a fake one, a race condition occurs if two or more
threads/ processes with the same core ID try to use the local cache.

19.1. Example Applications 110

Sample Applications User Guide, Release 2.1.0

Therefore, unused core IDs from the passing of parameters with the -c option are used to
organize the core ID allocation array. Once the floating process is spawned, it tries to allocate
a unique core ID from the array and release it on exit.

A natural way to spawn a floating process is to use the fork() function and allocate a unique
core ID from the unused core ID array. However, it is necessary to write new code to provide
a notification mechanism for slave exit and make sure the process recovery mechanism can
work with it.

To avoid producing redundant code, the Master-Slave process model is still used to spawn
floating processes, then cancel the affinity to specific cores. Besides that, clear the core ID as-
signed to the DPDK spawning a thread that has a 1:1 mapping with the core mask. Thereafter,
get a new core ID from the unused core ID allocation array.

Run the Application

This example has a command line similar to the L2 Forwarding sample application with a few
differences.

To run the application, start one copy of the l2fwd_fork binary in one terminal. Unlike the L2
Forwarding example, this example requires at least three cores since the master process will
wait and be accountable for slave process recovery. The command is as follows:

#./build/l2fwd_fork -c 1c -n 4 -- -p 3 -f
This example provides another -f option to specify the use of floating process. If not specified,
the example will use a pinned process to perform the L2 forwarding task.

To verify the recovery mechanism, proceed as follows: First, check the PID of the slave pro-
cesses:

#ps -fe | grep l2fwd_forkroot 5136 4843 29 11:11 pts/1 00:00:05 ./build/l2fwd_forkroot 5145 5136 98 11:11 pts/1 00:00:11 ./build/l2fwd_forkroot 5146 5136 98 11:11 pts/1 00:00:11 ./build/l2fwd_fork
Then, kill one of the slaves:

#kill -9 5145
After 1 or 2 seconds, check whether the slave has resumed:

#ps -fe | grep l2fwd_forkroot 5136 4843 3 11:11 pts/1 00:00:06 ./build/l2fwd_forkroot 5247 5136 99 11:14 pts/1 00:00:01 ./build/l2fwd_forkroot 5248 5136 99 11:14 pts/1 00:00:01 ./build/l2fwd_fork
It can also monitor the traffic generator statics to see whether slave processes have resumed.

Explanation

As described in previous sections, not all global and static variables need to change to be
accessible in multiple processes; it depends on how they are used. In this example, the statics
info on packets dropped/forwarded/received count needs to be updated by the slave process,
and the master needs to see the update and print them out. So, it needs to allocate a heap
buffer using rte_zmalloc. In addition, if the -f option is specified, an array is needed to store
the allocated core ID for the floating process so that the master can return it after a slave has
exited accidentally.

19.1. Example Applications 111

Sample Applications User Guide, Release 2.1.0

static intl2fwd_malloc_shared_struct(void){ port_statistics = rte_zmalloc("port_stat", sizeof(struct l2fwd_port_statistics) * RTE_MAX_ETHPORTS, 0);
if (port_statistics == NULL)

return -1;
/* allocate mapping_id array */
if (float_proc) {

int i;
mapping_id = rte_malloc("mapping_id", sizeof(unsigned) * RTE_MAX_LCORE, 0);
if (mapping_id == NULL)

return -1;
for (i = 0 ;i < RTE_MAX_LCORE; i++)mapping_id[i] = INVALID_MAPPING_ID;

}
return 0;}

For each slave process, packets are received from one port and forwarded to another port
that another slave is operating on. If the other slave exits accidentally, the port it is operating
on may not work normally, so the first slave cannot forward packets to that port. There is a
dependency on the port in this case. So, the master should recognize the dependency. The
following is the code to detect this dependency:

for (portid = 0; portid < nb_ports; portid++) {/* skip ports that are not enabled */
if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)

continue;
/* Find pair ports' lcores */
find_lcore = find_pair_lcore = 0;pair_port = l2fwd_dst_ports[portid];
for (i = 0; i < RTE_MAX_LCORE; i++) {

if (!rte_lcore_is_enabled(i))
continue;

for (j = 0; j < lcore_queue_conf[i].n_rx_port;j++) {
if (lcore_queue_conf[i].rx_port_list[j] == portid) {lcore = i;find_lcore = 1;

break;}
if (lcore_queue_conf[i].rx_port_list[j] == pair_port) {pair_lcore = i;find_pair_lcore = 1;

break;}}
if (find_lcore && find_pair_lcore)

break;}

19.1. Example Applications 112

Sample Applications User Guide, Release 2.1.0

if (!find_lcore || !find_pair_lcore)rte_exit(EXIT_FAILURE, "Not find port=%d pair\\n", portid);
printf("lcore %u and %u paired\\n", lcore, pair_lcore);
lcore_resource[lcore].pair_id = pair_lcore;lcore_resource[pair_lcore].pair_id = lcore;}

Before launching the slave process, it is necessary to set up the communication channel be-
tween the master and slave so that the master can notify the slave if its peer process with the
dependency exited. In addition, the master needs to register a callback function in the case
where a specific slave exited.

for (i = 0; i < RTE_MAX_LCORE; i++) {
if (lcore_resource[i].enabled) {/* Create ring for master and slave communication */

ret = create_ms_ring(i);
if (ret != 0)rte_exit(EXIT_FAILURE, "Create ring for lcore=%u failed",i);
if (flib_register_slave_exit_notify(i,slave_exit_cb) != 0)rte_exit(EXIT_FAILURE, "Register master_trace_slave_exit failed");}}

After launching the slave process, the master waits and prints out the port statics periodically.
If an event indicating that a slave process exited is detected, it sends the STOP command to
the peer and waits until it has also exited. Then, it tries to clean up the execution environment
and prepare new resources. Finally, the new slave instance is launched.

while (1) {sleep(1);cur_tsc = rte_rdtsc();diff_tsc = cur_tsc - prev_tsc;
/* if timer is enabled */
if (timer_period > 0) {/* advance the timer */timer_tsc += diff_tsc;

/* if timer has reached its timeout */
if (unlikely(timer_tsc >= (uint64_t) timer_period)) {print_stats();

/* reset the timer */timer_tsc = 0;}}
prev_tsc = cur_tsc;
/* Check any slave need restart or recreate */
rte_spinlock_lock(&res_lock);
for (i = 0; i < RTE_MAX_LCORE; i++) {

struct lcore_resource_struct *res = &lcore_resource[i];
struct lcore_resource_struct *pair = &lcore_resource[res->pair_id];
/* If find slave exited, try to reset pair */

19.1. Example Applications 113

Sample Applications User Guide, Release 2.1.0

if (res->enabled && res->flags && pair->enabled) {
if (!pair->flags) {master_sendcmd_with_ack(pair->lcore_id, CMD_STOP);rte_spinlock_unlock(&res_lock);sleep(1);rte_spinlock_lock(&res_lock);

if (pair->flags)
continue;}

if (reset_pair(res->lcore_id, pair->lcore_id) != 0)rte_exit(EXIT_FAILURE, "failed to reset slave");
res->flags = 0;pair->flags = 0;}}rte_spinlock_unlock(&res_lock);}

When the slave process is spawned and starts to run, it checks whether the floating process
option is applied. If so, it clears the affinity to a specific core and also sets the unique core
ID to 0. Then, it tries to allocate a new core ID. Since the core ID has changed, the resource
allocated by the master cannot work, so it remaps the resource to the new core ID slot.

static intl2fwd_launch_one_lcore(attribute ((unused)) void *dummy){
unsigned lcore_id = rte_lcore_id();
if (float_proc) {

unsigned flcore_id;
/* Change it to floating process, also change it's lcore_id */
clear_cpu_affinity();
RTE_PER_LCORE(_lcore_id) = 0;
/* Get a lcore_id */
if (flib_assign_lcore_id() < 0) {printf("flib_assign_lcore_id failed\n");

return -1;}
flcore_id = rte_lcore_id();
/* Set mapping id, so master can return it after slave exited */
mapping_id[lcore_id] = flcore_id;printf("Org lcore_id = %u, cur lcore_id = %u\n",lcore_id, flcore_id);remapping_slave_resource(lcore_id, flcore_id);}

l2fwd_main_loop();
/* return lcore_id before return */
if (float_proc) {flib_free_lcore_id(rte_lcore_id());mapping_id[lcore_id] = INVALID_MAPPING_ID;}

19.1. Example Applications 114

Sample Applications User Guide, Release 2.1.0

return 0;}

19.1. Example Applications 115

CHAPTER

TWENTY

QOS METERING SAMPLE APPLICATION

The QoS meter sample application is an example that demonstrates the use of DPDK to pro-
vide QoS marking and metering, as defined by RFC2697 for Single Rate Three Color Marker
(srTCM) and RFC 2698 for Two Rate Three Color Marker (trTCM) algorithm.

20.1 Overview

The application uses a single thread for reading the packets from the RX port, metering, mark-
ing them with the appropriate color (green, yellow or red) and writing them to the TX port.

A policing scheme can be applied before writing the packets to the TX port by dropping or
changing the color of the packet in a static manner depending on both the input and output
colors of the packets that are processed by the meter.

The operation mode can be selected as compile time out of the following options:

• Simple forwarding

• srTCM color blind

• srTCM color aware

• srTCM color blind

• srTCM color aware

Please refer to RFC2697 and RFC2698 for details about the srTCM and trTCM configurable
parameters (CIR, CBS and EBS for srTCM; CIR, PIR, CBS and PBS for trTCM).

The color blind modes are functionally equivalent with the color-aware modes when all the
incoming packets are colored as green.

20.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/qos_meter
2. Set the target (a default target is used if not specified):

Note: This application is intended as a linuxapp only.

export RTE_TARGET=x86_64-native-linuxapp-gcc
116

Sample Applications User Guide, Release 2.1.0

3. Build the application:

make

20.3 Running the Application

The application execution command line is as below:

./qos_meter [EAL options] -- -p PORTMASK
The application is constrained to use a single core in the EAL core mask and 2 ports only in
the application port mask (first port from the port mask is used for RX and the other port in the
core mask is used for TX).

Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

20.4 Explanation

Selecting one of the metering modes is done with these defines:

#define APP_MODE_FWD 0#define APP_MODE_SRTCM_COLOR_BLIND 1#define APP_MODE_SRTCM_COLOR_AWARE 2#define APP_MODE_TRTCM_COLOR_BLIND 3#define APP_MODE_TRTCM_COLOR_AWARE 4
#define APP_MODE APP_MODE_SRTCM_COLOR_BLIND

To simplify debugging (for example, by using the traffic generator RX side MAC address based
packet filtering feature), the color is defined as the LSB byte of the destination MAC address.

The traffic meter parameters are configured in the application source code with following default
values:

struct rte_meter_srtcm_params app_srtcm_params[] = {
{.cir = 1000000 * 46, .cbs = 2048, .ebs = 2048},

};
struct rte_meter_trtcm_params app_trtcm_params[] = {

{.cir = 1000000 * 46, .pir = 1500000 * 46, .cbs = 2048, .pbs = 2048},
};

Assuming the input traffic is generated at line rate and all packets are 64 bytes Ethernet frames
(IPv4 packet size of 46 bytes) and green, the expected output traffic should be marked as
shown in the following table:

20.3. Running the Application 117

Sample Applications User Guide, Release 2.1.0

Table 20.1: Output Traffic Marking

Mode Green (Mpps) Yellow (Mpps) Red (Mpps)
srTCM blind 1 1 12.88
srTCM color 1 1 12.88
trTCM blind 1 0.5 13.38
trTCM color 1 0.5 13.38
FWD 14.88 0 0

To set up the policing scheme as desired, it is necessary to modify the main.h source file,
where this policy is implemented as a static structure, as follows:

int policer_table[e_RTE_METER_COLORS][e_RTE_METER_COLORS] ={ { GREEN, RED, RED},{ DROP, YELLOW, RED},{ DROP, DROP, RED}};
Where rows indicate the input color, columns indicate the output color, and the value that is
stored in the table indicates the action to be taken for that particular case.

There are four different actions:

• GREEN: The packet’s color is changed to green.

• YELLOW: The packet’s color is changed to yellow.

• RED: The packet’s color is changed to red.

• DROP: The packet is dropped.

In this particular case:

• Every packet which input and output color are the same, keeps the same color.

• Every packet which color has improved is dropped (this particular case can’t happen, so
these values will not be used).

• For the rest of the cases, the color is changed to red.

20.4. Explanation 118

CHAPTER

TWENTYONE

QOS SCHEDULER SAMPLE APPLICATION

The QoS sample application demonstrates the use of the DPDK to provide QoS scheduling.

21.1 Overview

The architecture of the QoS scheduler application is shown in the following figure.

Fig. 21.1: QoS Scheduler Application Architecture

There are two flavors of the runtime execution for this application, with two or three threads per
each packet flow configuration being used. The RX thread reads packets from the RX port,
classifies the packets based on the double VLAN (outer and inner) and the lower two bytes of
the IP destination address and puts them into the ring queue. The worker thread dequeues the
packets from the ring and calls the QoS scheduler enqueue/dequeue functions. If a separate
TX core is used, these are sent to the TX ring. Otherwise, they are sent directly to the TX port.
The TX thread, if present, reads from the TX ring and write the packets to the TX port.

21.2 Compiling the Application

To compile the application:

1. Go to the sample application directory:

119

Sample Applications User Guide, Release 2.1.0

export RTE_SDK=/path/to/rte_sdk cd ${RTE_SDK}/examples/qos_sched
2. Set the target (a default target is used if not specified). For example:

Note: This application is intended as a linuxapp only.

export RTE_TARGET=x86_64-native-linuxapp-gcc
3. Build the application:

make
Note: To get statistics on the sample app using the command line interface as described in the
next section, DPDK must be compiled defining CONFIG_RTE_SCHED_COLLECT_STATS,
which can be done by changing the configuration file for the specific target to be compiled.

21.3 Running the Application

Note: In order to run the application, a total of at least 4 G of huge pages must be set up for
each of the used sockets (depending on the cores in use).

The application has a number of command line options:

./qos_sched [EAL options] -- <APP PARAMS>
Mandatory application parameters include:

• –pfc “RX PORT, TX PORT, RX LCORE, WT LCORE, TX CORE”: Packet flow configura-
tion. Multiple pfc entities can be configured in the command line, having 4 or 5 items (if
TX core defined or not).

Optional application parameters include:

• -i: It makes the application to start in the interactive mode. In this mode, the application
shows a command line that can be used for obtaining statistics while scheduling is taking
place (see interactive mode below for more information).

• –mst n: Master core index (the default value is 1).

• –rsz “A, B, C”: Ring sizes:

• A = Size (in number of buffer descriptors) of each of the NIC RX rings read by the I/O RX
lcores (the default value is 128).

• B = Size (in number of elements) of each of the software rings used by the I/O RX lcores
to send packets to worker lcores (the default value is 8192).

• C = Size (in number of buffer descriptors) of each of the NIC TX rings written by worker
lcores (the default value is 256)

• –bsz “A, B, C, D”: Burst sizes

• A = I/O RX lcore read burst size from the NIC RX (the default value is 64)

• B = I/O RX lcore write burst size to the output software rings, worker lcore read burst size
from input software rings,QoS enqueue size (the default value is 64)

• C = QoS dequeue size (the default value is 32)

21.3. Running the Application 120

Sample Applications User Guide, Release 2.1.0

• D = Worker lcore write burst size to the NIC TX (the default value is 64)

• –msz M: Mempool size (in number of mbufs) for each pfc (default 2097152)

• –rth “A, B, C”: The RX queue threshold parameters

• A = RX prefetch threshold (the default value is 8)

• B = RX host threshold (the default value is 8)

• C = RX write-back threshold (the default value is 4)

• –tth “A, B, C”: TX queue threshold parameters

• A = TX prefetch threshold (the default value is 36)

• B = TX host threshold (the default value is 0)

• C = TX write-back threshold (the default value is 0)

• –cfg FILE: Profile configuration to load

Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

The profile configuration file defines all the port/subport/pipe/traffic class/queue parameters
needed for the QoS scheduler configuration.

The profile file has the following format:

; port configuration [port]
frame overhead = 24number of subports per port = 1number of pipes per subport = 4096queue sizes = 64 64 64 64
; Subport configuration
[subport 0]tb rate = 1250000000; Bytes per secondtb size = 1000000; Bytestc 0 rate = 1250000000; Bytes per secondtc 1 rate = 1250000000; Bytes per secondtc 2 rate = 1250000000; Bytes per secondtc 3 rate = 1250000000; Bytes per secondtc period = 10; Millisecondstc oversubscription period = 10; Milliseconds
pipe 0-4095 = 0; These pipes are configured with pipe profile 0
; Pipe configuration
[pipe profile 0]tb rate = 305175; Bytes per secondtb size = 1000000; Bytes
tc 0 rate = 305175; Bytes per secondtc 1 rate = 305175; Bytes per secondtc 2 rate = 305175; Bytes per secondtc 3 rate = 305175; Bytes per secondtc period = 40; Milliseconds
tc 0 oversubscription weight = 1tc 1 oversubscription weight = 1

21.3. Running the Application 121

Sample Applications User Guide, Release 2.1.0

tc 2 oversubscription weight = 1tc 3 oversubscription weight = 1
tc 0 wrr weights = 1 1 1 1tc 1 wrr weights = 1 1 1 1tc 2 wrr weights = 1 1 1 1tc 3 wrr weights = 1 1 1 1
; RED params per traffic class and color (Green / Yellow / Red)
[red]tc 0 wred min = 48 40 32tc 0 wred max = 64 64 64tc 0 wred inv prob = 10 10 10tc 0 wred weight = 9 9 9
tc 1 wred min = 48 40 32tc 1 wred max = 64 64 64tc 1 wred inv prob = 10 10 10tc 1 wred weight = 9 9 9
tc 2 wred min = 48 40 32tc 2 wred max = 64 64 64tc 2 wred inv prob = 10 10 10tc 2 wred weight = 9 9 9
tc 3 wred min = 48 40 32tc 3 wred max = 64 64 64tc 3 wred inv prob = 10 10 10tc 3 wred weight = 9 9 9

21.3.1 Interactive mode

These are the commands that are currently working under the command line interface:

• Control Commands

• –quit: Quits the application.

• General Statistics

– stats app: Shows a table with in-app calculated statistics.

– stats port X subport Y: For a specific subport, it shows the number of packets that
went through the scheduler properly and the number of packets that were dropped.
The same information is shown in bytes. The information is displayed in a table
separating it in different traffic classes.

– stats port X subport Y pipe Z: For a specific pipe, it shows the number of packets that
went through the scheduler properly and the number of packets that were dropped.
The same information is shown in bytes. This information is displayed in a table
separating it in individual queues.

• Average queue size

All of these commands work the same way, averaging the number of packets throughout a
specific subset of queues.

Two parameters can be configured for this prior to calling any of these commands:

21.3. Running the Application 122

Sample Applications User Guide, Release 2.1.0

• qavg n X: n is the number of times that the calculation will take place. Bigger numbers
provide higher accuracy. The default value is 10.

• qavg period X: period is the number of microseconds that will be allowed between each
calculation. The default value is 100.

The commands that can be used for measuring average queue size are:

• qavg port X subport Y: Show average queue size per subport.

• qavg port X subport Y tc Z: Show average queue size per subport for a specific traffic
class.

• qavg port X subport Y pipe Z: Show average queue size per pipe.

• qavg port X subport Y pipe Z tc A: Show average queue size per pipe for a specific traffic
class.

• qavg port X subport Y pipe Z tc A q B: Show average queue size of a specific queue.

