
Network Interface Controller Drivers
Release 20.08.0

Aug 08, 2020

CONTENTS

1 Overview of Networking Drivers 1

2 Features Overview 4
2.1 Speed capabilities . 4
2.2 Link status . 4
2.3 Link status event . 4
2.4 Removal event . 5
2.5 Queue status event . 5
2.6 Rx interrupt . 5
2.7 Lock-free Tx queue . 5
2.8 Fast mbuf free . 5
2.9 Free Tx mbuf on demand . 6
2.10 Queue start/stop . 6
2.11 MTU update . 6
2.12 Jumbo frame . 6
2.13 Scattered Rx . 6
2.14 LRO . 7
2.15 TSO . 7
2.16 Promiscuous mode . 7
2.17 Allmulticast mode . 8
2.18 Unicast MAC filter . 8
2.19 Multicast MAC filter . 8
2.20 RSS hash . 8
2.21 Inner RSS . 8
2.22 RSS key update . 9
2.23 RSS reta update . 9
2.24 VMDq . 9
2.25 SR-IOV . 9
2.26 DCB . 9
2.27 VLAN filter . 10
2.28 Flow control . 10
2.29 Flow API . 10
2.30 Rate limitation . 10
2.31 Traffic mirroring . 10
2.32 Inline crypto . 11
2.33 Inline protocol . 11
2.34 CRC offload . 11
2.35 VLAN offload . 12
2.36 QinQ offload . 12

i

2.37 L3 checksum offload . 12
2.38 L4 checksum offload . 13
2.39 Timestamp offload . 13
2.40 MACsec offload . 13
2.41 Inner L3 checksum . 13
2.42 Inner L4 checksum . 14
2.43 Packet type parsing . 14
2.44 Timesync . 14
2.45 Rx descriptor status . 15
2.46 Tx descriptor status . 15
2.47 Basic stats . 15
2.48 Extended stats . 15
2.49 Stats per queue . 16
2.50 FW version . 16
2.51 EEPROM dump . 16
2.52 Module EEPROM dump . 16
2.53 Registers dump . 16
2.54 LED . 16
2.55 Multiprocess aware . 17
2.56 BSD nic_uio . 17
2.57 Linux UIO . 17
2.58 Linux VFIO . 17
2.59 Other kdrv . 17
2.60 ARMv7 . 17
2.61 ARMv8 . 17
2.62 Power8 . 17
2.63 x86-32 . 18
2.64 x86-64 . 18
2.65 Usage doc . 18
2.66 Design doc . 18
2.67 Perf doc . 18
2.68 Runtime Rx queue setup . 18
2.69 Runtime Tx queue setup . 18
2.70 Burst mode info . 19
2.71 Other dev ops not represented by a Feature . 19

3 Compiling and testing a PMD for a NIC 20
3.1 Driver Compilation . 20
3.2 Running testpmd in Linux . 20

4 AF_PACKET Poll Mode Driver 22
4.1 Options and inherent limitations . 22
4.2 Prerequisites . 23
4.3 Set up an af_packet interface . 23

5 AF_XDP Poll Mode Driver 24
5.1 Options . 24
5.2 Prerequisites . 24
5.3 Set up an af_xdp interface . 25
5.4 Limitations . 25

6 ARK Poll Mode Driver 26

ii

6.1 Overview . 26
6.2 Device Parameters . 27
6.3 Data Path Interface . 27
6.4 Configuration Information . 27
6.5 Building DPDK . 28
6.6 Supported ARK RTL PCIe Instances . 28
6.7 Supported Operating Systems . 28
6.8 Supported Features . 28
6.9 Unsupported Features . 28
6.10 Pre-Requisites . 29
6.11 Usage Example . 29

7 Aquantia Atlantic DPDK Driver 30
7.1 Supported features . 30
7.2 Experimental API features . 30
7.3 Configuration Information . 30

7.3.1 Application Programming Interface . 31
7.3.2 Limitations or Known issues . 31
7.3.3 Supported Chipsets and NICs . 31

8 AVP Poll Mode Driver 32
8.1 Features and Limitations of the AVP PMD . 32
8.2 Prerequisites . 33
8.3 Launching a VM with an AVP type network attachment 33

9 AXGBE Poll Mode Driver 34
9.1 Supported Features . 34
9.2 Configuration Information . 34
9.3 Building DPDK . 35
9.4 Prerequisites and Pre-conditions . 35
9.5 Usage Example . 35

10 BNX2X Poll Mode Driver 36
10.1 Supported Features . 36
10.2 Non-supported Features . 36
10.3 Co-existence considerations . 36
10.4 Supported QLogic NICs . 37
10.5 Prerequisites . 37
10.6 Pre-Installation Configuration . 37

10.6.1 Config File Options . 37
10.7 Driver compilation and testing . 37
10.8 Jumbo: Limitation . 38
10.9 SR-IOV: Prerequisites and sample Application Notes 38

11 BNXT Poll Mode Driver 40
11.1 CPU Support . 40
11.2 Kernel Dependency . 40
11.3 Running BNXT PMD . 41

11.3.1 Running on VF . 41
11.3.2 Running on PF . 42

11.4 Features . 43
11.4.1 Port Control . 43

iii

11.4.2 Packet Filtering . 44
11.4.3 Stateless Offloads . 45
11.4.4 VLAN Insert/Strip . 48
11.4.5 Time Synchronization . 49
11.4.6 Statistics Collection . 49
11.4.7 Generic Flow Offload . 50

11.5 Notes . 51
11.6 Virtual Function Port Representors . 51
11.7 Application Support . 52

11.7.1 Firmware . 52
11.7.2 Multiple Processes . 52
11.7.3 Runtime Queue Setup . 52
11.7.4 Descriptor Status . 52
11.7.5 Bonding . 53

11.8 Vector Processing . 53
11.9 Appendix . 54

11.9.1 Supported Chipsets and Adapters . 54

12 CXGBE Poll Mode Driver 56
12.1 Features . 56
12.2 Limitations . 56
12.3 Supported Chelsio T5 NICs . 57
12.4 Supported Chelsio T6 NICs . 57
12.5 Supported SR-IOV Chelsio NICs . 57
12.6 Prerequisites . 57
12.7 Pre-Installation Configuration . 57

12.7.1 Config File Options . 57
12.7.2 Runtime Options . 58

12.8 Driver compilation and testing . 61
12.9 Linux . 61

12.9.1 Linux Installation . 61
12.9.2 Running testpmd . 61
12.9.3 Configuring SR-IOV Virtual Functions . 62

12.10 FreeBSD . 64
12.10.1 FreeBSD Installation . 64
12.10.2 Running testpmd . 64

12.11 Sample Application Notes . 66
12.11.1 Enable/Disable Flow Control . 66
12.11.2 Jumbo Mode . 66

13 DPAA Poll Mode Driver 67
13.1 NXP DPAA (Data Path Acceleration Architecture - Gen 1) 67

13.1.1 DPAA Overview . 67
13.2 DPAA DPDK - Poll Mode Driver Overview . 68

13.2.1 DPAA Bus driver . 68
13.2.2 DPAA NIC Driver (PMD) . 69
13.2.3 DPAA Mempool Driver . 69

13.3 Whitelisting & Blacklisting . 69
13.4 Supported DPAA SoCs . 69
13.5 Prerequisites . 70
13.6 Pre-Installation Configuration . 70

13.6.1 Config File Options . 70

iv

13.6.2 Environment Variables . 70
13.7 Driver compilation and testing . 71
13.8 Limitations . 71

13.8.1 Platform Requirement . 71
13.8.2 Maximum packet length . 71
13.8.3 Multiprocess Support . 71

14 DPAA2 Poll Mode Driver 72
14.1 NXP DPAA2 (Data Path Acceleration Architecture Gen2) 72

14.1.1 DPAA2 Overview . 72
14.1.2 Overview of DPAA2 Objects . 73
14.1.3 DPAA2 Objects for an Ethernet Network Interface 74
14.1.4 Object Connections . 75
14.1.5 Interrupts . 76

14.2 DPAA2 DPDK - Poll Mode Driver Overview . 76
14.2.1 DPAA2 bus driver . 76
14.2.2 DPIO driver . 76
14.2.3 DPBP based Mempool driver . 77
14.2.4 DPAA2 NIC Driver . 77

14.3 Supported DPAA2 SoCs . 77
14.4 Prerequisites . 78
14.5 Pre-Installation Configuration . 78

14.5.1 Config File Options . 78
14.6 Driver compilation and testing . 78
14.7 Enabling logs . 79
14.8 Whitelisting & Blacklisting . 79
14.9 Limitations . 79

14.9.1 Platform Requirement . 79
14.9.2 Maximum packet length . 80
14.9.3 Other Limitations . 80

15 Driver for VM Emulated Devices 81
15.1 Validated Hypervisors . 81
15.2 Recommended Guest Operating System in Virtual Machine 81
15.3 Setting Up a KVM Virtual Machine . 81
15.4 Known Limitations of Emulated Devices . 83

16 ENA Poll Mode Driver 84
16.1 Overview . 84
16.2 Management Interface . 84
16.3 Data Path Interface . 85
16.4 Configuration information . 85
16.5 Building DPDK . 86
16.6 Supported ENA adapters . 86
16.7 Supported Operating Systems . 86
16.8 Supported features . 86
16.9 Prerequisites . 87
16.10 Usage example . 88

17 ENETC Poll Mode Driver 89
17.1 ENETC . 89

17.1.1 ENETC Overview . 89

v

17.1.2 ENETC Features . 89
17.1.3 NIC Driver (PMD) . 90
17.1.4 Supported ENETC SoCs . 90
17.1.5 Prerequisites . 90
17.1.6 Driver compilation and testing . 91

18 ENIC Poll Mode Driver 92
18.1 How to obtain ENIC PMD integrated DPDK . 92
18.2 Configuration information . 92
18.3 SR-IOV mode utilization . 93
18.4 Generic Flow API support . 95
18.5 Overlay Offload . 96
18.6 Ingress VLAN Rewrite . 97
18.7 Vectorized Rx Handler . 97
18.8 Limitations . 98
18.9 How to build the suite . 99
18.10 Supported Cisco VIC adapters . 99
18.11 Supported Operating Systems . 99
18.12 Supported features . 99
18.13 Known bugs and unsupported features in this release 100
18.14 Prerequisites . 100
18.15 Additional Reference . 101
18.16 Contact Information . 101

19 FM10K Poll Mode Driver 102
19.1 FTAG Based Forwarding of FM10K . 102
19.2 Vector PMD for FM10K . 102

19.2.1 RX Constraints . 102
19.2.2 TX Constraint . 103

19.3 Limitations . 103
19.3.1 Switch manager . 103
19.3.2 Support for Switch Restart . 104
19.3.3 CRC stripping . 104
19.3.4 Maximum packet length . 104
19.3.5 Statistic Polling Frequency . 104
19.3.6 Interrupt mode . 104

20 HINIC Poll Mode Driver 105
20.1 Features . 105
20.2 Prerequisites . 106
20.3 Pre-Installation Configuration . 106

20.3.1 Config File Options . 106
20.4 Driver compilation and testing . 106
20.5 Limitations or Known issues . 106

21 HNS3 Poll Mode Driver 107
21.1 Features . 107
21.2 Prerequisites . 108
21.3 Pre-Installation Configuration . 108

21.3.1 Config File Options . 108
21.4 Driver compilation and testing . 108
21.5 Limitations or Known issues . 108

vi

22 I40E Poll Mode Driver 109
22.1 Features . 109
22.2 Prerequisites . 110
22.3 Recommended Matching List . 110
22.4 Pre-Installation Configuration . 111

22.4.1 Config File Options . 111
22.4.2 Runtime Config Options . 112
22.4.3 Vector RX Pre-conditions . 113

22.5 Driver compilation and testing . 113
22.6 SR-IOV: Prerequisites and sample Application Notes 113
22.7 Sample Application Notes . 114

22.7.1 Vlan filter . 114
22.7.2 Flow Director . 114
22.7.3 Floating VEB . 115
22.7.4 Dynamic Device Personalization (DDP) . 116
22.7.5 Input set configuration . 117
22.7.6 Queue region configuration . 117
22.7.7 Generic flow API . 117

22.8 Limitations or Known issues . 118
22.8.1 MPLS packet classification . 118
22.8.2 16 Byte RX Descriptor setting on DPDK VF 118
22.8.3 Receive packets with Ethertype 0x88A8 . 118
22.8.4 Incorrect Rx statistics when packet is oversize 118
22.8.5 VF & TC max bandwidth setting . 118
22.8.6 TC TX scheduling mode setting . 119
22.8.7 VF performance is impacted by PCI extended tag setting 119
22.8.8 Vlan strip of VF . 119
22.8.9 DCB function . 119
22.8.10 Global configuration warning . 119
22.8.11 Cloud Filter . 120

22.9 High Performance of Small Packets on 40GbE NIC . 120
22.9.1 Use 16 Bytes RX Descriptor Size . 120
22.9.2 Input set requirement of each pctype for FDIR 120

22.10 Example of getting best performance with l3fwd example 120
22.10.1 Tx bytes affected by the link status change . 121

23 ICE Poll Mode Driver 123
23.1 Prerequisites . 123
23.2 Pre-Installation Configuration . 123

23.2.1 Config File Options . 123
23.2.2 Runtime Config Options . 123

23.3 Driver compilation and testing . 126
23.4 Features . 126

23.4.1 Vector PMD . 126
23.4.2 Malicious driver detection (MDD) . 126
23.4.3 Device Config Function (DCF) . 126

23.5 Sample Application Notes . 128
23.5.1 Vlan filter . 128

23.6 Limitations or Known issues . 128
23.6.1 limitation . 128

24 IGB Poll Mode Driver 129

vii

24.1 Features . 129
24.2 Limitations or Known issues . 129
24.3 Supported Chipsets and NICs . 129

25 IGC Poll Mode Driver 130
25.1 Config File Options . 130

25.1.1 Driver compilation and testing . 130
25.1.2 Supported Chipsets and NICs . 130
25.1.3 Sample Application Notes . 130

25.2 Vlan filter . 130
25.3 Flow Director . 131

26 IONIC Driver 132
26.1 Identifying the Adapter . 132
26.2 Pre-Installation Configuration . 132
26.3 Building DPDK . 132

27 IPN3KE Poll Mode Driver 133
27.1 Prerequisites . 133
27.2 Pre-Installation Configuration . 133

27.2.1 Config File Options . 133
27.2.2 Runtime Config Options . 133

27.3 Driver compilation and testing . 134
27.4 Sample Application Notes . 134

27.4.1 Packet TX/RX with FPGA Pass-through image 134
27.4.2 HQoS and flow acceleration . 134

27.5 Limitations or Known issues . 134
27.5.1 19.05 limitation . 134

28 IXGBE Driver 135
28.1 Vector PMD for IXGBE . 135

28.1.1 RX Constraints . 135
28.1.2 TX Constraint . 137

28.2 Application Programming Interface . 137
28.3 Sample Application Notes . 137

28.3.1 l3fwd . 137
28.3.2 load_balancer . 137

28.4 Limitations or Known issues . 137
28.4.1 Malicious Driver Detection not Supported . 137
28.4.2 Statistics . 138
28.4.3 MTU setting . 138
28.4.4 VF MAC address setting . 138
28.4.5 X550 does not support legacy interrupt mode 138

28.5 Inline crypto processing support . 139
28.6 Virtual Function Port Representors . 139
28.7 Supported Chipsets and NICs . 139

29 Intel Virtual Function Driver 141
29.1 SR-IOV Mode Utilization in a DPDK Environment . 141

29.1.1 Physical and Virtual Function Infrastructure 143
29.1.2 Validated Hypervisors . 147
29.1.3 Expected Guest Operating System in Virtual Machine 147

viii

29.2 Setting Up a KVM Virtual Machine Monitor . 147
29.3 DPDK SR-IOV PMD PF/VF Driver Usage Model . 151

29.3.1 Fast Host-based Packet Processing . 151
29.4 SR-IOV (PF/VF) Approach for Inter-VM Communication 151

30 KNI Poll Mode Driver 154
30.1 Usage . 154
30.2 Default interface configuration . 154
30.3 PMD arguments . 155
30.4 PMD log messages . 155
30.5 PMD testing . 155

31 LiquidIO VF Poll Mode Driver 157
31.1 Supported LiquidIO Adapters . 157
31.2 Pre-Installation Configuration . 157
31.3 SR-IOV: Prerequisites and Sample Application Notes 158
31.4 Limitations . 159

31.4.1 VF MTU . 159
31.4.2 VLAN offload . 159
31.4.3 Ring size . 159
31.4.4 CRC stripping . 159

32 Memif Poll Mode Driver 160
32.1 Shared memory . 161
32.2 Zero-copy slave . 162

32.2.1 Example: testpmd . 163
32.2.2 Example: testpmd and VPP . 163
32.2.3 Example: testpmd memif loopback . 164

33 MLX4 poll mode driver library 165
33.1 Implementation details . 165
33.2 Configuration . 166

33.2.1 Compilation options . 166
33.2.2 Environment variables . 166
33.2.3 Run-time configuration . 166
33.2.4 Kernel module parameters . 167

33.3 Limitations . 167
33.4 Prerequisites . 168

33.4.1 Current RDMA core package and Linux kernel (recommended) 168
33.4.2 Mellanox OFED as a fallback . 169

33.5 Quick Start Guide . 169
33.6 Performance tuning . 170
33.7 Usage example . 171

34 MLX5 poll mode driver 173
34.1 Design . 173
34.2 Features . 174
34.3 Limitations . 175
34.4 Statistics . 178
34.5 Configuration . 179

34.5.1 Compilation options . 179
34.5.2 Environment variables . 179

ix

34.5.3 Run-time configuration . 180
34.5.4 Firmware configuration . 188

34.6 Prerequisites . 189
34.6.1 Installation . 190

34.7 Supported NICs . 191
34.8 Quick Start Guide on OFED/EN . 192
34.9 Enable switchdev mode . 193
34.10 Performance tuning . 193
34.11 Supported hardware offloads . 195
34.12 Notes for metadata . 197
34.13 Notes for rte_flow . 197
34.14 Notes for testpmd . 197
34.15 Usage example . 197
34.16 How to dump flows . 199

35 MVNETA Poll Mode Driver 200
35.1 Features . 200
35.2 Limitations . 201
35.3 Prerequisites . 201
35.4 Pre-Installation Configuration . 201

35.4.1 Config File Options . 201
35.4.2 Runtime options . 201

35.5 Building DPDK . 202
35.6 Usage Example . 202

36 MVPP2 Poll Mode Driver 203
36.1 Features . 203
36.2 Limitations . 204
36.3 Prerequisites . 204
36.4 Config File Options . 205
36.5 Building DPDK . 205
36.6 Usage Example . 205
36.7 Extended stats . 206
36.8 QoS Configuration . 206

36.8.1 Configuration syntax . 206
36.9 Flow API . 209

36.9.1 Supported flow actions . 209
36.9.2 Supported flow items . 209
36.9.3 Classifier match engine . 210
36.9.4 Flow rules usage example . 210
36.9.5 Limitations . 211

36.10 Traffic metering and policing . 211
36.10.1 Limitations . 212
36.10.2 Usage example . 212

36.11 Traffic Management API . 212
36.11.1 Limitations . 213
36.11.2 Usage example . 213

37 Netvsc poll mode driver 216
37.1 Features and Limitations of Hyper-V PMD . 216
37.2 Installation . 216
37.3 Prerequisites . 217

x

37.4 Netvsc PMD arguments . 217

38 NFB poll mode driver library 218
38.1 Prerequisites . 218

38.1.1 Versions of the packages . 218
38.2 Configuration . 219
38.3 Using the NFB PMD . 219
38.4 NFB card architecture . 219
38.5 Limitations . 219
38.6 Example of usage . 220

39 NFP poll mode driver library 221
39.1 Dependencies . 221
39.2 Building the software . 221
39.3 Driver compilation and testing . 222
39.4 Using the PF . 222
39.5 PF multiport support . 222
39.6 PF multiprocess support . 223
39.7 System configuration . 223

40 NULL Poll Mode Driver 224
40.1 Usage . 224
40.2 Runtime Config Options . 224

41 OCTEON TX Poll Mode driver 225
41.1 Features . 225
41.2 Supported OCTEON TX SoCs . 225
41.3 Unsupported features . 225
41.4 Prerequisites . 226
41.5 Pre-Installation Configuration . 226

41.5.1 Config File Options . 226
41.5.2 Driver compilation and testing . 226

41.6 Initialization . 227
41.6.1 Device arguments . 227
41.6.2 Dependency . 227

41.7 Limitations . 227
41.7.1 octeontx_fpavf external mempool handler dependency 227
41.7.2 CRC stripping . 228
41.7.3 Maximum packet length . 228
41.7.4 Maximum mempool size . 228

42 OCTEON TX2 Poll Mode driver 229
42.1 Features . 229
42.2 Prerequisites . 230
42.3 Compile time Config Options . 230
42.4 Driver compilation and testing . 230
42.5 Runtime Config Options . 231
42.6 Traffic Management API . 233
42.7 Limitations . 233

42.7.1 mempool_octeontx2 external mempool handler dependency 233
42.7.2 CRC stripping . 233
42.7.3 Multicast MAC filtering . 233

xi

42.7.4 SDP interface support . 233
42.7.5 Inline Protocol Processing . 234

42.8 Debugging Options . 234
42.9 RTE Flow Support . 234

43 PFE Poll Mode Driver 236
43.1 PFE . 236

43.1.1 PFE Overview . 236
43.1.2 PFE Features . 237
43.1.3 Supported PFE SoCs . 237
43.1.4 Prerequisites . 238
43.1.5 Driver compilation and testing . 238
43.1.6 Limitations . 238

44 QEDE Poll Mode Driver 239
44.1 Supported Features . 239
44.2 Non-supported Features . 240
44.3 Co-existence considerations . 240
44.4 Supported QLogic Adapters . 240
44.5 Prerequisites . 240

44.5.1 Performance note . 241
44.5.2 Config File Options . 241
44.5.3 Config notes . 241

44.6 Driver compilation and testing . 241
44.7 RTE Flow Support . 242
44.8 SR-IOV: Prerequisites and Sample Application Notes 242

45 Solarflare libefx-based Poll Mode Driver 245
45.1 Features . 245
45.2 Non-supported Features . 246
45.3 Limitations . 246

45.3.1 Equal stride super-buffer mode . 246
45.4 Tunnels support . 246
45.5 Flow API support . 247

45.5.1 Ethernet destination individual/group match 248
45.5.2 Exceptions to flow rules . 248

45.6 Supported NICs . 248
45.7 Prerequisites . 249
45.8 Pre-Installation Configuration . 249

45.8.1 Config File Options . 249
45.8.2 Per-Device Parameters . 249
45.8.3 Dynamic Logging Parameters . 250

46 Soft NIC Poll Mode Driver 252
46.1 Flow . 252
46.2 Supported Operating Systems . 253
46.3 Build options . 253
46.4 Soft NIC PMD arguments . 253
46.5 Soft NIC testing . 254
46.6 Soft NIC Firmware . 255
46.7 QoS API Support: . 256
46.8 Flow API support: . 256

xii

46.8.1 Example: . 257

47 SZEDATA2 poll mode driver library 259
47.1 Prerequisites . 259

47.1.1 Versions of the packages . 260
47.2 Configuration . 260
47.3 Using the SZEDATA2 PMD . 260
47.4 NFB card architecture . 260
47.5 Limitations . 260
47.6 Example of usage . 261

48 Tun|Tap Poll Mode Driver 262
48.1 Flow API support . 263

48.1.1 Examples of testpmd flow rules . 264
48.2 Multi-process sharing . 264
48.3 Example . 264
48.4 RSS specifics . 265
48.5 Systems supporting flow API . 266

49 ThunderX NICVF Poll Mode Driver 267
49.1 Features . 267
49.2 Supported ThunderX SoCs . 267
49.3 Prerequisites . 268
49.4 Pre-Installation Configuration . 268

49.4.1 Config File Options . 268
49.5 Driver compilation and testing . 268
49.6 Linux . 268

49.6.1 SR-IOV: Prerequisites and sample Application Notes 268
49.6.2 Multiple Queue Set per DPDK port configuration 270
49.6.3 LBK HW Access . 271
49.6.4 Example device binding . 271
49.6.5 Thunder-nic VF’s . 272

49.7 Debugging Options . 273
49.8 Module params . 273

49.8.1 skip_data_bytes . 273
49.9 Limitations . 273

49.9.1 CRC stripping . 273
49.9.2 Maximum packet length . 273
49.9.3 Maximum packet segments . 274
49.9.4 skip_data_bytes . 274

50 VDEV_NETVSC driver 275
50.1 Implementation details . 275
50.2 Build options . 276
50.3 Run-time parameters . 276

51 Poll Mode Driver for Emulated Virtio NIC 277
51.1 Virtio Implementation in DPDK . 277
51.2 Features and Limitations of virtio PMD . 277
51.3 Prerequisites . 278
51.4 Virtio with kni vhost Back End . 278
51.5 Virtio with qemu virtio Back End . 280

xiii

51.6 Virtio PMD Rx/Tx Callbacks . 282
51.7 Interrupt mode . 283

51.7.1 Prerequisites for Rx interrupts . 283
51.7.2 Example . 283

51.8 Virtio PMD arguments . 284
51.9 Virtio paths Selection and Usage . 285

51.9.1 Virtio paths Selection . 285
51.9.2 Rx/Tx callbacks of each Virtio path . 286
51.9.3 Virtio paths Support Status from Release to Release 286
51.9.4 QEMU Support Status . 287
51.9.5 How to Debug . 287

52 Poll Mode Driver that wraps vhost library 288
52.1 Vhost Implementation in DPDK . 288
52.2 Features and Limitations of vhost PMD . 288
52.3 Vhost PMD arguments . 288
52.4 Vhost PMD event handling . 289
52.5 Vhost PMD with testpmd application . 289

53 Poll Mode Driver for Paravirtual VMXNET3 NIC 290
53.1 VMXNET3 Implementation in the DPDK . 290
53.2 Features and Limitations of VMXNET3 PMD . 291
53.3 Prerequisites . 291
53.4 VMXNET3 with a Native NIC Connected to a vSwitch 292
53.5 VMXNET3 Chaining VMs Connected to a vSwitch 293

54 Libpcap and Ring Based Poll Mode Drivers 295
54.1 Using the Drivers from the EAL Command Line . 295

54.1.1 Libpcap-based PMD . 295
54.1.2 Rings-based PMD . 298
54.1.3 Using the Poll Mode Driver from an Application 299

55 Fail-safe poll mode driver library 301
55.1 Features . 301
55.2 Compilation option . 301
55.3 Using the Fail-safe PMD from the EAL command line 301

55.3.1 Fail-safe command line parameters . 302
55.3.2 Usage example . 302

55.4 Using the Fail-safe PMD from an application . 303
55.5 Plug-in feature . 303
55.6 Plug-out feature . 304
55.7 Fail-safe glossary . 304

xiv

CHAPTER

ONE

OVERVIEW OF NETWORKING DRIVERS

The networking drivers may be classified in two categories:

• physical for real devices

• virtual for emulated devices

Some physical devices may be shaped through a virtual layer as for SR-IOV. The interface seen in the
virtual environment is a VF (Virtual Function).

The ethdev layer exposes an API to use the networking functions of these devices. The bottom half part
of ethdev is implemented by the drivers. Thus some features may not be implemented.

There are more differences between drivers regarding some internal properties, portability or even doc-
umentation availability. Most of these differences are summarized below.

More details about features can be found in Features Overview.

Table 1.1: Features availability in networking drivers

Feature a f _ x d p a f p a c k e t a r k a t l a n t i c a v p a x g b e b n x 2 x b n x t c x g b e c x g b e v f d p a a d p a a 2 e 1 0 0 0 e n a e n e t c e n i c f a i l s a f e f m 1 0 k f m 1 0 k v f h i n i c h n s 3 h n s 3 v f i 4 0 e i 4 0 e v f i a v f i c e i c e _ d c f i g b i g b v f i g c i o n i c i p n 3 k e i x g b e i x g b e v f l i q u i d i o m e m i f m l x 4 m l x 5 m v n e t a m v p p 2 n e t v s c n f b n f p o c t e o n t x o c t e o n t x 2 o c t e o n t x 2 . v e c o c t e o n t x 2 v f p c a p p f e q e d e q e d e v f s f c _ e f x s z e d a t a 2 t a p t h u n d e r x v h o s t v i r t i o v m x n e t 3
Speed capabilities Y Y Y P Y Y Y Y Y P Y P P Y Y Y Y P Y Y Y Y Y P Y Y Y P P Y Y Y Y Y Y Y Y P P Y P P
Link status Y
Link status event Y
Removal event Y Y
Queue status event Y
Rx interrupt Y
Lock-free Tx queue Y Y Y Y
Fast mbuf free Y P P P Y Y Y Y
Free Tx mbuf on demand Y Y Y Y Y Y
Queue start/stop Y P Y Y Y Y Y Y Y Y
Runtime Rx queue setup Y Y Y Y Y Y Y
Runtime Tx queue setup Y Y Y Y Y Y Y
Burst mode info Y Y Y Y Y Y Y Y Y Y
MTU update Y
Jumbo frame Y
Scattered Rx Y P
LRO Y Y Y Y Y Y Y Y Y Y Y
TSO Y
Promiscuous mode Y
Allmulticast mode Y
Unicast MAC filter Y

Continued on next page

1

Network Interface Controller Drivers, Release 20.08.0

Table 1.1 – continued from previous page
Feature a f _ x d p a f p a c k e t a r k a t l a n t i c a v p a x g b e b n x 2 x b n x t c x g b e c x g b e v f d p a a d p a a 2 e 1 0 0 0 e n a e n e t c e n i c f a i l s a f e f m 1 0 k f m 1 0 k v f h i n i c h n s 3 h n s 3 v f i 4 0 e i 4 0 e v f i a v f i c e i c e _ d c f i g b i g b v f i g c i o n i c i p n 3 k e i x g b e i x g b e v f l i q u i d i o m e m i f m l x 4 m l x 5 m v n e t a m v p p 2 n e t v s c n f b n f p o c t e o n t x o c t e o n t x 2 o c t e o n t x 2 . v e c o c t e o n t x 2 v f p c a p p f e q e d e q e d e v f s f c _ e f x s z e d a t a 2 t a p t h u n d e r x v h o s t v i r t i o v m x n e t 3
Multicast MAC filter Y
RSS hash Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y P Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
RSS key update Y
RSS reta update Y
Inner RSS Y Y Y Y Y Y
VMDq Y Y Y Y Y Y
SR-IOV Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
DCB Y Y Y Y Y
VLAN filter Y
Flow control Y
Flow API Y Y Y Y Y Y Y Y Y Y Y Y Y P Y Y Y Y Y Y Y Y Y Y
Rate limitation Y Y Y Y
Traffic mirroring Y Y Y
Inline crypto Y Y
Inline protocol Y Y
CRC offload Y P P Y Y Y Y Y Y Y Y Y
VLAN offload Y P P P Y Y P Y Y Y Y Y P P Y
QinQ offload Y P P P Y Y Y P P Y Y Y
L3 checksum offload Y Y Y Y Y Y Y Y Y P Y Y Y Y Y Y P P P P P Y Y Y Y Y P P Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
L4 checksum offload Y Y Y Y Y Y Y Y Y P Y Y Y Y Y Y P P P P P Y Y Y Y Y P P Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Timestamp offload Y Y Y
MACsec offload Y P
Inner L3 checksum Y Y Y Y Y P P P Y P P Y Y Y Y Y Y Y Y Y
Inner L4 checksum Y Y Y Y Y P P P Y P P Y Y Y Y Y Y Y Y Y
Packet type parsing Y
Timesync Y Y Y Y Y Y Y
Rx descriptor status Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Tx descriptor status Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Basic stats Y
Extended stats Y P Y
Stats per queue Y
FW version Y
EEPROM dump Y Y Y Y Y
Module EEPROM dump Y Y Y Y Y Y Y Y Y
Registers dump Y Y Y Y Y Y Y Y Y Y Y
LED Y Y
Multiprocess aware Y
BSD nic_uio Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Linux UIO Y
Linux VFIO Y
Other kdrv Y Y Y Y Y Y
ARMv7 Y Y Y Y Y
ARMv8 Y
Power8 Y Y Y Y Y Y Y
x86-32 Y
x86-64 Y
Usage doc Y

Continued on next page

2

Network Interface Controller Drivers, Release 20.08.0

Table 1.1 – continued from previous page
Feature a f _ x d p a f p a c k e t a r k a t l a n t i c a v p a x g b e b n x 2 x b n x t c x g b e c x g b e v f d p a a d p a a 2 e 1 0 0 0 e n a e n e t c e n i c f a i l s a f e f m 1 0 k f m 1 0 k v f h i n i c h n s 3 h n s 3 v f i 4 0 e i 4 0 e v f i a v f i c e i c e _ d c f i g b i g b v f i g c i o n i c i p n 3 k e i x g b e i x g b e v f l i q u i d i o m e m i f m l x 4 m l x 5 m v n e t a m v p p 2 n e t v s c n f b n f p o c t e o n t x o c t e o n t x 2 o c t e o n t x 2 . v e c o c t e o n t x 2 v f p c a p p f e q e d e q e d e v f s f c _ e f x s z e d a t a 2 t a p t h u n d e r x v h o s t v i r t i o v m x n e t 3
Design doc Y
Perf doc

Note: Features marked with “P” are partially supported. Refer to the appropriate NIC guide in the
following sections for details.

3

CHAPTER

TWO

FEATURES OVERVIEW

This section explains the supported features that are listed in the Overview of Networking Drivers.

As a guide to implementers it also shows the structs where the features are defined and the APIs that can
be use to get/set the values.

Following tags used for feature details, these are from driver point of view:

[uses] : Driver uses some kind of input from the application.

[implements] : Driver implements a functionality.

[provides] : Driver provides some kind of data to the application. It is possible to provide data by
implementing some function, but “provides” is used for cases where provided data can’t be represented
simply by a function.

[related] : Related API with that feature.

2.1 Speed capabilities

Supports getting the speed capabilities that the current device is capable of.

• [provides] rte_eth_dev_info: speed_capa:ETH_LINK_SPEED_*.

• [related] API: rte_eth_dev_info_get().

2.2 Link status

Supports getting the link speed, duplex mode and link state (up/down).

• [implements] eth_dev_ops: link_update.

• [implements] rte_eth_dev_data: dev_link.

• [related] API: rte_eth_link_get(), rte_eth_link_get_nowait().

2.3 Link status event

Supports Link Status Change interrupts.

• [uses] user config: dev_conf.intr_conf.lsc.

• [uses] rte_eth_dev_data: dev_flags:RTE_ETH_DEV_INTR_LSC.

4

Network Interface Controller Drivers, Release 20.08.0

• [uses] rte_eth_event_type: RTE_ETH_EVENT_INTR_LSC.

• [implements] rte_eth_dev_data: dev_link.

• [provides] rte_pci_driver.drv_flags: RTE_PCI_DRV_INTR_LSC.

• [related] API: rte_eth_link_get(), rte_eth_link_get_nowait().

2.4 Removal event

Supports device removal interrupts.

• [uses] user config: dev_conf.intr_conf.rmv.

• [uses] rte_eth_dev_data: dev_flags:RTE_ETH_DEV_INTR_RMV.

• [uses] rte_eth_event_type: RTE_ETH_EVENT_INTR_RMV.

• [provides] rte_pci_driver.drv_flags: RTE_PCI_DRV_INTR_RMV.

2.5 Queue status event

Supports queue enable/disable events.

• [uses] rte_eth_event_type: RTE_ETH_EVENT_QUEUE_STATE.

2.6 Rx interrupt

Supports Rx interrupts.

• [uses] user config: dev_conf.intr_conf.rxq.

• [implements] eth_dev_ops: rx_queue_intr_enable, rx_queue_intr_disable.

• [related] API: rte_eth_dev_rx_intr_enable(), rte_eth_dev_rx_intr_disable().

2.7 Lock-free Tx queue

If a PMD advertises DEV_TX_OFFLOAD_MT_LOCKFREE capable, multiple threads can invoke
rte_eth_tx_burst() concurrently on the same Tx queue without SW lock.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_MT_LOCKFREE.

• [provides] rte_eth_dev_info: tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_MT_LOCKFREE.

• [related] API: rte_eth_tx_burst().

2.8 Fast mbuf free

Supports optimization for fast release of mbufs following successful Tx. Requires that per queue, all
mbufs come from the same mempool and has refcnt = 1.

2.4. Removal event 5

Network Interface Controller Drivers, Release 20.08.0

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_MBUF_FAST_FREE.

• [provides] rte_eth_dev_info: tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_MBUF_FAST_FREE.

2.9 Free Tx mbuf on demand

Supports freeing consumed buffers on a Tx ring.

• [implements] eth_dev_ops: tx_done_cleanup.

• [related] API: rte_eth_tx_done_cleanup().

2.10 Queue start/stop

Supports starting/stopping a specific Rx/Tx queue of a port.

• [implements] eth_dev_ops: rx_queue_start, rx_queue_stop, tx_queue_start,
tx_queue_stop.

• [related] API: rte_eth_dev_rx_queue_start(), rte_eth_dev_rx_queue_stop(),
rte_eth_dev_tx_queue_start(), rte_eth_dev_tx_queue_stop().

2.11 MTU update

Supports updating port MTU.

• [implements] eth_dev_ops: mtu_set.

• [implements] rte_eth_dev_data: mtu.

• [provides] rte_eth_dev_info: max_rx_pktlen.

• [related] API: rte_eth_dev_set_mtu(), rte_eth_dev_get_mtu().

2.12 Jumbo frame

Supports Rx jumbo frames.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_JUMBO_FRAME.
dev_conf.rxmode.max_rx_pkt_len.

• [related] rte_eth_dev_info: max_rx_pktlen.

• [related] API: rte_eth_dev_set_mtu().

2.13 Scattered Rx

Supports receiving segmented mbufs.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_SCATTER.

• [implements] datapath: Scattered Rx function.

2.9. Free Tx mbuf on demand 6

Network Interface Controller Drivers, Release 20.08.0

• [implements] rte_eth_dev_data: scattered_rx.

• [provides] eth_dev_ops: rxq_info_get:scattered_rx.

• [related] eth_dev_ops: rx_pkt_burst.

2.14 LRO

Supports Large Receive Offload.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_TCP_LRO.
dev_conf.rxmode.max_lro_pkt_size.

• [implements] datapath: LRO functionality.

• [implements] rte_eth_dev_data: lro.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_LRO, mbuf.tso_segsz.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_TCP_LRO.

• [provides] rte_eth_dev_info: max_lro_pkt_size.

2.15 TSO

Supports TCP Segmentation Offloading.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_TCP_TSO.

• [uses] rte_eth_desc_lim: nb_seg_max, nb_mtu_seg_max.

• [uses] mbuf: mbuf.ol_flags: PKT_TX_TCP_SEG, PKT_TX_IPV4, PKT_TX_IPV6,
PKT_TX_IP_CKSUM.

• [uses] mbuf: mbuf.tso_segsz, mbuf.l2_len, mbuf.l3_len, mbuf.l4_len.

• [implements] datapath: TSO functionality.

• [provides] rte_eth_dev_info: tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_TCP_TSO,DEV_TX_OFFLOAD_UDP_TSO.

2.16 Promiscuous mode

Supports enabling/disabling promiscuous mode for a port.

• [implements] eth_dev_ops: promiscuous_enable, promiscuous_disable.

• [implements] rte_eth_dev_data: promiscuous.

• [related] API: rte_eth_promiscuous_enable(), rte_eth_promiscuous_disable(),
rte_eth_promiscuous_get().

2.14. LRO 7

Network Interface Controller Drivers, Release 20.08.0

2.17 Allmulticast mode

Supports enabling/disabling receiving multicast frames.

• [implements] eth_dev_ops: allmulticast_enable, allmulticast_disable.

• [implements] rte_eth_dev_data: all_multicast.

• [related] API: rte_eth_allmulticast_enable(), rte_eth_allmulticast_disable(),
rte_eth_allmulticast_get().

2.18 Unicast MAC filter

Supports adding MAC addresses to enable whitelist filtering to accept packets.

• [implements] eth_dev_ops: mac_addr_set, mac_addr_add, mac_addr_remove.

• [implements] rte_eth_dev_data: mac_addrs.

• [related] API: rte_eth_dev_default_mac_addr_set(),
rte_eth_dev_mac_addr_add(), rte_eth_dev_mac_addr_remove(),
rte_eth_macaddr_get().

2.19 Multicast MAC filter

Supports setting multicast addresses to filter.

• [implements] eth_dev_ops: set_mc_addr_list.

• [related] API: rte_eth_dev_set_mc_addr_list().

2.20 RSS hash

Supports RSS hashing on RX.

• [uses] user config: dev_conf.rxmode.mq_mode = ETH_MQ_RX_RSS_FLAG.

• [uses] user config: dev_conf.rx_adv_conf.rss_conf.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_RSS_HASH.

• [provides] rte_eth_dev_info: flow_type_rss_offloads.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_RSS_HASH, mbuf.rss.

2.21 Inner RSS

Supports RX RSS hashing on Inner headers.

• [uses] rte_flow_action_rss: level.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_RSS_HASH.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_RSS_HASH, mbuf.rss.

2.17. Allmulticast mode 8

Network Interface Controller Drivers, Release 20.08.0

2.22 RSS key update

Supports configuration of Receive Side Scaling (RSS) hash computation. Updating Receive Side Scaling
(RSS) hash key.

• [implements] eth_dev_ops: rss_hash_update, rss_hash_conf_get.

• [provides] rte_eth_dev_info: hash_key_size.

• [related] API: rte_eth_dev_rss_hash_update(), rte_eth_dev_rss_hash_conf_get().

2.23 RSS reta update

Supports updating Redirection Table of the Receive Side Scaling (RSS).

• [implements] eth_dev_ops: reta_update, reta_query.

• [provides] rte_eth_dev_info: reta_size.

• [related] API: rte_eth_dev_rss_reta_update(), rte_eth_dev_rss_reta_query().

2.24 VMDq

Supports Virtual Machine Device Queues (VMDq).

• [uses] user config: dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_FLAG.

• [uses] user config: dev_conf.rx_adv_conf.vmdq_dcb_conf.

• [uses] user config: dev_conf.rx_adv_conf.vmdq_rx_conf.

• [uses] user config: dev_conf.tx_adv_conf.vmdq_dcb_tx_conf.

• [uses] user config: dev_conf.tx_adv_conf.vmdq_tx_conf.

2.25 SR-IOV

Driver supports creating Virtual Functions.

• [implements] rte_eth_dev_data: sriov.

2.26 DCB

Supports Data Center Bridging (DCB).

• [uses] user config: dev_conf.rxmode.mq_mode = ETH_MQ_RX_DCB_FLAG.

• [uses] user config: dev_conf.rx_adv_conf.vmdq_dcb_conf.

• [uses] user config: dev_conf.rx_adv_conf.dcb_rx_conf.

• [uses] user config: dev_conf.tx_adv_conf.vmdq_dcb_tx_conf.

• [uses] user config: dev_conf.tx_adv_conf.vmdq_tx_conf.

2.22. RSS key update 9

Network Interface Controller Drivers, Release 20.08.0

• [implements] eth_dev_ops: get_dcb_info.

• [related] API: rte_eth_dev_get_dcb_info().

2.27 VLAN filter

Supports filtering of a VLAN Tag identifier.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_VLAN_FILTER.

• [implements] eth_dev_ops: vlan_filter_set.

• [related] API: rte_eth_dev_vlan_filter().

2.28 Flow control

Supports configuring link flow control.

• [implements] eth_dev_ops: flow_ctrl_get, flow_ctrl_set,
priority_flow_ctrl_set.

• [related] API: rte_eth_dev_flow_ctrl_get(), rte_eth_dev_flow_ctrl_set(),
rte_eth_dev_priority_flow_ctrl_set().

2.29 Flow API

Supports the DPDK Flow API for generic filtering.

• [implements] eth_dev_ops: filter_ctrl:RTE_ETH_FILTER_GENERIC.

• [implements] rte_flow_ops: All.

2.30 Rate limitation

Supports Tx rate limitation for a queue.

• [implements] eth_dev_ops: set_queue_rate_limit.

• [related] API: rte_eth_set_queue_rate_limit().

2.31 Traffic mirroring

Supports adding traffic mirroring rules.

• [implements] eth_dev_ops: mirror_rule_set, mirror_rule_reset.

• [related] API: rte_eth_mirror_rule_set(), rte_eth_mirror_rule_reset().

2.27. VLAN filter 10

Network Interface Controller Drivers, Release 20.08.0

2.32 Inline crypto

Supports inline crypto processing defined by rte_security library to perform crypto operations of security
protocol while packet is received in NIC. NIC is not aware of protocol operations. See Security library
and PMD documentation for more details.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_SECURITY,

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_SECURITY.

• [implements] rte_security_ops: session_create, session_update,
session_stats_get, session_destroy, set_pkt_metadata,
capabilities_get.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_SECURITY,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_SECURITY.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_SEC_OFFLOAD,
mbuf.ol_flags:PKT_TX_SEC_OFFLOAD, mbuf.ol_flags:PKT_RX_SEC_OFFLOAD_FAILED.

• [provides] rte_security_ops, capabilities_get: action:
RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO

2.33 Inline protocol

Supports inline protocol processing defined by rte_security library to perform protocol processing for
the security protocol (e.g. IPsec, MACSEC) while the packet is received at NIC. The NIC is capable of
understanding the security protocol operations. See security library and PMD documentation for more
details.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_SECURITY,

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_SECURITY.

• [implements] rte_security_ops: session_create, session_update,
session_stats_get, session_destroy, set_pkt_metadata, get_userdata,
capabilities_get.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_SECURITY,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_SECURITY.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_SEC_OFFLOAD,
mbuf.ol_flags:PKT_TX_SEC_OFFLOAD, mbuf.ol_flags:PKT_RX_SEC_OFFLOAD_FAILED.

• [provides] rte_security_ops, capabilities_get: action:
RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL

2.34 CRC offload

Supports CRC stripping by hardware. A PMD assumed to support CRC stripping by default. PMD
should advertise if it supports keeping CRC.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_KEEP_CRC.

2.32. Inline crypto 11

Network Interface Controller Drivers, Release 20.08.0

2.35 VLAN offload

Supports VLAN offload to hardware.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_VLAN_STRIP,DEV_RX_OFFLOAD_VLAN_FILTER,DEV_RX_OFFLOAD_VLAN_EXTEND.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_VLAN_INSERT.

• [uses] mbuf: mbuf.ol_flags:PKT_TX_VLAN, mbuf.vlan_tci.

• [implements] eth_dev_ops: vlan_offload_set.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_VLAN_STRIPPED,
mbuf.ol_flags:PKT_RX_VLAN mbuf.vlan_tci.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_VLAN_STRIP,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_VLAN_INSERT.

• [related] API: rte_eth_dev_set_vlan_offload(), rte_eth_dev_get_vlan_offload().

2.36 QinQ offload

Supports QinQ (queue in queue) offload.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_QINQ_STRIP.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_QINQ_INSERT.

• [uses] mbuf: mbuf.ol_flags:PKT_TX_QINQ, mbuf.vlan_tci_outer.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_QINQ_STRIPPED,
mbuf.ol_flags:PKT_RX_QINQ, mbuf.ol_flags:PKT_RX_VLAN_STRIPPED,
mbuf.ol_flags:PKT_RX_VLAN mbuf.vlan_tci, mbuf.vlan_tci_outer.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_QINQ_STRIP,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_QINQ_INSERT.

2.37 L3 checksum offload

Supports L3 checksum offload.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_IPV4_CKSUM.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_IPV4_CKSUM.

• [uses] mbuf: mbuf.ol_flags:PKT_TX_IP_CKSUM, mbuf.ol_flags:PKT_TX_IPV4 |
PKT_TX_IPV6.

• [uses] mbuf: mbuf.l2_len, mbuf.l3_len.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_IP_CKSUM_UNKNOWN |
PKT_RX_IP_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_NONE.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_IPV4_CKSUM,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_IPV4_CKSUM.

2.35. VLAN offload 12

Network Interface Controller Drivers, Release 20.08.0

2.38 L4 checksum offload

Supports L4 checksum offload.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_UDP_CKSUM,DEV_RX_OFFLOAD_TCP_CKSUM,DEV_RX_OFFLOAD_SCTP_CKSUM.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_UDP_CKSUM,DEV_TX_OFFLOAD_TCP_CKSUM,DEV_TX_OFFLOAD_SCTP_CKSUM.

• [uses] mbuf: mbuf.ol_flags:PKT_TX_IPV4 | PKT_TX_IPV6,
mbuf.ol_flags:PKT_TX_L4_NO_CKSUM | PKT_TX_TCP_CKSUM |
PKT_TX_SCTP_CKSUM | PKT_TX_UDP_CKSUM.

• [uses] mbuf: mbuf.l2_len, mbuf.l3_len.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_L4_CKSUM_UNKNOWN |
PKT_RX_L4_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_NONE.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_UDP_CKSUM,DEV_RX_OFFLOAD_TCP_CKSUM,DEV_RX_OFFLOAD_SCTP_CKSUM,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_UDP_CKSUM,DEV_TX_OFFLOAD_TCP_CKSUM,DEV_TX_OFFLOAD_SCTP_CKSUM.

2.39 Timestamp offload

Supports Timestamp.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_TIMESTAMP.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_TIMESTAMP.

• [provides] mbuf: mbuf.timestamp.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:
DEV_RX_OFFLOAD_TIMESTAMP.

• [related] eth_dev_ops: read_clock.

2.40 MACsec offload

Supports MACsec.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_MACSEC_STRIP.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_MACSEC_INSERT.

• [uses] mbuf: mbuf.ol_flags:PKT_TX_MACSEC.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_MACSEC_STRIP,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_MACSEC_INSERT.

2.41 Inner L3 checksum

Supports inner packet L3 checksum.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM.

2.38. L4 checksum offload 13

Network Interface Controller Drivers, Release 20.08.0

• [uses] mbuf: mbuf.ol_flags:PKT_TX_IP_CKSUM, mbuf.ol_flags:PKT_TX_IPV4
| PKT_TX_IPV6, mbuf.ol_flags:PKT_TX_OUTER_IP_CKSUM,
mbuf.ol_flags:PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6.

• [uses] mbuf: mbuf.outer_l2_len, mbuf.outer_l3_len.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_EIP_CKSUM_BAD.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM.

2.42 Inner L4 checksum

Supports inner packet L4 checksum.

• [uses] rte_eth_rxconf,rte_eth_rxmode: offloads:DEV_RX_OFFLOAD_OUTER_UDP_CKSUM.

• [provides] mbuf: mbuf.ol_flags:PKT_RX_OUTER_L4_CKSUM_UNKNOWN
| PKT_RX_OUTER_L4_CKSUM_BAD | PKT_RX_OUTER_L4_CKSUM_GOOD |
PKT_RX_OUTER_L4_CKSUM_INVALID.

• [uses] rte_eth_txconf,rte_eth_txmode: offloads:DEV_TX_OFFLOAD_OUTER_UDP_CKSUM.

• [uses] mbuf: mbuf.ol_flags:PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IPV6.
mbuf.ol_flags:PKT_TX_OUTER_UDP_CKSUM.

• [uses] mbuf: mbuf.outer_l2_len, mbuf.outer_l3_len.

• [provides] rte_eth_dev_info: rx_offload_capa,rx_queue_offload_capa:DEV_RX_OFFLOAD_OUTER_UDP_CKSUM,
tx_offload_capa,tx_queue_offload_capa:DEV_TX_OFFLOAD_OUTER_UDP_CKSUM.

2.43 Packet type parsing

Supports packet type parsing and returns a list of supported types. Allows application to set ptypes it is
interested in.

• [implements] eth_dev_ops: dev_supported_ptypes_get,

• [related] API: rte_eth_dev_get_supported_ptypes(),
rte_eth_dev_set_ptypes(), dev_ptypes_set.

• [provides] mbuf: mbuf.packet_type.

2.44 Timesync

Supports IEEE1588/802.1AS timestamping.

• [implements] eth_dev_ops: timesync_enable, timesync_disable
timesync_read_rx_timestamp, timesync_read_tx_timestamp,
timesync_adjust_time, timesync_read_time, timesync_write_time.

• [related] API: rte_eth_timesync_enable(), rte_eth_timesync_disable(),
rte_eth_timesync_read_rx_timestamp(), rte_eth_timesync_read_tx_timestamp,

2.42. Inner L4 checksum 14

Network Interface Controller Drivers, Release 20.08.0

rte_eth_timesync_adjust_time(), rte_eth_timesync_read_time(),
rte_eth_timesync_write_time().

2.45 Rx descriptor status

Supports check the status of a Rx descriptor. When rx_descriptor_status is used, status can be
“Available”, “Done” or “Unavailable”. When rx_descriptor_done is used, status can be “DD bit
is set” or “DD bit is not set”.

• [implements] eth_dev_ops: rx_descriptor_status.

• [related] API: rte_eth_rx_descriptor_status().

• [implements] eth_dev_ops: rx_descriptor_done.

• [related] API: rte_eth_rx_descriptor_done().

2.46 Tx descriptor status

Supports checking the status of a Tx descriptor. Status can be “Full”, “Done” or “Unavailable.”

• [implements] eth_dev_ops: tx_descriptor_status.

• [related] API: rte_eth_tx_descriptor_status().

2.47 Basic stats

Support basic statistics such as: ipackets, opackets, ibytes, obytes, imissed, ierrors, oerrors, rx_nombuf.

And per queue stats: q_ipackets, q_opackets, q_ibytes, q_obytes, q_errors.

These apply to all drivers.

• [implements] eth_dev_ops: stats_get, stats_reset.

• [related] API: rte_eth_stats_get, rte_eth_stats_reset().

2.48 Extended stats

Supports Extended Statistics, changes from driver to driver.

• [implements] eth_dev_ops: xstats_get, xstats_reset, xstats_get_names.

• [implements] eth_dev_ops: xstats_get_by_id, xstats_get_names_by_id.

• [related] API: rte_eth_xstats_get(), rte_eth_xstats_reset(),
rte_eth_xstats_get_names, rte_eth_xstats_get_by_id(),
rte_eth_xstats_get_names_by_id(), rte_eth_xstats_get_id_by_name().

2.45. Rx descriptor status 15

Network Interface Controller Drivers, Release 20.08.0

2.49 Stats per queue

Supports configuring per-queue stat counter mapping.

• [implements] eth_dev_ops: queue_stats_mapping_set.

• [related] API: rte_eth_dev_set_rx_queue_stats_mapping(),
rte_eth_dev_set_tx_queue_stats_mapping().

2.50 FW version

Supports getting device hardware firmware information.

• [implements] eth_dev_ops: fw_version_get.

• [related] API: rte_eth_dev_fw_version_get().

2.51 EEPROM dump

Supports getting/setting device eeprom data.

• [implements] eth_dev_ops: get_eeprom_length, get_eeprom, set_eeprom.

• [related] API: rte_eth_dev_get_eeprom_length(),
rte_eth_dev_get_eeprom(), rte_eth_dev_set_eeprom().

2.52 Module EEPROM dump

Supports getting information and data of plugin module eeprom.

• [implements] eth_dev_ops: get_module_info, get_module_eeprom.

• [related] API: rte_eth_dev_get_module_info(), rte_eth_dev_get_module_eeprom().

2.53 Registers dump

Supports retrieving device registers and registering attributes (number of registers and register size).

• [implements] eth_dev_ops: get_reg.

• [related] API: rte_eth_dev_get_reg_info().

2.54 LED

Supports turning on/off a software controllable LED on a device.

• [implements] eth_dev_ops: dev_led_on, dev_led_off.

• [related] API: rte_eth_led_on(), rte_eth_led_off().

2.49. Stats per queue 16

Network Interface Controller Drivers, Release 20.08.0

2.55 Multiprocess aware

Driver can be used for primary-secondary process model.

2.56 BSD nic_uio

BSD nic_uio module supported.

2.57 Linux UIO

Works with igb_uio kernel module.

• [provides] RTE_PMD_REGISTER_KMOD_DEP: igb_uio.

2.58 Linux VFIO

Works with vfio-pci kernel module.

• [provides] RTE_PMD_REGISTER_KMOD_DEP: vfio-pci.

2.59 Other kdrv

Kernel module other than above ones supported.

2.60 ARMv7

Support armv7 architecture.

Use defconfig_arm-armv7a-*-*.

2.61 ARMv8

Support armv8a (64bit) architecture.

Use defconfig_arm64-armv8a-*-*

2.62 Power8

Support PowerPC architecture.

Use defconfig_ppc_64-power8-*-*

2.55. Multiprocess aware 17

Network Interface Controller Drivers, Release 20.08.0

2.63 x86-32

Support 32bits x86 architecture.

Use defconfig_x86_x32-native-*-* and defconfig_i686-native-*-*.

2.64 x86-64

Support 64bits x86 architecture.

Use defconfig_x86_64-native-*-*.

2.65 Usage doc

Documentation describes usage.

See doc/guides/nics/*.rst

2.66 Design doc

Documentation describes design.

See doc/guides/nics/*.rst.

2.67 Perf doc

Documentation describes performance values.

See dpdk.org/doc/perf/*.

2.68 Runtime Rx queue setup

Supports Rx queue setup after device started.

• [provides] rte_eth_dev_info: dev_capa:RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP.

• [related] API: rte_eth_dev_info_get().

2.69 Runtime Tx queue setup

Supports Tx queue setup after device started.

• [provides] rte_eth_dev_info: dev_capa:RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP.

• [related] API: rte_eth_dev_info_get().

2.63. x86-32 18

Network Interface Controller Drivers, Release 20.08.0

2.70 Burst mode info

Supports to get Rx/Tx packet burst mode information.

• [implements] eth_dev_ops: rx_burst_mode_get, tx_burst_mode_get.

• [related] API: rte_eth_rx_burst_mode_get(), rte_eth_tx_burst_mode_get().

2.71 Other dev ops not represented by a Feature

• rxq_info_get

• txq_info_get

• vlan_tpid_set

• vlan_strip_queue_set

• vlan_pvid_set

• rx_queue_count

• l2_tunnel_offload_set

• uc_hash_table_set

• uc_all_hash_table_set

• udp_tunnel_port_add

• udp_tunnel_port_del

• l2_tunnel_eth_type_conf

• l2_tunnel_offload_set

• tx_pkt_prepare

2.70. Burst mode info 19

CHAPTER

THREE

COMPILING AND TESTING A PMD FOR A NIC

This section demonstrates how to compile and run a Poll Mode Driver (PMD) for the available Network
Interface Cards in DPDK using TestPMD.

TestPMD is one of the reference applications distributed with the DPDK. Its main purpose is to forward
packets between Ethernet ports on a network interface and as such is the best way to test a PMD.

Refer to the testpmd application user guide for detailed information on how to build and run testpmd.

3.1 Driver Compilation

To compile a PMD for a platform, build DPDK as described in the “Getting Started Guide” for your
platform. This will also build testpmd.

Detailed instructions are available in the meson build guide.

3.2 Running testpmd in Linux

This section demonstrates how to setup and run testpmd in Linux.

1. Mount huge pages:

mkdir /mnt/huge
mount -t hugetlbfs nodev /mnt/huge

2. Request huge pages:

Hugepage memory should be reserved as per application requirement. Check hugepage size con-
figured in the system and calculate the number of pages required.

To reserve 1024 pages of 2MB:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

Note: Check /proc/meminfo to find system hugepage size:

grep "Hugepagesize:" /proc/meminfo

Example output:

Hugepagesize: 2048 kB

3. Load igb_uio or vfio-pci driver:

20

Network Interface Controller Drivers, Release 20.08.0

modprobe uio
insmod ./x86_64-native-linux-gcc/kmod/igb_uio.ko

or

modprobe vfio-pci

4. Setup VFIO permissions for regular users before binding to vfio-pci:

sudo chmod a+x /dev/vfio

sudo chmod 0666 /dev/vfio/*

5. Bind the adapters to igb_uio or vfio-pci loaded in the previous step:

./usertools/dpdk-devbind.py --bind igb_uio DEVICE1 DEVICE2 ...

Or setup VFIO permissions for regular users and then bind to vfio-pci:

./usertools/dpdk-devbind.py --bind vfio-pci DEVICE1 DEVICE2 ...

Note: DEVICE1, DEVICE2 are specified via PCI “domain:bus:slot.func” syntax or
“bus:slot.func” syntax.

6. Start testpmd with basic parameters:

./x86_64-native-linux-gcc/app/testpmd -l 0-3 -n 4 -- -i

Successful execution will show initialization messages from EAL, PMD and testpmd application.
A prompt will be displayed at the end for user commands as interactive mode (-i) is on.

testpmd>

Refer to the testpmd runtime functions for a list of available commands.

Note: When testpmd is built with shared library, use option -d to load the dynamic PMD for
rte_eal_init.

3.2. Running testpmd in Linux 21

CHAPTER

FOUR

AF_PACKET POLL MODE DRIVER

The AF_PACKET socket in Linux allows an application to receive and send raw packets. This Linux-
specific PMD driver binds to an AF_PACKET socket and allows a DPDK application to send and receive
raw packets through the Kernel.

In order to improve Rx and Tx performance this implementation makes use of PACKET_MMAP, which
provides a mmap’ed ring buffer, shared between user space and kernel, that’s used to send and receive
packets. This helps reducing system calls and the copies needed between user space and Kernel.

The PACKET_FANOUT_HASH behavior of AF_PACKET is used for frame reception.

4.1 Options and inherent limitations

The following options can be provided to set up an af_packet port in DPDK. Some of these, in turn, will
be used to configure the PACKET_MMAP settings.

• iface - name of the Kernel interface to attach to (required);

• qpairs - number of Rx and Tx queues (optional, default 1);

• qdisc_bypass - set PACKET_QDISC_BYPASS option in AF_PACKET (optional, disabled
by default);

• blocksz - PACKET_MMAP block size (optional, default 4096);

• framesz - PACKET_MMAP frame size (optional, default 2048B; Note: multiple of 16B);

• framecnt - PACKET_MMAP frame count (optional, default 512).

Because this implementation is based on PACKET_MMAP, and PACKET_MMAP has its own pre-
requisites, it should be noted that the inner workings of PACKET_MMAP should be carefully considered
before modifying some of these options (namely, blocksz, framesz and framecnt above).

As an example, if one changes framesz to be 1024B, it is expected that blocksz is set to at least
1024B as well (although 2048B in this case would allow two “frames” per “block”).

This restriction happens because PACKET_MMAP expects each single “frame” to fit inside of a “block”.
And although multiple “frames” can fit inside of a single “block”, a “frame” may not span across two
“blocks”.

For the full details behind PACKET_MMAP’s structures and settings, consider reading the
PACKET_MMAP documentation in the Kernel.

22

https://www.kernel.org/doc/Documentation/networking/packet_mmap.txt

Network Interface Controller Drivers, Release 20.08.0

4.2 Prerequisites

This is a Linux-specific PMD, thus the following prerequisites apply:

• A Linux Kernel;

• A Kernel bound interface to attach to (e.g. a tap interface).

4.3 Set up an af_packet interface

The following example will set up an af_packet interface in DPDK with the default options described
above (blocksz=4096B, framesz=2048B and framecnt=512):

--vdev=eth_af_packet0,iface=tap0,blocksz=4096,framesz=2048,framecnt=512,qpairs=1,qdisc_bypass=0

4.2. Prerequisites 23

CHAPTER

FIVE

AF_XDP POLL MODE DRIVER

AF_XDP is an address family that is optimized for high performance packet processing. AF_XDP
sockets enable the possibility for XDP program to redirect packets to a memory buffer in userspace.

For the full details behind AF_XDP socket, you can refer to AF_XDP documentation in the Kernel.

This Linux-specific PMD driver creates the AF_XDP socket and binds it to a specific netdev queue, it
allows a DPDK application to send and receive raw packets through the socket which would bypass the
kernel network stack. Current implementation only supports single queue, multi-queues feature will be
added later.

AF_XDP PMD enables need_wakeup flag by default if it is supported. This need_wakeup feature is
used to support executing application and driver on the same core efficiently. This feature not only has
a large positive performance impact for the one core case, but also does not degrade 2 core performance
and actually improves it for Tx heavy workloads.

5.1 Options

The following options can be provided to set up an af_xdp port in DPDK.

• iface - name of the Kernel interface to attach to (required);

• start_queue - starting netdev queue id (optional, default 0);

• queue_count - total netdev queue number (optional, default 1);

5.2 Prerequisites

This is a Linux-specific PMD, thus the following prerequisites apply:

• A Linux Kernel (version > v4.18) with XDP sockets configuration enabled;

• libbpf (within kernel version > v5.1-rc4) with latest af_xdp support installed, User can install
libbpf via make install_lib && make install_headers in <kernel src tree>/tools/lib/bpf;

• A Kernel bound interface to attach to;

• For need_wakeup feature, it requires kernel version later than v5.3-rc1;

• For PMD zero copy, it requires kernel version later than v5.4-rc1;

24

https://www.kernel.org/doc/Documentation/networking/af_xdp.rst

Network Interface Controller Drivers, Release 20.08.0

5.3 Set up an af_xdp interface

The following example will set up an af_xdp interface in DPDK:

--vdev net_af_xdp,iface=ens786f1

5.4 Limitations

• MTU

The MTU of the AF_XDP PMD is limited due to the XDP requirement of one packet per page. In
the PMD we report the maximum MTU for zero copy to be equal to the page size less the frame
overhead introduced by AF_XDP (XDP HR = 256) and DPDK (frame headroom = 320). With a
4K page size this works out at 3520. However in practice this value may be even smaller, due to
differences between the supported RX buffer sizes of the underlying kernel netdev driver.

For example, the largest RX buffer size supported by the underlying kernel driver which is less
than the page size (4096B) may be 3072B. In this case, the maximum MTU value will be at most
3072, but likely even smaller than this, once relevant headers are accounted for eg. Ethernet and
VLAN.

To determine the actual maximum MTU value of the interface you are using with the AF_XDP
PMD, consult the documentation for the kernel driver.

Note: The AF_XDP PMD will fail to initialise if an MTU which violates the driver’s conditions
as above is set prior to launching the application.

5.3. Set up an af_xdp interface 25

CHAPTER

SIX

ARK POLL MODE DRIVER

The ARK PMD is a DPDK poll-mode driver for the Atomic Rules Arkville (ARK) family of devices.

More information can be found at the Atomic Rules website.

6.1 Overview

The Atomic Rules Arkville product is DPDK and AXI compliant product that marshals packets across
a PCIe conduit between host DPDK mbufs and FPGA AXI streams.

The ARK PMD, and the spirit of the overall Arkville product, has been to take the DPDK API/ABI as
a fixed specification; then implement much of the business logic in FPGA RTL circuits. The approach
of working backwards from the DPDK API/ABI and having the GPP host software dictate, while the
FPGA hardware copes, results in significant performance gains over a naive implementation.

While this document describes the ARK PMD software, it is helpful to understand what the FPGA
hardware is and is not. The Arkville RTL component provides a single PCIe Physical Function (PF)
supporting some number of RX/Ingress and TX/Egress Queues. The ARK PMD controls the Arkville
core through a dedicated opaque Core BAR (CBAR). To allow users full freedom for their own FPGA
application IP, an independent FPGA Application BAR (ABAR) is provided.

One popular way to imagine Arkville’s FPGA hardware aspect is as the FPGA PCIe-facing side of a
so-called Smart NIC. The Arkville core does not contain any MACs, and is link-speed independent, as
well as agnostic to the number of physical ports the application chooses to use. The ARK driver exposes
the familiar PMD interface to allow packet movement to and from mbufs across multiple queues.

However FPGA RTL applications could contain a universe of added functionality that an Arkville RTL
core does not provide or can not anticipate. To allow for this expectation of user-defined innovation, the
ARK PMD provides a dynamic mechanism of adding capabilities without having to modify the ARK
PMD.

The ARK PMD is intended to support all instances of the Arkville RTL Core, regardless of configuration,
FPGA vendor, or target board. While specific capabilities such as number of physical hardware queue-
pairs are negotiated; the driver is designed to remain constant over a broad and extendable feature set.

Intentionally, Arkville by itself DOES NOT provide common NIC capabilities such as offload or receive-
side scaling (RSS). These capabilities would be viewed as a gate-level “tax” on Green-box FPGA ap-
plications that do not require such function. Instead, they can be added as needed with essentially no
overhead to the FPGA Application.