21.3.2 Example

The following is an example command with a single packet flow configuration:

./qos_sched -c a2 -n 4 -- --pfc "3,2,5,7" --cfg ./profile.cfg
This example uses a single packet flow configuration which creates one RX thread on lcore 5
reading from port 3 and a worker thread on lcore 7 writing to port 2.

Another example with 2 packet flow configurations using different ports but sharing the same
core for QoS scheduler is given below:

./qos_sched -c c6 -n 4 -- --pfc "3,2,2,6,7" --pfc "1,0,2,6,7" --cfg ./profile.cfg
Note that independent cores for the packet flow configurations for each of the RX, WT and TX
thread are also supported, providing flexibility to balance the work.

The EAL coremask is constrained to contain the default mastercore 1 and the RX, WT and TX
cores only.

21.4 Explanation

The Port/Subport/Pipe/Traffic Class/Queue are the hierarchical entities in a typical QoS appli-
cation:

• A subport represents a predefined group of users.

• A pipe represents an individual user/subscriber.

• A traffic class is the representation of a different traffic type with a specific loss rate, delay
and jitter requirements; such as data voice, video or data transfers.

• A queue hosts packets from one or multiple connections of the same type belonging to
the same user.

The traffic flows that need to be configured are application dependent. This application classi-
fies based on the QinQ double VLAN tags and the IP destination address as indicated in the
following table.

21.4. Explanation 123

Sample Applications User Guide, Release 2.1.0

Table 21.1: Entity Types

Level Name Siblings per Parent QoS Functional De-
scription

Selected By

Port • Ethernet port Physical port

Subport Config (8) Traffic shaped (token
bucket)

Outer VLAN tag

Pipe Config (4k) Traffic shaped (token
bucket)

Inner VLAN tag

Traffic Class 4 TCs of the same pipe
services in strict prior-
ity

Destination IP ad-
dress (0.0.X.0)

Queue 4 Queue of the same
TC serviced in WRR

Destination IP ad-
dress (0.0.0.X)

Please refer to the “QoS Scheduler” chapter in the DPDK Programmer’s Guide for more infor-
mation about these parameters.

21.4. Explanation 124

CHAPTER

TWENTYTWO

INTEL® QUICKASSIST TECHNOLOGY SAMPLE APPLICATION

This sample application demonstrates the use of the cryptographic operations provided by
the Intel® QuickAssist Technology from within the DPDK environment. Therefore, building
and running this application requires having both the DPDK and the QuickAssist Technology
Software Library installed, as well as at least one Intel® QuickAssist Technology hardware
device present in the system.

For this sample application, there is a dependency on either of:

• Intel® Communications Chipset 8900 to 8920 Series Software for Linux* package

• Intel® Communications Chipset 8925 to 8955 Series Software for Linux* package

22.1 Overview

An overview of the application is provided in Fig. 22.1. For simplicity, only two NIC ports and
one Intel® QuickAssist Technology device are shown in this diagram, although the number of
NIC ports and Intel® QuickAssist Technology devices can be different.

Fig. 22.1: Intel® QuickAssist Technology Application Block Diagram

The application allows the configuration of the following items:

125

Sample Applications User Guide, Release 2.1.0

• Number of NIC ports

• Number of logical cores (lcores)

• Mapping of NIC RX queues to logical cores

Each lcore communicates with every cryptographic acceleration engine in the system through
a pair of dedicated input - output queues. Each lcore has a dedicated NIC TX queue with
every NIC port in the system. Therefore, each lcore reads packets from its NIC RX queues
and cryptographic accelerator output queues and writes packets to its NIC TX queues and
cryptographic accelerator input queues.

Each incoming packet that is read from a NIC RX queue is either directly forwarded to its des-
tination NIC TX port (forwarding path) or first sent to one of the Intel® QuickAssist Technology
devices for either encryption or decryption before being sent out on its destination NIC TX port
(cryptographic path).

The application supports IPv4 input packets only. For each input packet, the decision between
the forwarding path and the cryptographic path is taken at the classification stage based on the
value of the IP source address field read from the input packet. Assuming that the IP source
address is A.B.C.D, then if:

• D = 0: the forwarding path is selected (the packet is forwarded out directly)

• D = 1: the cryptographic path for encryption is selected (the packet is first encrypted and
then forwarded out)

• D = 2: the cryptographic path for decryption is selected (the packet is first decrypted and
then forwarded out)

For the cryptographic path cases (D = 1 or D = 2), byte C specifies the cipher algorithm and byte
B the cryptographic hash algorithm to be used for the current packet. Byte A is not used and
can be any value. The cipher and cryptographic hash algorithms supported by this application
are listed in the crypto.h header file.

For each input packet, the destination NIC TX port is decided at the forwarding stage (executed
after the cryptographic stage, if enabled for the packet) by looking at the RX port index of the
dst_ports[] array, which was initialized at startup, being the outport the adjacent enabled port.
For example, if ports 1,3,5 and 6 are enabled, for input port 1, outport port will be 3 and vice
versa, and for input port 5, output port will be 6 and vice versa.

For the cryptographic path, it is the payload of the IPv4 packet that is encrypted or decrypted.

22.1.1 Setup

Building and running this application requires having both the DPDK package and the Quick-
Assist Technology Software Library installed, as well as at least one Intel® QuickAssist Tech-
nology hardware device present in the system.

For more details on how to build and run DPDK and Intel® QuickAssist Technology applica-
tions, please refer to the following documents:

• DPDK Getting Started Guide

• Intel® Communications Chipset 8900 to 8920 Series Software for Linux* Getting Started
Guide (440005)

22.1. Overview 126

Sample Applications User Guide, Release 2.1.0

• Intel® Communications Chipset 8925 to 8955 Series Software for Linux* Getting Started
Guide (523128)

For more details on the actual platforms used to validate this application, as well as perfor-
mance numbers, please refer to the Test Report, which is accessible by contacting your Intel
representative.

22.2 Building the Application

Steps to build the application:

1. Set up the following environment variables:

export RTE_SDK=<Absolute path to the DPDK installation folder>export ICP_ROOT=<Absolute path to the Intel QAT installation folder>
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
Refer to the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

cd ${RTE_SDK}/examples/dpdk_qatmake

22.3 Running the Application

22.3.1 Intel® QuickAssist Technology Configuration Files

The Intel® QuickAssist Technology configuration files used by the application are located in
the config_files folder in the application folder. There following sets of configuration files are
included in the DPDK package:

• Stargo CRB (single CPU socket): located in the stargo folder

– dh89xxcc_qa_dev0.conf

• Shumway CRB (dual CPU socket): located in the shumway folder

– dh89xxcc_qa_dev0.conf

– dh89xxcc_qa_dev1.conf

• Coleto Creek: located in the coleto folder

– dh895xcc_qa_dev0.conf

The relevant configuration file(s) must be copied to the /etc/ directory.

Please note that any change to these configuration files requires restarting the Intel® Quick-
Assist Technology driver using the following command:

service qat_service restart
Refer to the following documents for information on the Intel® QuickAssist Technology config-
uration files:

• Intel® Communications Chipset 8900 to 8920 Series Software Programmer’s Guide

22.2. Building the Application 127

Sample Applications User Guide, Release 2.1.0

• Intel® Communications Chipset 8925 to 8955 Series Software Programmer’s Guide

• Intel® Communications Chipset 8900 to 8920 Series Software for Linux* Getting Started
Guide.

• Intel® Communications Chipset 8925 to 8955 Series Software for Linux* Getting Started
Guide.

22.3.2 Traffic Generator Setup and Application Startup

The application has a number of command line options:

dpdk_qat [EAL options] – -p PORTMASK [–no-promisc] [–config
‘(port,queue,lcore)[,(port,queue,lcore)]’]

where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

• –no-promisc: Disables promiscuous mode for all ports, so that only packets with the
Ethernet MAC destination address set to the Ethernet address of the port are accepted.
By default promiscuous mode is enabled so that packets are accepted regardless of the
packet’s Ethernet MAC destination address.

• –config’(port,queue,lcore)[,(port,queue,lcore)]’: determines which queues from which
ports are mapped to which cores.

Refer to Chapter 10 , “L3 Forwarding Sample Application” for more detailed descriptions of the
–config command line option.

As an example, to run the application with two ports and two cores, which are using different
Intel® QuickAssist Technology execution engines, performing AES-CBC-128 encryption with
AES-XCBC-MAC-96 hash, the following settings can be used:

• Traffic generator source IP address: 0.9.6.1

• Command line:

./build/dpdk_qat -c 0xff -n 2 -- -p 0x3 --config '(0,0,1),(1,0,2)'
Refer to the DPDK Test Report for more examples of traffic generator setup and the application
startup command lines. If no errors are generated in response to the startup commands, the
application is running correctly.

22.3. Running the Application 128

CHAPTER

TWENTYTHREE

QUOTA AND WATERMARK SAMPLE APPLICATION

The Quota and Watermark sample application is a simple example of packet processing using
Data Plane Development Kit (DPDK) that showcases the use of a quota as the maximum
number of packets enqueue/dequeue at a time and low and high watermarks to signal low and
high ring usage respectively.

Additionally, it shows how ring watermarks can be used to feedback congestion notifications
to data producers by temporarily stopping processing overloaded rings and sending Ethernet
flow control frames.

This sample application is split in two parts:

• qw - The core quota and watermark sample application

• qwctl - A command line tool to alter quota and watermarks while qw is running

23.1 Overview

The Quota and Watermark sample application performs forwarding for each packet that is
received on a given port. The destination port is the adjacent port from the enabled port mask,
that is, if the first four ports are enabled (port mask 0xf), ports 0 and 1 forward into each other,
and ports 2 and 3 forward into each other. The MAC addresses of the forwarded Ethernet
frames are not affected.

Internally, packets are pulled from the ports by the master logical core and put on a variable
length processing pipeline, each stage of which being connected by rings, as shown in Fig.
23.1.

An adjustable quota value controls how many packets are being moved through the pipeline
per enqueue and dequeue. Adjustable watermark values associated with the rings control a
back-off mechanism that tries to prevent the pipeline from being overloaded by:

• Stopping enqueuing on rings for which the usage has crossed the high watermark thresh-
old

• Sending Ethernet pause frames

• Only resuming enqueuing on a ring once its usage goes below a global low watermark
threshold

This mechanism allows congestion notifications to go up the ring pipeline and eventually lead
to an Ethernet flow control frame being send to the source.

129

Sample Applications User Guide, Release 2.1.0

Fig. 23.1: Pipeline Overview

23.1. Overview 130

Sample Applications User Guide, Release 2.1.0

On top of serving as an example of quota and watermark usage, this application can be used to
benchmark ring based processing pipelines performance using a traffic- generator, as shown
in Fig. 23.2.

Fig. 23.2: Ring-based Processing Pipeline Performance Setup

23.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/quota_watermark
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

23.3 Running the Application

The core application, qw, has to be started first.

23.2. Compiling the Application 131

Sample Applications User Guide, Release 2.1.0

Once it is up and running, one can alter quota and watermarks while it runs using the control
application, qwctl.

23.3.1 Running the Core Application

The application requires a single command line option:

./qw/build/qw [EAL options] -- -p PORTMASK
where,

-p PORTMASK: A hexadecimal bitmask of the ports to configure

To run the application in a linuxapp environment with four logical cores and ports 0 and 2, issue
the following command:

./qw/build/qw -c f -n 4 -- -p 5
Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

23.3.2 Running the Control Application

The control application requires a number of command line options:

./qwctl/build/qwctl [EAL options] --proc-type=secondary
The –proc-type=secondary option is necessary for the EAL to properly initialize the control
application to use the same huge pages as the core application and thus be able to access its
rings.

To run the application in a linuxapp environment on logical core 0, issue the following command:

./qwctl/build/qwctl -c 1 -n 4 --proc-type=secondary
Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

qwctl is an interactive command line that let the user change variables in a running instance of
qw. The help command gives a list of available commands:

$ qwctl > help

23.4 Code Overview

The following sections provide a quick guide to the application’s source code.

23.4.1 Core Application - qw

EAL and Drivers Setup

The EAL arguments are parsed at the beginning of the main() function:

23.4. Code Overview 132

Sample Applications User Guide, Release 2.1.0

ret = rte_eal_init(argc, argv);
if (ret < 0)rte_exit(EXIT_FAILURE, "Cannot initialize EAL\n");
argc -= ret;argv += ret;

Then, a call to init_dpdk(), defined in init.c, is made to initialize the poll mode drivers:

voidinit_dpdk(void){
int ret;
/* Bind the drivers to usable devices */
ret = rte_eal_pci_probe();
if (ret < 0)rte_exit(EXIT_FAILURE, "rte_eal_pci_probe(): error %d\n", ret);
if (rte_eth_dev_count() < 2)rte_exit(EXIT_FAILURE, "Not enough Ethernet port available\n");}

To fully understand this code, it is recommended to study the chapters that relate to the Poll
Mode Driver in the DPDK Getting Started Guide and the DPDK API Reference.

Shared Variables Setup

The quota and low_watermark shared variables are put into an rte_memzone using a call to
setup_shared_variables():

voidsetup_shared_variables(void){
const struct rte_memzone *qw_memzone;
qw_memzone = rte_memzone_reserve(QUOTA_WATERMARK_MEMZONE_NAME, 2 * sizeof(int), rte_socket_id(), RTE_MEMZONE_2MB);
if (qw_memzone == NULL)rte_exit(EXIT_FAILURE, "%s\n", rte_strerror(rte_errno));
quota = qw_memzone->addr;low_watermark = (unsigned int *) qw_memzone->addr + sizeof(int);}

These two variables are initialized to a default value in main() and can be changed while qw is
running using the qwctl control program.

Application Arguments

The qw application only takes one argument: a port mask that specifies which ports should be
used by the application. At least two ports are needed to run the application and there should
be an even number of ports given in the port mask.

The port mask parsing is done in parse_qw_args(), defined in args.c.

23.4. Code Overview 133

Sample Applications User Guide, Release 2.1.0

Mbuf Pool Initialization

Once the application’s arguments are parsed, an mbuf pool is created. It contains a set of mbuf
objects that are used by the driver and the application to store network packets:

/* Create a pool of mbuf to store packets */
mbuf_pool = rte_mempool_create("mbuf_pool", MBUF_PER_POOL, MBUF_SIZE, 32, sizeof(struct rte_pktmbuf_pool_private),rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL, rte_socket_id(), 0);
if (mbuf_pool == NULL)rte_panic("%s\n", rte_strerror(rte_errno));

The rte_mempool is a generic structure used to handle pools of objects. In this case, it is
necessary to create a pool that will be used by the driver, which expects to have some reserved
space in the mempool structure, sizeof(struct rte_pktmbuf_pool_private) bytes.

The number of allocated pkt mbufs is MBUF_PER_POOL, with a size of MBUF_SIZE each. A
per-lcore cache of 32 mbufs is kept. The memory is allocated in on the master lcore’s socket,
but it is possible to extend this code to allocate one mbuf pool per socket.

Two callback pointers are also given to the rte_mempool_create() function:

• The first callback pointer is to rte_pktmbuf_pool_init() and is used to initialize the private
data of the mempool, which is needed by the driver. This function is provided by the mbuf
API, but can be copied and extended by the developer.

• The second callback pointer given to rte_mempool_create() is the mbuf initializer.

The default is used, that is, rte_pktmbuf_init(), which is provided in the rte_mbuf library. If a
more complex application wants to extend the rte_pktmbuf structure for its own needs, a new
function derived from rte_pktmbuf_init() can be created.

Ports Configuration and Pairing

Each port in the port mask is configured and a corresponding ring is created in the master
lcore’s array of rings. This ring is the first in the pipeline and will hold the packets directly
coming from the port.

for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++)
if (is_bit_set(port_id, portmask)) {configure_eth_port(port_id);init_ring(master_lcore_id, port_id);}

pair_ports();
The configure_eth_port() and init_ring() functions are used to configure a port and a ring re-
spectively and are defined in init.c. They make use of the DPDK APIs defined in rte_eth.h and
rte_ring.h.

pair_ports() builds the port_pairs[] array so that its key-value pairs are a mapping between
reception and transmission ports. It is defined in init.c.

Logical Cores Assignment

The application uses the master logical core to poll all the ports for new packets and enqueue
them on a ring associated with the port.

23.4. Code Overview 134

Sample Applications User Guide, Release 2.1.0

Each logical core except the last runs pipeline_stage() after a ring for each used port is ini-
tialized on that core. pipeline_stage() on core X dequeues packets from core X-1’s rings and
enqueue them on its own rings. See Fig. 23.3.

/* Start pipeline_stage() on all the available slave lcore but the last */
for (lcore_id = 0 ; lcore_id < last_lcore_id; lcore_id++) {

if (rte_lcore_is_enabled(lcore_id) && lcore_id != master_lcore_id) {
for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++)

if (is_bit_set(port_id, portmask))init_ring(lcore_id, port_id);
rte_eal_remote_launch(pipeline_stage, NULL, lcore_id);}}

The last available logical core runs send_stage(), which is the last stage of the pipeline de-
queuing packets from the last ring in the pipeline and sending them out on the destination port
setup by pair_ports().

/* Start send_stage() on the last slave core */
rte_eal_remote_launch(send_stage, NULL, last_lcore_id);

Receive, Process and Transmit Packets

Fig. 23.3: Threads and Pipelines

23.4. Code Overview 135

Sample Applications User Guide, Release 2.1.0

In the receive_stage() function running on the master logical core, the main task is to read
ingress packets from the RX ports and enqueue them on the port’s corresponding first ring in
the pipeline. This is done using the following code:

lcore_id = rte_lcore_id();
/* Process each port round robin style */
for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++) {

if (!is_bit_set(port_id, portmask))
continue;

ring = rings[lcore_id][port_id];
if (ring_state[port_id] != RING_READY) {

if (rte_ring_count(ring) > *low_watermark)
continue;

elsering_state[port_id] = RING_READY;}
/* Enqueue received packets on the RX ring */
nb_rx_pkts = rte_eth_rx_burst(port_id, 0, pkts, *quota);
ret = rte_ring_enqueue_bulk(ring, (void *) pkts, nb_rx_pkts);
if (ret == -EDQUOT) {ring_state[port_id] = RING_OVERLOADED;send_pause_frame(port_id, 1337);}}

For each port in the port mask, the corresponding ring’s pointer is fetched into ring and that
ring’s state is checked:

• If it is in the RING_READY state, *quota packets are grabbed from the port and put on
the ring. Should this operation make the ring’s usage cross its high watermark, the ring
is marked as overloaded and an Ethernet flow control frame is sent to the source.

• If it is not in the RING_READY state, this port is ignored until the ring’s usage crosses
the *low_watermark value.

The pipeline_stage() function’s task is to process and move packets from the preceding pipeline
stage. This thread is running on most of the logical cores to create and arbitrarily long pipeline.

lcore_id = rte_lcore_id();
previous_lcore_id = get_previous_lcore_id(lcore_id);
for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++) {

if (!is_bit_set(port_id, portmask))
continue;

tx = rings[lcore_id][port_id];rx = rings[previous_lcore_id][port_id];
if (ring_state[port_id] != RING_READY) {

if (rte_ring_count(tx) > *low_watermark)
continue;

elsering_state[port_id] = RING_READY;}
/* Dequeue up to quota mbuf from rx */

23.4. Code Overview 136

Sample Applications User Guide, Release 2.1.0

nb_dq_pkts = rte_ring_dequeue_burst(rx, pkts, *quota);
if (unlikely(nb_dq_pkts < 0))

continue;
/* Enqueue them on tx */
ret = rte_ring_enqueue_bulk(tx, pkts, nb_dq_pkts);
if (ret == -EDQUOT)ring_state[port_id] = RING_OVERLOADED;}

The thread’s logic works mostly like receive_stage(), except that packets are moved from ring
to ring instead of port to ring.