The ARK PMD also supports optional user extensions, through dynamic linking. The ARK PMD user
extensions are a feature of Arkville’s DPDK net/ark poll mode driver, allowing users to add their own
code to extend the net/ark functionality without having to make source code changes to the driver. One

26

http://atomicrules.com

Network Interface Controller Drivers, Release 20.08.0

motivation for this capability is that while DPDK provides a rich set of functions to interact with NIC-
like capabilities (e.g. MAC addresses and statistics), the Arkville RTL IP does not include a MAC.
Users can supply their own MAC or custom FPGA applications, which may require control from the
PMD. The user extension is the means providing the control between the user’s FPGA application and
the existing DPDK features via the PMD.

6.2 Device Parameters

The ARK PMD supports device parameters that are used for packet routing and for internal packet
generation and packet checking. This section describes the supported parameters. These features are
primarily used for diagnostics, testing, and performance verification under the guidance of an Arkville
specialist. The nominal use of Arkville does not require any configuration using these parameters.

“Pkt_dir”

The Packet Director controls connectivity between Arkville’s internal hardware components. The fea-
tures of the Pkt_dir are only used for diagnostics and testing; it is not intended for nominal use. The full
set of features are not published at this level.

Format: Pkt_dir=0x00110F10

“Pkt_gen”

The packet generator parameter takes a file as its argument. The file contains configuration parameters
used internally for regression testing and are not intended to be published at this level. The packet
generator is an internal Arkville hardware component.

Format: Pkt_gen=./config/pg.conf

“Pkt_chkr”

The packet checker parameter takes a file as its argument. The file contains configuration parameters
used internally for regression testing and are not intended to be published at this level. The packet
checker is an internal Arkville hardware component.

Format: Pkt_chkr=./config/pc.conf

6.3 Data Path Interface

Ingress RX and Egress TX operation is by the nominal DPDK API . The driver supports single-port,
multi-queue for both RX and TX.

6.4 Configuration Information

DPDK Configuration Parameters

The following configuration options are available for the ARK PMD:

• CONFIG_RTE_LIBRTE_ARK_PMD (default y): Enables or disables inclusion of
the ARK PMD driver in the DPDK compilation.

• CONFIG_RTE_LIBRTE_ARK_PAD_TX (default y): When enabled TX packets
are padded to 60 bytes to support downstream MACS.

6.2. Device Parameters 27

Network Interface Controller Drivers, Release 20.08.0

• CONFIG_RTE_LIBRTE_ARK_DEBUG_RX (default n): Enables or disables de-
bug logging and internal checking of RX ingress logic within the ARK PMD driver.

• CONFIG_RTE_LIBRTE_ARK_DEBUG_TX (default n): Enables or disables de-
bug logging and internal checking of TX egress logic within the ARK PMD driver.

• CONFIG_RTE_LIBRTE_ARK_DEBUG_STATS (default n): Enables or disables
debug logging of detailed packet and performance statistics gathered in the PMD and
FPGA.

• CONFIG_RTE_LIBRTE_ARK_DEBUG_TRACE (default n): Enables or disables
debug logging of detailed PMD events and status.

6.5 Building DPDK

See the DPDK Getting Started Guide for Linux for instructions on how to build DPDK.

By default the ARK PMD library will be built into the DPDK library.

For configuring and using UIO and VFIO frameworks, please also refer the documentation that comes
with DPDK suite.

6.6 Supported ARK RTL PCIe Instances

ARK PMD supports the following Arkville RTL PCIe instances including:

• 1d6c:100d - AR-ARKA-FX0 [Arkville 32B DPDK Data Mover]

• 1d6c:100e - AR-ARKA-FX1 [Arkville 64B DPDK Data Mover]

6.7 Supported Operating Systems

Any Linux distribution fulfilling the conditions described in System Requirements section of the
DPDK documentation or refer to DPDK Release Notes. ARM and PowerPC architectures are not sup-
ported at this time.

6.8 Supported Features

• Dynamic ARK PMD extensions

• Multiple receive and transmit queues

• Jumbo frames up to 9K

• Hardware Statistics

6.9 Unsupported Features

Features that may be part of, or become part of, the Arkville RTL IP that are not currently supported or
exposed by the ARK PMD include:

6.5. Building DPDK 28

Network Interface Controller Drivers, Release 20.08.0

• PCIe SR-IOV Virtual Functions (VFs)

• Arkville’s Packet Generator Control and Status

• Arkville’s Packet Director Control and Status

• Arkville’s Packet Checker Control and Status

• Arkville’s Timebase Management

6.10 Pre-Requisites

1. Prepare the system as recommended by DPDK suite. This includes environment variables,
hugepages configuration, tool-chains and configuration

2. Insert igb_uio kernel module using the command ‘modprobe igb_uio’

3. Bind the intended ARK device to igb_uio module

At this point the system should be ready to run DPDK applications. Once the application runs to com-
pletion, the ARK PMD can be detached from igb_uio if necessary.

6.11 Usage Example

Follow instructions available in the document compiling and testing a PMD for a NIC to launch testpmd
with Atomic Rules ARK devices managed by librte_pmd_ark.

Example output:

[...]
EAL: PCI device 0000:01:00.0 on NUMA socket -1
EAL: probe driver: 1d6c:100e rte_ark_pmd
EAL: PCI memory mapped at 0x7f9b6c400000
PMD: eth_ark_dev_init(): Initializing 0:2:0.1
ARKP PMD CommitID: 378f3a67
Configuring Port 0 (socket 0)
Port 0: DC:3C:F6:00:00:01
Checking link statuses...
Port 0 Link Up - speed 100000 Mbps - full-duplex
Done
testpmd>

6.10. Pre-Requisites 29

CHAPTER

SEVEN

AQUANTIA ATLANTIC DPDK DRIVER

Atlantic DPDK driver provides DPDK support for Aquantia’s AQtion family of chipsets:
AQC107/AQC108/AQC109

More information can be found at Aquantia Official Website.

7.1 Supported features

• Base L2 features

• Promiscuous mode

• Multicast mode

• Port statistics

• RSS (Receive Side Scaling)

• Checksum offload

• Jumbo Frame up to 16K

• MACSEC offload

7.2 Experimental API features

• MACSEC PMD API is considered as experimental and is subject to change/removal in next DPDK
releases.

7.3 Configuration Information

• CONFIG_RTE_LIBRTE_ATLANTIC_PMD (default y)

30

https://www.aquantia.com/products/client-connectivity/

Network Interface Controller Drivers, Release 20.08.0

7.3.1 Application Programming Interface

7.3.2 Limitations or Known issues

Statistics

MTU setting

Atlantic NIC supports up to 16K jumbo frame size

7.3.3 Supported Chipsets and NICs

• Aquantia AQtion AQC107 10 Gigabit Ethernet Controller

• Aquantia AQtion AQC108 5 Gigabit Ethernet Controller

• Aquantia AQtion AQC109 2.5 Gigabit Ethernet Controller

7.3. Configuration Information 31

CHAPTER

EIGHT

AVP POLL MODE DRIVER

The Accelerated Virtual Port (AVP) device is a shared memory based device only available on virtual-
ization platforms from Wind River Systems. The Wind River Systems virtualization platform currently
uses QEMU/KVM as its hypervisor and as such provides support for all of the QEMU supported vir-
tual and/or emulated devices (e.g., virtio, e1000, etc.). The platform offers the virtio device type as the
default device when launching a virtual machine or creating a virtual machine port. The AVP device is
a specialized device available to customers that require increased throughput and decreased latency to
meet the demands of their performance focused applications.

The AVP driver binds to any AVP PCI devices that have been exported by the Wind River Systems
QEMU/KVM hypervisor. As a user of the DPDK driver API it supports a subset of the full Ether-
net device API to enable the application to use the standard device configuration functions and packet
receive/transmit functions.

These devices enable optimized packet throughput by bypassing QEMU and delivering packets directly
to the virtual switch via a shared memory mechanism. This provides DPDK applications running in
virtual machines with significantly improved throughput and latency over other device types.

The AVP device implementation is integrated with the QEMU/KVM live-migration mechanism to allow
applications to seamlessly migrate from one hypervisor node to another with minimal packet loss.

8.1 Features and Limitations of the AVP PMD

The AVP PMD driver provides the following functionality.

• Receive and transmit of both simple and chained mbuf packets,

• Chained mbufs may include up to 5 chained segments,

• Up to 8 receive and transmit queues per device,

• Only a single MAC address is supported,

• The MAC address cannot be modified,

• The maximum receive packet length is 9238 bytes,

• VLAN header stripping and inserting,

• Promiscuous mode

• VM live-migration

• PCI hotplug insertion and removal

32

http://www.windriver.com/products/titanium-cloud/
http://www.windriver.com/products/titanium-cloud/

Network Interface Controller Drivers, Release 20.08.0

8.2 Prerequisites

The following prerequisites apply:

• A virtual machine running in a Wind River Systems virtualization environment and configured
with at least one neutron port defined with a vif-model set to “avp”.

8.3 Launching a VM with an AVP type network attachment

The following example will launch a VM with three network attachments. The first attachment will have
a default vif-model of “virtio”. The next two network attachments will have a vif-model of “avp” and
may be used with a DPDK application which is built to include the AVP PMD driver.

nova boot --flavor small --image my-image \
--nic net-id=${NETWORK1_UUID} \
--nic net-id=${NETWORK2_UUID},vif-model=avp \
--nic net-id=${NETWORK3_UUID},vif-model=avp \
--security-group default my-instance1

8.2. Prerequisites 33

CHAPTER

NINE

AXGBE POLL MODE DRIVER

The AXGBE poll mode driver library (librte_pmd_axgbe) implements support for AMD 10 Gbps fam-
ily of adapters. It is compiled and tested in standard linux distro like Ubuntu.

Detailed information about SoCs that use these devices can be found here:

• AMD EPYC™ EMBEDDED 3000 family.

9.1 Supported Features

AXGBE PMD has support for:

• Base L2 features

• TSS (Transmit Side Scaling)

• Promiscuous mode

• Port statistics

• Multicast mode

• RSS (Receive Side Scaling)

• Checksum offload

• Jumbo Frame up to 9K

9.2 Configuration Information

The following options can be modified in the .config file. Please note that enabling debugging options
may affect system performance.

• CONFIG_RTE_LIBRTE_AXGBE_PMD (default y)

Toggle compilation of axgbe PMD.

• CONFIG_RTE_LIBRTE_AXGBE_PMD_DEBUG (default n)

Toggle display for PMD debug related messages.

34

https://www.amd.com/en/products/embedded-epyc-3000-series

Network Interface Controller Drivers, Release 20.08.0

9.3 Building DPDK

See the DPDK Getting Started Guide for Linux for instructions on how to build DPDK.

By default the AXGBE PMD library will be built into the DPDK library.

For configuring and using UIO frameworks, please also refer the documentation that comes with DPDK
suite.

9.4 Prerequisites and Pre-conditions

• Prepare the system as recommended by DPDK suite.

• Bind the intended AMD device to igb_uio or vfio-pci module.

Now system is ready to run DPDK application.

9.5 Usage Example

Refer to the document compiling and testing a PMD for a NIC for details.

Example output:

[...]
EAL: PCI device 0000:02:00.4 on NUMA socket 0
EAL: probe driver: 1022:1458 net_axgbe
Interactive-mode selected
USER1: create a new mbuf pool <mbuf_pool_socket_0>: n=171456, size=2176, socket=0
USER1: create a new mbuf pool <mbuf_pool_socket_1>: n=171456, size=2176, socket=1
USER1: create a new mbuf pool <mbuf_pool_socket_2>: n=171456, size=2176, socket=2
USER1: create a new mbuf pool <mbuf_pool_socket_3>: n=171456, size=2176, socket=3
Configuring Port 0 (socket 0)
Port 0: 00:00:1A:1C:6A:17
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

9.3. Building DPDK 35

CHAPTER

TEN

BNX2X POLL MODE DRIVER

The BNX2X poll mode driver library (librte_pmd_bnx2x) implements support for QLogic 578xx 10/20
Gbps family of adapters as well as their virtual functions (VF) in SR-IOV context. It is supported on
several standard Linux distros like RHEL and SLES. It is compile-tested under FreeBSD OS.

More information can be found at QLogic Corporation’s Official Website.

10.1 Supported Features

BNX2X PMD has support for:

• Base L2 features

• Unicast/multicast filtering

• Promiscuous mode

• Port hardware statistics

• SR-IOV VF

10.2 Non-supported Features

The features not yet supported include:

• TSS (Transmit Side Scaling)

• RSS (Receive Side Scaling)

• LRO/TSO offload

• Checksum offload

• SR-IOV PF

• Rx TX scatter gather

10.3 Co-existence considerations

• QLogic 578xx CNAs support Ethernet, iSCSI and FCoE functionalities. These functionalities are
supported using QLogic Linux kernel drivers bnx2x, cnic, bnx2i and bnx2fc. DPDK is supported
on these adapters using bnx2x PMD.

36

http://www.qlogic.com

Network Interface Controller Drivers, Release 20.08.0

• When SR-IOV is not enabled on the adapter, QLogic Linux kernel drivers (bnx2x, cnic, bnx2i
and bnx2fc) and bnx2x PMD can’t be attached to different PFs on a given QLogic 578xx adapter.
A given adapter needs to be completely used by DPDK or Linux drivers. Before binding DPDK
driver to one or more PFs on the adapter, please make sure to unbind Linux drivers from all PFs
of the adapter. If there are multiple adapters on the system, one or more adapters can be used by
DPDK driver completely and other adapters can be used by Linux drivers completely.

• When SR-IOV is enabled on the adapter, Linux kernel drivers (bnx2x, cnic, bnx2i and bnx2fc)
can be bound to the PFs of a given adapter and either bnx2x PMD or Linux drivers bnx2x can be
bound to the VFs of the adapter.

10.4 Supported QLogic NICs

• 578xx

10.5 Prerequisites

• Requires firmware version 7.13.11.0. It is included in most of the standard Linux distros. If it is
not available visit linux-firmware git repository to get the required firmware.

10.6 Pre-Installation Configuration

10.6.1 Config File Options

The following options can be modified in the .config file. Please note that enabling debugging options
may affect system performance.

• CONFIG_RTE_LIBRTE_BNX2X_PMD (default n)

Toggle compilation of bnx2x driver. To use bnx2x PMD set this config parameter to ‘y’. Also, in
order for firmware binary to load user will need zlib devel package installed.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG_TX (default n)

Toggle display of transmit fast path run-time messages.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG_RX (default n)

Toggle display of receive fast path run-time messages.

• CONFIG_RTE_LIBRTE_BNX2X_DEBUG_PERIODIC (default n)

Toggle display of register reads and writes.

10.7 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

10.4. Supported QLogic NICs 37

https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/plain/bnx2x/bnx2x-e2-7.13.11.0.fw

Network Interface Controller Drivers, Release 20.08.0

10.8 Jumbo: Limitation

Rx descriptor limit for number of segments per MTU is set to 1. PMD doesn’t support Jumbo Rx scatter
gather. Some applciations can adjust mbuf_size based on this param and max_pkt_len.

For others, PMD detects the condition where Rx packet length cannot be held by configured mbuf size
and logs the message.

Example output:

[...]
[bnx2x_recv_pkts:397(04:00.0:dpdk-port-0)] mbuf size 2048 is not enough to hold Rx packet length more than 2046

10.9 SR-IOV: Prerequisites and sample Application Notes

This section provides instructions to configure SR-IOV with Linux OS.

1. Verify SR-IOV and ARI capabilities are enabled on the adapter using lspci:

lspci -s <slot> -vvv

Example output:

[...]
Capabilities: [1b8 v1] Alternative Routing-ID Interpretation (ARI)
[...]
Capabilities: [1c0 v1] Single Root I/O Virtualization (SR-IOV)
[...]
Kernel driver in use: igb_uio

2. Load the kernel module:

modprobe bnx2x

Example output:

systemd-udevd[4848]: renamed network interface eth0 to ens5f0
systemd-udevd[4848]: renamed network interface eth1 to ens5f1

3. Bring up the PF ports:

ifconfig ens5f0 up
ifconfig ens5f1 up

4. Create VF device(s):

Echo the number of VFs to be created into “sriov_numvfs” sysfs entry of the parent PF.

Example output:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

5. Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is: ip link set <PF iface> vf <VF
id> mac <macaddr>

Example output:

ip link set ens5f0 vf 0 mac 52:54:00:2f:9d:e8

10.8. Jumbo: Limitation 38

Network Interface Controller Drivers, Release 20.08.0

6. PCI Passthrough:

The VF devices may be passed through to the guest VM using virt-manager or virsh etc. bnx2x
PMD should be used to bind the VF devices in the guest VM using the instructions outlined in the
Application notes below.

7. Running testpmd: (Supply --log-level="pmd.net.bnx2x.driver",7 to view infor-
mational messages):

Follow instructions available in the document compiling and testing a PMD for a NIC to run
testpmd.

Example output:

[...]
EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 14e4:168e rte_bnx2x_pmd
EAL: PCI memory mapped at 0x7f14f6fe5000
EAL: PCI memory mapped at 0x7f14f67e5000
EAL: PCI memory mapped at 0x7f15fbd9b000
EAL: PCI device 0000:84:00.1 on NUMA socket 1
EAL: probe driver: 14e4:168e rte_bnx2x_pmd
EAL: PCI memory mapped at 0x7f14f5fe5000
EAL: PCI memory mapped at 0x7f14f57e5000
EAL: PCI memory mapped at 0x7f15fbd4f000
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: bnx2x_dev_tx_queue_setup(): fp[00] req_bd=512, thresh=512,

usable_bd=1020, total_bd=1024,
tx_pages=4

PMD: bnx2x_dev_rx_queue_setup(): fp[00] req_bd=128, thresh=0,
usable_bd=510, total_bd=512,

rx_pages=1, cq_pages=8
PMD: bnx2x_print_adapter_info():
[...]
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

10.9. SR-IOV: Prerequisites and sample Application Notes 39

CHAPTER

ELEVEN

BNXT POLL MODE DRIVER

The Broadcom BNXT PMD (librte_pmd_bnxt) implements support for adapters based on Ethernet
controllers and SoCs belonging to the Broadcom BCM574XX/BCM575XX NetXtreme-E® Family of
Ethernet Network Controllers, the Broadcom BCM588XX Stingray Family of Smart NIC Adapters, and
the Broadcom StrataGX® BCM5873X Series of Communications Processors.

A complete list with links to reference material is in the Appendix section.

11.1 CPU Support

BNXT PMD supports multiple CPU architectures, including x86-32, x86-64, and ARMv8.

11.2 Kernel Dependency

BNXT PMD requires a kernel module (VFIO or UIO) for setting up a device, mapping device memory
to userspace, registering interrupts, etc. VFIO is more secure than UIO, relying on IOMMU protection.
UIO requires the IOMMU disabled or configured to pass-through mode.

Operating Systems supported:

• Red Hat Enterprise Linux release 8.1 (Ootpa)

• Red Hat Enterprise Linux release 8.0 (Ootpa)

• Red Hat Enterprise Linux Server release 7.7 (Maipo)

• Red Hat Enterprise Linux Server release 7.6 (Maipo)

• Red Hat Enterprise Linux Server release 7.5 (Maipo)

• Red Hat Enterprise Linux Server release 7.4 (Maipo)

• Red Hat Enterprise Linux Server release 7.3 (Maipo)

• Red Hat Enterprise Linux Server release 7.2 (Maipo)

• CentOS Linux release 8.0

• CentOS Linux release 7.7

• CentOS Linux release 7.6.1810

• CentOS Linux release 7.5.1804

• CentOS Linux release 7.4.1708

40

Network Interface Controller Drivers, Release 20.08.0

• Fedora 31

• FreeBSD 12.1

• Suse 15SP1

• Ubuntu 19.04

• Ubuntu 18.04

• Ubuntu 16.10

• Ubuntu 16.04

• Ubuntu 14.04

The BNXT PMD supports operating with:

• Linux vfio-pci

• Linux uio_pci_generic

• Linux igb_uio

• BSD nic_uio

11.3 Running BNXT PMD

Bind the device to one of the kernel modules listed above

./dpdk-devbind.py -b vfio-pci|igb_uio|uio_pci_generic bus_id:device_id.function_id

The BNXT PMD can run on PF or VF.

PCI-SIG Single Root I/O Virtualization (SR-IOV) involves the direct assignment of part of the network
port resources to guest operating systems using the SR-IOV standard. NIC is logically distributed among
multiple virtual machines (VMs), while still having global data in common to share with the PF and other
VFs.

Sysadmin can create and configure VFs:

echo num_vfs > /sys/bus/pci/devices/domain_id:bus_id:device_id:function_id/sriov_numvfs
(ex) echo 4 > /sys/bus/pci/devices/0000:82:00:0/sriov_numvfs

Sysadmin also can change the VF property such as MAC address, transparent VLAN, TX rate limit, and
trusted VF:

ip link set pf_id vf vf_id mac (mac_address) vlan (vlan_id) txrate (rate_value) trust (enable|disable)
(ex) ip link set 0 vf 0 mac 00:11:22:33:44:55 vlan 0x100 txrate 100 trust disable

11.3.1 Running on VF

Flow Bifurcation

The Flow Bifurcation splits the incoming data traffic to user space applications (such as DPDK appli-
cations) and/or kernel space programs (such as the Linux kernel stack). It can direct some traffic, for
example data plane traffic, to DPDK. Rest of the traffic, for example control plane traffic, would be
redirected to the traditional Linux networking stack.

Refer to https://doc.dpdk.org/guides/howto/flow_bifurcation.html

11.3. Running BNXT PMD 41

https://doc.dpdk.org/guides/howto/flow_bifurcation.html

Network Interface Controller Drivers, Release 20.08.0

Benefits of the flow bifurcation include:

• Better performance with less CPU overhead, as user application can directly access the NIC for
data path

• NIC is still being controlled by the kernel, as control traffic is forwarded only to the kernel driver

• Control commands, e.g. ethtool, will work as usual

Running on a VF, the BXNT PMD supports the flow bifurcation with a combination of SR-IOV and
packet classification and/or forwarding capability. In the simplest case of flow bifurcation, a PF driver
configures a NIC to forward all user traffic directly to VFs with matching destination MAC address,
while the rest of the traffic is forwarded to a PF. Note that the broadcast packets will be forwarded to
both PF and VF.

(ex) ethtool --config-ntuple ens2f0 flow-type ether dst 00:01:02:03:00:01 vlan 10 vlan-mask 0xf000 action 0x100000000

Trusted VF

By default, VFs are not allowed to perform privileged operations, such as modifying the VF’s MAC
address in the guest. These security measures are designed to prevent possible attacks. However, when
a DPDK application can be trusted (e.g., OVS-DPDK, here), these operations performed by a VF would
be legitimate and can be allowed.

To enable VF to request “trusted mode,” a new trusted VF concept was introduced in Linux kernel 4.4
and allowed VFs to become “trusted” and perform some privileged operations.

The BNXT PMD supports the trusted VF mode of operation. Only a PF can enable the trusted attribute
on the VF. It is preferable to enable the Trusted setting on a VF before starting applications. However,
the BNXT PMD handles dynamic changes in trusted settings as well.

Note that control commands, e.g., ethtool, will work via the kernel PF driver, not via the trusted VF
driver.

Operations supported by trusted VF:

• MAC address configuration

• Flow rule creation

Operations not supported by trusted VF:

• Firmware upgrade

• Promiscuous mode setting

11.3.2 Running on PF

Unlike the VF when BNXT PMD runs on a PF there are no restrictions placed on the features which the
PF can enable or request. In a multiport NIC, each port will have a corresponding PF. Also depending
on the configuration of the NIC there can be more than one PF associated per port. A sysadmin can load
the kernel driver on one PF, and run BNXT PMD on the other PF or run the PMD on both the PFs. In
such cases, the firmware picks one of the PFs as a master PF.

Much like in the trusted VF, the DPDK application must be trusted and expected to be well-behaved.

11.3. Running BNXT PMD 42

Network Interface Controller Drivers, Release 20.08.0

11.4 Features

The BNXT PMD supports the following features:

• Port Control

– Port MTU

– LED

– Flow Control and Autoneg

• Packet Filtering

– Unicast MAC Filter

– Multicast MAC Filter

– VLAN Filtering

– Allmulticast Mode

– Promiscuous Mode

• Stateless Offloads

– CRC Offload

– Checksum Offload (IPv4, TCP, and UDP)

– Multi-Queue (TSS and RSS)

– Segmentation and Reassembly (TSO and LRO)

• VLAN insert strip

• Stats Collection

• Generic Flow Offload

11.4.1 Port Control

Port MTU: BNXT PMD supports the MTU (Maximum Transmission Unit) up to 9,574 bytes:

testpmd> port config mtu (port_id) mtu_value
testpmd> show port info (port_id)

LED: Application tunes on (or off) a port LED, typically for a port identification:

int rte_eth_led_on (uint16_t port_id)
int rte_eth_led_off (uint16_t port_id)

Flow Control and Autoneg: Application tunes on (or off) flow control and/or auto-negotiation on a
port:

testpmd> set flow_ctrl rx (on|off) (port_id)
testpmd> set flow_ctrl tx (on|off) (port_id)
testpmd> set flow_ctrl autoneg (on|off) (port_id)

Note that the BNXT PMD does not support some options and ignores them when requested:

• high_water

• low_water

11.4. Features 43

Network Interface Controller Drivers, Release 20.08.0

• pause_time

• mac_ctrl_frame_fwd

• send_xon

11.4.2 Packet Filtering

Applications control the packet-forwarding behaviors with packet filters.

The BNXT PMD supports hardware-based packet filtering:

• UC (Unicast) MAC Filters

– No unicast packets are forwarded to an application except the one with DMAC address
added to the port

– At initialization, the station MAC address is added to the port

• MC (Multicast) MAC Filters

– No multicast packets are forwarded to an application except the one with MC address
added to the port

– When the application listens to a multicast group, it adds the MC address to the port

• VLAN Filtering Mode

– When enabled, no packets are forwarded to an application except the ones with the
VLAN tag assigned to the port

• Allmulticast Mode

– When enabled, every multicast packet received on the port is forwarded to the applica-
tion

– Typical usage is routing applications

• Promiscuous Mode

– When enabled, every packet received on the port is forwarded to the application

Unicast MAC Filter

The application adds (or removes) MAC addresses to enable (or disable) whitelist filtering to accept
packets.

testpmd> show port (port_id) macs
testpmd> mac_addr (add|remove) (port_id) (XX:XX:XX:XX:XX:XX)

Multicast MAC Filter

Application adds (or removes) Multicast addresses to enable (or disable) whitelist filtering to accept
packets.

testpmd> show port (port_id) mcast_macs
testpmd> mcast_addr (add|remove) (port_id) (XX:XX:XX:XX:XX:XX)

11.4. Features 44

Network Interface Controller Drivers, Release 20.08.0

Application adds (or removes) Multicast addresses to enable (or disable) whitelist filtering to accept
packets.

Note that the BNXT PMD supports up to 16 MC MAC filters. if the user adds more than 16 MC MACs,
the BNXT PMD puts the port into the Allmulticast mode.

VLAN Filtering

The application enables (or disables) VLAN filtering mode. When the mode is enabled, no packets are
forwarded to an application except ones with VLAN tag assigned for the application.

testpmd> vlan set filter (on|off) (port_id)
testpmd> rx_vlan (add|rm) (vlan_id) (port_id)

Allmulticast Mode

The application enables (or disables) the allmulticast mode. When the mode is enabled, every multicast
packet received is forwarded to the application.

testpmd> show port info (port_id)
testpmd> set allmulti (port_id) (on|off)

Promiscuous Mode

The application enables (or disables) the promiscuous mode. When the mode is enabled on a port, every
packet received on the port is forwarded to the application.

testpmd> show port info (port_id)
testpmd> set promisc port_id (on|off)

11.4.3 Stateless Offloads

Like Linux, DPDK provides enabling hardware offload of some stateless processing (such as checksum
calculation) of the stack, alleviating the CPU from having to burn cycles on every packet.

Listed below are the stateless offloads supported by the BNXT PMD:

• CRC offload (for both TX and RX packets)

• Checksum Offload (for both TX and RX packets)

– IPv4 Checksum Offload

– TCP Checksum Offload

– UDP Checksum Offload

• Segmentation/Reassembly Offloads

– TCP Segmentation Offload (TSO)

– Large Receive Offload (LRO)

• Multi-Queue

– Transmit Side Scaling (TSS)

– Receive Side Scaling (RSS)

11.4. Features 45

Network Interface Controller Drivers, Release 20.08.0

Also, the BNXT PMD supports stateless offloads on inner frames for tunneled packets. Listed below are
the tunneling protocols supported by the BNXT PMD:

• VXLAN

• GRE

• NVGRE

Note that enabling (or disabling) stateless offloads requires applications to stop DPDK before changing
configuration.

CRC Offload

The FCS (Frame Check Sequence) in the Ethernet frame is a four-octet CRC (Cyclic Redundancy Check)
that allows detection of corrupted data within the entire frame as received on the receiver side.

The BNXT PMD supports hardware-based CRC offload:

• TX: calculate and insert CRC

• RX: check and remove CRC, notify the application on CRC error

Note that the CRC offload is always turned on.

Checksum Offload

The application enables hardware checksum calculation for IPv4, TCP, and UDP.

testpmd> port stop (port_id)
testpmd> csum set (ip|tcp|udp|outer-ip|outer-udp) (sw|hw) (port_id)
testpmd> set fwd csum

Multi-Queue

Multi-Queue, also known as TSS (Transmit Side Scaling) or RSS (Receive Side Scaling), is a common
networking technique that allows for more efficient load balancing across multiple CPU cores.

The application enables multiple TX and RX queues when it is started.

testpmd -l 1,3,5 --master-lcore 1 --txq=2 -rxq=2 --nb-cores=2

TSS

TSS distributes network transmit processing across several hardware-based transmit queues, allowing
outbound network traffic to be processed by multiple CPU cores.

RSS

RSS distributes network receive processing across several hardware-based receive queues, allowing in-
bound network traffic to be processed by multiple CPU cores.

The application can select the RSS mode, i.e. select the header fields that are included for hash calcu-
lation. The BNXT PMD supports the RSS mode of default|ip|tcp|udp|none, where default
mode is L3 and L4.

For tunneled packets, RSS hash is calculated over inner frame header fields. Applications may want to
select the tunnel header fields for hash calculation, and it will be supported in 20.08 using RSS level.

11.4. Features 46

Network Interface Controller Drivers, Release 20.08.0

testpmd> port config (port_id) rss (all|default|ip|tcp|udp|none)

// note that the testpmd defaults the RSS mode to ip
// ensure to issue the command below to enable L4 header (TCP or UDP) along with IPv4 header
testpmd> port config (port_id) rss default

// to check the current RSS configuration, such as RSS function and RSS key
testpmd> show port (port_id) rss-hash key

// RSS is enabled by default. However, application can disable RSS as follows
testpmd> port config (port_id) rss none

Application can change the flow distribution, i.e. remap the received traffic to CPU cores, using RSS
RETA (Redirection Table).

// application queries the current RSS RETA configuration
testpmd> show port (port_id) rss reta size (mask0, mask1)

// application changes the RSS RETA configuration
testpmd> port config (port_id) rss reta (hash, queue) [, (hash, queue)]

TSO

TSO (TCP Segmentation Offload), also known as LSO (Large Send Offload), enables the TCP/IP stack
to pass to the NIC a larger datagram than the MTU (Maximum Transmit Unit). NIC breaks it into
multiple segments before sending it to the network.

The BNXT PMD supports hardware-based TSO.

// display the status of TSO
testpmd> tso show (port_id)

// enable/disable TSO
testpmd> port config (port_id) tx_offload tcp_tso (on|off)

// set TSO segment size
testpmd> tso set segment_size (port_id)

The BNXT PMD also supports hardware-based tunneled TSO.

// display the status of tunneled TSO
testpmd> tunnel_tso show (port_id)

// enable/disable tunneled TSO
testpmd> port config (port_id) tx_offload vxlan_tnl_tso|gre_tnl_tso (on|off)

// set tunneled TSO segment size
testpmd> tunnel_tso set segment_size (port_id)

Note that the checksum offload is always assumed to be enabled for TSO.

LRO

LRO (Large Receive Offload) enables NIC to aggregate multiple incoming TCP/IP packets from a single
stream into a larger buffer, before passing to the networking stack.

The BNXT PMD supports hardware-based LRO.

// display the status of LRO
testpmd> show port (port_id) rx_offload capabilities
testpmd> show port (port_id) rx_offload configuration

11.4. Features 47

Network Interface Controller Drivers, Release 20.08.0

// enable/disable LRO
testpmd> port config (port_id) rx_offload tcp_lro (on|off)

// set max LRO packet (datagram) size
testpmd> port config (port_id) max-lro-pkt-size (max_size)

The BNXT PMD also supports tunneled LRO.

Some applications, such as routing, should not change the packet headers as they pass through (i.e.
received from and sent back to the network). In such a case, GRO (Generic Receive Offload) should be
used instead of LRO.

11.4.4 VLAN Insert/Strip

DPDK application offloads VLAN insert/strip to improve performance. The BNXT PMD supports
hardware-based VLAN insert/strip offload for both single and double VLAN packets.

VLAN Insert

Application configures the VLAN TPID (Tag Protocol ID). By default, the TPID is 0x8100.

// configure outer TPID value for a port
testpmd> vlan set outer tpid (tpid_value) (port_id)

The inner TPID set will be rejected as the BNXT PMD supports inserting only an outer VLAN. Note
that when a packet has a single VLAN, the tag is considered as outer, i.e. the inner VLAN is relevant
only when a packet is double-tagged.

The BNXT PMD supports various TPID values shown below. Any other values will be rejected.

• 0x8100

• 0x88a8

• 0x9100

• 0x9200

• 0x9300

The BNXT PMD supports the VLAN insert offload per-packet basis. The application provides the TCI
(Tag Control Info) for a packet via mbuf. In turn, the BNXT PMD inserts the VLAN tag (via hardware)
using the provided TCI along with the configured TPID.

// enable VLAN insert offload
testpmd> port config (port_id) rx_offload vlan_insert|qinq_insert (on|off)

if (mbuf->ol_flags && PKT_TX_QINQ) // case-1: insert VLAN to single-tagged packet
tci_value = mbuf->vlan_tci_outer

else if (mbuf->ol_flags && PKT_TX_VLAN) // case-2: insert VLAN to untagged packet
tci_value = mbuf->vlan_tci

VLAN Strip

The application configures the per-port VLAN strip offload.

11.4. Features 48

Network Interface Controller Drivers, Release 20.08.0

// enable VLAN strip on a port
testpmd> port config (port_id) tx_offload vlan_strip (on|off)

// notify application VLAN strip via mbuf
mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_STRIPPED // outer VLAN is found and stripped
mbuf->vlan_tci = tci_value // TCI of the stripped VLAN

11.4.5 Time Synchronization

System operators may run a PTP (Precision Time Protocol) client application to synchronize the time
on the NIC (and optionally, on the system) to a PTP master.

The BNXT PMD supports a PTP client application to communicate with a PTP master clock using
DPDK IEEE1588 APIs. Note that the PTP client application needs to run on PF and vector mode needs
to be disabled.

For the PTP time synchronization support, the BNXT PMD must be compiled with
CONFIG_RTE_LIBRTE_IEEE1588=y (this compilation flag is currently pending).

testpmd> set fwd ieee1588 // enable IEEE 1588 mode

When enabled, the BNXT PMD configures hardware to insert IEEE 1588 timestamps to the outgoing
PTP packets and reports IEEE 1588 timestamps from the incoming PTP packets to application via mbuf.

// RX packet completion will indicate whether the packet is PTP
mbuf->ol_flags |= PKT_RX_IEEE1588_PTP

11.4.6 Statistics Collection

In Linux, the ethtool -S enables us to query the NIC stats. DPDK provides the similar functionalities via
rte_eth_stats and rte_eth_xstats.

The BNXT PMD supports both basic and extended stats collection:

• Basic stats

• Extended stats

Basic Stats

The application collects per-port and per-queue stats using rte_eth_stats APIs.

testpmd> show port stats (port_id)

Basic stats include:

• ipackets

• ibytes

• opackets

• obytes

• imissed

• ierrors

• oerrors

11.4. Features 49

Network Interface Controller Drivers, Release 20.08.0

By default, per-queue stats for 16 queues are supported. For more than 16 queues, BNXT PMD should be
compiled with CONFIG_RTE_ETHDEV_QUEUE_STAT_CNTRS set to the desired number of queues.

Extended Stats

Unlike basic stats, the extended stats are vendor-specific, i.e. each vendor provides its own set of coun-
ters.

The BNXT PMD provides a rich set of counters, including per-flow counters, per-cos counters, per-
priority counters, etc.

testpmd> show port xstats (port_id)

Shown below is the elaborated sequence to retrieve extended stats:

// application queries the number of xstats
len = rte_eth_xstats_get(port_id, NULL, 0);
// BNXT PMD returns the size of xstats array (i.e. the number of entries)
// BNXT PMD returns 0, if the feature is compiled out or disabled

// application allocates memory for xstats
struct rte_eth_xstats_name *names; // name is 64 character or less
struct rte_eth_xstats *xstats;
names = calloc(len, sizeof(*names));
xstats = calloc(len, sizeof(*xstats));

// application retrieves xstats // names and values
ret = rte_eth_xstats_get_names(port_id, *names, len);
ret = rte_eth_xstats_get(port_id, *xstats, len);

// application checks the xstats
// application may repeat the below:
len = rte_eth_xstats_reset(port_id); // reset the xstats

// reset can be skipped, if application wants to see accumulated stats
// run traffic
// probably stop the traffic
// retrieve xstats // no need to retrieve xstats names again
// check xstats

11.4.7 Generic Flow Offload

Applications can get benefit by offloading all or part of flow processing to hardware. For example,
applications can offload packet classification only (partial offload) or whole match-action (full offload).

DPDK offers the Generic Flow API (rte_flow API) to configure hardware to perform flow processing.

Listed below are the rte_flow APIs BNXT PMD supports:

• rte_flow_validate

• rte_flow_create

• rte_flow_destroy

• rte_flow_flush

11.4. Features 50

Network Interface Controller Drivers, Release 20.08.0

Host Based Flow Table Management

Starting with 20.05 BNXT PMD supports host based flow table management. This is a new mechanism
that should allow higher flow scalability than what is currently supported. This new approach also
defines a new rte_flow parser, and mapper which currently supports basic packet classification in the
receive path.

The feature uses a newly implemented control-plane firmware interface which optimizes flow insertions
and deletions.

This is a tech preview feature, and is disabled by default. It can be enabled using bnxt devargs. For ex:
“-w 0000:0d:00.0,host-based-truflow=1”.

11.5 Notes

• On stopping a device port, all the flows created on a port by the application will be flushed from
the hardware and any tables maintained by the PMD. After stopping the device port, all flows on
the port become invalid and are not represented in the system anymore. Instead of destroying or
flushing such flows an application should discard all references to these flows and re-create the
flows as required after the port is restarted.

• While an application is free to use the group id attribute to group flows together using a spe-
cific criteria, the BNXT PMD currently associates this group id to a VNIC id. One such case is
grouping of flows which are filtered on the same source or destination MAC address. This allows
packets of such flows to be directed to one or more queues associated with the VNIC id. This
implementation is supported only when TRUFLOW functionality is disabled.

Note: A VNIC represents a virtual interface in the hardware. It is a resource in the RX path of the chip
and is used to setup various target actions such as RSS, MAC filtering etc. for the physical function in
use.

11.6 Virtual Function Port Representors

The BNXT PMD supports the creation of VF port representors for the control and monitoring of BNXT
virtual function devices. Each port representor corresponds to a single virtual function of that device
that is connected to a VF. When there is no hardware flow offload, each packet transmitted by the VF
will be received by the corresponding representor. Similarly each packet that is sent to a representor
will be received by the VF. Applications can take advantage of this feature when SRIOV is enabled.
The representor will allow the first packet that is transmitted by the VF to be received by the DPDK
application which can then decide if the flow should be offloaded to the hardware. Once the flow is
offloaded in the hardware, any packet matching the flow will be received by the VF while the DPDK
application will not receive it any more. The BNXT PMD supports creation and handling of the port
representors when the PMD is initialized on a PF or trusted-VF. The user can specify the list of VF IDs
of the VFs for which the representors are needed by using the devargs option representor.:

-w DBDF,representor=[0,1,4]

Note that currently hot-plugging of representor ports is not supported so all the required representors
must be specified on the creation of the PF or the trusted VF.

11.5. Notes 51

Network Interface Controller Drivers, Release 20.08.0

11.7 Application Support

11.7.1 Firmware

The BNXT PMD supports the application to retrieve the firmware version.

testpmd> show port info (port_id)

Note that the applications cannot update the firmware using BNXT PMD.

11.7.2 Multiple Processes

When two or more DPDK applications (e.g., testpmd and dpdk-pdump) share a single instance of DPDK,
the BNXT PMD supports a single primary application and one or more secondary applications. Note
that the DPDK-layer (not the PMD) ensures there is only one primary application.

There are two modes:

Manual mode

• Application notifies whether it is primary or secondary using proc-type flag

• 1st process should be spawned with --proc-type=primary

• All subsequent processes should be spawned with --proc-type=secondary

Auto detection mode

• Application is using proc-type=auto flag

• A process is spawned as a secondary if a primary is already running

The BNXT PMD uses the info to skip a device initialization, i.e. performs a device initialization only
when being brought up by a primary application.

11.7.3 Runtime Queue Setup

Typically, a DPDK application allocates TX and RX queues statically: i.e. queues are allocated at
start. However, an application may want to increase (or decrease) the number of queues dynamically for
various reasons, e.g. power savings.

The BNXT PMD supports applications to increase or decrease queues at runtime.

testpmd> port config all (rxq|txq) (num_queues)

Note that a DPDK application must allocate default queues (one for TX and one for RX at minimum) at
initialization.

11.7.4 Descriptor Status

Applications may use the descriptor status for various reasons, e.g. for power savings. For example, an
application may stop polling and change to interrupt mode when the descriptor status shows no packets
to service for a while.

The BNXT PMD supports the application to retrieve both TX and RX descriptor status.

testpmd> show port (port_id) (rxq|txq) (queue_id) desc (desc_id) status

11.7. Application Support 52

Network Interface Controller Drivers, Release 20.08.0

11.7.5 Bonding

DPDK implements a light-weight library to allow PMDs to be bonded together and provide a single
logical PMD to the application.

testpmd -l 0-3 -n4 --vdev 'net_bonding0,mode=0,slave=<PCI B:D.F device 1>,slave=<PCI B:D.F device 2>,mac=XX:XX:XX:XX:XX:XX’ - --socket_num=1 - -i --port-topology=chained
(ex) testpmd -l 1,3,5,7,9 -n4 --vdev 'net_bonding0,mode=0,slave=0000:82:00.0,slave=0000:82:00.1,mac=00:1e:67:1d:fd:1d' - --socket-num=1 - -i --port-topology=chained

11.8 Vector Processing

Vector processing provides significantly improved performance over scalar processing (see Vector Pro-
cessor, here).

The BNXT PMD supports the vector processing using SSE (Streaming SIMD Extensions) instructions
on x86 platforms. It also supports NEON intrinsics for vector processing on ARM CPUs. The BNXT
vPMD (vector mode PMD) is available for Intel/AMD and ARM CPU architectures.

This improved performance comes from several optimizations:

• Batching

– TX: processing completions in bulk

– RX: allocating mbufs in bulk

• Chained mbufs are not supported, i.e. a packet should fit a single mbuf

• Some stateless offloads are not supported with vector processing

– TX: no offloads will be supported

– RX: reduced RX offloads (listed below) will be supported:

DEV_RX_OFFLOAD_VLAN_STRIP
DEV_RX_OFFLOAD_KEEP_CRC
DEV_RX_OFFLOAD_JUMBO_FRAME
DEV_RX_OFFLOAD_IPV4_CKSUM
DEV_RX_OFFLOAD_UDP_CKSUM
DEV_RX_OFFLOAD_TCP_CKSUM
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM
DEV_RX_OFFLOAD_RSS_HASH
DEV_RX_OFFLOAD_VLAN_FILTER

The BNXT Vector PMD is enabled in DPDK builds by default.

However, a decision to enable vector mode will be made when the port transitions from stopped to
started. Any TX offloads or some RX offloads (other than listed above) will disable the vector mode.
Offload configuration changes that impact vector mode must be made when the port is stopped.

Note that TX (or RX) vector mode can be enabled independently from RX (or TX) vector mode.

11.8. Vector Processing 53

Network Interface Controller Drivers, Release 20.08.0

11.9 Appendix

11.9.1 Supported Chipsets and Adapters

BCM5730x NetXtreme-C® Family of Ethernet Network Controllers

Information about Ethernet adapters in the NetXtreme family of adapters can be found in the NetX-
treme® Brand section of the Broadcom website.

• M150c ... Single-port 40/50 Gigabit Ethernet Adapter

• P150c ... Single-port 40/50 Gigabit Ethernet Adapter

• P225c ... Dual-port 10/25 Gigabit Ethernet Adapter

BCM574xx/575xx NetXtreme-E® Family of Ethernet Network Controllers

Information about Ethernet adapters in the NetXtreme family of adapters can be found in the NetX-
treme® Brand section of the Broadcom website.

• M125P Single-port OCP 2.0 10/25 Gigabit Ethernet Adapter

• M150P Single-port OCP 2.0 50 Gigabit Ethernet Adapter

• M150PM ... Single-port OCP 2.0 Multi-Host 50 Gigabit Ethernet
Adapter

• M210P Dual-port OCP 2.0 10 Gigabit Ethernet Adapter

• M210TP ... Dual-port OCP 2.0 10 Gigabit Ethernet Adapter

• M1100G ... Single-port OCP 2.0 10/25/50/100 Gigabit Ethernet
Adapter

• N150G Single-port OCP 3.0 50 Gigabit Ethernet Adapter

• M225P Dual-port OCP 2.0 10/25 Gigabit Ethernet Adapter

• N210P Dual-port OCP 3.0 10 Gigabit Ethernet Adapter

• N210TP ... Dual-port OCP 3.0 10 Gigabit Ethernet Adapter

• N225P Dual-port OCP 3.0 10/25 Gigabit Ethernet Adapter

• N250G Dual-port OCP 3.0 50 Gigabit Ethernet Adapter

• N410SG ... Quad-port OCP 3.0 10 Gigabit Ethernet Adapter

• N410SGBT . Quad-port OCP 3.0 10 Gigabit Ethernet Adapter

• N425G Quad-port OCP 3.0 10/25 Gigabit Ethernet Adapter

• N1100G ... Single-port OCP 3.0 10/25/50/100 Gigabit Ethernet
Adapter

• N2100G ... Dual-port OCP 3.0 10/25/50/100 Gigabit Ethernet
Adapter

• N2200G ... Dual-port OCP 3.0 10/25/50/100/200 Gigabit Ethernet
Adapter

11.9. Appendix 54

https://www.broadcom.com/products/ethernet-connectivity/network-adapters/
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/
http://www.broadcom.com/
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/
http://www.broadcom.com/

Network Interface Controller Drivers, Release 20.08.0

• P150P Single-port 50 Gigabit Ethernet Adapter

• P210P Dual-port 10 Gigabit Ethernet Adapter

• P210TP ... Dual-port 10 Gigabit Ethernet Adapter

• P225P Dual-port 10/25 Gigabit Ethernet Adapter

• P410SG ... Quad-port 10 Gigabit Ethernet Adapter

• P410SGBT . Quad-port 10 Gigabit Ethernet Adapter

• P425G Quad-port 10/25 Gigabit Ethernet Adapter

• P1100G ... Single-port 10/25/50/100 Gigabit Ethernet Adapter

• P2100G ... Dual-port 10/25/50/100 Gigabit Ethernet Adapter

• P2200G ... Dual-port 10/25/50/100/200 Gigabit Ethernet Adapter

BCM588xx NetXtreme-S® Family of SmartNIC Network Controllers

Information about the Stingray family of SmartNIC adapters can be found in the Stingray® Brand sec-
tion of the Broadcom website.

• PS225 ... Dual-port 25 Gigabit Ethernet SmartNIC

BCM5873x StrataGX® Family of Communications Processors

These ARM-based processors target a broad range of networking applications, including virtual CPE
(vCPE) and NFV appliances, 10G service routers and gateways, control plane processing for Ethernet
switches, and network-attached storage (NAS).

• StrataGX BCM58732 ... Octal-Core 3.0GHz 64-bit ARM®v8
Cortex®-A72 based SoC

11.9. Appendix 55

https://www.broadcom.com/products/ethernet-connectivity/smartnic/
https://www.broadcom.com/products/ethernet-connectivity/smartnic/
http://www.broadcom.com/

CHAPTER

TWELVE

CXGBE POLL MODE DRIVER

The CXGBE PMD (librte_pmd_cxgbe) provides poll mode driver support for Chelsio Terminator
10/25/40/100 Gbps family of adapters. CXGBE PMD has support for the latest Linux and FreeBSD
operating systems.

CXGBEVF PMD provides poll mode driver support for SR-IOV Virtual functions and has support for
the latest Linux operating systems.

More information can be found at Chelsio Communications Official Website.

12.1 Features

CXGBE and CXGBEVF PMD has support for:

• Multiple queues for TX and RX

• Receiver Side Steering (RSS) Receiver Side Steering (RSS) on IPv4, IPv6, IPv4-TCP/UDP, IPv6-
TCP/UDP. For 4-tuple, enabling ‘RSS on TCP’ and ‘RSS on TCP + UDP’ is supported.

• VLAN filtering

• Checksum offload

• Promiscuous mode

• All multicast mode

• Port hardware statistics

• Jumbo frames

• Flow API - Support for both Wildcard (LE-TCAM) and Exact (HASH) match filters.

12.2 Limitations

The Chelsio Terminator series of devices provide two/four ports but expose a single PCI bus address,
thus, librte_pmd_cxgbe registers itself as a PCI driver that allocates one Ethernet device per detected
port.

For this reason, one cannot whitelist/blacklist a single port without whitelisting/blacklisting the other
ports on the same device.

56

http://www.chelsio.com

Network Interface Controller Drivers, Release 20.08.0

12.3 Supported Chelsio T5 NICs

• 1G NICs: T502-BT

• 10G NICs: T520-BT, T520-CR, T520-LL-CR, T520-SO-CR, T540-CR

• 40G NICs: T580-CR, T580-LP-CR, T580-SO-CR

• Other T5 NICs: T522-CR

12.4 Supported Chelsio T6 NICs

• 25G NICs: T6425-CR, T6225-CR, T6225-LL-CR, T6225-SO-CR

• 100G NICs: T62100-CR, T62100-LP-CR, T62100-SO-CR

12.5 Supported SR-IOV Chelsio NICs

SR-IOV virtual functions are supported on all the Chelsio NICs listed in Supported Chelsio T5 NICs and
Supported Chelsio T6 NICs.

12.6 Prerequisites

• Requires firmware version 1.24.11.0 and higher. Visit Chelsio Download Center to get latest
firmware bundled with the latest Chelsio Unified Wire package.

For Linux, installing and loading the latest cxgb4 kernel driver from the Chelsio Unified Wire
package should get you the latest firmware. More information can be obtained from the User
Guide that is bundled with the Chelsio Unified Wire package.

For FreeBSD, the latest firmware obtained from the Chelsio Unified Wire package must be man-
ually flashed via cxgbetool available in FreeBSD source repository.

Instructions on how to manually flash the firmware are given in section Linux Installation for
Linux and section FreeBSD Installation for FreeBSD.

12.7 Pre-Installation Configuration

12.7.1 Config File Options

The following options can be modified in the .config file. Please note that enabling debugging options
may affect system performance.

• CONFIG_RTE_LIBRTE_CXGBE_PMD (default y)

Toggle compilation of librte_pmd_cxgbe driver.

Note: This controls compilation of both CXGBE and CXGBEVF PMD.

12.3. Supported Chelsio T5 NICs 57

http://service.chelsio.com

Network Interface Controller Drivers, Release 20.08.0

12.7.2 Runtime Options

The following devargs options can be enabled at runtime. They must be passed as part of EAL
arguments. For example,

testpmd -w 02:00.4,keep_ovlan=1 -- -i

Common Runtime Options

• keep_ovlan (default 0)

Toggle behavior to keep/strip outer VLAN in Q-in-Q packets. If enabled, the outer VLAN tag is
preserved in Q-in-Q packets. Otherwise, the outer VLAN tag is stripped in Q-in-Q packets.

• tx_mode_latency (default 0)

When set to 1, Tx doesn’t wait for max number of packets to get coalesced and sends the packets
immediately at the end of the current Tx burst. When set to 0, Tx waits across multiple Tx bursts
until the max number of packets have been coalesced. In this case, Tx only sends the coalesced
packets to hardware once the max coalesce limit has been reached.

CXGBE VF Only Runtime Options

• force_link_up (default 0)

When set to 1, CXGBEVF PMD always forces link as up for all VFs on underlying Chelsio NICs.
This enables multiple VFs on the same NIC to send traffic to each other even when the physical
link is down.

CXGBE PF Only Runtime Options

• filtermode (default 0)

Apart from the 4-tuple (IP src/dst addresses and TCP/UDP src/dst port addresses), there are only
40-bits available to match other fields in packet headers. So, filtermode devarg allows user to
dynamically select a 40-bit supported match field combination for LETCAM (wildcard) filters.

Default value of 0 makes driver pick the combination configured in the firmware configuration file
on the adapter.

The supported flags and their corresponding values are shown in table below. These flags can be
OR’d to create 1 of the multiple supported combinations for LETCAM filters.

FLAG VALUE
Physical Port 0x1
PFVF 0x2
Destination MAC 0x4
Ethertype 0x8
Inner VLAN 0x10
Outer VLAN 0x20
IP TOS 0x40
IP Protocol 0x80

12.7. Pre-Installation Configuration 58

Network Interface Controller Drivers, Release 20.08.0

The supported filtermode combinations and their corresponding OR’d values are shown in
table below.

FILTERMODE COMBINATIONS VALUE
Protocol, TOS, Outer VLAN, Port 0xE1
Protocol, TOS, Outer VLAN 0xE0
Protocol, TOS, Inner VLAN, Port 0xD1
Protocol, TOS, Inner VLAN 0xD0
Protocol, TOS, PFVF, Port 0xC3
Protocol, TOS, PFVF 0xC2
Protocol, TOS, Port 0xC1
Protocol, TOS 0xC0
Protocol, Outer VLAN, Port 0xA1
Protocol, Outer VLAN 0xA0
Protocol, Inner VLAN, Port 0x91
Protocol, Inner VLAN 0x90
Protocol, Ethertype, DstMAC, Port 0x8D
Protocol, Ethertype, DstMAC 0x8C
Protocol, Ethertype, Port 0x89
Protocol, Ethertype 0x88
Protocol, DstMAC, PFVF, Port 0x87
Protocol, DstMAC, PFVF 0x86
Protocol, DstMAC, Port 0x85
Protocol, DstMAC 0x84
Protocol, PFVF, Port 0x83
Protocol, PFVF 0x82
Protocol, Port 0x81
Protocol 0x80
TOS, Outer VLAN, Port 0x61
TOS, Outer VLAN 0x60
TOS, Inner VLAN, Port 0x51
TOS, Inner VLAN 0x50
TOS, Ethertype, DstMAC, Port 0x4D
TOS, Ethertype, DstMAC 0x4C
TOS, Ethertype, Port 0x49
TOS, Ethertype 0x48
TOS, DstMAC, PFVF, Port 0x47
TOS, DstMAC, PFVF 0x46
TOS, DstMAC, Port 0x45
TOS, DstMAC 0x44
TOS, PFVF, Port 0x43
TOS, PFVF 0x42
TOS, Port 0x41
TOS 0x40
Outer VLAN, Inner VLAN, Port 0x31
Outer VLAN, Ethertype, Port 0x29
Outer VLAN, Ethertype 0x28
Outer VLAN, DstMAC, Port 0x25
Outer VLAN, DstMAC 0x24

Continued on next page

12.7. Pre-Installation Configuration 59

Network Interface Controller Drivers, Release 20.08.0

Table 12.1 – continued from previous page
FILTERMODE COMBINATIONS VALUE
Outer VLAN, Port 0x21
Outer VLAN 0x20
Inner VLAN, Ethertype, Port 0x19
Inner VLAN, Ethertype 0x18
Inner VLAN, DstMAC, Port 0x15
Inner VLAN, DstMAC 0x14
Inner VLAN, Port 0x11
Inner VLAN 0x10
Ethertype, DstMAC, Port 0xD
Ethertype, DstMAC 0xC
Ethertype, PFVF, Port 0xB
Ethertype, PFVF 0xA
Ethertype, Port 0x9
Ethertype 0x8
DstMAC, PFVF, Port 0x7
DstMAC, PFVF 0x6
DstMAC, Port 0x5
Destination MAC 0x4
PFVF, Port 0x3
PFVF 0x2

Physical Port 0x1

For example, to enable matching ethertype field in Ethernet header, and protocol field in
IPv4 header, the filtermode combination must be given as:

testpmd -w 02:00.4,filtermode=0x88 -- -i

• filtermask (default 0)

filtermask devarg works similar to filtermode, but is used to configure a filter mode
combination for HASH (exact-match) filters.

Note: The combination chosen for filtermask devarg must be a subset of the combination
chosen for filtermode devarg.

Default value of 0 makes driver pick the combination configured in the firmware configuration file
on the adapter.

Note that the filter rule will only be inserted in HASH region, if the rule contains all the fields
specified in the filtermask combination. Otherwise, the filter rule will get inserted in LET-
CAM region.

The same combination list explained in the tables in filtermode devarg section earlier applies
for filtermask devarg, as well.

For example, to enable matching only protocol field in IPv4 header, the filtermask combina-
tion must be given as:

testpmd -w 02:00.4,filtermode=0x88,filtermask=0x80 -- -i

12.7. Pre-Installation Configuration 60

Network Interface Controller Drivers, Release 20.08.0

12.8 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

12.9 Linux

12.9.1 Linux Installation

Steps to manually install the latest firmware from the downloaded Chelsio Unified Wire package for
Linux operating system are as follows:

1. Load the kernel module:

modprobe cxgb4

2. Use ifconfig to get the interface name assigned to Chelsio card:

ifconfig -a | grep "00:07:43"

Example output:

p1p1 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C0
p1p2 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C8

3. Install cxgbtool:

cd <path_to_uwire>/tools/cxgbtool
make install

4. Use cxgbtool to load the firmware config file onto the card:

cxgbtool p1p1 loadcfg <path_to_uwire>/src/network/firmware/t5-config.txt

5. Use cxgbtool to load the firmware image onto the card:

cxgbtool p1p1 loadfw <path_to_uwire>/src/network/firmware/t5fw-*.bin

6. Unload and reload the kernel module:

modprobe -r cxgb4
modprobe cxgb4

7. Verify with ethtool:

ethtool -i p1p1 | grep "firmware"

Example output:

firmware-version: 1.24.11.0, TP 0.1.23.2

12.9.2 Running testpmd

This section demonstrates how to launch testpmd with Chelsio devices managed by librte_pmd_cxgbe
in Linux operating system.

1. Load the kernel module:

modprobe cxgb4

2. Get the PCI bus addresses of the interfaces bound to cxgb4 driver:

dmesg | tail -2

12.8. Driver compilation and testing 61

Network Interface Controller Drivers, Release 20.08.0

Example output:

cxgb4 0000:02:00.4 p1p1: renamed from eth0
cxgb4 0000:02:00.4 p1p2: renamed from eth1

Note: Both the interfaces of a Chelsio 2-port adapter are bound to the same PCI bus address.

3. Unload the kernel module:

modprobe -ar cxgb4 csiostor

4. Running testpmd

Follow instructions available in the document compiling and testing a PMD for a NIC to run
testpmd.

Note: Currently, CXGBE PMD only supports the binding of PF4 for Chelsio NICs.

Example output:

[...]
EAL: PCI device 0000:02:00.4 on NUMA socket -1
EAL: probe driver: 1425:5401 rte_cxgbe_pmd
EAL: PCI memory mapped at 0x7fd7c0200000
EAL: PCI memory mapped at 0x7fd77cdfd000
EAL: PCI memory mapped at 0x7fd7c10b7000
PMD: rte_cxgbe_pmd: fw: 1.24.11.0, TP: 0.1.23.2
PMD: rte_cxgbe_pmd: Coming up as MASTER: Initializing adapter
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:07:43:2D:EA:C0
Configuring Port 1 (socket 0)
Port 1: 00:07:43:2D:EA:C8
Checking link statuses...
PMD: rte_cxgbe_pmd: Port0: passive DA port module inserted
PMD: rte_cxgbe_pmd: Port1: passive DA port module inserted
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

Note: Flow control pause TX/RX is disabled by default and can be enabled via testpmd. Refer
section Enable/Disable Flow Control for more details.

12.9.3 Configuring SR-IOV Virtual Functions

This section demonstrates how to enable SR-IOV virtual functions on Chelsio NICs and demonstrates
how to run testpmd with SR-IOV virtual functions.

1. Load the kernel module:

modprobe cxgb4

2. Get the PCI bus addresses of the interfaces bound to cxgb4 driver:

dmesg | tail -2

12.9. Linux 62

Network Interface Controller Drivers, Release 20.08.0

Example output:

cxgb4 0000:02:00.4 p1p1: renamed from eth0
cxgb4 0000:02:00.4 p1p2: renamed from eth1

Note: Both the interfaces of a Chelsio 2-port adapter are bound to the same PCI bus address.

3. Use ifconfig to get the interface name assigned to Chelsio card:

ifconfig -a | grep "00:07:43"

Example output:

p1p1 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C0
p1p2 Link encap:Ethernet HWaddr 00:07:43:2D:EA:C8

4. Bring up the interfaces:

ifconfig p1p1 up
ifconfig p1p2 up

5. Instantiate SR-IOV Virtual Functions. PF0..3 can be used for SR-IOV VFs. Multiple VFs can be
instantiated on each of PF0..3. To instantiate one SR-IOV VF on each PF0 and PF1:

echo 1 > /sys/bus/pci/devices/0000\:02\:00.0/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000\:02\:00.1/sriov_numvfs

6. Get the PCI bus addresses of the virtual functions:

lspci | grep -i "Chelsio" | grep -i "VF"

Example output:

02:01.0 Ethernet controller: Chelsio Communications Inc T540-CR Unified Wire Ethernet Controller [VF]
02:01.1 Ethernet controller: Chelsio Communications Inc T540-CR Unified Wire Ethernet Controller [VF]

7. Running testpmd

Follow instructions available in the document compiling and testing a PMD for a NIC to bind
virtual functions and run testpmd.

Example output:

[...]
EAL: PCI device 0000:02:01.0 on NUMA socket 0
EAL: probe driver: 1425:5803 net_cxgbevf
PMD: rte_cxgbe_pmd: Firmware version: 1.24.11.0
PMD: rte_cxgbe_pmd: TP Microcode version: 0.1.23.2
PMD: rte_cxgbe_pmd: Chelsio rev 0
PMD: rte_cxgbe_pmd: No bootstrap loaded
PMD: rte_cxgbe_pmd: No Expansion ROM loaded
PMD: rte_cxgbe_pmd: 0000:02:01.0 Chelsio rev 0 1G/10GBASE-SFP
EAL: PCI device 0000:02:01.1 on NUMA socket 0
EAL: probe driver: 1425:5803 net_cxgbevf
PMD: rte_cxgbe_pmd: Firmware version: 1.24.11.0
PMD: rte_cxgbe_pmd: TP Microcode version: 0.1.23.2
PMD: rte_cxgbe_pmd: Chelsio rev 0
PMD: rte_cxgbe_pmd: No bootstrap loaded
PMD: rte_cxgbe_pmd: No Expansion ROM loaded
PMD: rte_cxgbe_pmd: 0000:02:01.1 Chelsio rev 0 1G/10GBASE-SFP
Configuring Port 0 (socket 0)
Port 0: 06:44:29:44:40:00
Configuring Port 1 (socket 0)
Port 1: 06:44:29:44:40:10
Checking link statuses...

12.9. Linux 63

Network Interface Controller Drivers, Release 20.08.0

Done
testpmd>

12.10 FreeBSD

12.10.1 FreeBSD Installation

Steps to manually install the latest firmware from the downloaded Chelsio Unified Wire package for
FreeBSD operating system are as follows:

1. Load the kernel module:

kldload if_cxgbe

2. Use dmesg to get the t5nex instance assigned to the Chelsio card:

dmesg | grep "t5nex"

Example output:

t5nex0: <Chelsio T520-CR> irq 16 at device 0.4 on pci2
cxl0: <port 0> on t5nex0
cxl1: <port 1> on t5nex0
t5nex0: PCIe x8, 2 ports, 14 MSI-X interrupts, 31 eq, 13 iq

In the example above, a Chelsio T520-CR card is bound to a t5nex0 instance.

3. Install cxgbetool from FreeBSD source repository:

cd <path_to_FreeBSD_source>/tools/tools/cxgbetool/
make && make install

4. Use cxgbetool to load the firmware image onto the card:

cxgbetool t5nex0 loadfw <path_to_uwire>/src/network/firmware/t5fw-*.bin

5. Unload and reload the kernel module:

kldunload if_cxgbe
kldload if_cxgbe

6. Verify with sysctl:

sysctl -a | grep "t5nex" | grep "firmware"

Example output:

dev.t5nex.0.firmware_version: 1.24.11.0

12.10.2 Running testpmd

This section demonstrates how to launch testpmd with Chelsio devices managed by librte_pmd_cxgbe
in FreeBSD operating system.

1. Change to DPDK source directory where the target has been compiled in section Driver compila-
tion and testing:

cd <DPDK-source-directory>

2. Copy the contigmem kernel module to /boot/kernel directory:

cp x86_64-native-freebsd-clang/kmod/contigmem.ko /boot/kernel/

12.10. FreeBSD 64

Network Interface Controller Drivers, Release 20.08.0

3. Add the following lines to /boot/loader.conf:

reserve 2 x 1G blocks of contiguous memory using contigmem driver
hw.contigmem.num_buffers=2
hw.contigmem.buffer_size=1073741824
load contigmem module during boot process
contigmem_load="YES"

The above lines load the contigmem kernel module during boot process and allocate 2 x 1G blocks
of contiguous memory to be used for DPDK later on. This is to avoid issues with potential memory
fragmentation during later system up time, which may result in failure of allocating the contiguous
memory required for the contigmem kernel module.

4. Restart the system and ensure the contigmem module is loaded successfully:

reboot
kldstat | grep "contigmem"

Example output:

2 1 0xffffffff817f1000 3118 contigmem.ko

5. Repeat step 1 to ensure that you are in the DPDK source directory.

6. Load the cxgbe kernel module:

kldload if_cxgbe

7. Get the PCI bus addresses of the interfaces bound to t5nex driver:

pciconf -l | grep "t5nex"

Example output:

t5nex0@pci0:2:0:4: class=0x020000 card=0x00001425 chip=0x54011425 rev=0x00

In the above example, the t5nex0 is bound to 2:0:4 bus address.

Note: Both the interfaces of a Chelsio 2-port adapter are bound to the same PCI bus address.

8. Unload the kernel module:

kldunload if_cxgbe

9. Set the PCI bus addresses to hw.nic_uio.bdfs kernel environment parameter:

kenv hw.nic_uio.bdfs="2:0:4"

This automatically binds 2:0:4 to nic_uio kernel driver when it is loaded in the next step.

Note: Currently, CXGBE PMD only supports the binding of PF4 for Chelsio NICs.

10. Load nic_uio kernel driver:

kldload ./x86_64-native-freebsd-clang/kmod/nic_uio.ko

11. Start testpmd with basic parameters:

./x86_64-native-freebsd-clang/app/testpmd -l 0-3 -n 4 -w 0000:02:00.4 -- -i

Example output:

12.10. FreeBSD 65

Network Interface Controller Drivers, Release 20.08.0

[...]
EAL: PCI device 0000:02:00.4 on NUMA socket 0
EAL: probe driver: 1425:5401 rte_cxgbe_pmd
EAL: PCI memory mapped at 0x8007ec000
EAL: PCI memory mapped at 0x842800000
EAL: PCI memory mapped at 0x80086c000
PMD: rte_cxgbe_pmd: fw: 1.24.11.0, TP: 0.1.23.2
PMD: rte_cxgbe_pmd: Coming up as MASTER: Initializing adapter
Interactive-mode selected
Configuring Port 0 (socket 0)
Port 0: 00:07:43:2D:EA:C0
Configuring Port 1 (socket 0)
Port 1: 00:07:43:2D:EA:C8
Checking link statuses...
PMD: rte_cxgbe_pmd: Port0: passive DA port module inserted
PMD: rte_cxgbe_pmd: Port1: passive DA port module inserted
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

Note: Flow control pause TX/RX is disabled by default and can be enabled via testpmd. Refer section
Enable/Disable Flow Control for more details.

12.11 Sample Application Notes

12.11.1 Enable/Disable Flow Control

Flow control pause TX/RX is disabled by default and can be enabled via testpmd as follows:

testpmd> set flow_ctrl rx on tx on 0 0 0 0 mac_ctrl_frame_fwd off autoneg on 0
testpmd> set flow_ctrl rx on tx on 0 0 0 0 mac_ctrl_frame_fwd off autoneg on 1

To disable again, run:

testpmd> set flow_ctrl rx off tx off 0 0 0 0 mac_ctrl_frame_fwd off autoneg off 0
testpmd> set flow_ctrl rx off tx off 0 0 0 0 mac_ctrl_frame_fwd off autoneg off 1

12.11.2 Jumbo Mode

There are two ways to enable sending and receiving of jumbo frames via testpmd. One method involves
using the mtu command, which changes the mtu of an individual port without having to stop the selected
port. Another method involves stopping all the ports first and then running max-pkt-len command to
configure the mtu of all the ports with a single command.

• To configure each port individually, run the mtu command as follows:

testpmd> port config mtu 0 9000
testpmd> port config mtu 1 9000

• To configure all the ports at once, stop all the ports first and run the max-pkt-len command as
follows:

testpmd> port stop all
testpmd> port config all max-pkt-len 9000

12.11. Sample Application Notes 66

CHAPTER

THIRTEEN

DPAA POLL MODE DRIVER

The DPAA NIC PMD (librte_pmd_dpaa) provides poll mode driver support for the inbuilt NIC found
in the NXP DPAA SoC family.

More information can be found at NXP Official Website.

13.1 NXP DPAA (Data Path Acceleration Architecture - Gen 1)

This section provides an overview of the NXP DPAA architecture and how it is integrated into the
DPDK.

Contents summary

• DPAA overview

• DPAA driver architecture overview

13.1.1 DPAA Overview

Reference: FSL DPAA Architecture.

The QorIQ Data Path Acceleration Architecture (DPAA) is a set of hardware components on specific
QorIQ series multicore processors. This architecture provides the infrastructure to support simplified
sharing of networking interfaces and accelerators by multiple CPU cores, and the accelerators them-
selves.

DPAA includes:

• Cores

• Network and packet I/O

• Hardware offload accelerators

• Infrastructure required to facilitate flow of packets between the components above

Infrastructure components are:

• The Queue Manager (QMan) is a hardware accelerator that manages frame queues. It allows CPUs
and other accelerators connected to the SoC datapath to enqueue and dequeue ethernet frames,
thus providing the infrastructure for data exchange among CPUs and datapath accelerators.

• The Buffer Manager (BMan) is a hardware buffer pool management block that allows software
and accelerators on the datapath to acquire and release buffers in order to build frames.

67

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM
http://www.nxp.com/assets/documents/data/en/white-papers/QORIQDPAAWP.pdf

Network Interface Controller Drivers, Release 20.08.0

Hardware accelerators are:

• SEC - Cryptographic accelerator

• PME - Pattern matching engine

The Network and packet I/O component:

• The Frame Manager (FMan) is a key component in the DPAA and makes use of the DPAA infras-
tructure (QMan and BMan). FMan is responsible for packet distribution and policing. Each frame
can be parsed, classified and results may be attached to the frame. This meta data can be used to
select particular QMan queue, which the packet is forwarded to.

13.2 DPAA DPDK - Poll Mode Driver Overview

This section provides an overview of the drivers for DPAA:

• Bus driver and associated “DPAA infrastructure” drivers

• Functional object drivers (such as Ethernet).

Brief description of each driver is provided in layout below as well as in the following sections.

+------------+
| DPDK DPAA |
| PMD |
+-----+------+

|
+-----+------+ +---------------+
: Ethernet :.......| DPDK DPAA |

. : (FMAN) : | Mempool driver|
. +---+---+----+ | (BMAN) |

. ^ | +-----+---------+
. | |<enqueue, .

. | | dequeue> .
. | | .

. +---+---V----+ .
.: Portal drv : .

. . : : .
. . +-----+------+ .

. . : QMAN : .
. . : Driver : .

+----+------+-------+ +-----+------+ .
| DPDK DPAA Bus | | .
| driver |....................|.....................
| /bus/dpaa | |
+-------------------+ |

|
========================== HARDWARE =====|========================

PHY
===|========================

In the above representation, solid lines represent components which interface with DPDK RTE Frame-
work and dotted lines represent DPAA internal components.

13.2.1 DPAA Bus driver

The DPAA bus driver is a rte_bus driver which scans the platform like bus. Key functions include:

• Scanning and parsing the various objects and adding them to their respective device list.

13.2. DPAA DPDK - Poll Mode Driver Overview 68

Network Interface Controller Drivers, Release 20.08.0

• Performing probe for available drivers against each scanned device

• Creating necessary ethernet instance before passing control to the PMD

13.2.2 DPAA NIC Driver (PMD)

DPAA PMD is traditional DPDK PMD which provides necessary interface between RTE framework
and DPAA internal components/drivers.

• Once devices have been identified by DPAA Bus, each device is associated with the PMD

• PMD is responsible for implementing necessary glue layer between RTE APIs and lower level
QMan and FMan blocks. The Ethernet driver is bound to a FMAN port and implements the
interfaces needed to connect the DPAA network interface to the network stack. Each FMAN Port
corresponds to a DPDK network interface.

Features

Features of the DPAA PMD are:

• Multiple queues for TX and RX

• Receive Side Scaling (RSS)

• Packet type information

• Checksum offload

• Promiscuous mode

13.2.3 DPAA Mempool Driver

DPAA has a hardware offloaded buffer pool manager, called BMan, or Buffer Manager.

• Using standard Mempools operations RTE API, the mempool driver interfaces with RTE to service
each mempool creation, deletion, buffer allocation and deallocation requests.

• Each FMAN instance has a BMan pool attached to it during initialization. Each Tx frame can be
automatically released by hardware, if allocated from this pool.

13.3 Whitelisting & Blacklisting

For blacklisting a DPAA device, following commands can be used.

<dpdk app> <EAL args> -b "dpaa_bus:fmX-macY" -- ...
e.g. "dpaa_bus:fm1-mac4"

13.4 Supported DPAA SoCs

• LS1043A/LS1023A

• LS1046A/LS1026A

13.3. Whitelisting & Blacklisting 69

Network Interface Controller Drivers, Release 20.08.0

13.5 Prerequisites

See ../platform/dpaa for setup information

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

Note: Some part of dpaa bus code (qbman and fman - library) routines are dual licensed (BSD &
GPLv2), however they are used as BSD in DPDK in userspace.

13.6 Pre-Installation Configuration

13.6.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging options
may affect system performance.

• CONFIG_RTE_LIBRTE_DPAA_BUS (default y)

Toggle compilation of the librte_bus_dpaa driver.

• CONFIG_RTE_LIBRTE_DPAA_PMD (default y)

Toggle compilation of the librte_pmd_dpaa driver.

• CONFIG_RTE_LIBRTE_DPAA_DEBUG_DRIVER (default n)

Toggles display of bus configurations and enables a debugging queue to fetch error (Rx/Tx) pack-
ets to driver. By default, packets with errors (like wrong checksum) are dropped by the hardware.

• CONFIG_RTE_LIBRTE_DPAA_HWDEBUG (default n)

Enables debugging of the Queue and Buffer Manager layer which interacts with the DPAA hard-
ware.

13.6.2 Environment Variables

DPAA drivers uses the following environment variables to configure its state during application initial-
ization:

• DPAA_NUM_RX_QUEUES (default 1)

This defines the number of Rx queues configured for an application, per port. Hardware would
distribute across these many number of queues on Rx of packets. In case the application is config-
ured to use lesser number of queues than configured above, it might result in packet loss (because
of distribution).

• DPAA_PUSH_QUEUES_NUMBER (default 4)

This defines the number of High performance queues to be used for ethdev Rx. These queues use
one private HW portal per queue configured, so they are limited in the system. The first configured
ethdev queues will be automatically be assigned from the these high perf PUSH queues. Any
queue configuration beyond that will be standard Rx queues. The application can choose to change
their number if HW portals are limited. The valid values are from ‘0’ to ‘4’. The values shall be

13.5. Prerequisites 70

Network Interface Controller Drivers, Release 20.08.0

set to ‘0’ if the application want to use eventdev with DPAA device. Currently these queues are
not used for LS1023/LS1043 platform by default.

13.7 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

1. Running testpmd:

Follow instructions available in the document compiling and testing a PMD for a NIC to run
testpmd.

Example output:

./arm64-dpaa-linux-gcc/testpmd -c 0xff -n 1 \
-- -i --portmask=0x3 --nb-cores=1 --no-flush-rx

.....
EAL: Registered [pci] bus.
EAL: Registered [dpaa] bus.
EAL: Detected 4 lcore(s)
.....
EAL: dpaa: Bus scan completed
.....
Configuring Port 0 (socket 0)
Port 0: 00:00:00:00:00:01
Configuring Port 1 (socket 0)
Port 1: 00:00:00:00:00:02
.....
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

13.8 Limitations

13.8.1 Platform Requirement

DPAA drivers for DPDK can only work on NXP SoCs as listed in the Supported DPAA SoCs.

13.8.2 Maximum packet length

The DPAA SoC family support a maximum of a 10240 jumbo frame. The value is fixed and cannot be
changed. So, even when the rxmode.max_rx_pkt_len member of struct rte_eth_conf is
set to a value lower than 10240, frames up to 10240 bytes can still reach the host interface.

13.8.3 Multiprocess Support

Current version of DPAA driver doesn’t support multi-process applications where I/O is performed using
secondary processes. This feature would be implemented in subsequent versions.

13.7. Driver compilation and testing 71

CHAPTER

FOURTEEN

DPAA2 POLL MODE DRIVER

The DPAA2 NIC PMD (librte_pmd_dpaa2) provides poll mode driver support for the inbuilt NIC
found in the NXP DPAA2 SoC family.

More information can be found at NXP Official Website.

14.1 NXP DPAA2 (Data Path Acceleration Architecture Gen2)

This section provides an overview of the NXP DPAA2 architecture and how it is integrated into the
DPDK.

Contents summary

• DPAA2 overview

• Overview of DPAA2 objects

• DPAA2 driver architecture overview

14.1.1 DPAA2 Overview

Reference: FSL MC BUS in Linux Kernel.

DPAA2 is a hardware architecture designed for high-speed network packet processing. DPAA2 consists
of sophisticated mechanisms for processing Ethernet packets, queue management, buffer management,
autonomous L2 switching, virtual Ethernet bridging, and accelerator (e.g. crypto) sharing.

A DPAA2 hardware component called the Management Complex (or MC) manages the DPAA2 hard-
ware resources. The MC provides an object-based abstraction for software drivers to use the DPAA2
hardware.

The MC uses DPAA2 hardware resources such as queues, buffer pools, and network ports to create
functional objects/devices such as network interfaces, an L2 switch, or accelerator instances.

The MC provides memory-mapped I/O command interfaces (MC portals) which DPAA2 software
drivers use to operate on DPAA2 objects:

The diagram below shows an overview of the DPAA2 resource management architecture:

+--------------------------------------+
| OS |
| DPAA2 drivers |
| | |
+-----------------------------|--------+

|

72

http://www.nxp.com/products/microcontrollers-and-processors/arm-processors/qoriq-arm-processors:QORIQ-ARM
https://www.kernel.org/doc/readme/drivers-staging-fsl-mc-README.txt

Network Interface Controller Drivers, Release 20.08.0

| (create,discover,connect
| config,use,destroy)
|

DPAA2 |
+------------------------| mc portal |-+
| | |
| +- - - - - - - - - - - - -V- - -+ |
	Management Complex (MC)	
+- - - - - - - - - - - - - - - -+		
Hardware Hardware		
Resources Objects		
--------- -------		
-queues -DPRC		
-buffer pools -DPMCP		
-Eth MACs/ports -DPIO		
-network interface -DPNI		
profiles -DPMAC		
-queue portals -DPBP		
-MC portals ...		
...		
+--------------------------------------+

The MC mediates operations such as create, discover, connect, configuration, and destroy. Fast-path
operations on data, such as packet transmit/receive, are not mediated by the MC and are done directly
using memory mapped regions in DPIO objects.

14.1.2 Overview of DPAA2 Objects

The section provides a brief overview of some key DPAA2 objects. A simple scenario is described
illustrating the objects involved in creating a network interfaces.

DPRC (Datapath Resource Container)

A DPRC is a container object that holds all the other types of DPAA2 objects. In the
example diagram below there are 8 objects of 5 types (DPMCP, DPIO, DPBP, DPNI, and
DPMAC) in the container.

+---+
| DPRC |
| |
| +-------+ +-------+ +-------+ +-------+ +-------+ |
| | DPMCP | | DPIO | | DPBP | | DPNI | | DPMAC | |
| +-------+ +-------+ +-------+ +---+---+ +---+---+ |
| | DPMCP | | DPIO | |
| +-------+ +-------+ |
| | DPMCP | |
| +-------+ |
| |
+---+

From the point of view of an OS, a DPRC behaves similar to a plug and play bus, like PCI. DPRC
commands can be used to enumerate the contents of the DPRC, discover the hardware objects present
(including mappable regions and interrupts).

DPRC.1 (bus)
|
+--+--------+-------+-------+-------+

14.1. NXP DPAA2 (Data Path Acceleration Architecture Gen2) 73

Network Interface Controller Drivers, Release 20.08.0

| | | | |
DPMCP.1 DPIO.1 DPBP.1 DPNI.1 DPMAC.1
DPMCP.2 DPIO.2
DPMCP.3

Hardware objects can be created and destroyed dynamically, providing the ability to hot plug/unplug
objects in and out of the DPRC.

A DPRC has a mappable MMIO region (an MC portal) that can be used to send MC commands. It has
an interrupt for status events (like hotplug).

All objects in a container share the same hardware “isolation context”. This means that with respect to
an IOMMU the isolation granularity is at the DPRC (container) level, not at the individual object level.

DPRCs can be defined statically and populated with objects via a config file passed to the MC when
firmware starts it. There is also a Linux user space tool called “restool” that can be used to create/destroy
containers and objects dynamically.

14.1.3 DPAA2 Objects for an Ethernet Network Interface

A typical Ethernet NIC is monolithic– the NIC device contains TX/RX queuing mechanisms, config-
uration mechanisms, buffer management, physical ports, and interrupts. DPAA2 uses a more granular
approach utilizing multiple hardware objects. Each object provides specialized functions. Groups of
these objects are used by software to provide Ethernet network interface functionality. This approach
provides efficient use of finite hardware resources, flexibility, and performance advantages.

The diagram below shows the objects needed for a simple network interface configuration on a system
with 2 CPUs.

+---+---+ +---+---+
CPU0 CPU1

+---+---+ +---+---+
| |

+---+---+ +---+---+
DPIO DPIO

+---+---+ +---+---+
\ /
\ /
\ /

+---+---+
DPNI --- DPBP,DPMCP

+---+---+
|
|

+---+---+
DPMAC

+---+---+
|

port/PHY

Below the objects are described. For each object a brief description is provided along with a summary
of the kinds of operations the object supports and a summary of key resources of the object (MMIO
regions and IRQs).

DPMAC (Datapath Ethernet MAC): represents an Ethernet MAC, a hardware device that connects to an
Ethernet PHY and allows physical transmission and reception of Ethernet frames.

• MMIO regions: none

• IRQs: DPNI link change

14.1. NXP DPAA2 (Data Path Acceleration Architecture Gen2) 74

Network Interface Controller Drivers, Release 20.08.0

• commands: set link up/down, link config, get stats, IRQ config, enable, reset

DPNI (Datapath Network Interface): contains TX/RX queues, network interface configuration, and RX
buffer pool configuration mechanisms. The TX/RX queues are in memory and are identified by queue
number.

• MMIO regions: none

• IRQs: link state

• commands: port config, offload config, queue config, parse/classify config, IRQ config, enable,
reset

DPIO (Datapath I/O): provides interfaces to enqueue and dequeue packets and do hardware buffer pool
management operations. The DPAA2 architecture separates the mechanism to access queues (the DPIO
object) from the queues themselves. The DPIO provides an MMIO interface to enqueue/dequeue pack-
ets. To enqueue something a descriptor is written to the DPIO MMIO region, which includes the target
queue number. There will typically be one DPIO assigned to each CPU. This allows all CPUs to simul-
taneously perform enqueue/dequeued operations. DPIOs are expected to be shared by different DPAA2
drivers.

• MMIO regions: queue operations, buffer management

• IRQs: data availability, congestion notification, buffer pool depletion

• commands: IRQ config, enable, reset

DPBP (Datapath Buffer Pool): represents a hardware buffer pool.

• MMIO regions: none

• IRQs: none

• commands: enable, reset

DPMCP (Datapath MC Portal): provides an MC command portal. Used by drivers to send commands
to the MC to manage objects.

• MMIO regions: MC command portal

• IRQs: command completion

• commands: IRQ config, enable, reset

14.1.4 Object Connections

Some objects have explicit relationships that must be configured:

• DPNI <–> DPMAC

• DPNI <–> DPNI

• DPNI <–> L2-switch-port

A DPNI must be connected to something such as a DPMAC, another DPNI, or L2 switch port. The
DPNI connection is made via a DPRC command.

+-------+ +-------+
| DPNI | | DPMAC |
+---+---+ +---+---+

| |
+==========+

14.1. NXP DPAA2 (Data Path Acceleration Architecture Gen2) 75

Network Interface Controller Drivers, Release 20.08.0

• DPNI <–> DPBP

A network interface requires a ‘buffer pool’ (DPBP object) which provides a list of pointers to memory
where received Ethernet data is to be copied. The Ethernet driver configures the DPBPs associated with
the network interface.

14.1.5 Interrupts

All interrupts generated by DPAA2 objects are message interrupts. At the hardware level message inter-
rupts generated by devices will normally have 3 components– 1) a non-spoofable ‘device-id’ expressed
on the hardware bus, 2) an address, 3) a data value.

In the case of DPAA2 devices/objects, all objects in the same container/DPRC share the same ‘device-
id’. For ARM-based SoC this is the same as the stream ID.

14.2 DPAA2 DPDK - Poll Mode Driver Overview

This section provides an overview of the drivers for DPAA2– 1) the bus driver and associated “DPAA2
infrastructure” drivers and 2) functional object drivers (such as Ethernet).

As described previously, a DPRC is a container that holds the other types of DPAA2 objects. It is
functionally similar to a plug-and-play bus controller.

Each object in the DPRC is a Linux “device” and is bound to a driver. The diagram below shows the
dpaa2 drivers involved in a networking scenario and the objects bound to each driver. A brief description
of each driver follows.

A brief description of each driver is provided below.

14.2.1 DPAA2 bus driver

The DPAA2 bus driver is a rte_bus driver which scans the fsl-mc bus. Key functions include:

• Reading the container and setting up vfio group

• Scanning and parsing the various MC objects and adding them to their respective device list.

Additionally, it also provides the object driver for generic MC objects.

14.2.2 DPIO driver

The DPIO driver is bound to DPIO objects and provides services that allow other drivers such as the
Ethernet driver to enqueue and dequeue data for their respective objects. Key services include:

• Data availability notifications

• Hardware queuing operations (enqueue and dequeue of data)

• Hardware buffer pool management

To transmit a packet the Ethernet driver puts data on a queue and invokes a DPIO API. For receive, the
Ethernet driver registers a data availability notification callback. To dequeue a packet a DPIO API is
used.

14.2. DPAA2 DPDK - Poll Mode Driver Overview 76

Network Interface Controller Drivers, Release 20.08.0

There is typically one DPIO object per physical CPU for optimum performance, allowing different CPUs
to simultaneously enqueue and dequeue data.

The DPIO driver operates on behalf of all DPAA2 drivers active – Ethernet, crypto, compression, etc.

14.2.3 DPBP based Mempool driver

The DPBP driver is bound to a DPBP objects and provides services to create a hardware offloaded packet
buffer mempool.

14.2.4 DPAA2 NIC Driver

The Ethernet driver is bound to a DPNI and implements the kernel interfaces needed to connect the
DPAA2 network interface to the network stack.

Each DPNI corresponds to a DPDK network interface.

Features

Features of the DPAA2 PMD are:

• Multiple queues for TX and RX

• Receive Side Scaling (RSS)

• MAC/VLAN filtering

• Packet type information

• Checksum offload

• Promiscuous mode

• Multicast mode

• Port hardware statistics

• Jumbo frames

• Link flow control

• Scattered and gather for TX and RX

14.3 Supported DPAA2 SoCs

• LX2160A

• LS2084A/LS2044A

• LS2088A/LS2048A

• LS1088A/LS1048A

14.3. Supported DPAA2 SoCs 77

Network Interface Controller Drivers, Release 20.08.0

14.4 Prerequisites

See ../platform/dpaa2 for setup information

Currently supported by DPDK:

• NXP LSDK 19.08+.

• MC Firmware version 10.18.0 and higher.

• Supported architectures: arm64 LE.

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

Note: Some part of fslmc bus code (mc flib - object library) routines are dual licensed (BSD & GPLv2),
however they are used as BSD in DPDK in userspace.

14.5 Pre-Installation Configuration

14.5.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging options
may affect system performance.

• CONFIG_RTE_LIBRTE_FSLMC_BUS (default y)

Toggle compilation of the librte_bus_fslmc driver.

• CONFIG_RTE_LIBRTE_DPAA2_PMD (default y)

Toggle compilation of the librte_pmd_dpaa2 driver.

• CONFIG_RTE_LIBRTE_DPAA2_DEBUG_DRIVER (default n)

Toggle display of debugging messages/logic

• CONFIG_RTE_LIBRTE_DPAA2_USE_PHYS_IOVA (default n)

Toggle to use physical address vs virtual address for hardware accelerators.

14.6 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

1. Running testpmd:

Follow instructions available in the document compiling and testing a PMD for a NIC to run
testpmd.

Example output:

./testpmd -c 0xff -n 1 -- -i --portmask=0x3 --nb-cores=1 --no-flush-rx

.....
EAL: Registered [pci] bus.
EAL: Registered [fslmc] bus.

14.4. Prerequisites 78

Network Interface Controller Drivers, Release 20.08.0

EAL: Detected 8 lcore(s)
EAL: Probing VFIO support...
EAL: VFIO support initialized
.....
PMD: DPAA2: Processing Container = dprc.2
EAL: fslmc: DPRC contains = 51 devices
EAL: fslmc: Bus scan completed
.....
Configuring Port 0 (socket 0)
Port 0: 00:00:00:00:00:01
Configuring Port 1 (socket 0)
Port 1: 00:00:00:00:00:02
.....
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

• Use dev arg option drv_loopback=1 to loopback packets at driver level. Any packet received
will be reflected back by the driver on same port. e.g. fslmc:dpni.1,drv_loopback=1

• Use dev arg option drv_no_prefetch=1 to disable prefetching of the packet pull command
which is issued in the previous cycle. e.g. fslmc:dpni.1,drv_no_prefetch=1

14.7 Enabling logs

For enabling logging for DPAA2 PMD, following log-level prefix can be used:

<dpdk app> <EAL args> --log-level=bus.fslmc:<level> -- ...

Using bus.fslmc as log matching criteria, all FSLMC bus logs can be enabled which are lower than
logging level.

Or

<dpdk app> <EAL args> --log-level=pmd.net.dpaa2:<level> -- ...

Using pmd.net.dpaa2 as log matching criteria, all PMD logs can be enabled which are lower than
logging level.

14.8 Whitelisting & Blacklisting

For blacklisting a DPAA2 device, following commands can be used.

<dpdk app> <EAL args> -b "fslmc:dpni.x" -- ...

Where x is the device object id as configured in resource container.

14.9 Limitations

14.9.1 Platform Requirement

DPAA2 drivers for DPDK can only work on NXP SoCs as listed in the Supported DPAA2 SoCs.

14.7. Enabling logs 79

Network Interface Controller Drivers, Release 20.08.0

14.9.2 Maximum packet length

The DPAA2 SoC family support a maximum of a 10240 jumbo frame. The value is fixed and cannot be
changed. So, even when the rxmode.max_rx_pkt_len member of struct rte_eth_conf is
set to a value lower than 10240, frames up to 10240 bytes can still reach the host interface.

14.9.3 Other Limitations

• RSS hash key cannot be modified.

• RSS RETA cannot be configured.

14.9. Limitations 80

CHAPTER

FIFTEEN

DRIVER FOR VM EMULATED DEVICES

The DPDK EM poll mode driver supports the following emulated devices:

• qemu-kvm emulated Intel® 82540EM Gigabit Ethernet Controller (qemu e1000 device)

• VMware* emulated Intel® 82545EM Gigabit Ethernet Controller

• VMware emulated Intel® 8274L Gigabit Ethernet Controller.

15.1 Validated Hypervisors

The validated hypervisors are:

• KVM (Kernel Virtual Machine) with Qemu, version 0.14.0

• KVM (Kernel Virtual Machine) with Qemu, version 0.15.1

• VMware ESXi 5.0, Update 1

15.2 Recommended Guest Operating System in Virtual Machine

The recommended guest operating system in a virtualized environment is:

• Fedora* 18 (64-bit)

For supported kernel versions, refer to the DPDK Release Notes.

15.3 Setting Up a KVM Virtual Machine

The following describes a target environment:

• Host Operating System: Fedora 14

• Hypervisor: KVM (Kernel Virtual Machine) with Qemu version, 0.14.0

• Guest Operating System: Fedora 14

• Linux Kernel Version: Refer to the DPDK Getting Started Guide

• Target Applications: testpmd

The setup procedure is as follows:

81

Network Interface Controller Drivers, Release 20.08.0

1. Download qemu-kvm-0.14.0 from http://sourceforge.net/projects/kvm/files/qemu-kvm/ and in-
stall it in the Host OS using the following steps:

When using a recent kernel (2.6.25+) with kvm modules included:

tar xzf qemu-kvm-release.tar.gz cd qemu-kvm-release
./configure --prefix=/usr/local/kvm
make
sudo make install
sudo /sbin/modprobe kvm-intel

When using an older kernel or a kernel from a distribution without the kvm modules, you must
download (from the same link), compile and install the modules yourself:

tar xjf kvm-kmod-release.tar.bz2
cd kvm-kmod-release
./configure
make
sudo make install
sudo /sbin/modprobe kvm-intel

Note that qemu-kvm installs in the /usr/local/bin directory.

For more details about KVM configuration and usage, please refer to: http://www.linux-kvm.org/
page/HOWTO1.

2. Create a Virtual Machine and install Fedora 14 on the Virtual Machine. This is referred to as the
Guest Operating System (Guest OS).

3. Start the Virtual Machine with at least one emulated e1000 device.

Note: The Qemu provides several choices for the emulated network device backend. Most com-
monly used is a TAP networking backend that uses a TAP networking device in the host. For
more information about Qemu supported networking backends and different options for configur-
ing networking at Qemu, please refer to:

— http://www.linux-kvm.org/page/Networking

— http://wiki.qemu.org/Documentation/Networking

— http://qemu.weilnetz.de/qemu-doc.html

For example, to start a VM with two emulated e1000 devices, issue the following command:

/usr/local/kvm/bin/qemu-system-x86_64 -cpu host -smp 4 -hda qemu1.raw -m 1024
-net nic,model=e1000,vlan=1,macaddr=DE:AD:1E:00:00:01
-net tap,vlan=1,ifname=tapvm01,script=no,downscript=no
-net nic,model=e1000,vlan=2,macaddr=DE:AD:1E:00:00:02
-net tap,vlan=2,ifname=tapvm02,script=no,downscript=no

where:

— -m = memory to assign

— -smp = number of smp cores

— -hda = virtual disk image

This command starts a new virtual machine with two emulated 82540EM devices, backed up with
two TAP networking host interfaces, tapvm01 and tapvm02.

ip tuntap show
tapvm01: tap
tapvm02: tap

15.3. Setting Up a KVM Virtual Machine 82

http://sourceforge.net/projects/kvm/files/qemu-kvm/
http://www.linux-kvm.org/page/HOWTO1
http://www.linux-kvm.org/page/HOWTO1
http://www.linux-kvm.org/page/Networking
http://wiki.qemu.org/Documentation/Networking
http://qemu.weilnetz.de/qemu-doc.html

Network Interface Controller Drivers, Release 20.08.0

4. Configure your TAP networking interfaces using ip/ifconfig tools.

5. Log in to the guest OS and check that the expected emulated devices exist:

lspci -d 8086:100e
00:04.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 03)
00:05.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet Controller (rev 03)

6. Install the DPDK and run testpmd.

15.4 Known Limitations of Emulated Devices

The following are known limitations:

1. The Qemu e1000 RX path does not support multiple descriptors/buffers per packet. Therefore,
rte_mbuf should be big enough to hold the whole packet. For example, to allow testpmd to receive
jumbo frames, use the following:

testpmd [options] – –mbuf-size=<your-max-packet-size>

2. Qemu e1000 does not validate the checksum of incoming packets.

3. Qemu e1000 only supports one interrupt source, so link and Rx interrupt should be exclusive.

4. Qemu e1000 does not support interrupt auto-clear, application should disable interrupt immedi-
ately when woken up.

15.4. Known Limitations of Emulated Devices 83

CHAPTER

SIXTEEN

ENA POLL MODE DRIVER

The ENA PMD is a DPDK poll-mode driver for the Amazon Elastic Network Adapter (ENA) family.

16.1 Overview

The ENA driver exposes a lightweight management interface with a minimal set of memory mapped
registers and an extendable command set through an Admin Queue.

The driver supports a wide range of ENA adapters, is link-speed independent (i.e., the same driver is
used for 10GbE, 25GbE, 40GbE, etc.), and it negotiates and supports an extendable feature set.

ENA adapters allow high speed and low overhead Ethernet traffic processing by providing a dedicated
Tx/Rx queue pair per CPU core.

The ENA driver supports industry standard TCP/IP offload features such as checksum offload and TCP
transmit segmentation offload (TSO).

Receive-side scaling (RSS) is supported for multi-core scaling.

Some of the ENA devices support a working mode called Low-latency Queue (LLQ), which saves
several more microseconds.

16.2 Management Interface

ENA management interface is exposed by means of:

• Device Registers

• Admin Queue (AQ) and Admin Completion Queue (ACQ)

ENA device memory-mapped PCIe space for registers (MMIO registers) are accessed only during driver
initialization and are not involved in further normal device operation.

AQ is used for submitting management commands, and the results/responses are reported asyn-
chronously through ACQ.

ENA introduces a very small set of management commands with room for vendor-specific extensions.
Most of the management operations are framed in a generic Get/Set feature command.

The following admin queue commands are supported:

• Create I/O submission queue

• Create I/O completion queue

84

Network Interface Controller Drivers, Release 20.08.0

• Destroy I/O submission queue

• Destroy I/O completion queue

• Get feature

• Set feature

• Get statistics

Refer to ena_admin_defs.h for the list of supported Get/Set Feature properties.

16.3 Data Path Interface

I/O operations are based on Tx and Rx Submission Queues (Tx SQ and Rx SQ correspondingly). Each
SQ has a completion queue (CQ) associated with it.

The SQs and CQs are implemented as descriptor rings in contiguous physical memory.

Refer to ena_eth_io_defs.h for the detailed structure of the descriptor

The driver supports multi-queue for both Tx and Rx.

16.4 Configuration information

DPDK Configuration Parameters

The following configuration options are available for the ENA PMD:

• CONFIG_RTE_LIBRTE_ENA_PMD (default y): Enables or disables inclusion of
the ENA PMD driver in the DPDK compilation.

• CONFIG_RTE_LIBRTE_ENA_DEBUG_RX (default n): Enables or disables de-
bug logging of RX logic within the ENA PMD driver.

• CONFIG_RTE_LIBRTE_ENA_DEBUG_TX (default n): Enables or disables de-
bug logging of TX logic within the ENA PMD driver.

• CONFIG_RTE_LIBRTE_ENA_COM_DEBUG (default n): Enables or disables
debug logging of low level tx/rx logic in ena_com(base) within the ENA PMD driver.

Runtime Configuration Parameters

• large_llq_hdr (default 0)

Enables or disables usage of large LLQ headers. This option will have effect only if the device
also supports large LLQ headers. Otherwise, the default value will be used.

ENA Configuration Parameters

• Number of Queues

This is the requested number of queues upon initialization, however, the actual number of receive
and transmit queues to be created will be the minimum between the maximal number supported
by the device and number of queues requested.

16.3. Data Path Interface 85

Network Interface Controller Drivers, Release 20.08.0

• Size of Queues

This is the requested size of receive/transmit queues, while the actual size will be the minimum
between the requested size and the maximal receive/transmit supported by the device.

16.5 Building DPDK

See the DPDK Getting Started Guide for Linux for instructions on how to build DPDK.

By default the ENA PMD library will be built into the DPDK library.

For configuring and using UIO and VFIO frameworks, please also refer the documentation that comes
with DPDK suite.

16.6 Supported ENA adapters

Current ENA PMD supports the following ENA adapters including:

• 1d0f:ec20 - ENA VF

• 1d0f:ec21 - ENA VF with LLQ support

16.7 Supported Operating Systems

Any Linux distribution fulfilling the conditions described in System Requirements section of the
DPDK documentation or refer to DPDK Release Notes.

16.8 Supported features

• MTU configuration

• Jumbo frames up to 9K

• IPv4/TCP/UDP checksum offload

• TSO offload

• Multiple receive and transmit queues

• RSS hash

• RSS indirection table configuration

• Low Latency Queue for Tx

• Basic and extended statistics

• LSC event notification

• Watchdog (requires handling of timers in the application)

• Device reset upon failure

16.5. Building DPDK 86

Network Interface Controller Drivers, Release 20.08.0

16.9 Prerequisites

1. Prepare the system as recommended by DPDK suite. This includes environment variables,
hugepages configuration, tool-chains and configuration.

2. ENA PMD can operate with vfio-pci``(*) or ``igb_uio driver.

(*) ENAv2 hardware supports Low Latency Queue v2 (LLQv2). This feature reduces the la-
tency of the packets by pushing the header directly through the PCI to the device, before the
DMA is even triggered. For proper work kernel PCI driver must support write combining (WC).
In mainline version of igb_uio (in DPDK repo) it must be enabled by loading module with
wc_activate=1 flag (example below). However, mainline’s vfio-pci driver in kernel doesn’t
have WC support yet (planed to be added). If vfio-pci used user should be either turn off ENAv2
(to avoid performance impact) or recompile vfio-pci driver with patch provided in amzn-github.

3. Insert vfio-pci or igb_uio kernel module using the command modprobe vfio-pci or
modprobe uio; insmod igb_uio.ko wc_activate=1 respectively.

4. For vfio-pci users only: Please make sure that IOMMU is enabled in your system, or use vfio
driver in noiommu mode:

echo 1 > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode

To use noiommu mode, the vfio-pci must be built with flag CONFIG_VFIO_NOIOMMU.

5. Bind the intended ENA device to vfio-pci or igb_uio module.

At this point the system should be ready to run DPDK applications. Once the application runs to com-
pletion, the ENA can be detached from attached module if necessary.

Note about usage on *.metal instances

On AWS, the metal instances are supporting IOMMU for both arm64 and x86_64 hosts.

• x86_64 (e.g. c5.metal, i3.metal): IOMMU should be disabled by default. In that situation, the
igb_uio can be used as it is but vfio-pci should be working in no-IOMMU mode
(please see above).

When IOMMU is enabled, igb_uio cannot be used as it’s not supporting this feature,
while vfio-pci should work without any changes. To enable IOMMU on those hosts,
please update GRUB_CMDLINE_LINUX in file /etc/default/grub with the below
extra boot arguments:

iommu=1 intel_iommu=on

Then, make the changes live by executing as a root:

grub2-mkconfig > /boot/grub2/grub.cfg

Finally, reboot should result in IOMMU being enabled.

• arm64 (a1.metal): IOMMU should be enabled by default. Unfortunately, vfio-pci isn’t
supporting SMMU, which is implementation of IOMMU for arm64 architecture and
igb_uio isn’t supporting IOMMU at all, so to use DPDK with ENA on those hosts,
one must disable IOMMU. This can be done by updating GRUB_CMDLINE_LINUX in file
/etc/default/grub with the extra boot argument:

iommu.passthrough=1

Then, make the changes live by executing as a root:

grub2-mkconfig > /boot/grub2/grub.cfg

16.9. Prerequisites 87

https://github.com/amzn/amzn-drivers/tree/master/userspace/dpdk/enav2-vfio-patch

Network Interface Controller Drivers, Release 20.08.0

Finally, reboot should result in IOMMU being disabled. Without IOMMU, igb_uio can
be used as it is but vfio-pci should be working in no-IOMMU mode (please see above).

16.10 Usage example

Follow instructions available in the document compiling and testing a PMD for a NIC to launch testpmd
with Amazon ENA devices managed by librte_pmd_ena.

Example output:

[...]
EAL: PCI device 0000:00:06.0 on NUMA socket -1
EAL: Invalid NUMA socket, default to 0
EAL: probe driver: 1d0f:ec20 net_ena

Interactive-mode selected
testpmd: create a new mbuf pool <mbuf_pool_socket_0>: n=171456, size=2176, socket=0
testpmd: preferred mempool ops selected: ring_mp_mc
Warning! port-topology=paired and odd forward ports number, the last port will pair with itself.
Configuring Port 0 (socket 0)
Port 0: 00:00:00:11:00:01
Checking link statuses...

Done
testpmd>

16.10. Usage example 88

CHAPTER

SEVENTEEN

ENETC POLL MODE DRIVER

The ENETC NIC PMD (librte_pmd_enetc) provides poll mode driver support for the inbuilt NIC found
in the NXP LS1028 SoC.

More information can be found at NXP Official Website.

17.1 ENETC

This section provides an overview of the NXP ENETC and how it is integrated into the DPDK.

Contents summary

• ENETC overview

• ENETC features

• PCI bus driver

• NIC driver

• Supported ENETC SoCs

• Prerequisites

• Driver compilation and testing

17.1.1 ENETC Overview

ENETC is a PCI Integrated End Point(IEP). IEP implements peripheral devices in an SoC such that
software sees them as PCIe device. ENETC is an evolution of BDR(Buffer Descriptor Ring) based
networking IPs.

This infrastructure simplifies adding support for IEP and facilitates in following:

• Device discovery and location

• Resource requirement discovery and allocation (e.g. interrupt assignment, device register address)

• Event reporting

17.1.2 ENETC Features

• Link Status

• Packet type information

89

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/qoriq-layerscape-arm-processors/qoriq-layerscape-1028a-industrial-applications-processor:LS1028A

Network Interface Controller Drivers, Release 20.08.0

• Basic stats

• Promiscuous

• Multicast

• Jumbo packets

• Queue Start/Stop

• Deferred Queue Start

• CRC offload

17.1.3 NIC Driver (PMD)

ENETC PMD is traditional DPDK PMD which provides necessary interface between RTE framework
and ENETC internal drivers.

• Driver registers the device vendor table in PCI subsystem.

• RTE framework scans the PCI bus for connected devices.

• This scanning will invoke the probe function of ENETC driver.

• The probe function will set the basic device registers and also setups BD rings.

• On packet Rx the respective BD Ring status bit is set which is then used for packet processing.

• Then Tx is done first followed by Rx.

17.1.4 Supported ENETC SoCs

• LS1028

17.1.5 Prerequisites

There are three main pre-requisites for executing ENETC PMD on a ENETC compatible board:

1. ARM 64 Tool Chain

For example, the *aarch64* Linaro Toolchain.

2. Linux Kernel

It can be obtained from NXP’s Github hosting.

3. Rootfile system

Any aarch64 supporting filesystem can be used. For example, Ubuntu 16.04 LTS (Xenial) or
18.04 (Bionic) userland which can be obtained from here.

The following dependencies are not part of DPDK and must be installed separately:

• NXP Linux LSDK

NXP Layerscape software development kit (LSDK) includes support for family of QorIQ® ARM-
Architecture-based system on chip (SoC) processors and corresponding boards.

17.1. ENETC 90

https://releases.linaro.org/components/toolchain/binaries/7.3-2018.05/aarch64-linux-gnu/gcc-linaro-7.3.1-2018.05-i686_aarch64-linux-gnu.tar.xz
https://source.codeaurora.org/external/qoriq/qoriq-components/linux
http://cdimage.ubuntu.com/ubuntu-base/releases/18.04/release/ubuntu-base-18.04.1-base-arm64.tar.gz

Network Interface Controller Drivers, Release 20.08.0

It includes the Linux board support packages (BSPs) for NXP SoCs, a fully operational tool chain,
kernel and board specific modules.

LSDK and related information can be obtained from: LSDK

17.1.6 Driver compilation and testing

Follow instructions available in the document compiling and testing a PMD for a NIC to launch testpmd

To compile in performance mode, please set CONFIG_RTE_CACHE_LINE_SIZE=64

17.1. ENETC 91

https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK

CHAPTER

EIGHTEEN

ENIC POLL MODE DRIVER

ENIC PMD is the DPDK poll-mode driver for the Cisco System Inc. VIC Ethernet NICs. These adapters
are also referred to as vNICs below. If you are running or would like to run DPDK software applications
on Cisco UCS servers using Cisco VIC adapters the following documentation is relevant.

18.1 How to obtain ENIC PMD integrated DPDK

ENIC PMD support is integrated into the DPDK suite. dpdk-<version>.tar.gz should be downloaded
from https://core.dpdk.org/download/

18.2 Configuration information

• DPDK Configuration Parameters

The following configuration options are available for the ENIC PMD:

– CONFIG_RTE_LIBRTE_ENIC_PMD (default y): Enables or disables inclusion of the
ENIC PMD driver in the DPDK compilation.

• vNIC Configuration Parameters

– Number of Queues

The maximum number of receive queues (RQs), work queues (WQs) and completion queues
(CQs) are configurable on a per vNIC basis through the Cisco UCS Manager (CIMC or
UCSM).

These values should be configured as follows:

* The number of WQs should be greater or equal to the value of the expected nb_tx_q
parameter in the call to rte_eth_dev_configure()

* The number of RQs configured in the vNIC should be greater or equal to twice the
value of the expected nb_rx_q parameter in the call to rte_eth_dev_configure(). With
the addition of Rx scatter, a pair of RQs on the vnic is needed for each receive queue
used by DPDK, even if Rx scatter is not being used. Having a vNIC with only 1 RQ is
not a valid configuration, and will fail with an error message.

* The number of CQs should set so that there is one CQ for each WQ, and one CQ for
each pair of RQs.

92

https://core.dpdk.org/download/

Network Interface Controller Drivers, Release 20.08.0

For example: If the application requires 3 Rx queues, and 3 Tx queues, the vNIC should be
configured to have at least 3 WQs, 6 RQs (3 pairs), and 6 CQs (3 for use by WQs + 3 for use
by the 3 pairs of RQs).

– Size of Queues

Likewise, the number of receive and transmit descriptors are configurable on a per-vNIC
basis via the UCS Manager and should be greater than or equal to the nb_rx_desc and
nb_tx_desc parameters expected to be used in the calls to rte_eth_rx_queue_setup() and
rte_eth_tx_queue_setup() respectively. An application requesting more than the set size will
be limited to that size.

Unless there is a lack of resources due to creating many vNICs, it is recommended that the
WQ and RQ sizes be set to the maximum. This gives the application the greatest amount of
flexibility in its queue configuration.

* Note: Since the introduction of Rx scatter, for performance reasons, this PMD uses two
RQs on the vNIC per receive queue in DPDK. One RQ holds descriptors for the start
of a packet, and the second RQ holds the descriptors for the rest of the fragments of a
packet. This means that the nb_rx_desc parameter to rte_eth_rx_queue_setup() can be
a greater than 4096. The exact amount will depend on the size of the mbufs being used
for receives, and the MTU size.

For example: If the mbuf size is 2048, and the MTU is 9000, then receiving a full
size packet will take 5 descriptors, 1 from the start-of-packet queue, and 4 from
the second queue. Assuming that the RQ size was set to the maximum of 4096,
then the application can specify up to 1024 + 4096 as the nb_rx_desc parameter to
rte_eth_rx_queue_setup().

– Interrupts

At least one interrupt per vNIC interface should be configured in the UCS manager re-
gardless of the number receive/transmit queues. The ENIC PMD uses this interrupt to get
information about link status and errors in the fast path.

In addition to the interrupt for link status and errors, when using Rx queue interrupts, in-
crease the number of configured interrupts so that there is at least one interrupt for each Rx
queue. For example, if the app uses 3 Rx queues and wants to use per-queue interrupts,
configure 4 (3 + 1) interrupts.

– Receive Side Scaling

In order to fully utilize RSS in DPDK, enable all RSS related settings in CIMC or UCSM.
These include the following items listed under Receive Side Scaling: TCP, IPv4, TCP-IPv4,
IPv6, TCP-IPv6, IPv6 Extension, TCP-IPv6 Extension.

18.3 SR-IOV mode utilization

UCS blade servers configured with dynamic vNIC connection policies in UCSM are capable of sup-
porting SR-IOV. SR-IOV virtual functions (VFs) are specialized vNICs, distinct from regular Ethernet
vNICs. These VFs can be directly assigned to virtual machines (VMs) as ‘passthrough’ devices.

In UCS, SR-IOV VFs require the use of the Cisco Virtual Machine Fabric Extender (VM-FEX), which
gives the VM a dedicated interface on the Fabric Interconnect (FI). Layer 2 switching is done at the FI.
This may eliminate the requirement for software switching on the host to route intra-host VM traffic.

18.3. SR-IOV mode utilization 93

Network Interface Controller Drivers, Release 20.08.0

Please refer to Creating a Dynamic vNIC Connection Policy for information on configuring SR-IOV
adapter policies and port profiles using UCSM.

Once the policies are in place and the host OS is rebooted, VFs should be visible on the host, E.g.:

lspci | grep Cisco | grep Ethernet
0d:00.0 Ethernet controller: Cisco Systems Inc VIC Ethernet NIC (rev a2)
0d:00.1 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.2 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.3 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.4 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.5 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.6 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)
0d:00.7 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)

Enable Intel IOMMU on the host and install KVM and libvirt, and reboot again as required. Then,
using libvirt, create a VM instance with an assigned device. Below is an example interface
block (part of the domain configuration XML) that adds the host VF 0d:00:01 to the VM.
profileid='pp-vlan-25' indicates the port profile that has been configured in UCSM.

<interface type='hostdev' managed='yes'>
<mac address='52:54:00:ac:ff:b6'/>
<driver name='vfio'/>
<source>
<address type='pci' domain='0x0000' bus='0x0d' slot='0x00' function='0x1'/>

</source>
<virtualport type='802.1Qbh'>
<parameters profileid='pp-vlan-25'/>

</virtualport>
</interface>

Alternatively, the configuration can be done in a separate file using the network keyword. These
methods are described in the libvirt documentation for Network XML format.

When the VM instance is started, libvirt will bind the host VF to vfio, complete provisioning on the FI
and bring up the link.

Note: It is not possible to use a VF directly from the host because it is not fully provisioned until libvirt
brings up the VM that it is assigned to.

In the VM instance, the VF will now be visible. E.g., here the VF 00:04.0 is seen on the VM instance
and should be available for binding to a DPDK.

lspci | grep Ether
00:04.0 Ethernet controller: Cisco Systems Inc VIC SR-IOV VF (rev a2)

Follow the normal DPDK install procedure, binding the VF to either igb_uio or vfio in non-IOMMU
mode.

In the VM, the kernel enic driver may be automatically bound to the VF during boot. Unbinding it
currently hangs due to a known issue with the driver. To work around the issue, blacklist the enic
module as follows. Please see Limitations for limitations in the use of SR-IOV.

cat /etc/modprobe.d/enic.conf
blacklist enic

dracut --force

Note: Passthrough does not require SR-IOV. If VM-FEX is not desired, the user may create as many

18.3. SR-IOV mode utilization 94

http://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/sw/vm_fex/vmware/gui/config_guide/b_GUI_VMware_VM-FEX_UCSM_Configuration_Guide/b_GUI_VMware_VM-FEX_UCSM_Configuration_Guide_chapter_010.html#task_433E01651F69464783A68E66DA8A47A5
https://libvirt.org/formatnetwork.html

Network Interface Controller Drivers, Release 20.08.0

regular vNICs as necessary and assign them to VMs as passthrough devices. Since these vNICs are not
SR-IOV VFs, using them as passthrough devices do not require libvirt, port profiles, and VM-FEX.

18.4 Generic Flow API support

Generic Flow API (also called “rte_flow” API) is supported. More advanced capabilities are available
when “Advanced Filtering” is enabled on the adapter. Advanced filtering was added to 1300 series VIC
firmware starting with version 2.0.13 for C-series UCS servers and version 3.1.2 for UCSM managed
blade servers. Advanced filtering is available on 1400 series adapters and beyond. To enable advanced
filtering, the ‘Advanced filter’ radio button should be selected via CIMC or UCSM followed by a reboot
of the server.

• 1200 series VICs

5-tuple exact flow support for 1200 series adapters. This allows:

– Attributes: ingress

– Items: ipv4, ipv6, udp, tcp (must exactly match src/dst IP addresses and ports and all must
be specified)

– Actions: queue and void

– Selectors: ‘is’

• 1300 and later series VICS with advanced filters disabled

With advanced filters disabled, an IPv4 or IPv6 item must be specified in the pattern.

– Attributes: ingress

– Items: eth, vlan, ipv4, ipv6, udp, tcp, vxlan, inner eth, vlan, ipv4, ipv6, udp, tcp

– Actions: queue and void

– Selectors: ‘is’, ‘spec’ and ‘mask’. ‘last’ is not supported

– In total, up to 64 bytes of mask is allowed across all headers

• 1300 and later series VICS with advanced filters enabled

– Attributes: ingress

– Items: eth, vlan, ipv4, ipv6, udp, tcp, vxlan, raw, inner eth, vlan, ipv4, ipv6, udp, tcp

– Actions: queue, mark, drop, flag, rss, passthru, and void

– Selectors: ‘is’, ‘spec’ and ‘mask’. ‘last’ is not supported

– In total, up to 64 bytes of mask is allowed across all headers

• 1400 and later series VICs with Flow Manager API enabled

– Attributes: ingress, egress

– Items: eth, vlan, ipv4, ipv6, sctp, udp, tcp, vxlan, raw, inner eth, vlan, ipv4, ipv6, sctp, udp,
tcp

– Ingress Actions: count, drop, flag, jump, mark, port_id, passthru, queue, rss, vxlan_decap,
vxlan_encap, and void

18.4. Generic Flow API support 95

Network Interface Controller Drivers, Release 20.08.0

– Egress Actions: count, drop, jump, passthru, vxlan_encap, and void

– Selectors: ‘is’, ‘spec’ and ‘mask’. ‘last’ is not supported

– In total, up to 64 bytes of mask is allowed across all headers

The VIC performs packet matching after applying VLAN strip. If VLAN stripping is enabled, EtherType
in the ETH item corresponds to the stripped VLAN header’s EtherType. Stripping does not affect the
VLAN item. TCI and EtherType in the VLAN item are matched against those in the (stripped) VLAN
header whether stripping is enabled or disabled.

More features may be added in future firmware and new versions of the VIC. Please refer to the release
notes.

18.5 Overlay Offload

Recent hardware models support overlay offload. When enabled, the NIC performs the following oper-
ations for VXLAN, NVGRE, and GENEVE packets. In all cases, inner and outer packets can be IPv4
or IPv6.

• TSO for VXLAN and GENEVE packets.

Hardware supports NVGRE TSO, but DPDK currently has no NVGRE offload flags.

• Tx checksum offloads.

The NIC fills in IPv4/UDP/TCP checksums for both inner and outer packets.

• Rx checksum offloads.

The NIC validates IPv4/UDP/TCP checksums of both inner and outer packets. Good checksum
flags (e.g. PKT_RX_L4_CKSUM_GOOD) indicate that the inner packet has the correct check-
sum, and if applicable, the outer packet also has the correct checksum. Bad checksum flags (e.g.
PKT_RX_L4_CKSUM_BAD) indicate that the inner and/or outer packets have invalid checksum
values.

• Inner Rx packet type classification

PMD sets inner L3/L4 packet types (e.g. RTE_PTYPE_INNER_L4_TCP), and
RTE_PTYPE_TUNNEL_GRENAT to indicate that the packet is tunneled. PMD does not
set L3/L4 packet types for outer packets.

• Inner RSS

RSS hash calculation, therefore queue selection, is done on inner packets.

In order to enable overlay offload, the ‘Enable VXLAN’ box should be checked via CIMC or UCSM fol-
lowed by a reboot of the server. When PMD successfully enables overlay offload, it prints the following
message on the console.

Overlay offload is enabled

By default, PMD enables overlay offload if hardware supports it. To disable it, set devargs parameter
disable-overlay=1. For example:

-w 12:00.0,disable-overlay=1

By default, the NIC uses 4789 as the VXLAN port. The user may change it through
rte_eth_dev_udp_tunnel_port_{add,delete}. However, as the current NIC has a single
VXLAN port number, the user cannot configure multiple port numbers.

18.5. Overlay Offload 96

Network Interface Controller Drivers, Release 20.08.0

Geneve headers with non-zero options are not supported by default. To use Geneve with options, update
the VIC firmware to the latest version and then set devargs parameter geneve-opt=1. When
Geneve with options is enabled, flow API cannot be used as the features are currently mutually exclusive.
When this feature is successfully enabled, PMD prints the following message.

Geneve with options is enabled

18.6 Ingress VLAN Rewrite

VIC adapters can tag, untag, or modify the VLAN headers of ingress packets. The ingress VLAN rewrite
mode controls this behavior. By default, it is set to pass-through, where the NIC does not modify the
VLAN header in any way so that the application can see the original header. This mode is sufficient
for many applications, but may not be suitable for others. Such applications may change the mode by
setting devargs parameter ig-vlan-rewrite to one of the following.

• pass: Pass-through mode. The NIC does not modify the VLAN header. This is the default mode.

• priority: Priority-tag default VLAN mode. If the ingress packet is tagged with the default
VLAN, the NIC replaces its VLAN header with the priority tag (VLAN ID 0).

• trunk: Default trunk mode. The NIC tags untagged ingress packets with the default VLAN.
Tagged ingress packets are not modified. To the application, every packet appears as tagged.

• untag: Untag default VLAN mode. If the ingress packet is tagged with the default VLAN, the
NIC removes or untags its VLAN header so that the application sees an untagged packet. As a
result, the default VLAN becomes untagged. This mode can be useful for applications such as
OVS-DPDK performance benchmarks that utilize only the default VLAN and want to see only
untagged packets.

18.7 Vectorized Rx Handler

ENIC PMD includes a version of the receive handler that is vectorized using AVX2 SIMD instructions.
It is meant for bulk, throughput oriented workloads where reducing cycles/packet in PMD is a priority.
In order to use the vectorized handler, take the following steps.

• Use a recent version of gcc, icc, or clang and build 64-bit DPDK. If the compiler is known to
support AVX2, DPDK build system automatically compiles the vectorized handler. Otherwise,
the handler is not available.

• Set devargs parameter enable-avx2-rx=1 to explicitly request that PMD consider the vec-
torized handler when selecting the receive handler. For example:

-w 12:00.0,enable-avx2-rx=1

As the current implementation is intended for field trials, by default, the vectorized handler is not
considered (enable-avx2-rx=0).

• Run on a UCS M4 or later server with CPUs that support AVX2.

PMD selects the vectorized handler when the handler is compiled into the driver, the user requests its
use via enable-avx2-rx=1, CPU supports AVX2, and scatter Rx is not used. To verify that the
vectorized handler is selected, enable debug logging (--log-level=pmd,debug) and check the
following message.

enic_use_vector_rx_handler use the non-scatter avx2 Rx handler

18.6. Ingress VLAN Rewrite 97

Network Interface Controller Drivers, Release 20.08.0

18.8 Limitations

• VLAN 0 Priority Tagging

If a vNIC is configured in TRUNK mode by the UCS manager, the adapter will priority tag egress
packets according to 802.1Q if they were not already VLAN tagged by software. If the adapter is
connected to a properly configured switch, there will be no unexpected behavior.

In test setups where an Ethernet port of a Cisco adapter in TRUNK mode is connected point-to-
point to another adapter port or connected though a router instead of a switch, all ingress packets
will be VLAN tagged. Programs such as l3fwd may not account for VLAN tags in packets and
may misbehave. One solution is to enable VLAN stripping on ingress so the VLAN tag is removed
from the packet and put into the mbuf->vlan_tci field. Here is an example of how to accomplish
this:

vlan_offload = rte_eth_dev_get_vlan_offload(port);
vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
rte_eth_dev_set_vlan_offload(port, vlan_offload);

Another alternative is modify the adapter’s ingress VLAN rewrite mode so that packets with the default
VLAN tag are stripped by the adapter and presented to DPDK as untagged packets. In this case mbuf-
>vlan_tci and the PKT_RX_VLAN and PKT_RX_VLAN_STRIPPED mbuf flags would not be set.
This mode is enabled with the devargs parameter ig-vlan-rewrite=untag. For example:

-w 12:00.0,ig-vlan-rewrite=untag

• SR-IOV

– KVM hypervisor support only. VMware has not been tested.

– Requires VM-FEX, and so is only available on UCS managed servers connected to Fabric
Interconnects. It is not on standalone C-Series servers.

– VF devices are not usable directly from the host. They can only be used as assigned devices
on VM instances.

– Currently, unbind of the ENIC kernel mode driver ‘enic.ko’ on the VM instance may hang.
As a workaround, enic.ko should be blacklisted or removed from the boot process.

– pci_generic cannot be used as the uio module in the VM. igb_uio or vfio in non-IOMMU
mode can be used.

– The number of RQs in UCSM dynamic vNIC configurations must be at least 2.

– The number of SR-IOV devices is limited to 256. Components on target system might limit
this number to fewer than 256.

• Flow API

– The number of filters that can be specified with the Generic Flow API is dependent on how
many header fields are being masked. Use ‘flow create’ in a loop to determine how many
filters your VIC will support (not more than 1000 for 1300 series VICs). Filters are checked
for matching in the order they were added. Since there currently is no grouping or priority
support, ‘catch-all’ filters should be added last.

– The supported range of IDs for the ‘MARK’ action is 0 - 0xFFFD.

– RSS and PASSTHRU actions only support “receive normally”. They are limited to support-
ing MARK + RSS and PASSTHRU + MARK to allow the application to mark packets and
then receive them normally. These require 1400 series VIC adapters and latest firmware.

18.8. Limitations 98

Network Interface Controller Drivers, Release 20.08.0

– RAW items are limited to matching UDP tunnel headers like VXLAN.

– For 1400 VICs, all flows using the RSS action on a port use same hash configuration. The
RETA is ignored. The queues used in the RSS group must be sequential. There is a perfor-
mance hit if the number of queues is not a power of 2. Only level 0 (outer header) RSS is
allowed.

• Statistics

– rx_good_bytes (ibytes) always includes VLAN header (4B) and CRC bytes (4B). This
behavior applies to 1300 and older series VIC adapters. 1400 series VICs do not count CRC
bytes, and count VLAN header only when VLAN stripping is disabled.

– When the NIC drops a packet because the Rx queue has no free buffers, rx_good_bytes
still increments by 4B if the packet is not VLAN tagged or VLAN stripping is disabled, or
by 8B if the packet is VLAN tagged and stripping is enabled. This behavior applies to 1300
and older series VIC adapters. 1400 series VICs do not increment this byte counter when
packets are dropped.

• RSS Hashing

– Hardware enables and disables UDP and TCP RSS hashing together. The driver cannot
control UDP and TCP hashing individually.

18.9 How to build the suite

The build instructions for the DPDK suite should be followed. By default the ENIC PMD library will
be built into the DPDK library.

Refer to the document compiling and testing a PMD for a NIC for details.

For configuring and using UIO and VFIO frameworks, please refer to the documentation that comes
with DPDK suite.

18.10 Supported Cisco VIC adapters

ENIC PMD supports all recent generations of Cisco VIC adapters including:

• VIC 1200 series

• VIC 1300 series

• VIC 1400 series

18.11 Supported Operating Systems

Any Linux distribution fulfilling the conditions described in Dependencies section of DPDK documen-
tation.

18.12 Supported features

• Unicast, multicast and broadcast transmission and reception

18.9. How to build the suite 99

Network Interface Controller Drivers, Release 20.08.0

• Receive queue polling

• Port Hardware Statistics

• Hardware VLAN acceleration

• IP checksum offload

• Receive side VLAN stripping

• Multiple receive and transmit queues

• Promiscuous mode

• Setting RX VLAN (supported via UCSM/CIMC only)

• VLAN filtering (supported via UCSM/CIMC only)

• Execution of application by unprivileged system users

• IPV4, IPV6 and TCP RSS hashing

• UDP RSS hashing (1400 series and later adapters)

• Scattered Rx

• MTU update

• SR-IOV on UCS managed servers connected to Fabric Interconnects

• Flow API

• Overlay offload

– Rx/Tx checksum offloads for VXLAN, NVGRE, GENEVE

– TSO for VXLAN and GENEVE packets

– Inner RSS

18.13 Known bugs and unsupported features in this release

• Signature or flex byte based flow direction

• Drop feature of flow direction

• VLAN based flow direction

• Non-IPV4 flow direction

• Setting of extended VLAN

• MTU update only works if Scattered Rx mode is disabled

• Maximum receive packet length is ignored if Scattered Rx mode is used

18.14 Prerequisites

• Prepare the system as recommended by DPDK suite. This includes environment variables,
hugepages configuration, tool-chains and configuration.

18.13. Known bugs and unsupported features in this release 100

Network Interface Controller Drivers, Release 20.08.0

• Insert vfio-pci kernel module using the command ‘modprobe vfio-pci’ if the user wants to use
VFIO framework.

• Insert uio kernel module using the command ‘modprobe uio’ if the user wants to use UIO frame-
work.

• DPDK suite should be configured based on the user’s decision to use VFIO or UIO framework.

• If the vNIC device(s) to be used is bound to the kernel mode Ethernet driver use ‘ip’ to bring the
interface down. The dpdk-devbind.py tool can then be used to unbind the device’s bus id from the
ENIC kernel mode driver.

• Bind the intended vNIC to vfio-pci in case the user wants ENIC PMD to use VFIO framework
using dpdk-devbind.py.

• Bind the intended vNIC to igb_uio in case the user wants ENIC PMD to use UIO framework using
dpdk-devbind.py.

At this point the system should be ready to run DPDK applications. Once the application runs to com-
pletion, the vNIC can be detached from vfio-pci or igb_uio if necessary.

Root privilege is required to bind and unbind vNICs to/from VFIO/UIO. VFIO framework helps an
unprivileged user to run the applications. For an unprivileged user to run the applications on DPDK and
ENIC PMD, it may be necessary to increase the maximum locked memory of the user. The following
command could be used to do this.

sudo sh -c "ulimit -l <value in Kilo Bytes>"

The value depends on the memory configuration of the application, DPDK and PMD. Typically, the
limit has to be raised to higher than 2GB. e.g., 2621440

The compilation of any unused drivers can be disabled using the configuration file in config/ directory
(e.g., config/common_linux). This would help in bringing down the time taken for building the libraries
and the initialization time of the application.

18.15 Additional Reference

• https://www.cisco.com/c/en/us/products/servers-unified-computing/index.html

• https://www.cisco.com/c/en/us/products/interfaces-modules/unified-computing-system-adapters/
index.html

18.16 Contact Information

Any questions or bugs should be reported to DPDK community and to the ENIC PMD maintainers:

• John Daley <johndale@cisco.com>

• Hyong Youb Kim <hyonkim@cisco.com>

18.15. Additional Reference 101

https://www.cisco.com/c/en/us/products/servers-unified-computing/index.html
https://www.cisco.com/c/en/us/products/interfaces-modules/unified-computing-system-adapters/index.html
https://www.cisco.com/c/en/us/products/interfaces-modules/unified-computing-system-adapters/index.html
mailto:johndale@cisco.com
mailto:hyonkim@cisco.com

CHAPTER

NINETEEN

FM10K POLL MODE DRIVER

The FM10K poll mode driver library provides support for the Intel FM10000 (FM10K) family of
40GbE/100GbE adapters.

19.1 FTAG Based Forwarding of FM10K

FTAG Based Forwarding is a unique feature of FM10K. The FM10K family of NICs support the addition
of a Fabric Tag (FTAG) to carry special information. The FTAG is placed at the beginning of the frame,
it contains information such as where the packet comes from and goes, and the vlan tag. In FTAG based
forwarding mode, the switch logic forwards packets according to glort (global resource tag) information,
rather than the mac and vlan table. Currently this feature works only on PF.

To enable this feature, the user should pass a devargs parameter to the eal like “-w 84:00.0,en-
able_ftag=1”, and the application should make sure an appropriate FTAG is inserted for every frame
on TX side.

19.2 Vector PMD for FM10K

Vector PMD (vPMD) uses Intel® SIMD instructions to optimize packet I/O. It improves load/store band-
width efficiency of L1 data cache by using a wider SSE/AVX ‘’register (1)’‘. The wider register gives
space to hold multiple packet buffers so as to save on the number of instructions when bulk processing
packets.

There is no change to the PMD API. The RX/TX handlers are the only two entries for vPMD packet
I/O. They are transparently registered at runtime RX/TX execution if all required conditions are met.

1. To date, only an SSE version of FM10K vPMD is available. To ensure that vPMD is in the binary
code, set CONFIG_RTE_LIBRTE_FM10K_INC_VECTOR=y in the configure file.

Some constraints apply as pre-conditions for specific optimizations on bulk packet transfers. The fol-
lowing sections explain RX and TX constraints in the vPMD.

19.2.1 RX Constraints

Prerequisites and Pre-conditions

For Vector RX it is assumed that the number of descriptor rings will be a power of 2. With this pre-
condition, the ring pointer can easily scroll back to the head after hitting the tail without a conditional
check. In addition Vector RX can use this assumption to do a bit mask using ring_size -1.

102

Network Interface Controller Drivers, Release 20.08.0

Features not Supported by Vector RX PMD

Some features are not supported when trying to increase the throughput in vPMD. They are:

• IEEE1588

• Flow director

• Header split

• RX checksum offload

Other features are supported using optional MACRO configuration. They include:

• HW VLAN strip

• L3/L4 packet type

To enable via RX_OLFLAGS use RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE=y.

To guarantee the constraint, the following capabilities in dev_conf.rxmode.offloads will be
checked:

• DEV_RX_OFFLOAD_VLAN_EXTEND

• DEV_RX_OFFLOAD_CHECKSUM

• DEV_RX_OFFLOAD_HEADER_SPLIT

• fdir_conf->mode

RX Burst Size

As vPMD is focused on high throughput, it processes 4 packets at a time. So it assumes that the RX burst
should be greater than 4 packets per burst. It returns zero if using nb_pkt < 4 in the receive handler. If
nb_pkt is not a multiple of 4, a floor alignment will be applied.

19.2.2 TX Constraint

Features not Supported by TX Vector PMD

TX vPMD only works when offloads is set to 0

This means that it does not support any TX offload.

19.3 Limitations

19.3.1 Switch manager

The Intel FM10000 family of NICs integrate a hardware switch and multiple host interfaces. The
FM10000 PMD driver only manages host interfaces. For the switch component another switch driver
has to be loaded prior to the FM10000 PMD driver. The switch driver can be acquired from Intel sup-
port. Only Testpoint is validated with DPDK, the latest version that has been validated with DPDK is
4.1.6.

19.3. Limitations 103

Network Interface Controller Drivers, Release 20.08.0

19.3.2 Support for Switch Restart

For FM10000 multi host based design a DPDK app running in the VM or host needs to be aware of
the switch’s state since it may undergo a quit-restart. When the switch goes down the DPDK app will
receive a LSC event indicating link status down, and the app should stop the worker threads that are
polling on the Rx/Tx queues. When switch comes up, a LSC event indicating LINK_UP is sent to the
app, which can then restart the FM10000 port to resume network processing.

19.3.3 CRC stripping

The FM10000 family of NICs strip the CRC for every packets coming into the host interface. So,
keeping CRC is not supported.

19.3.4 Maximum packet length

The FM10000 family of NICS support a maximum of a 15K jumbo frame. The value is fixed and cannot
be changed. So, even when the rxmode.max_rx_pkt_len member of struct rte_eth_conf
is set to a value lower than 15364, frames up to 15364 bytes can still reach the host interface.

19.3.5 Statistic Polling Frequency

The FM10000 NICs expose a set of statistics via the PCI BARs. These statistics are read from the
hardware registers when rte_eth_stats_get() or rte_eth_xstats_get() is called. The
packet counting registers are 32 bits while the byte counting registers are 48 bits. As a result, the
statistics must be polled regularly in order to ensure the consistency of the returned reads.