In this example, no actual processing is done on the packets, but pipeline_stage() is an ideal
place to perform any processing required by the application.

Finally, the send_stage() function’s task is to read packets from the last ring in a pipeline and
send them on the destination port defined in the port_pairs[] array. It is running on the last
available logical core only.

lcore_id = rte_lcore_id();
previous_lcore_id = get_previous_lcore_id(lcore_id);
for (port_id = 0; port_id < RTE_MAX_ETHPORTS; port_id++) {

if (!is_bit_set(port_id, portmask)) continue;
dest_port_id = port_pairs[port_id];tx = rings[previous_lcore_id][port_id];
if (rte_ring_empty(tx)) continue;
/* Dequeue packets from tx and send them */
nb_dq_pkts = rte_ring_dequeue_burst(tx, (void *) tx_pkts, *quota);nb_tx_pkts = rte_eth_tx_burst(dest_port_id, 0, tx_pkts, nb_dq_pkts);}

For each port in the port mask, up to *quota packets are pulled from the last ring in its pipeline
and sent on the destination port paired with the current port.

23.4.2 Control Application - qwctl

The qwctl application uses the rte_cmdline library to provide the user with an interactive com-
mand line that can be used to modify and inspect parameters in a running qw application.
Those parameters are the global quota and low_watermark value as well as each ring’s built-in
high watermark.

Command Definitions

The available commands are defined in commands.c.

It is advised to use the cmdline sample application user guide as a reference for everything
related to the rte_cmdline library.

23.4. Code Overview 137

Sample Applications User Guide, Release 2.1.0

Accessing Shared Variables

The setup_shared_variables() function retrieves the shared variables quota and
low_watermark from the rte_memzone previously created by qw.

static voidsetup_shared_variables(void){
const struct rte_memzone *qw_memzone;
qw_memzone = rte_memzone_lookup(QUOTA_WATERMARK_MEMZONE_NAME);
if (qw_memzone == NULL)rte_exit(EXIT_FAILURE, "Couldn't find memzone\n");
quota = qw_memzone->addr;
low_watermark = (unsigned int *) qw_memzone->addr + sizeof(int);}

23.4. Code Overview 138

CHAPTER

TWENTYFOUR

TIMER SAMPLE APPLICATION

The Timer sample application is a simple application that demonstrates the use of a timer in
a DPDK application. This application prints some messages from different lcores regularly,
demonstrating the use of timers.

24.1 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk cd ${RTE_SDK}/examples/timer
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

24.2 Running the Application

To run the example in linuxapp environment:

$./build/timer -c f -n 4
Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

24.3 Explanation

The following sections provide some explanation of the code.

24.3.1 Initialization and Main Loop

In addition to EAL initialization, the timer subsystem must be initialized, by calling the
rte_timer_subsystem_init() function.

139

Sample Applications User Guide, Release 2.1.0

/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)rte_panic("Cannot init EAL\n");
/* init RTE timer library */
rte_timer_subsystem_init();

After timer creation (see the next paragraph), the main loop is executed on each slave lcore
using the well-known rte_eal_remote_launch() and also on the master.

/* call lcore_mainloop() on every slave lcore */
RTE_LCORE_FOREACH_SLAVE(lcore_id) {rte_eal_remote_launch(lcore_mainloop, NULL, lcore_id);}
/* call it on master lcore too */
(void) lcore_mainloop(NULL);

The main loop is very simple in this example:

while (1) {/** Call the timer handler on each core: as we don't* need a very precise timer, so only call* rte_timer_manage() every ~10ms (at 2 GHz). In a real* application, this will enhance performances as* reading the HPET timer is not efficient.*/
cur_tsc = rte_rdtsc();
diff_tsc = cur_tsc - prev_tsc;
if (diff_tsc > TIMER_RESOLUTION_CYCLES) {rte_timer_manage();prev_tsc = cur_tsc;}}

As explained in the comment, it is better to use the TSC register (as it is a per-lcore register) to
check if the rte_timer_manage() function must be called or not. In this example, the resolution
of the timer is 10 milliseconds.

24.3.2 Managing Timers

In the main() function, the two timers are initialized. This call to rte_timer_init() is necessary
before doing any other operation on the timer structure.

/* init timer structures */
rte_timer_init(&timer0);rte_timer_init(&timer1);

Then, the two timers are configured:

• The first timer (timer0) is loaded on the master lcore and expires every second. Since the
PERIODICAL flag is provided, the timer is reloaded automatically by the timer subsystem.

24.3. Explanation 140

Sample Applications User Guide, Release 2.1.0

The callback function is timer0_cb().

• The second timer (timer1) is loaded on the next available lcore every 333 ms. The SIN-
GLE flag means that the timer expires only once and must be reloaded manually if re-
quired. The callback function is timer1_cb().

/* load timer0, every second, on master lcore, reloaded automatically */
hz = rte_get_hpet_hz();
lcore_id = rte_lcore_id();
rte_timer_reset(&timer0, hz, PERIODICAL, lcore_id, timer0_cb, NULL);
/* load timer1, every second/3, on next lcore, reloaded manually */
lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);

The callback for the first timer (timer0) only displays a message until a global counter reaches
20 (after 20 seconds). In this case, the timer is stopped using the rte_timer_stop() function.

/* timer0 callback */
static voidtimer0_cb(attribute ((unused)) struct rte_timer *tim, __attribute ((unused)) void *arg){

static unsigned counter = 0;
unsigned lcore_id = rte_lcore_id();
printf("%s() on lcore %u\n", FUNCTION , lcore_id);
/* this timer is automatically reloaded until we decide to stop it, when counter reaches 20. */
if ((counter ++) == 20)rte_timer_stop(tim);}

The callback for the second timer (timer1) displays a message and reloads the timer on the
next lcore, using the rte_timer_reset() function:

/* timer1 callback */
static voidtimer1_cb(attribute ((unused)) struct rte_timer *tim, _attribute ((unused)) void *arg){

unsigned lcore_id = rte_lcore_id();
uint64_t hz;
printf("%s() on lcore %u\\n", FUNCTION , lcore_id);
/* reload it on another lcore */
hz = rte_get_hpet_hz();
lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
rte_timer_reset(&timer1, hz/3, SINGLE, lcore_id, timer1_cb, NULL);}

24.3. Explanation 141

CHAPTER

TWENTYFIVE

PACKET ORDERING APPLICATION

The Packet Ordering sample app simply shows the impact of reordering a stream. It’s meant
to stress the library with different configurations for performance.

25.1 Overview

The application uses at least three CPU cores:

• RX core (maser core) receives traffic from the NIC ports and feeds Worker cores with
traffic through SW queues.

• Worker core (slave core) basically do some light work on the packet. Currently it modifies
the output port of the packet for configurations with more than one port enabled.

• TX Core (slave core) receives traffic from Worker cores through software queues, inserts
out-of-order packets into reorder buffer, extracts ordered packets from the reorder buffer
and sends them to the NIC ports for transmission.

25.2 Compiling the Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/helloworld
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

25.3 Running the Application

Refer to DPDK Getting Started Guide for general information on running applications and the
Environment Abstraction Layer (EAL) options.

142

Sample Applications User Guide, Release 2.1.0

25.3.1 Application Command Line

The application execution command line is:

./test-pipeline [EAL options] -- -p PORTMASK [--disable-reorder]
The -c EAL CPU_COREMASK option has to contain at least 3 CPU cores. The first CPU core
in the core mask is the master core and would be assigned to RX core, the last to TX core and
the rest to Worker cores.

The PORTMASK parameter must contain either 1 or even enabled port numbers. When setting
more than 1 port, traffic would be forwarded in pairs. For example, if we enable 4 ports, traffic
from port 0 to 1 and from 1 to 0, then the other pair from 2 to 3 and from 3 to 2, having [0,1]
and [2,3] pairs.

The disable-reorder long option does, as its name implies, disable the reordering of traffic,
which should help evaluate reordering performance impact.

25.3. Running the Application 143

CHAPTER

TWENTYSIX

VMDQ AND DCB FORWARDING SAMPLE APPLICATION

The VMDQ and DCB Forwarding sample application is a simple example of packet processing
using the DPDK. The application performs L2 forwarding using VMDQ and DCB to divide the
incoming traffic into 128 queues. The traffic splitting is performed in hardware by the VMDQ
and DCB features of the Intel® 82599 10 Gigabit Ethernet Controller.

26.1 Overview

This sample application can be used as a starting point for developing a new application that
is based on the DPDK and uses VMDQ and DCB for traffic partitioning.

The VMDQ and DCB filters work on VLAN traffic to divide the traffic into 128 input queues on
the basis of the VLAN ID field and VLAN user priority field. VMDQ filters split the traffic into 16
or 32 groups based on the VLAN ID. Then, DCB places each packet into one of either 4 or 8
queues within that group, based upon the VLAN user priority field.

In either case, 16 groups of 8 queues, or 32 groups of 4 queues, the traffic can be split into 128
hardware queues on the NIC, each of which can be polled individually by a DPDK application.

All traffic is read from a single incoming port (port 0) and output on port 1, without any pro-
cessing being performed. The traffic is split into 128 queues on input, where each thread of
the application reads from multiple queues. For example, when run with 8 threads, that is, with
the -c FF option, each thread receives and forwards packets from 16 queues.

As supplied, the sample application configures the VMDQ feature to have 16 pools with 8
queues each as indicated in Fig. 26.1. The Intel® 82599 10 Gigabit Ethernet Controller NIC
also supports the splitting of traffic into 32 pools of 4 queues each and this can be used by
changing the NUM_POOLS parameter in the supplied code. The NUM_POOLS parameter
can be passed on the command line, after the EAL parameters:

./build/vmdq_dcb [EAL options] -- -p PORTMASK --nb-pools NP
where, NP can be 16 or 32.

In Linux* user space, the application can display statistics with the number of packets received
on each queue. To have the application display the statistics, send a SIGHUP signal to the
running application process, as follows:

where, <pid> is the process id of the application process.

The VMDQ and DCB Forwarding sample application is in many ways simpler than the L2
Forwarding application (see Chapter 9 , “L2 Forwarding Sample Application (in Real and Virtu-
alized Environments)”) as it performs unidirectional L2 forwarding of packets from one port to

144

Sample Applications User Guide, Release 2.1.0

NIC Port 0
RX

NIC Port 0
TX

HW RX Queue 0
(VLAN 0, Prio 0)

HW TX Queue 0

HW TX Queue 15

User Thread
0

User Thread
15

HW RX Queue 7
(VLAN 0, Prio 7)

HW RX Queue 120
(VLAN 15, Prio 0)

HW RX Queue 127
(VLAN 15, Prio 7)

Fig. 26.1: Packet Flow Through the VMDQ and DCB Sample Application

a second port. No command-line options are taken by this application apart from the standard
EAL command-line options.

Note: Since VMD queues are being used for VMM, this application works correctly when VTd
is disabled in the BIOS or Linux* kernel (intel_iommu=off).

26.2 Compiling the Application

1. Go to the examples directory:

export RTE_SDK=/path/to/rte_sdk cd ${RTE_SDK}/examples/vmdq_dcb
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

26.3 Running the Application

To run the example in a linuxapp environment:

user@target:~$./build/vmdq_dcb -c f -n 4 -- -p 0x3 --nb-pools 16
Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

26.2. Compiling the Application 145

Sample Applications User Guide, Release 2.1.0

26.4 Explanation

The following sections provide some explanation of the code.

26.4.1 Initialization

The EAL, driver and PCI configuration is performed largely as in the L2 Forwarding sample
application, as is the creation of the mbuf pool. See Chapter 9, “L2 Forwarding Sample Appli-
cation (in Real and Virtualized Environments)”. Where this example application differs is in the
configuration of the NIC port for RX.

The VMDQ and DCB hardware feature is configured at port initialization time by setting the
appropriate values in the rte_eth_conf structure passed to the rte_eth_dev_configure() API.
Initially in the application, a default structure is provided for VMDQ and DCB configuration to
be filled in later by the application.

/* empty vmdq+dcb configuration structure. Filled in programmatically */
static const struct rte_eth_conf vmdq_dcb_conf_default = {.rxmode = {.mq_mode = ETH_VMDQ_DCB,.split_hdr_size = 0,.header_split = 0, /**< Header Split disabled */.hw_ip_checksum = 0, /**< IP checksum offload disabled */.hw_vlan_filter = 0, /**< VLAN filtering disabled */.jumbo_frame = 0, /**< Jumbo Frame Support disabled */},

.txmode = {.mq_mode = ETH_DCB_NONE,},

.rx_adv_conf = {/** should be overridden separately in code with* appropriate values*/
.vmdq_dcb_conf = {.nb_queue_pools = ETH_16_POOLS,.enable_default_pool = 0,.default_pool = 0,.nb_pool_maps = 0,.pool_map = {{0, 0},},.dcb_queue = {0},},},};

The get_eth_conf() function fills in an rte_eth_conf structure with the appropriate values, based
on the global vlan_tags array, and dividing up the possible user priority values equally among
the individual queues (also referred to as traffic classes) within each pool, that is, if the number
of pools is 32, then the user priority fields are allocated two to a queue. If 16 pools are used,
then each of the 8 user priority fields is allocated to its own queue within the pool. For the VLAN
IDs, each one can be allocated to possibly multiple pools of queues, so the pools parameter in
the rte_eth_vmdq_dcb_conf structure is specified as a bitmask value.

const uint16_t vlan_tags[] = {0, 1, 2, 3, 4, 5, 6, 7,
26.4. Explanation 146

Sample Applications User Guide, Release 2.1.0

8, 9, 10, 11, 12, 13, 14, 15,16, 17, 18, 19, 20, 21, 22, 23,24, 25, 26, 27, 28, 29, 30, 31};

/* Builds up the correct configuration for vmdq+dcb based on the vlan tags array* given above, and the number of traffic classes available for use. */
static inline intget_eth_conf(struct rte_eth_conf *eth_conf, enum rte_eth_nb_pools num_pools){ struct rte_eth_vmdq_dcb_conf conf;unsigned i;

if (num_pools != ETH_16_POOLS && num_pools != ETH_32_POOLS) return -1;
conf.nb_queue_pools = num_pools;conf.enable_default_pool = 0;conf.default_pool = 0; /* set explicit value, even if not used */conf.nb_pool_maps = sizeof(vlan_tags)/sizeof(vlan_tags[0]);
for (i = 0; i < conf.nb_pool_maps; i++){conf.pool_map[i].vlan_id = vlan_tags[i];conf.pool_map[i].pools = 1 << (i % num_pools);}
for (i = 0; i < ETH_DCB_NUM_USER_PRIORITIES; i++){conf.dcb_queue[i] = (uint8_t)(i % (NUM_QUEUES/num_pools));}
(void) rte_memcpy(eth_conf, &vmdq_dcb_conf_default, sizeof(*eth_conf));(void) rte_memcpy(ð_conf->rx_adv_conf.vmdq_dcb_conf, &conf, sizeof(eth_conf->rx_adv_conf.vmdq_dcb_conf));
return 0;}

Once the network port has been initialized using the correct VMDQ and DCB values, the
initialization of the port’s RX and TX hardware rings is performed similarly to that in the L2
Forwarding sample application. See Chapter 9, “L2 Forwarding Sample Application (in Real
and Virtualized Environments)” for more information.

26.4.2 Statistics Display

When run in a linuxapp environment, the VMDQ and DCB Forwarding sample application can
display statistics showing the number of packets read from each RX queue. This is provided
by way of a signal handler for the SIGHUP signal, which simply prints to standard output the
packet counts in grid form. Each row of the output is a single pool with the columns being the
queue number within that pool.

To generate the statistics output, use the following command:

user@host$ sudo killall -HUP vmdq_dcb_app
Please note that the statistics output will appear on the terminal where the vmdq_dcb_app is
running, rather than the terminal from which the HUP signal was sent.

26.4. Explanation 147

CHAPTER

TWENTYSEVEN

VHOST SAMPLE APPLICATION

The vhost sample application demonstrates integration of the Data Plane Development Kit
(DPDK) with the Linux* KVM hypervisor by implementing the vhost-net offload API. The sam-
ple application performs simple packet switching between virtual machines based on Media
Access Control (MAC) address or Virtual Local Area Network (VLAN) tag. The splitting of
Ethernet traffic from an external switch is performed in hardware by the Virtual Machine De-
vice Queues (VMDQ) and Data Center Bridging (DCB) features of the Intel® 82599 10 Gigabit
Ethernet Controller.

27.1 Background

Virtio networking (virtio-net) was developed as the Linux* KVM para-virtualized method for
communicating network packets between host and guest. It was found that virtio-net perfor-
mance was poor due to context switching and packet copying between host, guest, and QEMU.
The following figure shows the system architecture for a virtio-based networking (virtio-net).

The Linux* Kernel vhost-net module was developed as an offload mechanism for virtio-net.
The vhost-net module enables KVM (QEMU) to offload the servicing of virtio-net devices to
the vhost-net kernel module, reducing the context switching and packet copies in the virtual
dataplane.

This is achieved by QEMU sharing the following information with the vhost-net module through
the vhost-net API:

• The layout of the guest memory space, to enable the vhost-net module to translate ad-
dresses.

• The locations of virtual queues in QEMU virtual address space, to enable the vhost
module to read/write directly to and from the virtqueues.

• An event file descriptor (eventfd) configured in KVM to send interrupts to the virtio- net
device driver in the guest. This enables the vhost-net module to notify (call) the guest.

• An eventfd configured in KVM to be triggered on writes to the virtio-net device’s Periph-
eral Component Interconnect (PCI) config space. This enables the vhost-net module to
receive notifications (kicks) from the guest.

The following figure shows the system architecture for virtio-net networking with vhost-net of-
fload.

148

Sample Applications User Guide, Release 2.1.0

Fig. 27.1: System Architecture for Virtio-based Networking (virtio-net).

Fig. 27.2: Virtio with Linux

27.1. Background 149

Sample Applications User Guide, Release 2.1.0

27.2 Sample Code Overview

The DPDK vhost-net sample code demonstrates KVM (QEMU) offloading the servicing of a
Virtual Machine’s (VM’s) virtio-net devices to a DPDK-based application in place of the kernel’s
vhost-net module.

The DPDK vhost-net sample code is based on vhost library. Vhost library is developed for user
space Ethernet switch to easily integrate with vhost functionality.

The vhost library implements the following features:

• Management of virtio-net device creation/destruction events.

• Mapping of the VM’s physical memory into the DPDK vhost-net’s address space.

• Triggering/receiving notifications to/from VMs via eventfds.

• A virtio-net back-end implementation providing a subset of virtio-net features.

There are two vhost implementations in vhost library, vhost cuse and vhost user. In vhost cuse,
a character device driver is implemented to receive and process vhost requests through ioctl
messages. In vhost user, a socket server is created to received vhost requests through socket
messages. Most of the messages share the same handler routine.

Note: Any vhost cuse specific requirement in the following sections will be empha-
sized.

Two implementations are turned on and off statically through configure file. Only one imple-
mentation could be turned on. They don’t co-exist in current implementation.

The vhost sample code application is a simple packet switching application with the following
feature:

• Packet switching between virtio-net devices and the network interface card, including
using VMDQs to reduce the switching that needs to be performed in software.

The following figure shows the architecture of the Vhost sample application based on vhost-
cuse.

The following figure shows the flow of packets through the vhost-net sample application.