Given the PCIe Gen3 x8, about 50Gbps of traffic can occur. With 64 byte packets this gives almost
100 million packets/second, causing 32 bit integer overflow after approx 40 seconds. To ensure these
overflows are detected and accounted for in the statistics, it is necessary to read statistic regularly. It is
suggested to read stats every 20 seconds, which will ensure the statistics are accurate.

19.3.6 Interrupt mode

The FM10000 family of NICS need one separate interrupt for mailbox. So only drivers which support
multiple interrupt vectors e.g. vfio-pci can work for fm10k interrupt mode.

19.3. Limitations 104

CHAPTER

TWENTY

HINIC POLL MODE DRIVER

The hinic PMD (librte_pmd_hinic) provides poll mode driver support for 25Gbps Huawei Intelligent
PCIE Network Adapters based on the Huawei Ethernet Controller Hi1822.

20.1 Features

• Multi arch support: x86_64, ARMv8.

• Multiple queues for TX and RX

• Receiver Side Scaling (RSS)

• MAC/VLAN filtering

• Checksum offload

• TSO offload

• Promiscuous mode

• Port hardware statistics

• Link state information

• Link flow control

• Scattered and gather for TX and RX

• SR-IOV - Partially supported at this point, VFIO only

• VLAN filter and VLAN offload

• Allmulticast mode

• MTU update

• Unicast MAC filter

• Multicast MAC filter

• Flow API

• Set Link down or up

• FW version

• LRO

105

Network Interface Controller Drivers, Release 20.08.0

20.2 Prerequisites

• Learning about Huawei Hi1822 IN200 Series Intelligent NICs using https://e.huawei.com/en/
products/cloud-computing-dc/servers/pcie-ssd/in-card.

• Getting the latest product documents and software supports using https://support.huawei.com/
enterprise/en/intelligent-accelerator-components/in500-solution-pid-23507369.

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

20.3 Pre-Installation Configuration

20.3.1 Config File Options

The following options can be modified in the config file.

• CONFIG_RTE_LIBRTE_HINIC_PMD (default y)

20.4 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

20.5 Limitations or Known issues

Build with ICC is not supported yet. X86-32, Power8, ARMv7 and BSD are not supported yet.

20.2. Prerequisites 106

https://e.huawei.com/en/products/cloud-computing-dc/servers/pcie-ssd/in-card
https://e.huawei.com/en/products/cloud-computing-dc/servers/pcie-ssd/in-card
https://support.huawei.com/enterprise/en/intelligent-accelerator-components/in500-solution-pid-23507369
https://support.huawei.com/enterprise/en/intelligent-accelerator-components/in500-solution-pid-23507369

CHAPTER

TWENTYONE

HNS3 POLL MODE DRIVER

The hns3 PMD (librte_pmd_hns3) provides poll mode driver support for the inbuilt Hisilicon Network
Subsystem(HNS) network engine found in the Hisilicon Kunpeng 920 SoC.

21.1 Features

Features of the HNS3 PMD are:

• Multiple queues for TX and RX

• Receive Side Scaling (RSS)

• Packet type information

• Checksum offload

• TSO offload

• LRO offload

• Promiscuous mode

• Multicast mode

• Port hardware statistics

• Jumbo frames

• Link state information

• Interrupt mode for RX

• VLAN stripping and inserting

• QinQ inserting

• DCB

• Scattered and gather for TX and RX

• Flow director

• Dump register

• SR-IOV VF

• Multi-process

• MAC/VLAN filter

107

Network Interface Controller Drivers, Release 20.08.0

• MTU update

• NUMA support

21.2 Prerequisites

• Get the information about Kunpeng920 chip using http://www.hisilicon.com/en/Products/
ProductList/Kunpeng.

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

21.3 Pre-Installation Configuration

21.3.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging options
may affect system performance.

• CONFIG_RTE_LIBRTE_HNS3_PMD (default y)

21.4 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

21.5 Limitations or Known issues

Currently, we only support VF device is bound to vfio_pci or igb_uio and then driven by DPDK driver
when PF is driven by kernel mode hns3 ethdev driver, VF is not supported when PF is driven by DPDK
driver.

Build with ICC is not supported yet. X86-32, Power8, ARMv7 and BSD are not supported yet.

21.2. Prerequisites 108

http://www.hisilicon.com/en/Products/ProductList/Kunpeng
http://www.hisilicon.com/en/Products/ProductList/Kunpeng

CHAPTER

TWENTYTWO

I40E POLL MODE DRIVER

The i40e PMD (librte_pmd_i40e) provides poll mode driver support for 10/25/40 Gbps Intel® Ethernet
700 Series Network Adapters based on the Intel Ethernet Controller X710/XL710/XXV710 and Intel
Ethernet Connection X722 (only support part of features).

22.1 Features

Features of the i40e PMD are:

• Multiple queues for TX and RX

• Receiver Side Scaling (RSS)

• MAC/VLAN filtering

• Packet type information

• Flow director

• Cloud filter

• Checksum offload

• VLAN/QinQ stripping and inserting

• TSO offload

• Promiscuous mode

• Multicast mode

• Port hardware statistics

• Jumbo frames

• Link state information

• Link flow control

• Mirror on port, VLAN and VSI

• Interrupt mode for RX

• Scattered and gather for TX and RX

• Vector Poll mode driver

• DCB

109

Network Interface Controller Drivers, Release 20.08.0

• VMDQ

• SR-IOV VF

• Hot plug

• IEEE1588/802.1AS timestamping

• VF Daemon (VFD) - EXPERIMENTAL

• Dynamic Device Personalization (DDP)

• Queue region configuration

• Virtual Function Port Representors

• Malicious Device Drive event catch and notify

• Generic flow API

22.2 Prerequisites

• Identifying your adapter using Intel Support and get the latest NVM/FW images.

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

• To get better performance on Intel platforms, please follow the “How to get best performance with
NICs on Intel platforms” section of the Getting Started Guide for Linux.

• Upgrade the NVM/FW version following the Intel® Ethernet NVM Update Tool Quick Usage
Guide for Linux and Intel® Ethernet NVM Update Tool: Quick Usage Guide for EFI if needed.

• For information about supported media, please refer to this document: Intel® Ethernet Controller
X710/XXV710/XL710 Feature Support Matrix.

Note:

– Some adapters based on the Intel(R) Ethernet Controller 700 Series only support
Intel Ethernet Optics modules. On these adapters, other modules are not supported
and will not function.

– For connections based on Intel(R) Ethernet Controller 700 Series, support is de-
pendent on your system board. Please see your vendor for details.

– In all cases Intel recommends using Intel Ethernet Optics; other modules may
function but are not validated by Intel. Contact Intel for supported media types.

22.3 Recommended Matching List

It is highly recommended to upgrade the i40e kernel driver and firmware to avoid the compatibility
issues with i40e PMD. Here is the suggested matching list which has been tested and verified. The
detailed information can refer to chapter Tested Platforms/Tested NICs in release notes.

For X710/XL710/XXV710,

22.2. Prerequisites 110

http://www.intel.com/support
https://www-ssl.intel.com/content/www/us/en/embedded/products/networking/nvm-update-tool-quick-linux-usage-guide.html
https://www-ssl.intel.com/content/www/us/en/embedded/products/networking/nvm-update-tool-quick-linux-usage-guide.html
https://www.intel.com/content/www/us/en/embedded/products/networking/nvm-update-tool-quick-efi-usage-guide.html
http://www.intel.com/content/dam/www/public/us/en/documents/release-notes/xl710-ethernet-controller-feature-matrix.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/release-notes/xl710-ethernet-controller-feature-matrix.pdf

Network Interface Controller Drivers, Release 20.08.0

DPDK version Kernel driver version Firmware version
20.08 2.12.6 7.30
20.05 2.11.27 7.30
20.02 2.10.19 7.20
19.11 2.9.21 7.00
19.08 2.8.43 7.00
19.05 2.7.29 6.80
19.02 2.7.26 6.80
18.11 2.4.6 6.01
18.08 2.4.6 6.01
18.05 2.4.6 6.01
18.02 2.4.3 6.01
17.11 2.1.26 6.01
17.08 2.0.19 6.01
17.05 1.5.23 5.05
17.02 1.5.23 5.05
16.11 1.5.23 5.05
16.07 1.4.25 5.04
16.04 1.4.25 5.02

For X722,

DPDK version Kernel driver version Firmware version
20.08 2.12.6 4.11
20.05 2.11.27 4.11
20.02 2.10.19 4.11
19.11 2.9.21 4.10
19.08 2.9.21 4.10
19.05 2.7.29 3.33
19.02 2.7.26 3.33
18.11 2.4.6 3.33

22.4 Pre-Installation Configuration

22.4.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging options
may affect system performance.

• CONFIG_RTE_LIBRTE_I40E_PMD (default y)

Toggle compilation of the librte_pmd_i40e driver.

• CONFIG_RTE_LIBRTE_I40E_DEBUG_* (default n)

Toggle display of generic debugging messages.

• CONFIG_RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC (default y)

Toggle bulk allocation for RX.

• CONFIG_RTE_LIBRTE_I40E_INC_VECTOR (default n)

22.4. Pre-Installation Configuration 111

Network Interface Controller Drivers, Release 20.08.0

Toggle the use of Vector PMD instead of normal RX/TX path. To enable vPMD for RX, bulk
allocation for Rx must be allowed.

• CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC (default n)

Toggle to use a 16-byte RX descriptor, by default the RX descriptor is 32 byte.

• CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_PF (default 64)

Number of queues reserved for PF.

• CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM (default 4)

Number of queues reserved for each VMDQ Pool.

22.4.2 Runtime Config Options

• Reserved number of Queues per VF (default 4)

The number of reserved queue per VF is determined by its host PF. If the PCI address of an i40e
PF is aaaa:bb.cc, the number of reserved queues per VF can be configured with EAL parameter
like -w aaaa:bb.cc,queue-num-per-vf=n. The value n can be 1, 2, 4, 8 or 16. If no such parameter
is configured, the number of reserved queues per VF is 4 by default. If VF request more than
reserved queues per VF, PF will able to allocate max to 16 queues after a VF reset.

• Support multiple driver (default disable)

There was a multiple driver support issue during use of 700 series Ethernet Adapter
with both Linux kernel and DPDK PMD. To fix this issue, devargs parameter
support-multi-driver is introduced, for example:

-w 84:00.0,support-multi-driver=1

With the above configuration, DPDK PMD will not change global registers, and will switch PF
interrupt from IntN to Int0 to avoid interrupt conflict between DPDK and Linux Kernel.

• Support VF Port Representor (default not enabled)

The i40e PF PMD supports the creation of VF port representors for the control and monitoring of
i40e virtual function devices. Each port representor corresponds to a single virtual function of that
device. Using the devargs option representor the user can specify which virtual functions
to create port representors for on initialization of the PF PMD by passing the VF IDs of the VFs
which are required.:

-w DBDF,representor=[0,1,4]

Currently hot-plugging of representor ports is not supported so all required representors must be
specified on the creation of the PF.

• Use latest supported vector (default disable)

Latest supported vector path may not always get the best perf so vector path was recommended
to use only on later platform. But users may want the latest vector path since it can get better
perf in some real work loading cases. So devargs param use-latest-supported-vec is
introduced, for example:

-w 84:00.0,use-latest-supported-vec=1

• Enable validation for VF message (default not enabled)

22.4. Pre-Installation Configuration 112

Network Interface Controller Drivers, Release 20.08.0

The PF counts messages from each VF. If in any period of seconds the message statistic from a VF
exceeds maximal limitation, the PF will ignore any new message from that VF for some seconds.
Format – “maximal-message@period-seconds:ignore-seconds” For example:

-w 84:00.0,vf_msg_cfg=80@120:180

22.4.3 Vector RX Pre-conditions

For Vector RX it is assumed that the number of descriptor rings will be a power of 2. With this pre-
condition, the ring pointer can easily scroll back to the head after hitting the tail without a conditional
check. In addition Vector RX can use this assumption to do a bit mask using ring_size -1.

22.5 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

22.6 SR-IOV: Prerequisites and sample Application Notes

1. Load the kernel module:

modprobe i40e

Check the output in dmesg:

i40e 0000:83:00.1 ens802f0: renamed from eth0

2. Bring up the PF ports:

ifconfig ens802f0 up

3. Create VF device(s):

Echo the number of VFs to be created into the sriov_numvfs sysfs entry of the parent PF.

Example:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

4. Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:

ip link set <PF netdev id> vf <VF id> mac <macaddr>

Example:

ip link set ens802f0 vf 0 mac a0:b0:c0:d0:e0:f0

5. Assign VF to VM, and bring up the VM. Please see the documentation for the I40E/IXGBE/IGB
Virtual Function Driver.

6. Running testpmd:

Follow instructions available in the document compiling and testing a PMD for a NIC to run
testpmd.

Example output:

22.5. Driver compilation and testing 113

mailto:maximal-message@period-seconds

Network Interface Controller Drivers, Release 20.08.0

...
EAL: PCI device 0000:83:00.0 on NUMA socket 1
EAL: probe driver: 8086:1572 rte_i40e_pmd
EAL: PCI memory mapped at 0x7f7f80000000
EAL: PCI memory mapped at 0x7f7f80800000
PMD: eth_i40e_dev_init(): FW 5.0 API 1.5 NVM 05.00.02 eetrack 8000208a
Interactive-mode selected
Configuring Port 0 (socket 0)
...

PMD: i40e_dev_rx_queue_setup(): Rx Burst Bulk Alloc Preconditions are
satisfied.Rx Burst Bulk Alloc function will be used on port=0, queue=0.

...
Port 0: 68:05:CA:26:85:84
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done

testpmd>

22.7 Sample Application Notes

22.7.1 Vlan filter

Vlan filter only works when Promiscuous mode is off.

To start testpmd, and add vlan 10 to port 0:

./app/testpmd -l 0-15 -n 4 -- -i --forward-mode=mac

...

testpmd> set promisc 0 off
testpmd> rx_vlan add 10 0

22.7.2 Flow Director

The Flow Director works in receive mode to identify specific flows or sets of flows and route them to
specific queues. The Flow Director filters can match the different fields for different type of packet: flow
type, specific input set per flow type and the flexible payload.

The default input set of each flow type is:

ipv4-other : src_ip_address, dst_ip_address
ipv4-frag : src_ip_address, dst_ip_address
ipv4-tcp : src_ip_address, dst_ip_address, src_port, dst_port
ipv4-udp : src_ip_address, dst_ip_address, src_port, dst_port
ipv4-sctp : src_ip_address, dst_ip_address, src_port, dst_port,

verification_tag
ipv6-other : src_ip_address, dst_ip_address
ipv6-frag : src_ip_address, dst_ip_address
ipv6-tcp : src_ip_address, dst_ip_address, src_port, dst_port
ipv6-udp : src_ip_address, dst_ip_address, src_port, dst_port
ipv6-sctp : src_ip_address, dst_ip_address, src_port, dst_port,

verification_tag
l2_payload : ether_type

The flex payload is selected from offset 0 to 15 of packet’s payload by default, while it is masked out
from matching.

22.7. Sample Application Notes 114

Network Interface Controller Drivers, Release 20.08.0

Start testpmd with --disable-rss and --pkt-filter-mode=perfect:

./app/testpmd -l 0-15 -n 4 -- -i --disable-rss --pkt-filter-mode=perfect \
--rxq=8 --txq=8 --nb-cores=8 --nb-ports=1

Add a rule to direct ipv4-udp packet whose dst_ip=2.2.2.5,src_ip=2.2.2.3,src_port=32,dst_port=32
to queue 1:

testpmd> flow_director_filter 0 mode IP add flow ipv4-udp \
src 2.2.2.3 32 dst 2.2.2.5 32 vlan 0 flexbytes () \
fwd pf queue 1 fd_id 1

Check the flow director status:

testpmd> show port fdir 0

######################## FDIR infos for port 0 ####################
MODE: PERFECT
SUPPORTED FLOW TYPE: ipv4-frag ipv4-tcp ipv4-udp ipv4-sctp ipv4-other

ipv6-frag ipv6-tcp ipv6-udp ipv6-sctp ipv6-other
l2_payload

FLEX PAYLOAD INFO:
max_len: 16 payload_limit: 480
payload_unit: 2 payload_seg: 3
bitmask_unit: 2 bitmask_num: 2
MASK:

vlan_tci: 0x0000,
src_ipv4: 0x00000000,
dst_ipv4: 0x00000000,
src_port: 0x0000,
dst_port: 0x0000
src_ipv6: 0x00000000,0x00000000,0x00000000,0x00000000,
dst_ipv6: 0x00000000,0x00000000,0x00000000,0x00000000

FLEX PAYLOAD SRC OFFSET:
L2_PAYLOAD: 0 1 2 3 4 5 6 ...
L3_PAYLOAD: 0 1 2 3 4 5 6 ...
L4_PAYLOAD: 0 1 2 3 4 5 6 ...

FLEX MASK CFG:
ipv4-udp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-tcp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-sctp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-other: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-frag: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-udp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-tcp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-sctp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-other: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-frag: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
l2_payload: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

guarant_count: 1 best_count: 0
guarant_space: 512 best_space: 7168
collision: 0 free: 0
maxhash: 0 maxlen: 0
add: 0 remove: 0
f_add: 0 f_remove: 0

Delete all flow director rules on a port:

testpmd> flush_flow_director 0

22.7.3 Floating VEB

The Intel® Ethernet 700 Series support a feature called “Floating VEB”.

22.7. Sample Application Notes 115

Network Interface Controller Drivers, Release 20.08.0

A Virtual Ethernet Bridge (VEB) is an IEEE Edge Virtual Bridging (EVB) term for functionality that
allows local switching between virtual endpoints within a physical endpoint and also with an external
bridge/network.

A “Floating” VEB doesn’t have an uplink connection to the outside world so all switching is done
internally and remains within the host. As such, this feature provides security benefits.

In addition, a Floating VEB overcomes a limitation of normal VEBs where they cannot forward packets
when the physical link is down. Floating VEBs don’t need to connect to the NIC port so they can still
forward traffic from VF to VF even when the physical link is down.

Therefore, with this feature enabled VFs can be limited to communicating with each other but not an
outside network, and they can do so even when there is no physical uplink on the associated NIC port.

To enable this feature, the user should pass a devargs parameter to the EAL, for example:

-w 84:00.0,enable_floating_veb=1

In this configuration the PMD will use the floating VEB feature for all the VFs created by this PF device.

Alternatively, the user can specify which VFs need to connect to this floating VEB using the
floating_veb_list argument:

-w 84:00.0,enable_floating_veb=1,floating_veb_list=1;3-4

In this example VF1, VF3 and VF4 connect to the floating VEB, while other VFs connect to the normal
VEB.

The current implementation only supports one floating VEB and one regular VEB. VFs can connect to
a floating VEB or a regular VEB according to the configuration passed on the EAL command line.

The floating VEB functionality requires a NIC firmware version of 5.0 or greater.

22.7.4 Dynamic Device Personalization (DDP)

The Intel® Ethernet 700 Series except for the Intel Ethernet Connection X722 support a feature called
“Dynamic Device Personalization (DDP)”, which is used to configure hardware by downloading a pro-
file to support protocols/filters which are not supported by default. The DDP functionality requires a
NIC firmware version of 6.0 or greater.

Current implementation supports GTP-C/GTP-U/PPPoE/PPPoL2TP/ESP, steering can be used with
rte_flow API.

GTPv1 package is released, and it can be downloaded from https://downloadcenter.intel.com/download/
27587.

PPPoE package is released, and it can be downloaded from https://downloadcenter.intel.com/download/
28040.

ESP-AH package is released, and it can be downloaded from https://downloadcenter.intel.com/
download/29446.

Load a profile which supports GTP and store backup profile:

testpmd> ddp add 0 ./gtp.pkgo,./backup.pkgo

Delete a GTP profile and restore backup profile:

testpmd> ddp del 0 ./backup.pkgo

Get loaded DDP package info list:

22.7. Sample Application Notes 116

https://downloadcenter.intel.com/download/27587
https://downloadcenter.intel.com/download/27587
https://downloadcenter.intel.com/download/28040
https://downloadcenter.intel.com/download/28040
https://downloadcenter.intel.com/download/29446
https://downloadcenter.intel.com/download/29446

Network Interface Controller Drivers, Release 20.08.0

testpmd> ddp get list 0

Display information about a GTP profile:

testpmd> ddp get info ./gtp.pkgo

22.7.5 Input set configuration

Input set for any PCTYPE can be configured with user defined configuration, For example, to use only
48bit prefix for IPv6 src address for IPv6 TCP RSS:

testpmd> port config 0 pctype 43 hash_inset clear all
testpmd> port config 0 pctype 43 hash_inset set field 13
testpmd> port config 0 pctype 43 hash_inset set field 14
testpmd> port config 0 pctype 43 hash_inset set field 15

22.7.6 Queue region configuration

The Intel® Ethernet 700 Series supports a feature of queue regions configuration for RSS in the PF, so
that different traffic classes or different packet classification types can be separated to different queues
in different queue regions. There is an API for configuration of queue regions in RSS with a command
line. It can parse the parameters of the region index, queue number, queue start index, user priority,
traffic classes and so on. Depending on commands from the command line, it will call i40e private APIs
and start the process of setting or flushing the queue region configuration. As this feature is specific for
i40e only private APIs are used. These new test_pmd commands are as shown below. For details
please refer to ../testpmd_app_ug/index.

testpmd> set port (port_id) queue-region region_id (value) \
queue_start_index (value) queue_num (value)

testpmd> set port (port_id) queue-region region_id (value) flowtype (value)
testpmd> set port (port_id) queue-region UP (value) region_id (value)
testpmd> set port (port_id) queue-region flush (on|off)
testpmd> show port (port_id) queue-region

22.7.7 Generic flow API

• RSS Flow

RSS Flow supports to set hash input set, hash function, enable hash and configure queue region.
For example: Configure queue region as queue 0, 1, 2, 3.

testpmd> flow create 0 ingress pattern end actions rss types end \
queues 0 1 2 3 end / end

Enable hash and set input set for ipv4-tcp.

testpmd> flow create 0 ingress pattern eth / ipv4 / tcp / end \
actions rss types ipv4-tcp l3-src-only end queues end / end

Set symmetric hash enable for flow type ipv4-tcp.

testpmd> flow create 0 ingress pattern eth / ipv4 / tcp / end \
actions rss types ipv4-tcp end queues end func symmetric_toeplitz / end

Set hash function as simple xor.

testpmd> flow create 0 ingress pattern end actions rss types end \
queues end func simple_xor / end

22.7. Sample Application Notes 117

Network Interface Controller Drivers, Release 20.08.0

22.8 Limitations or Known issues

22.8.1 MPLS packet classification

For firmware versions prior to 5.0, MPLS packets are not recognized by the NIC. The L2 Payload flow
type in flow director can be used to classify MPLS packet by using a command in testpmd like:

testpmd> flow_director_filter 0 mode IP add flow l2_payload ether 0x8847 flexbytes
() fwd pf queue <N> fd_id <M>

With the NIC firmware version 5.0 or greater, some limited MPLS support is added: Native MPLS
(MPLS in Ethernet) skip is implemented, while no new packet type, no classification or offload are
possible. With this change, L2 Payload flow type in flow director cannot be used to classify MPLS
packet as with previous firmware versions. Meanwhile, the Ethertype filter can be used to classify
MPLS packet by using a command in testpmd like:

testpmd> ethertype_filter 0 add mac_ignr 00:00:00:00:00:00 ethertype 0x8847 fwd
queue <M>

22.8.2 16 Byte RX Descriptor setting on DPDK VF

Currently the VF’s RX descriptor mode is decided by PF. There’s no PF-VF interface for VF to request
the RX descriptor mode, also no interface to notify VF its own RX descriptor mode. For all available
versions of the i40e driver, these drivers don’t support 16 byte RX descriptor. If the Linux i40e kernel
driver is used as host driver, while DPDK i40e PMD is used as the VF driver, DPDK cannot choose 16
byte receive descriptor. The reason is that the RX descriptor is already set to 32 byte by the i40e kernel
driver. That is to say, user should keep CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC=n in
config file. In the future, if the Linux i40e driver supports 16 byte RX descriptor, user should make sure
the DPDK VF uses the same RX descriptor mode, 16 byte or 32 byte, as the PF driver.

The same rule for DPDK PF + DPDK VF. The PF and VF should use the same RX descriptor mode. Or
the VF RX will not work.

22.8.3 Receive packets with Ethertype 0x88A8

Due to the FW limitation, PF can receive packets with Ethertype 0x88A8 only when floating VEB is
disabled.

22.8.4 Incorrect Rx statistics when packet is oversize

When a packet is over maximum frame size, the packet is dropped. However, the Rx statistics, when
calling rte_eth_stats_get incorrectly shows it as received.

22.8.5 VF & TC max bandwidth setting

The per VF max bandwidth and per TC max bandwidth cannot be enabled in parallel. The behavior
is different when handling per VF and per TC max bandwidth setting. When enabling per VF max
bandwidth, SW will check if per TC max bandwidth is enabled. If so, return failure. When enabling
per TC max bandwidth, SW will check if per VF max bandwidth is enabled. If so, disable per VF max
bandwidth and continue with per TC max bandwidth setting.

22.8. Limitations or Known issues 118

Network Interface Controller Drivers, Release 20.08.0

22.8.6 TC TX scheduling mode setting

There are 2 TX scheduling modes for TCs, round robin and strict priority mode. If a TC is set to strict
priority mode, it can consume unlimited bandwidth. It means if APP has set the max bandwidth for that
TC, it comes to no effect. It’s suggested to set the strict priority mode for a TC that is latency sensitive
but no consuming much bandwidth.

22.8.7 VF performance is impacted by PCI extended tag setting

To reach maximum NIC performance in the VF the PCI extended tag must be enabled. The DPDK i40e
PF driver will set this feature during initialization, but the kernel PF driver does not. So when running
traffic on a VF which is managed by the kernel PF driver, a significant NIC performance downgrade
has been observed (for 64 byte packets, there is about 25% line-rate downgrade for a 25GbE device and
about 35% for a 40GbE device).

For kernel version >= 4.11, the kernel’s PCI driver will enable the extended tag if it detects that the
device supports it. So by default, this is not an issue. For kernels <= 4.11 or when the PCI extended tag
is disabled it can be enabled using the steps below.

1. Get the current value of the PCI configure register:

setpci -s <XX:XX.X> a8.w

2. Set bit 8:

value = value | 0x100

3. Set the PCI configure register with new value:

setpci -s <XX:XX.X> a8.w=<value>

22.8.8 Vlan strip of VF

The VF vlan strip function is only supported in the i40e kernel driver >= 2.1.26.

22.8.9 DCB function

DCB works only when RSS is enabled.

22.8.10 Global configuration warning

I40E PMD will set some global registers to enable some function or set some configure. Then when
using different ports of the same NIC with Linux kernel and DPDK, the port with Linux kernel will
be impacted by the port with DPDK. For example, register I40E_GL_SWT_L2TAGCTRL is used to
control L2 tag, i40e PMD uses I40E_GL_SWT_L2TAGCTRL to set vlan TPID. If setting TPID in port
A with DPDK, then the configuration will also impact port B in the NIC with kernel driver, which don’t
want to use the TPID. So PMD reports warning to clarify what is changed by writing global register.

22.8. Limitations or Known issues 119

Network Interface Controller Drivers, Release 20.08.0

22.8.11 Cloud Filter

When programming cloud filters for IPv4/6_UDP/TCP/SCTP with SRC port only or DST port only, it
will make any cloud filter using inner_vlan or tunnel key invalid. Default configuration will be recovered
only by NIC core reset.

22.9 High Performance of Small Packets on 40GbE NIC

As there might be firmware fixes for performance enhancement in latest version of firmware image, the
firmware update might be needed for getting high performance. Check the Intel support website for the
latest firmware updates. Users should consult the release notes specific to a DPDK release to identify
the validated firmware version for a NIC using the i40e driver.

22.9.1 Use 16 Bytes RX Descriptor Size

As i40e PMD supports both 16 and 32 bytes RX descriptor sizes, and 16 bytes
size can provide helps to high performance of small packets. Configuration of
CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC in config files can be changed to use 16
bytes size RX descriptors.

22.9.2 Input set requirement of each pctype for FDIR

Each PCTYPE can only have one specific FDIR input set at one time. For example, if creating 2 rte_flow
rules with different input set for one PCTYPE, it will fail and return the info “Conflict with the first rule’s
input set”, which means the current rule’s input set conflicts with the first rule’s. Remove the first rule if
want to change the input set of the PCTYPE.

22.10 Example of getting best performance with l3fwd example

The following is an example of running the DPDK l3fwd sample application to get high performance
with a server with Intel Xeon processors and Intel Ethernet CNA XL710.

The example scenario is to get best performance with two Intel Ethernet CNA XL710 40GbE ports. See
Fig. 22.1 for the performance test setup.

1. Add two Intel Ethernet CNA XL710 to the platform, and use one port per card to get best per-
formance. The reason for using two NICs is to overcome a PCIe v3.0 limitation since it cannot
provide 80GbE bandwidth for two 40GbE ports, but two different PCIe v3.0 x8 slot can. Refer to
the sample NICs output above, then we can select 82:00.0 and 85:00.0 as test ports:

82:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]
85:00.0 Ethernet [0200]: Intel XL710 for 40GbE QSFP+ [8086:1583]

2. Connect the ports to the traffic generator. For high speed testing, it’s best to use a hardware traffic
generator.

3. Check the PCI devices numa node (socket id) and get the cores number on the exact socket id.
In this case, 82:00.0 and 85:00.0 are both in socket 1, and the cores on socket 1 in the
referenced platform are 18-35 and 54-71. Note: Don’t use 2 logical cores on the same core (e.g

22.9. High Performance of Small Packets on 40GbE NIC 120

Network Interface Controller Drivers, Release 20.08.0

Traffic Generator

Dest MAC: Port 0
Dest IP: 2.1.1.1
Src IP: Random

Port A

Dest MAC: Port 1
Dest IP: 1.1.1.1
Src IP: Random

Port B

Intel XL 710
40G Ethernet

Port 0

Flow 2

Flow 1

Port X

Intel XL 710
40G Ethernet

Port 1

Port X

Port 0 to Port 1
Port 1 to Port 0

Forwarding

IA Platform
(Socket 1)

Fig. 22.1: Performance Test Setup

core18 has 2 logical cores, core18 and core54), instead, use 2 logical cores from different cores
(e.g core18 and core19).

4. Bind these two ports to igb_uio.

5. As to Intel Ethernet CNA XL710 40GbE port, we need at least two queue pairs to achieve best
performance, then two queues per port will be required, and each queue pair will need a dedicated
CPU core for receiving/transmitting packets.

6. The DPDK sample application l3fwd will be used for performance testing, with using two ports
for bi-directional forwarding. Compile the l3fwd sample with the default lpm mode.

7. The command line of running l3fwd would be something like the following:

./l3fwd -l 18-21 -n 4 -w 82:00.0 -w 85:00.0 \
-- -p 0x3 --config '(0,0,18),(0,1,19),(1,0,20),(1,1,21)'

This means that the application uses core 18 for port 0, queue pair 0 forwarding, core 19 for port
0, queue pair 1 forwarding, core 20 for port 1, queue pair 0 forwarding, and core 21 for port 1,
queue pair 1 forwarding.

8. Configure the traffic at a traffic generator.

• Start creating a stream on packet generator.

• Set the Ethernet II type to 0x0800.

22.10.1 Tx bytes affected by the link status change

For firmware versions prior to 6.01 for X710 series and 3.33 for X722 series, the tx_bytes statistics data
is affected by the link down event. Each time the link status changes to down, the tx_bytes decreases

22.10. Example of getting best performance with l3fwd example 121

Network Interface Controller Drivers, Release 20.08.0

110 bytes.

22.10. Example of getting best performance with l3fwd example 122

CHAPTER

TWENTYTHREE

ICE POLL MODE DRIVER

The ice PMD (librte_pmd_ice) provides poll mode driver support for 10/25/50/100 Gbps Intel® Ethernet
810 Series Network Adapters based on the Intel Ethernet Controller E810.

23.1 Prerequisites

• The E810 is currently in sampling state only. To obtain early samples and/or get further informa-
tion about kernel drivers, firmware and DDP support, please speak to your Intel representative.

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

• To get better performance on Intel platforms, please follow the “How to get best performance with
NICs on Intel platforms” section of the Getting Started Guide for Linux.

23.2 Pre-Installation Configuration

23.2.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging options
may affect system performance.

• CONFIG_RTE_LIBRTE_ICE_PMD (default y)

Toggle compilation of the librte_pmd_ice driver.

• CONFIG_RTE_LIBRTE_ICE_DEBUG_* (default n)

Toggle display of generic debugging messages.

• CONFIG_RTE_LIBRTE_ICE_16BYTE_RX_DESC (default n)

Toggle to use a 16-byte RX descriptor, by default the RX descriptor is 32 byte.

23.2.2 Runtime Config Options

• Safe Mode Support (default 0)

If driver failed to load OS package, by default driver’s initialization failed. But if user intend to
use the device without OS package, user can take devargs parameter safe-mode-support,
for example:

-w 80:00.0,safe-mode-support=1

123

Network Interface Controller Drivers, Release 20.08.0

Then the driver will be initialized successfully and the device will enter Safe Mode. NOTE: In
Safe mode, only very limited features are available, features like RSS, checksum, fdir, tunneling
... are all disabled.

• Generic Flow Pipeline Mode Support (default 0)

In pipeline mode, a flow can be set at one specific stage by setting parameter priority. Cur-
rently, we support two stages: priority = 0 or !0. Flows with priority 0 located at the first pipeline
stage which typically be used as a firewall to drop the packet on a blacklist(we called it permission
stage). At this stage, flow rules are created for the device’s exact match engine: switch. Flows
with priority !0 located at the second stage, typically packets are classified here and be steered to
specific queue or queue group (we called it distribution stage), At this stage, flow rules are created
for device’s flow director engine. For none-pipeline mode, priority is ignored, a flow rule can
be created as a flow director rule or a switch rule depends on its pattern/action and the resource
allocation situation, all flows are virtually at the same pipeline stage. By default, generic flow
API is enabled in none-pipeline mode, user can choose to use pipeline mode by setting devargs
parameter pipeline-mode-support, for example:

-w 80:00.0,pipeline-mode-support=1

• Flow Mark Support (default 0)

This is a hint to the driver to select the data path that supports flow mark extraction by de-
fault. NOTE: This is an experimental devarg, it will be removed when any of below conditions
is ready. 1) all data paths support flow mark (currently vPMD does not) 2) a new offload like
RTE_DEV_RX_OFFLOAD_FLOW_MARK be introduced as a standard way to hint. Example:

-w 80:00.0,flow-mark-support=1

• Protocol extraction for per queue

Configure the RX queues to do protocol extraction into mbuf for protocol handling acceleration,
like checking the TCP SYN packets quickly.

The argument format is:

-w 18:00.0,proto_xtr=<queues:protocol>[<queues:protocol>...]
-w 18:00.0,proto_xtr=<protocol>

Queues are grouped by (and) within the group. The - character is used as a range separator and
, is used as a single number separator. The grouping () can be omitted for single element group.
If no queues are specified, PMD will use this protocol extraction type for all queues.

Protocol is : vlan,ipv4,ipv6,ipv6_flow,tcp.

testpmd -w 18:00.0,proto_xtr='[(1,2-3,8-9):tcp,10-13:vlan]'

This setting means queues 1, 2-3, 8-9 are TCP extraction, queues 10-13 are VLAN extraction,
other queues run with no protocol extraction.

testpmd -w 18:00.0,proto_xtr=vlan,proto_xtr='[(1,2-3,8-9):tcp,10-23:ipv6]'

This setting means queues 1, 2-3, 8-9 are TCP extraction, queues 10-23 are IPv6 extraction, other
queues use the default VLAN extraction.

The extraction metadata is copied into the registered dynamic mbuf field, and the related dynamic
mbuf flags is set.

23.2. Pre-Installation Configuration 124

Network Interface Controller Drivers, Release 20.08.0

Table 23.1: Protocol extraction :
vlan

VLAN2 VLAN1
PCP D VID PCP D VID

VLAN1 - single or EVLAN (first for QinQ).

VLAN2 - C-VLAN (second for QinQ).

Table 23.2: Protocol extraction : ipv4

IPHDR2 IPHDR1
Ver Hdr Len ToS TTL Protocol

IPHDR1 - IPv4 header word 4, “TTL” and “Protocol” fields.

IPHDR2 - IPv4 header word 0, “Ver”, “Hdr Len” and “Type of Service” fields.

Table 23.3: Protocol extraction : ipv6

IPHDR2 IPHDR1
Ver Traffic class Flow Next Header Hop Limit

IPHDR1 - IPv6 header word 3, “Next Header” and “Hop Limit” fields.

IPHDR2 - IPv6 header word 0, “Ver”, “Traffic class” and high 4 bits of “Flow Label” fields.

Table 23.4: Protocol extraction :
ipv6_flow

IPHDR2 IPHDR1
Ver Traffic class Flow Label

IPHDR1 - IPv6 header word 1, 16 low bits of the “Flow Label” field.

IPHDR2 - IPv6 header word 0, “Ver”, “Traffic class” and high 4 bits of “Flow Label” fields.

Table 23.5: Protocol extraction : tcp

TCPHDR2 TCPHDR1
Reserved Offset RSV Flags

TCPHDR1 - TCP header word 6, “Data Offset” and “Flags” fields.

TCPHDR2 - Reserved

Use rte_net_ice_dynf_proto_xtr_metadata_get to access the protocol extraction
metadata, and use RTE_PKT_RX_DYNF_PROTO_XTR_* to get the metadata type of struct
rte_mbuf::ol_flags.

The rte_net_ice_dump_proto_xtr_metadata routine shows how to access the proto-
col extraction result in struct rte_mbuf.

23.2. Pre-Installation Configuration 125

Network Interface Controller Drivers, Release 20.08.0

23.3 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

23.4 Features

23.4.1 Vector PMD

Vector PMD for RX and TX path are selected automatically. The paths are chosen based on 2 conditions.

• CPU On the X86 platform, the driver checks if the CPU supports AVX2. If it’s supported, AVX2
paths will be chosen. If not, SSE is chosen.

• Offload features The supported HW offload features are described in the document
ice_vec.ini. If any not supported features are used, ICE vector PMD is disabled and the normal
paths are chosen.

23.4.2 Malicious driver detection (MDD)

It’s not appropriate to send a packet, if this packet’s destination MAC address is just this port’s MAC
address. If SW tries to send such packets, HW will report a MDD event and drop the packets.

The APPs based on DPDK should avoid providing such packets.

23.4.3 Device Config Function (DCF)

This section demonstrates ICE DCF PMD, which shares the core module with ICE PMD and iAVF
PMD.

A DCF (Device Config Function) PMD bounds to the device’s trusted VF with ID 0, it can act as a sole
controlling entity to exercise advance functionality (such as switch, ACL) for the rest VFs.

The DCF PMD needs to advertise and acquire DCF capability which allows DCF to send AdminQ
commands that it would like to execute over to the PF and receive responses for the same from PF.

1. Create the VFs:

echo 4 > /sys/bus/pci/devices/0000\:18\:00.0/sriov_numvfs

2. Enable the VF0 trust on:

ip link set dev enp24s0f0 vf 0 trust on

3. Bind the VF0, and run testpmd with ‘cap=dcf’ devarg:

testpmd -l 22-25 -n 4 -w 18:01.0,cap=dcf -- -i

4. Monitor the VF2 interface network traffic:

tcpdump -e -nn -i enp24s1f2

5. Create one flow to redirect the traffic to VF2 by DCF:

flow create 0 priority 0 ingress pattern eth / ipv4 src is 192.168.0.2 \
dst is 192.168.0.3 / end actions vf id 2 / end

6. Send the packet, and it should be displayed on tcpdump:

23.3. Driver compilation and testing 126

Network Interface Controller Drivers, Release 20.08.0

Fig. 23.1: DCF Communication flow.

23.4. Features 127

Network Interface Controller Drivers, Release 20.08.0

sendp(Ether(src='3c:fd:fe:aa:bb:78', dst='00:00:00:01:02:03')/IP(src=' \
192.168.0.2', dst="192.168.0.3")/TCP(flags='S')/Raw(load='XXXXXXXXXX'), \
iface="enp24s0f0", count=10)

23.5 Sample Application Notes

23.5.1 Vlan filter

Vlan filter only works when Promiscuous mode is off.

To start testpmd, and add vlan 10 to port 0:

./app/testpmd -l 0-15 -n 4 -- -i

...

testpmd> rx_vlan add 10 0

23.6 Limitations or Known issues

The Intel E810 requires a programmable pipeline package be downloaded by the driver to support normal
operations. The E810 has a limited functionality built in to allow PXE boot and other use cases, but the
driver must download a package file during the driver initialization stage.

The default DDP package file name is ice.pkg. For a specific NIC, the DDP package supposed to be
loaded can have a filename: ice-xxxxxx.pkg, where ‘xxxxxx’ is the 64-bit PCIe Device Serial Num-
ber of the NIC. For example, if the NIC’s device serial number is 00-CC-BB-FF-FF-AA-05-68, the
device-specific DDP package filename is ice-00ccbbffffaa0568.pkg (in hex and all low case). During
initialization, the driver searches in the following paths in order: /lib/firmware/updates/intel/ice/ddp and
/lib/firmware/intel/ice/ddp. The corresponding device-specific DDP package will be downloaded first if
the file exists. If not, then the driver tries to load the default package. The type of loaded package is
stored in ice_adapter->active_pkg_type.

A symbolic link to the DDP package file is also ok. The same package file is used by both the kernel
driver and the DPDK PMD.

23.6.1 limitation

Ice code released is for evaluation only currently.

23.5. Sample Application Notes 128

CHAPTER

TWENTYFOUR

IGB POLL MODE DRIVER

The IGB PMD (librte_pmd_e1000) provides poll mode driver support for Intel 1GbE nics.

24.1 Features

Features of the IGB PMD are:

• Multiple queues for TX and RX

• Receiver Side Scaling (RSS)

• MAC/VLAN filtering

• Packet type information

• Double VLAN

• IEEE 1588

• TSO offload

• Checksum offload

• TCP segmentation offload

• Jumbo frames supported

24.2 Limitations or Known issues

24.3 Supported Chipsets and NICs

• Intel 82576EB 10 Gigabit Ethernet Controller

• Intel 82580EB 10 Gigabit Ethernet Controller

• Intel 82580DB 10 Gigabit Ethernet Controller

• Intel Ethernet Controller I210

• Intel Ethernet Controller I350

129

CHAPTER

TWENTYFIVE

IGC POLL MODE DRIVER

The IGC PMD (librte_pmd_igc) provides poll mode driver support for Foxville I225 Series Network
Adapters.

• For information about I225, please refer to: https://ark.intel.com/content/www/us/en/ark/products/series/184686/
intel-ethernet-controller-i225-series.html

25.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging options
may affect system performance.

• CONFIG_RTE_LIBRTE_IGC_PMD (default y)

Toggle compilation of the librte_pmd_igc driver.

• CONFIG_RTE_LIBRTE_IGC_DEBUG_* (default n)

Toggle display of generic debugging messages.

25.1.1 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

25.1.2 Supported Chipsets and NICs

Foxville LM (I225 LM): Client 2.5G LAN vPro Corporate Foxville V (I225 V): Client 2.5G LAN
Consumer Foxville I (I225 I): Client 2.5G Industrial Temp Foxville V (I225 K): Client 2.5G LAN
Consumer

25.1.3 Sample Application Notes

25.2 Vlan filter

VLAN stripping off only works with inner vlan. Only the outer VLAN TPID can be set to a vlan other
than 0x8100.

If extend VLAN is enabled:

• The VLAN header in a packet that carries a single VLAN header is treated as the external VLAN.

130

Network Interface Controller Drivers, Release 20.08.0

• Foxville expects that any transmitted packet to have at least the external VLAN added by the
software. For those packets where an external VLAN is not present, any offload that relates to
inner fields to the EtherType might not be provided.

• If VLAN TX-OFFLOAD is enabled and the packet does not contain an external VLAN, the packet
is dropped, and if configured, the queue from which the packet was sent is disabled.

To start testpmd, add vlan 10 to port, set vlan stripping off on, set extend on, set TPID of outer VLAN
to 0x9100:

./app/testpmd -l 4-8 -- -i

...

testpmd> vlan set filter on 0
testpmd> rx_vlan add 10 0
testpmd> vlan set strip off 0
testpmd> vlan set extend on 0
testpmd> vlan set outer tpid 0x9100 0

25.3 Flow Director

The Flow Director works in receive mode to identify specific flows or sets of flows and route them to
specific queues.

The Flow Director filters includes the following types:

• ether-type filter

• 2-tuple filter(destination L4 protocol and destination L4 port)

• TCP SYN filter

• RSS filter

Start testpmd:

./testpmd -l 4-8 -- i --rxq=4 --txq=4 --pkt-filter-mode=perfect --disable-rss

Add a rule to direct packet whose ether-type=0x801 to queue 1:

testpmd> flow create 0 ingress pattern eth type is 0x801 / end actions queue index 1 / end

Add a rule to direct packet whose ip-protocol=0x6(TCP),tcp_port=0x80 to queue 1:

testpmd> flow create 0 ingress pattern eth / ipv4 proto is 6 / tcp dst is 0x80 / end actions queue index 1 / end

Add a rule to direct packet whose ip-protocol=0x6(TCP),SYN flag is set to queue 1:

testpmd> flow validate 0 ingress pattern tcp flags spec 0x02 flags mask 0x02 / end actions queue index 1 / end

Add a rule to enable ipv4-udp RSS:

testpmd> flow create 0 ingress pattern end actions rss types ipv4-udp end / end

25.3. Flow Director 131

CHAPTER

TWENTYSIX

IONIC DRIVER

The ionic driver provides support for Pensando server adapters. It currently supports the below models:

• Naples DSC-25

• Naples DSC-100

Please visit https://pensando.io for more information.

26.1 Identifying the Adapter

To find if one or more Pensando PCI Ethernet devices are installed on the host, check for the PCI devices:

lspci -d 1dd8:
b5:00.0 Ethernet controller: Device 1dd8:1002
b6:00.0 Ethernet controller: Device 1dd8:1002

26.2 Pre-Installation Configuration

The following options can be modified in the config file.

• CONFIG_RTE_LIBRTE_IONIC_PMD (default y)

Toggle compilation of ionic PMD.

26.3 Building DPDK

The ionic PMD driver supports UIO and VFIO, please refer to the DPDK documentation that comes
with the DPDK suite for instructions on how to build DPDK.

132

https://pensando.io/assets/documents/Naples-25_ProductBrief_10-2019.pdf
https://pensando.io/assets/documents/Naples_100_ProductBrief-10-2019.pdf
https://pensando.io

CHAPTER

TWENTYSEVEN

IPN3KE POLL MODE DRIVER

The ipn3ke PMD (librte_pmd_ipn3ke) provides poll mode driver support for Intel® FPGA
PAC(Programmable Acceleration Card) N3000 based on the Intel Ethernet Controller X710/XXV710
and Intel Arria 10 FPGA.

In this card, FPGA is an acceleration bridge between network interface and the Intel Ethernet Controller.
Although both FPGA and Ethernet Controllers are connected to CPU with PCIe Gen3x16 Switch, all the
packet RX/TX is handled by Intel Ethernet Controller. So from application point of view the data path
is still the legacy Intel Ethernet Controller X710/XXV710 PMD. Besides this, users can enable more
acceleration features by FPGA IP.

27.1 Prerequisites

• Identifying your adapter using Intel Support and get the latest NVM/FW images.

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

• To get better performance on Intel platforms, please follow the “How to get best performance with
NICs on Intel platforms” section of the Getting Started Guide for Linux.

27.2 Pre-Installation Configuration

27.2.1 Config File Options

The following options can be modified in the config file.

• CONFIG_RTE_LIBRTE_IPN3KE_PMD (default y)

Toggle compilation of the librte_pmd_ipn3ke driver.

27.2.2 Runtime Config Options

• AFU name

AFU name identifies which AFU is used by IPN3KE. The AFU name format is “Port|BDF”, Each
FPGA can be divided into four blocks at most. “Port” identifies which FPGA block the AFU
bitstream belongs to, but currently only 0 IPN3KE support. “BDF” means FPGA PCIe BDF. For
example:

--vdev 'ipn3ke_cfg0,afu=0|b3:00.0'

133

http://www.intel.com/support

Network Interface Controller Drivers, Release 20.08.0

• FPGA Acceleration list

For IPN3KE FPGA can provide different bitstream, different bitstream includes different Accel-
eration, so users need to identify which Acceleration is used. Current IPN3KE can support TM
and Flow Acceleration, for example:

--vdev 'ipn3ke_cfg0,afu=0|b3:00.0,fpga_acc={tm|flow}'

• I40e PF name list

Users need to bind FPGA LineSidePort to FVL PF. So I40e PF name list should be involved in
startup command. For example:

--vdev 'ipn3ke_cfg0,afu=0|b3:00.0,fpga_acc={tm|flow},i40e_pf={0000:b1:00.0|0000:b1:00.1|0000:b1:00.2|0000:b1:00.3|0000:b5:00.0|0000:b5:00.1|0000:b5:00.2|0000:b5:00.3}'

27.3 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

27.4 Sample Application Notes

27.4.1 Packet TX/RX with FPGA Pass-through image

FPGA Pass-through bitstream is original FPGA Image.

To start testpmd, and add I40e PF to FPGA network port:

./app/testpmd -l 0-15 -n 4 --vdev 'ifpga_rawdev_cfg0,ifpga=b3:00.0,port=0' --vdev 'ipn3ke_cfg0,afu=0|b3:00.0,i40e_pf={0000:b1:00.0|0000:b1:00.1|0000:b1:00.2|0000:b1:00.3|0000:b5:00.0|0000:b5:00.1|0000:b5:00.2|0000:b5:00.3}' -- -i --no-numa --port-topology=loop

27.4.2 HQoS and flow acceleration

HQoS and flow acceleration bitstream is used to offloading HQoS and flow classifier.

To start testpmd, and add I40e PF to FPGA network port, enable FPGA HQoS and Flow Acceleration:

./app/testpmd -l 0-15 -n 4 --vdev 'ifpga_rawdev_cfg0,ifpga=b3:00.0,port=0' --vdev 'ipn3ke_cfg0,afu=0|b3:00.0,fpga_acc={tm|flow},i40e_pf={0000:b1:00.0|0000:b1:00.1|0000:b1:00.2|0000:b1:00.3|0000:b5:00.0|0000:b5:00.1|0000:b5:00.2|0000:b5:00.3}' -- -i --no-numa --forward-mode=macswap

27.5 Limitations or Known issues

27.5.1 19.05 limitation

Ipn3ke code released in 19.05 is for evaluation only.

27.3. Driver compilation and testing 134

CHAPTER

TWENTYEIGHT

IXGBE DRIVER

28.1 Vector PMD for IXGBE

Vector PMD uses Intel® SIMD instructions to optimize packet I/O. It improves load/store bandwidth
efficiency of L1 data cache by using a wider SSE/AVX register 1 (1). The wider register gives space to
hold multiple packet buffers so as to save instruction number when processing bulk of packets.

There is no change to PMD API. The RX/TX handler are the only two entries for vPMD packet I/O.
They are transparently registered at runtime RX/TX execution if all condition checks pass.

1. To date, only an SSE version of IX GBE vPMD is available.

Some constraints apply as pre-conditions for specific optimizations on bulk packet transfers. The fol-
lowing sections explain RX and TX constraints in the vPMD.

28.1.1 RX Constraints

Prerequisites and Pre-conditions

The following prerequisites apply:

• To enable vPMD to work for RX, bulk allocation for Rx must be allowed.

Ensure that the following pre-conditions are satisfied:

• rxq->rx_free_thresh >= RTE_PMD_IXGBE_RX_MAX_BURST

• rxq->rx_free_thresh < rxq->nb_rx_desc

• (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0

• rxq->nb_rx_desc < (IXGBE_MAX_RING_DESC - RTE_PMD_IXGBE_RX_MAX_BURST)

These conditions are checked in the code.

Scattered packets are not supported in this mode. If an incoming packet is greater than the maximum
acceptable length of one “mbuf” data size (by default, the size is 2 KB), vPMD for RX would be
disabled.

By default, IXGBE_MAX_RING_DESC is set to 4096 and RTE_PMD_IXGBE_RX_MAX_BURST is
set to 32.

135

Network Interface Controller Drivers, Release 20.08.0

Feature not Supported by RX Vector PMD

Some features are not supported when trying to increase the throughput in vPMD. They are:

• IEEE1588

• FDIR

• Header split

• RX checksum off load

Other features are supported using optional MACRO configuration. They include:

• HW VLAN strip

• HW extend dual VLAN

To guarantee the constraint, capabilities in dev_conf.rxmode.offloads will be checked:

• DEV_RX_OFFLOAD_VLAN_STRIP

• DEV_RX_OFFLOAD_VLAN_EXTEND

• DEV_RX_OFFLOAD_CHECKSUM

• DEV_RX_OFFLOAD_HEADER_SPLIT

• dev_conf

fdir_conf->mode will also be checked.

VF Runtime Options

The following devargs options can be enabled at runtime. They must be passed as part of EAL
arguments. For example,

testpmd -w af:10.0,pflink_fullchk=1 -- -i

• pflink_fullchk (default 0)

When calling rte_eth_link_get_nowait() to get VF link status, this option is used to
control how VF synchronizes its status with PF’s. If set, VF will not only check the PF’s physical
link status by reading related register, but also check the mailbox status. We call this behavior as
fully checking. And checking mailbox will trigger PF’s mailbox interrupt generation. If unset, the
application can get the VF’s link status quickly by just reading the PF’s link status register, this
will avoid the whole system’s mailbox interrupt generation.

rte_eth_link_get() will still use the mailbox method regardless of the pflink_fullchk set-
ting.

RX Burst Size

As vPMD is focused on high throughput, it assumes that the RX burst size is equal to or greater than 32
per burst. It returns zero if using nb_pkt < 32 as the expected packet number in the receive handler.

28.1. Vector PMD for IXGBE 136

Network Interface Controller Drivers, Release 20.08.0

28.1.2 TX Constraint

Prerequisite

The only prerequisite is related to tx_rs_thresh. The tx_rs_thresh value must be
greater than or equal to RTE_PMD_IXGBE_TX_MAX_BURST, but less or equal to
RTE_IXGBE_TX_MAX_FREE_BUF_SZ. Consequently, by default the tx_rs_thresh value is in
the range 32 to 64.

Feature not Supported by TX Vector PMD

TX vPMD only works when offloads is set to 0

This means that it does not support any TX offload.

28.2 Application Programming Interface

In DPDK release v16.11 an API for ixgbe specific functions has been added to the ixgbe PMD. The
declarations for the API functions are in the header rte_pmd_ixgbe.h.

28.3 Sample Application Notes

28.3.1 l3fwd

When running l3fwd with vPMD, there is one thing to note. In the configuration, ensure that
DEV_RX_OFFLOAD_CHECKSUM in port_conf.rxmode.offloads is NOT set. Otherwise, by default,
RX vPMD is disabled.

28.3.2 load_balancer

As in the case of l3fwd, to enable vPMD, do NOT set DEV_RX_OFFLOAD_CHECKSUM in
port_conf.rxmode.offloads. In addition, for improved performance, use -bsz “(32,32),(64,64),(32,32)”
in load_balancer to avoid using the default burst size of 144.

28.4 Limitations or Known issues

28.4.1 Malicious Driver Detection not Supported

The Intel x550 series NICs support a feature called MDD (Malicious Driver Detection) which checks
the behavior of the VF driver. If this feature is enabled, the VF must use the advanced context descriptor
correctly and set the CC (Check Context) bit. DPDK PF doesn’t support MDD, but kernel PF does. We
may hit problem in this scenario kernel PF + DPDK VF. If user enables MDD in kernel PF, DPDK VF
will not work. Because kernel PF thinks the VF is malicious. But actually it’s not. The only reason is
the VF doesn’t act as MDD required. There’s significant performance impact to support MDD. DPDK
should check if the advanced context descriptor should be set and set it. And DPDK has to ask the info
about the header length from the upper layer, because parsing the packet itself is not acceptable. So, it’s

28.2. Application Programming Interface 137

Network Interface Controller Drivers, Release 20.08.0

too expensive to support MDD. When using kernel PF + DPDK VF on x550, please make sure to use a
kernel PF driver that disables MDD or can disable MDD.

Some kernel drivers already disable MDD by default while some kernels can use the command insmod
ixgbe.ko MDD=0,0 to disable MDD. Each “0” in the command refers to a port. For example, if there
are 6 ixgbe ports, the command should be changed to insmod ixgbe.ko MDD=0,0,0,0,0,0.

28.4.2 Statistics

The statistics of ixgbe hardware must be polled regularly in order for it to remain consistent. Run-
ning a DPDK application without polling the statistics will cause registers on hardware to count to the
maximum value, and “stick” at that value.

In order to avoid statistic registers every reaching the maximum value, read the statistics from the hard-
ware using rte_eth_stats_get() or rte_eth_xstats_get().

The maximum time between statistics polls that ensures consistent results can be calculated as follows:

max_read_interval = UINT_MAX / max_packets_per_second
max_read_interval = 4294967295 / 14880952
max_read_interval = 288.6218096127183 (seconds)
max_read_interval = ~4 mins 48 sec.

In order to ensure valid results, it is recommended to poll every 4 minutes.

28.4.3 MTU setting

Although the user can set the MTU separately on PF and VF ports, the ixgbe NIC only supports one
global MTU per physical port. So when the user sets different MTUs on PF and VF ports in one physical
port, the real MTU for all these PF and VF ports is the largest value set. This behavior is based on the
kernel driver behavior.

28.4.4 VF MAC address setting

On ixgbe, the concept of “pool” can be used for different things depending on the mode. In VMDq
mode, “pool” means a VMDq pool. In IOV mode, “pool” means a VF.

There is no RTE API to add a VF’s MAC address from the PF. On ixgbe, the
rte_eth_dev_mac_addr_add() function can be used to add a VF’s MAC address, as a
workaround.

28.4.5 X550 does not support legacy interrupt mode

Description

X550 cannot get interrupts if using uio_pci_generic module or using legacy interrupt mode of
igb_uio or vfio. Because the errata of X550 states that the Interrupt Status bit is not implemented.
The errata is the item #22 from X550 spec update

28.4. Limitations or Known issues 138

https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/ethernet-x550-spec-update.pdf

Network Interface Controller Drivers, Release 20.08.0

Implication

When using uio_pci_generic module or using legacy interrupt mode of igb_uio or vfio, the
Interrupt Status bit would be checked if the interrupt is coming. Since the bit is not implemented in
X550, the irq cannot be handled correctly and cannot report the event fd to DPDK apps. Then apps
cannot get interrupts and dmesg will show messages like irq #No.: `` ``nobody cared.

Workaround

Do not bind the uio_pci_generic module in X550 NICs. Do not bind igb_uio with legacy mode
in X550 NICs. Before binding vfio with legacy mode in X550 NICs, use modprobe vfio ``
``nointxmask=1 to load vfio module if the intx is not shared with other devices.

28.5 Inline crypto processing support

Inline IPsec processing is supported for RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO mode
for ESP packets only:

• ESP authentication only: AES-128-GMAC (128-bit key)

• ESP encryption and authentication: AES-128-GCM (128-bit key)

IPsec Security Gateway Sample Application supports inline IPsec processing for ixgbe PMD.

For more details see the IPsec Security Gateway Sample Application and Security library documenta-
tion.

28.6 Virtual Function Port Representors

The IXGBE PF PMD supports the creation of VF port representors for the control and monitoring of
IXGBE virtual function devices. Each port representor corresponds to a single virtual function of that
device. Using the devargs option representor the user can specify which virtual functions to
create port representors for on initialization of the PF PMD by passing the VF IDs of the VFs which are
required.:

-w DBDF,representor=[0,1,4]

Currently hot-plugging of representor ports is not supported so all required representors must be speci-
fied on the creation of the PF.

28.7 Supported Chipsets and NICs

• Intel 82599EB 10 Gigabit Ethernet Controller

• Intel 82598EB 10 Gigabit Ethernet Controller

• Intel 82599ES 10 Gigabit Ethernet Controller

• Intel 82599EN 10 Gigabit Ethernet Controller

• Intel Ethernet Controller X540-AT2

28.5. Inline crypto processing support 139

Network Interface Controller Drivers, Release 20.08.0

• Intel Ethernet Controller X550-BT2

• Intel Ethernet Controller X550-AT2

• Intel Ethernet Controller X550-AT

• Intel Ethernet Converged Network Adapter X520-SR1

• Intel Ethernet Converged Network Adapter X520-SR2

• Intel Ethernet Converged Network Adapter X520-LR1

• Intel Ethernet Converged Network Adapter X520-DA1

• Intel Ethernet Converged Network Adapter X520-DA2

• Intel Ethernet Converged Network Adapter X520-DA4

• Intel Ethernet Converged Network Adapter X520-QDA1

• Intel Ethernet Converged Network Adapter X520-T2

• Intel 10 Gigabit AF DA Dual Port Server Adapter

• Intel 10 Gigabit AT Server Adapter

• Intel 10 Gigabit AT2 Server Adapter

• Intel 10 Gigabit CX4 Dual Port Server Adapter

• Intel 10 Gigabit XF LR Server Adapter

• Intel 10 Gigabit XF SR Dual Port Server Adapter

• Intel 10 Gigabit XF SR Server Adapter

• Intel Ethernet Converged Network Adapter X540-T1

• Intel Ethernet Converged Network Adapter X540-T2

• Intel Ethernet Converged Network Adapter X550-T1

• Intel Ethernet Converged Network Adapter X550-T2

28.7. Supported Chipsets and NICs 140

CHAPTER

TWENTYNINE

INTEL VIRTUAL FUNCTION DRIVER

Supported Intel® Ethernet Controllers (see the DPDK Release Notes for details) support the following
modes of operation in a virtualized environment:

• SR-IOV mode: Involves direct assignment of part of the port resources to different guest operat-
ing systems using the PCI-SIG Single Root I/O Virtualization (SR IOV) standard, also known as
“native mode” or “pass-through” mode. In this chapter, this mode is referred to as IOV mode.

• VMDq mode: Involves central management of the networking resources by an IO Virtual Ma-
chine (IOVM) or a Virtual Machine Monitor (VMM), also known as software switch acceleration
mode. In this chapter, this mode is referred to as the Next Generation VMDq mode.

29.1 SR-IOV Mode Utilization in a DPDK Environment

The DPDK uses the SR-IOV feature for hardware-based I/O sharing in IOV mode. Therefore, it is
possible to partition SR-IOV capability on Ethernet controller NIC resources logically and expose them
to a virtual machine as a separate PCI function called a “Virtual Function”. Refer to Fig. 29.1.

Therefore, a NIC is logically distributed among multiple virtual machines (as shown in Fig. 29.1), while
still having global data in common to share with the Physical Function and other Virtual Functions. The
DPDK fm10kvf, i40evf, igbvf or ixgbevf as a Poll Mode Driver (PMD) serves for the Intel® 82576
Gigabit Ethernet Controller, Intel® Ethernet Controller I350 family, Intel® 82599 10 Gigabit Ethernet
Controller NIC, Intel® Fortville 10/40 Gigabit Ethernet Controller NIC’s virtual PCI function, or PCIe
host-interface of the Intel Ethernet Switch FM10000 Series. Meanwhile the DPDK Poll Mode Driver
(PMD) also supports “Physical Function” of such NIC’s on the host.

The DPDK PF/VF Poll Mode Driver (PMD) supports the Layer 2 switch on Intel® 82576 Gigabit Eth-
ernet Controller, Intel® Ethernet Controller I350 family, Intel® 82599 10 Gigabit Ethernet Controller,
and Intel® Fortville 10/40 Gigabit Ethernet Controller NICs so that guest can choose it for inter virtual
machine traffic in SR-IOV mode.

For more detail on SR-IOV, please refer to the following documents:

• SR-IOV provides hardware based I/O sharing

• PCI-SIG-Single Root I/O Virtualization Support on IA

• Scalable I/O Virtualized Servers

141

http://www.intel.com/network/connectivity/solutions/vmdc.htm
http://www.intel.com/content/www/us/en/pci-express/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.html
http://www.intel.com/content/www/us/en/virtualization/server-virtualization/scalable-i-o-virtualized-servers-paper.html

Network Interface Controller Drivers, Release 20.08.0

Fig. 29.1: Virtualization for a Single Port NIC in SR-IOV Mode

29.1. SR-IOV Mode Utilization in a DPDK Environment 142

Network Interface Controller Drivers, Release 20.08.0

29.1.1 Physical and Virtual Function Infrastructure

The following describes the Physical Function and Virtual Functions infrastructure for the supported
Ethernet Controller NICs.

Virtual Functions operate under the respective Physical Function on the same NIC Port and therefore
have no access to the global NIC resources that are shared between other functions for the same NIC
port.

A Virtual Function has basic access to the queue resources and control structures of the queues assigned
to it. For global resource access, a Virtual Function has to send a request to the Physical Function for
that port, and the Physical Function operates on the global resources on behalf of the Virtual Function.
For this out-of-band communication, an SR-IOV enabled NIC provides a memory buffer for each Virtual
Function, which is called a “Mailbox”.

Intel® Ethernet Adaptive Virtual Function

Adaptive Virtual Function (IAVF) is a SR-IOV Virtual Function with the same device id (8086:1889)
on different Intel Ethernet Controller. IAVF Driver is VF driver which supports for all future Intel
devices without requiring a VM update. And since this happens to be an adaptive VF driver, every new
drop of the VF driver would add more and more advanced features that can be turned on in the VM
if the underlying HW device supports those advanced features based on a device agnostic way without
ever compromising on the base functionality. IAVF provides generic hardware interface and interface
between IAVF driver and a compliant PF driver is specified.

Intel products starting Ethernet Controller 700 Series to support Adaptive Virtual Function.

The way to generate Virtual Function is like normal, and the resource of VF assignment depends on the
NIC Infrastructure.

For more detail on SR-IOV, please refer to the following documents:

• Intel® IAVF HAS

Note: To use DPDK IAVF PMD on Intel® 700 Series Ethernet Controller, the de-
vice id (0x1889) need to specified during device assignment in hypervisor. Take qemu for
example, the device assignment should carry the IAVF device id (0x1889) like -device
vfio-pci,x-pci-device-id=0x1889,host=03:0a.0.

The PCIE host-interface of Intel Ethernet Switch FM10000 Series VF infrastructure

In a virtualized environment, the programmer can enable a maximum of 64 Virtual Functions (VF)
globally per PCIE host-interface of the Intel Ethernet Switch FM10000 Series device. Each VF can
have a maximum of 16 queue pairs. The Physical Function in host could be only configured by the
Linux* fm10k driver (in the case of the Linux Kernel-based Virtual Machine [KVM]), DPDK PMD PF
driver doesn’t support it yet.

For example,

• Using Linux* fm10k driver:

rmmod fm10k (To remove the fm10k module)
insmod fm0k.ko max_vfs=2,2 (To enable two Virtual Functions per port)

29.1. SR-IOV Mode Utilization in a DPDK Environment 143

https://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/ethernet-adaptive-virtual-function-hardware-spec.pdf

Network Interface Controller Drivers, Release 20.08.0

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a
dual-port NIC. When you enable the four Virtual Functions with the above command, the four enabled
functions have a Function# represented by (Bus#, Device#, Function#) in sequence starting from 0 to 3.
However:

• Virtual Functions 0 and 2 belong to Physical Function 0

• Virtual Functions 1 and 3 belong to Physical Function 1

Note: The above is an important consideration to take into account when targeting specific packets to a
selected port.

Intel® X710/XL710 Gigabit Ethernet Controller VF Infrastructure

In a virtualized environment, the programmer can enable a maximum of 128 Virtual Functions (VF)
globally per Intel® X710/XL710 Gigabit Ethernet Controller NIC device. The number of queue pairs
of each VF can be configured by CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VF in config
file. The Physical Function in host could be either configured by the Linux* i40e driver (in the case of
the Linux Kernel-based Virtual Machine [KVM]) or by DPDK PMD PF driver. When using both DPDK
PMD PF/VF drivers, the whole NIC will be taken over by DPDK based application.