27.3 Supported Distributions

The example in this section have been validated with the following distributions:

• Fedora* 18

• Fedora* 19

• Fedora* 20

27.4 Prerequisites

This section lists prerequisite packages that must be installed.

27.2. Sample Code Overview 150

Sample Applications User Guide, Release 2.1.0

Fig. 27.3: Vhost-net Architectural Overview

27.4. Prerequisites 151

Sample Applications User Guide, Release 2.1.0

Fig. 27.4: Packet Flow Through the vhost-net Sample Application

27.4. Prerequisites 152

Sample Applications User Guide, Release 2.1.0

27.4.1 Installing Packages on the Host(vhost cuse required)

The vhost cuse code uses the following packages; fuse, fuse-devel, and kernel-modules-extra.
The vhost user code don’t rely on those modules as eventfds are already installed into vhost
process through Unix domain socket.

1. Install Fuse Development Libraries and headers:

yum -y install fuse fuse-devel
2. Install the Cuse Kernel Module:

yum -y install kernel-modules-extra

27.4.2 QEMU simulator

For vhost user, qemu 2.2 is required.

27.4.3 Setting up the Execution Environment

The vhost sample code requires that QEMU allocates a VM’s memory on the hugetlbfs file
system. As the vhost sample code requires hugepages, the best practice is to partition the
system into separate hugepage mount points for the VMs and the vhost sample code.

Note: This is best-practice only and is not mandatory. For systems that only support 2
MB page sizes, both QEMU and vhost sample code can use the same hugetlbfs mount point
without issue.

QEMU

VMs with gigabytes of memory can benefit from having QEMU allocate their memory from 1 GB
huge pages. 1 GB huge pages must be allocated at boot time by passing kernel parameters
through the grub boot loader.

1. Calculate the maximum memory usage of all VMs to be run on the system. Then, round
this value up to the nearest Gigabyte the execution environment will require.

2. Edit the /etc/default/grub file, and add the following to the GRUB_CMDLINE_LINUX en-
try:

GRUB_CMDLINE_LINUX="... hugepagesz=1G hugepages=<Number of hugepages required> default_hugepagesz=1G"
3. Update the grub boot loader:

grub2-mkconfig -o /boot/grub2/grub.cfg
4. Reboot the system.

5. The hugetlbfs mount point (/dev/hugepages) should now default to allocating gigabyte
pages.

Note: Making the above modification will change the system default hugepage size to 1 GB
for all applications.

Vhost Sample Code

27.4. Prerequisites 153

Sample Applications User Guide, Release 2.1.0

In this section, we create a second hugetlbs mount point to allocate hugepages for the DPDK
vhost sample code.

1. Allocate sufficient 2 MB pages for the DPDK vhost sample code:

echo 256 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
2. Mount hugetlbs at a separate mount point for 2 MB pages:

mount -t hugetlbfs nodev /mnt/huge -o pagesize=2M
The above steps can be automated by doing the following:

1. Edit /etc/fstab to add an entry to automatically mount the second hugetlbfs mount point:

hugetlbfs <tab> /mnt/huge <tab> hugetlbfs defaults,pagesize=1G 0 0
2. Edit the /etc/default/grub file, and add the following to the GRUB_CMDLINE_LINUX en-

try:

GRUB_CMDLINE_LINUX="... hugepagesz=2M hugepages=256 ... default_hugepagesz=1G"
3. Update the grub bootloader:

grub2-mkconfig -o /boot/grub2/grub.cfg
4. Reboot the system.

Note: Ensure that the default hugepage size after this setup is 1 GB.

27.4.4 Setting up the Guest Execution Environment

It is recommended for testing purposes that the DPDK testpmd sample application is used in
the guest to forward packets, the reasons for this are discussed in Section 22.7, “Running the
Virtual Machine (QEMU)”.

The testpmd application forwards packets between pairs of Ethernet devices, it requires an
even number of Ethernet devices (virtio or otherwise) to execute. It is therefore recommended
to create multiples of two virtio-net devices for each Virtual Machine either through libvirt or at
the command line as follows.

Note: Observe that in the example, “-device” and “-netdev” are repeated for two virtio-net
devices.

For vhost cuse:

user@target:~$ qemu-system-x86_64 ... \-netdev tap,id=hostnet1,vhost=on,vhostfd=<open fd> \-device virtio-net-pci, netdev=hostnet1,id=net1 \-netdev tap,id=hostnet2,vhost=on,vhostfd=<open fd> \-device virtio-net-pci, netdev=hostnet2,id=net1
For vhost user:

user@target:~$ qemu-system-x86_64 ... \-chardev socket,id=char1,path=<sock_path> \-netdev type=vhost-user,id=hostnet1,chardev=char1 \-device virtio-net-pci,netdev=hostnet1,id=net1 \-chardev socket,id=char2,path=<sock_path> \-netdev type=vhost-user,id=hostnet2,chardev=char2 \-device virtio-net-pci,netdev=hostnet2,id=net2

27.4. Prerequisites 154

Sample Applications User Guide, Release 2.1.0

sock_path is the path for the socket file created by vhost.

27.5 Compiling the Sample Code

1. Compile vhost lib:

To enable vhost, turn on vhost library in the configure file config/common_linuxapp.

CONFIG_RTE_LIBRTE_VHOST=n
vhost user is turned on by default in the configure file config/common_linuxapp. To enable
vhost cuse, disable vhost user.

CONFIG_RTE_LIBRTE_VHOST_USER=y
After vhost is enabled and the implementation is selected, build the vhost library.

2. Go to the examples directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/vhost
3. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

4. Build the application:

cd ${RTE_SDK}make config ${RTE_TARGET}make install ${RTE_TARGET}cd ${RTE_SDK}/examples/vhostmake
5. Go to the eventfd_link directory(vhost cuse required):

cd ${RTE_SDK}/lib/librte_vhost/eventfd_link
6. Build the eventfd_link kernel module(vhost cuse required):

make

27.6 Running the Sample Code

1. Install the cuse kernel module(vhost cuse required):

modprobe cuse
2. Go to the eventfd_link directory(vhost cuse required):

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/lib/librte_vhost/eventfd_link
3. Install the eventfd_link module(vhost cuse required):

insmod ./eventfd_link.ko
4. Go to the examples directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/vhost

27.5. Compiling the Sample Code 155

Sample Applications User Guide, Release 2.1.0

5. Run the vhost-switch sample code:

vhost cuse:

user@target:~$./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- -p 0x1 --dev-basename usvhost --dev-index 1
vhost user: a socket file named usvhost will be created under current directory. Use its
path as the socket path in guest’s qemu commandline.

user@target:~$./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- -p 0x1 --dev-basename usvhost
Note: Please note the huge-dir parameter instructs the DPDK to allocate its memory from the
2 MB page hugetlbfs.

27.6.1 Parameters

Basename and Index. vhost cuse uses a Linux* character device to communicate with QEMU.
The basename and the index are used to generate the character devices name.

/dev/<basename>-<index>

The index parameter is provided for a situation where multiple instances of the virtual switch is
required.

For compatibility with the QEMU wrapper script, a base name of “usvhost” and an index of “1”
should be used:

user@target:~$./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- -p 0x1 --dev-basename usvhost --dev-index 1
vm2vm. The vm2vm parameter disable/set mode of packet switching between guests in the
host. Value of “0” means disabling vm2vm implies that on virtual machine packet transmission
will always go to the Ethernet port; Value of “1” means software mode packet forwarding be-
tween guests, it needs packets copy in vHOST, so valid only in one-copy implementation, and
invalid for zero copy implementation; value of “2” means hardware mode packet forwarding
between guests, it allows packets go to the Ethernet port, hardware L2 switch will determine
which guest the packet should forward to or need send to external, which bases on the packet
destination MAC address and VLAN tag.

user@target:~$./build/app/vhost-switch -c f -n 4 --huge-dir /mnt/huge -- --vm2vm [0,1,2]
Mergeable Buffers. The mergeable buffers parameter controls how virtio-net descriptors are
used for virtio-net headers. In a disabled state, one virtio-net header is used per packet buffer;
in an enabled state one virtio-net header is used for multiple packets. The default value is 0 or
disabled since recent kernels virtio-net drivers show performance degradation with this feature
is enabled.

user@target:~$./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- --mergeable [0,1]
Stats. The stats parameter controls the printing of virtio-net device statistics. The parameter
specifies an interval second to print statistics, with an interval of 0 seconds disabling statistics.

user@target:~$./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- --stats [0,n]
RX Retry. The rx-retry option enables/disables enqueue retries when the guests RX queue is
full. This feature resolves a packet loss that is observed at high data-rates, by allowing it to
delay and retry in the receive path. This option is enabled by default.

user@target:~$./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- --rx-retry [0,1]

27.6. Running the Sample Code 156

Sample Applications User Guide, Release 2.1.0

RX Retry Number. The rx-retry-num option specifies the number of retries on an RX burst, it
takes effect only when rx retry is enabled. The default value is 4.

user@target:~$./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- --rx-retry 1 --rx-retry-num 5
RX Retry Delay Time. The rx-retry-delay option specifies the timeout (in micro seconds)
between retries on an RX burst, it takes effect only when rx retry is enabled. The default value
is 15.

user@target:~$./build/app/vhost-switch -c f -n 4 --huge-dir / mnt/huge -- --rx-retry 1 --rx-retry-delay 20
Zero copy. The zero copy option enables/disables the zero copy mode for RX/TX packet, in
the zero copy mode the packet buffer address from guest translate into host physical address
and then set directly as DMA address. If the zero copy mode is disabled, then one copy mode
is utilized in the sample. This option is disabled by default.

user@target:~$./build/app/vhost-switch -c f -n 4 --huge-dir /mnt/huge -- --zero-copy [0,1]
RX descriptor number. The RX descriptor number option specify the Ethernet RX descriptor
number, Linux legacy virtio-net has different behavior in how to use the vring descriptor from
DPDK based virtio-net PMD, the former likely allocate half for virtio header, another half for
frame buffer, while the latter allocate all for frame buffer, this lead to different number for avail-
able frame buffer in vring, and then lead to different Ethernet RX descriptor number could be
used in zero copy mode. So it is valid only in zero copy mode is enabled. The value is 32 by
default.

user@target:~$./build/app/vhost-switch -c f -n 4 --huge-dir /mnt/huge -- --zero-copy 1 --rx-desc-num [0, n]
TX descriptor number. The TX descriptor number option specify the Ethernet TX descriptor
number, it is valid only in zero copy mode is enabled. The value is 64 by default.

user@target:~$./build/app/vhost-switch -c f -n 4 --huge-dir /mnt/huge -- --zero-copy 1 --tx-desc-num [0, n]
VLAN strip. The VLAN strip option enable/disable the VLAN strip on host, if disabled, the
guest will receive the packets with VLAN tag. It is enabled by default.

user@target:~$./build/app/vhost-switch -c f -n 4 --huge-dir /mnt/huge -- --vlan-strip [0, 1]

27.7 Running the Virtual Machine (QEMU)

QEMU must be executed with specific parameters to:

• Ensure the guest is configured to use virtio-net network adapters.

user@target:~$ qemu-system-x86_64 ... -device virtio-net-pci,netdev=hostnet1,id=net1 ...
• Ensure the guest’s virtio-net network adapter is configured with offloads disabled.

user@target:~$ qemu-system-x86_64 ... -device virtio-net-pci,netdev=hostnet1,id=net1,csum=off,gso=off,guest_tso4=off,guest_tso6=off,guest_ecn=off
• Redirect QEMU to communicate with the DPDK vhost-net sample code in place of the

vhost-net kernel module(vhost cuse).

user@target:~$ qemu-system-x86_64 ... -netdev tap,id=hostnet1,vhost=on,vhostfd=<open fd> ...
• Enable the vhost-net sample code to map the VM’s memory into its own process address

space.

user@target:~$ qemu-system-x86_64 ... -mem-prealloc -mem-path / dev/hugepages ...

27.7. Running the Virtual Machine (QEMU) 157

Sample Applications User Guide, Release 2.1.0

Note: The QEMU wrapper (qemu-wrap.py) is a Python script designed to automate the QEMU
configuration described above. It also facilitates integration with libvirt, although the script may
also be used standalone without libvirt.

27.7.1 Redirecting QEMU to vhost-net Sample Code(vhost cuse)

To redirect QEMU to the vhost-net sample code implementation of the vhost-net API, an open
file descriptor must be passed to QEMU running as a child process.

#!/usr/bin/pythonfd = os.open("/dev/usvhost-1", os.O_RDWR)subprocess.call("qemu-system-x86_64 -netdev tap,id=vhostnet0,vhost=on,vhostfd=" + fd +"...", shell=True)
Note: This process is automated in the QEMU wrapper script discussed in Section 24.7.3.

27.7.2 Mapping the Virtual Machine’s Memory

For the DPDK vhost-net sample code to be run correctly, QEMU must allocate the VM’s mem-
ory on hugetlbfs. This is done by specifying mem-prealloc and mem-path when executing
QEMU. The vhost-net sample code accesses the virtio-net device’s virtual rings and packet
buffers by finding and mapping the VM’s physical memory on hugetlbfs. In this case, the path
passed to the guest should be that of the 1 GB page hugetlbfs:

user@target:~$ qemu-system-x86_64 ... -mem-prealloc -mem-path / dev/hugepages ...
Note: This process is automated in the QEMU wrapper script discussed in Section 24.7.3.
The following two sections only applies to vhost cuse. For vhost-user, please make corre-
sponding changes to qemu-wrapper script and guest XML file.

27.7.3 QEMU Wrapper Script

The QEMU wrapper script automatically detects and calls QEMU with the necessary parame-
ters required to integrate with the vhost sample code. It performs the following actions:

• Automatically detects the location of the hugetlbfs and inserts this into the command line
parameters.

• Automatically open file descriptors for each virtio-net device and inserts this into the
command line parameters.

• Disables offloads on each virtio-net device.

• Calls Qemu passing both the command line parameters passed to the script itself and
those it has auto-detected.

The QEMU wrapper script will automatically configure calls to QEMU:

user@target:~$ qemu-wrap.py -machine pc-i440fx-1.4,accel=kvm,usb=off -cpu SandyBridge -smp 4,sockets=4,cores=1,threads=1-netdev tap,id=hostnet1,vhost=on -device virtio-net-pci,netdev=hostnet1,id=net1 -hda <disk img> -m 4096
which will become the following call to QEMU:

27.7. Running the Virtual Machine (QEMU) 158

Sample Applications User Guide, Release 2.1.0

/usr/local/bin/qemu-system-x86_64 -machine pc-i440fx-1.4,accel=kvm,usb=off -cpu SandyBridge -smp 4,sockets=4,cores=1,threads=1-netdev tap,id=hostnet1,vhost=on,vhostfd=<open fd> -device virtio-net-pci,netdev=hostnet1,id=net1,csum=off,gso=off,guest_tso4=off,guest_tso6=off,guest_ecn=off -hda <disk img> -m 4096 -mem-path /dev/hugepages -mem-prealloc

27.7.4 Libvirt Integration

The QEMU wrapper script (qemu-wrap.py) “wraps” libvirt calls to QEMU, such that QEMU is
called with the correct parameters described above. To call the QEMU wrapper automatically
from libvirt, the following configuration changes must be made:

• Place the QEMU wrapper script in libvirt’s binary search PATH ($PATH). A good location
is in the directory that contains the QEMU binary.

• Ensure that the script has the same owner/group and file permissions as the QEMU
binary.

• Update the VM xml file using virsh edit <vm name>:

– Set the VM to use the launch script

– Set the emulator path contained in the #<emulator><emulator/> tags For example,
replace <emulator>/usr/bin/qemu-kvm<emulator/> with <emulator>/usr/bin/qemu-
wrap.py<emulator/>

– Set the VM’s virtio-net device’s to use vhost-net offload:

<interface type="network">
<model type="virtio"/>
<driver name="vhost"/>
<interface/>

– Enable libvirt to access the DPDK Vhost sample code’s character device file by
adding it to controllers cgroup for libvirtd using the following steps:

cgroup_controllers = [... "devices", ...] clear_emulator_capabilities = 0user = "root" group = "root"cgroup_device_acl = ["/dev/null", "/dev/full", "/dev/zero","/dev/random", "/dev/urandom","/dev/ptmx", "/dev/kvm", "/dev/kqemu","/dev/rtc", "/dev/hpet", "/dev/net/tun","/dev/<devbase-name>-<index>",]
• Disable SELinux or set to permissive mode.

• Mount cgroup device controller:

user@target:~$ mkdir /dev/cgroup
user@target:~$ mount -t cgroup none /dev/cgroup -o devices

• Restart the libvirtd system process

For example, on Fedora* “systemctl restart libvirtd.service”

• Edit the configuration parameters section of the script:

– Configure the “emul_path” variable to point to the QEMU emulator.

emul_path = "/usr/local/bin/qemu-system-x86_64"

27.7. Running the Virtual Machine (QEMU) 159

Sample Applications User Guide, Release 2.1.0

– Configure the “us_vhost_path” variable to point to the DPDK vhost-net sample
code’s character devices name. DPDK vhost-net sample code’s character device
will be in the format “/dev/<basename>-<index>”.

us_vhost_path = "/dev/usvhost-1"

27.7.5 Common Issues

• QEMU failing to allocate memory on hugetlbfs, with an error like the following:

file_ram_alloc: can't mmap RAM pages: Cannot allocate memory
When running QEMU the above error indicates that it has failed to allocate memory for
the Virtual Machine on the hugetlbfs. This is typically due to insufficient hugepages being
free to support the allocation request. The number of free hugepages can be checked as
follows:

cat /sys/kernel/mm/hugepages/hugepages-<pagesize>/nr_hugepages
The command above indicates how many hugepages are free to support QEMU’s allo-
cation request.

• User space VHOST when the guest has 2MB sized huge pages:

The guest may have 2MB or 1GB sized huge pages. The user space VHOST should
work properly in both cases.

• User space VHOST will not work with QEMU without the -mem-prealloc option:

The current implementation works properly only when the guest memory is pre-allocated,
so it is required to use a QEMU version (e.g. 1.6) which supports -mem-prealloc. The-mem-prealloc option must be specified explicitly in the QEMU command line.

• User space VHOST will not work with a QEMU version without shared memory mapping:

As shared memory mapping is mandatory for user space VHOST to work properly with
the guest, user space VHOST needs access to the shared memory from the guest to
receive and transmit packets. It is important to make sure the QEMU version supports
shared memory mapping.

• Issues with virsh destroy not destroying the VM:

Using libvirt virsh create the qemu-wrap.py spawns a new process to run qemu-kvm. This impacts the behavior of virsh destroy which kills the process runningqemu-wrap.py without actually destroying the VM (it leaves the qemu-kvm process
running):

This following patch should fix this issue: http://dpdk.org/ml/archives/dev/2014-
June/003607.html

• In an Ubuntu environment, QEMU fails to start a new guest normally with user space
VHOST due to not being able to allocate huge pages for the new guest:

The solution for this issue is to add -boot c into the QEMU command line to make sure
the huge pages are allocated properly and then the guest should start normally.

Use cat /proc/meminfo to check if there is any changes in the value ofHugePages_Total and HugePages_Free after the guest startup.

27.7. Running the Virtual Machine (QEMU) 160

http://dpdk.org/ml/archives/dev/2014-June/003607.html
http://dpdk.org/ml/archives/dev/2014-June/003607.html

Sample Applications User Guide, Release 2.1.0

• Log message: eventfd_link: module verification failed: signatureand/or required key missing - tainting kernel:

This log message may be ignored. The message occurs due to the kernel moduleeventfd_link, which is not a standard Linux module but which is necessary for the
user space VHOST current implementation (CUSE-based) to communicate with the
guest.

27.8 Running DPDK in the Virtual Machine

For the DPDK vhost-net sample code to switch packets into the VM, the sample code must first
learn the MAC address of the VM’s virtio-net device. The sample code detects the address
from packets being transmitted from the VM, similar to a learning switch.

This behavior requires no special action or configuration with the Linux* virtio-net driver in
the VM as the Linux* Kernel will automatically transmit packets during device initialization.
However, DPDK-based applications must be modified to automatically transmit packets during
initialization to facilitate the DPDK vhost- net sample code’s MAC learning.

The DPDK testpmd application can be configured to automatically transmit packets during
initialization and to act as an L2 forwarding switch.

27.8.1 Testpmd MAC Forwarding

At high packet rates, a minor packet loss may be observed. To resolve this issue, a “wait and
retry” mode is implemented in the testpmd and vhost sample code. In the “wait and retry”
mode if the virtqueue is found to be full, then testpmd waits for a period of time before retrying
to enqueue packets.

The “wait and retry” algorithm is implemented in DPDK testpmd as a forwarding method call
“mac_retry”. The following sequence diagram describes the algorithm in detail.

27.8.2 Running Testpmd

The testpmd application is automatically built when DPDK is installed. Run the testpmd appli-
cation as follows:

user@target:~$ x86_64-native-linuxapp-gcc/app/testpmd -c 0x3 -- n 4 -socket-mem 128 -- --burst=64 -i
The destination MAC address for packets transmitted on each port can be set at the command
line:

user@target:~$ x86_64-native-linuxapp-gcc/app/testpmd -c 0x3 -- n 4 -socket-mem 128 -- --burst=64 -i --eth- peer=0,aa:bb:cc:dd:ee:ff --eth-peer=1,ff,ee,dd,cc,bb,aa
• Packets received on port 1 will be forwarded on port 0 to MAC address

aa:bb:cc:dd:ee:ff.

• Packets received on port 0 will be forwarded on port 1 to MAC address

ff,ee,dd,cc,bb,aa.

The testpmd application can then be configured to act as an L2 forwarding application:

testpmd> set fwd mac_retry

27.8. Running DPDK in the Virtual Machine 161

Sample Applications User Guide, Release 2.1.0

Fig. 27.5: Packet Flow on TX in DPDK-testpmd

27.8. Running DPDK in the Virtual Machine 162

Sample Applications User Guide, Release 2.1.0

The testpmd can then be configured to start processing packets, transmitting packets first so
the DPDK vhost sample code on the host can learn the MAC address:

testpmd> start tx_first
Note: Please note “set fwd mac_retry” is used in place of “set fwd mac_fwd” to ensure the
retry feature is activated.

27.9 Passing Traffic to the Virtual Machine Device

For a virtio-net device to receive traffic, the traffic’s Layer 2 header must include both the
virtio-net device’s MAC address and VLAN tag. The DPDK sample code behaves in a similar
manner to a learning switch in that it learns the MAC address of the virtio-net devices from the
first transmitted packet. On learning the MAC address, the DPDK vhost sample code prints a
message with the MAC address and VLAN tag virtio-net device. For example:

DATA: (0) MAC_ADDRESS cc:bb:bb:bb:bb:bb and VLAN_TAG 1000 registered
The above message indicates that device 0 has been registered with MAC address
cc:bb:bb:bb:bb:bb and VLAN tag 1000. Any packets received on the NIC with these values
is placed on the devices receive queue. When a virtio-net device transmits packets, the VLAN
tag is added to the packet by the DPDK vhost sample code.

27.9. Passing Traffic to the Virtual Machine Device 163

CHAPTER

TWENTYEIGHT

NETMAP COMPATIBILITY SAMPLE APPLICATION

28.1 Introduction

The Netmap compatibility library provides a minimal set of APIs to give the ability to programs
written against the Netmap APIs to be run with minimal changes to their source code, using
the DPDK to perform the actual packet I/O.

Since Netmap applications use regular system calls, like open(), ioctl() and mmap() to commu-
nicate with the Netmap kernel module performing the packet I/O, the compat_netmap library
provides a set of similar APIs to use in place of those system calls, effectively turning a Netmap
application into a DPDK one.

The provided library is currently minimal and doesn’t support all the features that Netmap
supports, but is enough to run simple applications, such as the bridge example detailed below.

Knowledge of Netmap is required to understand the rest of this section. Please refer to the
Netmap distribution for details about Netmap.

28.2 Available APIs

The library provides the following drop-in replacements for system calls usually used in Netmap
applications:rte_netmap_close()

• rte_netmap_ioctl()

• rte_netmap_open()

• rte_netmap_mmap()

• rte_netmap_poll()

They use the same signature as their libc counterparts, and can be used as drop-in replace-
ments in most cases.

28.3 Caveats

Given the difference between the way Netmap and the DPDK approach packet I/O, there
are caveats and limitations to be aware of when trying to use the compat_netmap library,
the most important of which are listed below. Additional caveats are presented in the
$RTE_SDK/examples/netmap_compat/README.md file. These can change as the library is
updated:

164

Sample Applications User Guide, Release 2.1.0

• Any system call that can potentially affect file descriptors cannot be used with a descriptor
returned by the rte_netmap_open() function.

Note that:

• rte_netmap_mmap() merely returns the address of a DPDK memzone. The address,
length, flags, offset, and so on arguments are therefore ignored completely.

• rte_netmap_poll() only supports infinite (negative) or zero time outs. It effectively turns
calls to the poll() system call made in a Netmap application into polling of the DPDK
ports, changing the semantics of the usual POSIX defined poll.

• Not all of Netmap’s features are supported: “host rings”, slot flags and so on are not
supported or are simply not relevant in the DPDK model.

• The Netmap manual page states that “a device obtained through /dev/netmap also sup-
ports the ioctl supported by network devices”. It is not the case with this compatibility
layer.

• The Netmap kernel module exposes a sysfs interface to change some internal parame-
ters, such as the size of the shared memory region. This interface is not available when
using this compatibility layer.

28.4 Porting Netmap Applications

Porting Netmap applications typically involves two major steps:

• Changing the system calls to use their compat_netmap library counterparts

• Adding further DPDK initialization code

Since the compat_netmap functions have the same signature as the usual libc calls, the
change is in most cases trivial.

The usual DPDK initialization code involving rte_eal_init() and rte_eal_pci_probe() has to be
added to the Netmap application in the same way it is used in all other DPDK sample applica-
tions. Please refer to the DPDK Programmer’s Guide - Rel 1.4 EAR and example source code
for details about initialization.

In addition of the regular DPDK initialization code, the ported application needs to
call initialization functions for the compat_netmap library, namely rte_netmap_init() and
rte_netmap_init_port().

These two initialization functions take compat_netmap specific data structures as parame-
ters: struct rte_netmap_conf and struct rte_netmap_port_conf. Those structures’ fields are
Netmap related and are self-explanatory for developers familiar with Netmap. They are de-
fined in $RTE_SDK/examples/netmap_compat/ lib/compat_netmap.h.

The bridge application is an example largely based on the bridge example shipped with
the Netmap distribution. It shows how a minimal Netmap application with minimal and
straightforward source code changes can be run on top of the DPDK. Please refer to
$RTE_SDK/examples/netmap_compat/bridge/bridge.c for an example of ported application.

28.4. Porting Netmap Applications 165

Sample Applications User Guide, Release 2.1.0

28.5 Compiling the “bridge” Sample Application

1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/netmap_compat
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

28.6 Running the “bridge” Sample Application

The application requires a single command line option:

./build/packet_ordering [EAL options] -- -p PORT_A [-p PORT_B]
where,

• -p INTERFACE is the number of a valid DPDK port to use.

If a single -p parameter is given, the interface will send back all the traffic it receives. If
two -p parameters are given, the two interfaces form a bridge, where traffic received on
one interface is replicated and sent by the other interface.

To run the application in a linuxapp environment using port 0 and 2, issue the following com-
mand:

./build/packet_ordering [EAL options] -- -p 0 -p 2
Refer to the DPDK Getting Started Guide for general information on running applications and
the Environment Abstraction Layer (EAL) options.

Note that unlike a traditional bridge or the l2fwd sample application, no MAC address changes
are done on the frames. Do not forget to take that into account when configuring your traffic
generators if you decide to test this sample application.

28.5. Compiling the “bridge” Sample Application 166

CHAPTER

TWENTYNINE

INTERNET PROTOCOL (IP) PIPELINE APPLICATION

29.1 Application overview

The Internet Protocol (IP) Pipeline application is intended to be a vehicle for rapid development
of packet processing applications running on multi-core CPUs.

The application provides a library of reusable functional blocks called pipelines. These
pipelines can be seen as prefabricated blocks that can be instantiated and inter-connected
through packet queues to create complete applications (super-pipelines).

Pipelines are created and inter-connected through the application configuration file. By using
different configuration files, different applications are effectively created, therefore this appli-
cation can be seen as an application generator. The configuration of each pipeline can be
updated at run-time through the application Command Line Interface (CLI).

Main application components are:

A Library of reusable pipelines

• Each pipeline represents a functional block, e.g. flow classification, firewall, routing,
master, etc.

• Each pipeline type can be instantiated several times in the same application, which each
instance configured separately and mapped to a single CPU core. Each CPU core can
run one or several pipeline instances, which can be of same or different type.

• Pipeline instances are inter-connected through packet queues (for packet processing)
and message queues (for run-time configuration).

• Pipelines are implemented using DPDK Packet Framework.

• More pipeline types can always be built and added to the existing pipeline types.

The Configuration file

• The configuration file defines the application structure. By using different configuration
files, different applications are created.

• All the application resources are created and configured through the application configu-
ration file: pipeline instances, buffer pools, links (i.e. network interfaces), hardware device
RX/TX queues, software queues, traffic manager devices, EAL startup arguments, etc.

• The configuration file syntax is “define by reference”, meaning that resources are defined
as they are referenced. First time a resource name is detected, it is registered with
default parameters. Optionally, the resource parameters can be further refined through a
configuration file section dedicated to that resource.

167

Sample Applications User Guide, Release 2.1.0

• Command Line Interface (CLI)

Global CLI commands: link configuration, etc.

• Common pipeline CLI commands: ping (keep-alive), statistics, etc.

• Pipeline type specific CLI commands: used to configure instances of specific pipeline
type. These commands are registered with the application when the pipeline type is
registered. For example, the commands for routing pipeline instances include: route
add, route delete, route list, etc.

• CLI commands can be grouped into scripts that can be invoked at initialization and at
runtime.

29.2 Design goals

29.2.1 Rapid development

This application enables rapid development through quick connectivity of standard components
called pipelines. These components are built using DPDK Packet Framework and encapsulate
packet processing features at different levels: ports, tables, actions, pipelines and complete
applications.

Pipeline instances are instantiated, configured and inter-connected through low complexity
configuration files loaded during application initialization. Each pipeline instance is mapped to
a single CPU core, with each CPU core able to run one or multiple pipeline instances of same
or different types. By loading a different configuration file, a different application is effectively
started.

29.2.2 Flexibility

Each packet processing application is typically represented as a chain of functional stages
which is often called the functional pipeline of the application. These stages are mapped to
CPU cores to create chains of CPU cores (pipeline model), clusters of CPU cores (run-to-
completion model) or chains of clusters of CPU cores (hybrid model).

This application allows all the above programming models. By applying changes to the con-
figuration file, the application provides the flexibility to reshuffle its building blocks in different
ways until the configuration providing the best performance is identified.

Move pipelines around

The mapping of pipeline instances to CPU cores can be reshuffled through the configuration
file. One or several pipeline instances can be mapped to the same CPU core.

Move tables around

There is some degree of flexibility for moving tables from one pipeline instance to another.
Based on the configuration arguments passed to each pipeline instance in the configuration
file, specific tables can be enabled or disabled. This way, a specific table can be “moved” from

29.2. Design goals 168

Sample Applications User Guide, Release 2.1.0

CPU Core 1

CPU Core 2

CPU Core 3

P1

P2

P3

CPU Core 1

P1

P2

P3

Fig. 29.1: Example of moving pipeline instances across different CPU cores

pipeline instance A to pipeline instance B by simply disabling its associated functionality for
pipeline instance A while enabling it for pipeline instance B.

Due to requirement to have simple syntax for the configuration file, moving tables across dif-
ferent pipeline instances is not as flexible as the mapping of pipeline instances to CPU cores,
or mapping actions to pipeline tables. Complete flexibility in moving tables from one pipeline to
another could be achieved through a complex pipeline description language that would detail
the structural elements of the pipeline (ports, tables and actions) and their connectivity, result-
ing in complex syntax for the configuration file, which is not acceptable. Good configuration file
readability through simple syntax is preferred.

Example: the IP routing pipeline can run the routing function only (with ARP function run by
a different pipeline instance), or it can run both the routing and ARP functions as part of the
same pipeline instance.

Move actions around

When it makes sense, packet processing actions can be moved from one pipeline instance
to another. Based on the configuration arguments passed to each pipeline instance in the
configuration file, specific actions can be enabled or disabled. This way, a specific action can
be “moved” from pipeline instance A to pipeline instance B by simply disabling its associated
functionality for pipeline instance A while enabling it for pipeline instance B.

Example: The flow actions of accounting, traffic metering, application identification, NAT, etc
can be run as part of the flow classification pipeline instance or split across several flow ac-
tions pipeline instances, depending on the number of flow instances and their compute require-
ments.

29.2.3 Performance

Performance of the application is the highest priority requirement. Flexibility is not provided at
the expense of performance.

29.2. Design goals 169

Sample Applications User Guide, Release 2.1.0

Pipeline 1

Table 1

Route Next Hop Pipeline 2

Table 2

Key MAC Address

Pipeline 1

Route Next Hop

Key MAC Address

Table 1

Table 2

Fig. 29.2: Example of moving tables across different pipeline instances

29.2. Design goals 170

Sample Applications User Guide, Release 2.1.0

Pipeline 1 Pipeline 2

Flow Table 1 Flow Table 2

Flow # Flow # Actions 2Actions 1

Pipeline 1

Flow Table 1

Flow # Actions 1 Actions 2

Fig. 29.3: Example of moving actions across different tables and pipeline instances

The purpose of flexibility is to provide an incremental development methodology that allows
monitoring the performance evolution:

• Apply incremental changes in the configuration (e.g. mapping on pipeline instances to
CPU cores) in order to identify the configuration providing the best performance for a
given application;

• Add more processing incrementally (e.g. by enabling more actions for specific pipeline in-
stances) until the application is feature complete while checking the performance impact
at each step.

29.2.4 Debug capabilities

The application provides a significant set of debug capabilities:

• Command Line Interface (CLI) support for statistics polling: pipeline instance ping (keep-
alive checks), pipeline instance statistics per input port/output port/table, link statistics,
etc;

• Logging: Turn on/off application log messages based on priority level;

29.3 Running the application

The application startup command line is:

ip_pipeline [-f CONFIG_FILE] [-s SCRIPT_FILE] -p PORT_MASK [-l LOG_LEVEL]

29.3. Running the application 171

Sample Applications User Guide, Release 2.1.0

The application startup arguments are:

-f CONFIG_FILE
• Optional: Yes

• Default: ./config/ip_pipeline.cfg
• Argument: Path to the configuration file to be loaded by the application. Please refer to

the Configuration file syntax for details on how to write the configuration file.

-s SCRIPT_FILE
• Optional: Yes

• Default: Not present

• Argument: Path to the CLI script file to be run by the master pipeline at application
startup. No CLI script file will be run at startup of this argument is not present.

-p PORT_MASK
• Optional: No

• Default: N/A

• Argument: Hexadecimal mask of NIC port IDs to be used by the application. First port
enabled in this mask will be referenced as LINK0 as part of the application configuration
file, next port as LINK1, etc.

-l LOG_LEVEL
• Optional: Yes

• Default: 1 (High priority)

• Argument: Log level to determine which application messages are to be printed to stan-
dard output. Available log levels are: 0 (None), 1 (High priority), 2 (Low priority). Only
application messages whose priority is higher than or equal to the application log level
will be printed.

29.4 Application stages

29.4.1 Configuration

During this stage, the application configuration file is parsed and its content is loaded into the
application data structures. In case of any configuration file parse error, an error message is
displayed and the application is terminated. Please refer to the Configuration file syntax for a
description of the application configuration file format.

29.4.2 Configuration checking

In the absence of any parse errors, the loaded content of application data structures is checked
for overall consistency. In case of any configuration check error, an error message is displayed
and the application is terminated.

29.4. Application stages 172

Sample Applications User Guide, Release 2.1.0

29.4.3 Initialization

During this stage, the application resources are initialized and the handles to access them are
saved into the application data structures. In case of any initialization error, an error message
is displayed and the application is terminated.

The typical resources to be initialized are: pipeline instances, buffer pools, links (i.e. network
interfaces), hardware device RX/TX queues, software queues, traffic management devices,
etc.

29.4.4 Run-time

Each CPU core runs the pipeline instances assigned to it in time sharing mode and in round
robin order:

1. Packet processing task : The pipeline run-time code is typically a packet processing task
built on top of DPDK Packet Framework rte_pipeline library, which reads bursts of packets
from the pipeline input ports, performs table lookups and executes the identified actions
for all tables in the pipeline, with packet eventually written to pipeline output ports or
dropped.

2. Message handling task : Each CPU core will also periodically execute the message han-
dling code of each of the pipelines mapped to it. The pipeline message handling code is
processing the messages that are pending in the pipeline input message queues, which
are typically sent by the master CPU core for the on-the-fly pipeline configuration: check
that pipeline is still alive (ping), add/delete entries in the pipeline tables, get statistics, etc.
The frequency of executing the message handling code is usually much smaller than the
frequency of executing the packet processing work.

Please refer to the PIPELINE section for more details about the application pipeline module
encapsulation.

29.5 Configuration file syntax

29.5.1 Syntax overview

The syntax of the configuration file is designed to be simple, which favors readability. The
configuration file is parsed using the DPDK library librte_cfgfile, which supports simple INI file
format for configuration files.

As result, the configuration file is split into several sections, with each section containing one
or more entries. The scope of each entry is its section, and each entry specifies a variable that
is assigned a specific value. Any text after the ; character is considered a comment and is
therefore ignored.

The following are application specific: number of sections, name of each section, number of
entries of each section, name of the variables used for each section entry, the value format
(e.g. signed/unsigned integer, string, etc) and range of each section entry variable.

Generic example of configuration file section:

[<section_name>]
<variable_name_1> = <value_1>

29.5. Configuration file syntax 173

http://en.wikipedia.org/wiki/INI_file
http://en.wikipedia.org/wiki/INI_file

Sample Applications User Guide, Release 2.1.0

...
<variable_name_N> = <value_N>

29.5.2 Application resources present in the configuration file

Table 29.1: Application resource names in the configuration file

Resource type Format Examples
Pipeline PIPELINE<ID> PIPELINE0, PIPELINE1
Mempool MEMPOOL<ID> MEMPOOL0, MEMPOOL1
Link (network interface) LINK<ID> LINK0, LINK1
Link RX queue RXQ<LINK_ID>.<QUEUE_ID> RXQ0.0, RXQ1.5
Link TX queue TXQ<LINK_ID>.<QUEUE_ID> TXQ0.0, TXQ1.5
Software queue SWQ<ID> SWQ0, SWQ1
Traffic Manager TM<LINK_ID> TM0, TM1
Source SOURCE<ID> SOURCE0, SOURCE1
Sink SINK<ID> SINK0, SINK1
Message queue MSGQ<ID> MSGQ-REQ-PIPELINE<ID> MSGQ-RSP-PIPELINE<ID> MSGQ-REQ-CORE-<CORE_ID> MSGQ-RSP-CORE-<CORE_ID>

MSGQ0, MSGQ1, MSGQ-REQ-PIPELINE2, MSGQ-RSP-PIPELINE2, MSGQ-REQ-CORE-s0c1, MSGQ-RSP-CORE-s0c1
LINK instances are created implicitly based on the PORT_MASK application startup argument.LINK0 is the first port enabled in the PORT_MASK, port 1 is the next one, etc. The LINK ID
is different than the DPDK PMD-level NIC port ID, which is the actual position in the bitmask
mentioned above. For example, if bit 5 is the first bit set in the bitmask, then LINK0 is hav-
ing the PMD ID of 5. This mechanism creates a contiguous LINK ID space and isolates the
configuration file against changes in the board PCIe slots where NICs are plugged in.