For example,

• Using Linux* i40e driver:

rmmod i40e (To remove the i40e module)
insmod i40e.ko max_vfs=2,2 (To enable two Virtual Functions per port)

• Using the DPDK PMD PF i40e driver:

Kernel Params: iommu=pt, intel_iommu=on

modprobe uio
insmod igb_uio
./dpdk-devbind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific PCI device)

Launch the DPDK testpmd/example or your own host daemon application using the DPDK PMD
library.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a
dual-port NIC. When you enable the four Virtual Functions with the above command, the four enabled
functions have a Function# represented by (Bus#, Device#, Function#) in sequence starting from 0 to 3.
However:

• Virtual Functions 0 and 2 belong to Physical Function 0

• Virtual Functions 1 and 3 belong to Physical Function 1

Note: The above is an important consideration to take into account when targeting specific packets to a
selected port.

For Intel® X710/XL710 Gigabit Ethernet Controller, queues are in pairs. One queue pair means one
receive queue and one transmit queue. The default number of queue pairs per VF is 4, and can be 16 in
maximum.

29.1. SR-IOV Mode Utilization in a DPDK Environment 144

Network Interface Controller Drivers, Release 20.08.0

Intel® 82599 10 Gigabit Ethernet Controller VF Infrastructure

The programmer can enable a maximum of 63 Virtual Functions and there must be one Physical Func-
tion per Intel® 82599 10 Gigabit Ethernet Controller NIC port. The reason for this is that the device
allows for a maximum of 128 queues per port and a virtual/physical function has to have at least one
queue pair (RX/TX). The current implementation of the DPDK ixgbevf driver supports a single queue
pair (RX/TX) per Virtual Function. The Physical Function in host could be either configured by the
Linux* ixgbe driver (in the case of the Linux Kernel-based Virtual Machine [KVM]) or by DPDK PMD
PF driver. When using both DPDK PMD PF/VF drivers, the whole NIC will be taken over by DPDK
based application.

For example,

• Using Linux* ixgbe driver:

rmmod ixgbe (To remove the ixgbe module)
insmod ixgbe max_vfs=2,2 (To enable two Virtual Functions per port)

• Using the DPDK PMD PF ixgbe driver:

Kernel Params: iommu=pt, intel_iommu=on

modprobe uio
insmod igb_uio
./dpdk-devbind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific PCI device)

Launch the DPDK testpmd/example or your own host daemon application using the DPDK PMD
library.

• Using the DPDK PMD PF ixgbe driver to enable VF RSS:

Same steps as above to install the modules of uio, igb_uio, specify max_vfs for PCI device, and
launch the DPDK testpmd/example or your own host daemon application using the DPDK PMD
library.

The available queue number (at most 4) per VF depends on the total number of pool, which is
determined by the max number of VF at PF initialization stage and the number of queue specified
in config:

– If the max number of VFs (max_vfs) is set in the range of 1 to 32:

If the number of Rx queues is specified as 4 (--rxq=4 in testpmd), then there are totally
32 pools (ETH_32_POOLS), and each VF could have 4 Rx queues;

If the number of Rx queues is specified as 2 (--rxq=2 in testpmd), then there are totally
32 pools (ETH_32_POOLS), and each VF could have 2 Rx queues;

– If the max number of VFs (max_vfs) is in the range of 33 to 64:

If the number of Rx queues in specified as 4 (--rxq=4 in testpmd), then error message is
expected as rxq is not correct at this case;

If the number of rxq is 2 (--rxq=2 in testpmd), then there is totally 64 pools
(ETH_64_POOLS), and each VF have 2 Rx queues;

On host, to enable VF RSS functionality, rx mq mode should be set as
ETH_MQ_RX_VMDQ_RSS or ETH_MQ_RX_RSS mode, and SRIOV mode should be
activated (max_vfs >= 1). It also needs config VF RSS information like hash function, RSS key,
RSS key length.

29.1. SR-IOV Mode Utilization in a DPDK Environment 145

Network Interface Controller Drivers, Release 20.08.0

Note: The limitation for VF RSS on Intel® 82599 10 Gigabit Ethernet Controller is: The hash and
key are shared among PF and all VF, the RETA table with 128 entries is also shared among PF and all
VF; So it could not to provide a method to query the hash and reta content per VF on guest, while, if
possible, please query them on host for the shared RETA information.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a
dual-port NIC. When you enable the four Virtual Functions with the above command, the four enabled
functions have a Function# represented by (Bus#, Device#, Function#) in sequence starting from 0 to 3.
However:

• Virtual Functions 0 and 2 belong to Physical Function 0

• Virtual Functions 1 and 3 belong to Physical Function 1

Note: The above is an important consideration to take into account when targeting specific packets to a
selected port.

Intel® 82576 Gigabit Ethernet Controller and Intel® Ethernet Controller I350 Family VF
Infrastructure

In a virtualized environment, an Intel® 82576 Gigabit Ethernet Controller serves up to eight virtual
machines (VMs). The controller has 16 TX and 16 RX queues. They are generally referred to (or
thought of) as queue pairs (one TX and one RX queue). This gives the controller 16 queue pairs.

A pool is a group of queue pairs for assignment to the same VF, used for transmit and receive operations.
The controller has eight pools, with each pool containing two queue pairs, that is, two TX and two RX
queues assigned to each VF.

In a virtualized environment, an Intel® Ethernet Controller I350 family device serves up to eight virtual
machines (VMs) per port. The eight queues can be accessed by eight different VMs if configured
correctly (the i350 has 4x1GbE ports each with 8T X and 8 RX queues), that means, one Transmit and
one Receive queue assigned to each VF.

For example,

• Using Linux* igb driver:

rmmod igb (To remove the igb module)
insmod igb max_vfs=2,2 (To enable two Virtual Functions per port)

• Using DPDK PMD PF igb driver:

Kernel Params: iommu=pt, intel_iommu=on modprobe uio

insmod igb_uio
./dpdk-devbind.py -b igb_uio bb:ss.f
echo 2 > /sys/bus/pci/devices/0000\:bb\:ss.f/max_vfs (To enable two VFs on a specific pci device)

Launch DPDK testpmd/example or your own host daemon application using the DPDK PMD
library.

Virtual Function enumeration is performed in the following sequence by the Linux* pci driver for a
four-port NIC. When you enable the four Virtual Functions with the above command, the four enabled
functions have a Function# represented by (Bus#, Device#, Function#) in sequence, starting from 0 to
7. However:

29.1. SR-IOV Mode Utilization in a DPDK Environment 146

Network Interface Controller Drivers, Release 20.08.0

• Virtual Functions 0 and 4 belong to Physical Function 0

• Virtual Functions 1 and 5 belong to Physical Function 1

• Virtual Functions 2 and 6 belong to Physical Function 2

• Virtual Functions 3 and 7 belong to Physical Function 3

Note: The above is an important consideration to take into account when targeting specific packets to a
selected port.

29.1.2 Validated Hypervisors

The validated hypervisor is:

• KVM (Kernel Virtual Machine) with Qemu, version 0.14.0

However, the hypervisor is bypassed to configure the Virtual Function devices using the Mailbox inter-
face, the solution is hypervisor-agnostic. Xen* and VMware* (when SR- IOV is supported) will also be
able to support the DPDK with Virtual Function driver support.

29.1.3 Expected Guest Operating System in Virtual Machine

The expected guest operating systems in a virtualized environment are:

• Fedora* 14 (64-bit)

• Ubuntu* 10.04 (64-bit)

For supported kernel versions, refer to the DPDK Release Notes.

29.2 Setting Up a KVM Virtual Machine Monitor

The following describes a target environment:

• Host Operating System: Fedora 14

• Hypervisor: KVM (Kernel Virtual Machine) with Qemu version 0.14.0

• Guest Operating System: Fedora 14

• Linux Kernel Version: Refer to the DPDK Getting Started Guide

• Target Applications: l2fwd, l3fwd-vf

The setup procedure is as follows:

1. Before booting the Host OS, open BIOS setup and enable Intel® VT features.

2. While booting the Host OS kernel, pass the intel_iommu=on kernel command line argument using
GRUB. When using DPDK PF driver on host, pass the iommu=pt kernel command line argument
in GRUB.

29.2. Setting Up a KVM Virtual Machine Monitor 147

Network Interface Controller Drivers, Release 20.08.0

3. Download qemu-kvm-0.14.0 from http://sourceforge.net/projects/kvm/files/qemu-kvm/ and in-
stall it in the Host OS using the following steps:

When using a recent kernel (2.6.25+) with kvm modules included:

tar xzf qemu-kvm-release.tar.gz
cd qemu-kvm-release
./configure --prefix=/usr/local/kvm
make
sudo make install
sudo /sbin/modprobe kvm-intel

When using an older kernel, or a kernel from a distribution without the kvm modules, you must
download (from the same link), compile and install the modules yourself:

tar xjf kvm-kmod-release.tar.bz2
cd kvm-kmod-release
./configure
make
sudo make install
sudo /sbin/modprobe kvm-intel

qemu-kvm installs in the /usr/local/bin directory.

For more details about KVM configuration and usage, please refer to:

http://www.linux-kvm.org/page/HOWTO1.

4. Create a Virtual Machine and install Fedora 14 on the Virtual Machine. This is referred to as the
Guest Operating System (Guest OS).

5. Download and install the latest ixgbe driver from:

http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=14687

6. In the Host OS

When using Linux kernel ixgbe driver, unload the Linux ixgbe driver and reload it with the
max_vfs=2,2 argument:

rmmod ixgbe
modprobe ixgbe max_vfs=2,2

When using DPDK PMD PF driver, insert DPDK kernel module igb_uio and set the number of
VF by sysfs max_vfs:

modprobe uio
insmod igb_uio
./dpdk-devbind.py -b igb_uio 02:00.0 02:00.1 0e:00.0 0e:00.1
echo 2 > /sys/bus/pci/devices/0000\:02\:00.0/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:02\:00.1/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:0e\:00.0/max_vfs
echo 2 > /sys/bus/pci/devices/0000\:0e\:00.1/max_vfs

Note: You need to explicitly specify number of vfs for each port, for example, in the command
above, it creates two vfs for the first two ixgbe ports.

Let say we have a machine with four physical ixgbe ports:

0000:02:00.0

0000:02:00.1

29.2. Setting Up a KVM Virtual Machine Monitor 148

http://sourceforge.net/projects/kvm/files/qemu-kvm/
http://www.linux-kvm.org/page/HOWTO1
http://downloadcenter.intel.com/Detail_Desc.aspx?agr=Y&DwnldID=14687

Network Interface Controller Drivers, Release 20.08.0

0000:0e:00.0

0000:0e:00.1

The command above creates two vfs for device 0000:02:00.0:

ls -alrt /sys/bus/pci/devices/0000\:02\:00.0/virt*
lrwxrwxrwx. 1 root root 0 Apr 13 05:40 /sys/bus/pci/devices/0000:02:00.0/virtfn1 -> ../0000:02:10.2
lrwxrwxrwx. 1 root root 0 Apr 13 05:40 /sys/bus/pci/devices/0000:02:00.0/virtfn0 -> ../0000:02:10.0

It also creates two vfs for device 0000:02:00.1:

ls -alrt /sys/bus/pci/devices/0000\:02\:00.1/virt*
lrwxrwxrwx. 1 root root 0 Apr 13 05:51 /sys/bus/pci/devices/0000:02:00.1/virtfn1 -> ../0000:02:10.3
lrwxrwxrwx. 1 root root 0 Apr 13 05:51 /sys/bus/pci/devices/0000:02:00.1/virtfn0 -> ../0000:02:10.1

7. List the PCI devices connected and notice that the Host OS shows two Physical Functions (tra-
ditional ports) and four Virtual Functions (two for each port). This is the result of the previous
step.

8. Insert the pci_stub module to hold the PCI devices that are freed from the default driver us-
ing the following command (see http://www.linux-kvm.org/page/How_to_assign_devices_with_
VT-d_in_KVM Section 4 for more information):

sudo /sbin/modprobe pci-stub

Unbind the default driver from the PCI devices representing the Virtual Functions. A script to
perform this action is as follows:

echo "8086 10ed" > /sys/bus/pci/drivers/pci-stub/new_id
echo 0000:08:10.0 > /sys/bus/pci/devices/0000:08:10.0/driver/unbind
echo 0000:08:10.0 > /sys/bus/pci/drivers/pci-stub/bind

where, 0000:08:10.0 belongs to the Virtual Function visible in the Host OS.

9. Now, start the Virtual Machine by running the following command:

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -smp 4 -boot c -hda lucid.qcow2 -device pci-assign,host=08:10.0

where:

— -m = memory to assign

—-smp = number of smp cores

— -boot = boot option

—-hda = virtual disk image

— -device = device to attach

Note: — The pci-assign,host=08:10.0 value indicates that you want to attach a PCI device to
a Virtual Machine and the respective (Bus:Device.Function) numbers should be passed for the
Virtual Function to be attached.

— qemu-kvm-0.14.0 allows a maximum of four PCI devices assigned to a VM, but this is qemu-
kvm version dependent since qemu-kvm-0.14.1 allows a maximum of five PCI devices.

— qemu-system-x86_64 also has a -cpu command line option that is used to select the cpu_model
to emulate in a Virtual Machine. Therefore, it can be used as:

/usr/local/kvm/bin/qemu-system-x86_64 -cpu ?

(to list all available cpu_models)

29.2. Setting Up a KVM Virtual Machine Monitor 149

http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM
http://www.linux-kvm.org/page/How_to_assign_devices_with_VT-d_in_KVM

Network Interface Controller Drivers, Release 20.08.0

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -cpu host -smp 4 -boot c -hda lucid.qcow2 -device pci-assign,host=08:10.0

(to use the same cpu_model equivalent to the host cpu)

For more information, please refer to: http://wiki.qemu.org/Features/CPUModels.

10. If use vfio-pci to pass through device instead of pci-assign, steps 8 and 9 need to be updated to
bind device to vfio-pci and replace pci-assign with vfio-pci when start virtual machine.

sudo /sbin/modprobe vfio-pci

echo "8086 10ed" > /sys/bus/pci/drivers/vfio-pci/new_id
echo 0000:08:10.0 > /sys/bus/pci/devices/0000:08:10.0/driver/unbind
echo 0000:08:10.0 > /sys/bus/pci/drivers/vfio-pci/bind

/usr/local/kvm/bin/qemu-system-x86_64 -m 4096 -smp 4 -boot c -hda lucid.qcow2 -device vfio-pci,host=08:10.0

11. Install and run DPDK host app to take over the Physical Function. Eg.

make install T=x86_64-native-linux-gcc
./x86_64-native-linux-gcc/app/testpmd -l 0-3 -n 4 -- -i

12. Finally, access the Guest OS using vncviewer with the localhost:5900 port and check the lspci
command output in the Guest OS. The virtual functions will be listed as available for use.

13. Configure and install the DPDK with an x86_64-native-linux-gcc configuration on the Guest OS
as normal, that is, there is no change to the normal installation procedure.

make config T=x86_64-native-linux-gcc O=x86_64-native-linux-gcc
cd x86_64-native-linux-gcc
make

Note: If you are unable to compile the DPDK and you are getting “error: CPU you selected does not
support x86-64 instruction set”, power off the Guest OS and start the virtual machine with the correct
-cpu option in the qemu- system-x86_64 command as shown in step 9. You must select the best x86_64
cpu_model to emulate or you can select host option if available.

Note: Run the DPDK l2fwd sample application in the Guest OS with Hugepages enabled. For the
expected benchmark performance, you must pin the cores from the Guest OS to the Host OS (taskset
can be used to do this) and you must also look at the PCI Bus layout on the board to ensure you are not
running the traffic over the QPI Interface.

Note:

• The Virtual Machine Manager (the Fedora package name is virt-manager) is a utility for virtual
machine management that can also be used to create, start, stop and delete virtual machines. If
this option is used, step 2 and 6 in the instructions provided will be different.

• virsh, a command line utility for virtual machine management, can also be used to bind and unbind
devices to a virtual machine in Ubuntu. If this option is used, step 6 in the instructions provided
will be different.

• The Virtual Machine Monitor (see Fig. 29.2) is equivalent to a Host OS with KVM installed as
described in the instructions.

29.2. Setting Up a KVM Virtual Machine Monitor 150

http://wiki.qemu.org/Features/CPUModels

Network Interface Controller Drivers, Release 20.08.0

Fig. 29.2: Performance Benchmark Setup

29.3 DPDK SR-IOV PMD PF/VF Driver Usage Model

29.3.1 Fast Host-based Packet Processing

Software Defined Network (SDN) trends are demanding fast host-based packet handling. In a virtual-
ization environment, the DPDK VF PMD driver performs the same throughput result as a non-VT native
environment.

With such host instance fast packet processing, lots of services such as filtering, QoS, DPI can be of-
floaded on the host fast path.

Fig. 29.3 shows the scenario where some VMs directly communicate externally via a VFs, while others
connect to a virtual switch and share the same uplink bandwidth.

29.4 SR-IOV (PF/VF) Approach for Inter-VM Communication

Inter-VM data communication is one of the traffic bottle necks in virtualization platforms. SR-IOV
device assignment helps a VM to attach the real device, taking advantage of the bridge in the NIC. So
VF-to-VF traffic within the same physical port (VM0<->VM1) have hardware acceleration. However,
when VF crosses physical ports (VM0<->VM2), there is no such hardware bridge. In this case, the
DPDK PMD PF driver provides host forwarding between such VMs.

Fig. 29.4 shows an example. In this case an update of the MAC address lookup tables in both the NIC
and host DPDK application is required.

In the NIC, writing the destination of a MAC address belongs to another cross device VM to the PF
specific pool. So when a packet comes in, its destination MAC address will match and forward to the
host DPDK PMD application.

In the host DPDK application, the behavior is similar to L2 forwarding, that is, the packet is forwarded

29.3. DPDK SR-IOV PMD PF/VF Driver Usage Model 151

Network Interface Controller Drivers, Release 20.08.0

Fig. 29.3: Fast Host-based Packet Processing

to the correct PF pool. The SR-IOV NIC switch forwards the packet to a specific VM according to the
MAC destination address which belongs to the destination VF on the VM.

29.4. SR-IOV (PF/VF) Approach for Inter-VM Communication 152

Network Interface Controller Drivers, Release 20.08.0

Fig. 29.4: Inter-VM Communication

29.4. SR-IOV (PF/VF) Approach for Inter-VM Communication 153

CHAPTER

THIRTY

KNI POLL MODE DRIVER

KNI PMD is wrapper to the librte_kni library.

This PMD enables using KNI without having a KNI specific application, any forwarding application can
use PMD interface for KNI.

Sending packets to any DPDK controlled interface or sending to the Linux networking stack will be
transparent to the DPDK application.

To create a KNI device net_kni# device name should be used, and this will create kni# Linux virtual
network interface.

There is no physical device backend for the virtual KNI device.

Packets sent to the KNI Linux interface will be received by the DPDK application, and DPDK applica-
tion may forward packets to a physical NIC or to a virtual device (like another KNI interface or PCAP
interface).

To forward any traffic from physical NIC to the Linux networking stack, an application should control a
physical port and create one virtual KNI port, and forward between two.

Using this PMD requires KNI kernel module be inserted.

30.1 Usage

EAL --vdev argument can be used to create KNI device instance, like:

testpmd --vdev=net_kni0 --vdev=net_kn1 -- -i

Above command will create kni0 and kni1 Linux network interfaces, those interfaces can be con-
trolled by standard Linux tools.

When testpmd forwarding starts, any packets sent to kni0 interface forwarded to the kni1 interface
and vice versa.

There is no hard limit on number of interfaces that can be created.

30.2 Default interface configuration

librte_kni can create Linux network interfaces with different features, feature set controlled by a
configuration struct, and KNI PMD uses a fixed configuration:

154

Network Interface Controller Drivers, Release 20.08.0

Interface name: kni#
force bind kernel thread to a core : NO
mbuf size: (rte_pktmbuf_data_room_size(pktmbuf_pool) - RTE_PKTMBUF_HEADROOM)
mtu: (conf.mbuf_size - RTE_ETHER_HDR_LEN)

KNI control path is not supported with the PMD, since there is no physical backend device by default.

30.3 PMD arguments

no_request_thread, by default PMD creates a pthread for each KNI interface to handle Linux
network interface control commands, like ifconfig kni0 up

With no_request_thread option, pthread is not created and control commands not handled by
PMD.

By default request thread is enabled. And this argument should not be used most of the time, unless this
PMD used with customized DPDK application to handle requests itself.

Argument usage:

testpmd --vdev "net_kni0,no_request_thread=1" -- -i

30.4 PMD log messages

If KNI kernel module (rte_kni.ko) not inserted, following error log printed:

"KNI: KNI subsystem has not been initialized. Invoke rte_kni_init() first"

30.5 PMD testing

It is possible to test PMD quickly using KNI kernel module loopback feature:

• Insert KNI kernel module with loopback support:

insmod build/kmod/rte_kni.ko lo_mode=lo_mode_fifo_skb

• Start testpmd with no physical device but two KNI virtual devices:

./testpmd --vdev net_kni0 --vdev net_kni1 -- -i

...
Configuring Port 0 (socket 0)
KNI: pci: 00:00:00 c580:b8
Port 0: 1A:4A:5B:7C:A2:8C
Configuring Port 1 (socket 0)
KNI: pci: 00:00:00 600:b9
Port 1: AE:95:21:07:93:DD
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

• Observe Linux interfaces

$ ifconfig kni0 && ifconfig kni1
kni0: flags=4098<BROADCAST,MULTICAST> mtu 1500

ether ae:8e:79:8e:9b:c8 txqueuelen 1000 (Ethernet)

30.3. PMD arguments 155

Network Interface Controller Drivers, Release 20.08.0

RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

kni1: flags=4098<BROADCAST,MULTICAST> mtu 1500
ether 9e:76:43:53:3e:9b txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

• Start forwarding with tx_first:

testpmd> start tx_first

• Quit and check forwarding stats:

testpmd> quit
Telling cores to stop...
Waiting for lcores to finish...

---------------------- Forward statistics for port 0 ----------------------
RX-packets: 35637905 RX-dropped: 0 RX-total: 35637905
TX-packets: 35637947 TX-dropped: 0 TX-total: 35637947
--

---------------------- Forward statistics for port 1 ----------------------
RX-packets: 35637915 RX-dropped: 0 RX-total: 35637915
TX-packets: 35637937 TX-dropped: 0 TX-total: 35637937
--

+++++++++++++++ Accumulated forward statistics for all ports+++++++++++++++
RX-packets: 71275820 RX-dropped: 0 RX-total: 71275820
TX-packets: 71275884 TX-dropped: 0 TX-total: 71275884
++

30.5. PMD testing 156

CHAPTER

THIRTYONE

LIQUIDIO VF POLL MODE DRIVER

The LiquidIO VF PMD library (librte_pmd_lio) provides poll mode driver support for Cavium Liq-
uidIO® II server adapter VFs. PF management and VF creation can be done using kernel driver.

More information can be found at Cavium Official Website.

31.1 Supported LiquidIO Adapters

• LiquidIO II CN2350 210SV/225SV

• LiquidIO II CN2350 210SVPT

• LiquidIO II CN2360 210SV/225SV

• LiquidIO II CN2360 210SVPT

31.2 Pre-Installation Configuration

The following options can be modified in the config file. Please note that enabling debugging options
may affect system performance.

• CONFIG_RTE_LIBRTE_LIO_PMD (default y)

Toggle compilation of LiquidIO PMD.

• CONFIG_RTE_LIBRTE_LIO_DEBUG_RX (default n)

Toggle display of receive fast path run-time messages.

• CONFIG_RTE_LIBRTE_LIO_DEBUG_TX (default n)

Toggle display of transmit fast path run-time messages.

• CONFIG_RTE_LIBRTE_LIO_DEBUG_MBOX (default n)

Toggle display of mailbox messages.

• CONFIG_RTE_LIBRTE_LIO_DEBUG_REGS (default n)

Toggle display of register reads and writes.

157

http://cavium.com/LiquidIO_Adapters.html

Network Interface Controller Drivers, Release 20.08.0

31.3 SR-IOV: Prerequisites and Sample Application Notes

This section provides instructions to configure SR-IOV with Linux OS.

1. Verify SR-IOV and ARI capabilities are enabled on the adapter using lspci:

lspci -s <slot> -vvv

Example output:

[...]
Capabilities: [148 v1] Alternative Routing-ID Interpretation (ARI)
[...]
Capabilities: [178 v1] Single Root I/O Virtualization (SR-IOV)
[...]
Kernel driver in use: LiquidIO

2. Load the kernel module:

modprobe liquidio

3. Bring up the PF ports:

ifconfig p4p1 up
ifconfig p4p2 up

4. Change PF MTU if required:

ifconfig p4p1 mtu 9000
ifconfig p4p2 mtu 9000

5. Create VF device(s):

Echo number of VFs to be created into "sriov_numvfs" sysfs entry of the parent PF.

echo 1 > /sys/bus/pci/devices/0000:03:00.0/sriov_numvfs
echo 1 > /sys/bus/pci/devices/0000:03:00.1/sriov_numvfs

6. Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:

ip link set <PF iface> vf <VF id> mac <macaddr>

Example output:

ip link set p4p1 vf 0 mac F2:A8:1B:5E:B4:66

7. Assign VF(s) to VM.

The VF devices may be passed through to the guest VM using qemu or virt-manager or virsh etc.

Example qemu guest launch command:

./qemu-system-x86_64 -name lio-vm -machine accel=kvm \
-cpu host -m 4096 -smp 4 \
-drive file=<disk_file>,if=none,id=disk1,format=<type> \
-device virtio-blk-pci,scsi=off,drive=disk1,id=virtio-disk1,bootindex=1 \
-device vfio-pci,host=03:00.3 -device vfio-pci,host=03:08.3

8. Running testpmd

Refer to the document compiling and testing a PMD for a NIC to run testpmd application.

Note: Use igb_uio instead of vfio-pci in VM.

31.3. SR-IOV: Prerequisites and Sample Application Notes 158

Network Interface Controller Drivers, Release 20.08.0

Example output:

[...]
EAL: PCI device 0000:03:00.3 on NUMA socket 0
EAL: probe driver: 177d:9712 net_liovf
EAL: using IOMMU type 1 (Type 1)
PMD: net_liovf[03:00.3]INFO: DEVICE : CN23XX VF
EAL: PCI device 0000:03:08.3 on NUMA socket 0
EAL: probe driver: 177d:9712 net_liovf
PMD: net_liovf[03:08.3]INFO: DEVICE : CN23XX VF
Interactive-mode selected
USER1: create a new mbuf pool <mbuf_pool_socket_0>: n=171456, size=2176, socket=0
Configuring Port 0 (socket 0)
PMD: net_liovf[03:00.3]INFO: Starting port 0
Port 0: F2:A8:1B:5E:B4:66
Configuring Port 1 (socket 0)
PMD: net_liovf[03:08.3]INFO: Starting port 1
Port 1: 32:76:CC:EE:56:D7
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

9. Enabling VF promiscuous mode

One VF per PF can be marked as trusted for promiscuous mode.

ip link set dev <PF iface> vf <VF id> trust on

31.4 Limitations

31.4.1 VF MTU

VF MTU is limited by PF MTU. Raise PF value before configuring VF for larger packet size.

31.4.2 VLAN offload

Tx VLAN insertion is not supported and consequently VLAN offload feature is marked partial.

31.4.3 Ring size

Number of descriptors for Rx/Tx ring should be in the range 128 to 512.

31.4.4 CRC stripping

LiquidIO adapters strip ethernet FCS of every packet coming to the host interface.

31.4. Limitations 159

CHAPTER

THIRTYTWO

MEMIF POLL MODE DRIVER

Shared memory packet interface (memif) PMD allows for DPDK and any other client using memif
(DPDK, VPP, libmemif) to communicate using shared memory. Memif is Linux only.

The created device transmits packets in a raw format. It can be used with Ethernet mode, IP mode, or
Punt/Inject. At this moment, only Ethernet mode is supported in DPDK memif implementation.

Memif works in two roles: master and slave. Slave connects to master over an existing socket. It is also
a producer of shared memory file and initializes the shared memory. Each interface can be connected
to one peer interface at same time. The peer interface is identified by id parameter. Master creates the
socket and listens for any slave connection requests. The socket may already exist on the system. Be
sure to remove any such sockets, if you are creating a master interface, or you will see an “Address
already in use” error. Function rte_pmd_memif_remove(), which removes memif interface, will
also remove a listener socket, if it is not being used by any other interface.

The method to enable one or more interfaces is to use the --vdev=net_memif0 option on the DPDK
application command line. Each --vdev=net_memif1 option given will create an interface named
net_memif0, net_memif1, and so on. Memif uses unix domain socket to transmit control messages.
Each memif has a unique id per socket. This id is used to identify peer interface. If you are connecting
multiple interfaces using same socket, be sure to specify unique ids id=0, id=1, etc. Note that if you
assign a socket to a master interface it becomes a listener socket. Listener socket can not be used by a
slave interface on same client.

Table 32.1: Memif configuration options
Option Description Default Valid

value
id=0 Used to identify peer interface 0 uint32_t
role=master Set memif role slave mas-

ter|slave
bsize=1024 Size of single packet buffer 2048 uint16_t
rsize=11 Log2 of ring size. If rsize is 10, actual ring size is 1024 10 1-14
socket=/tmp/memif.sockSocket filename /tmp/memif.sockstring

len 108
mac=01:23:45:ab:cd:efMac address 01:ab:23:cd:45:ef
se-
cret=abc123

Secret is an optional security option, which if specified,
must be matched by peer

string
len 24

zero-
copy=yes

Enable/disable zero-copy slave mode. Only relevant to
slave, requires ‘–single-file-segments’ eal argument

no yes|no

Connection establishment

160

Network Interface Controller Drivers, Release 20.08.0

In order to create memif connection, two memif interfaces, each in separate process, are needed. One
interface in master role and other in slave role. It is not possible to connect two interfaces in a
single process. Each interface can be connected to one interface at same time, identified by matching id
parameter.

Memif driver uses unix domain socket to exchange required information between memif interfaces.
Socket file path is specified at interface creation see Memif configuration options table above. If socket
is used by master interface, it’s marked as listener socket (in scope of current process) and listens to
connection requests from other processes. One socket can be used by multiple interfaces. One process
can have slave and master interfaces at the same time, provided each role is assigned unique socket.

For detailed information on memif control messages, see: net/memif/memif.h.

Slave interface attempts to make a connection on assigned socket. Process listening on this socket will
extract the connection request and create a new connected socket (control channel). Then it sends the
‘hello’ message (MEMIF_MSG_TYPE_HELLO), containing configuration boundaries. Slave interface
adjusts its configuration accordingly, and sends ‘init’ message (MEMIF_MSG_TYPE_INIT). This mes-
sage among others contains interface id. Driver uses this id to find master interface, and assigns the
control channel to this interface. If such interface is found, ‘ack’ message (MEMIF_MSG_TYPE_ACK)
is sent. Slave interface sends ‘add region’ message (MEMIF_MSG_TYPE_ADD_REGION) for every
region allocated. Master responds to each of these messages with ‘ack’ message. Same behavior ap-
plies to rings. Slave sends ‘add ring’ message (MEMIF_MSG_TYPE_ADD_RING) for every initial-
ized ring. Master again responds to each message with ‘ack’ message. To finalize the connection,
slave interface sends ‘connect’ message (MEMIF_MSG_TYPE_CONNECT). Upon receiving this mes-
sage master maps regions to its address space, initializes rings and responds with ‘connected’ message
(MEMIF_MSG_TYPE_CONNECTED). Disconnect (MEMIF_MSG_TYPE_DISCONNECT) can be sent
by both master and slave interfaces at any time, due to driver error or if the interface is being deleted.

Files

• net/memif/memif.h - control messages definitions

• net/memif/memif_socket.h

• net/memif/memif_socket.c

32.1 Shared memory

Shared memory format

Slave is producer and master is consumer. Memory regions, are mapped shared memory files, created
by memif slave and provided to master at connection establishment. Regions contain rings and buffers.
Rings and buffers can also be separated into multiple regions. For no-zero-copy, rings and buffers are
stored inside single memory region to reduce the number of opened files.

region n (no-zero-copy):

Rings Buffers
S2M rings M2S

rings
packet buffer
0

. pb ((1 << pmd->run.log2_ring_size)*(s2m +
m2s))-1

S2M OR M2S Rings:

ring 0 ring 1 ring num_s2m_rings - 1

ring 0:

32.1. Shared memory 161

Network Interface Controller Drivers, Release 20.08.0

ring header (1 << pmd->run.log2_ring_size) * desc

Descriptors are assigned packet buffers in order of rings creation. If we have one ring in each direction
and ring size is 1024, then first 1024 buffers will belong to S2M ring and last 1024 will belong to M2S
ring. In case of zero-copy, buffers are dequeued and enqueued as needed.

Descriptor format

Quad

Word

6 3 3 1 1
3 2 1 6 5 0

0 length region flags
1 metadata offset

6 3 3
3 2 1 0

Flags field - flags (Quad Word 0, bits 0:15)

Bits Name Functionality
0 MEMIF_DESC_FLAG_NEXTIs chained buffer. When set, the packet is divided into multiple

buffers. May not be contiguous.

Region index - region (Quad Word 0, 16:31)

Index of memory region, the buffer is located in.

Data length - length (Quad Word 0, 32:63)

Length of transmitted/received data.

Data Offset - offset (Quad Word 1, 0:31)

Data start offset from memory region address. .regions[desc->region].addr + desc->offset

Metadata - metadata (Quad Word 1, 32:63)

Buffer metadata.

Files

• net/memif/memif.h - descriptor and ring definitions

• net/memif/rte_eth_memif.c - eth_memif_rx() eth_memif_tx()

32.2 Zero-copy slave

Zero-copy slave can be enabled with memif configuration option ‘zero-copy=yes’. This option is only
relevant to slave and requires eal argument ‘–single-file-segments’. This limitation is in place, because
it is too expensive to identify memseg for each packet buffer, resulting in worse performance than with
zero-copy disabled. With single file segments we can calculate offset from the beginning of the file for
each packet buffer.

Shared memory format

Region 0 is created by memif driver and contains rings. Slave interface exposes DPDK memory (mem-
seg). Instead of using memfd_create() to create new shared file, existing memsegs are used. Master
interface functions the same as with zero-copy disabled.

region 0:

32.2. Zero-copy slave 162

Network Interface Controller Drivers, Release 20.08.0

Rings
S2M rings M2S rings

region n:

Buffers
memseg

Buffers are dequeued and enqueued as needed. Offset descriptor field is calculated at tx. Only single
file segments mode (EAL option –single-file-segments) is supported, as calculating offset from multiple
segments is too expensive.

32.2.1 Example: testpmd

In this example we run two instances of testpmd application and transmit packets over memif.

First create master interface:

#./build/app/testpmd -l 0-1 --proc-type=primary --file-prefix=pmd1 --vdev=net_memif,role=master -- -i

Now create slave interface (master must be already running so the slave will connect):

#./build/app/testpmd -l 2-3 --proc-type=primary --file-prefix=pmd2 --vdev=net_memif -- -i

You can also enable zero-copy on slave interface:

#./build/app/testpmd -l 2-3 --proc-type=primary --file-prefix=pmd2 --vdev=net_memif,zero-copy=yes --single-file-segments -- -i

Start forwarding packets:

Slave:
testpmd> start

Master:
testpmd> start tx_first

Show status:

testpmd> show port stats 0

For more details on testpmd please refer to ../testpmd_app_ug/index.

32.2.2 Example: testpmd and VPP

For information on how to get and run VPP please see https://wiki.fd.io/view/VPP.

Start VPP in interactive mode (should be by default). Create memif master interface in VPP:

vpp# create interface memif id 0 master no-zero-copy
vpp# set interface state memif0/0 up
vpp# set interface ip address memif0/0 192.168.1.1/24

To see socket filename use show memif command:

vpp# show memif
sockets
id listener filename
0 yes (1) /run/vpp/memif.sock

...

Now create memif interface by running testpmd with these command line options:

#./testpmd --vdev=net_memif,socket=/run/vpp/memif.sock -- -i

32.2. Zero-copy slave 163

https://wiki.fd.io/view/VPP

Network Interface Controller Drivers, Release 20.08.0

Testpmd should now create memif slave interface and try to connect to master. In testpmd set forward
option to icmpecho and start forwarding:

testpmd> set fwd icmpecho
testpmd> start

Send ping from VPP:

vpp# ping 192.168.1.2
64 bytes from 192.168.1.2: icmp_seq=2 ttl=254 time=36.2918 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=254 time=23.3927 ms
64 bytes from 192.168.1.2: icmp_seq=4 ttl=254 time=24.2975 ms
64 bytes from 192.168.1.2: icmp_seq=5 ttl=254 time=17.7049 ms

32.2.3 Example: testpmd memif loopback

In this example we will create 2 memif ports connected into loopback. The situation is analogous to
cross connecting 2 ports of the NIC by cable.

To set the loopback, just use the same socket and id with different roles:

#./testpmd --vdev=net_memif0,role=master,id=0 --vdev=net_memif1,role=slave,id=0 -- -i

Then start the communication:

testpmd> start tx_first

Finally we can check port stats to see the traffic:

testpmd> show port stats all

32.2. Zero-copy slave 164

CHAPTER

THIRTYTHREE

MLX4 POLL MODE DRIVER LIBRARY

The MLX4 poll mode driver library (librte_pmd_mlx4) implements support for Mellanox ConnectX-3
and Mellanox ConnectX-3 Pro 10/40 Gbps adapters as well as their virtual functions (VF) in SR-IOV
context.

Information and documentation about this family of adapters can be found on the Mellanox website.
Help is also provided by the Mellanox community.

There is also a section dedicated to this poll mode driver.

Note: Due to external dependencies, this driver is disabled by default. It must be enabled manually by
setting CONFIG_RTE_LIBRTE_MLX4_PMD=y and recompiling DPDK.

33.1 Implementation details

Most Mellanox ConnectX-3 devices provide two ports but expose a single PCI bus address, thus unlike
most drivers, librte_pmd_mlx4 registers itself as a PCI driver that allocates one Ethernet device per
detected port.

For this reason, one cannot white/blacklist a single port without also white/blacklisting the others on the
same device.

Besides its dependency on libibverbs (that implies libmlx4 and associated kernel support), li-
brte_pmd_mlx4 relies heavily on system calls for control operations such as querying/updating the MTU
and flow control parameters.

For security reasons and robustness, this driver only deals with virtual memory addresses. The way
resources allocations are handled by the kernel combined with hardware specifications that allow it to
handle virtual memory addresses directly ensure that DPDK applications cannot access random physical
memory (or memory that does not belong to the current process).

This capability allows the PMD to coexist with kernel network interfaces which remain functional,
although they stop receiving unicast packets as long as they share the same MAC address.

The flow_isolated_mode is supported.

Compiling librte_pmd_mlx4 causes DPDK to be linked against libibverbs.

165

http://www.mellanox.com
http://community.mellanox.com/welcome
http://www.mellanox.com/page/products_dyn?product_family=209&mtag=pmd_for_dpdk

Network Interface Controller Drivers, Release 20.08.0

33.2 Configuration

33.2.1 Compilation options

These options can be modified in the .config file.

• CONFIG_RTE_LIBRTE_MLX4_PMD (default n)

Toggle compilation of librte_pmd_mlx4 itself.

• CONFIG_RTE_IBVERBS_LINK_DLOPEN (default n)

Build PMD with additional code to make it loadable without hard dependencies on libibverbs nor
libmlx4, which may not be installed on the target system.

In this mode, their presence is still required for it to run properly, however their absence won’t pre-
vent a DPDK application from starting (with CONFIG_RTE_BUILD_SHARED_LIB disabled)
and they won’t show up as missing with ldd(1).

It works by moving these dependencies to a purpose-built rdma-core “glue” plug-in which must
either be installed in a directory whose name is based on CONFIG_RTE_EAL_PMD_PATH suf-
fixed with -glue if set, or in a standard location for the dynamic linker (e.g. /lib) if left to the
default empty string ("").

This option has no performance impact.

• CONFIG_RTE_IBVERBS_LINK_STATIC (default n)

Embed static flavor of the dependencies libibverbs and libmlx4 in the PMD shared library or the
executable static binary.

• CONFIG_RTE_LIBRTE_MLX4_DEBUG (default n)

Toggle debugging code and stricter compilation flags. Enabling this option adds additional run-
time checks and debugging messages at the cost of lower performance.

This option is available in meson:

• ibverbs_link can be static, shared, or dlopen.

33.2.2 Environment variables

• MLX4_GLUE_PATH

A list of directories in which to search for the rdma-core “glue” plug-in, separated by colons or
semi-colons.

Only matters when compiled with CONFIG_RTE_IBVERBS_LINK_DLOPEN enabled and most
useful when CONFIG_RTE_EAL_PMD_PATH is also set, since LD_LIBRARY_PATH has no
effect in this case.

33.2.3 Run-time configuration

• librte_pmd_mlx4 brings kernel network interfaces up during initialization because it is affected
by their state. Forcing them down prevents packets reception.

• ethtool operations on related kernel interfaces also affect the PMD.

33.2. Configuration 166

Network Interface Controller Drivers, Release 20.08.0

• port parameter [int]

This parameter provides a physical port to probe and can be specified multiple times for additional
ports. All ports are probed by default if left unspecified.

• mr_ext_memseg_en parameter [int]

A nonzero value enables extending memseg when registering DMA memory. If enabled, the
number of entries in MR (Memory Region) lookup table on datapath is minimized and it benefits
performance. On the other hand, it worsens memory utilization because registered memory is
pinned by kernel driver. Even if a page in the extended chunk is freed, that doesn’t become
reusable until the entire memory is freed.

Enabled by default.

33.2.4 Kernel module parameters

The mlx4_core kernel module has several parameters that affect the behavior and/or the performance of
librte_pmd_mlx4. Some of them are described below.

• num_vfs (integer or triplet, optionally prefixed by device address strings)

Create the given number of VFs on the specified devices.

• log_num_mgm_entry_size (integer)

Device-managed flow steering (DMFS) is required by DPDK applications. It is enabled by using
a negative value, the last four bits of which have a special meaning.

– -1: force device-managed flow steering (DMFS).

– -7: configure optimized steering mode to improve performance with the following limitation:
VLAN filtering is not supported with this mode. This is the recommended mode in case
VLAN filter is not needed.

33.3 Limitations

• For secondary process:

– Forked secondary process not supported.

– External memory unregistered in EAL memseg list cannot be used for DMA unless such
memory has been registered by mlx4_mr_update_ext_mp() in primary process and
remapped to the same virtual address in secondary process. If the external memory is regis-
tered by primary process but has different virtual address in secondary process, unexpected
error may happen.

• CRC stripping is supported by default and always reported as “true”. The ability to enable/disable
CRC stripping requires OFED version 4.3-1.5.0.0 and above or rdma-core version v18 and above.

• TSO (Transmit Segmentation Offload) is supported in OFED version 4.4 and above.

33.3. Limitations 167

Network Interface Controller Drivers, Release 20.08.0

33.4 Prerequisites

This driver relies on external libraries and kernel drivers for resources allocations and initialization. The
following dependencies are not part of DPDK and must be installed separately:

• libibverbs (provided by rdma-core package)

User space verbs framework used by librte_pmd_mlx4. This library provides a generic interface
between the kernel and low-level user space drivers such as libmlx4.

It allows slow and privileged operations (context initialization, hardware resources allocations) to
be managed by the kernel and fast operations to never leave user space.

• libmlx4 (provided by rdma-core package)

Low-level user space driver library for Mellanox ConnectX-3 devices, it is automatically loaded
by libibverbs.

This library basically implements send/receive calls to the hardware queues.

• Kernel modules

They provide the kernel-side verbs API and low level device drivers that manage actual hardware
initialization and resources sharing with user space processes.

Unlike most other PMDs, these modules must remain loaded and bound to their devices:

– mlx4_core: hardware driver managing Mellanox ConnectX-3 devices.

– mlx4_en: Ethernet device driver that provides kernel network interfaces.

– mlx4_ib: InifiniBand device driver.

– ib_uverbs: user space driver for verbs (entry point for libibverbs).

• Firmware update

Mellanox OFED releases include firmware updates for ConnectX-3 adapters.

Because each release provides new features, these updates must be applied to match the kernel
modules and libraries they come with.

Note: Both libraries are BSD and GPL licensed. Linux kernel modules are GPL licensed.

Depending on system constraints and user preferences either RDMA core library with a recent enough
Linux kernel release (recommended) or Mellanox OFED, which provides compatibility with older re-
leases.

33.4.1 Current RDMA core package and Linux kernel (recommended)

• Minimal Linux kernel version: 4.14.

• Minimal RDMA core version: v15 (see RDMA core installation documentation).

• Starting with rdma-core v21, static libraries can be built:

cd build
CFLAGS=-fPIC cmake -DIN_PLACE=1 -DENABLE_STATIC=1 -GNinja ..
ninja

33.4. Prerequisites 168

https://raw.githubusercontent.com/linux-rdma/rdma-core/master/README.md

Network Interface Controller Drivers, Release 20.08.0

If rdma-core libraries are built but not installed, DPDK makefile can link them, thanks to these environ-
ment variables:

• EXTRA_CFLAGS=-I/path/to/rdma-core/build/include

• EXTRA_LDFLAGS=-L/path/to/rdma-core/build/lib

• PKG_CONFIG_PATH=/path/to/rdma-core/build/lib/pkgconfig

33.4.2 Mellanox OFED as a fallback

• Mellanox OFED version: 4.4, 4.5, 4.6.

• firmware version: 2.42.5000 and above.

Note: Several versions of Mellanox OFED are available. Installing the version this DPDK release was
developed and tested against is strongly recommended. Please check the prerequisites.

Installing Mellanox OFED

1. Download latest Mellanox OFED.

2. Install the required libraries and kernel modules either by installing only the required set, or by
installing the entire Mellanox OFED:

For bare metal use:

./mlnxofedinstall --dpdk --upstream-libs

For SR-IOV hypervisors use:

./mlnxofedinstall --dpdk --upstream-libs --enable-sriov --hypervisor

For SR-IOV virtual machine use:

./mlnxofedinstall --dpdk --upstream-libs --guest

3. Verify the firmware is the correct one:

ibv_devinfo

4. Set all ports links to Ethernet, follow instructions on the screen:

connectx_port_config

5. Continue with section 2 of the Quick Start Guide.

33.5 Quick Start Guide

1. Set all ports links to Ethernet:

PCI=<NIC PCI address>
echo eth > "/sys/bus/pci/devices/$PCI/mlx4_port0"
echo eth > "/sys/bus/pci/devices/$PCI/mlx4_port1"

33.5. Quick Start Guide 169

http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux_sw_drivers

Network Interface Controller Drivers, Release 20.08.0

Note: If using Mellanox OFED one can permanently set the port link to Ethernet using con-
nectx_port_config tool provided by it. Mellanox OFED as a fallback:

2. In case of bare metal or hypervisor, configure optimized steering mode by adding the following
line to /etc/modprobe.d/mlx4_core.conf:

options mlx4_core log_num_mgm_entry_size=-7

Note: If VLAN filtering is used, set log_num_mgm_entry_size=-1. Performance degradation
can occur on this case.

3. Restart the driver:

/etc/init.d/openibd restart

or:

service openibd restart

4. Compile DPDK and you are ready to go. See instructions on Development Kit Build System

33.6 Performance tuning

1. Verify the optimized steering mode is configured:

cat /sys/module/mlx4_core/parameters/log_num_mgm_entry_size

2. Use the CPU near local NUMA node to which the PCIe adapter is connected, for better perfor-
mance. For VMs, verify that the right CPU and NUMA node are pinned according to the above.
Run:

lstopo-no-graphics

to identify the NUMA node to which the PCIe adapter is connected.

3. If more than one adapter is used, and root complex capabilities allow to put both adapters on the
same NUMA node without PCI bandwidth degradation, it is recommended to locate both adapters
on the same NUMA node. This in order to forward packets from one to the other without NUMA
performance penalty.

4. Disable pause frames:

ethtool -A <netdev> rx off tx off

5. Verify IO non-posted prefetch is disabled by default. This can be checked via the BIOS configu-
ration. Please contact you server provider for more information about the settings.

Note: On some machines, depends on the machine integrator, it is beneficial to set the PCI max read
request parameter to 1K. This can be done in the following way:

To query the read request size use:

setpci -s <NIC PCI address> 68.w

If the output is different than 3XXX, set it by:

setpci -s <NIC PCI address> 68.w=3XXX

33.6. Performance tuning 170

Network Interface Controller Drivers, Release 20.08.0

The XXX can be different on different systems. Make sure to configure according to the setpci output.

6. To minimize overhead of searching Memory Regions:

• ‘–socket-mem’ is recommended to pin memory by predictable amount.

• Configure per-lcore cache when creating Mempools for packet buffer.

• Refrain from dynamically allocating/freeing memory in run-time.

33.7 Usage example

This section demonstrates how to launch testpmd with Mellanox ConnectX-3 devices managed by li-
brte_pmd_mlx4.

1. Load the kernel modules:

modprobe -a ib_uverbs mlx4_en mlx4_core mlx4_ib

Alternatively if MLNX_OFED is fully installed, the following script can be run:

/etc/init.d/openibd restart

Note: User space I/O kernel modules (uio and igb_uio) are not used and do not have to be loaded.

2. Make sure Ethernet interfaces are in working order and linked to kernel verbs. Related sysfs
entries should be present:

ls -d /sys/class/net/*/device/infiniband_verbs/uverbs* | cut -d / -f 5

Example output:

eth2
eth3
eth4
eth5

3. Optionally, retrieve their PCI bus addresses for whitelisting:

{
for intf in eth2 eth3 eth4 eth5;
do

(cd "/sys/class/net/${intf}/device/" && pwd -P);
done;

} |
sed -n 's,.*/\(.*\),-w \1,p'

Example output:

-w 0000:83:00.0
-w 0000:83:00.0
-w 0000:84:00.0
-w 0000:84:00.0

Note: There are only two distinct PCI bus addresses because the Mellanox ConnectX-3 adapters
installed on this system are dual port.

4. Request huge pages:

33.7. Usage example 171

Network Interface Controller Drivers, Release 20.08.0

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

5. Start testpmd with basic parameters:

testpmd -l 8-15 -n 4 -w 0000:83:00.0 -w 0000:84:00.0 -- --rxq=2 --txq=2 -i

Example output:

[...]
EAL: PCI device 0000:83:00.0 on NUMA socket 1
EAL: probe driver: 15b3:1007 librte_pmd_mlx4
PMD: librte_pmd_mlx4: PCI information matches, using device "mlx4_0" (VF: false)
PMD: librte_pmd_mlx4: 2 port(s) detected
PMD: librte_pmd_mlx4: port 1 MAC address is 00:02:c9:b5:b7:50
PMD: librte_pmd_mlx4: port 2 MAC address is 00:02:c9:b5:b7:51
EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 15b3:1007 librte_pmd_mlx4
PMD: librte_pmd_mlx4: PCI information matches, using device "mlx4_1" (VF: false)
PMD: librte_pmd_mlx4: 2 port(s) detected
PMD: librte_pmd_mlx4: port 1 MAC address is 00:02:c9:b5:ba:b0
PMD: librte_pmd_mlx4: port 2 MAC address is 00:02:c9:b5:ba:b1
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: librte_pmd_mlx4: 0x867d60: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867d60: RX queues number update: 0 -> 2
Port 0: 00:02:C9:B5:B7:50
Configuring Port 1 (socket 0)
PMD: librte_pmd_mlx4: 0x867da0: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867da0: RX queues number update: 0 -> 2
Port 1: 00:02:C9:B5:B7:51
Configuring Port 2 (socket 0)
PMD: librte_pmd_mlx4: 0x867de0: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867de0: RX queues number update: 0 -> 2
Port 2: 00:02:C9:B5:BA:B0
Configuring Port 3 (socket 0)
PMD: librte_pmd_mlx4: 0x867e20: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx4: 0x867e20: RX queues number update: 0 -> 2
Port 3: 00:02:C9:B5:BA:B1
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex
Port 3 Link Up - speed 40000 Mbps - full-duplex
Done
testpmd>

33.7. Usage example 172

CHAPTER

THIRTYFOUR

MLX5 POLL MODE DRIVER

The MLX5 poll mode driver library (librte_pmd_mlx5) provides support for Mellanox ConnectX-4,
Mellanox ConnectX-4 Lx , Mellanox ConnectX-5, Mellanox ConnectX-6, Mellanox ConnectX-
6 Dx and Mellanox BlueField families of 10/25/40/50/100/200 Gb/s adapters as well as their virtual
functions (VF) in SR-IOV context.

Information and documentation about these adapters can be found on the Mellanox website. Help is also
provided by the Mellanox community.

There is also a section dedicated to this poll mode driver.

Note: Due to external dependencies, this driver is disabled in default configuration of the “make”
build. It can be enabled with CONFIG_RTE_LIBRTE_MLX5_PMD=y or by using “meson” build sys-
tem which will detect dependencies.

34.1 Design

Besides its dependency on libibverbs (that implies libmlx5 and associated kernel support), li-
brte_pmd_mlx5 relies heavily on system calls for control operations such as querying/updating the MTU
and flow control parameters.

For security reasons and robustness, this driver only deals with virtual memory addresses. The way
resources allocations are handled by the kernel, combined with hardware specifications that allow to
handle virtual memory addresses directly, ensure that DPDK applications cannot access random physical
memory (or memory that does not belong to the current process).

This capability allows the PMD to coexist with kernel network interfaces which remain functional,
although they stop receiving unicast packets as long as they share the same MAC address. This means
legacy linux control tools (for example: ethtool, ifconfig and more) can operate on the same network
interfaces that owned by the DPDK application.

The PMD can use libibverbs and libmlx5 to access the device firmware or directly the hardware compo-
nents. There are different levels of objects and bypassing abilities to get the best performances:

• Verbs is a complete high-level generic API

• Direct Verbs is a device-specific API

• DevX allows to access firmware objects

• Direct Rules manages flow steering at low-level hardware layer

Enabling librte_pmd_mlx5 causes DPDK applications to be linked against libibverbs.

173

http://www.mellanox.com
http://community.mellanox.com/welcome
http://www.mellanox.com/page/products_dyn?product_family=209&mtag=pmd_for_dpdk

Network Interface Controller Drivers, Release 20.08.0

34.2 Features

• Multi arch support: x86_64, POWER8, ARMv8, i686.

• Multiple TX and RX queues.

• Support for scattered TX and RX frames.

• IPv4, IPv6, TCPv4, TCPv6, UDPv4 and UDPv6 RSS on any number of queues.

• RSS using different combinations of fields: L3 only, L4 only or both, and source only, destination
only or both.

• Several RSS hash keys, one for each flow type.

• Default RSS operation with no hash key specification.

• Configurable RETA table.

• Link flow control (pause frame).

• Support for multiple MAC addresses.

• VLAN filtering.

• RX VLAN stripping.

• TX VLAN insertion.

• RX CRC stripping configuration.

• Promiscuous mode on PF and VF.

• Multicast promiscuous mode on PF and VF.

• Hardware checksum offloads.

• Flow director (RTE_FDIR_MODE_PERFECT, RTE_FDIR_MODE_PERFECT_MAC_VLAN
and RTE_ETH_FDIR_REJECT).

• Flow API, including flow_isolated_mode.

• Multiple process.

• KVM and VMware ESX SR-IOV modes are supported.

• RSS hash result is supported.

• Hardware TSO for generic IP or UDP tunnel, including VXLAN and GRE.

• Hardware checksum Tx offload for generic IP or UDP tunnel, including VXLAN and GRE.

• RX interrupts.

• Statistics query including Basic, Extended and per queue.

• Rx HW timestamp.

• Tunnel types: VXLAN, L3 VXLAN, VXLAN-GPE, GRE, MPLSoGRE, MPLSoUDP, IP-in-IP,
Geneve, GTP.

• Tunnel HW offloads: packet type, inner/outer RSS, IP and UDP checksum verification.

• NIC HW offloads: encapsulation (vxlan, gre, mplsoudp, mplsogre), NAT, routing, TTL incre-
ment/decrement, count, drop, mark. For details please see Supported hardware offloads.

34.2. Features 174

Network Interface Controller Drivers, Release 20.08.0

• Flow insertion rate of more then million flows per second, when using Direct Rules.

• Support for multiple rte_flow groups.

• Per packet no-inline hint flag to disable packet data copying into Tx descriptors.

• Hardware LRO.

• Hairpin.

34.3 Limitations

• For secondary process:

– Forked secondary process not supported.

– External memory unregistered in EAL memseg list cannot be used for DMA unless such
memory has been registered by mlx5_mr_update_ext_mp() in primary process and
remapped to the same virtual address in secondary process. If the external memory is regis-
tered by primary process but has different virtual address in secondary process, unexpected
error may happen.

• When using Verbs flow engine (dv_flow_en = 0), flow pattern without any specific VLAN will
match for VLAN packets as well:

When VLAN spec is not specified in the pattern, the matching rule will be created with VLAN as
a wild card. Meaning, the flow rule:

flow create 0 ingress pattern eth / vlan vid is 3 / ipv4 / end ...

Will only match vlan packets with vid=3. and the flow rule:

flow create 0 ingress pattern eth / ipv4 / end ...

Will match any ipv4 packet (VLAN included).

• When using DV flow engine (dv_flow_en = 1), flow pattern without VLAN item will match
untagged packets only. The flow rule:

flow create 0 ingress pattern eth / ipv4 / end ...

Will match untagged packets only. The flow rule:

flow create 0 ingress pattern eth / vlan / ipv4 / end ...

Will match tagged packets only, with any VLAN ID value. The flow rule:

flow create 0 ingress pattern eth / vlan vid is 3 / ipv4 / end ...

Will only match tagged packets with VLAN ID 3.

• VLAN pop offload command:

– Flow rules having a VLAN pop offload command as one of their actions and are lacking a
match on VLAN as one of their items are not supported.

– The command is not supported on egress traffic.

• VLAN push offload is not supported on ingress traffic.

• VLAN set PCP offload is not supported on existing headers.

34.3. Limitations 175

Network Interface Controller Drivers, Release 20.08.0

• A multi segment packet must have not more segments than reported by dev_infos_get() in
tx_desc_lim.nb_seg_max field. This value depends on maximal supported Tx descriptor size and
txq_inline_min settings and may be from 2 (worst case forced by maximal inline settings)
to 58.

• Flows with a VXLAN Network Identifier equal (or ends to be equal) to 0 are not supported.

• L3 VXLAN and VXLAN-GPE tunnels cannot be supported together with MPLSoGRE and
MPLSoUDP.

• Match on Geneve header supports the following fields only:

– VNI

– OAM

– protocol type

– options length Currently, the only supported options length value is 0.

• VF: flow rules created on VF devices can only match traffic targeted at the configured MAC
addresses (see rte_eth_dev_mac_addr_add()).

• Match on GTP tunnel header item supports the following fields only:

– v_pt_rsv_flags: E flag, S flag, PN flag

– msg_type

– teid

• No Tx metadata go to the E-Switch steering domain for the Flow group 0. The flows within group
0 and set metadata action are rejected by hardware.

Note: MAC addresses not already present in the bridge table of the associated kernel network device
will be added and cleaned up by the PMD when closing the device. In case of ungraceful program
termination, some entries may remain present and should be removed manually by other means.

• When Multi-Packet Rx queue is configured (mprq_en), a Rx packet can be externally attached to
a user-provided mbuf with having EXT_ATTACHED_MBUF in ol_flags. As the mempool for the
external buffer is managed by PMD, all the Rx mbufs must be freed before the device is closed.
Otherwise, the mempool of the external buffers will be freed by PMD and the application which
still holds the external buffers may be corrupted.

• If Multi-Packet Rx queue is configured (mprq_en) and Rx CQE compression is enabled
(rxq_cqe_comp_en) at the same time, RSS hash result is not fully supported. Some Rx packets
may not have PKT_RX_RSS_HASH.

• IPv6 Multicast messages are not supported on VM, while promiscuous mode and allmulticast
mode are both set to off. To receive IPv6 Multicast messages on VM, explicitly set the relevant
MAC address using rte_eth_dev_mac_addr_add() API.

• To support a mixed traffic pattern (some buffers from local host memory, some buffers from other
devices) with high bandwidth, a mbuf flag is used.

An application hints the PMD whether or not it should try to inline the given mbuf data buffer.
PMD should do the best effort to act upon this request.

34.3. Limitations 176

Network Interface Controller Drivers, Release 20.08.0

The hint flag RTE_PMD_MLX5_FINE_GRANULARITY_INLINE is dynamic, registered by ap-
plication with rte_mbuf_dynflag_register(). This flag is purely driver-specific and declared in
PMD specific header rte_pmd_mlx5.h, which is intended to be used by the application.

To query the supported specific flags in runtime, the function
rte_pmd_mlx5_get_dyn_flag_names returns the array of currently (over present
hardware and configuration) supported specific flags. The “not inline hint” feature operating flow
is the following one:

– application starts

– probe the devices, ports are created

– query the port capabilities

– if port supporting the feature is found

– register dynamic flag RTE_PMD_MLX5_FINE_GRANULARITY_INLINE

– application starts the ports

– on dev_start() PMD checks whether the feature flag is registered and enables the fea-
ture support in datapath

– application might set the registered flag bit in ol_flags field of mbuf being sent and PMD
will handle ones appropriately.

• The amount of descriptors in Tx queue may be limited by data inline settings. Inline data require
the more descriptor building blocks and overall block amount may exceed the hardware supported
limits. The application should reduce the requested Tx size or adjust data inline settings with
txq_inline_max and txq_inline_mpw devargs keys.

• To provide the packet send scheduling on mbuf timestamps the tx_pp param-
eter should be specified, RTE_MBUF_DYNFIELD_TIMESTAMP_NAME and
RTE_MBUF_DYNFLAG_TIMESTAMP_NAME should be registered by application. When
PMD sees the RTE_MBUF_DYNFLAG_TIMESTAMP_NAME set on the packet being sent it
tries to synchronize the time of packet appearing on the wire with the specified packet timestamp.
It the specified one is in the past it should be ignored, if one is in the distant future it should be
capped with some reasonable value (in range of seconds). These specific cases (“too late” and
“distant future”) can be optionally reported via device xstats to assist applications to detect the
time-related problems.

The timestamp upper “too-distant-future” limit at the moment of invoking the Tx burst routine can
be estimated as tx_pp option (in nanoseconds) multiplied by 2^23. Please note, for the testpmd
txonly mode, the limit is deduced from the expression:

(n_tx_descriptors / burst_size + 1) * inter_burst_gap

There is no any packet reordering according timestamps is supposed, neither within packet burst,
nor between packets, it is an entirely application responsibility to generate packets and its times-
tamps in desired order. The timestamps can be put only in the first packet in the burst providing
the entire burst scheduling.

• E-Switch decapsulation Flow:

– can be applied to PF port only.

– must specify VF port action (packet redirection from PF to VF).

– optionally may specify tunnel inner source and destination MAC addresses.

34.3. Limitations 177

Network Interface Controller Drivers, Release 20.08.0

• E-Switch encapsulation Flow:

– can be applied to VF ports only.

– must specify PF port action (packet redirection from VF to PF).

• Raw encapsulation:

– The input buffer, used as outer header, is not validated.

• Raw decapsulation:

– The decapsulation is always done up to the outermost tunnel detected by the HW.

– The input buffer, providing the removal size, is not validated.

– The buffer size must match the length of the headers to be removed.

• ICMP/ICMP6 code/type matching, IP-in-IP and MPLS flow matching are all mutually exclusive
features which cannot be supported together (see Firmware configuration).

• LRO:

– Requires DevX and DV flow to be enabled.

– KEEP_CRC offload cannot be supported with LRO.

– The first mbuf length, without head-room, must be big enough to include the TCP header
(122B).

– Rx queue with LRO offload enabled, receiving a non-LRO packet, can forward it with size
limited to max LRO size, not to max RX packet length.

– LRO can be used with outer header of TCP packets of the standard format: eth (with
or without vlan) / ipv4 or ipv6 / tcp / payload

Other TCP packets (e.g. with MPLS label) received on Rx queue with LRO enabled, will be
received with bad checksum.

• CRC:

– DEV_RX_OFFLOAD_KEEP_CRC cannot be supported with decapsulation for
some NICs (such as ConnectX-6 Dx and BlueField 2). The capability bit
scatter_fcs_w_decap_disable shows NIC support.

34.4 Statistics

MLX5 supports various methods to report statistics:

Port statistics can be queried using rte_eth_stats_get(). The received and sent statistics are
through SW only and counts the number of packets received or sent successfully by the PMD. The
imissed counter is the amount of packets that could not be delivered to SW because a queue was full.
Packets not received due to congestion in the bus or on the NIC can be queried via the rx_discards_phy
xstats counter.

Extended statistics can be queried using rte_eth_xstats_get(). The extended statistics expose
a wider set of counters counted by the device. The extended port statistics counts the number of packets
received or sent successfully by the port. As Mellanox NICs are using the Bifurcated Linux Driver those
counters counts also packet received or sent by the Linux kernel. The counters with _phy suffix counts
the total events on the physical port, therefore not valid for VF.

34.4. Statistics 178

Network Interface Controller Drivers, Release 20.08.0

Finally per-flow statistics can by queried using rte_flow_query when attaching a count action for
specific flow. The flow counter counts the number of packets received successfully by the port and match
the specific flow.

34.5 Configuration

34.5.1 Compilation options

These options can be modified in the .config file.

• CONFIG_RTE_LIBRTE_MLX5_PMD (default n)

Toggle compilation of librte_pmd_mlx5 itself.

• CONFIG_RTE_IBVERBS_LINK_DLOPEN (default n)

Build PMD with additional code to make it loadable without hard dependencies on libibverbs nor
libmlx5, which may not be installed on the target system.

In this mode, their presence is still required for it to run properly, however their absence won’t pre-
vent a DPDK application from starting (with CONFIG_RTE_BUILD_SHARED_LIB disabled)
and they won’t show up as missing with ldd(1).

It works by moving these dependencies to a purpose-built rdma-core “glue” plug-in which must
either be installed in a directory whose name is based on CONFIG_RTE_EAL_PMD_PATH suf-
fixed with -glue if set, or in a standard location for the dynamic linker (e.g. /lib) if left to the
default empty string ("").

This option has no performance impact.

• CONFIG_RTE_IBVERBS_LINK_STATIC (default n)

Embed static flavor of the dependencies libibverbs and libmlx5 in the PMD shared library or the
executable static binary.

• CONFIG_RTE_LIBRTE_MLX5_DEBUG (default n)

Toggle debugging code and stricter compilation flags. Enabling this option adds additional run-
time checks and debugging messages at the cost of lower performance.

Note: For BlueField, target should be set to arm64-bluefield-linux-gcc. This will enable
CONFIG_RTE_LIBRTE_MLX5_PMD and set RTE_CACHE_LINE_SIZE to 64. Default armv8a con-
figuration of make build and meson build set it to 128 then brings performance degradation.

This option is available in meson:

• ibverbs_link can be static, shared, or dlopen.

34.5.2 Environment variables

• MLX5_GLUE_PATH

A list of directories in which to search for the rdma-core “glue” plug-in, separated by colons or
semi-colons.

34.5. Configuration 179

Network Interface Controller Drivers, Release 20.08.0

Only matters when compiled with CONFIG_RTE_IBVERBS_LINK_DLOPEN enabled and most
useful when CONFIG_RTE_EAL_PMD_PATH is also set, since LD_LIBRARY_PATH has no
effect in this case.

• MLX5_SHUT_UP_BF

Configures HW Tx doorbell register as IO-mapped.

By default, the HW Tx doorbell is configured as a write-combining register. The register would
be flushed to HW usually when the write-combining buffer becomes full, but it depends on CPU
design.

Except for vectorized Tx burst routines, a write memory barrier is enforced after updating the
register so that the update can be immediately visible to HW.

When vectorized Tx burst is called, the barrier is set only if the burst size is not aligned to
MLX5_VPMD_TX_MAX_BURST. However, setting this environmental variable will bring bet-
ter latency even though the maximum throughput can slightly decline.

34.5.3 Run-time configuration

• librte_pmd_mlx5 brings kernel network interfaces up during initialization because it is affected
by their state. Forcing them down prevents packets reception.

• ethtool operations on related kernel interfaces also affect the PMD.

Run as non-root

In order to run as a non-root user, some capabilities must be granted to the application:

setcap cap_sys_admin,cap_net_admin,cap_net_raw,cap_ipc_lock+ep <dpdk-app>

Below are the reasons of the need for each capability:

cap_sys_admin When using physical addresses (PA mode), with Linux >= 4.0, for access to
/proc/self/pagemap.

cap_net_admin For device configuration.

cap_net_raw For raw ethernet queue allocation through kernel driver.

cap_ipc_lock For DMA memory pinning.