RXQ, TXQ and TM instances have the LINK ID as part of their name. For example, RXQ2.1,TXQ2.1 and TM2 are all associated with LINK2.

29.5.3 Rules to parse the configuration file

The main rules used to parse the configuration file are:

1. Application resource name determines the type of resource based on the name prefix.

Example: all software queues need to start with SWQ prefix, so SWQ0 and SWQ5 are valid
software queue names.

2. An application resource is defined by creating a configuration file section with its name.
The configuration file section allows fine tuning on any of the resource parameters. Some
resource parameters are mandatory, in which case it is required to have them specified
as part of the section, while some others are optional, in which case they get assigned
their default value when not present.

Example: section SWQ0 defines a software queue named SWQ0, whose parameters are
detailed as part of this section.

29.5. Configuration file syntax 174

Sample Applications User Guide, Release 2.1.0

3. An application resource can also be defined by referencing it. Referencing a resource
takes place by simply using its name as part of the value assigned to a variable in any
configuration file section. In this case, the resource is registered with all its parameters
having their default values. Optionally, a section with the resource name can be added
to the configuration file to fine tune some or all of the resource parameters.

Example: in section PIPELINE3, variable pktq_in includes SWQ5 as part of its list,
which results in defining a software queue named SWQ5; when there is no SWQ5 section
present in the configuration file, SWQ5 gets registered with default parameters.

29.5.4 PIPELINE section

Table 29.2: Configuration file PIPELINE section (1/2)

Section Description Optional Range Default
value

type Pipeline type. Defines the functionality to
be executed.

NO See
“List of
pipeline
types”

N/A

core CPU core to run the current pipeline. YES See
“CPU
Core
notation”

CPU
socket
0, core
0, hyper-
thread
0

pktq_in Packet queues to serve as input ports for
the current pipeline instance. The accept-
able packet queue types are: RXQ, SWQ,TM and SOURCE. First device in this list is
used as pipeline input port 0, second as
pipeline input port 1, etc.

YES List of
input
packet
queue
IDs

Empty
list

pktq_out Packet queues to serve as output ports
for the current pipeline instance. The ac-
ceptable packet queue types are: TXQ,SWQ, TM and SINK. First device in this list
is used as pipeline output port 0, second
as pipeline output port 1, etc.

YES List of
output
packet
queue
IDs.

Empty
list

29.5. Configuration file syntax 175

Sample Applications User Guide, Release 2.1.0

Table 29.3: Configuration file PIPELINE section (2/2)

Section Description Optional Range Default
value

msgq_in Input message queues. These queues
contain request messages that need to
be handled by the current pipeline in-
stance. The type and format of re-
quest messages is defined by the pipeline
type. For each pipeline instance, there
is an input message queue defined im-
plicitly, whose name is: MSGQ-REQ-<PIPELINE_ID>. This message queue
should not be mentioned as part of
msgq_in list.

YES List of
mes-
sage
queue
IDs

Empty
list

msgq_out Output message queues. These queues
are used by the current pipeline instance
to write response messages as result of
request messages being handled. The
type and format of response messages
is defined by the pipeline type. For
each pipeline instance, there is an output
message queue defined implicitly, whose
name is: MSGQ-RSP-<PIPELINE_ID>.
This message queue should not be men-
tioned as part of msgq_out list.

YES List of
mes-
sage
queue
IDs

Empty
list

timer_period Time period, measured in milliseconds,
for handling the input message queues.

YES milliseconds1 ms

<any other> Arguments to be passed to the current
pipeline instance. Format of the argu-
ments, their type, whether each argument
is optional or mandatory and its default
value (when optional) are defined by the
pipeline type. The value of the arguments
is applicable to the current pipeline in-
stance only.

Depends
on
pipeline
type

Depends
on
pipeline
type

Depends
on
pipeline
type

CPU core notation

The CPU Core notation is:

<CPU core> ::= [s|S<CPU socket ID>][c|C]<CPU core ID>[h|H]
For example:

CPU socket 0, core 0, hyper-thread 0: 0, c0, s0c0
CPU socket 0, core 0, hyper-thread 1: 0h, c0h, s0c0h
CPU socket 3, core 9, hyper-thread 1: s3c9h

29.5. Configuration file syntax 176

Sample Applications User Guide, Release 2.1.0

29.5.5 MEMPOOL section

Table 29.4: Configuration file MEMPOOL section

Section Description Optional Type Default value
buffer_size Buffer size (in bytes) for the current

buffer pool.
YES uint32_t 2048 +

sizeof(struct
rte_mbuf) +
HEADROOM

pool_size Number of buffers in the current
buffer pool.

YES uint32_t 32K

cache_size Per CPU thread cache size (in num-
ber of buffers) for the current buffer
pool.

YES uint32_t 256

cpu CPU socket ID where to allocate
memory for the current buffer pool.

YES uint32_t 0

29.5.6 LINK section

Table 29.5: Configuration file LINK section

Section entry Description Optional Type Default
value

arp_q NIC RX queue where ARP packets
should be filtered.

YES 0 .. 127 0 (default
queue)

tcp_syn_local_q NIC RX queue where TCP packets with
SYN flag should be filtered.

YES 0 .. 127 0 (default
queue)

ip_local_q NIC RX queue where IP packets with lo-
cal destination should be filtered. When
TCP, UDP and SCTP local queues are
defined, they take higher priority than this
queue.

YES 0 .. 127 0 (default
queue)

tcp_local_q NIC RX queue where TCP packets with
local destination should be filtered.

YES 0 .. 127 0 (default
queue)

udp_local_q NIC RX queue where TCP packets with
local destination should be filtered.

YES 0 .. 127 0 (default
queue)

sctp_local_q NIC RX queue where TCP packets with
local destination should be filtered.

YES 0 .. 127 0 (default
queue)

promisc Indicates whether current link should be
started in promiscuous mode.

YES YES/NO YES

29.5. Configuration file syntax 177

Sample Applications User Guide, Release 2.1.0

29.5.7 RXQ section

Table 29.6: Configuration file RXQ section

Section Description Optional Type Default
value

mempool Mempool to use for buffer allocation for
current NIC RX queue. The mempool ID
has to be associated with a valid instance
defined in the mempool entry of the global
section.

YES uint32_t MEMPOOL0

Size NIC RX queue size (number of descrip-
tors)

YES uint32_t 128

burst Read burst size (number of descriptors) YES uint32_t 32

29.5.8 TXQ section

Table 29.7: Configuration file TXQ section

Section Description Optional Type Default
value

size NIC TX queue size (number of descrip-
tors)

YES uint32_t
power of 2
> 0

512

burst Write burst size (number of descriptors) YES uint32_t
power of 2
0 < burst <
size

32

dropless When dropless is set to NO, packets can
be dropped if not enough free slots are
currently available in the queue, so the
write operation to the queue is non- block-
ing. When dropless is set to YES, pack-
ets cannot be dropped if not enough free
slots are currently available in the queue,
so the write operation to the queue is
blocking, as the write operation is retried
until enough free slots become available
and all the packets are successfully writ-
ten to the queue.

YES YES/NO NO

n_retries Number of retries. Valid only when drop-
less is set to YES. When set to 0, it indi-
cates unlimited number of retries.

YES uint32_t 0

29.5. Configuration file syntax 178

Sample Applications User Guide, Release 2.1.0

29.5.9 SWQ section

Table 29.8: Configuration file SWQ section

Section Description Optional Type Default
value

size Queue size (number of packets) YES uint32_t
power of
2

256

burst_read Read burst size (number of packets) YES uint32_t
power
of 2 0 <
burst <
size

32

burst_write Write burst size (number of packets) YES uint32_t
power
of 2 0 <
burst <
size

32

dropless When dropless is set to NO, packets can
be dropped if not enough free slots are
currently available in the queue, so the
write operation to the queue is non- block-
ing. When dropless is set to YES, pack-
ets cannot be dropped if not enough free
slots are currently available in the queue,
so the write operation to the queue is
blocking, as the write operation is retried
until enough free slots become available
and all the packets are successfully writ-
ten to the queue.

YES YES/NO NO

n_retries Number of retries. Valid only when drop-
less is set to YES. When set to 0, it indi-
cates unlimited number of retries.

YES uint32_t 0

cpu CPU socket ID where to allocate memory
for this SWQ.

YES uint32_t 0

29.5.10 TM section

Table 29.9: Configuration file TM section

Section Description Optional Type Default
value

Cfg File name to parse for the TM configura-
tion to be applied. The syntax of this file
is described in the examples/qos_sched
DPDK application documentation.

YES string tm_profile

burst_read Read burst size (number of packets) YES uint32_t 64
burst_write Write burst size (number of packets) YES uint32_t 32

29.5. Configuration file syntax 179

Sample Applications User Guide, Release 2.1.0

29.5.11 SOURCE section

Table 29.10: Configuration file SOURCE section

Section Description Optional Type Default
value

Mempool Mempool to use for buffer allocation. YES uint32_t MEMPOOL0
Burst Read burst size (number of packets) uint32_t 32

29.5.12 SINK section

Currently, there are no parameters to be passed to a sink device, so SINK section is not
allowed.

29.5.13 MSGQ section

Table 29.11: Configuration file MSGQ section

Section Description Optional Type Default
value

size Queue size (number of packets) YES uint32_t
!= 0
power of
2

64

cpu CPU socket ID where to allocate memory
for the current queue.

YES uint32_t 0

29.5.14 EAL section

The application generates the EAL parameters rather than reading them from the command
line.

The CPU core mask parameter is generated based on the core entry of all PIPELINE sections.
All the other EAL parameters can be set from this section of the application configuration file.

29.6 Library of pipeline types

29.6.1 Pipeline module

A pipeline is a self-contained module that implements a packet processing function and is
typically implemented on top of the DPDK Packet Framework librte_pipeline library. The appli-
cation provides a run-time mechanism to register different pipeline types.

Depending on the required configuration, each registered pipeline type (pipeline class) is in-
stantiated one or several times, with each pipeline instance (pipeline object) assigned to one of
the available CPU cores. Each CPU core can run one or more pipeline instances, which might
be of same or different types. For more information of the CPU core threading model, please
refer to the Run-time section.

29.6. Library of pipeline types 180

Sample Applications User Guide, Release 2.1.0

Pipeline type

Each pipeline type is made up of a back-end and a front-end. The back-end represents the
packet processing engine of the pipeline, typically implemented using the DPDK Packet Frame-
work libraries, which reads packets from the input packet queues, handles them and eventually
writes them to the output packet queues or drops them. The front-end represents the run-time
configuration interface of the pipeline, which is exposed as CLI commands. The front-end
communicates with the back-end through message queues.

Table 29.12: Pipeline back-end

Field
name

Field type Description

f_init Function
pointer

Function to initialize the back-end of the current pipeline instance. Typ-
ical work implemented by this function for the current pipeline instance:
Memory allocation; Parse the pipeline type specific arguments; Initial-
ize the pipeline input ports, output ports and tables, interconnect input
ports to tables; Set the message handlers.

f_free Function
pointer

Function to free the resources allocated by the back-end of the current
pipeline instance.

f_run Function
pointer

Set to NULL for pipelines implemented using the DPDK library li-
brte_pipeline (typical case), and to non-NULL otherwise. This mech-
anism is made available to support quick integration of legacy code.
This function is expected to provide the packet processing related code
to be called as part of the CPU thread dispatch loop, so this function is
not allowed to contain an infinite loop.

f_timer Function
pointer

Function to read the pipeline input message queues, handle the re-
quest messages, create response messages and write the response
queues. The format of request and response messages is defined
by each pipeline type, with the exception of some requests which are
mandatory for all pipelines (e.g. ping, statistics).

f_track Function
pointer

See section Tracking pipeline output port to physical link

Table 29.13: Pipeline front-end

Field
name

Field type Description

f_init Function
pointer

Function to initialize the front-end of the current pipeline instance.

f_free Function
pointer

Function to free the resources allocated by the front-end of the current
pipeline instance.

cmds Array of CLI
commands

Array of CLI commands to be registered to the application CLI for the
current pipeline type. Even though the CLI is executed by a different
pipeline (typically, this is the master pipeline), from modularity perspec-
tive is more efficient to keep the message client side (part of the front-
end) together with the message server side (part of the back-end).

Tracking pipeline output port to physical link

Each pipeline instance is a standalone block that does not have visibility into the other pipeline
instances or the application-level pipeline inter-connectivity. In some cases, it is useful for a

29.6. Library of pipeline types 181

Sample Applications User Guide, Release 2.1.0

pipeline instance to get application level information related to pipeline connectivity, such as to
identify the output link (e.g. physical NIC port) where one of its output ports connected, either
directly or indirectly by traversing other pipeline instances.

Tracking can be successful or unsuccessful. Typically, tracking for a specific pipeline instance
is successful when each one of its input ports can be mapped to a single output port, meaning
that all packets read from the current input port can only go out on a single output port. De-
pending on the pipeline type, some exceptions may be allowed: a small portion of the packets,
considered exception packets, are sent out on an output port that is pre-configured for this
purpose.

For pass-through pipeline type, the tracking is always successful. For pipeline types as flow
classification, firewall or routing, the tracking is only successful when the number of output
ports for the current pipeline instance is 1.

This feature is used by the IP routing pipeline for adding/removing implicit routes every time a
link is brought up/down.

Table copies

Fast table copy: pipeline table used by pipeline for the packet processing task, updated through
messages, table data structures are optimized for lookup operation.

Slow table copy: used by the configuration layer, typically updated through CLI commands,
kept in sync with the fast copy (its update triggers the fast copy update). Required for executing
advanced table queries without impacting the packet processing task, therefore the slow copy
is typically organized using different criteria than the fast copy.

Examples:

• Flow classification: Search through current set of flows (e.g. list all flows with a specific
source IP address);

• Firewall: List rules in descending order of priority;

• Routing table: List routes sorted by prefix depth and their type (local, remote, default);

• ARP: List entries sorted per output interface.

Packet meta-data

Packet meta-data field offsets provided as argument to pipeline instances are essentially defin-
ing the data structure for the packet meta-data used by the current application use-case. It is
very useful to put it in the configuration file as a comment in order to facilitate the readability of
the configuration file.

The reason to use field offsets for defining the data structure for the packet meta-data is due
to the C language limitation of not being able to define data structures at run-time. Feature to
consider: have the configuration file parser automatically generate and print the data structure
defining the packet meta-data for the current application use-case.

Packet meta-data typically contains:

1. Pure meta-data: intermediate data per packet that is computed internally, passed be-
tween different tables of the same pipeline instance (e.g. lookup key for the ARP table

29.6. Library of pipeline types 182

Sample Applications User Guide, Release 2.1.0

is obtained from the routing table), or between different pipeline instances (e.g. flow ID,
traffic metering color, etc);

2. Packet fields: typically, packet header fields that are read directly from the packet, or read
from the packet and saved (duplicated) as a working copy at a different location within
the packet meta-data (e.g. Diffserv 5-tuple, IP destination address, etc).

Several strategies are used to design the packet meta-data, as described in the next subsec-
tions.

Store packet meta-data in a different cache line as the packet headers

This approach is able to support protocols with variable header length, like MPLS, where the
offset of IP header from the start of the packet (and, implicitly, the offset of the IP header in
the packet buffer) is not fixed. Since the pipelines typically require the specification of a fixed
offset to the packet fields (e.g. Diffserv 5-tuple, used by the flow classification pipeline, or the
IP destination address, used by the IP routing pipeline), the workaround is to have the packet
RX pipeline copy these fields at fixed offsets within the packet meta-data.

As this approach duplicates some of the packet fields, it requires accessing more cache lines
per packet for filling in selected packet meta-data fields (on RX), as well as flushing selected
packet meta-data fields into the packet (on TX).

Example:

; struct app_pkt_metadata {; uint32_t ip_da;; uint32_t hash;; uint32_t flow_id;; uint32_t color;; } __attribute__((__packed__));;
[PIPELINE1]; Packet meta-data offsetsip_da_offset = 0; Used by: routinghash_offset = 4; Used by: RX, flow classificationflow_id_offset = 8; Used by: flow classification, flow actionscolor_offset = 12; Used by: flow actions, routing

Overlay the packet meta-data in the same cache line with the packet headers

This approach is minimizing the number of cache line accessed per packet by storing the
packet metadata in the same cache line with the packet headers. To enable this strategy,
either some headroom is reserved for meta-data at the beginning of the packet headers cache
line (e.g. if 16 bytes are needed for meta-data, then the packet headroom can be set to 128+16
bytes, so that NIC writes the first byte of the packet at offset 16 from the start of the first packet
cache line), or meta-data is reusing the space of some packet headers that are discarded from
the packet (e.g. input Ethernet header).

Example:

; struct app_pkt_metadata {; uint8_t headroom[RTE_PKTMBUF_HEADROOM]; /* 128 bytes (default) */; union {; struct {; struct ether_hdr ether; /* 14 bytes */

29.6. Library of pipeline types 183

Sample Applications User Guide, Release 2.1.0

; struct qinq_hdr qinq; /* 8 bytes */; };; struct {; uint32_t hash;; uint32_t flow_id;; uint32_t color;; };; };; struct ipv4_hdr ip; /* 20 bytes */; } __attribute__((__packed__));;
[PIPELINE2]; Packet meta-data offsetsqinq_offset = 142; Used by: RX, flow classificationip_da_offset = 166; Used by: routinghash_offset = 128; Used by: RX, flow classificationflow_id_offset = 132; Used by: flow classification, flow actionscolor_offset = 136; Used by: flow actions, routing

29.6. Library of pipeline types 184

Sample Applications User Guide, Release 2.1.0

29.6.2 List of pipeline types

Table 29.14: List of pipeline types provided with the application

Name Table(s) Actions Messages
Pass-through
Note: depending
on port type, can
be used for RX,
TX, IP fragmenta-
tion, IP reassem-
bly or Traffic Man-
agement

Passthrough
1. Pkt metadata

build
2. Flow hash
3. Pkt checks
4. Load balancing

1. Ping
2. Stats

Flow classifica-
tion

Exact match
• Key = byte array

(source: pkt metadata)
• Data = action depen-

dent

1. Flow ID
2. Flow stats
3. Metering
4. Network Address
5. Translation (NAT)

1. Ping
2. Stats
3. Flow stats
4. Action stats
5. Flow add/ update/

delete
6. Default flow add/

update/ delete
7. Action update

Flow actions Array
• Key = Flow ID (source:

pkt metadata)
• Data = action depen-

dent

1. Flow stats
2. Metering
3. Network Address
4. Translation (NAT)

1. Ping
2. Stats
3. Action stats
4. Action update

Firewall ACL
• Key = n-tuple (source:

pkt headers)
• Data = none

1. Allow/Drop 1. Ping
2. Stats
3. Rule add/ update/

delete
4. Default rule add/

update/ delete

IP routing LPM (IPv4 or IPv6, depend-
ing on pipeline type)

• Key = IP destination
(source: pkt metadata)

• Data = Dependent on
actions and next hop
type

Hash table (for ARP, only
when ARP is enabled)

• Key = (Port ID, next hop
IP address) (source:
pkt meta-data)

• Data: MAC address

1. TTL decrement
and

2. IPv4 checksum
3. update
4. Header
5. encapsulation
6. (based on next

hop
7. type)

1. Ping
2. Stats
3. Route add/ up-

date/ delete
4. Default route add/

update/ delete
5. ARP entry add/

update/ delete
6. Default ARP en-

try add/ update/
delete

29.6. Library of pipeline types 185

Sample Applications User Guide, Release 2.1.0

29.7 Command Line Interface (CLI)

29.7.1 Global CLI commands

Table 29.15: Global CLI commands

Command Description Syntax
run Run CLI commands script file. run <file> <file> = path to file with

CLI commands to execute
quit Gracefully terminate the applica-

tion.
quit

29.7.2 CLI commands for link configuration

Table 29.16: List of run-time configuration commands for link configuration

Command Description Syntax
link config Link configuration link <link ID> config <IP address>

<depth>
link up Link up link <link ID> up
link down Link down link <link ID> down
link ls Link list link ls

29.7.3 CLI commands common for all pipeline types

Table 29.17: CLI commands mandatory for all pipelines

Command Description Syntax
ping Check whether specific pipeline

instance is alive. The master
pipeline sends a ping request mes-
sage to given pipeline instance
and waits for a response message
back. Timeout message is dis-
played when the response mes-
sage is not received before the
timer expires.

p <pipeline ID> ping

stats Display statistics for specific
pipeline input port, output port or
table.

p <pipeline ID> stats port in <port
in ID> p <pipeline ID> stats port out
<port out ID> p <pipeline ID> stats
table <table ID>

input port enable Enable given input port for specific
pipeline instance.

p <pipeline ID> port in <port ID> en-
able

input port disable Disable given input port for specific
pipeline instance.

p <pipeline ID> port in <port ID>
disable

29.7. Command Line Interface (CLI) 186

Sample Applications User Guide, Release 2.1.0

29.7.4 Pipeline type specific CLI commands

The pipeline specific CLI commands are part of the pipeline type front-end.

29.7. Command Line Interface (CLI) 187

CHAPTER

THIRTY

TEST PIPELINE APPLICATION

The Test Pipeline application illustrates the use of the DPDK Packet Framework tool suite. Its
purpose is to demonstrate the performance of single-table DPDK pipelines.

30.1 Overview

The application uses three CPU cores:

• Core A (“RX core”) receives traffic from the NIC ports and feeds core B with traffic through
SW queues.

• Core B (“Pipeline core”) implements a single-table DPDK pipeline whose type is se-
lectable through specific command line parameter. Core B receives traffic from core A
through software queues, processes it according to the actions configured in the table
entries that are hit by the input packets and feeds it to core C through another set of
software queues.

• Core C (“TX core”) receives traffic from core B through software queues and sends it to
the NIC ports for transmission.

Fig. 30.1: Test Pipeline Application

30.2 Compiling the Application

1. Go to the app/test directory:

188

Sample Applications User Guide, Release 2.1.0

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/app/test/test-pipeline
2. Set the target (a default target is used if not specified):

export RTE_TARGET=x86_64-native-linuxapp-gcc
3. Build the application:

make

30.3 Running the Application

30.3.1 Application Command Line

The application execution command line is:

./test-pipeline [EAL options] -- -p PORTMASK --TABLE_TYPE
The -c EAL CPU core mask option has to contain exactly 3 CPU cores. The first CPU core in
the core mask is assigned for core A, the second for core B and the third for core C.

The PORTMASK parameter must contain 2 or 4 ports.

30.3.2 Table Types and Behavior

Table 30.1 describes the table types used and how they are populated.

The hash tables are pre-populated with 16 million keys. For hash tables, the following param-
eters can be selected:

• Configurable key size implementation or fixed (specialized) key size implementa-
tion (e.g. hash-8-ext or hash-spec-8-ext). The key size specialized implementations
are expected to provide better performance for 8-byte and 16-byte key sizes, while the
key-size-non-specialized implementation is expected to provide better performance for
larger key sizes;

• Key size (e.g. hash-spec-8-ext or hash-spec-16-ext). The available options are 8, 16
and 32 bytes;

• Table type (e.g. hash-spec-16-ext or hash-spec-16-lru). The available options are ext
(extendable bucket) or lru (least recently used).

30.3. Running the Application 189

Sample Applications User Guide, Release 2.1.0

Table 30.1: Table Types

TA-
BLE_TYPE

Description of Core B Table Pre-added Table Entries

1 none Core B is not implementing a DPDK
pipeline. Core B is implementing a
pass-through from its input set of
software queues to its output set of
software queues.

N/A

2 stub Stub table. Core B is implementing
the same pass-through functionality
as described for the “none” option by
using the DPDK Packet Framework by
using one stub table for each input
NIC port.

N/A

3 hash-
[spec]-
8-lru

LRU hash table with 8-byte key size
and 16 million entries.

16 million entries are successfully
added to the hash table with the
following key format:
[4-byte index, 4 bytes of 0]
The action configured for all table
entries is “Sendto output port”, with
the output port index uniformly
distributed for the range of output
ports.
The default table rule (used in the
case of a lookup miss) is to drop the
packet.
At run time, core A is creating the
following lookup key and storing it into
the packet meta data for core B to use
for table lookup:
[destination IPv4 address, 4 bytes of
0]

4 hash-
[spec]-
8-
ext

Extendible bucket hash table with
8-byte key size and 16 million entries.

Same as hash-[spec]-8-lru table
entries, above.

5 hash-
[spec]-
16-
lru

LRU hash table with 16-byte key size
and 16 million entries.

16 million entries are successfully
added to the hash table with the
following key format:
[4-byte index, 12 bytes of 0]
The action configured for all table
entries is “Send to output port”, with
the output port index uniformly
distributed for the range of output
ports.
The default table rule (used in the
case of a lookup miss) is to drop the
packet.
At run time, core A is creating the
following lookup key and storing it into
the packet meta data for core B to use
for table lookup:
[destination IPv4 address, 12 bytes of
0]

6 hash-
[spec]-
16-
ext

Extendible bucket hash table with
16-byte key size and 16 million
entries.

Same as hash-[spec]-16-lru table
entries, above.

7 hash-
[spec]-
32-
lru

LRU hash table with 32-byte key size
and 16 million entries.

16 million entries are successfully
added to the hash table with the
following key format:
[4-byte index, 28 bytes of 0].
The action configured for all table
entries is “Send to output port”, with
the output port index uniformly
distributed for the range of output
ports.
The default table rule (used in the
case of a lookup miss) is to drop the
packet.
At run time, core A is creating the
following lookup key and storing it into
the packet meta data for Lpmcore B to
use for table lookup:
[destination IPv4 address, 28 bytes of
0]

8 hash-
[spec]-
32-
ext

Extendible bucket hash table with
32-byte key size and 16 million
entries.

Same as hash-[spec]-32-lru table
entries, above.

9 lpm Longest Prefix Match (LPM) IPv4
table.

In the case of two ports, two routes
are added to the table:
[0.0.0.0/9 => send to output port 0]
[0.128.0.0/9 => send to output port 1]
In case of four ports, four entries are
added to the table:
[0.0.0.0/10 => send to output port 0]
[0.64.0.0/10 => send to output port 1]
[0.128.0.0/10 => send to output port
2]
[0.192.0.0/10 => send to output port
3]
The default table rule (used in the
case of a lookup miss) is to drop the
packet.
At run time, core A is storing the IPv4
destination within the packet meta
data to be later used by core B as the
lookup key.

10 acl Access Control List (ACL) table In the case of two ports, two ACL
rules are added to the table:
[priority = 0 (highest),
IPv4 source = ANY,
IPv4 destination = 0.0.0.0/9,
L4 protocol = ANY,
TCP source port = ANY,
TCP destination port = ANY
=> send to output port 0]
[priority = 0 (highest),
IPv4 source = ANY,
IPv4 destination = 0.128.0.0/9,
L4 protocol = ANY,
TCP source port = ANY,
TCP destination port = ANY
=> send to output port 0].
The default table rule (used in the
case of a lookup miss) is to drop the
packet.

30.3. Running the Application 190

Sample Applications User Guide, Release 2.1.0

30.3.3 Input Traffic

Regardless of the table type used for the core B pipeline, the same input traffic can be used
to hit all table entries with uniform distribution, which results in uniform distribution of packets
sent out on the set of output NIC ports. The profile for input traffic is TCP/IPv4 packets with:

• destination IP address as A.B.C.D with A fixed to 0 and B, C,D random

• source IP address fixed to 0.0.0.0

• destination TCP port fixed to 0

• source TCP port fixed to 0

30.3. Running the Application 191

CHAPTER

THIRTYONE

DISTRIBUTOR SAMPLE APPLICATION

The distributor sample application is a simple example of packet distribution to cores using the
Data Plane Development Kit (DPDK).

31.1 Overview

The distributor application performs the distribution of packets that are received on an
RX_PORT to different cores. When processed by the cores, the destination port of a packet
is the port from the enabled port mask adjacent to the one on which the packet was received,
that is, if the first four ports are enabled (port mask 0xf), ports 0 and 1 RX/TX into each other,
and ports 2 and 3 RX/TX into each other.

This application can be used to benchmark performance using the traffic generator as shown
in the figure below.

Port2

Port0

DPDK boardTraffic Generator

Port1

Port3

Port2

Port0

Port1

Port3

Fig. 31.1: Performance Benchmarking Setup (Basic Environment)

192

Sample Applications User Guide, Release 2.1.0

31.2 Compiling the Application

1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/distributor
2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

31.3 Running the Application

1. The application has a number of command line options:

./build/distributor_app [EAL options] -- -p PORTMASK
where,

• -p PORTMASK: Hexadecimal bitmask of ports to configure

2. To run the application in linuxapp environment with 10 lcores, 4 ports, issue the com-
mand:

$./build/distributor_app -c 0x4003fe -n 4 -- -p f
3. Refer to the DPDK Getting Started Guide for general information on running applications

and the Environment Abstraction Layer (EAL) options.

31.4 Explanation

The distributor application consists of three types of threads: a receive thread (lcore_rx()), a set
of worker threads(lcore_worker()) and a transmit thread(lcore_tx()). How these threads work
together is shown in Fig. 31.2 below. The main() function launches threads of these three
types. Each thread has a while loop which will be doing processing and which is terminated
only upon SIGINT or ctrl+C. The receive and transmit threads communicate using a software
ring (rte_ring structure).

The receive thread receives the packets using rte_eth_rx_burst() and gives them to the distrib-
utor (using rte_distributor_process() API) which will be called in context of the receive thread
itself. The distributor distributes the packets to workers threads based on the tagging of the
packet - indicated by the hash field in the mbuf. For IP traffic, this field is automatically filled by
the NIC with the “usr” hash value for the packet, which works as a per-flow tag.

More than one worker thread can exist as part of the application, and these worker threads
do simple packet processing by requesting packets from the distributor, doing a simple XOR
operation on the input port mbuf field (to indicate the output port which will be used later for
packet transmission) and then finally returning the packets back to the distributor in the RX
thread.

31.2. Compiling the Application 193

Sample Applications User Guide, Release 2.1.0

Meanwhile, the receive thread will call the distributor api rte_distributor_returned_pkts() to get
the packets processed, and will enqueue them to a ring for transfer to the TX thread for trans-
mission on the output port. The transmit thread will dequeue the packets from the ring and
transmit them on the output port specified in packet mbuf.

Users who wish to terminate the running of the application have to press ctrl+C (or send SIG-
INT to the app). Upon this signal, a signal handler provided in the application will terminate all
running threads gracefully and print final statistics to the user.

Request packet

Mbuf pointer

WorkerThread1

WorkerThread2

WorkerThread3

WorkerThreadN

TX thread

RX thread & Distributor

Mbufs In

Mbufs Out

SW Ring

Fig. 31.2: Distributor Sample Application Layout

31.5 Debug Logging Support

Debug logging is provided as part of the application; the user needs to uncomment the line
“#define DEBUG” defined in start of the application in main.c to enable debug logs.

31.6 Statistics

Upon SIGINT (or) ctrl+C, the print_stats() function displays the count of packets processed at
the different stages in the application.

31.5. Debug Logging Support 194

Sample Applications User Guide, Release 2.1.0

31.7 Application Initialization

Command line parsing is done in the same way as it is done in the L2 Forwarding Sample
Application. See Section 9.4.1, “Command Line Arguments”.

Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding Sample
Application. See Section 9.4.2, “Mbuf Pool Initialization”.

Driver Initialization is done in same way as it is done in the L2 Forwarding Sample Application.
See Section 9.4.3, “Driver Initialization”.

RX queue initialization is done in the same way as it is done in the L2 Forwarding Sample
Application. See Section 9.4.4, “RX Queue Initialization”.

TX queue initialization is done in the same way as it is done in the L2 Forwarding Sample
Application. See Section 9.4.5, “TX Queue Initialization”.

31.7. Application Initialization 195

CHAPTER

THIRTYTWO

VM POWER MANAGEMENT APPLICATION

32.1 Introduction

Applications running in Virtual Environments have an abstract view of the underlying hard-
ware on the Host, in particular applications cannot see the binding of virtual to physical hard-
ware. When looking at CPU resourcing, the pinning of Virtual CPUs(vCPUs) to Host Physical
CPUs(pCPUS) is not apparent to an application and this pinning may change over time. Fur-
thermore, Operating Systems on virtual machines do not have the ability to govern their own
power policy; the Machine Specific Registers (MSRs) for enabling P-State transitions are not
exposed to Operating Systems running on Virtual Machines(VMs).

The Virtual Machine Power Management solution shows an example of how a DPDK applica-
tion can indicate its processing requirements using VM local only information(vCPU/lcore) to
a Host based Monitor which is responsible for accepting requests for frequency changes for a
vCPU, translating the vCPU to a pCPU via libvirt and affecting the change in frequency.

The solution is comprised of two high-level components:

1. Example Host Application

Using a Command Line Interface(CLI) for VM->Host communication channel manage-
ment allows adding channels to the Monitor, setting and querying the vCPU to pCPU
pinning, inspecting and manually changing the frequency for each CPU. The CLI runs on
a single lcore while the thread responsible for managing VM requests runs on a second
lcore.

VM requests arriving on a channel for frequency changes are passed to the librte_power
ACPI cpufreq sysfs based library. The Host Application relies on both qemu-kvm and
libvirt to function.

2. librte_power for Virtual Machines

Using an alternate implementation for the librte_power API, requests for frequency
changes are forwarded to the host monitor rather than the APCI cpufreq sysfs interface
used on the host.

The l3fwd-power application will use this implementation when deployed on a VM (see
Chapter 11 “L3 Forwarding with Power Management Application”).

196

Sample Applications User Guide, Release 2.1.0

Host

VM 0

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Virtual Core 0 Virtual Core 1 Virtual Core 2 Virtual Core 3

DPDK Application

VM 1

Virtual Core 0 Virtual Core 1

DPDK Application DPDK VM Application · Reuse librte_power interface, but provides a new implementation that forwards frequency set requests to host via Virtio-Serial channel · Each lcore has exclusive access to a single channel · Sample application re-uses l3fwd_power · A CLI for changing frequency from within a VM is also included.

OS/Hypervisor

Linux “userspace” power governor /sys/devices/system/cpu/cpuN/cpufreq/

VM Power Monitor · Accepts VM Commands over Virtio Serial endpoints, monitored via epoll · Commands include the virtual core to be modified, using libvirt to get physical core mapping · Uses librte_power to affect frequency changes via Linux userspace power governor(APCI cpufreq) · CLI: For adding VM channels to monitor, inspecting and changing channel state, manually altering CPU frequency. Also allows for the changing of vCPU to pCPU pinning.

VM Power Monitor Application

librte_power(vm)
lcore channel 0

librte_power(vm)
lcore channel 1 lcore channel 2 lcore channel 3 lcore channel 0 lcore channel 1

Endpoint Monitor(lcore channels)
Channel Manager

QEMU
libvirt

librte_power(Host)
Map vCPU to pCPU

VM Power CLI

Fig. 32.1: Highlevel Solution

32.1. Introduction 197

Sample Applications User Guide, Release 2.1.0

32.2 Overview

VM Power Management employs qemu-kvm to provide communications channels between the
host and VMs in the form of Virtio-Serial which appears as a paravirtualized serial device on
a VM and can be configured to use various backends on the host. For this example each
Virtio-Serial endpoint on the host is configured as AF_UNIX file socket, supporting poll/select
and epoll for event notification. In this example each channel endpoint on the host is monitored
via epoll for EPOLLIN events. Each channel is specified as qemu-kvm arguments or as libvirt
XML for each VM, where each VM can have a number of channels up to a maximum of 64 per
VM, in this example each DPDK lcore on a VM has exclusive access to a channel.

To enable frequency changes from within a VM, a request via the librte_power interface is
forwarded via Virtio-Serial to the host, each request contains the vCPU and power com-
mand(scale up/down/min/max). The API for host and guest librte_power is consistent across
environments, with the selection of VM or Host Implementation determined at automatically at
runtime based on the environment.

Upon receiving a request, the host translates the vCPU to a pCPU via the libvirt API before
forwarding to the host librte_power.

Loop: for each epoll event

librte_power(VM)

Sequence

guest_channel(VM) channel_monitor(Host) channel_manager(Host) power_manager(Host)

process_request

get_pcpu_mask()

pcpu_mask

librte_power(Host)

scale_freq_up(pcpu_mask)

rte_power_freq_up()

guest_channel_send_msg()

statusstatus

rte_power_freq_up()

status

Fig. 32.2: VM request to scale frequency

32.2.1 Performance Considerations

While Haswell Microarchitecture allows for independent power control for each core, earlier
Microarchtectures do not offer such fine grained control. When deployed on pre-Haswell plat-

32.2. Overview 198

Sample Applications User Guide, Release 2.1.0

forms greater care must be taken in selecting which cores are assigned to a VM, for instance
a core will not scale down until its sibling is similarly scaled.

32.3 Configuration

32.3.1 BIOS

Enhanced Intel SpeedStep® Technology must be enabled in the platform BIOS if the
power management feature of DPDK is to be used. Otherwise, the sys file folder
/sys/devices/system/cpu/cpu0/cpufreq will not exist, and the CPU frequency-based power
management cannot be used. Consult the relevant BIOS documentation to determine how
these settings can be accessed.

32.3.2 Host Operating System

The Host OS must also have the apci_cpufreq module installed, in some cases the intel_pstate
driver may be the default Power Management environment. To enable acpi_cpufreq and dis-
able intel_pstate, add the following to the grub Linux command line:

intel_pstate=disable
Upon rebooting, load the acpi_cpufreq module:

modprobe acpi_cpufreq

32.3.3 Hypervisor Channel Configuration

Virtio-Serial channels are configured via libvirt XML:

<name>{vm_name}</name><controller type='virtio-serial' index='0'><address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/></controller><channel type='unix'><source mode='bind' path='/tmp/powermonitor/{vm_name}.{channel_num}'/><target type='virtio' name='virtio.serial.port.poweragent.{vm_channel_num}/><address type='virtio-serial' controller='0' bus='0' port='{N}'/></channel>
Where a single controller of type virtio-serial is created and up to 32 channels can be asso-
ciated with a single controller and multiple controllers can be specified. The convention is to
use the name of the VM in the host path {vm_name} and to increment {channel_num} for each
channel, likewise the port value {N} must be incremented for each channel.