Driver options

• rxq_cqe_comp_en parameter [int]

A nonzero value enables the compression of CQE on RX side. This feature allows to save PCI
bandwidth and improve performance. Enabled by default.

Supported on:

– x86_64 with ConnectX-4, ConnectX-4 Lx, ConnectX-5, ConnectX-6, ConnectX-6 Dx and
BlueField.

– POWER9 and ARMv8 with ConnectX-4 Lx, ConnectX-5, ConnectX-6, ConnectX-6 Dx and
BlueField.

34.5. Configuration 180

Network Interface Controller Drivers, Release 20.08.0

• rxq_cqe_pad_en parameter [int]

A nonzero value enables 128B padding of CQE on RX side. The size of CQE is aligned with
the size of a cacheline of the core. If cacheline size is 128B, the CQE size is configured to be
128B even though the device writes only 64B data on the cacheline. This is to avoid unnecessary
cache invalidation by device’s two consecutive writes on to one cacheline. However in some
architecture, it is more beneficial to update entire cacheline with padding the rest 64B rather than
striding because read-modify-write could drop performance a lot. On the other hand, writing
extra data will consume more PCIe bandwidth and could also drop the maximum throughput. It
is recommended to empirically set this parameter. Disabled by default.

Supported on:

– CPU having 128B cacheline with ConnectX-5 and BlueField.

• rxq_pkt_pad_en parameter [int]

A nonzero value enables padding Rx packet to the size of cacheline on PCI transaction. This
feature would waste PCI bandwidth but could improve performance by avoiding partial cacheline
write which may cause costly read-modify-copy in memory transaction on some architectures.
Disabled by default.

Supported on:

– x86_64 with ConnectX-4, ConnectX-4 Lx, ConnectX-5, ConnectX-6, ConnectX-6 Dx and
BlueField.

– POWER8 and ARMv8 with ConnectX-4 Lx, ConnectX-5, ConnectX-6, ConnectX-6 Dx and
BlueField.

• mprq_en parameter [int]

A nonzero value enables configuring Multi-Packet Rx queues. Rx queue is configured as Multi-
Packet RQ if the total number of Rx queues is rxqs_min_mprq or more. Disabled by default.

Multi-Packet Rx Queue (MPRQ a.k.a Striding RQ) can further save PCIe bandwidth by posting
a single large buffer for multiple packets. Instead of posting a buffers per a packet, one large
buffer is posted in order to receive multiple packets on the buffer. A MPRQ buffer consists of
multiple fixed-size strides and each stride receives one packet. MPRQ can improve throughput for
small-packet traffic.

When MPRQ is enabled, max_rx_pkt_len can be larger than the size of user-provided mbuf even
if DEV_RX_OFFLOAD_SCATTER isn’t enabled. PMD will configure large stride size enough to
accommodate max_rx_pkt_len as long as device allows. Note that this can waste system memory
compared to enabling Rx scatter and multi-segment packet.

• mprq_log_stride_num parameter [int]

Log 2 of the number of strides for Multi-Packet Rx queue. Configuring more strides can reduce
PCIe traffic further. If configured value is not in the range of device capability, the default value
will be set with a warning message. The default value is 4 which is 16 strides per a buffer, valid
only if mprq_en is set.

The size of Rx queue should be bigger than the number of strides.

• mprq_log_stride_size parameter [int]

Log 2 of the size of a stride for Multi-Packet Rx queue. Configuring a smaller stride size can
save some memory and reduce probability of a depletion of all available strides due to unreleased
packets by an application. If configured value is not in the range of device capability, the default

34.5. Configuration 181

Network Interface Controller Drivers, Release 20.08.0

value will be set with a warning message. The default value is 11 which is 2048 bytes per a stride,
valid only if mprq_en is set. With mprq_log_stride_size set it is possible for a packet
to span across multiple strides. This mode allows support of jumbo frames (9K) with MPRQ.
The memcopy of some packets (or part of a packet if Rx scatter is configured) may be required in
case there is no space left for a head room at the end of a stride which incurs some performance
penalty.

• mprq_max_memcpy_len parameter [int]

The maximum length of packet to memcpy in case of Multi-Packet Rx queue. Rx packet is
mem-copied to a user-provided mbuf if the size of Rx packet is less than or equal to this pa-
rameter. Otherwise, PMD will attach the Rx packet to the mbuf by external buffer attach-
ment - rte_pktmbuf_attach_extbuf(). A mempool for external buffers will be allo-
cated and managed by PMD. If Rx packet is externally attached, ol_flags field of the mbuf will
have EXT_ATTACHED_MBUF and this flag must be preserved. RTE_MBUF_HAS_EXTBUF()
checks the flag. The default value is 128, valid only if mprq_en is set.

• rxqs_min_mprq parameter [int]

Configure Rx queues as Multi-Packet RQ if the total number of Rx queues is greater or equal to
this value. The default value is 12, valid only if mprq_en is set.

• txq_inline parameter [int]

Amount of data to be inlined during TX operations. This parameter is deprecated and converted
to the new parameter txq_inline_max providing partial compatibility.

• txqs_min_inline parameter [int]

Enable inline data send only when the number of TX queues is greater or equal to this value.

This option should be used in combination with txq_inline_max and txq_inline_mpw
below and does not affect txq_inline_min settings above.

If this option is not specified the default value 16 is used for BlueField and 8 for other platforms

The data inlining consumes the CPU cycles, so this option is intended to auto enable inline data
if we have enough Tx queues, which means we have enough CPU cores and PCI bandwidth is
getting more critical and CPU is not supposed to be bottleneck anymore.

The copying data into WQE improves latency and can improve PPS performance when PCI back
pressure is detected and may be useful for scenarios involving heavy traffic on many queues.

Because additional software logic is necessary to handle this mode, this option should be used
with care, as it may lower performance when back pressure is not expected.

If inline data are enabled it may affect the maximal size of Tx queue in descriptors because the
inline data increase the descriptor size and queue size limits supported by hardware may be ex-
ceeded.

• txq_inline_min parameter [int]

Minimal amount of data to be inlined into WQE during Tx operations. NICs may require this
minimal data amount to operate correctly. The exact value may depend on NIC operation mode,
requested offloads, etc. It is strongly recommended to omit this parameter and use the default
values. Anyway, applications using this parameter should take into consideration that specifying
an inconsistent value may prevent the NIC from sending packets.

If txq_inline_min key is present the specified value (may be aligned by the driver in order not
to exceed the limits and provide better descriptor space utilization) will be used by the driver and

34.5. Configuration 182

Network Interface Controller Drivers, Release 20.08.0

it is guaranteed that requested amount of data bytes are inlined into the WQE beside other inline
settings. This key also may update txq_inline_max value (default or specified explicitly in
devargs) to reserve the space for inline data.

If txq_inline_min key is not present, the value may be queried by the driver from the NIC via
DevX if this feature is available. If there is no DevX enabled/supported the value 18 (supposing
L2 header including VLAN) is set for ConnectX-4 and ConnectX-4 Lx, and 0 is set by default for
ConnectX-5 and newer NICs. If packet is shorter the txq_inline_min value, the entire packet
is inlined.

For ConnectX-4 NIC, driver does not allow specifying value below 18 (minimal L2 header, in-
cluding VLAN), error will be raised.

For ConnectX-4 Lx NIC, it is allowed to specify values below 18, but it is not recommended and
may prevent NIC from sending packets over some configurations.

Please, note, this minimal data inlining disengages eMPW feature (Enhanced Multi-Packet Write),
because last one does not support partial packet inlining. This is not very critical due to minimal
data inlining is mostly required by ConnectX-4 and ConnectX-4 Lx, these NICs do not support
eMPW feature.

• txq_inline_max parameter [int]

Specifies the maximal packet length to be completely inlined into WQE Ethernet Segment for
ordinary SEND method. If packet is larger than specified value, the packet data won’t be copied
by the driver at all, data buffer is addressed with a pointer. If packet length is less or equal
all packet data will be copied into WQE. This may improve PCI bandwidth utilization for short
packets significantly but requires the extra CPU cycles.

The data inline feature is controlled by number of Tx queues, if number of Tx queues is larger
than txqs_min_inline key parameter, the inline feature is engaged, if there are not enough
Tx queues (which means not enough CPU cores and CPU resources are scarce), data inline is
not performed by the driver. Assigning txqs_min_inline with zero always enables the data
inline.

The default txq_inline_max value is 290. The specified value may be adjusted by the driver
in order not to exceed the limit (930 bytes) and to provide better WQE space filling without gaps,
the adjustment is reflected in the debug log. Also, the default value (290) may be decreased in run-
time if the large transmit queue size is requested and hardware does not support enough descriptor
amount, in this case warning is emitted. If txq_inline_max key is specified and requested
inline settings can not be satisfied then error will be raised.

• txq_inline_mpw parameter [int]

Specifies the maximal packet length to be completely inlined into WQE for Enhanced MPW
method. If packet is large the specified value, the packet data won’t be copied, and data buffer is
addressed with pointer. If packet length is less or equal, all packet data will be copied into WQE.
This may improve PCI bandwidth utilization for short packets significantly but requires the extra
CPU cycles.

The data inline feature is controlled by number of TX queues, if number of Tx queues is larger
than txqs_min_inline key parameter, the inline feature is engaged, if there are not enough
Tx queues (which means not enough CPU cores and CPU resources are scarce), data inline is
not performed by the driver. Assigning txqs_min_inline with zero always enables the data
inline.

The default txq_inline_mpw value is 268. The specified value may be adjusted by the driver

34.5. Configuration 183

Network Interface Controller Drivers, Release 20.08.0

in order not to exceed the limit (930 bytes) and to provide better WQE space filling without gaps,
the adjustment is reflected in the debug log. Due to multiple packets may be included to the
same WQE with Enhanced Multi Packet Write Method and overall WQE size is limited it is not
recommended to specify large values for the txq_inline_mpw. Also, the default value (268)
may be decreased in run-time if the large transmit queue size is requested and hardware does not
support enough descriptor amount, in this case warning is emitted. If txq_inline_mpw key is
specified and requested inline settings can not be satisfied then error will be raised.

• txqs_max_vec parameter [int]

Enable vectorized Tx only when the number of TX queues is less than or equal to this value.
This parameter is deprecated and ignored, kept for compatibility issue to not prevent driver from
probing.

• txq_mpw_hdr_dseg_en parameter [int]

A nonzero value enables including two pointers in the first block of TX descriptor. The parameter
is deprecated and ignored, kept for compatibility issue.

• txq_max_inline_len parameter [int]

Maximum size of packet to be inlined. This limits the size of packet to be inlined. If the size
of a packet is larger than configured value, the packet isn’t inlined even though there’s enough
space remained in the descriptor. Instead, the packet is included with pointer. This parameter is
deprecated and converted directly to txq_inline_mpw providing full compatibility. Valid only
if eMPW feature is engaged.

• txq_mpw_en parameter [int]

A nonzero value enables Enhanced Multi-Packet Write (eMPW) for ConnectX-5, ConnectX-6,
ConnectX-6 Dx and BlueField. eMPW allows the TX burst function to pack up multiple packets
in a single descriptor session in order to save PCI bandwidth and improve performance at the cost
of a slightly higher CPU usage. When txq_inline_mpw is set along with txq_mpw_en, TX
burst function copies entire packet data on to TX descriptor instead of including pointer of packet.

The Enhanced Multi-Packet Write feature is enabled by default if NIC supports it, can be dis-
abled by explicit specifying 0 value for txq_mpw_en option. Also, if minimal data inlining is
requested by non-zero txq_inline_min option or reported by the NIC, the eMPW feature is
disengaged.

• tx_db_nc parameter [int]

The rdma core library can map doorbell register in two ways, depending on the environment
variable “MLX5_SHUT_UP_BF”:

– As regular cached memory (usually with write combining attribute), if the variable is either
missing or set to zero.

– As non-cached memory, if the variable is present and set to not “0” value.

The type of mapping may slightly affect the Tx performance, the optimal choice is strongly relied
on the host architecture and should be deduced practically.

If tx_db_nc is set to zero, the doorbell is forced to be mapped to regular memory (with write
combining), the PMD will perform the extra write memory barrier after writing to doorbell, it
might increase the needed CPU clocks per packet to send, but latency might be improved.

If tx_db_nc is set to one, the doorbell is forced to be mapped to non cached memory, the PMD
will not perform the extra write memory barrier after writing to doorbell, on some architectures it

34.5. Configuration 184

Network Interface Controller Drivers, Release 20.08.0

might improve the performance.

If tx_db_nc is set to two, the doorbell is forced to be mapped to regular memory, the PMD will
use heuristics to decide whether write memory barrier should be performed. For bursts with size
multiple of recommended one (64 pkts) it is supposed the next burst is coming and no need to
issue the extra memory barrier (it is supposed to be issued in the next coming burst, at least after
descriptor writing). It might increase latency (on some hosts till next packets transmit) and should
be used with care.

If tx_db_nc is omitted or set to zero, the preset (if any) environment variable
“MLX5_SHUT_UP_BF” value is used. If there is no “MLX5_SHUT_UP_BF”, the default
tx_db_nc value is zero for ARM64 hosts and one for others.

• tx_pp parameter [int]

If a nonzero value is specified the driver creates all necessary internal objects to provide accurate
packet send scheduling on mbuf timestamps. The positive value specifies the scheduling granu-
larity in nanoseconds, the packet send will be accurate up to specified digits. The allowed range
is from 500 to 1 million of nanoseconds. The negative value specifies the module of granularity
and engages the special test mode the check the schedule rate. By default (if the tx_pp is not
specified) send scheduling on timestamps feature is disabled.

• tx_skew parameter [int]

The parameter adjusts the send packet scheduling on timestamps and represents the average delay
between beginning of the transmitting descriptor processing by the hardware and appearance of
actual packet data on the wire. The value should be provided in nanoseconds and is valid only if
tx_pp parameter is specified. The default value is zero.

• tx_vec_en parameter [int]

A nonzero value enables Tx vector on ConnectX-5, ConnectX-6, ConnectX-6 Dx and BlueField
NICs if the number of global Tx queues on the port is less than txqs_max_vec. The parameter
is deprecated and ignored.

• rx_vec_en parameter [int]

A nonzero value enables Rx vector if the port is not configured in multi-segment otherwise this
parameter is ignored.

Enabled by default.

• vf_nl_en parameter [int]

A nonzero value enables Netlink requests from the VF to add/remove MAC addresses or/and
enable/disable promiscuous/all multicast on the Netdevice. Otherwise the relevant configuration
must be run with Linux iproute2 tools. This is a prerequisite to receive this kind of traffic.

Enabled by default, valid only on VF devices ignored otherwise.

• l3_vxlan_en parameter [int]

A nonzero value allows L3 VXLAN and VXLAN-GPE flow creation. To enable L3 VXLAN or
VXLAN-GPE, users has to configure firmware and enable this parameter. This is a prerequisite
to receive this kind of traffic.

Disabled by default.

• dv_xmeta_en parameter [int]

34.5. Configuration 185

Network Interface Controller Drivers, Release 20.08.0

A nonzero value enables extensive flow metadata support if device is capable and driver sup-
ports it. This can enable extensive support of MARK and META item of rte_flow. The newly
introduced SET_TAG and SET_META actions do not depend on dv_xmeta_en.

There are some possible configurations, depending on parameter value:

– 0, this is default value, defines the legacy mode, the MARK and META related actions and
items operate only within NIC Tx and NIC Rx steering domains, no MARK and META infor-
mation crosses the domain boundaries. The MARK item is 24 bits wide, the META item is 32
bits wide and match supported on egress only.

– 1, this engages extensive metadata mode, the MARK and META related actions and items
operate within all supported steering domains, including FDB, MARK and META information
may cross the domain boundaries. The MARK item is 24 bits wide, the META item width
depends on kernel and firmware configurations and might be 0, 16 or 32 bits. Within NIC
Tx domain META data width is 32 bits for compatibility, the actual width of data transferred
to the FDB domain depends on kernel configuration and may be vary. The actual supported
width can be retrieved in runtime by series of rte_flow_validate() trials.

– 2, this engages extensive metadata mode, the MARK and META related actions and items
operate within all supported steering domains, including FDB, MARK and META information
may cross the domain boundaries. The META item is 32 bits wide, the MARK item width
depends on kernel and firmware configurations and might be 0, 16 or 24 bits. The actual
supported width can be retrieved in runtime by series of rte_flow_validate() trials.

Mode MARK META META Tx FDB/Through
0 24 bits 32 bits 32 bits no
1 24 bits vary 0-32 32 bits yes
2 vary 0-32 32 bits 32 bits yes

If there is no E-Switch configuration the dv_xmeta_en parameter is ignored and the device is
configured to operate in legacy mode (0).

Disabled by default (set to 0).

The Direct Verbs/Rules (engaged with dv_flow_en = 1) supports all of the extensive metadata
features. The legacy Verbs supports FLAG and MARK metadata actions over NIC Rx steering
domain only.

• dv_flow_en parameter [int]

A nonzero value enables the DV flow steering assuming it is supported by the driver (RDMA Core
library version is rdma-core-24.0 or higher).

Enabled by default if supported.

• dv_esw_en parameter [int]

A nonzero value enables E-Switch using Direct Rules.

Enabled by default if supported.

• lacp_by_user parameter [int]

A nonzero value enables the control of LACP traffic by the user application. When a bond exists
in the driver, by default it should be managed by the kernel and therefore LACP traffic should be
steered to the kernel. If this devarg is set to 1 it will allow the user to manage the bond by itself
and not steer LACP traffic to the kernel.

Disabled by default (set to 0).

34.5. Configuration 186

Network Interface Controller Drivers, Release 20.08.0

• mr_ext_memseg_en parameter [int]

A nonzero value enables extending memseg when registering DMA memory. If enabled, the
number of entries in MR (Memory Region) lookup table on datapath is minimized and it benefits
performance. On the other hand, it worsens memory utilization because registered memory is
pinned by kernel driver. Even if a page in the extended chunk is freed, that doesn’t become
reusable until the entire memory is freed.

Enabled by default.

• representor parameter [list]

This parameter can be used to instantiate DPDK Ethernet devices from existing port (or VF)
representors configured on the device.

It is a standard parameter whose format is described in ether-
net_device_standard_device_arguments.

For instance, to probe port representors 0 through 2:

representor=[0-2]

• max_dump_files_num parameter [int]

The maximum number of files per PMD entity that may be created for debug information. The
files will be created in /var/log directory or in current directory.

set to 128 by default.

• lro_timeout_usec parameter [int]

The maximum allowed duration of an LRO session, in micro-seconds. PMD will set the nearest
value supported by HW, which is not bigger than the input lro_timeout_usec value. If this
parameter is not specified, by default PMD will set the smallest value supported by HW.

• hp_buf_log_sz parameter [int]

The total data buffer size of a hairpin queue (logarithmic form), in bytes. PMD will set the data
buffer size to 2 ** hp_buf_log_sz, both for RX & TX. The capacity of the value is specified
by the firmware and the initialization will get a failure if it is out of scope. The range of the value
is from 11 to 19 right now, and the supported frame size of a single packet for hairpin is from
512B to 128KB. It might change if different firmware release is being used. By using a small
value, it could reduce memory consumption but not work with a large frame. If the value is too
large, the memory consumption will be high and some potential performance degradation will be
introduced. By default, the PMD will set this value to 16, which means that 9KB jumbo frames
will be supported.

• reclaim_mem_mode parameter [int]

Cache some resources in flow destroy will help flow recreation more efficient. While some sys-
tems may require the all the resources can be reclaimed after flow destroyed. The parameter
reclaim_mem_mode provides the option for user to configure if the resource cache is needed
or not.

There are three options to choose:

– 0. It means the flow resources will be cached as usual. The resources will be cached, helpful
with flow insertion rate.

– 1. It will only enable the DPDK PMD level resources reclaim.

34.5. Configuration 187

Network Interface Controller Drivers, Release 20.08.0

– 2. Both DPDK PMD level and rdma-core low level will be configured as reclaimed mode.

By default, the PMD will set this value to 0.

• sys_mem_en parameter [int]

A non-zero value enables the PMD memory management allocating memory from system by
default, without explicit rte memory flag.

By default, the PMD will set this value to 0.

• decap_en parameter [int]

Some devices do not support FCS (frame checksum) scattering for tunnel-decapsulated packets.
If set to 0, this option forces the FCS feature and rejects tunnel decapsulation in the flow engine
for such devices.

By default, the PMD will set this value to 1.

34.5.4 Firmware configuration

Firmware features can be configured as key/value pairs.

The command to set a value is:

mlxconfig -d <device> set <key>=<value>

The command to query a value is:

mlxconfig -d <device> query | grep <key>

The device name for the command mlxconfig can be either the PCI address, or the mst device name
found with:

mst status

Below are some firmware configurations listed.

• link type:

LINK_TYPE_P1
LINK_TYPE_P2
value: 1=Infiniband 2=Ethernet 3=VPI(auto-sense)

• enable SR-IOV:

SRIOV_EN=1

• maximum number of SR-IOV virtual functions:

NUM_OF_VFS=<max>

• enable DevX (required by Direct Rules and other features):

UCTX_EN=1

• aggressive CQE zipping:

CQE_COMPRESSION=1

• L3 VXLAN and VXLAN-GPE destination UDP port:

IP_OVER_VXLAN_EN=1
IP_OVER_VXLAN_PORT=<udp dport>

• enable VXLAN-GPE tunnel flow matching:

34.5. Configuration 188

Network Interface Controller Drivers, Release 20.08.0

FLEX_PARSER_PROFILE_ENABLE=0
or
FLEX_PARSER_PROFILE_ENABLE=2

• enable IP-in-IP tunnel flow matching:

FLEX_PARSER_PROFILE_ENABLE=0

• enable MPLS flow matching:

FLEX_PARSER_PROFILE_ENABLE=1

• enable ICMP/ICMP6 code/type fields matching:

FLEX_PARSER_PROFILE_ENABLE=2

• enable Geneve flow matching:

FLEX_PARSER_PROFILE_ENABLE=0
or
FLEX_PARSER_PROFILE_ENABLE=1

• enable GTP flow matching:

FLEX_PARSER_PROFILE_ENABLE=3

• enable eCPRI flow matching:

FLEX_PARSER_PROFILE_ENABLE=4
PROG_PARSE_GRAPH=1

34.6 Prerequisites

This driver relies on external libraries and kernel drivers for resources allocations and initialization. The
following dependencies are not part of DPDK and must be installed separately:

• libibverbs

User space Verbs framework used by librte_pmd_mlx5. This library provides a generic interface
between the kernel and low-level user space drivers such as libmlx5.

It allows slow and privileged operations (context initialization, hardware resources allocations) to
be managed by the kernel and fast operations to never leave user space.

• libmlx5

Low-level user space driver library for Mellanox ConnectX-4/ConnectX-5/ConnectX-6/BlueField
devices, it is automatically loaded by libibverbs.

This library basically implements send/receive calls to the hardware queues.

• Kernel modules

They provide the kernel-side Verbs API and low level device drivers that manage actual hardware
initialization and resources sharing with user space processes.

Unlike most other PMDs, these modules must remain loaded and bound to their devices:

– mlx5_core: hardware driver managing Mellanox ConnectX-4/ConnectX-5/ConnectX-
6/BlueField devices and related Ethernet kernel network devices.

– mlx5_ib: InifiniBand device driver.

– ib_uverbs: user space driver for Verbs (entry point for libibverbs).

34.6. Prerequisites 189

Network Interface Controller Drivers, Release 20.08.0

• Firmware update

Mellanox OFED/EN releases include firmware updates for ConnectX-4/ConnectX-5/ConnectX-
6/BlueField adapters.

Because each release provides new features, these updates must be applied to match the kernel
modules and libraries they come with.

Note: Both libraries are BSD and GPL licensed. Linux kernel modules are GPL licensed.

34.6.1 Installation

Either RDMA Core library with a recent enough Linux kernel release (recommended) or Mellanox
OFED/EN, which provides compatibility with older releases.

RDMA Core with Linux Kernel

• Minimal kernel version : v4.14 or the most recent 4.14-rc (see Linux installation documentation)

• Minimal rdma-core version: v15+ commit 0c5f5765213a (“Merge pull request #227 from
yishaih/tm”) (see RDMA Core installation documentation)

• When building for i686 use:

– rdma-core version 18.0 or above built with 32bit support.

– Kernel version 4.14.41 or above.

• Starting with rdma-core v21, static libraries can be built:

cd build
CFLAGS=-fPIC cmake -DIN_PLACE=1 -DENABLE_STATIC=1 -GNinja ..
ninja

If rdma-core libraries are built but not installed, DPDK makefile can link them, thanks to these environ-
ment variables:

• EXTRA_CFLAGS=-I/path/to/rdma-core/build/include

• EXTRA_LDFLAGS=-L/path/to/rdma-core/build/lib

• PKG_CONFIG_PATH=/path/to/rdma-core/build/lib/pkgconfig

Mellanox OFED/EN

• Mellanox OFED version: 4.5 and above / Mellanox EN version: 4.5 and above

• firmware version:

– ConnectX-4: 12.21.1000 and above.

– ConnectX-4 Lx: 14.21.1000 and above.

– ConnectX-5: 16.21.1000 and above.

– ConnectX-5 Ex: 16.21.1000 and above.

34.6. Prerequisites 190

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git/plain/Documentation/admin-guide/README.rst
https://raw.githubusercontent.com/linux-rdma/rdma-core/master/README.md

Network Interface Controller Drivers, Release 20.08.0

– ConnectX-6: 20.27.0090 and above.

– ConnectX-6 Dx: 22.27.0090 and above.

– BlueField: 18.25.1010 and above.

While these libraries and kernel modules are available on OpenFabrics Alliance’s website and provided
by package managers on most distributions, this PMD requires Ethernet extensions that may not be
supported at the moment (this is a work in progress).

Mellanox OFED and Mellanox EN include the necessary support and should be used in the meantime.
For DPDK, only libibverbs, libmlx5, mlnx-ofed-kernel packages and firmware updates are required from
that distribution.

Note: Several versions of Mellanox OFED/EN are available. Installing the version this DPDK release
was developed and tested against is strongly recommended. Please check the prerequisites.

34.7 Supported NICs

The following Mellanox device families are supported by the same mlx5 driver:

• ConnectX-4

• ConnectX-4 Lx

• ConnectX-5

• ConnectX-5 Ex

• ConnectX-6

• ConnectX-6 Dx

• BlueField

Below are detailed device names:

• Mellanox® ConnectX®-4 10G MCX4111A-XCAT (1x10G)

• Mellanox® ConnectX®-4 10G MCX412A-XCAT (2x10G)

• Mellanox® ConnectX®-4 25G MCX4111A-ACAT (1x25G)

• Mellanox® ConnectX®-4 25G MCX412A-ACAT (2x25G)

• Mellanox® ConnectX®-4 40G MCX413A-BCAT (1x40G)

• Mellanox® ConnectX®-4 40G MCX4131A-BCAT (1x40G)

• Mellanox® ConnectX®-4 40G MCX415A-BCAT (1x40G)

• Mellanox® ConnectX®-4 50G MCX413A-GCAT (1x50G)

• Mellanox® ConnectX®-4 50G MCX4131A-GCAT (1x50G)

• Mellanox® ConnectX®-4 50G MCX414A-BCAT (2x50G)

• Mellanox® ConnectX®-4 50G MCX415A-GCAT (1x50G)

• Mellanox® ConnectX®-4 50G MCX416A-BCAT (2x50G)

34.7. Supported NICs 191

https://www.openfabrics.org/
http://www.mellanox.com/page/products_dyn?product_family=26&mtag=linux
http://www.mellanox.com/page/products_dyn?product_family=27&mtag=linux

Network Interface Controller Drivers, Release 20.08.0

• Mellanox® ConnectX®-4 50G MCX416A-GCAT (2x50G)

• Mellanox® ConnectX®-4 50G MCX415A-CCAT (1x100G)

• Mellanox® ConnectX®-4 100G MCX416A-CCAT (2x100G)

• Mellanox® ConnectX®-4 Lx 10G MCX4111A-XCAT (1x10G)

• Mellanox® ConnectX®-4 Lx 10G MCX4121A-XCAT (2x10G)

• Mellanox® ConnectX®-4 Lx 25G MCX4111A-ACAT (1x25G)

• Mellanox® ConnectX®-4 Lx 25G MCX4121A-ACAT (2x25G)

• Mellanox® ConnectX®-4 Lx 40G MCX4131A-BCAT (1x40G)

• Mellanox® ConnectX®-5 100G MCX556A-ECAT (2x100G)

• Mellanox® ConnectX®-5 Ex EN 100G MCX516A-CDAT (2x100G)

• Mellanox® ConnectX®-6 200G MCX654106A-HCAT (2x200G)

• Mellanox® ConnectX®-6 Dx EN 100G MCX623106AN-CDAT (2x100G)

• Mellanox® ConnectX®-6 Dx EN 200G MCX623105AN-VDAT (1x200G)

34.8 Quick Start Guide on OFED/EN

1. Download latest Mellanox OFED/EN. For more info check the prerequisites.

2. Install the required libraries and kernel modules either by installing only the required set, or by
installing the entire Mellanox OFED/EN:

./mlnxofedinstall --upstream-libs --dpdk

3. Verify the firmware is the correct one:

ibv_devinfo

4. Verify all ports links are set to Ethernet:

mlxconfig -d <mst device> query | grep LINK_TYPE
LINK_TYPE_P1 ETH(2)
LINK_TYPE_P2 ETH(2)

Link types may have to be configured to Ethernet:

mlxconfig -d <mst device> set LINK_TYPE_P1/2=1/2/3

* LINK_TYPE_P1=<1|2|3> , 1=Infiniband 2=Ethernet 3=VPI(auto-sense)

For hypervisors, verify SR-IOV is enabled on the NIC:

mlxconfig -d <mst device> query | grep SRIOV_EN
SRIOV_EN True(1)

If needed, configure SR-IOV:

mlxconfig -d <mst device> set SRIOV_EN=1 NUM_OF_VFS=16
mlxfwreset -d <mst device> reset

5. Restart the driver:

/etc/init.d/openibd restart

or:

34.8. Quick Start Guide on OFED/EN 192

Network Interface Controller Drivers, Release 20.08.0

service openibd restart

If link type was changed, firmware must be reset as well:

mlxfwreset -d <mst device> reset

For hypervisors, after reset write the sysfs number of virtual functions needed for the PF.

To dynamically instantiate a given number of virtual functions (VFs):

echo [num_vfs] > /sys/class/infiniband/mlx5_0/device/sriov_numvfs

6. Compile DPDK and you are ready to go. See instructions on Development Kit Build System

34.9 Enable switchdev mode

Switchdev mode is a mode in E-Switch, that binds between representor and VF. Representor is a port in
DPDK that is connected to a VF in such a way that assuming there are no offload flows, each packet that
is sent from the VF will be received by the corresponding representor. While each packet that is sent
to a representor will be received by the VF. This is very useful in case of SRIOV mode, where the first
packet that is sent by the VF will be received by the DPDK application which will decide if this flow
should be offloaded to the E-Switch. After offloading the flow packet that the VF that are matching the
flow will not be received any more by the DPDK application.

1. Enable SRIOV mode:

mlxconfig -d <mst device> set SRIOV_EN=true

2. Configure the max number of VFs:

mlxconfig -d <mst device> set NUM_OF_VFS=<num of vfs>

3. Reset the FW:

mlxfwreset -d <mst device> reset

3. Configure the actual number of VFs:

echo <num of vfs > /sys/class/net/<net device>/device/sriov_numvfs

4. Unbind the device (can be rebind after the switchdev mode):

echo -n "<device pci address" > /sys/bus/pci/drivers/mlx5_core/unbind

5. Enbale switchdev mode:

echo switchdev > /sys/class/net/<net device>/compat/devlink/mode

34.10 Performance tuning

1. Configure aggressive CQE Zipping for maximum performance:

mlxconfig -d <mst device> s CQE_COMPRESSION=1

To set it back to the default CQE Zipping mode use:

mlxconfig -d <mst device> s CQE_COMPRESSION=0

2. In case of virtualization:

• Make sure that hypervisor kernel is 3.16 or newer.

34.9. Enable switchdev mode 193

Network Interface Controller Drivers, Release 20.08.0

• Configure boot with iommu=pt.

• Use 1G huge pages.

• Make sure to allocate a VM on huge pages.

• Make sure to set CPU pinning.

3. Use the CPU near local NUMA node to which the PCIe adapter is connected, for better perfor-
mance. For VMs, verify that the right CPU and NUMA node are pinned according to the above.
Run:

lstopo-no-graphics

to identify the NUMA node to which the PCIe adapter is connected.

4. If more than one adapter is used, and root complex capabilities allow to put both adapters on the
same NUMA node without PCI bandwidth degradation, it is recommended to locate both adapters
on the same NUMA node. This in order to forward packets from one to the other without NUMA
performance penalty.

5. Disable pause frames:

ethtool -A <netdev> rx off tx off

6. Verify IO non-posted prefetch is disabled by default. This can be checked via the BIOS configu-
ration. Please contact you server provider for more information about the settings.

Note: On some machines, depends on the machine integrator, it is beneficial to set the PCI max read
request parameter to 1K. This can be done in the following way:

To query the read request size use:

setpci -s <NIC PCI address> 68.w

If the output is different than 3XXX, set it by:

setpci -s <NIC PCI address> 68.w=3XXX

The XXX can be different on different systems. Make sure to configure according to the setpci output.

7. To minimize overhead of searching Memory Regions:

• ‘–socket-mem’ is recommended to pin memory by predictable amount.

• Configure per-lcore cache when creating Mempools for packet buffer.

• Refrain from dynamically allocating/freeing memory in run-time.

34.10. Performance tuning 194

Network Interface Controller Drivers, Release 20.08.0

34.11 Supported hardware offloads

Table 34.1: Minimal SW/HW versions for queue offloads

Offload DPDK Linux rdma-core OFED firmware hardware
common base 17.11 4.14 16 4.2-1 12.21.1000 ConnectX-4
checksums 17.11 4.14 16 4.2-1 12.21.1000 ConnectX-4
Rx timestamp 17.11 4.14 16 4.2-1 12.21.1000 ConnectX-4
TSO 17.11 4.14 16 4.2-1 12.21.1000 ConnectX-4
LRO 19.08 N/A N/A 4.6-4 16.25.6406 ConnectX-5

34.11. Supported hardware offloads 195

Network Interface Controller Drivers, Release 20.08.0

Table 34.2: Minimal SW/HW versions for rte_flow offloads

Offload with E-Switch with NIC
Count

DPDK 19.05
OFED 4.6
rdma-core 24
ConnectX-5

DPDK 19.02
OFED 4.6
rdma-core 23
ConnectX-5

Drop

DPDK 19.05
OFED 4.6
rdma-core 24
ConnectX-5

DPDK 18.11
OFED 4.5
rdma-core 23
ConnectX-4

Queue / RSS

N/A
DPDK 18.11
OFED 4.5
rdma-core 23
ConnectX-4

Encapsulation (VXLAN /
NVGRE / RAW)

DPDK 19.05
OFED 4.7-1
rdma-core 24
ConnectX-5

DPDK 19.02
OFED 4.6
rdma-core 23
ConnectX-5

Encapsulation GENEVE

DPDK 19.11
OFED 4.7-3
rdma-core 27
ConnectX-5

DPDK 19.11
OFED 4.7-3
rdma-core 27
ConnectX-5

Header rewrite
(set_ipv4_src /
set_ipv4_dst /
set_ipv6_src /
set_ipv6_dst /
set_tp_src /
set_tp_dst /
dec_ttl /
set_ttl /
set_mac_src /
set_mac_dst)

DPDK 19.05
OFED 4.7-1
rdma-core 24
ConnectX-5

DPDK 19.02
OFED 4.7-1
rdma-core 24
ConnectX-5

Header rewrite
(set_dscp)

DPDK 20.02
OFED 5.0
rdma-core 24
ConnectX-5

DPDK 20.02
OFED 5.0
rdma-core 24
ConnectX-5

Jump

DPDK 19.05
OFED 4.7-1
rdma-core 24
ConnectX-5

DPDK 19.02
OFED 4.7-1
N/A
ConnectX-5

Mark / Flag

DPDK 19.05
OFED 4.6
rdma-core 24
ConnectX-5

DPDK 18.11
OFED 4.5
rdma-core 23
ConnectX-4

Port ID

DPDK 19.05
OFED 4.7-1
rdma-core 24
ConnectX-5

N/A
N/A
N/A
N/A

VLAN
(of_pop_vlan /
of_push_vlan /
of_set_vlan_pcp /
of_set_vlan_vid)

DPDK 19.11
OFED 4.7-1
ConnectX-5

DPDK 19.11
OFED 4.7-1
ConnectX-5

Hairpin

N/A
DPDK 19.11
OFED 4.7-3
rdma-core 26
ConnectX-5

Meta data

DPDK 19.11
OFED 4.7-3
rdma-core 26
ConnectX-5

DPDK 19.11
OFED 4.7-3
rdma-core 26
ConnectX-5

Metering

DPDK 19.11
OFED 4.7-3
rdma-core 26
ConnectX-5

DPDK 19.11
OFED 4.7-3
rdma-core 26
ConnectX-5

34.11. Supported hardware offloads 196

Network Interface Controller Drivers, Release 20.08.0

34.12 Notes for metadata

MARK and META items are interrelated with datapath - they might move from/to the applications in
mbuf fields. Hence, zero value for these items has the special meaning - it means “no metadata are
provided”, not zero values are treated by applications and PMD as valid ones.

Moreover in the flow engine domain the value zero is acceptable to match and set, and we should allow
to specify zero values as rte_flow parameters for the META and MARK items and actions. In the same
time zero mask has no meaning and should be rejected on validation stage.

34.13 Notes for rte_flow

Flows are not cached in the driver. When stopping a device port, all the flows created on this port from
the application will be flushed automatically in the background. After stopping the device port, all flows
on this port become invalid and not represented in the system. All references to these flows held by the
application should be discarded directly but neither destroyed nor flushed.

The application should re-create the flows as required after the port restart.

34.14 Notes for testpmd

Compared to librte_pmd_mlx4 that implements a single RSS configuration per port, librte_pmd_mlx5
supports per-protocol RSS configuration.

Since testpmd defaults to IP RSS mode and there is currently no command-line parameter to enable
additional protocols (UDP and TCP as well as IP), the following commands must be entered from its
CLI to get the same behavior as librte_pmd_mlx4:

> port stop all
> port config all rss all
> port start all

34.15 Usage example

This section demonstrates how to launch testpmd with Mellanox ConnectX-4/ConnectX-5/ConnectX-
6/BlueField devices managed by librte_pmd_mlx5.

1. Load the kernel modules:

modprobe -a ib_uverbs mlx5_core mlx5_ib

Alternatively if MLNX_OFED/MLNX_EN is fully installed, the following script can be run:

/etc/init.d/openibd restart

Note: User space I/O kernel modules (uio and igb_uio) are not used and do not have to be loaded.

2. Make sure Ethernet interfaces are in working order and linked to kernel verbs. Related sysfs
entries should be present:

ls -d /sys/class/net/*/device/infiniband_verbs/uverbs* | cut -d / -f 5

34.12. Notes for metadata 197

Network Interface Controller Drivers, Release 20.08.0

Example output:

eth30
eth31
eth32
eth33

3. Optionally, retrieve their PCI bus addresses for whitelisting:

{
for intf in eth2 eth3 eth4 eth5;
do

(cd "/sys/class/net/${intf}/device/" && pwd -P);
done;

} |
sed -n 's,.*/\(.*\),-w \1,p'

Example output:

-w 0000:05:00.1
-w 0000:06:00.0
-w 0000:06:00.1
-w 0000:05:00.0

4. Request huge pages:

echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages/nr_hugepages

5. Start testpmd with basic parameters:

testpmd -l 8-15 -n 4 -w 05:00.0 -w 05:00.1 -w 06:00.0 -w 06:00.1 -- --rxq=2 --txq=2 -i

Example output:

[...]
EAL: PCI device 0000:05:00.0 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_0" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fe
EAL: PCI device 0000:05:00.1 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_1" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:ff
EAL: PCI device 0000:06:00.0 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_2" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fa
EAL: PCI device 0000:06:00.1 on NUMA socket 0
EAL: probe driver: 15b3:1013 librte_pmd_mlx5
PMD: librte_pmd_mlx5: PCI information matches, using device "mlx5_3" (VF: false)
PMD: librte_pmd_mlx5: 1 port(s) detected
PMD: librte_pmd_mlx5: port 1 MAC address is e4:1d:2d:e7:0c:fb
Interactive-mode selected
Configuring Port 0 (socket 0)
PMD: librte_pmd_mlx5: 0x8cba80: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8cba80: RX queues number update: 0 -> 2
Port 0: E4:1D:2D:E7:0C:FE
Configuring Port 1 (socket 0)
PMD: librte_pmd_mlx5: 0x8ccac8: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8ccac8: RX queues number update: 0 -> 2
Port 1: E4:1D:2D:E7:0C:FF
Configuring Port 2 (socket 0)
PMD: librte_pmd_mlx5: 0x8cdb10: TX queues number update: 0 -> 2

34.15. Usage example 198

Network Interface Controller Drivers, Release 20.08.0

PMD: librte_pmd_mlx5: 0x8cdb10: RX queues number update: 0 -> 2
Port 2: E4:1D:2D:E7:0C:FA
Configuring Port 3 (socket 0)
PMD: librte_pmd_mlx5: 0x8ceb58: TX queues number update: 0 -> 2
PMD: librte_pmd_mlx5: 0x8ceb58: RX queues number update: 0 -> 2
Port 3: E4:1D:2D:E7:0C:FB
Checking link statuses...
Port 0 Link Up - speed 40000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Port 2 Link Up - speed 10000 Mbps - full-duplex
Port 3 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

34.16 How to dump flows

This section demonstrates how to dump flows. Currently, it’s possible to dump all flows with assistance
of external tools.

1. 2 ways to get flow raw file:

• Using testpmd CLI:

testpmd> flow dump <port> <output_file>

• call rte_flow_dev_dump api:

rte_flow_dev_dump(port, file, NULL);

2. Dump human-readable flows from raw file:

Get flow parsing tool from: https://github.com/Mellanox/mlx_steering_dump

mlx_steering_dump.py -f <output_file>

34.16. How to dump flows 199

https://github.com/Mellanox/mlx_steering_dump

CHAPTER

THIRTYFIVE

MVNETA POLL MODE DRIVER

The MVNETA PMD (librte_pmd_mvneta) provides poll mode driver support for the Marvell NETA
1/2.5 Gbps adapter.

Detailed information about SoCs that use PPv2 can be obtained here:

• https://www.marvell.com/embedded-processors/armada-3700/

Note: Due to external dependencies, this driver is disabled by default. It must be enabled manually
by setting relevant configuration option manually. Please refer to Config File Options section for further
details.

35.1 Features

Features of the MVNETA PMD are:

• Start/stop

• tx/rx_queue_setup

• tx/rx_burst

• Speed capabilities

• Jumbo frame

• MTU update

• Promiscuous mode

• Unicast MAC filter

• Link status

• CRC offload

• L3 checksum offload

• L4 checksum offload

• Packet type parsing

• Basic stats

200

https://www.marvell.com/embedded-processors/armada-3700/

Network Interface Controller Drivers, Release 20.08.0

35.2 Limitations

• Flushing vlans added for filtering is not possible due to MUSDK missing functionality. Current
workaround is to reset board so that NETA has a chance to start in a sane state.

35.3 Prerequisites

• Custom Linux Kernel sources

git clone https://github.com/MarvellEmbeddedProcessors/linux-marvell.git -b linux-4.4.120-armada-18.09

• MUSDK (Marvell User-Space SDK) sources

git clone https://github.com/MarvellEmbeddedProcessors/musdk-marvell.git -b musdk-armada-18.09

MUSDK is a light-weight library that provides direct access to Marvell’s NETA. Alternatively pre-
built MUSDK library can be requested from Marvell Extranet. Once approval has been granted,
library can be found by typing musdk in the search box.

MUSDK must be configured with the following features:

--enable-pp2=no --enable-neta

• DPDK environment

Follow the DPDK Getting Started Guide for Linux to setup DPDK environment.

35.4 Pre-Installation Configuration

35.4.1 Config File Options

The following options can be modified in the config file.

• CONFIG_RTE_LIBRTE_MVNETA_PMD (default n)

Toggle compilation of the librte_pmd_mvneta driver.

35.4.2 Runtime options

The following devargs options can be enabled at runtime. They must be passed as part of EAL
arguments.

• iface (mandatory, with no default value)

The name of port (owned by MUSDK) that should be enabled in DPDK. This options can be
repeated resulting in a list of ports to be enabled. For instance below will enable eth0 and eth1
ports.

./testpmd --vdev=net_mvneta,iface=eth0,iface=eth1 \
-c 3 -- -i --p 3 -a

35.2. Limitations 201

https://extranet.marvell.com

Network Interface Controller Drivers, Release 20.08.0

35.5 Building DPDK

Driver needs precompiled MUSDK library during compilation.

export CROSS_COMPILE=<toolchain>/bin/aarch64-linux-gnu-
./bootstrap
./configure --host=aarch64-linux-gnu --enable-pp2=no --enable-neta
make install

MUSDK will be installed to usr/local under current directory. For the detailed build instructions please
consult doc/musdk_get_started.txt.

Before the DPDK build process the environmental variable LIBMUSDK_PATH with the path to the
MUSDK installation directory needs to be exported.

export LIBMUSDK_PATH=<musdk>/usr/local
export CROSS=aarch64-linux-gnu-
make config T=arm64-armv8a-linux-gcc
sed -ri 's,(MVNETA_PMD=)n,\1y,' build/.config
make

35.6 Usage Example

MVNETA PMD requires extra out of tree kernel modules to function properly. musdk_uio and
mv_neta_uio sources are part of the MUSDK. Please consult doc/musdk_get_started.txt for
the detailed build instructions.

insmod musdk_uio.ko
insmod mv_neta_uio.ko

Additionally interfaces used by DPDK application need to be put up:

ip link set eth0 up
ip link set eth1 up

In order to run testpmd example application following command can be used:

./testpmd --vdev=net_mvneta,iface=eth0,iface=eth1 -c 3 -- \
-i --p 3 -a --txd 256 --rxd 128 --rxq=1 --txq=1 --nb-cores=1

In order to run l2fwd example application following command can be used:

./l2fwd --vdev=net_mvneta,iface=eth0,iface=eth1 -c 3 -- -T 1 -p 3

35.5. Building DPDK 202

CHAPTER

THIRTYSIX

MVPP2 POLL MODE DRIVER

The MVPP2 PMD (librte_pmd_mvpp2) provides poll mode driver support for the Marvell PPv2 (Packet
Processor v2) 1/10 Gbps adapter.

Detailed information about SoCs that use PPv2 can be obtained here:

• https://www.marvell.com/embedded-processors/armada-70xx/

• https://www.marvell.com/embedded-processors/armada-80xx/

Note: Due to external dependencies, this driver is disabled by default. It must be enabled manually
by setting relevant configuration option manually. Please refer to Config File Options section for further
details.

36.1 Features

Features of the MVPP2 PMD are:

• Speed capabilities

• Link status

• Tx Queue start/stop

• MTU update

• Jumbo frame

• Promiscuous mode

• Allmulticast mode

• Unicast MAC filter

• Multicast MAC filter

• RSS hash

• VLAN filter

• CRC offload

• L3 checksum offload

• L4 checksum offload

203

https://www.marvell.com/embedded-processors/armada-70xx/
https://www.marvell.com/embedded-processors/armada-80xx/

Network Interface Controller Drivers, Release 20.08.0

• Packet type parsing

• Basic stats

• Extended stats

• RX flow control

• Scattered TX frames

• QoS

• Flow API

• Traffic metering and policing

• Traffic Management API

36.2 Limitations

• Number of lcores is limited to 9 by MUSDK internal design. If more lcores need to be al-
located, locking will have to be considered. Number of available lcores can be changed via
MRVL_MUSDK_HIFS_RESERVED define in mrvl_ethdev.c source file.

• Flushing vlans added for filtering is not possible due to MUSDK missing functionality. Current
workaround is to reset board so that PPv2 has a chance to start in a sane state.

• MUSDK architecture does not support changing configuration in run time. All necessary config-
urations should be done before first dev_start().

• RX queue start/stop is not supported.

• Current implementation does not support replacement of buffers in the HW buffer pool at run
time, so it is responsibility of the application to ensure that MTU does not exceed the configured
buffer size.

• Configuring TX flow control currently is not supported.

• In current implementation, mechanism for acknowledging transmitted packets
(tx_done_cleanup) is not supported.

• Running more than one DPDK-MUSDK application simultaneously is not supported.

36.3 Prerequisites

• Custom Linux Kernel sources

git clone https://github.com/MarvellEmbeddedProcessors/linux-marvell.git -b linux-4.4.120-armada-18.09

• Out of tree mvpp2x_sysfs kernel module sources

git clone https://github.com/MarvellEmbeddedProcessors/mvpp2x-marvell.git -b mvpp2x-armada-18.09

• MUSDK (Marvell User-Space SDK) sources

git clone https://github.com/MarvellEmbeddedProcessors/musdk-marvell.git -b musdk-armada-18.09

MUSDK is a light-weight library that provides direct access to Marvell’s PPv2 (Packet Proces-
sor v2). Alternatively prebuilt MUSDK library can be requested from Marvell Extranet. Once
approval has been granted, library can be found by typing musdk in the search box.

36.2. Limitations 204

https://extranet.marvell.com

Network Interface Controller Drivers, Release 20.08.0

To get better understanding of the library one can consult documentation available in the doc top
level directory of the MUSDK sources.

• DPDK environment

Follow the DPDK Getting Started Guide for Linux to setup DPDK environment.

36.4 Config File Options

The following options can be modified in the config file.

• CONFIG_RTE_LIBRTE_MVPP2_PMD (default n)

Toggle compilation of the librte mvpp2 driver.

Note: When MVPP2 PMD is enabled CONFIG_RTE_LIBRTE_MVNETA_PMDmust
be disabled

36.5 Building DPDK

Driver needs precompiled MUSDK library during compilation.

export CROSS_COMPILE=<toolchain>/bin/aarch64-linux-gnu-
./bootstrap
./configure --host=aarch64-linux-gnu
make install

MUSDK will be installed to usr/local under current directory. For the detailed build instructions please
consult doc/musdk_get_started.txt.

Before the DPDK build process the environmental variable LIBMUSDK_PATH with the path to the
MUSDK installation directory needs to be exported.

For additional instructions regarding DPDK cross compilation please refer to Cross compile DPDK for
ARM64.

export LIBMUSDK_PATH=<musdk>/usr/local
export CROSS=<toolchain>/bin/aarch64-linux-gnu-
export RTE_KERNELDIR=<kernel-dir>
export RTE_TARGET=arm64-armv8a-linux-gcc

make config T=arm64-armv8a-linux-gcc
sed -i "s/MVNETA_PMD=y/MVNETA_PMD=n/" build/.config
sed -i "s/MVPP2_PMD=n/MVPP2_PMD=y/" build/.config
make

36.6 Usage Example

MVPP2 PMD requires extra out of tree kernel modules to function properly. musdk_cma sources are
part of the MUSDK. Please consult doc/musdk_get_started.txt for the detailed build instruc-
tions. For mvpp2x_sysfs please consult Documentation/pp22_sysfs.txt for the detailed build
instructions.

36.4. Config File Options 205

Network Interface Controller Drivers, Release 20.08.0

insmod musdk_cma.ko
insmod mvpp2x_sysfs.ko

Additionally interfaces used by DPDK application need to be put up:

ip link set eth0 up
ip link set eth2 up

In order to run testpmd example application following command can be used:

./testpmd --vdev=eth_mvpp2,iface=eth0,iface=eth2 -c 7 -- \
--burst=128 --txd=2048 --rxd=1024 --rxq=2 --txq=2 --nb-cores=2 \
-i -a --rss-udp

36.7 Extended stats

MVPP2 PMD supports the following extended statistics:

• rx_bytes: number of RX bytes

• rx_packets: number of RX packets

• rx_unicast_packets: number of RX unicast packets

• rx_errors: number of RX MAC errors

• rx_fullq_dropped: number of RX packets dropped due to full RX queue

• rx_bm_dropped: number of RX packets dropped due to no available buffers in the HW pool

• rx_early_dropped: number of RX packets that were early dropped

• rx_fifo_dropped: number of RX packets dropped due to RX fifo overrun

• rx_cls_dropped: number of RX packets dropped by classifier

• tx_bytes: number of TX bytes

• tx_packets: number of TX packets

• tx_unicast_packets: number of TX unicast packets

• tx_errors: number of TX MAC errors

36.8 QoS Configuration

QoS configuration is done through external configuration file. Path to the file must be given as cfg in
driver’s vdev parameter list.

36.8.1 Configuration syntax

[policer <policer_id>]
token_unit = <token_unit>
color = <color_mode>
cir = <cir>
ebs = <ebs>
cbs = <cbs>

[port <portnum> default]

36.7. Extended stats 206

Network Interface Controller Drivers, Release 20.08.0

default_tc = <default_tc>
mapping_priority = <mapping_priority>

rate_limit_enable = <rate_limit_enable>
rate_limit = <rate_limit>
burst_size = <burst_size>

default_policer = <policer_id>

[port <portnum> tc <traffic_class>]
rxq = <rx_queue_list>
pcp = <pcp_list>
dscp = <dscp_list>
default_color = <default_color>

[port <portnum> tc <traffic_class>]
rxq = <rx_queue_list>
pcp = <pcp_list>
dscp = <dscp_list>

[port <portnum> txq <txqnum>]
sched_mode = <sched_mode>
wrr_weight = <wrr_weight>

rate_limit_enable = <rate_limit_enable>
rate_limit = <rate_limit>
burst_size = <burst_size>

Where:

• <portnum>: DPDK Port number (0..n).

• <default_tc>: Default traffic class (e.g. 0)

• <mapping_priority>: QoS priority for mapping (ip, vlan, ip/vlan or vlan/ip).

• <traffic_class>: Traffic Class to be configured.

• <rx_queue_list>: List of DPDK RX queues (e.g. 0 1 3-4)

• <pcp_list>: List of PCP values to handle in particular TC (e.g. 0 1 3-4 7).

• <dscp_list>: List of DSCP values to handle in particular TC (e.g. 0-12 32-48 63).

• <default_policer>: Id of the policer configuration section to be used as default.

• <policer_id>: Id of the policer configuration section (0..31).

• <token_unit>: Policer token unit (bytes or packets).

• <color_mode>: Policer color mode (aware or blind).

• <cir>: Committed information rate in unit of kilo bits per second (data rate) or packets per
second.

• <cbs>: Committed burst size in unit of kilo bytes or number of packets.

• <ebs>: Excess burst size in unit of kilo bytes or number of packets.

• <default_color>: Default color for specific tc.

• <rate_limit_enable>: Enables per port or per txq rate limiting (0/1 to disable/enable).

• <rate_limit>: Committed information rate, in kilo bits per second.

• <burst_size>: Committed burst size, in kilo bytes.

36.8. QoS Configuration 207

Network Interface Controller Drivers, Release 20.08.0

• <sched_mode>: Egress scheduler mode (wrr or sp).

• <wrr_weight>: Txq weight.

Setting PCP/DSCP values for the default TC is not required. All PCP/DSCP values not assigned explic-
itly to particular TC will be handled by the default TC.

Configuration file example

[policer 0]
token_unit = bytes
color = blind
cir = 100000
ebs = 64
cbs = 64

[port 0 default]
default_tc = 0
mapping_priority = ip

rate_limit_enable = 1
rate_limit = 1000
burst_size = 2000

[port 0 tc 0]
rxq = 0 1

[port 0 txq 0]
sched_mode = wrr
wrr_weight = 10

[port 0 txq 1]
sched_mode = wrr
wrr_weight = 100

[port 0 txq 2]
sched_mode = sp

[port 0 tc 1]
rxq = 2
pcp = 5 6 7
dscp = 26-38

[port 1 default]
default_tc = 0
mapping_priority = vlan/ip

default_policer = 0

[port 1 tc 0]
rxq = 0
dscp = 10

[port 1 tc 1]
rxq = 1
dscp = 11-20

[port 1 tc 2]
rxq = 2
dscp = 30

[port 1 txq 0]

36.8. QoS Configuration 208

Network Interface Controller Drivers, Release 20.08.0

rate_limit_enable = 1
rate_limit = 10000
burst_size = 2000

Usage example

./testpmd --vdev=eth_mvpp2,iface=eth0,iface=eth2,cfg=/home/user/mrvl.conf \
-c 7 -- -i -a --disable-hw-vlan-strip --rxq=3 --txq=3

36.9 Flow API

PPv2 offers packet classification capabilities via classifier engine which can be configured via generic
flow API offered by DPDK.

The flow_isolated_mode is supported.

For an additional description please refer to DPDK ../prog_guide/rte_flow.

36.9.1 Supported flow actions

Following flow action items are supported by the driver:

• DROP

• QUEUE

36.9.2 Supported flow items

Following flow items and their respective fields are supported by the driver:

• ETH

– source MAC

– destination MAC

– ethertype

• VLAN

– PCP

– VID

• IPV4

– DSCP

– protocol

– source address

– destination address

• IPV6

– flow label

36.9. Flow API 209

Network Interface Controller Drivers, Release 20.08.0

– next header

– source address

– destination address

• UDP

– source port

– destination port

• TCP

– source port

– destination port

36.9.3 Classifier match engine

Classifier has an internal match engine which can be configured to operate in either exact or maskable
mode.

Mode is selected upon creation of the first unique flow rule as follows:

• maskable, if key size is up to 8 bytes.

• exact, otherwise, i.e for keys bigger than 8 bytes.

Where the key size equals the number of bytes of all fields specified in the flow items.

Table 36.1: Examples of key size calculation

Flow pattern Key size in
bytes

Used
engine

ETH (destination MAC) / VLAN (VID) 6 + 2 = 8 Maskable
VLAN (VID) / IPV4 (source address) 2 + 4 = 6 Maskable
TCP (source port, destination port) 2 + 2 = 4 Maskable
VLAN (priority) / IPV4 (source address) 1 + 4 = 5 Maskable
IPV4 (destination address) / UDP (source port, destination
port)

6 + 2 + 2 = 10 Exact

VLAN (VID) / IPV6 (flow label, destination address) 2 + 3 + 16 = 21 Exact
IPV4 (DSCP, source address, destination address) 1 + 4 + 4 = 9 Exact
IPV6 (flow label, source address, destination address) 3 + 16 + 16 = 35 Exact

From the user perspective maskable mode means that masks specified via flow rules are respected. In
case of exact match mode, masks which do not provide exact matching (all bits masked) are ignored.

If the flow matches more than one classifier rule the first (with the lowest index) matched takes prece-
dence.

36.9.4 Flow rules usage example

Before proceeding run testpmd user application:

./testpmd --vdev=eth_mvpp2,iface=eth0,iface=eth2 -c 3 -- -i --p 3 -a --disable-hw-vlan-strip

36.9. Flow API 210

Network Interface Controller Drivers, Release 20.08.0

Example #1

testpmd> flow create 0 ingress pattern eth src is 10:11:12:13:14:15 / end actions drop / end

In this case key size is 6 bytes thus maskable type is selected. Testpmd will set mask to ff:ff:ff:ff:ff:ff i.e
traffic explicitly matching above rule will be dropped.

Example #2

testpmd> flow create 0 ingress pattern ipv4 src spec 10.10.10.0 src mask 255.255.255.0 / tcp src spec 0x10 src mask 0x10 / end action drop / end

In this case key size is 8 bytes thus maskable type is selected. Flows which have IPv4 source addresses
ranging from 10.10.10.0 to 10.10.10.255 and tcp source port set to 16 will be dropped.

Example #3

testpmd> flow create 0 ingress pattern vlan vid spec 0x10 vid mask 0x10 / ipv4 src spec 10.10.1.1 src mask 255.255.0.0 dst spec 11.11.11.1 dst mask 255.255.255.0 / end actions drop / end

In this case key size is 10 bytes thus exact type is selected. Even though each item has partial mask
set, masks will be ignored. As a result only flows with VID set to 16 and IPv4 source and destination
addresses set to 10.10.1.1 and 11.11.11.1 respectively will be dropped.

36.9.5 Limitations

Following limitations need to be taken into account while creating flow rules:

• For IPv4 exact match type the key size must be up to 12 bytes.

• For IPv6 exact match type the key size must be up to 36 bytes.

• Following fields cannot be partially masked (all masks are treated as if they were exact):

– ETH: ethertype

– VLAN: PCP, VID

– IPv4: protocol

– IPv6: next header

– TCP/UDP: source port, destination port

• Only one classifier table can be created thus all rules in the table have to match table format. Table
format is set during creation of the first unique flow rule.

• Up to 5 fields can be specified per flow rule.

• Up to 20 flow rules can be added.

For additional information about classifier please consult doc/musdk_cls_user_guide.txt.

36.10 Traffic metering and policing

MVPP2 PMD supports DPDK traffic metering and policing that allows the following:

1. Meter ingress traffic.

36.10. Traffic metering and policing 211

Network Interface Controller Drivers, Release 20.08.0

2. Do policing.

3. Gather statistics.

For an additional description please refer to DPDK Traffic Metering and Policing API.

The policer objects defined by this feature can work with the default policer defined via config file as
described in QoS Support.

36.10.1 Limitations

The following capabilities are not supported:

• MTR object meter DSCP table update

• MTR object policer action update

• MTR object enabled statistics

36.10.2 Usage example

1. Run testpmd user app:

./testpmd --vdev=eth_mvpp2,iface=eth0,iface=eth2 -c 6 -- -i -p 3 -a --txd 1024 --rxd 1024

2. Create meter profile:

testpmd> add port meter profile 0 0 srtcm_rfc2697 2000 256 256

3. Create meter:

testpmd> create port meter 0 0 0 yes d d d 0 1 0

4. Create flow rule witch meter attached:

testpmd> flow create 0 ingress pattern ipv4 src is 10.10.10.1 / end actions meter mtr_id 0 / end

For a detailed usage description please refer to “Traffic Metering and Policing” section in DPDK
Testpmd Runtime Functions.

36.11 Traffic Management API

MVPP2 PMD supports generic DPDK Traffic Management API which allows to configure the following
features:

1. Hierarchical scheduling

2. Traffic shaping

3. Congestion management

4. Packet marking

Internally TM is represented by a hierarchy (tree) of nodes. Node which has a parent is called a leaf
whereas node without parent is called a non-leaf (root). MVPP2 PMD supports two level hierarchy
where level 0 represents ports and level 1 represents tx queues of a given port.

Nodes hold following types of settings:

• for egress scheduler configuration: weight

36.11. Traffic Management API 212

Network Interface Controller Drivers, Release 20.08.0

Port N

Txq 0 Txq 1 Txq M

Level 0:

Level 1:

• for egress rate limiter: private shaper

• bitmask indicating which statistics counters will be read

Hierarchy is always constructed from the top, i.e first a root node is added then some number of leaf
nodes. Number of leaf nodes cannot exceed number of configured tx queues.

After hierarchy is complete it can be committed.

For an additional description please refer to DPDK Traffic Management API.

36.11.1 Limitations

The following capabilities are not supported:

• Traffic manager WRED profile and WRED context

• Traffic manager shared shaper update

• Traffic manager packet marking

• Maximum number of levels in hierarchy is 2

• Currently dynamic change of a hierarchy is not supported

36.11.2 Usage example

For a detailed usage description please refer to “Traffic Management” section in DPDK Testpmd Run-
time Functions.

1. Run testpmd as follows:

./testpmd --vdev=net_mrvl,iface=eth0,iface=eth2,cfg=./qos_config -c 7 -- \
-i -p 3 --disable-hw-vlan-strip --rxq 3 --txq 3 --txd 1024 --rxd 1024

2. Stop all ports:

testpmd> port stop all

3. Add shaper profile:

testpmd> add port tm node shaper profile 0 0 900000 70000 0

Parameters have following meaning:

0 - Id of a port.
0 - Id of a new shaper profile.
900000 - Shaper rate in bytes/s.
70000 - Bucket size in bytes.
0 - Packet length adjustment - ignored.

36.11. Traffic Management API 213

Network Interface Controller Drivers, Release 20.08.0

4. Add non-leaf node for port 0:

testpmd> add port tm nonleaf node 0 3 -1 0 0 0 0 0 1 3 0

Parameters have following meaning:

0 - Id of a port
3 - Id of a new node.

-1 - Indicate that root does not have a parent.
0 - Priority of the node.
0 - Weight of the node.
0 - Id of a level. Since this is a root 0 is passed.
0 - Id of the shaper profile.
0 - Number of SP priorities.
3 - Enable statistics for both number of transmitted packets and bytes.
0 - Number of shared shapers.

5. Add leaf node for tx queue 0:

testpmd> add port tm leaf node 0 0 3 0 30 1 -1 0 0 1 0

Parameters have following meaning:

0 - Id of a port.
0 - Id of a new node.
3 - Id of the parent node.
0 - Priority of a node.
30 - WRR weight.
1 - Id of a level. Since this is a leaf node 1 is passed.

-1 - Id of a shaper. -1 indicates that shaper is not attached.
0 - Congestion management is not supported.
0 - Congestion management is not supported.
1 - Enable statistics counter for number of transmitted packets.
0 - Number of shared shapers.

6. Add leaf node for tx queue 1:

testpmd> add port tm leaf node 0 1 3 0 60 1 -1 0 0 1 0

Parameters have following meaning:

0 - Id of a port.
1 - Id of a new node.
3 - Id of the parent node.
0 - Priority of a node.
60 - WRR weight.
1 - Id of a level. Since this is a leaf node 1 is passed.

-1 - Id of a shaper. -1 indicates that shaper is not attached.
0 - Congestion management is not supported.
0 - Congestion management is not supported.
1 - Enable statistics counter for number of transmitted packets.
0 - Number of shared shapers.

7. Add leaf node for tx queue 2:

testpmd> add port tm leaf node 0 2 3 0 99 1 -1 0 0 1 0

Parameters have following meaning:

0 - Id of a port.
2 - Id of a new node.
3 - Id of the parent node.
0 - Priority of a node.
99 - WRR weight.
1 - Id of a level. Since this is a leaf node 1 is passed.

-1 - Id of a shaper. -1 indicates that shaper is not attached.
0 - Congestion management is not supported.

36.11. Traffic Management API 214

Network Interface Controller Drivers, Release 20.08.0

0 - Congestion management is not supported.
1 - Enable statistics counter for number of transmitted packets.
0 - Number of shared shapers.

8. Commit hierarchy:

testpmd> port tm hierarchy commit 0 no

Parameters have following meaning:

0 - Id of a port.
no - Do not flush TM hierarchy if commit fails.

9. Start all ports

testpmd> port start all

10. Enable forwarding

testpmd> start

36.11. Traffic Management API 215

CHAPTER

THIRTYSEVEN

NETVSC POLL MODE DRIVER

The Netvsc Poll Mode driver (PMD) provides support for the paravirtualized network device for Mi-
crosoft Hyper-V. It can be used with Window Server 2008/2012/2016, Windows 10. The device offers
multi-queue support (if kernel and host support it), checksum and segmentation offloads.

37.1 Features and Limitations of Hyper-V PMD

In this release, the hyper PMD driver provides the basic functionality of packet reception and transmis-
sion.

• It supports merge-able buffers per packet when receiving packets and scattered buffer per packet
when transmitting packets. The packet size supported is from 64 to 65536.

• The PMD supports multicast packets and promiscuous mode subject to restrictions on the host.
In order to this to work, the guest network configuration on Hyper-V must be configured to allow
MAC address spoofing.

• The device has only a single MAC address. Hyper-V driver does not support MAC or VLAN
filtering because the Hyper-V host does not support it.

• VLAN tags are always stripped and presented in mbuf tci field.

• The Hyper-V driver does not use or support interrupts. Link state change callback is done via
change events in the packet ring.

• The maximum number of queues is limited by the host (currently 64). When used with 4.16 kernel
only a single queue is available.

• This driver supports SR-IOV network acceleration. If SR-IOV is enabled then the driver will
transparently manage the interface, and send and receive packets using the VF path. The
VDEV_NETVSC and FAILSAFE drivers are not used when using netvsc PMD.

37.2 Installation

The Netvsc PMD is a standalone driver, similar to virtio and vmxnet3. Using Netvsc PMD re-
quires that the associated VMBUS device be bound to the userspace I/O device driver for Hyper-V
(uio_hv_generic). By default, all netvsc devices will be bound to the Linux kernel driver; in order to use
netvsc PMD the device must first be overridden.