Each channel on the host will appear in path, the directory /tmp/powermonitor/ must first be
created and given qemu permissions

mkdir /tmp/powermonitor/chown qemu:qemu /tmp/powermonitor
Note that files and directories within /tmp are generally removed upon rebooting the host and
the above steps may need to be carried out after each reboot.

32.3. Configuration 199

Sample Applications User Guide, Release 2.1.0

The serial device as it appears on a VM is configured with the target element attribute
name and must be in the form of virtio.serial.port.poweragent.{vm_channel_num}, where
vm_channel_num is typically the lcore channel to be used in DPDK VM applications.

Each channel on a VM will be present at /dev/virtio-
ports/virtio.serial.port.poweragent.{vm_channel_num}

32.4 Compiling and Running the Host Application

32.4.1 Compiling

1. export RTE_SDK=/path/to/rte_sdk

2. cd ${RTE_SDK}/examples/vm_power_manager

3. make

32.4.2 Running

The application does not have any specific command line options other than EAL:

./build/vm_power_mgr [EAL options]
The application requires exactly two cores to run, one core is dedicated to the CLI, while the
other is dedicated to the channel endpoint monitor, for example to run on cores 0 & 1 on a
system with 4 memory channels:

./build/vm_power_mgr -c 0x3 -n 4
After successful initialization the user is presented with VM Power Manager CLI:

vm_power>
Virtual Machines can now be added to the VM Power Manager:

vm_power> add_vm {vm_name}
When a {vm_name} is specified with the add_vm command a lookup is performed with libvirt
to ensure that the VM exists, {vm_name} is used as an unique identifier to associate channels
with a particular VM and for executing operations on a VM within the CLI. VMs do not have to
be running in order to add them.

A number of commands can be issued via the CLI in relation to VMs:

Remove a Virtual Machine identified by {vm_name} from the VM Power Manager.

rm_vm {vm_name}
Add communication channels for the specified VM, the virtio channels must be en-
abled in the VM configuration(qemu/libvirt) and the associated VM must be active.
{list} is a comma-separated list of channel numbers to add, using the keyword ‘all’
will attempt to add all channels for the VM:

add_channels {vm_name} {list}|all
Enable or disable the communication channels in {list}(comma-separated) for the
specified VM, alternatively list can be replaced with keyword ‘all’. Disabled channels
will still receive packets on the host, however the commands they specify will be
ignored. Set status to ‘enabled’ to begin processing requests again:

32.4. Compiling and Running the Host Application 200

Sample Applications User Guide, Release 2.1.0

set_channel_status {vm_name} {list}|all enabled|disabled
Print to the CLI the information on the specified VM, the information lists the number
of vCPUS, the pinning to pCPU(s) as a bit mask, along with any communication
channels associated with each VM, along with the status of each channel:

show_vm {vm_name}
Set the binding of Virtual CPU on VM with name {vm_name} to the Physical CPU
mask:

set_pcpu_mask {vm_name} {vcpu} {pcpu}
Set the binding of Virtual CPU on VM to the Physical CPU:

set_pcpu {vm_name} {vcpu} {pcpu}
Manual control and inspection can also be carried in relation CPU frequency scaling:

Get the current frequency for each core specified in the mask:

show_cpu_freq_mask {mask}
Set the current frequency for the cores specified in {core_mask} by scaling each
up/down/min/max:

set_cpu_freq {core_mask} up|down|min|max
Get the current frequency for the specified core:

show_cpu_freq {core_num}
Set the current frequency for the specified core by scaling up/down/min/max:

set_cpu_freq {core_num} up|down|min|max

32.5 Compiling and Running the Guest Applications

For compiling and running l3fwd-power, see Chapter 11 “L3 Forwarding with Power Manage-
ment Application”.

A guest CLI is also provided for validating the setup.

For both l3fwd-power and guest CLI, the channels for the VM must be monitored by the host
application using the add_channels command on the host.

32.5.1 Compiling

1. export RTE_SDK=/path/to/rte_sdk

2. cd ${RTE_SDK}/examples/vm_power_manager/guest_cli

3. make

32.5.2 Running

The application does not have any specific command line options other than EAL:

./build/vm_power_mgr [EAL options]

32.5. Compiling and Running the Guest Applications 201

Sample Applications User Guide, Release 2.1.0

The application for example purposes uses a channel for each lcore enabled, for example to
run on cores 0,1,2,3 on a system with 4 memory channels:

./build/guest_vm_power_mgr -c 0xf -n 4
After successful initialization the user is presented with VM Power Manager Guest CLI:

vm_power(guest)>
To change the frequency of a lcore, use the set_cpu_freq command. Where {core_num} is the
lcore and channel to change frequency by scaling up/down/min/max.

set_cpu_freq {core_num} up|down|min|max

32.5. Compiling and Running the Guest Applications 202

CHAPTER

THIRTYTHREE

TEP TERMINATION SAMPLE APPLICATION

The TEP (Tunnel End point) termination sample application simulates a VXLAN Tunnel End-
point (VTEP) termination in DPDK, which is used to demonstrate the offload and filtering ca-
pabilities of Intel® XL710 10/40 Gigabit Ethernet Controller for VXLAN packet. This sample
uses the basic virtio devices management mechanism from vhost example, and also uses the
us-vHost interface and tunnel filtering mechanism to direct a specified traffic to a specific VM.
In addition, this sample is also designed to show how tunneling protocols can be handled.

33.1 Background

With virtualization, overlay networks allow a network structure to be built or imposed across
physical nodes which is abstracted away from the actual underlining physical network connec-
tions. This allows network isolation, QOS, etc to be provided on a per client basis.

Host

VM
VNID 100

IP Network

VM VNID 101

Host

VM
VNID 100

VM VNID 101

Host

VMVNID 100

VM
VNID 101

Host

VMVNID 100

VMVNID 102

VNID 102
VM

TEP

TEP
TEP

TEP

Fig. 33.1: Overlay Networking.

In a typical setup, the network overlay tunnel is terminated at the Virtual/Tunnel End Point

203

Sample Applications User Guide, Release 2.1.0

(VEP/TEP). The TEP is normally located at the physical host level ideally in the software switch.
Due to processing constraints and the inevitable bottleneck that the switch becomes the ability
to offload overlay support features becomes an important requirement. Intel® XL710 10/40 G
Ethernet network card provides hardware filtering and offload capabilities to support overlay
networks implementations such as MAC in UDP and MAC in GRE.

33.2 Sample Code Overview

The DPDK TEP termination sample code demonstrates the offload and filtering capabilities of
Intel® XL710 10/40 Gigabit Ethernet Controller for VXLAN packet.

The sample code is based on vhost library. The vhost library is developed for user space
Ethernet switch to easily integrate with vhost functionality.

The sample will support the followings:

• Tunneling packet recognition.

• The port of UDP tunneling is configurable

• Directing incoming traffic to the correct queue based on the tunnel filter type. The sup-
ported filter type are listed below.

– Inner MAC and VLAN and tenant ID

– Inner MAC and tenant ID, and Outer MAC

– Inner MAC and tenant ID

The tenant ID will be assigned from a static internal table based on the us-vhost device
ID. Each device will receive a unique device ID. The inner MAC will be learned by the first
packet transmitted from a device.

• Decapsulation of RX VXLAN traffic. This is a software only operation.

• Encapsulation of TX VXLAN traffic. This is a software only operation.

• Inner IP and inner L4 checksum offload.

• TSO offload support for tunneling packet.

The following figure shows the framework of the TEP termination sample application based on
vhost-cuse.

33.3 Supported Distributions

The example in this section have been validated with the following distributions:

• Fedora* 18

• Fedora* 19

• Fedora* 20

33.2. Sample Code Overview 204

Sample Applications User Guide, Release 2.1.0

Userspace vhost Interface

EncapsulationDecapsulation

Inner IP/L4 checksum offload

UDP port configuration

Inner IP/L4csum verify

Tunnel Filter

Packet Type

DPDK Application

VXLAN Tunnel

NIC

WAN/LAN

TEP

VM-2 (VNID:200)VM-1 (VNID: 100)

vport-0 vport-1 vport-0 vport-1

Guest

TSO offload

Fig. 33.2: TEP termination Framework Overview

33.3. Supported Distributions 205

Sample Applications User Guide, Release 2.1.0

33.4 Prerequisites

Refer to the guide in section 27.4 in the vhost sample.

33.5 Compiling the Sample Code

1. Compile vhost lib:

To enable vhost, turn on vhost library in the configure file config/common_linuxapp.

CONFIG_RTE_LIBRTE_VHOST=n
vhost user is turned on by default in the configure file config/common_linuxapp. To enable
vhost cuse, disable vhost user.

CONFIG_RTE_LIBRTE_VHOST_USER=y
After vhost is enabled and the implementation is selected, build the vhost library.

2. Go to the examples directory:

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/tep_termination
3. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-native-linuxapp-gcc
See the DPDK Getting Started Guide for possible RTE_TARGET values.

4. Build the application:

cd ${RTE_SDK}make config ${RTE_TARGET}make install ${RTE_TARGET}cd ${RTE_SDK}/examples/tep_terminationmake
5. Go to the eventfd_link directory(vhost cuse required):

cd ${RTE_SDK}/lib/librte_vhost/eventfd_link
6. Build the eventfd_link kernel module(vhost cuse required):

make

33.6 Running the Sample Code

1. Install the cuse kernel module(vhost cuse required):

modprobe cuse
2. Go to the eventfd_link directory(vhost cuse required):

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/lib/librte_vhost/eventfd_link
3. Install the eventfd_link module(vhost cuse required):

insmod ./eventfd_link.ko
4. Go to the examples directory:

33.4. Prerequisites 206

Sample Applications User Guide, Release 2.1.0

export RTE_SDK=/path/to/rte_sdkcd ${RTE_SDK}/examples/tep_termination
5. Run the tep_termination sample code:

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge ---p 0x1 --dev-basename tep-termination --nb-devices 4--udp-port 4789 --filter-type 1
Note: Please note the huge-dir parameter instructs the DPDK to allocate its memory from the
2 MB page hugetlbfs.

33.6.1 Parameters

The same parameters with the vhost sample.

Refer to the guide in section 27.6.1 in the vhost sample for the meanings of ‘Basename’, ‘Stats’,
‘RX Retry’, ‘RX Retry Number’ and ‘RX Retry Delay Time’.

Number of Devices.

The nb-devices option specifies the number of virtIO device. The default value is 2.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge ----nb-devices 2
Tunneling UDP port.

The udp-port option is used to specify the destination UDP number for UDP tunneling packet.
The default value is 4789.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge ----nb-devices 2 --udp-port 4789
Filter Type.

The filter-type option is used to specify which filter type is used to filter UDP tunneling packet to
a specified queue. The default value is 1, which means the filter type of inner MAC and tenant
ID is used.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge ----nb-devices 2 --udp-port 4789 --filter-type 1
TX Checksum.

The tx-checksum option is used to enable or disable the inner header checksum offload. The
default value is 0, which means the checksum offload is disabled.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge ----nb-devices 2 --tx-checksum
TCP segment sise.

The tso-segsz option specifies the TCP segment size for TSO offload for tunneling packet. The
default value is 0, which means TSO offload is disabled.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge ----tx-checksum --tso-segsz 800
Decapsulation option.

The decap option is used to enable or disable decapsulation operation for received VXLAN
packet. The default value is 1.

33.6. Running the Sample Code 207

Sample Applications User Guide, Release 2.1.0

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge ----nb-devices 4 --udp-port 4789 --decap 1
Encapsulation option.

The encap option is used to enable or disable encapsulation operation for transmitted packet.
The default value is 1.

user@target:~$./build/app/tep_termination -c f -n 4 --huge-dir /mnt/huge ----nb-devices 4 --udp-port 4789 --encap 1

33.7 Running the Virtual Machine (QEMU)

Refer to the guide in section 27.7 in the vhost sample.

33.8 Running DPDK in the Virtual Machine

Refer to the guide in section 27.8 in the vHost sample.

33.9 Passing Traffic to the Virtual Machine Device

For a virtio-net device to receive traffic, the traffic’s Layer 2 header must include both the virtio-
net device’s MAC address. The DPDK sample code behaves in a similar manner to a learning
switch in that it learns the MAC address of the virtio-net devices from the first transmitted
packet. On learning the MAC address, the DPDK vhost sample code prints a message with
the MAC address and tenant ID virtio-net device. For example:

DATA: (0) MAC_ADDRESS cc:bb:bb:bb:bb:bb and VNI 1000 registered
The above message indicates that device 0 has been registered with MAC address
cc:bb:bb:bb:bb:bb and VNI 1000. Any packets received on the NIC with these values are
placed on the devices receive queue.

33.7. Running the Virtual Machine (QEMU) 208

CHAPTER

THIRTYFOUR

PROC_INFO APPLICATION

The proc_info application is a Data Plane Development Kit (DPDK) application that runs as a
DPDK secondary process and is capable of retrieving port statistics, resetting port statistics
and printing DPDK memory information. This application extends the original functionality that
was supported by dump_cfg.

34.1 Running the Application

The application has a number of command line options:

./$(RTE_TARGET)/app/proc_info -- -m | [-p PORTMASK] [--stats | --xstats |--stats-reset | --xstats-reset]

34.1.1 Parameters

-p PORTMASK: Hexadecimal bitmask of ports to configure.

–stats The stats parameter controls the printing of generic port statistics. If no port mask is
specified stats are printed for all DPDK ports.

–xstats The stats parameter controls the printing of extended port statistics. If no port mask is
specified xstats are printed for all DPDK ports.

–stats-reset The stats-reset parameter controls the resetting of generic port statistics. If no
port mask is specified, the generic stats are reset for all DPDK ports.

–xstats-reset The xstats-reset parameter controls the resetting of extended port statistics. If
no port mask is specified xstats are reset for all DPDK ports.

-m: Print DPDK memory information.

Figures

Fig. 3.1 Packet Flow

Fig. 10.1 Kernel NIC Application Packet Flow

Fig. 11.1 Performance Benchmark Setup (Basic Environment)

Fig. 11.2 Performance Benchmark Setup (Virtualized Environment)

Fig. 12.1 Performance Benchmark Setup (Basic Environment)

Fig. 12.2 Performance Benchmark Setup (Virtualized Environment)

Fig. 15.1 A typical IPv4 ACL rule

209

Sample Applications User Guide, Release 2.1.0

Fig. 15.2 Rules example

Fig. 18.1 Load Balancer Application Architecture

Fig. 19.1 Example Data Flow in a Symmetric Multi-process Application

Fig. 19.2 Example Data Flow in a Client-Server Symmetric Multi-process Application

Fig. 19.3 Master-slave Process Workflow

Fig. 19.4 Slave Process Recovery Process Flow

Fig. 21.1 QoS Scheduler Application Architecture

Fig. 22.1 Intel® QuickAssist Technology Application Block Diagram

Fig. 23.1 Pipeline Overview

Fig. 23.2 Ring-based Processing Pipeline Performance Setup

Fig. 23.3 Threads and Pipelines

Fig. 26.1 Packet Flow Through the VMDQ and DCB Sample Application

Fig. 27.1 System Architecture for Virtio-based Networking (virtio-net).

Fig. 27.2 Virtio with Linux

Fig. 27.3 Vhost-net Architectural Overview

Fig. 27.4 Packet Flow Through the vhost-net Sample Application

Fig. 27.5 Packet Flow on TX in DPDK-testpmd

Fig. 30.1 Test Pipeline Application

Fig. 31.1 Performance Benchmarking Setup (Basic Environment)

Fig. 31.2 Distributor Sample Application Layout

Fig. 32.1 Highlevel Solution

Fig. 32.2 VM request to scale frequency Fig. 33.1 Overlay Networking. Fig. 33.2 TEP termi-
nation Framework Overview

Tables

Table 20.1 Output Traffic Marking

Table 21.1 Entity Types

Table 30.1 Table Types

34.1. Running the Application 210

	Introduction
	Documentation Roadmap

	Command Line Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Exception Path Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Hello World Sample Application
	Compiling the Application
	Running the Application
	Explanation

	Basic Forwarding Sample Application
	Compiling the Application
	Running the Application
	Explanation

	RX/TX Callbacks Sample Application
	Compiling the Application
	Running the Application
	Explanation

	IP Fragmentation Sample Application
	Overview
	Building the Application
	Running the Application

	IPv4 Multicast Sample Application
	Overview
	Building the Application
	Running the Application
	Explanation

	IP Reassembly Sample Application
	Overview
	The Longest Prefix Match (LPM for IPv4, LPM6 for IPv6) table is used to store/lookup an outgoing port number, associated with that IPv4 address. Any unmatched packets are forwarded to the originating port.Compiling the Application
	Running the Application
	Explanation

	Kernel NIC Interface Sample Application
	Overview
	Compiling the Application
	Loading the Kernel Module
	Running the Application
	KNI Operations
	Explanation

	L2 Forwarding Sample Application (in Real and Virtualized Environments) with core load statistics.
	Overview
	Compiling the Application
	Running the Application
	Explanation

	L2 Forwarding Sample Application (in Real and Virtualized Environments)
	Overview
	Compiling the Application
	Running the Application
	Explanation

	L3 Forwarding Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	L3 Forwarding with Power Management Sample Application
	Introduction
	Overview
	Compiling the Application
	Running the Application
	Explanation

	L3 Forwarding with Access Control Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	L3 Forwarding in a Virtualization Environment Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Link Status Interrupt Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Load Balancer Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Multi-process Sample Application
	Example Applications

	QoS Metering Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	QoS Scheduler Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Intel® QuickAssist Technology Sample Application
	Overview
	Building the Application
	Running the Application

	Quota and Watermark Sample Application
	Overview
	Compiling the Application
	Running the Application
	Code Overview

	Timer Sample Application
	Compiling the Application
	Running the Application
	Explanation

	Packet Ordering Application
	Overview
	Compiling the Application
	Running the Application

	VMDQ and DCB Forwarding Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation

	Vhost Sample Application
	Background
	Sample Code Overview
	Supported Distributions
	Prerequisites
	Compiling the Sample Code
	Running the Sample Code
	Running the Virtual Machine (QEMU)
	Running DPDK in the Virtual Machine
	Passing Traffic to the Virtual Machine Device

	Netmap Compatibility Sample Application
	Introduction
	Available APIs
	Caveats
	Porting Netmap Applications
	Compiling the ``bridge'' Sample Application
	Running the ``bridge'' Sample Application

	Internet Protocol (IP) Pipeline Application
	Application overview
	Design goals
	Running the application
	Application stages
	Configuration file syntax
	Library of pipeline types
	Command Line Interface (CLI)

	Test Pipeline Application
	Overview
	Compiling the Application
	Running the Application

	Distributor Sample Application
	Overview
	Compiling the Application
	Running the Application
	Explanation
	Debug Logging Support
	Statistics
	Application Initialization

	VM Power Management Application
	Introduction
	Overview
	Configuration
	Compiling and Running the Host Application
	Compiling and Running the Guest Applications

	TEP termination Sample Application
	Background
	Sample Code Overview
	Supported Distributions
	Prerequisites
	Compiling the Sample Code
	Running the Sample Code
	Running the Virtual Machine (QEMU)
	Running DPDK in the Virtual Machine
	Passing Traffic to the Virtual Machine Device

	proc_info Application
	Running the Application