The first step is to identify the network device to override. VMBUS uses Universal Unique Identifiers
(UUID) to identify devices on the bus similar to how PCI uses Domain:Bus:Function. The UUID asso-

216

https://en.wikipedia.org/wiki/Universally_unique_identifier

Network Interface Controller Drivers, Release 20.08.0

ciated with a Linux kernel network device can be determined by looking at the sysfs information. To
find the UUID for eth1 and store it in a shell variable:

DEV_UUID=$(basename $(readlink /sys/class/net/eth1/device))

There are several possible ways to assign the uio device driver for a device. The easiest way (but only
on 4.18 or later) is to use the driverctl Device Driver control utility to override the normal kernel device.

driverctl -b vmbus set-override $DEV_UUID uio_hv_generic

Any settings done with driverctl are by default persistent and will be reapplied on reboot.

On older kernels, the same effect can be had by manual sysfs bind and unbind operations:

NET_UUID="f8615163-df3e-46c5-913f-f2d2f965ed0e"
modprobe uio_hv_generic
echo $NET_UUID > /sys/bus/vmbus/drivers/uio_hv_generic/new_id
echo $DEV_UUID > /sys/bus/vmbus/drivers/hv_netvsc/unbind
echo $DEV_UUID > /sys/bus/vmbus/drivers/uio_hv_generic/bind

Note: The dpdk-devbind.py script can not be used since it only handles PCI devices.

37.3 Prerequisites

The following prerequisites apply:

• Linux kernel support for UIO on vmbus is done with the uio_hv_generic driver. Full support of
multiple queues requires the 4.17 kernel. It is possible to use the netvsc PMD with 4.16 kernel but
it is limited to a single queue.

37.4 Netvsc PMD arguments

The user can specify below argument in devargs.

1. latency:

A netvsc device uses a mailbox page to indicate to the host that there is something in the transmit
queue. The host scans this page at a periodic interval. This parameter allows adjusting the value
that is used by the host. Smaller values improve transmit latency, and larger values save CPU
cycles. This parameter is in microseconds. If the value is too large or too small it will be ignored
by the host. (Default: 50)

37.3. Prerequisites 217

https://gitlab.com/driverctl/driverctl

CHAPTER

THIRTYEIGHT

NFB POLL MODE DRIVER LIBRARY

The NFB poll mode driver library implements support for the Netcope FPGA Boards (NFB-40G2,
NFB-100G2, NFB-200G2QL) and Silicom FB2CGG3 card, FPGA-based programmable NICs. The
NFB PMD uses interface provided by the libnfb library to communicate with these cards over the nfb
layer.

More information about the NFB cards and used technology (Netcope Development Kit) can be found
on the Netcope Technologies website.

Note: This driver has external dependencies. Therefore it is disabled in default configuration files. It
can be enabled by setting CONFIG_RTE_LIBRTE_NFB_PMD=y and recompiling.

Note: Currently the driver is supported only on x86_64 architectures. Only x86_64 versions of the
external libraries are provided.

38.1 Prerequisites

This PMD requires kernel modules which are responsible for initialization and allocation of resources
needed for nfb layer function. Communication between PMD and kernel modules is mediated by libnfb
library. These kernel modules and library are not part of DPDK and must be installed separately:

• libnfb library

The library provides API for initialization of nfb transfers, receiving and transmitting data seg-
ments.

• Kernel modules

– nfb

Kernel modules manage initialization of hardware, allocation and sharing of resources for user
space applications.

Dependencies can be found here: Netcope common.

38.1.1 Versions of the packages

The minimum version of the provided packages:

218

http://www.netcope.com/en/products/fpga-boards
http://www.netcope.com/en/products/fpga-development-kit
http://www.netcope.com/
https://www.netcope.com/en/company/community-support/dpdk-libsze2#NFB

Network Interface Controller Drivers, Release 20.08.0

• for DPDK from 19.05

38.2 Configuration

These configuration options can be modified before compilation in the .config file:

• CONFIG_RTE_LIBRTE_NFB_PMD default value: n

Value y enables compilation of nfb PMD.

Timestamps

The PMD supports hardware timestamps of frame receipt on physical network interface. In order to use
the timestamps, the hardware timestamping unit must be enabled (follow the documentation of the NFB
products) and the device argument timestamp=1 must be used.

$RTE_TARGET/app/testpmd -w b3:00.0,timestamp=1 <other EAL params> -- <testpmd params>

When the timestamps are enabled with the devarg, a timestamp validity flag is set in the MBUFs con-
taining received frames and timestamp is inserted into the rte_mbuf struct.

The timestamp is an uint64_t field. Its lower 32 bits represent seconds portion of the timestamp (number
of seconds elapsed since 1.1.1970 00:00:00 UTC) and its higher 32 bits represent nanosecond portion of
the timestamp (number of nanoseconds elapsed since the beginning of the second in the seconds portion.

38.3 Using the NFB PMD

Kernel modules have to be loaded before running the DPDK application.

38.4 NFB card architecture

The NFB cards are multi-port multi-queue cards, where (generally) data from any Ethernet port may be
sent to any queue. They are represented in DPDK as a single port.

NFB-200G2QL card employs an add-on cable which allows to connect it to two physical PCI-E slots at
the same time (see the diagram below). This is done to allow 200 Gbps of traffic to be transferred through
the PCI-E bus (note that a single PCI-E 3.0 x16 slot provides only 125 Gbps theoretical throughput).

Although each slot may be connected to a different CPU and therefore to a different NUMA node, the
card is represented as a single port in DPDK. To work with data from the individual queues on the right
NUMA node, connection of NUMA nodes on first and last queue (each NUMA node has half of the
queues) need to be checked.

38.5 Limitations

Driver is usable only on Linux architecture, namely on CentOS.

Since a card is always represented as a single port, but can be connected to two NUMA nodes, there is
need for manual check where master/slave is connected.

38.2. Configuration 219

Network Interface Controller Drivers, Release 20.08.0

ETH 0

ETH 1
NFB-200G2QL card

PCI-E master slot PCI-E slave slot

Q
U

E
U

E
 0

Q
U

E
U

E
 1

5

Q
U

E
U

E
 1

6

Q
U

E
U

E
 3

1

CPU 0 CPU 1

Fig. 38.1: NFB-200G2QL high-level diagram

38.6 Example of usage

Read packets from 0. and 1. receive queue and write them to 0. and 1. transmit queue:

$RTE_TARGET/app/testpmd -l 0-3 -n 2 \
-- --port-topology=chained --rxq=2 --txq=2 --nb-cores=2 -i -a

Example output:

[...]
EAL: PCI device 0000:06:00.0 on NUMA socket -1
EAL: probe driver: 1b26:c1c1 net_nfb
PMD: Initializing NFB device (0000:06:00.0)
PMD: Available DMA queues RX: 8 TX: 8
PMD: NFB device (0000:06:00.0) successfully initialized
Interactive-mode selected
Auto-start selected
Configuring Port 0 (socket 0)
Port 0: 00:11:17:00:00:00
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
Start automatic packet forwarding

io packet forwarding - CRC stripping disabled - packets/burst=32
nb forwarding cores=2 - nb forwarding ports=1
RX queues=2 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=0 hthresh=0 wthresh=0
TX queues=2 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=0 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0

testpmd>

38.6. Example of usage 220

CHAPTER

THIRTYNINE

NFP POLL MODE DRIVER LIBRARY

Netronome’s sixth generation of flow processors pack 216 programmable cores and over 100 hardware
accelerators that uniquely combine packet, flow, security and content processing in a single device that
scales up to 400-Gb/s.

This document explains how to use DPDK with the Netronome Poll Mode Driver (PMD) supporting
Netronome’s Network Flow Processor 6xxx (NFP-6xxx) and Netronome’s Flow Processor 4xxx (NFP-
4xxx).

NFP is a SRIOV capable device and the PMD driver supports the physical function (PF) and the virtual
functions (VFs).

39.1 Dependencies

Before using the Netronome’s DPDK PMD some NFP configuration, which is not related to DPDK, is
required. The system requires installation of Netronome’s BSP (Board Support Package) along with
a specific NFP firmware application. Netronome’s NSP ABI version should be 0.20 or higher.

If you have a NFP device you should already have the code and documentation for this configuration.
Contact support@netronome.com to obtain the latest available firmware.

The NFP Linux netdev kernel driver for VFs has been a part of the vanilla kernel since kernel version
4.5, and support for the PF since kernel version 4.11. Support for older kernels can be obtained on
Github at https://github.com/Netronome/nfp-drv-kmods along with the build instructions.

NFP PMD needs to be used along with UIO igb_uio or VFIO (vfio-pci) Linux kernel driver.

39.2 Building the software

Netronome’s PMD code is provided in the drivers/net/nfp directory. Although NFP PMD has
Netronome´s BSP dependencies, it is possible to compile it along with other DPDK PMDs even if
no BSP was installed previously. Of course, a DPDK app will require such a BSP installed for using the
NFP PMD, along with a specific NFP firmware application.

Default PMD configuration is at the common_linux configuration file:

• CONFIG_RTE_LIBRTE_NFP_PMD=y

Once the DPDK is built all the DPDK apps and examples include support for the NFP PMD.

221

Network Interface Controller Drivers, Release 20.08.0

39.3 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

39.4 Using the PF

NFP PMD supports using the NFP PF as another DPDK port, but it does not have any functionality for
controlling VFs. In fact, it is not possible to use the PMD with the VFs if the PF is being used by DPDK,
that is, with the NFP PF bound to igb_uio or vfio-pci kernel drivers. Future DPDK versions will
have a PMD able to work with the PF and VFs at the same time and with the PF implementing VF
management along with other PF-only functionalities/offloads.

The PMD PF has extra work to do which will delay the DPDK app initialization like uploading the
firmware and configure the Link state properly when starting or stopping a PF port. Since DPDK 18.05
the firmware upload happens when a PF is initialized, which was not always true with older DPDK
versions.

Depending on the Netronome product installed in the system, firmware files should be available under
/lib/firmware/netronome. DPDK PMD supporting the PF looks for a firmware file in this
order:

1. First try to find a firmware image specific for this device using the NFP serial number:

serial-00-15-4d-12-20-65-10-ff.nffw

2. Then try the PCI name:

pci-0000:04:00.0.nffw

3. Finally try the card type and media:

nic_AMDA0099-0001_2x25.nffw

Netronome’s software packages install firmware files under /lib/firmware/netronome to sup-
port all the Netronome’s SmartNICs and different firmware applications. This is usually done using file
names based on SmartNIC type and media and with a directory per firmware application. Options 1 and
2 for firmware filenames allow more than one SmartNIC, same type of SmartNIC or different ones, and
to upload a different firmware to each SmartNIC.

39.5 PF multiport support

Some NFP cards support several physical ports with just one single PCI device. The DPDK core is
designed with a 1:1 relationship between PCI devices and DPDK ports, so NFP PMD PF support re-
quires handling the multiport case specifically. During NFP PF initialization, the PMD will extract the
information about the number of PF ports from the firmware and will create as many DPDK ports as
needed.

Because the unusual relationship between a single PCI device and several DPDK ports, there are some
limitations when using more than one PF DPDK port: there is no support for RX interrupts and it is not
possible either to use those PF ports with the device hotplug functionality.

39.3. Driver compilation and testing 222

Network Interface Controller Drivers, Release 20.08.0

39.6 PF multiprocess support

Due to how the driver needs to access the NFP through a CPP interface, which implies to use specific
registers inside the chip, the number of secondary processes with PF ports is limited to only one.

This limitation will be solved in future versions but having basic multiprocess support is important for
allowing development and debugging through the PF using a secondary process which will create a CPP
bridge for user space tools accessing the NFP.

39.7 System configuration

1. Enable SR-IOV on the NFP device: The current NFP PMD supports the PF and the VFs on
a NFP device. However, it is not possible to work with both at the same time because the VFs
require the PF being bound to the NFP PF Linux netdev driver. Make sure you are working with
a kernel with NFP PF support or get the drivers from the above Github repository and follow the
instructions for building and installing it.

VFs need to be enabled before they can be used with the PMD. Before enabling the VFs it is
useful to obtain information about the current NFP PCI device detected by the system:

lspci -d19ee:

Now, for example, configure two virtual functions on a NFP-6xxx device whose PCI system iden-
tity is “0000:03:00.0”:

echo 2 > /sys/bus/pci/devices/0000:03:00.0/sriov_numvfs

The result of this command may be shown using lspci again:

lspci -d19ee: -k

Two new PCI devices should appear in the output of the above command. The -k option shows
the device driver, if any, that devices are bound to. Depending on the modules loaded at this point
the new PCI devices may be bound to nfp_netvf driver.

39.6. PF multiprocess support 223

CHAPTER

FORTY

NULL POLL MODE DRIVER

NULL PMD is a simple virtual driver mainly for testing. It always returns success for all packets for
Rx/Tx.

On Rx it returns requested number of empty packets (all zero). On Tx it just frees all sent packets.

40.1 Usage

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev net_null0 --vdev net_null1 -- -i

40.2 Runtime Config Options

• copy [optional, default disabled]

It copies data of the packet before Rx/Tx. For Rx it uses another empty dummy mbuf for
this.

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev "net_null0,copy=1" -- -i

• size [optional, default=64 bytes]

Custom packet length value to use.r If copy is enabled, this is the length of copy operation.

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev "net_null0,size=256" -- -i

• no-rx [optional, default disabled]

Makes PMD more like /dev/null. On Rx no packets received, on Tx all packets are
freed. This option can’t co-exist with copy option.

224

CHAPTER

FORTYONE

OCTEON TX POLL MODE DRIVER

The OCTEON TX ETHDEV PMD (librte_pmd_octeontx) provides poll mode ethdev driver support
for the inbuilt network device found in the Cavium OCTEON TX SoC family as well as their virtual
functions (VF) in SR-IOV context.

More information can be found at Cavium, Inc Official Website.

41.1 Features

Features of the OCTEON TX Ethdev PMD are:

• Packet type information

• Promiscuous mode

• Port hardware statistics

• Jumbo frames

• Scatter-Gather IO support

• Link state information

• MAC/VLAN filtering

• MTU update

• SR-IOV VF

• Multiple queues for TX

• Lock-free Tx queue

• HW offloaded ethdev Rx queue to eventdev event queue packet injection

41.2 Supported OCTEON TX SoCs

• CN83xx

41.3 Unsupported features

The features supported by the device and not yet supported by this PMD include:

225

http://www.cavium.com/OCTEON-TX_ARM_Processors.html

Network Interface Controller Drivers, Release 20.08.0

• Receive Side Scaling (RSS)

• Scattered and gather for TX and RX

• Ingress classification support

• Egress hierarchical scheduling, traffic shaping, and marking

41.4 Prerequisites

See ../platform/octeontx for setup information.

41.5 Pre-Installation Configuration

41.5.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging options
may affect system performance.

• CONFIG_RTE_LIBRTE_OCTEONTX_PMD (default y)

Toggle compilation of the librte_pmd_octeontx driver.

41.5.2 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

To compile the OCTEON TX PMD for Linux arm64 gcc target, run the following make command:

cd <DPDK-source-directory>
make config T=arm64-thunderx-linux-gcc install

1. Running testpmd:

Follow instructions available in the document compiling and testing a PMD for a NIC to run
testpmd.

Example output:

./arm64-thunderx-linux-gcc/app/testpmd -c 700 \
--base-virtaddr=0x100000000000 \
--mbuf-pool-ops-name="octeontx_fpavf" \
--vdev='event_octeontx' \
--vdev='eth_octeontx,nr_port=2' \
-- --rxq=1 --txq=1 --nb-core=2 \
--total-num-mbufs=16384 -i

.....
EAL: Detected 24 lcore(s)
EAL: Probing VFIO support...
EAL: VFIO support initialized
.....
EAL: PCI device 0000:07:00.1 on NUMA socket 0
EAL: probe driver: 177d:a04b octeontx_ssovf
.....
EAL: PCI device 0001:02:00.7 on NUMA socket 0
EAL: probe driver: 177d:a0dd octeontx_pkivf
.....

41.4. Prerequisites 226

Network Interface Controller Drivers, Release 20.08.0

EAL: PCI device 0001:03:01.0 on NUMA socket 0
EAL: probe driver: 177d:a049 octeontx_pkovf
.....
PMD: octeontx_probe(): created ethdev eth_octeontx for port 0
PMD: octeontx_probe(): created ethdev eth_octeontx for port 1
.....
Configuring Port 0 (socket 0)
Port 0: 00:0F:B7:11:94:46
Configuring Port 1 (socket 0)
Port 1: 00:0F:B7:11:94:47
.....
Checking link statuses...
Port 0 Link Up - speed 40000 Mbps - full-duplex
Port 1 Link Up - speed 40000 Mbps - full-duplex
Done
testpmd>

41.6 Initialization

The OCTEON TX ethdev pmd is exposed as a vdev device which consists of a set of PKI and PKO
PCIe VF devices. On EAL initialization, PKI/PKO PCIe VF devices will be probed and then the vdev
device can be created from the application code, or from the EAL command line based on the number
of probed/bound PKI/PKO PCIe VF device to DPDK by

• Invoking rte_vdev_init("eth_octeontx") from the application

• Using --vdev="eth_octeontx" in the EAL options, which will call rte_vdev_init() inter-
nally

41.6.1 Device arguments

Each ethdev port is mapped to a physical port(LMAC), Application can specify the number of interesting
ports with nr_ports argument.

41.6.2 Dependency

eth_octeontx pmd is depend on event_octeontx eventdev device and octeontx_fpavf
external mempool handler.

Example:

./your_dpdk_application --mbuf-pool-ops-name="octeontx_fpavf" \
--vdev='event_octeontx' \
--vdev="eth_octeontx,nr_port=2"

41.7 Limitations

41.7.1 octeontx_fpavf external mempool handler dependency

The OCTEON TX SoC family NIC has inbuilt HW assisted external mempool manager. This driver will
only work with octeontx_fpavf external mempool handler as it is the most performance effective
way for packet allocation and Tx buffer recycling on OCTEON TX SoC platform.

41.6. Initialization 227

Network Interface Controller Drivers, Release 20.08.0

41.7.2 CRC stripping

The OCTEON TX SoC family NICs strip the CRC for every packets coming into the host interface
irrespective of the offload configuration.

41.7.3 Maximum packet length

The OCTEON TX SoC family NICs support a maximum of a 32K jumbo frame. The value is
fixed and cannot be changed. So, even when the rxmode.max_rx_pkt_len member of struct
rte_eth_conf is set to a value lower than 32k, frames up to 32k bytes can still reach the host inter-
face.

41.7.4 Maximum mempool size

The maximum mempool size supplied to Rx queue setup should be less than 128K. When run-
ning testpmd on OCTEON TX the application can limit the number of mbufs by using the option
--total-num-mbufs=131072.

41.7. Limitations 228

CHAPTER

FORTYTWO

OCTEON TX2 POLL MODE DRIVER

The OCTEON TX2 ETHDEV PMD (librte_pmd_octeontx2) provides poll mode ethdev driver support
for the inbuilt network device found in Marvell OCTEON TX2 SoC family as well as for their virtual
functions (VF) in SR-IOV context.

More information can be found at Marvell Official Website.

42.1 Features

Features of the OCTEON TX2 Ethdev PMD are:

• Packet type information

• Promiscuous mode

• Jumbo frames

• SR-IOV VF

• Lock-free Tx queue

• Multiple queues for TX and RX

• Receiver Side Scaling (RSS)

• MAC/VLAN filtering

• Multicast MAC filtering

• Generic flow API

• Inner and Outer Checksum offload

• VLAN/QinQ stripping and insertion

• Port hardware statistics

• Link state information

• Link flow control

• MTU update

• Scatter-Gather IO support

• Vector Poll mode driver

• Debug utilities - Context dump and error interrupt support

229

https://www.marvell.com/embedded-processors/infrastructure-processors

Network Interface Controller Drivers, Release 20.08.0

• IEEE1588 timestamping

• HW offloaded ethdev Rx queue to eventdev event queue packet injection

• Support Rx interrupt

• Inline IPsec processing support

• Traffic Management API

42.2 Prerequisites

See ../platform/octeontx2 for setup information.

42.3 Compile time Config Options

The following options may be modified in the config file.

• CONFIG_RTE_LIBRTE_OCTEONTX2_PMD (default y)

Toggle compilation of the librte_pmd_octeontx2 driver.

42.4 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

To compile the OCTEON TX2 PMD for Linux arm64 gcc, use arm64-octeontx2-linux-gcc as target.

1. Running testpmd:

Follow instructions available in the document compiling and testing a PMD for a NIC to run
testpmd.

Example output:

./build/app/testpmd -c 0x300 -w 0002:02:00.0 -- --portmask=0x1 --nb-cores=1 --port-topology=loop --rxq=1 --txq=1
EAL: Detected 24 lcore(s)
EAL: Detected 1 NUMA nodes
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: No available hugepages reported in hugepages-2048kB
EAL: Probing VFIO support...
EAL: VFIO support initialized
EAL: PCI device 0002:02:00.0 on NUMA socket 0
EAL: probe driver: 177d:a063 net_octeontx2
EAL: using IOMMU type 1 (Type 1)
testpmd: create a new mbuf pool <mbuf_pool_socket_0>: n=267456, size=2176, socket=0
testpmd: preferred mempool ops selected: octeontx2_npa
Configuring Port 0 (socket 0)
PMD: Port 0: Link Up - speed 40000 Mbps - full-duplex

Port 0: link state change event
Port 0: 36:10:66:88:7A:57
Checking link statuses...
Done
No commandline core given, start packet forwarding
io packet forwarding - ports=1 - cores=1 - streams=1 - NUMA support enabled, MP allocation mode: native
Logical Core 9 (socket 0) forwards packets on 1 streams:

42.2. Prerequisites 230

Network Interface Controller Drivers, Release 20.08.0

RX P=0/Q=0 (socket 0) -> TX P=0/Q=0 (socket 0) peer=02:00:00:00:00:00

io packet forwarding packets/burst=32
nb forwarding cores=1 - nb forwarding ports=1
port 0: RX queue number: 1 Tx queue number: 1
Rx offloads=0x0 Tx offloads=0x10000
RX queue: 0
RX desc=512 - RX free threshold=0
RX threshold registers: pthresh=0 hthresh=0 wthresh=0
RX Offloads=0x0

TX queue: 0
TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=0 hthresh=0 wthresh=0
TX offloads=0x10000 - TX RS bit threshold=0

Press enter to exit

42.5 Runtime Config Options

• Rx&Tx scalar mode enable (default 0)

Ethdev supports both scalar and vector mode, it may be selected at runtime using
scalar_enable devargs parameter.

• RSS reta size (default 64)

RSS redirection table size may be configured during runtime using reta_size
devargs parameter.

For example:

-w 0002:02:00.0,reta_size=256

With the above configuration, reta table of size 256 is populated.

• Flow priority levels (default 3)

RTE Flow priority levels can be configured during runtime using
flow_max_priority devargs parameter.

For example:

-w 0002:02:00.0,flow_max_priority=10

With the above configuration, priority level was set to 10 (0-9). Max priority level
supported is 32.

• Reserve Flow entries (default 8)

RTE flow entries can be pre allocated and the size of pre allocation can be selected
runtime using flow_prealloc_size devargs parameter.

For example:

-w 0002:02:00.0,flow_prealloc_size=4

With the above configuration, pre alloc size was set to 4. Max pre alloc size supported
is 32.

• Max SQB buffer count (default 512)

Send queue descriptor buffer count may be limited during runtime using
max_sqb_count devargs parameter.

42.5. Runtime Config Options 231

Network Interface Controller Drivers, Release 20.08.0

For example:

-w 0002:02:00.0,max_sqb_count=64

With the above configuration, each send queue’s decscriptor buffer count is limited to
a maximum of 64 buffers.

• Switch header enable (default none)

A port can be configured to a specific switch header type by using switch_header
devargs parameter.

For example:

-w 0002:02:00.0,switch_header="higig2"

With the above configuration, higig2 will be enabled on that port and the traffic on this
port should be higig2 traffic only. Supported switch header types are “higig2”, “dsa”
and “chlen90b”.

• RSS tag as XOR (default 0)

C0 HW revision onward, The HW gives an option to configure the RSS adder as

– rss_adder<7:0> = flow_tag<7:0> ^ flow_tag<15:8> ^
flow_tag<23:16> ^ flow_tag<31:24>

– rss_adder<7:0> = flow_tag<7:0>

Latter one aligns with standard NIC behavior vs former one is a legacy RSS adder
scheme used in OCTEON TX2 products.

By default, the driver runs in the latter mode from C0 HW revision onward. Setting
this flag to 1 to select the legacy mode.

For example to select the legacy mode(RSS tag adder as XOR):

-w 0002:02:00.0,tag_as_xor=1

• Max SPI for inbound inline IPsec (default 1)

Max SPI supported for inbound inline IPsec processing can be specified by
ipsec_in_max_spi devargs parameter.

For example:

-w 0002:02:00.0,ipsec_in_max_spi=128

With the above configuration, application can enable inline IPsec processing on 128
SAs (SPI 0-127).

• Lock Rx contexts in NDC cache

Lock Rx contexts in NDC cache by using lock_rx_ctx parameter.

For example:

-w 0002:02:00.0,lock_rx_ctx=1

• Lock Tx contexts in NDC cache

Lock Tx contexts in NDC cache by using lock_tx_ctx parameter.

For example:

-w 0002:02:00.0,lock_tx_ctx=1

42.5. Runtime Config Options 232

Network Interface Controller Drivers, Release 20.08.0

Note: Above devarg parameters are configurable per device, user needs to pass the parameters to all
the PCIe devices if application requires to configure on all the ethdev ports.

• Lock NPA contexts in NDC

Lock NPA aura and pool contexts in NDC cache. The device args take hexadecimal
bitmask where each bit represent the corresponding aura/pool id.

For example:

-w 0002:02:00.0,npa_lock_mask=0xf

42.6 Traffic Management API

OCTEON TX2 PMD supports generic DPDK Traffic Management API which allows to configure the
following features:

1. Hierarchical scheduling

2. Single rate - Two color, Two rate - Three color shaping

Both DWRR and Static Priority(SP) hierarchial scheduling is supported.

Every parent can have atmost 10 SP Children and unlimited DWRR children.

Both PF & VF supports traffic management API with PF supporting 6 levels and VF supporting 5 levels
of topology.

42.7 Limitations

42.7.1 mempool_octeontx2 external mempool handler dependency

The OCTEON TX2 SoC family NIC has inbuilt HW assisted external mempool manager.
net_octeontx2 pmd only works with mempool_octeontx2 mempool handler as it is perfor-
mance wise most effective way for packet allocation and Tx buffer recycling on OCTEON TX2 SoC
platform.

42.7.2 CRC stripping

The OCTEON TX2 SoC family NICs strip the CRC for every packet being received by the host interface
irrespective of the offload configuration.

42.7.3 Multicast MAC filtering

net_octeontx2 pmd supports multicast mac filtering feature only on physical function devices.

42.7.4 SDP interface support

OCTEON TX2 SDP interface support is limited to PF device, No VF support.

42.6. Traffic Management API 233

Network Interface Controller Drivers, Release 20.08.0

42.7.5 Inline Protocol Processing

net_octeontx2 pmd doesn’t support the following features for packets to be inline protocol pro-
cessed. - TSO offload - VLAN/QinQ offload - Fragmentation

42.8 Debugging Options

Table 42.1: OCTEON TX2 ethdev debug options

Component EAL log command
1 NIX –log-level=’pmd.net.octeontx2,8’
2 NPC –log-level=’pmd.net.octeontx2.flow,8’

42.9 RTE Flow Support

The OCTEON TX2 SoC family NIC has support for the following patterns and actions.

Patterns:

Table 42.2: Item types

Pattern Type
1 RTE_FLOW_ITEM_TYPE_ETH
2 RTE_FLOW_ITEM_TYPE_VLAN
3 RTE_FLOW_ITEM_TYPE_E_TAG
4 RTE_FLOW_ITEM_TYPE_IPV4
5 RTE_FLOW_ITEM_TYPE_IPV6
6 RTE_FLOW_ITEM_TYPE_ARP_ETH_IPV4
7 RTE_FLOW_ITEM_TYPE_MPLS
8 RTE_FLOW_ITEM_TYPE_ICMP
9 RTE_FLOW_ITEM_TYPE_UDP
10 RTE_FLOW_ITEM_TYPE_TCP
11 RTE_FLOW_ITEM_TYPE_SCTP
12 RTE_FLOW_ITEM_TYPE_ESP
13 RTE_FLOW_ITEM_TYPE_GRE
14 RTE_FLOW_ITEM_TYPE_NVGRE
15 RTE_FLOW_ITEM_TYPE_VXLAN
16 RTE_FLOW_ITEM_TYPE_GTPC
17 RTE_FLOW_ITEM_TYPE_GTPU
18 RTE_FLOW_ITEM_TYPE_GENEVE
19 RTE_FLOW_ITEM_TYPE_VXLAN_GPE
20 RTE_FLOW_ITEM_TYPE_IPV6_EXT
21 RTE_FLOW_ITEM_TYPE_VOID
22 RTE_FLOW_ITEM_TYPE_ANY
23 RTE_FLOW_ITEM_TYPE_GRE_KEY
24 RTE_FLOW_ITEM_TYPE_HIGIG2

42.8. Debugging Options 234

Network Interface Controller Drivers, Release 20.08.0

Note: RTE_FLOW_ITEM_TYPE_GRE_KEY works only when checksum and routing bits in the GRE
header are equal to 0.

Actions:

Table 42.3: Ingress action types

Action Type
1 RTE_FLOW_ACTION_TYPE_VOID
2 RTE_FLOW_ACTION_TYPE_MARK
3 RTE_FLOW_ACTION_TYPE_FLAG
4 RTE_FLOW_ACTION_TYPE_COUNT
5 RTE_FLOW_ACTION_TYPE_DROP
6 RTE_FLOW_ACTION_TYPE_QUEUE
7 RTE_FLOW_ACTION_TYPE_RSS
8 RTE_FLOW_ACTION_TYPE_SECURITY
9 RTE_FLOW_ACTION_TYPE_PF
10 RTE_FLOW_ACTION_TYPE_VF

Table 42.4: Egress action types

Action Type
1 RTE_FLOW_ACTION_TYPE_COUNT
2 RTE_FLOW_ACTION_TYPE_DROP

42.9. RTE Flow Support 235

CHAPTER

FORTYTHREE

PFE POLL MODE DRIVER

The PFE NIC PMD (librte_pmd_pfe) provides poll mode driver support for the inbuilt NIC found in
the NXP LS1012 SoC.

More information can be found at NXP Official Website.

43.1 PFE

This section provides an overview of the NXP PFE and how it is integrated into the DPDK.

Contents summary

• PFE overview

• PFE features

• Supported PFE SoCs

• Prerequisites

• Driver compilation and testing

• Limitations

43.1.1 PFE Overview

PFE is a hardware programmable packet forwarding engine to provide high performance Ethernet inter-
faces. The diagram below shows a system level overview of PFE:

==+===============
US +---+ | Kernel Space

| | |
| PFE Ethernet Driver | |
+---+ |

^ | ^ | |
PFE RXQ| |TXQ RXQ| |TXQ |
PMD | | | | |

| v | v | +----------+
+---------+ +----------+ | | pfe.ko |
| net_pfe0| | net_pfe1 | | +----------+
+---------+ +----------+ |

^ | ^ | |
TXQ| |RXQ TXQ| |RXQ |

| | | | |
| v | v |
+------------------------+ |

236

https://nxp.com/ls1012a

Network Interface Controller Drivers, Release 20.08.0

| | |
| PFE HIF driver | |
+------------------------+ |

^ | |
RX | TX | |

RING| RING| |
| v |

+--------------+ |
| | |

==================| HIF |==================+===============
+-----------+ +--------------+
| | | | HW
| PFE +--------------+ |
| +-----+ +-----+ |
| | MAC | | MAC | |
| | | | | |
+-------+-----+----------------+-----+----+

| PHY | | PHY |
+-----+ +-----+

The HIF, PFE, MAC and PHY are the hardware blocks, the pfe.ko is a kernel module, the PFE HIF
driver and the PFE ethernet driver combined represent as DPDK PFE poll mode driver are running in
the userspace.

The PFE hardware supports one HIF (host interface) RX ring and one TX ring to send and receive
packets through packet forwarding engine. Both network interface traffic is multiplexed and send over
HIF queue.

net_pfe0 and net_pfe1 are logical ethernet interfaces, created by HIF client driver. HIF driver is re-
sponsible for send and receive packets between host interface and these logical interfaces. PFE ethernet
driver is a hardware independent and register with the HIF client driver to transmit and receive packets
from HIF via logical interfaces.

pfe.ko is required for PHY initialisation and also responsible for creating the character device
“pfe_us_cdev” which will be used for interacting with the kernel layer for link status.

43.1.2 PFE Features

• L3/L4 checksum offload

• Packet type parsing

• Basic stats

• MTU update

• Promiscuous mode

• Allmulticast mode

• Link status

• ARMv8

43.1.3 Supported PFE SoCs

• LS1012

43.1. PFE 237

Network Interface Controller Drivers, Release 20.08.0

43.1.4 Prerequisites

Below are some pre-requisites for executing PFE PMD on a PFE compatible board:

1. ARM 64 Tool Chain

For example, the *aarch64* Linaro Toolchain.

2. Linux Kernel

It can be obtained from NXP’s Github hosting.

3. Rootfile system

Any aarch64 supporting filesystem can be used. For example, Ubuntu 16.04 LTS (Xenial) or
18.04 (Bionic) userland which can be obtained from here.

4. The ethernet device will be registered as virtual device, so pfe has dependency on rte_bus_vdev
library and it is mandatory to use –vdev with value net_pfe to run DPDK application.

The following dependencies are not part of DPDK and must be installed separately:

• NXP Linux LSDK

NXP Layerscape software development kit (LSDK) includes support for family of QorIQ® ARM-
Architecture-based system on chip (SoC) processors and corresponding boards.

It includes the Linux board support packages (BSPs) for NXP SoCs, a fully operational tool chain,
kernel and board specific modules.

LSDK and related information can be obtained from: LSDK

• pfe kernel module

pfe kernel module can be obtained from NXP Layerscape software development kit at location
/lib/modules/<kernel version>/kernel/drivers/staging/fsl_ppfe in rootfs. Module should be loaded
using below command:

insmod pfe.ko us=1

43.1.5 Driver compilation and testing

Follow instructions available in the document compiling and testing a PMD for a NIC to launch testpmd

Additionally, PFE driver needs –vdev as an input with value net_pfe to execute DPDK application. There
is an optional parameter intf available to specify port ID. PFE driver supports only two interfaces, so
valid values for intf are 0 and 1. see the command below:

<dpdk app> <EAL args> --vdev="net_pfe0,intf=0" --vdev="net_pfe1,intf=1" -- ...

43.1.6 Limitations

• Multi buffer pool cannot be supported.

43.1. PFE 238

https://releases.linaro.org/components/toolchain/binaries/7.3-2018.05/aarch64-linux-gnu/gcc-linaro-7.3.1-2018.05-i686_aarch64-linux-gnu.tar.xz
https://source.codeaurora.org/external/qoriq/qoriq-components/linux
http://cdimage.ubuntu.com/ubuntu-base/releases/18.04/release/ubuntu-base-18.04.1-base-arm64.tar.gz
https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/layerscape-software-development-kit:LAYERSCAPE-SDK

CHAPTER

FORTYFOUR

QEDE POLL MODE DRIVER

The QEDE poll mode driver library (librte_pmd_qede) implements support for QLogic FastLinQ
QL4xxxx 10G/25G/40G/50G/100G Intelligent Ethernet Adapters (IEA) and Converged Network
Adapters (CNA) family of adapters as well as SR-IOV virtual functions (VF). It is supported on several
standard Linux distros like RHEL, SLES, Ubuntu etc. It is compile-tested under FreeBSD OS.

More information can be found at QLogic Corporation’s Website.

44.1 Supported Features

• Unicast/Multicast filtering

• Promiscuous mode

• Allmulti mode

• Port hardware statistics

• Jumbo frames

• Multiple MAC address

• MTU change

• Default pause flow control

• Multiprocess aware

• Scatter-Gather

• Multiple Rx/Tx queues

• RSS (with RETA/hash table/key)

• TSS

• Stateless checksum offloads (IPv4/IPv6/TCP/UDP)

• LRO/TSO

• VLAN offload - Filtering and stripping

• N-tuple filter and flow director (limited support)

• NPAR (NIC Partitioning)

• SR-IOV VF

• GRE Tunneling offload

239

http://www.qlogic.com

Network Interface Controller Drivers, Release 20.08.0

• GENEVE Tunneling offload

• VXLAN Tunneling offload

• MPLSoUDP Tx Tunneling offload

• Generic flow API

44.2 Non-supported Features

• SR-IOV PF

44.3 Co-existence considerations

• QLogic FastLinQ QL4xxxx CNAs support Ethernet, RDMA, iSCSI and FCoE functionalities.
These functionalities are supported using QLogic Linux kernel drivers qed, qede, qedr, qedi and
qedf. DPDK is supported on these adapters using qede PMD.

• When SR-IOV is not enabled on the adapter, QLogic Linux kernel drivers (qed, qede, qedr, qedi
and qedf) and qede PMD can’t be attached to different PFs on a given QLogic FastLinQ QL4xxx
adapter. A given adapter needs to be completely used by DPDK or Linux drivers Before binding
DPDK driver to one or more PFs on the adapter, please make sure to unbind Linux drivers from
all PFs of the adapter. If there are multiple adapters on the system, one or more adapters can be
used by DPDK driver completely and other adapters can be used by Linux drivers completely.

• When SR-IOV is enabled on the adapter, Linux kernel drivers (qed, qede, qedr, qedi and qedf) can
be bound to the PFs of a given adapter and either qede PMD or Linux drivers (qed and qede) can
be bound to the VFs of the adapter.

• For sharing an adapter between DPDK and Linux drivers, SRIOV needs to be enabled. Bind all
the PFs to Linux Drivers(qed/qede). Create a VF on PFs where DPDK is desired and bind these
VFs to qede_pmd. Binding of PFs simultaneously to DPDK and Linux drivers on a given adapter
is not supported.

44.4 Supported QLogic Adapters

• QLogic FastLinQ QL4xxxx 10G/25G/40G/50G/100G Intelligent Ethernet Adapters (IEA) and
Converged Network Adapters (CNA)

44.5 Prerequisites

• Requires storm firmware version 8.40.33.0. Firmware may be available in-
box in certain newer Linux distros under the standard directory E.g.
/lib/firmware/qed/qed_init_values-8.40.33.0.bin. If the required firmware
files are not available then download it from linux-firmware git repository.

• Requires the NIC be updated minimally with 8.30.x.x Management firmware(MFW) version sup-
ported for that NIC. It is highly recommended that the NIC be updated with the latest available
management firmware version to get latest feature set. Management Firmware and Firmware

44.2. Non-supported Features 240

http://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/qed

Network Interface Controller Drivers, Release 20.08.0

Upgrade Utility for Cavium FastLinQ(r) branded adapters can be downloaded from Driver Down-
load Center. For downloading Firmware Upgrade Utility, select NIC category, model and Linux
distro. To update the management firmware, refer to the instructions in the Firmware Upgrade
Utility Readme document. For OEM branded adapters please follow the instruction provided by
the OEM to update the Management Firmware on the NIC.

• SR-IOV requires Linux PF driver version 8.20.x.x or higher. If the required PF driver is not
available then download it from QLogic Driver Download Center. For downloading PF driver,
select adapter category, model and Linux distro.

44.5.1 Performance note

• For better performance, it is recommended to use 4K or higher RX/TX rings.

44.5.2 Config File Options

The following options can be modified in the .config file. Please note that enabling debugging options
may affect system performance.

• CONFIG_RTE_LIBRTE_QEDE_PMD (default y)

Toggle compilation of QEDE PMD driver.

• CONFIG_RTE_LIBRTE_QEDE_DEBUG_TX (default n)

Toggle display of transmit fast path run-time messages.

• CONFIG_RTE_LIBRTE_QEDE_DEBUG_RX (default n)

Toggle display of receive fast path run-time messages.

• CONFIG_RTE_LIBRTE_QEDE_FW (default “”)

Gives absolute path of firmware file. Eg: "/lib/firmware/qed/qed_init_values-8.40.33.0.bin"
Empty string indicates driver will pick up the firmware file from the default location
/lib/firmware/qed. CAUTION this option is more for custom firmware, it is not recommended for
use under normal condition.

44.5.3 Config notes

When there are multiple adapters and/or large number of Rx/Tx queues configured on the adapters,
the default (2560) number of memzone descriptors may not be enough. Please increase the number of
memzone descriptors to a higher number as needed. When sufficient number of memzone descriptors
are not configured, user can potentially run into following error.

EAL: memzone_reserve_aligned_thread_unsafe(): No more room in config

44.6 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

44.6. Driver compilation and testing 241

http://driverdownloads.qlogic.com/QLogicDriverDownloads_UI/DefaultNewSearch.aspx
http://driverdownloads.qlogic.com/QLogicDriverDownloads_UI/DefaultNewSearch.aspx
http://driverdownloads.qlogic.com/QLogicDriverDownloads_UI/DefaultNewSearch.aspx

Network Interface Controller Drivers, Release 20.08.0

44.7 RTE Flow Support

QLogic FastLinQ QL4xxxx NICs has support for the following patterns and actions.

Patterns:

Table 44.1: Item types

Pattern Type
1 RTE_FLOW_ITEM_TYPE_IPV4
2 RTE_FLOW_ITEM_TYPE_IPV6
3 RTE_FLOW_ITEM_TYPE_UDP
4 RTE_FLOW_ITEM_TYPE_TCP

Actions:

Table 44.2: Ingress action types

Action Type
1 RTE_FLOW_ACTION_TYPE_QUEUE
2 RTE_FLOW_ACTION_TYPE_DROP

44.8 SR-IOV: Prerequisites and Sample Application Notes

This section provides instructions to configure SR-IOV with Linux OS.

Note: librte_pmd_qede will be used to bind to SR-IOV VF device and Linux native kernel driver (qede)
will function as SR-IOV PF driver. Requires PF driver to be 8.20.x.x or higher.

1. Verify SR-IOV and ARI capability is enabled on the adapter using lspci:

lspci -s <slot> -vvv

Example output:

[...]
Capabilities: [1b8 v1] Alternative Routing-ID Interpretation (ARI)
[...]
Capabilities: [1c0 v1] Single Root I/O Virtualization (SR-IOV)
[...]
Kernel driver in use: igb_uio

2. Load the kernel module:

modprobe qede

Example output:

systemd-udevd[4848]: renamed network interface eth0 to ens5f0
systemd-udevd[4848]: renamed network interface eth1 to ens5f1

3. Bring up the PF ports:

ifconfig ens5f0 up
ifconfig ens5f1 up

4. Create VF device(s):

Echo the number of VFs to be created into "sriov_numvfs" sysfs entry of the parent PF.

44.7. RTE Flow Support 242

Network Interface Controller Drivers, Release 20.08.0

Example output:

echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs

5. Assign VF MAC address:

Assign MAC address to the VF using iproute2 utility. The syntax is:

ip link set <PF iface> vf <VF id> mac <macaddr>

Example output:

ip link set ens5f0 vf 0 mac 52:54:00:2f:9d:e8

6. PCI Passthrough:

The VF devices may be passed through to the guest VM using virt-manager or virsh.
QEDE PMD should be used to bind the VF devices in the guest VM using the instructions from
Driver compilation and testing section above.

7. Running testpmd (Supply --log-level="pmd.net.qede.driver:info to view infor-
mational messages):

Refer to the document compiling and testing a PMD for a NIC to run testpmd application.

Example output:

testpmd -l 0,4-11 -n 4 -- -i --nb-cores=8 --portmask=0xf --rxd=4096 \
--txd=4096 --txfreet=4068 --enable-rx-cksum --rxq=4 --txq=4 \
--rss-ip --rss-udp

[...]

EAL: PCI device 0000:84:00.0 on NUMA socket 1
EAL: probe driver: 1077:1634 rte_qede_pmd
EAL: Not managed by a supported kernel driver, skipped
EAL: PCI device 0000:84:00.1 on NUMA socket 1
EAL: probe driver: 1077:1634 rte_qede_pmd
EAL: Not managed by a supported kernel driver, skipped
EAL: PCI device 0000:88:00.0 on NUMA socket 1
EAL: probe driver: 1077:1656 rte_qede_pmd
EAL: PCI memory mapped at 0x7f738b200000
EAL: PCI memory mapped at 0x7f738b280000
EAL: PCI memory mapped at 0x7f738b300000
PMD: Chip details : BB1
PMD: Driver version : QEDE PMD 8.7.9.0_1.0.0
PMD: Firmware version : 8.7.7.0
PMD: Management firmware version : 8.7.8.0
PMD: Firmware file : /lib/firmware/qed/qed_init_values_zipped-8.7.7.0.bin
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_common_dev_init:macaddr \

00:0e:1e:d2:09:9c
[...]

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 0 num_desc 4096 \
tx_free_thresh 4068 socket 0

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 1 num_desc 4096 \
tx_free_thresh 4068 socket 0

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 2 num_desc 4096 \
tx_free_thresh 4068 socket 0

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_tx_queue_setup:txq 3 num_desc 4096 \
tx_free_thresh 4068 socket 0

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 0 num_desc 4096 \
rx_buf_size=2148 socket 0

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 1 num_desc 4096 \
rx_buf_size=2148 socket 0

[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 2 num_desc 4096 \

44.8. SR-IOV: Prerequisites and Sample Application Notes 243

Network Interface Controller Drivers, Release 20.08.0

rx_buf_size=2148 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_rx_queue_setup:rxq 3 num_desc 4096 \

rx_buf_size=2148 socket 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_dev_start:port 0
[QEDE PMD: (84:00.0:dpdk-port-0)]qede_dev_start:link status: down

[...]
Checking link statuses...
Port 0 Link Up - speed 25000 Mbps - full-duplex
Port 1 Link Up - speed 25000 Mbps - full-duplex
Port 2 Link Up - speed 25000 Mbps - full-duplex
Port 3 Link Up - speed 25000 Mbps - full-duplex
Done
testpmd>

44.8. SR-IOV: Prerequisites and Sample Application Notes 244

CHAPTER

FORTYFIVE

SOLARFLARE LIBEFX-BASED POLL MODE DRIVER

The SFC EFX PMD (librte_pmd_sfc_efx) provides poll mode driver support for Solarflare SFN7xxx
and SFN8xxx family of 10/40 Gbps adapters and Solarflare XtremeScale X2xxx family of
10/25/40/50/100 Gbps adapters. SFC EFX PMD has support for the latest Linux and FreeBSD operating
systems.

More information can be found at Solarflare Communications website.

45.1 Features

SFC EFX PMD has support for:

• Multiple transmit and receive queues

• Link state information including link status change interrupt

• IPv4/IPv6 TCP/UDP transmit checksum offload

• Inner IPv4/IPv6 TCP/UDP transmit checksum offload

• Port hardware statistics

• Extended statistics (see Solarflare Server Adapter User’s Guide for the statistics description)

• Basic flow control

• MTU update

• Jumbo frames up to 9K

• Promiscuous mode

• Allmulticast mode

• TCP segmentation offload (TSO) including VXLAN and GENEVE encapsulated

• Multicast MAC filter

• IPv4/IPv6 TCP/UDP receive checksum offload

• Inner IPv4/IPv6 TCP/UDP receive checksum offload

• Received packet type information

• Receive side scaling (RSS)

• RSS hash

• Scattered Rx DMA for packet that are larger that a single Rx descriptor

245

http://solarflare.com

Network Interface Controller Drivers, Release 20.08.0

• Receive queue interrupts

• Deferred receive and transmit queue start

• Transmit VLAN insertion (if running firmware variant supports it)

• Flow API

• Loopback

45.2 Non-supported Features

The features not yet supported include:

• Priority-based flow control

• Configurable RX CRC stripping (always stripped)

• Header split on receive

• VLAN filtering

• VLAN stripping

• LRO

45.3 Limitations

Due to requirements on receive buffer alignment and usage of the receive buffer for the auxiliary packet
information provided by the NIC up to extra 269 (14 bytes prefix plus up to 255 bytes for end padding)
bytes may be required in the receive buffer. It should be taken into account when mbuf pool for receive
is created.

45.3.1 Equal stride super-buffer mode

When the receive queue uses equal stride super-buffer DMA mode, one HW Rx descriptor carries many
Rx buffers which contiguously follow each other with some stride (equal to total size of rte_mbuf as
mempool object). Each Rx buffer is an independent rte_mbuf. However dedicated mempool manager
must be used when mempool for the Rx queue is created. The manager must support dequeue of the
contiguous block of objects and provide mempool info API to get the block size.

Another limitation of a equal stride super-buffer mode, imposed by the firmware, is that it allows for a
single RSS context.

45.4 Tunnels support

NVGRE, VXLAN and GENEVE tunnels are supported on SFN8xxx and X2xxx family adapters with
full-feature firmware variant running. sfboot should be used to configure NIC to run full-feature
firmware variant. See Solarflare Server Adapter User’s Guide for details.

SFN8xxx and X2xxx family adapters provide either inner or outer packet classes. If adapter firmware
advertises support for tunnels then the PMD configures the hardware to report inner classes, and outer

45.2. Non-supported Features 246

Network Interface Controller Drivers, Release 20.08.0

classes are not reported in received packets. However, for VXLAN and GENEVE tunnels the PMD does
report UDP as the outer layer 4 packet type.

SFN8xxx and X2xxx family adapters report GENEVE packets as VXLAN. If UDP ports are configured
for only one tunnel type then it is safe to treat VXLAN packet type indication as the corresponding UDP
tunnel type.

45.5 Flow API support

Supported attributes:

• Ingress

Supported pattern items:

• VOID

• ETH (exact match of source/destination addresses, individual/group match of destination address,
EtherType in the outer frame and exact match of destination addresses, individual/group match of
destination address in the inner frame)

• VLAN (exact match of VID, double-tagging is supported)

• IPV4 (exact match of source/destination addresses, IP transport protocol)

• IPV6 (exact match of source/destination addresses, IP transport protocol)

• TCP (exact match of source/destination ports)

• UDP (exact match of source/destination ports)

• VXLAN (exact match of VXLAN network identifier)

• GENEVE (exact match of virtual network identifier, only Ethernet (0x6558) protocol type is sup-
ported)

• NVGRE (exact match of virtual subnet ID)

Supported actions:

• VOID

• QUEUE

• RSS

• DROP

• FLAG (supported only with ef10_essb Rx datapath)

• MARK (supported only with ef10_essb Rx datapath)

Validating flow rules depends on the firmware variant.

The flow_isolated_mode is supported.

45.5. Flow API support 247

Network Interface Controller Drivers, Release 20.08.0

45.5.1 Ethernet destination individual/group match

Ethernet item supports I/G matching, if only the corresponding bit is set in the mask of destination
address. If destination address in the spec is multicast, it matches all multicast (and broadcast) packets,
otherwise it matches unicast packets that are not filtered by other flow rules.

45.5.2 Exceptions to flow rules

There is a list of exceptional flow rule patterns which will not be accepted by the PMD. A pattern will
be rejected if at least one of the conditions is met:

• Filtering by IPv4 or IPv6 EtherType without pattern items of internet layer and above.

• The last item is IPV4 or IPV6, and it’s empty.

• Filtering by TCP or UDP IP transport protocol without pattern items of transport layer and above.

• The last item is TCP or UDP, and it’s empty.

45.6 Supported NICs

• Solarflare XtremeScale Adapters:

– Solarflare X2522 Dual Port SFP28 10/25GbE Adapter

– Solarflare X2541 Single Port QSFP28 10/25G/100G Adapter

– Solarflare X2542 Dual Port QSFP28 10/25G/100G Adapter

• Solarflare Flareon [Ultra] Server Adapters:

– Solarflare SFN8522 Dual Port SFP+ Server Adapter

– Solarflare SFN8522M Dual Port SFP+ Server Adapter

– Solarflare SFN8042 Dual Port QSFP+ Server Adapter

– Solarflare SFN8542 Dual Port QSFP+ Server Adapter

– Solarflare SFN8722 Dual Port SFP+ OCP Server Adapter

– Solarflare SFN7002F Dual Port SFP+ Server Adapter

– Solarflare SFN7004F Quad Port SFP+ Server Adapter

– Solarflare SFN7042Q Dual Port QSFP+ Server Adapter

– Solarflare SFN7122F Dual Port SFP+ Server Adapter

– Solarflare SFN7124F Quad Port SFP+ Server Adapter

– Solarflare SFN7142Q Dual Port QSFP+ Server Adapter

– Solarflare SFN7322F Precision Time Synchronization Server Adapter

45.6. Supported NICs 248

Network Interface Controller Drivers, Release 20.08.0

45.7 Prerequisites

• Requires firmware version:

– SFN7xxx: 4.7.1.1001 or higher

– SFN8xxx: 6.0.2.1004 or higher

Visit Solarflare Support Downloads to get Solarflare Utilities (either Linux or FreeBSD) with the latest
firmware. Follow instructions from Solarflare Server Adapter User’s Guide to update firmware and
configure the adapter.

45.8 Pre-Installation Configuration

45.8.1 Config File Options

The following options can be modified in the .config file. Please note that enabling debugging options
may affect system performance.

• CONFIG_RTE_LIBRTE_SFC_EFX_PMD (default y)

Enable compilation of Solarflare libefx-based poll-mode driver.

• CONFIG_RTE_LIBRTE_SFC_EFX_DEBUG (default n)

Enable compilation of the extra run-time consistency checks.

45.8.2 Per-Device Parameters

The following per-device parameters can be passed via EAL PCI device whitelist option like “-w
02:00.0,arg1=value1,...”.

Case-insensitive 1/y/yes/on or 0/n/no/off may be used to specify boolean parameters value.

• rx_datapath [auto|efx|ef10|ef10_esps] (default auto)

Choose receive datapath implementation. auto allows the driver itself to make a choice based on
firmware features available and required by the datapath implementation. efx chooses libefx-based
datapath which supports Rx scatter. ef10 chooses EF10 (SFN7xxx, SFN8xxx, X2xxx) native
datapath which is more efficient than libefx-based and provides richer packet type classification.
ef10_esps chooses SFNX2xxx equal stride packed stream datapath which may be used on DPDK
firmware variant only (see notes about its limitations above).

• tx_datapath [auto|efx|ef10|ef10_simple] (default auto)

Choose transmit datapath implementation. auto allows the driver itself to make a choice based
on firmware features available and required by the datapath implementation. efx chooses libefx-
based datapath which supports VLAN insertion (full-feature firmware variant only), TSO and
multi-segment mbufs. Mbuf segments may come from different mempools, and mbuf reference
counters are treated responsibly. ef10 chooses EF10 (SFN7xxx, SFN8xxx, X2xxx) native dat-
apath which is more efficient than libefx-based but has no VLAN insertion support yet. Mbuf
segments may come from different mempools, and mbuf reference counters are treated respon-
sibly. ef10_simple chooses EF10 (SFN7xxx, SFN8xxx, X2xxx) native datapath which is even
more faster then ef10 but does not support multi-segment mbufs, disallows multiple mempools
and neglects mbuf reference counters.

45.7. Prerequisites 249

https://support.solarflare.com

Network Interface Controller Drivers, Release 20.08.0

• perf_profile [auto|throughput|low-latency] (default throughput)

Choose hardware tuning to be optimized for either throughput or low-latency. auto allows NIC
firmware to make a choice based on installed licenses and firmware variant configured using sf-
boot.

• stats_update_period_ms [long] (default 1000)

Adjust period in milliseconds to update port hardware statistics. The accepted range is 0 to 65535.
The value of 0 may be used to disable periodic statistics update. One should note that it’s only pos-
sible to set an arbitrary value on SFN8xxx and X2xxx provided that firmware version is 6.2.1.1033
or higher, otherwise any positive value will select a fixed update period of 1000 milliseconds

• fw_variant [dont-care|full-feature|ultra-low-latency| capture-packed-stream|dpdk] (default
dont-care)

Choose the preferred firmware variant to use. In order for the selected option to have an effect, the
sfboot utility must be configured with the auto firmware-variant option. The preferred firmware
variant applies to all ports on the NIC. dont-care ensures that the driver can attach to an unprivi-
leged function. The datapath firmware type to use is controlled by the sfboot utility. full-feature
chooses full featured firmware. ultra-low-latency chooses firmware with fewer features but lower
latency. capture-packed-stream chooses firmware for SolarCapture packed stream mode. dpdk
chooses DPDK firmware with equal stride super-buffer Rx mode for higher Rx packet rate and
packet marks support and firmware subvariant without checksumming on transmit for higher Tx
packet rate if checksumming is not required.

• rxd_wait_timeout_ns [long] (default 200 us)

Adjust timeout in nanoseconds to head-of-line block to wait for Rx descriptors. The accepted
range is 0 to 400 ms. Flow control should be enabled to make it work. The value of 0 disables
it and packets are dropped immediately. When a packet is dropped because of no Rx descriptors,
rx_nodesc_drop_cnt counter grows. The feature is supported only by the DPDK firmware
variant when equal stride super-buffer Rx mode is used.

45.8.3 Dynamic Logging Parameters

One may leverage EAL option “–log-level” to change default levels for the log types supported by the
driver. The option is used with an argument typically consisting of two parts separated by a colon.

Level value is the last part which takes a symbolic name (or integer). Log type is the former part which
may shell match syntax. Depending on the choice of the expression, the given log level may be used
either for some specific log type or for a subset of types.

SFC EFX PMD provides the following log types available for control:

• pmd.net.sfc.driver (default level is notice)

Affects driver-wide messages unrelated to any particular devices.

• pmd.net.sfc.main (default level is notice)

Matches a subset of per-port log types registered during runtime. A full name for a particular type
may be obtained by appending a dot and a PCI device identifier (XXXX:XX:XX.X) to the prefix.

• pmd.net.sfc.mcdi (default level is notice)

45.8. Pre-Installation Configuration 250

Network Interface Controller Drivers, Release 20.08.0

Extra logging of the communication with the NIC’s management CPU. The format of the log
is consumed by the Solarflare netlogdecode cross-platform tool. May be managed per-port, as
explained above.

45.8. Pre-Installation Configuration 251

CHAPTER

FORTYSIX

SOFT NIC POLL MODE DRIVER

The Soft NIC allows building custom NIC pipelines in software. The Soft NIC pipeline is DIY and
reconfigurable through firmware (DPDK Packet Framework script).

The Soft NIC leverages the DPDK Packet Framework libraries (librte_port, librte_table and li-
brte_pipeline) to make it modular, flexible and extensible with new functionality. Please refer to DPDK
Programmer’s Guide, Chapter Packet Framework and DPDK Sample Application User Guide,
Chapter IP Pipeline Application for more details.

The Soft NIC is configured through the standard DPDK ethdev API (ethdev, flow, QoS, security). The
internal framework is not externally visible.

Key benefits:

• Can be used to augment missing features to HW NICs.

• Allows consumption of advanced DPDK features without application redesign.

• Allows out-of-the-box performance boost of DPDK consumers applications simply by in-
stantiating this type of Ethernet device.

46.1 Flow

• Device creation: Each Soft NIC instance is a virtual device.

• Device start: The Soft NIC firmware script is executed every time the device is started. The
firmware script typically creates several internal objects, such as: memory pools, SW queues,
traffic manager, action profiles, pipelines, etc.

• Device stop: All the internal objects that were previously created by the firmware script dur-
ing device start are now destroyed.

• Device run: Each Soft NIC device needs one or several CPU cores to run. The firmware
script maps each internal pipeline to a CPU core. Multiple pipelines can be mapped to the same
CPU core. In order for a given pipeline assigned to CPU core X to run, the application needs
to periodically call on CPU core X the rte_pmd_softnic_run() function for the current Soft NIC
device.

• Application run: The application reads packets from the Soft NIC device RX queues and
writes packets to the Soft NIC device TX queues.

252

Network Interface Controller Drivers, Release 20.08.0

46.2 Supported Operating Systems

Any Linux distribution fulfilling the conditions described in System Requirements section of the
DPDK documentation or refer to DPDK Release Notes.

46.3 Build options

The default PMD configuration available in the common_linux configuration file:

CONFIG_RTE_LIBRTE_PMD_SOFTNIC=y

Once the DPDK is built, all the DPDK applications include support for the Soft NIC PMD.

46.4 Soft NIC PMD arguments

The user can specify below arguments in EAL --vdev options to create the Soft NIC device instance:

–vdev “net_softnic0,firmware=firmware.cli,conn_port=8086”

1. firmware: path to the firmware script used for Soft NIC configuration. The example “firmware”
script is provided at drivers/net/softnic/. (Optional: No, Default = NA)

2. conn_port: tcp connection port (non-zero value) used by remote client (for examples- telnet,
netcat, etc.) to connect and configure Soft NIC device in run-time. (Optional: yes, Default value:
0, no connection with external client)

3. cpu_id: numa node id. (Optional: yes, Default value: 0)

4. tm_n_queues: number of traffic manager’s scheduler queues. The traffic manager is based on
DPDK librte_sched library. (Optional: yes, Default value: 65,536 queues)

5. tm_qsize0: size of scheduler queue 0 (traffic class 0) of the pipes/subscribers. (Optional: yes,
Default: 64)

6. tm_qsize1: size of scheduler queue 1 (traffic class 1) of the pipes/subscribers. (Optional: yes,
Default: 64)

7. tm_qsize2: size of scheduler queue 2 (traffic class 2) of the pipes/subscribers. (Optional: yes,
Default: 64)

8. tm_qsize3: size of scheduler queue 3 (traffic class 3) of the pipes/subscribers. (Optional: yes,
Default: 64)

9. tm_qsize4: size of scheduler queue 4 (traffic class 4) of the pipes/subscribers. (Optional: yes,
Default: 64)

10. tm_qsize5: size of scheduler queue 5 (traffic class 5) of the pipes/subscribers. (Optional: yes,
Default: 64)

11. tm_qsize6: size of scheduler queue 6 (traffic class 6) of the pipes/subscribers. (Optional: yes,
Default: 64)

12. tm_qsize7: size of scheduler queue 7 (traffic class 7) of the pipes/subscribers. (Optional: yes,
Default: 64)

46.2. Supported Operating Systems 253

Network Interface Controller Drivers, Release 20.08.0

13. tm_qsize8: size of scheduler queue 8 (traffic class 8) of the pipes/subscribers. (Optional: yes,
Default: 64)

14. tm_qsize9: size of scheduler queue 9 (traffic class 9) of the pipes/subscribers. (Optional: yes,
Default: 64)

15. tm_qsize10: size of scheduler queue 10 (traffic class 10) of the pipes/subscribers. (Optional:
yes, Default: 64)

16. tm_qsize11: size of scheduler queue 11 (traffic class 11) of the pipes/subscribers. (Optional:
yes, Default: 64)

17. tm_qsize12: size of scheduler queue 12 (traffic class 12) of the pipes/subscribers. (Optional:
yes, Default: 64)

46.5 Soft NIC testing

• Run testpmd application with Soft NIC device with loopback feature enabled on Soft NIC port:

./testpmd -c 0x7 -s 0x4 --vdev 'net_softnic0,firmware=<script path>/firmware.cli,cpu_id=0,conn_port=8086' -- -i
--portmask=0x2

...
Interactive-mode selected
Set softnic packet forwarding mode
...
Configuring Port 0 (socket 0)
Port 0: 90:E2:BA:37:9D:DC
Configuring Port 1 (socket 0)

; SPDX-License-Identifier: BSD-3-Clause
; Copyright(c) 2018 Intel Corporation

link LINK dev 0000:02:00.0

pipeline RX period 10 offset_port_id 0
pipeline RX port in bsz 32 link LINK rxq 0
pipeline RX port out bsz 32 swq RXQ0
pipeline RX table match stub
pipeline RX port in 0 table 0

pipeline TX period 10 offset_port_id 0
pipeline TX port in bsz 32 swq TXQ0
pipeline TX port out bsz 32 link LINK txq 0
pipeline TX table match stub
pipeline TX port in 0 table 0

thread 2 pipeline RX enable
thread 2 pipeline TX enable
Port 1: 00:00:00:00:00:00
Checking link statuses...
Done
testpmd>

• Start forwarding

testpmd> start
softnic packet forwarding - ports=1 - cores=1 - streams=1 - NUMA support enabled, MP over anonymous pages disabled
Logical Core 1 (socket 0) forwards packets on 1 streams:
RX P=2/Q=0 (socket 0) -> TX P=2/Q=0 (socket 0) peer=02:00:00:00:00:02

46.5. Soft NIC testing 254

Network Interface Controller Drivers, Release 20.08.0

softnic packet forwarding packets/burst=32
nb forwarding cores=1 - nb forwarding ports=1
port 0: RX queue number: 1 Tx queue number: 1
Rx offloads=0x1000 Tx offloads=0x0
RX queue: 0
RX desc=512 - RX free threshold=32
RX threshold registers: pthresh=8 hthresh=8 wthresh=0
RX Offloads=0x0
TX queue: 0
TX desc=512 - TX free threshold=32
TX threshold registers: pthresh=32 hthresh=0 wthresh=0
TX offloads=0x0 - TX RS bit threshold=32
port 1: RX queue number: 1 Tx queue number: 1
Rx offloads=0x0 Tx offloads=0x0
RX queue: 0
RX desc=0 - RX free threshold=0
RX threshold registers: pthresh=0 hthresh=0 wthresh=0
RX Offloads=0x0
TX queue: 0
TX desc=0 - TX free threshold=0
TX threshold registers: pthresh=0 hthresh=0 wthresh=0
TX offloads=0x0 - TX RS bit threshold=0

• Softnic device can be configured using remote client (e.g. telnet). However, testpmd application
doesn’t support configuration through telnet :

$ telnet 127.0.0.1 8086
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.

Welcome to Soft NIC!

softnic>

• Add/update Soft NIC pipeline table match-action entries from telnet client:

softnic> pipeline RX table 0 rule add match default action fwd port 0
softnic> pipeline TX table 0 rule add match default action fwd port 0

46.6 Soft NIC Firmware

The Soft NIC firmware, for example- softnic/firmware.cli, consists of following CLI commands for
creating and managing software based NIC pipelines. For more details, please refer to CLI command
description provided in softnic/rte_eth_softnic_cli.c.

• Physical port for packets send/receive:

link LINK dev 0000:02:00.0

• Pipeline create:

pipeline RX period 10 offset_port_id 0 (Soft NIC rx-path pipeline)
pipeline TX period 10 offset_port_id 0 (Soft NIC tx-path pipeline)

• Pipeline input/output port create

pipeline RX port in bsz 32 link LINK rxq 0 (Soft NIC rx pipeline input port)
pipeline RX port out bsz 32 swq RXQ0 (Soft NIC rx pipeline output port)
pipeline TX port in bsz 32 swq TXQ0 (Soft NIC tx pipeline input port)
pipeline TX port out bsz 32 link LINK txq 0 (Soft NIC tx pipeline output port)

• Pipeline table create

46.6. Soft NIC Firmware 255

Network Interface Controller Drivers, Release 20.08.0

pipeline RX table match stub (Soft NIC rx pipeline match-action table)
pipeline TX table match stub (Soft NIC tx pipeline match-action table)

• Pipeline input port connection with table

pipeline RX port in 0 table 0 (Soft NIC rx pipeline input port 0 connection with table 0)
pipeline TX port in 0 table 0 (Soft NIC tx pipeline input port 0 connection with table 0)

• Pipeline table match-action rules add

pipeline RX table 0 rule add match default action fwd port 0 (Soft NIC rx pipeline table 0 rule)
pipeline TX table 0 rule add match default action fwd port 0 (Soft NIC tx pipeline table 0 rule)

• Enable pipeline on CPU thread

thread 2 pipeline RX enable (Soft NIC rx pipeline enable on cpu thread id 2)
thread 2 pipeline TX enable (Soft NIC tx pipeline enable on cpu thread id 2)

46.7 QoS API Support:

SoftNIC PMD implements ethdev traffic management APIs rte_tm.h that allow building and com-
mitting traffic manager hierarchy, configuring hierarchy nodes of the Quality of Service (QoS) scheduler
supported by DPDK librte_sched library. Furthermore, APIs for run-time update to the traffic manager
hierarchy are supported by PMD.

SoftNIC PMD also implements ethdev traffic metering and policing APIs rte_mtr.h that enables
metering and marking of the packets with the appropriate color (green, yellow or red), according to the
traffic metering algorithm. For the meter output color, policer actions like keep the packet color same,
change the packet color or drop the packet can be configured.

Note: The SoftNIC does not support the meter object shared by several flows, thus only supports
creating meter object private to the flow. Once meter object is successfully created, it can be linked to
the specific flow by specifying the meter flow action in the flow rule.

46.8 Flow API support:

The SoftNIC PMD implements ethdev flow APIs rte_flow.h that allow validating flow rules, adding
flow rules to the SoftNIC pipeline as table rules, deleting and querying the flow rules. The PMD provides
new cli command for creating the flow group and their mapping to the SoftNIC pipeline and table. This
cli should be configured as part of firmware file.

flowapi map group <group_id> ingress | egress pipeline <pipeline_name> \
table <table_id>

From the flow attributes of the flow, PMD uses the group id to get the mapped pipeline and table. PMD
supports number of flow actions such as JMP,QUEUE,RSS,DROP,COUNT,METER,VXLAN etc.

Note: The flow must have one terminating actions i.e. JMP or RSS or QUEUE or DROP. For
the count and drop actions the underlying PMD doesn’t support the functionality yet. So it is not rec-
ommended for use.

46.7. QoS API Support: 256

Network Interface Controller Drivers, Release 20.08.0

The flow API can be tested with the help of testpmd application. The SoftNIC firmware specifies CLI
commands for port configuration, pipeline creation, action profile creation and table creation. Once
application gets initialized, the flow rules can be added through the testpmd CLI. The PMD will translate
the flow rules to the SoftNIC pipeline tables rules.

46.8.1 Example:

Example demonstrates the flow queue action using the SoftNIC firmware and testpmd commands.

• Prepare SoftNIC firmware

link LINK0 dev 0000:83:00.0
link LINK1 dev 0000:81:00.0
pipeline RX period 10 offset_port_id 0
pipeline RX port in bsz 32 link LINK0 rxq 0
pipeline RX port in bsz 32 link LINK1 rxq 0
pipeline RX port out bsz 32 swq RXQ0
pipeline RX port out bsz 32 swq RXQ1
table action profile AP0 ipv4 offset 278 fwd
pipeline RX table match hash ext key 16 mask

00FF0000FFFFFFFFFFFFFFFFFFFFFFFF \
offset 278 buckets 16K size 65K action AP0

pipeline RX port in 0 table 0
pipeline RX port in 1 table 0
flowapi map group 0 ingress pipeline RX table 0
pipeline TX period 10 offset_port_id 0
pipeline TX port in bsz 32 swq TXQ0
pipeline TX port in bsz 32 swq TXQ1
pipeline TX port out bsz 32 link LINK0 txq 0
pipeline TX port out bsz 32 link LINK1 txq 0
pipeline TX table match hash ext key 16 mask

00FF0000FFFFFFFFFFFFFFFFFFFFFFFF \
offset 278 buckets 16K size 65K action AP0

pipeline TX port in 0 table 0
pipeline TX port in 1 table 0
pipeline TX table 0 rule add match hash ipv4_5tuple

1.10.11.12 2.20.21.22 100 200 6 action fwd port 0
pipeline TX table 0 rule add match hash ipv4_5tuple

1.10.11.13 2.20.21.23 100 200 6 action fwd port 1
thread 2 pipeline RX enable
thread 2 pipeline TX enable

• Run testpmd:

./x86_64-native-linux-gcc/app/testpmd -c 0x7 -s 0x4 -n 4 \
--vdev 'net_softnic0, \
firmware=./drivers/net/softnic/ \

firmware.cli, \
cpu_id=1,conn_port=8086' -- \
-i --rxq=2, \
--txq=2, --disable-rss --portmask=0x4

• Configure flow rules on softnic:

flow create 2 group 0 ingress pattern eth / ipv4 proto mask 255 src \
mask 255.255.255.255 dst mask 255.255.255.255 src spec
1.10.11.12 dst spec 2.20.21.22 proto spec 6 / tcp src mask 65535 \
dst mask 65535 src spec 100 dst spec 200 / end actions queue \
index 0 / end

flow create 2 group 0 ingress pattern eth / ipv4 proto mask 255 src \
mask 255.255.255.255 dst mask 255.255.255.255 src spec 1.10.11.13 \

46.8. Flow API support: 257

Network Interface Controller Drivers, Release 20.08.0

dst spec 2.20.21.23 proto spec 6 / tcp src mask 65535 dst mask \
65535 src spec 100 dst spec 200 / end actions queue index 1 / end

46.8. Flow API support: 258

CHAPTER

FORTYSEVEN

SZEDATA2 POLL MODE DRIVER LIBRARY

The SZEDATA2 poll mode driver library implements support for the Netcope FPGA Boards (NFB-
40G2, NFB-100G2, NFB-200G2QL) and Silicom FB2CGG3 card, FPGA-based programmable NICs.
The SZEDATA2 PMD uses interface provided by the libsze2 library to communicate with the NFB cards
over the sze2 layer.

More information about the NFB cards and used technology (Netcope Development Kit) can be found
on the Netcope Technologies website.

Note: This driver has external dependencies. Therefore it is disabled in default configuration files. It
can be enabled by setting CONFIG_RTE_LIBRTE_PMD_SZEDATA2=y and recompiling.

Note: Currently the driver is supported only on x86_64 architectures. Only x86_64 versions of the
external libraries are provided.

47.1 Prerequisites

This PMD requires kernel modules which are responsible for initialization and allocation of resources
needed for sze2 layer function. Communication between PMD and kernel modules is mediated by
libsze2 library. These kernel modules and library are not part of DPDK and must be installed separately:

• libsze2 library

The library provides API for initialization of sze2 transfers, receiving and transmitting data seg-
ments.

• Kernel modules

– combo6core

– combov3

– szedata2

– szedata2_cv3 or szedata2_cv3_fdt

Kernel modules manage initialization of hardware, allocation and sharing of resources for user
space applications.

Information about getting the dependencies can be found here.

259

http://www.netcope.com/en/products/fpga-boards
http://www.netcope.com/en/products/fpga-development-kit
http://www.netcope.com/
http://www.netcope.com/en/company/community-support/dpdk-libsze2

Network Interface Controller Drivers, Release 20.08.0

47.1.1 Versions of the packages

The minimum version of the provided packages:

• for DPDK from 18.05: 4.4.1

• for DPDK up to 18.02 (including): 3.0.5

47.2 Configuration

These configuration options can be modified before compilation in the .config file:

• CONFIG_RTE_LIBRTE_PMD_SZEDATA2 default value: n

Value y enables compilation of szedata2 PMD.

47.3 Using the SZEDATA2 PMD

From DPDK version 16.04 the type of SZEDATA2 PMD is changed to PMD_PDEV. SZEDATA2 device
is automatically recognized during EAL initialization. No special command line options are needed.

Kernel modules have to be loaded before running the DPDK application.

47.4 NFB card architecture

The NFB cards are multi-port multi-queue cards, where (generally) data from any Ethernet port may be
sent to any queue. They were historically represented in DPDK as a single port.

However, the new NFB-200G2QL card employs an add-on cable which allows to connect it to two
physical PCI-E slots at the same time (see the diagram below). This is done to allow 200 Gbps of traffic
to be transferred through the PCI-E bus (note that a single PCI-E 3.0 x16 slot provides only 125 Gbps
theoretical throughput).

Since each slot may be connected to a different CPU and therefore to a different NUMA node, the card
is represented as two ports in DPDK (each with half of the queues), which allows DPDK to work with
data from the individual queues on the right NUMA node.

47.5 Limitations

The SZEDATA2 PMD does not support operations related to Ethernet ports (link_up, link_down,
set_mac_address, etc.).

NFB cards employ multiple Ethernet ports. Until now, Ethernet port-related operations were performed
on all of them (since the whole card was represented as a single port). With NFB-200G2QL card, this is
no longer viable (see above).

Since there is no fixed mapping between the queues and Ethernet ports, and since a single card can be
represented as two ports in DPDK, there is no way of telling which (if any) physical ports should be
associated with individual ports in DPDK.

47.2. Configuration 260

Network Interface Controller Drivers, Release 20.08.0

ETH 0

ETH 1
NFB-200G2QL card

PCI-E master slot PCI-E slave slot

Q
U

E
U

E
 0

Q
U

E
U

E
 1

5

Q
U

E
U

E
 1

6

Q
U

E
U

E
 3

1

CPU 0 CPU 1

Fig. 47.1: NFB-200G2QL high-level diagram

47.6 Example of usage

Read packets from 0. and 1. receive channel and write them to 0. and 1. transmit channel:

$RTE_TARGET/app/testpmd -l 0-3 -n 2 \
-- --port-topology=chained --rxq=2 --txq=2 --nb-cores=2 -i -a

Example output:

[...]
EAL: PCI device 0000:06:00.0 on NUMA socket -1
EAL: probe driver: 1b26:c1c1 rte_szedata2_pmd
PMD: Initializing szedata2 device (0000:06:00.0)
PMD: SZEDATA2 path: /dev/szedataII0
PMD: Available DMA channels RX: 8 TX: 8
PMD: resource0 phys_addr = 0xe8000000 len = 134217728 virt addr = 7f48f8000000
PMD: szedata2 device (0000:06:00.0) successfully initialized
Interactive-mode selected
Auto-start selected
Configuring Port 0 (socket 0)
Port 0: 00:11:17:00:00:00
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
Start automatic packet forwarding

io packet forwarding - CRC stripping disabled - packets/burst=32
nb forwarding cores=2 - nb forwarding ports=1
RX queues=2 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=0 hthresh=0 wthresh=0
TX queues=2 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=0 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0

testpmd>

47.6. Example of usage 261

CHAPTER

FORTYEIGHT

TUN|TAP POLL MODE DRIVER

The rte_eth_tap.c PMD creates a device using TAP interfaces on the local host. The PMD allows
for DPDK and the host to communicate using a raw device interface on the host and in the DPDK
application.

The device created is a TAP device, which sends/receives packet in a raw format with a L2 header.
The usage for a TAP PMD is for connectivity to the local host using a TAP interface. When the TAP
PMD is initialized it will create a number of tap devices in the host accessed via ifconfig -a or ip
command. The commands can be used to assign and query the virtual like device.

These TAP interfaces can be used with Wireshark or tcpdump or Pktgen-DPDK along with being able
to be used as a network connection to the DPDK application. The method enable one or more in-
terfaces is to use the --vdev=net_tap0 option on the DPDK application command line. Each
--vdev=net_tap1 option given will create an interface named dtap0, dtap1, and so on.

The interface name can be changed by adding the iface=foo0, for example:

--vdev=net_tap0,iface=foo0 --vdev=net_tap1,iface=foo1, ...

Normally the PMD will generate a random MAC address, but when testing or with a static configuration
the developer may need a fixed MAC address style. Using the option mac=fixed you can create a
fixed known MAC address:

--vdev=net_tap0,mac=fixed

The MAC address will have a fixed value with the last octet incrementing by one for each interface
string containing mac=fixed. The MAC address is formatted as 00:’d’:’t’:’a’:’p’:[00-FF]. Convert the
characters to hex and you get the actual MAC address: 00:64:74:61:70:[00-FF].

–vdev=net_tap0,mac=”00:64:74:61:70:11”

The MAC address will have a user value passed as string. The MAC address is in format with delimiter
:. The string is byte converted to hex and you get the actual MAC address: 00:64:74:61:70:11.

It is possible to specify a remote netdevice to capture packets from by adding remote=foo1, for
example:

--vdev=net_tap,iface=tap0,remote=foo1

If a remote is set, the tap MAC address will be set to match the remote one just after netdevice
creation. Using TC rules, traffic from the remote netdevice will be redirected to the tap. If the tap is in
promiscuous mode, then all packets will be redirected. In allmulti mode, all multicast packets will be
redirected.

Using the remote feature is especially useful for capturing traffic from a netdevice that has no support
in the DPDK. It is possible to add explicit rte_flow rules on the tap PMD to capture specific traffic (see
next section for examples).

262

Network Interface Controller Drivers, Release 20.08.0

After the DPDK application is started you can send and receive packets on the interface using the stan-
dard rx_burst/tx_burst APIs in DPDK. From the host point of view you can use any host tool like
tcpdump, Wireshark, ping, Pktgen and others to communicate with the DPDK application. The DPDK
application may not understand network protocols like IPv4/6, UDP or TCP unless the application has
been written to understand these protocols.

If you need the interface as a real network interface meaning running and has a valid IP address then
you can do this with the following commands:

sudo ip link set dtap0 up; sudo ip addr add 192.168.0.250/24 dev dtap0
sudo ip link set dtap1 up; sudo ip addr add 192.168.1.250/24 dev dtap1

Please change the IP addresses as you see fit.

If routing is enabled on the host you can also communicate with the DPDK App over the internet via a
standard socket layer application as long as you account for the protocol handling in the application.

If you have a Network Stack in your DPDK application or something like it you can utilize that stack
to handle the network protocols. Plus you would be able to address the interface using an IP address
assigned to the internal interface.

The TUN PMD allows user to create a TUN device on host. The PMD allows user to transmit and
receive packets via DPDK API calls with L3 header and payload. The devices in host can be accessed
via ifconfig or ip command. TUN interfaces are passed to DPDK rte_eal_init arguments as
--vdev=net_tunX, where X stands for unique id, example:

--vdev=net_tun0 --vdev=net_tun1,iface=foo1, ...

Unlike TAP PMD, TUN PMD does not support user arguments as MAC or remote user options. Default
interface name is dtunX, where X stands for unique id.

48.1 Flow API support

The tap PMD supports major flow API pattern items and actions, when running on linux kernels above
4.2 (“Flower” classifier required). The kernel support can be checked with this command:

zcat /proc/config.gz | (grep 'CLS_FLOWER=' || echo 'not supported') |
tee -a /dev/stderr | grep -q '=m' &&
lsmod | (grep cls_flower || echo 'try modprobe cls_flower')

Supported items:

• eth: src and dst (with variable masks), and eth_type (0xffff mask).

• vlan: vid, pcp, but not eid. (requires kernel 4.9)

• ipv4/6: src and dst (with variable masks), and ip_proto (0xffff mask).

• udp/tcp: src and dst port (0xffff) mask.

Supported actions:

• DROP

• QUEUE

• PASSTHRU

• RSS (requires kernel 4.9)

48.1. Flow API support 263

Network Interface Controller Drivers, Release 20.08.0

It is generally not possible to provide a “last” item. However, if the “last” item, once masked, is identical
to the masked spec, then it is supported.

Only IPv4/6 and MAC addresses can use a variable mask. All other items need a full mask (exact
match).

As rules are translated to TC, it is possible to show them with something like:

tc -s filter show dev tap1 parent 1:

48.1.1 Examples of testpmd flow rules

Drop packets for destination IP 192.0.2.1:

testpmd> flow create 0 priority 1 ingress pattern eth / ipv4 dst is 192.0.2.1 \
/ end actions drop / end

Ensure packets from a given MAC address are received on a queue 2:

testpmd> flow create 0 priority 2 ingress pattern eth src is 06:05:04:03:02:01 \
/ end actions queue index 2 / end

Drop UDP packets in vlan 3:

testpmd> flow create 0 priority 3 ingress pattern eth / vlan vid is 3 / \
ipv4 proto is 17 / end actions drop / end

Distribute IPv4 TCP packets using RSS to a given MAC address over queues 0-3:

testpmd> flow create 0 priority 4 ingress pattern eth dst is 0a:0b:0c:0d:0e:0f \
/ ipv4 / tcp / end actions rss queues 0 1 2 3 end / end

48.2 Multi-process sharing

It is possible to attach an existing TAP device in a secondary process, by declaring it as a vdev with the
same name as in the primary process, and without any parameter.

The port attached in a secondary process will give access to the statistics and the queues. Therefore it
can be used for monitoring or Rx/Tx processing.

The IPC synchronization of Rx/Tx queues is currently limited:

• Maximum 8 queues shared

• Synchronized on probing, but not on later port update

48.3 Example

The following is a simple example of using the TAP PMD with the Pktgen packet generator. It requires
that the socat utility is installed on the test system.

Build DPDK, then pull down Pktgen and build pktgen using the DPDK SDK/Target used to build the
dpdk you pulled down.

Run pktgen from the pktgen directory in a terminal with a commandline like the following:

48.2. Multi-process sharing 264

Network Interface Controller Drivers, Release 20.08.0

sudo ./app/app/x86_64-native-linux-gcc/app/pktgen -l 1-5 -n 4 \
--proc-type auto --log-level debug --socket-mem 512,512 --file-prefix pg \
--vdev=net_tap0 --vdev=net_tap1 -b 05:00.0 -b 05:00.1 \
-b 04:00.0 -b 04:00.1 -b 04:00.2 -b 04:00.3 \
-b 81:00.0 -b 81:00.1 -b 81:00.2 -b 81:00.3 \
-b 82:00.0 -b 83:00.0 -- -T -P -m [2:3].0 -m [4:5].1 \
-f themes/black-yellow.theme

Verify with ifconfig -a command in a different xterm window, should have a dtap0 and dtap1
interfaces created.

Next set the links for the two interfaces to up via the commands below:

sudo ip link set dtap0 up; sudo ip addr add 192.168.0.250/24 dev dtap0
sudo ip link set dtap1 up; sudo ip addr add 192.168.1.250/24 dev dtap1

Then use socat to create a loopback for the two interfaces:

sudo socat interface:dtap0 interface:dtap1

Then on the Pktgen command line interface you can start sending packets using the commands start
0 and start 1 or you can start both at the same time with start all. The command str is an
alias for start all and stp is an alias for stop all.

While running you should see the 64 byte counters increasing to verify the traffic is being looped back.
You can use set all size XXX to change the size of the packets after you stop the traffic. Use
pktgen help command to see a list of all commands. You can also use the -f option to load commands
at startup in command line or Lua script in pktgen.

48.4 RSS specifics

Packet distribution in TAP is done by the kernel which has a default distribution. This feature is adding
RSS distribution based on eBPF code. The default eBPF code calculates RSS hash based on Toeplitz
algorithm for a fixed RSS key. It is calculated on fixed packet offsets. For IPv4 and IPv6 it is calculated
over src/dst addresses (8 or 32 bytes for IPv4 or IPv6 respectively) and src/dst TCP/UDP ports (4 bytes).

The RSS algorithm is written in file tap_bpf_program.c which does not take part in TAP PMD
compilation. Instead this file is compiled in advance to eBPF object file. The eBPF object file is then
parsed and translated into eBPF byte code in the format of C arrays of eBPF instructions. The C array of
eBPF instructions is part of TAP PMD tree and is taking part in TAP PMD compilation. At run time the
C arrays are uploaded to the kernel via BPF system calls and the RSS hash is calculated by the kernel.

It is possible to support different RSS hash algorithms by updating file tap_bpf_program.c In order
to add a new RSS hash algorithm follow these steps:

1. Write the new RSS implementation in file tap_bpf_program.c

BPF programs which are uploaded to the kernel correspond to C functions under different ELF sections.

2. Install LLVM library and clang compiler versions 3.7 and above

3. Compile tap_bpf_program.c via LLVM into an object file:

clang -O2 -emit-llvm -c tap_bpf_program.c -o - | llc -march=bpf \
-filetype=obj -o <tap_bpf_program.o>

4. Use a tool that receives two parameters: an eBPF object file and a section name, and prints out the
section as a C array of eBPF instructions. Embed the C array in your TAP PMD tree.

The C arrays are uploaded to the kernel using BPF system calls.

48.4. RSS specifics 265

Network Interface Controller Drivers, Release 20.08.0

tc (traffic control) is a well known user space utility program used to configure the Linux kernel packet
scheduler. It is usually packaged as part of the iproute2 package. Since commit 11c39b5e9 (“tc:
add eBPF support to f_bpf”) tc can be used to uploads eBPF code to the kernel and can be patched in
order to print the C arrays of eBPF instructions just before calling the BPF system call. Please refer to
iproute2 package file lib/bpf.c function bpf_prog_load().

An example utility for eBPF instruction generation in the format of C arrays will be added in next
releases

TAP reports on supported RSS functions as part of dev_infos_get callback: ETH_RSS_IP,
ETH_RSS_UDP and ETH_RSS_TCP. Known limitation: TAP supports all of the above hash func-
tions together and not in partial combinations.

48.5 Systems supporting flow API

• “tc flower” classifier requires linux kernel above 4.2

• eBPF/RSS requires linux kernel above 4.9

RH7.3 No flow rule support
RH7.4 No RSS action support
RH7.5 No RSS action support
SLES 15, kernel 4.12 No limitation
Azure Ubuntu 16.04, kernel 4.13 No limitation

48.5. Systems supporting flow API 266

CHAPTER

FORTYNINE

THUNDERX NICVF POLL MODE DRIVER

The ThunderX NICVF PMD (librte_pmd_thunderx_nicvf) provides poll mode driver support for the
inbuilt NIC found in the Cavium ThunderX SoC family as well as their virtual functions (VF) in SR-
IOV context.

More information can be found at Cavium, Inc Official Website.

49.1 Features

Features of the ThunderX PMD are:

• Multiple queues for TX and RX

• Receive Side Scaling (RSS)

• Packet type information

• Checksum offload

• Promiscuous mode

• Multicast mode

• Port hardware statistics

• Jumbo frames

• Link state information

• Setting up link state.

• Scattered and gather for TX and RX

• VLAN stripping

• SR-IOV VF

• NUMA support

• Multi queue set support (up to 96 queues (12 queue sets)) per port

• Skip data bytes

49.2 Supported ThunderX SoCs

• CN88xx

267

http://www.cavium.com/ThunderX_ARM_Processors.html

Network Interface Controller Drivers, Release 20.08.0

• CN81xx

• CN83xx

49.3 Prerequisites

• Follow the DPDK Getting Started Guide for Linux to setup the basic DPDK environment.

49.4 Pre-Installation Configuration

49.4.1 Config File Options

The following options can be modified in the config file. Please note that enabling debugging options
may affect system performance.

• CONFIG_RTE_LIBRTE_THUNDERX_NICVF_PMD (default y)

Toggle compilation of the librte_pmd_thunderx_nicvf driver.

• CONFIG_RTE_LIBRTE_THUNDERX_NICVF_DEBUG_RX (default n)

Toggle asserts of receive fast path.

• CONFIG_RTE_LIBRTE_THUNDERX_NICVF_DEBUG_TX (default n)

Toggle asserts of transmit fast path.

49.5 Driver compilation and testing

Refer to the document compiling and testing a PMD for a NIC for details.

To compile the ThunderX NICVF PMD for Linux arm64 gcc, use arm64-thunderx-linux-gcc as target.

49.6 Linux

49.6.1 SR-IOV: Prerequisites and sample Application Notes

Current ThunderX NIC PF/VF kernel modules maps each physical Ethernet port automatically to virtual
function (VF) and presented them as PCIe-like SR-IOV device. This section provides instructions to
configure SR-IOV with Linux OS.

1. Verify PF devices capabilities using lspci:

lspci -vvv

Example output:

0002:01:00.0 Ethernet controller: Cavium Networks Device a01e (rev 01)
...
Capabilities: [100 v1] Alternative Routing-ID Interpretation (ARI)
...
Capabilities: [180 v1] Single Root I/O Virtualization (SR-IOV)
...

49.3. Prerequisites 268

Network Interface Controller Drivers, Release 20.08.0

Kernel driver in use: thunder-nic
...

Note: Unless thunder-nic driver is in use make sure your kernel config includes
CONFIG_THUNDER_NIC_PF setting.

2. Verify VF devices capabilities and drivers using lspci:

lspci -vvv

Example output:

0002:01:00.1 Ethernet controller: Cavium Networks Device 0011 (rev 01)
...
Capabilities: [100 v1] Alternative Routing-ID Interpretation (ARI)
...
Kernel driver in use: thunder-nicvf
...

0002:01:00.2 Ethernet controller: Cavium Networks Device 0011 (rev 01)
...
Capabilities: [100 v1] Alternative Routing-ID Interpretation (ARI)
...
Kernel driver in use: thunder-nicvf
...

Note: Unless thunder-nicvf driver is in use make sure your kernel config includes
CONFIG_THUNDER_NIC_VF setting.

3. Pass VF device to VM context (PCIe Passthrough):

The VF devices may be passed through to the guest VM using qemu or virt-manager or virsh etc.

Example qemu guest launch command:

sudo qemu-system-aarch64 -name vm1 \
-machine virt,gic_version=3,accel=kvm,usb=off \
-cpu host -m 4096 \
-smp 4,sockets=1,cores=8,threads=1 \
-nographic -nodefaults \
-kernel <kernel image> \
-append "root=/dev/vda console=ttyAMA0 rw hugepagesz=512M hugepages=3" \
-device vfio-pci,host=0002:01:00.1 \
-drive file=<rootfs.ext3>,if=none,id=disk1,format=raw \
-device virtio-blk-device,scsi=off,drive=disk1,id=virtio-disk1,bootindex=1 \
-netdev tap,id=net0,ifname=tap0,script=/etc/qemu-ifup_thunder \
-device virtio-net-device,netdev=net0 \
-serial stdio \
-mem-path /dev/hugepages

4. Enable VFIO-NOIOMMU mode (optional):

echo 1 > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode

Note: VFIO-NOIOMMU is required only when running in VM context and should not be
enabled otherwise.

5. Running testpmd:

49.6. Linux 269

Network Interface Controller Drivers, Release 20.08.0

Follow instructions available in the document compiling and testing a PMD for a NIC to run
testpmd.

Example output:

./arm64-thunderx-linux-gcc/app/testpmd -l 0-3 -n 4 -w 0002:01:00.2 \
-- -i --no-flush-rx \
--port-topology=loop

...

PMD: rte_nicvf_pmd_init(): librte_pmd_thunderx nicvf version 1.0

...
EAL: probe driver: 177d:11 rte_nicvf_pmd
EAL: using IOMMU type 1 (Type 1)
EAL: PCI memory mapped at 0x3ffade50000
EAL: Trying to map BAR 4 that contains the MSI-X table.

Trying offsets: 0x40000000000:0x0000, 0x10000:0x1f0000
EAL: PCI memory mapped at 0x3ffadc60000
PMD: nicvf_eth_dev_init(): nicvf: device (177d:11) 2:1:0:2
PMD: nicvf_eth_dev_init(): node=0 vf=1 mode=tns-bypass sqs=false

loopback_supported=true
PMD: nicvf_eth_dev_init(): Port 0 (177d:11) mac=a6:c6:d9:17:78:01
Interactive-mode selected
Configuring Port 0 (socket 0)
...

PMD: nicvf_dev_configure(): Configured ethdev port0 hwcap=0x0
Port 0: A6:C6:D9:17:78:01
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>

49.6.2 Multiple Queue Set per DPDK port configuration

There are two types of VFs:

• Primary VF

• Secondary VF

Each port consists of a primary VF and n secondary VF(s). Each VF provides 8 Tx/Rx queues to a port.
When a given port is configured to use more than 8 queues, it requires one (or more) secondary VF. Each
secondary VF adds 8 additional queues to the queue set.

During PMD driver initialization, the primary VF’s are enumerated by checking the specific flag (see
sqs message in DPDK boot log - sqs indicates secondary queue set). They are at the beginning of VF
list (the remain ones are secondary VF’s).

The primary VFs are used as master queue sets. Secondary VFs provide additional queue sets for
primary ones. If a port is configured for more then 8 queues than it will request for additional queues
from secondary VFs.

Secondary VFs cannot be shared between primary VFs.

Primary VFs are present on the beginning of the ‘Network devices using kernel driver’ list, secondary
VFs are on the remaining on the remaining part of the list.

49.6. Linux 270

Network Interface Controller Drivers, Release 20.08.0

Note: The VNIC driver in the multiqueue setup works differently than other drivers
like ixgbe. We need to bind separately each specific queue set device with the
usertools/dpdk-devbind.py utility.

Note: Depending on the hardware used, the kernel driver sets a threshold vf_id. VFs
that try to attached with an id below or equal to this boundary are considered primary VFs.
VFs that try to attach with an id above this boundary are considered secondary VFs.

49.6.3 LBK HW Access

Loopback HW Unit (LBK) receives packets from NIC-RX and sends packets back to NIC-TX. The
loopback block has N channels and contains data buffering that is shared across all channels. Four
primary VFs are reserved as loopback ports.

49.6.4 Example device binding

If a system has three interfaces, a total of 18 VF devices will be created on a non-NUMA machine.

Note: NUMA systems have 12 VFs per port and non-NUMA 6 VFs per port.

usertools/dpdk-devbind.py --status

Network devices using DPDK-compatible driver
==
<none>

Network devices using kernel driver
===================================
0000:01:10.0 'THUNDERX BGX (Common Ethernet Interface) a026' if= drv=thunder-BGX unused=vfio-pci
0000:01:10.1 'THUNDERX BGX (Common Ethernet Interface) a026' if= drv=thunder-BGX unused=vfio-pci
0001:01:00.0 'THUNDERX Network Interface Controller a01e' if= drv=thunder-nic unused=vfio-pci
0001:01:00.1 'Device a034' if=eth0 drv=thunder-nicvf unused=vfio-pci
0001:01:00.2 'Device a034' if=eth1 drv=thunder-nicvf unused=vfio-pci
0001:01:00.3 'Device a034' if=eth2 drv=thunder-nicvf unused=vfio-pci
0001:01:00.4 'Device a034' if=eth3 drv=thunder-nicvf unused=vfio-pci
0001:01:00.5 'Device a034' if=eth4 drv=thunder-nicvf unused=vfio-pci
0001:01:00.6 'Device a034' if=lbk0 drv=thunder-nicvf unused=vfio-pci
0001:01:00.7 'Device a034' if=lbk1 drv=thunder-nicvf unused=vfio-pci
0001:01:01.0 'Device a034' if=lbk2 drv=thunder-nicvf unused=vfio-pci
0001:01:01.1 'Device a034' if=lbk3 drv=thunder-nicvf unused=vfio-pci
0001:01:01.2 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:01.3 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:01.4 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:01.5 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:01.6 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:01.7 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:02.0 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:02.1 'Device a034' if= drv=thunder-nicvf unused=vfio-pci
0001:01:02.2 'Device a034' if= drv=thunder-nicvf unused=vfio-pci

Other network devices

49.6. Linux 271

Network Interface Controller Drivers, Release 20.08.0

=====================
0002:00:03.0 'Device a01f' unused=vfio-pci,uio_pci_generic

Note: Here total no of primary VFs = 5 (variable, depends on no of ethernet ports present)
+ 4 (fixed, loopback ports). Ethernet ports are indicated as if=eth0 while loopback ports as
if=lbk0.

We want to bind two physical interfaces with 24 queues each device, we attach two primary VFs
and four secondary VFs. In our example we choose two 10G interfaces eth1 (0002:01:00.2) and eth2
(0002:01:00.3). We will choose four secondary queue sets from the ending of the list (0001:01:01.2-
0002:01:02.2).

1. Bind two primary VFs to the vfio-pci driver:

usertools/dpdk-devbind.py -b vfio-pci 0002:01:00.2
usertools/dpdk-devbind.py -b vfio-pci 0002:01:00.3

2. Bind four primary VFs to the vfio-pci driver:

usertools/dpdk-devbind.py -b vfio-pci 0002:01:01.7
usertools/dpdk-devbind.py -b vfio-pci 0002:01:02.0
usertools/dpdk-devbind.py -b vfio-pci 0002:01:02.1
usertools/dpdk-devbind.py -b vfio-pci 0002:01:02.2

The nicvf thunderx driver will make use of attached secondary VFs automatically during the interface
configuration stage.

49.6.5 Thunder-nic VF’s

Use sysfs to distinguish thunder-nic primary VFs and secondary VFs.
ls -l /sys/bus/pci/drivers/thunder-nic/
total 0
drwxr-xr-x 2 root root 0 Jan 22 11:19 ./
drwxr-xr-x 86 root root 0 Jan 22 11:07 ../
lrwxrwxrwx 1 root root 0 Jan 22 11:19 0001:01:00.0 -> '../../../../devices/platform/soc@0/849000000000.pci/pci0001:00/0001:00:10.0/0001:01:00.0'/

cat /sys/bus/pci/drivers/thunder-nic/0001\:01\:00.0/sriov_sqs_assignment
12
0 0001:01:00.1 vfio-pci +: 12 13
1 0001:01:00.2 thunder-nicvf -:
2 0001:01:00.3 thunder-nicvf -:
3 0001:01:00.4 thunder-nicvf -:
4 0001:01:00.5 thunder-nicvf -:
5 0001:01:00.6 thunder-nicvf -:
6 0001:01:00.7 thunder-nicvf -:
7 0001:01:01.0 thunder-nicvf -:
8 0001:01:01.1 thunder-nicvf -:
9 0001:01:01.2 thunder-nicvf -:
10 0001:01:01.3 thunder-nicvf -:
11 0001:01:01.4 thunder-nicvf -:
12 0001:01:01.5 vfio-pci: 0
13 0001:01:01.6 vfio-pci: 0
14 0001:01:01.7 thunder-nicvf: 255
15 0001:01:02.0 thunder-nicvf: 255
16 0001:01:02.1 thunder-nicvf: 255
17 0001:01:02.2 thunder-nicvf: 255
18 0001:01:02.3 thunder-nicvf: 255
19 0001:01:02.4 thunder-nicvf: 255
20 0001:01:02.5 thunder-nicvf: 255

49.6. Linux 272

Network Interface Controller Drivers, Release 20.08.0

21 0001:01:02.6 thunder-nicvf: 255
22 0001:01:02.7 thunder-nicvf: 255
23 0001:01:03.0 thunder-nicvf: 255
24 0001:01:03.1 thunder-nicvf: 255
25 0001:01:03.2 thunder-nicvf: 255
26 0001:01:03.3 thunder-nicvf: 255
27 0001:01:03.4 thunder-nicvf: 255
28 0001:01:03.5 thunder-nicvf: 255
29 0001:01:03.6 thunder-nicvf: 255
30 0001:01:03.7 thunder-nicvf: 255
31 0001:01:04.0 thunder-nicvf: 255

Every column that ends with ‘thunder-nicvf: number’ can be used as secondary VF. In printout above
all entres after ‘14 0001:01:01.7 thunder-nicvf: 255’ can be used as secondary VF.

49.7 Debugging Options

EAL command option to change log level
--log-level=pmd.net.thunderx.driver:info
or
--log-level=pmd.net.thunderx.driver,7

49.8 Module params

49.8.1 skip_data_bytes

This feature is used to create a hole between HEADROOM and actual data. Size of hole is specified in
bytes as module param(“skip_data_bytes”) to pmd. This scheme is useful when application would like
to insert vlan header without disturbing HEADROOM.

Example:
-w 0002:01:00.2,skip_data_bytes=8

49.9 Limitations

49.9.1 CRC stripping

The ThunderX SoC family NICs strip the CRC for every packets coming into the host interface irrespec-
tive of the offload configuration.

49.9.2 Maximum packet length

The ThunderX SoC family NICs support a maximum of a 9K jumbo frame. The value is fixed and cannot
be changed. So, even when the rxmode.max_rx_pkt_len member of struct rte_eth_conf
is set to a value lower than 9200, frames up to 9200 bytes can still reach the host interface.

49.7. Debugging Options 273

Network Interface Controller Drivers, Release 20.08.0

49.9.3 Maximum packet segments

The ThunderX SoC family NICs support up to 12 segments per packet when working in scatter/gather
mode. So, setting MTU will result with EINVAL when the frame size does not fit in the maximum
number of segments.

49.9.4 skip_data_bytes

Maximum limit of skip_data_bytes is 128 bytes and number of bytes should be multiple of 8.

49.9. Limitations 274

CHAPTER

FIFTY

VDEV_NETVSC DRIVER

The VDEV_NETVSC driver (librte_pmd_vdev_netvsc) provides support for NetVSC interfaces and
associated SR-IOV virtual function (VF) devices found in Linux virtual machines running on Microsoft
Hyper-V (including Azure) platforms.

50.1 Implementation details

Each instance of this driver effectively needs to drive two devices: the NetVSC interface proper and its
SR-IOV VF (referred to as “physical” from this point on) counterpart sharing the same MAC address.

Physical devices are part of the host system and cannot be maintained during VM migration. From a
VM standpoint they appear as hot-plug devices that come and go without prior notice.

When the physical device is present, egress and most of the ingress traffic flows through it; only multi-
casts and other hypervisor control still flow through NetVSC. Otherwise, NetVSC acts as a fallback for
all traffic.

To avoid unnecessary code duplication and ensure maximum performance, handling of physical devices
is left to their original PMDs; this virtual device driver (also known as vdev) manages other PMDs as
summarized by the following block diagram:

.------------------.
| DPDK application |
`--------+---------'

|
.------+------.
| DPDK ethdev |
`------+------' Control

| |
.------------+------------. v .--------------------.
| failsafe PMD +---------+ vdev_netvsc driver |
`--+-------------------+--' `--------------------'

| |
||.........
| : | :

.----+----. : .----+----. :
| tap PMD | : | any PMD | :
`----+----' : `----+----' : <-- Hot-pluggable

| : | :
.------+-------. : .-----+-----. :
| NetVSC-based | : | SR-IOV VF | :
| netdevice | : | device | :
`--------------' : `-----------' :

:.................:

275

https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-hyper-v

Network Interface Controller Drivers, Release 20.08.0

This driver implementation may be temporary and should be improved or removed either when hot-plug
will be fully supported in EAL and bus drivers or when a new NetVSC driver will be integrated.

50.2 Build options

• CONFIG_RTE_LIBRTE_VDEV_NETVSC_PMD (default y)

Toggle compilation of this driver.

50.3 Run-time parameters

This driver is invoked automatically in Hyper-V VM systems unless the user invoked it by command
line using --vdev=net_vdev_netvsc EAL option.

The following device parameters are supported:

• iface [string]

Provide a specific NetVSC interface (netdevice) name to attach this driver to. Can be provided
multiple times for additional instances.

• mac [string]

Same as iface except a suitable NetVSC interface is located using its MAC address.

• force [int]

If nonzero, forces the use of specified interfaces even if not detected as NetVSC.

• ignore [int]

If nonzero, ignores the driver running (actually used to disable the auto-detection in Hyper-V
VM).

Note: Not specifying either iface or mac makes this driver attach itself to all unrouted NetVSC inter-
faces found on the system. Specifying the device makes this driver attach itself to the device regardless
the device routes.

50.2. Build options 276

CHAPTER

FIFTYONE

POLL MODE DRIVER FOR EMULATED VIRTIO NIC

Virtio is a para-virtualization framework initiated by IBM, and supported by KVM hypervisor. In the
Data Plane Development Kit (DPDK), we provide a virtio Poll Mode Driver (PMD) as a software solu-
tion, comparing to SRIOV hardware solution, for fast guest VM to guest VM communication and guest
VM to host communication.

Vhost is a kernel acceleration module for virtio qemu backend. The DPDK extends kni to support vhost
raw socket interface, which enables vhost to directly read/ write packets from/to a physical port. With
this enhancement, virtio could achieve quite promising performance.

For basic qemu-KVM installation and other Intel EM poll mode driver in guest VM, please refer to
Chapter “Driver for VM Emulated Devices”.

In this chapter, we will demonstrate usage of virtio PMD driver with two backends, standard qemu vhost
back end and vhost kni back end.

51.1 Virtio Implementation in DPDK

For details about the virtio spec, refer to the latest VIRTIO (Virtual I/O) Device Specification.

As a PMD, virtio provides packet reception and transmission callbacks.

In Rx, packets described by the used descriptors in vring are available for virtio to burst out.

In Tx, packets described by the used descriptors in vring are available for virtio to clean. Virtio will
enqueue to be transmitted packets into vring, make them available to the device, and then notify the host
back end if necessary.

51.2 Features and Limitations of virtio PMD

In this release, the virtio PMD driver provides the basic functionality of packet reception and transmis-
sion.

• It supports merge-able buffers per packet when receiving packets and scattered buffer per packet
when transmitting packets. The packet size supported is from 64 to 1518.

• It supports multicast packets and promiscuous mode.

• The descriptor number for the Rx/Tx queue is hard-coded to be 256 by qemu 2.7 and below. If
given a different descriptor number by the upper application, the virtio PMD generates a warning
and fall back to the hard-coded value. Rx queue size can be configurable and up to 1024 since
qemu 2.8 and above. Rx queue size is 256 by default. Tx queue size is still hard-coded to be 256.

277

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=virtio

Network Interface Controller Drivers, Release 20.08.0

• Features of mac/vlan filter are supported, negotiation with vhost/backend are needed to support
them. When backend can’t support vlan filter, virtio app on guest should not enable vlan filter in
order to make sure the virtio port is configured correctly. E.g. do not specify ‘–enable-hw-vlan’
in testpmd command line. Note that, mac/vlan filter is best effort: unwanted packets could still
arrive.

• “RTE_PKTMBUF_HEADROOM” should be defined no less than “sizeof(struct vir-
tio_net_hdr_mrg_rxbuf)”, which is 12 bytes when mergeable or “VIRTIO_F_VERSION_1” is
set. no less than “sizeof(struct virtio_net_hdr)”, which is 10 bytes, when using non-mergeable.

• Virtio does not support runtime configuration.

• Virtio supports Link State interrupt.

• Virtio supports Rx interrupt (so far, only support 1:1 mapping for queue/interrupt).

• Virtio supports software vlan stripping and inserting.

• Virtio supports using port IO to get PCI resource when uio/igb_uio module is not available.

51.3 Prerequisites

The following prerequisites apply:

• In the BIOS, turn VT-x and VT-d on

• Linux kernel with KVM module; vhost module loaded and ioeventfd supported. Qemu standard
backend without vhost support isn’t tested, and probably isn’t supported.

51.4 Virtio with kni vhost Back End

This section demonstrates kni vhost back end example setup for Phy-VM Communication.

Host2VM communication example

1. Load the kni kernel module:

insmod rte_kni.ko

Other basic DPDK preparations like hugepage enabling, uio port binding are not listed here.
Please refer to the DPDK Getting Started Guide for detailed instructions.

2. Launch the kni user application:

examples/kni/build/app/kni -l 0-3 -n 4 -- -p 0x1 -P --config="(0,1,3)"

This command generates one network device vEth0 for physical port. If specify more physical
ports, the generated network device will be vEth1, vEth2, and so on.

For each physical port, kni creates two user threads. One thread loops to fetch packets from the
physical NIC port into the kni receive queue. The other user thread loops to send packets in the
kni transmit queue.

For each physical port, kni also creates a kernel thread that retrieves packets from the kni receive
queue, place them onto kni’s raw socket’s queue and wake up the vhost kernel thread to exchange
packets with the virtio virt queue.

For more details about kni, please refer to kni.

51.3. Prerequisites 278

Network Interface Controller Drivers, Release 20.08.0

Fig. 51.1: Host2VM Communication Example Using kni vhost Back End

51.4. Virtio with kni vhost Back End 279

Network Interface Controller Drivers, Release 20.08.0

3. Enable the kni raw socket functionality for the specified physical NIC port, get the generated file
descriptor and set it in the qemu command line parameter. Always remember to set ioeventfd_on
and vhost_on.

Example:

echo 1 > /sys/class/net/vEth0/sock_en
fd=`cat /sys/class/net/vEth0/sock_fd`
exec qemu-system-x86_64 -enable-kvm -cpu host \
-m 2048 -smp 4 -name dpdk-test1-vm1 \
-drive file=/data/DPDKVMS/dpdk-vm.img \
-netdev tap, fd=$fd,id=mynet_kni, script=no,vhost=on \
-device virtio-net-pci,netdev=mynet_kni,bus=pci.0,addr=0x3,ioeventfd=on \
-vnc:1 -daemonize

In the above example, virtio port 0 in the guest VM will be associated with vEth0, which in turns
corresponds to a physical port, which means received packets come from vEth0, and transmitted
packets is sent to vEth0.

4. In the guest, bind the virtio device to the uio_pci_generic kernel module and start the forwarding
application. When the virtio port in guest bursts Rx, it is getting packets from the raw socket’s
receive queue. When the virtio port bursts Tx, it is sending packet to the tx_q.

modprobe uio
echo 512 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
modprobe uio_pci_generic
python usertools/dpdk-devbind.py -b uio_pci_generic 00:03.0

We use testpmd as the forwarding application in this example.

Fig. 51.2: Running testpmd

5. Use IXIA packet generator to inject a packet stream into the KNI physical port.

The packet reception and transmission flow path is:

IXIA packet generator->82599 PF->KNI Rx queue->KNI raw socket queue->Guest VM virtio
port 0 Rx burst->Guest VM virtio port 0 Tx burst-> KNI Tx queue ->82599 PF-> IXIA packet
generator

51.5 Virtio with qemu virtio Back End

qemu-system-x86_64 -enable-kvm -cpu host -m 2048 -smp 2 -mem-path /dev/
hugepages -mem-prealloc
-drive file=/data/DPDKVMS/dpdk-vm1
-netdev tap,id=vm1_p1,ifname=tap0,script=no,vhost=on

51.5. Virtio with qemu virtio Back End 280

Network Interface Controller Drivers, Release 20.08.0

Fig. 51.3: Host2VM Communication Example Using qemu vhost Back End

51.5. Virtio with qemu virtio Back End 281

Network Interface Controller Drivers, Release 20.08.0

-device virtio-net-pci,netdev=vm1_p1,bus=pci.0,addr=0x3,ioeventfd=on
-device pci-assign,host=04:10.1 \

In this example, the packet reception flow path is:

IXIA packet generator->82599 PF->Linux Bridge->TAP0’s socket queue-> Guest VM vir-
tio port 0 Rx burst-> Guest VM 82599 VF port1 Tx burst-> IXIA packet generator

The packet transmission flow is:

IXIA packet generator-> Guest VM 82599 VF port1 Rx burst-> Guest VM virtio port 0 Tx
burst-> tap -> Linux Bridge->82599 PF-> IXIA packet generator

51.6 Virtio PMD Rx/Tx Callbacks

Virtio driver has 6 Rx callbacks and 3 Tx callbacks.

Rx callbacks:

1. virtio_recv_pkts: Regular version without mergeable Rx buffer support for split virtqueue.

2. virtio_recv_mergeable_pkts: Regular version with mergeable Rx buffer support for
split virtqueue.

3. virtio_recv_pkts_vec: Vector version without mergeable Rx buffer support, also fixes the
available ring indexes and uses vector instructions to optimize performance for split virtqueue.

4. virtio_recv_pkts_inorder: In-order version with mergeable and non-mergeable Rx
buffer support for split virtqueue.

5. virtio_recv_pkts_packed: Regular and in-order version without mergeable Rx buffer
support for packed virtqueue.

6. virtio_recv_mergeable_pkts_packed: Regular and in-order version with mergeable
Rx buffer support for packed virtqueue.

Tx callbacks:

1. virtio_xmit_pkts: Regular version for split virtqueue.

2. virtio_xmit_pkts_inorder: In-order version for split virtqueue.

3. virtio_xmit_pkts_packed: Regular and in-order version for packed virtqueue.

By default, the non-vector callbacks are used:

• For Rx: If mergeable Rx buffers is disabled then virtio_recv_pkts or
virtio_recv_pkts_packedwill be used, otherwise virtio_recv_mergeable_pkts
or virtio_recv_mergeable_pkts_packed will be used.

• For Tx: virtio_xmit_pkts or virtio_xmit_pkts_packed will be used.

Vector callbacks will be used when:

• Mergeable Rx buffers is disabled.

The corresponding callbacks are:

• For Rx: virtio_recv_pkts_vec.

51.6. Virtio PMD Rx/Tx Callbacks 282

Network Interface Controller Drivers, Release 20.08.0

There is no vector callbacks for packed virtqueue for now.

Example of using the vector version of the virtio poll mode driver in testpmd:

testpmd -l 0-2 -n 4 -- -i --rxq=1 --txq=1 --nb-cores=1

In-order callbacks only work on simulated virtio user vdev.

For split virtqueue:

• For Rx: If in-order is enabled then virtio_recv_pkts_inorder is used.

• For Tx: If in-order is enabled then virtio_xmit_pkts_inorder is used.

For packed virtqueue, the default callbacks already support the in-order feature.

51.7 Interrupt mode

There are three kinds of interrupts from a virtio device over PCI bus: config interrupt, Rx interrupts, and
Tx interrupts. Config interrupt is used for notification of device configuration changes, especially link
status (lsc). Interrupt mode is translated into Rx interrupts in the context of DPDK.

Note: Virtio PMD already has support for receiving lsc from qemu when the link status changes,
especially when vhost user disconnects. However, it fails to do that if the VM is created by qemu 2.6.2
or below, since the capability to detect vhost user disconnection is introduced in qemu 2.7.0.

51.7.1 Prerequisites for Rx interrupts

To support Rx interrupts, #. Check if guest kernel supports VFIO-NOIOMMU:

Linux started to support VFIO-NOIOMMU since 4.8.0. Make sure the guest kernel is
compiled with:

CONFIG_VFIO_NOIOMMU=y

1. Properly set msix vectors when starting VM:

Enable multi-queue when starting VM, and specify msix vectors in qemu cmdline.
(N+1) is the minimum, and (2N+2) is mostly recommended.

$(QEMU) ... -device virtio-net-pci,mq=on,vectors=2N+2 ...

2. In VM, insert vfio module in NOIOMMU mode:

modprobe vfio enable_unsafe_noiommu_mode=1
modprobe vfio-pci

3. In VM, bind the virtio device with vfio-pci:

python usertools/dpdk-devbind.py -b vfio-pci 00:03.0

51.7.2 Example

Here we use l3fwd-power as an example to show how to get started.

Example:

51.7. Interrupt mode 283

Network Interface Controller Drivers, Release 20.08.0

$ l3fwd-power -l 0-1 -- -p 1 -P --config="(0,0,1)" \
--no-numa --parse-ptype

51.8 Virtio PMD arguments

Below devargs are supported by the PCI virtio driver:

1. vdpa:

A virtio device could also be driven by vDPA (vhost data path acceleration) driver, and works as a
HW vhost backend. This argument is used to specify a virtio device needs to work in vDPA mode.
(Default: 0 (disabled))

2. speed:

It is used to specify link speed of virtio device. Link speed is a part of link status structure. It could
be requested by application using rte_eth_link_get_nowait function. (Default: 10000 (10G))

3. vectorized:

It is used to specify whether virtio device prefers to use vectorized path. Afterwards, dependencies
of vectorized path will be checked in path election. (Default: 0 (disabled))

Below devargs are supported by the virtio-user vdev:

1. path:

It is used to specify a path to connect to vhost backend.

2. mac:

It is used to specify the MAC address.

3. cq:

It is used to enable the control queue. (Default: 0 (disabled))

4. queue_size:

It is used to specify the queue size. (Default: 256)

5. queues:

It is used to specify the queue number. (Default: 1)

6. iface:

It is used to specify the host interface name for vhost-kernel backend.

7. server:

It is used to enable the server mode when using vhost-user backend. (Default: 0 (disabled))

8. mrg_rxbuf:

It is used to enable virtio device mergeable Rx buffer feature. (Default: 1 (enabled))

9. in_order:

It is used to enable virtio device in-order feature. (Default: 1 (enabled))

10. packed_vq:

It is used to enable virtio device packed virtqueue feature. (Default: 0 (disabled))

51.8. Virtio PMD arguments 284

Network Interface Controller Drivers, Release 20.08.0

11. speed:

It is used to specify link speed of virtio device. Link speed is a part of link status structure. It could
be requested by application using rte_eth_link_get_nowait function. (Default: 10000 (10G))

12. vectorized:

It is used to specify whether virtio device prefers to use vectorized path. Afterwards, dependencies
of vectorized path will be checked in path election. (Default: 0 (disabled))

51.9 Virtio paths Selection and Usage

Logically virtio-PMD has 9 paths based on the combination of virtio features (Rx mergeable, In-order,
Packed virtqueue), below is an introduction of these features:

• Rx mergeable: With this feature negotiated, device can receive large packets by combining indi-
vidual descriptors.

• In-order: Some devices always use descriptors in the same order in which they have been made
available, these devices can offer the VIRTIO_F_IN_ORDER feature. With this feature negoti-
ated, driver will use descriptors in order.

• Packed virtqueue: The structure of packed virtqueue is different from split virtqueue, split
virtqueue is composed of available ring, used ring and descriptor table, while packed virtqueue
is composed of descriptor ring, driver event suppression and device event suppression. The idea
behind this is to improve performance by avoiding cache misses and make it easier for hardware
to implement.

51.9.1 Virtio paths Selection

If packed virtqueue is not negotiated, below split virtqueue paths will be selected according to below
configuration:

1. Split virtqueue mergeable path: If Rx mergeable is negotiated, in-order feature is not negotiated,
this path will be selected.

2. Split virtqueue non-mergeable path: If Rx mergeable and in-order feature are not negotiated, also
Rx offload(s) are requested, this path will be selected.

3. Split virtqueue in-order mergeable path: If Rx mergeable and in-order feature are both negotiated,
this path will be selected.

4. Split virtqueue in-order non-mergeable path: If in-order feature is negotiated and Rx mergeable is
not negotiated, this path will be selected.

5. Split virtqueue vectorized Rx path: If Rx mergeable is disabled and no Rx offload requested, this
path will be selected.

If packed virtqueue is negotiated, below packed virtqueue paths will be selected according to below
configuration:

1. Packed virtqueue mergeable path: If Rx mergeable is negotiated, in-order feature is not negotiated,
this path will be selected.

2. Packed virtqueue non-mergeable path: If Rx mergeable and in-order feature are not negotiated,
this path will be selected.

51.9. Virtio paths Selection and Usage 285

https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html#x1-2140004
https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html#x1-690008
https://docs.oasis-open.org/virtio/virtio/v1.1/cs01/virtio-v1.1-cs01.html#x1-610007

Network Interface Controller Drivers, Release 20.08.0

3. Packed virtqueue in-order mergeable path: If in-order and Rx mergeable feature are both negoti-
ated, this path will be selected.

4. Packed virtqueue in-order non-mergeable path: If in-order feature is negotiated and Rx mergeable
is not negotiated, this path will be selected.

5. Packed virtqueue vectorized Rx path: If building and running environment support AVX512 &&
in-order feature is negotiated && Rx mergeable is not negotiated && TCP_LRO Rx offloading is
disabled && vectorized option enabled, this path will be selected.

6. Packed virtqueue vectorized Tx path: If building and running environment support AVX512 &&
in-order feature is negotiated && vectorized option enabled, this path will be selected.

51.9.2 Rx/Tx callbacks of each Virtio path

Refer to above description, virtio path and corresponding Rx/Tx callbacks will be selected automatically.
Rx callbacks and Tx callbacks for each virtio path are shown in below table:

Table 51.1: Virtio Paths and Callbacks

Virtio paths Rx callbacks Tx callbacks
Split virtqueue mergeable path virtio_recv_mergeable_pkts virtio_xmit_pkts
Split virtqueue non-mergeable path virtio_recv_pkts virtio_xmit_pkts
Split virtqueue in-order mergeable path virtio_recv_pkts_inorder vir-

tio_xmit_pkts_inorder
Split virtqueue in-order non-mergeable
path

virtio_recv_pkts_inorder vir-
tio_xmit_pkts_inorder

Split virtqueue vectorized Rx path virtio_recv_pkts_vec virtio_xmit_pkts
Packed virtqueue mergeable path vir-

tio_recv_mergeable_pkts_packed
virtio_xmit_pkts_packed

Packed virtqueue non-meregable path virtio_recv_pkts_packed virtio_xmit_pkts_packed
Packed virtqueue in-order mergeable
path

vir-
tio_recv_mergeable_pkts_packed

virtio_xmit_pkts_packed

Packed virtqueue in-order
non-mergeable path

virtio_recv_pkts_packed virtio_xmit_pkts_packed

Packed virtqueue vectorized Rx path virtio_recv_pkts_packed_vec virtio_xmit_pkts_packed
Packed virtqueue vectorized Tx path virtio_recv_pkts_packed vir-

tio_xmit_pkts_packed_vec

51.9.3 Virtio paths Support Status from Release to Release

Virtio feature implementation:

• In-order feature is supported since DPDK 18.08 by adding new Rx/Tx callbacks
virtio_recv_pkts_inorder and virtio_xmit_pkts_inorder.

• Packed virtqueue is supported since DPDK 19.02 by adding new Rx/Tx callbacks
virtio_recv_pkts_packed , virtio_recv_mergeable_pkts_packed and
virtio_xmit_pkts_packed.

All virtio paths support status are shown in below table:

51.9. Virtio paths Selection and Usage 286

Network Interface Controller Drivers, Release 20.08.0

Table 51.2: Virtio Paths and Releases

Virtio paths 16.11 ~
18.05

18.08 ~
18.11

19.02 ~
19.11

20.05
~

Split virtqueue mergeable path Y Y Y Y
Split virtqueue non-mergeable path Y Y Y Y
Split virtqueue vectorized Rx path Y Y Y Y
Split virtqueue simple Tx path Y N N N
Split virtqueue in-order mergeable path Y Y Y
Split virtqueue in-order non-mergeable
path

Y Y Y

Packed virtqueue mergeable path Y Y
Packed virtqueue non-mergeable path Y Y
Packed virtqueue in-order mergeable
path

Y Y

Packed virtqueue in-order
non-mergeable path

Y Y

Packed virtqueue vectorized Rx path Y
Packed virtqueue vectorized Tx path Y

51.9.4 QEMU Support Status

• Qemu now supports three paths of split virtqueue: Split virtqueue mergeable path, Split virtqueue
non-mergeable path, Split virtqueue vectorized Rx path.

• Since qemu 4.2.0, Packed virtqueue mergeable path and Packed virtqueue non-mergeable path
can be supported.

51.9.5 How to Debug

If you meet performance drop or some other issues after upgrading the driver or configuration, below
steps can help you identify which path you selected and root cause faster.

1. Run vhost/virtio test case;

2. Run “perf top” and check virtio Rx/Tx callback names;

3. Identify which virtio path is selected refer to above table.

51.9. Virtio paths Selection and Usage 287

CHAPTER

FIFTYTWO

POLL MODE DRIVER THAT WRAPS VHOST LIBRARY

This PMD is a thin wrapper of the DPDK vhost library. The user can handle virtqueues as one of normal
DPDK port.

52.1 Vhost Implementation in DPDK

Please refer to Chapter “Vhost Library” of DPDK Programmer’s Guide to know detail of vhost.

52.2 Features and Limitations of vhost PMD

Currently, the vhost PMD provides the basic functionality of packet reception, transmission and event
handling.

• It has multiple queues support.

• It supports RTE_ETH_EVENT_INTR_LSC and RTE_ETH_EVENT_QUEUE_STATE events.

• It supports Port Hotplug functionality.

• Don’t need to stop RX/TX, when the user wants to stop a guest or a virtio-net driver on guest.

52.3 Vhost PMD arguments

The user can specify below arguments in –vdev option.

1. iface:

It is used to specify a path to connect to a QEMU virtio-net device.

2. queues:

It is used to specify the number of queues virtio-net device has. (Default: 1)

3. iommu-support:

It is used to enable iommu support in vhost library. (Default: 0 (disabled))

4. postcopy-support:

It is used to enable postcopy live-migration support in vhost library. (Default: 0 (disabled))

288

Network Interface Controller Drivers, Release 20.08.0

5. tso:

It is used to enable tso support in vhost library. (Default: 0 (disabled))

6. linear-buffer:

It is used to enable linear buffer support in vhost library. (Default: 0 (disabled))

7. ext-buffer:

It is used to enable external buffer support in vhost library. (Default: 0 (disabled))

52.4 Vhost PMD event handling

This section describes how to handle vhost PMD events.

The user can register an event callback handler with rte_eth_dev_callback_register(). The
registered callback handler will be invoked with one of below event types.

1. RTE_ETH_EVENT_INTR_LSC:

It means link status of the port was changed.

2. RTE_ETH_EVENT_QUEUE_STATE:

It means some of queue statuses were changed. Call
rte_eth_vhost_get_queue_event() in the callback handler. Because changing
multiple statuses may occur only one event, call the function repeatedly as long as it doesn’t
return negative value.

52.5 Vhost PMD with testpmd application

This section demonstrates vhost PMD with testpmd DPDK sample application.

1. Launch the testpmd with vhost PMD:

./testpmd -l 0-3 -n 4 --vdev 'net_vhost0,iface=/tmp/sock0,queues=1' -- -i

Other basic DPDK preparations like hugepage enabling here. Please refer to the DPDK Getting
Started Guide for detailed instructions.

2. Launch the QEMU:

qemu-system-x86_64 <snip>
-chardev socket,id=chr0,path=/tmp/sock0 \
-netdev vhost-user,id=net0,chardev=chr0,vhostforce,queues=1 \
-device virtio-net-pci,netdev=net0

This command attaches one virtio-net device to QEMU guest. After initialization processes be-
tween QEMU and DPDK vhost library are done, status of the port will be linked up.

52.4. Vhost PMD event handling 289

CHAPTER

FIFTYTHREE

POLL MODE DRIVER FOR PARAVIRTUAL VMXNET3 NIC

The VMXNET3 adapter is the next generation of a paravirtualized NIC, introduced by VMware* ESXi.
It is designed for performance, offers all the features available in VMXNET2, and adds several new
features such as, multi-queue support (also known as Receive Side Scaling, RSS), IPv6 offloads, and
MSI/MSI-X interrupt delivery. One can use the same device in a DPDK application with VMXNET3
PMD introduced in DPDK API.

In this chapter, two setups with the use of the VMXNET3 PMD are demonstrated:

1. Vmxnet3 with a native NIC connected to a vSwitch

2. Vmxnet3 chaining VMs connected to a vSwitch

53.1 VMXNET3 Implementation in the DPDK

For details on the VMXNET3 device, refer to the VMXNET3 driver’s vmxnet3 directory and support
manual from VMware*.

For performance details, refer to the following link from VMware:

http://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf

As a PMD, the VMXNET3 driver provides the packet reception and transmission callbacks,
vmxnet3_recv_pkts and vmxnet3_xmit_pkts.

The VMXNET3 PMD handles all the packet buffer memory allocation and resides in guest address space
and it is solely responsible to free that memory when not needed. The packet buffers and features to
be supported are made available to hypervisor via VMXNET3 PCI configuration space BARs. During
RX/TX, the packet buffers are exchanged by their GPAs, and the hypervisor loads the buffers with
packets in the RX case and sends packets to vSwitch in the TX case.

The VMXNET3 PMD is compiled with vmxnet3 device headers. The interface is similar to that of
the other PMDs available in the DPDK API. The driver pre-allocates the packet buffers and loads the
command ring descriptors in advance. The hypervisor fills those packet buffers on packet arrival and
write completion ring descriptors, which are eventually pulled by the PMD. After reception, the DPDK
application frees the descriptors and loads new packet buffers for the coming packets. The interrupts are
disabled and there is no notification required. This keeps performance up on the RX side, even though
the device provides a notification feature.

In the transmit routine, the DPDK application fills packet buffer pointers in the descriptors of the com-
mand ring and notifies the hypervisor. In response the hypervisor takes packets and passes them to
the vSwitch, It writes into the completion descriptors ring. The rings are read by the PMD in the next
transmit routine call and the buffers and descriptors are freed from memory.

290

http://www.vmware.com/pdf/vsp_4_vmxnet3_perf.pdf

Network Interface Controller Drivers, Release 20.08.0

53.2 Features and Limitations of VMXNET3 PMD

In release 1.6.0, the VMXNET3 PMD provides the basic functionality of packet reception and transmis-
sion. There are several options available for filtering packets at VMXNET3 device level including:

1. MAC Address based filtering:

• Unicast, Broadcast, All Multicast modes - SUPPORTED BY DEFAULT

• Multicast with Multicast Filter table - NOT SUPPORTED

• Promiscuous mode - SUPPORTED

• RSS based load balancing between queues - SUPPORTED

2. VLAN filtering:

• VLAN tag based filtering without load balancing - SUPPORTED

Note:

• Release 1.6.0 does not support separate headers and body receive cmd_ring and hence, multiple
segment buffers are not supported. Only cmd_ring_0 is used for packet buffers, one for each
descriptor.

• Receive and transmit of scattered packets is not supported.

• Multicast with Multicast Filter table is not supported.

53.3 Prerequisites

The following prerequisites apply:

• Before starting a VM, a VMXNET3 interface to a VM through VMware vSphere Client must be
assigned. This is shown in the figure below.

Fig. 53.1: Assigning a VMXNET3 interface to a VM using VMware vSphere Client

53.2. Features and Limitations of VMXNET3 PMD 291

Network Interface Controller Drivers, Release 20.08.0

Note: Depending on the Virtual Machine type, the VMware vSphere Client shows Ethernet adaptors
while adding an Ethernet device. Ensure that the VM type used offers a VMXNET3 device. Refer to
the VMware documentation for a listed of VMs.

Note: Follow the DPDK Getting Started Guide to setup the basic DPDK environment.

Note: Follow the DPDK Sample Application’s User Guide, L2 Forwarding/L3 Forwarding and
TestPMD for instructions on how to run a DPDK application using an assigned VMXNET3 device.

53.4 VMXNET3 with a Native NIC Connected to a vSwitch

This section describes an example setup for Phy-vSwitch-VM-Phy communication.

Fig. 53.2: VMXNET3 with a Native NIC Connected to a vSwitch

53.4. VMXNET3 with a Native NIC Connected to a vSwitch 292

Network Interface Controller Drivers, Release 20.08.0

Note: Other instructions on preparing to use DPDK such as, hugepage enabling, uio port binding are
not listed here. Please refer to DPDK Getting Started Guide and DPDK Sample Application’s User
Guide for detailed instructions.

The packet reception and transmission flow path is:

Packet generator -> 82576
-> VMware ESXi vSwitch
-> VMXNET3 device
-> Guest VM VMXNET3 port 0 rx burst
-> Guest VM 82599 VF port 0 tx burst
-> 82599 VF
-> Packet generator

53.5 VMXNET3 Chaining VMs Connected to a vSwitch

The following figure shows an example VM-to-VM communication over a Phy-VM-vSwitch-VM-Phy
communication channel.

Fig. 53.3: VMXNET3 Chaining VMs Connected to a vSwitch

53.5. VMXNET3 Chaining VMs Connected to a vSwitch 293

Network Interface Controller Drivers, Release 20.08.0

Note: When using the L2 Forwarding or L3 Forwarding applications, a destination MAC address needs
to be written in packets to hit the other VM’s VMXNET3 interface.

In this example, the packet flow path is:

Packet generator -> 82599 VF
-> Guest VM 82599 port 0 rx burst
-> Guest VM VMXNET3 port 1 tx burst
-> VMXNET3 device
-> VMware ESXi vSwitch
-> VMXNET3 device
-> Guest VM VMXNET3 port 0 rx burst
-> Guest VM 82599 VF port 1 tx burst
-> 82599 VF
-> Packet generator

53.5. VMXNET3 Chaining VMs Connected to a vSwitch 294

CHAPTER

FIFTYFOUR

LIBPCAP AND RING BASED POLL MODE DRIVERS

In addition to Poll Mode Drivers (PMDs) for physical and virtual hardware, the DPDK also includes
pure-software PMDs, two of these drivers are:

• A libpcap -based PMD (librte_pmd_pcap) that reads and writes packets using libpcap, - both from
files on disk, as well as from physical NIC devices using standard Linux kernel drivers.

• A ring-based PMD (librte_pmd_ring) that allows a set of software FIFOs (that is, rte_ring) to be
accessed using the PMD APIs, as though they were physical NICs.

Note: The libpcap -based PMD is disabled by default in the build configuration files, ow-
ing to an external dependency on the libpcap development files which must be installed on the
board. Once the libpcap development files are installed, the library can be enabled by setting CON-
FIG_RTE_LIBRTE_PMD_PCAP=y and recompiling the DPDK.

54.1 Using the Drivers from the EAL Command Line

For ease of use, the DPDK EAL also has been extended to allow pseudo-Ethernet devices, using one or
more of these drivers, to be created at application startup time during EAL initialization.

To do so, the –vdev= parameter must be passed to the EAL. This takes take options to allow ring and
pcap-based Ethernet to be allocated and used transparently by the application. This can be used, for
example, for testing on a virtual machine where there are no Ethernet ports.

54.1.1 Libpcap-based PMD

Pcap-based devices can be created using the virtual device –vdev option. The device name must start
with the net_pcap prefix followed by numbers or letters. The name is unique for each device. Each
device can have multiple stream options and multiple devices can be used. Multiple device definitions
can be arranged using multiple –vdev. Device name and stream options must be separated by commas
as shown below:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,stream_opt0=..,stream_opt1=..' \
--vdev='net_pcap1,stream_opt0=..'

295

Network Interface Controller Drivers, Release 20.08.0

Device Streams

Multiple ways of stream definitions can be assessed and combined as long as the following two rules are
respected:

• A device is provided with two different streams - reception and transmission.

• A device is provided with one network interface name used for reading and writing packets.

The different stream types are:

• rx_pcap: Defines a reception stream based on a pcap file. The driver reads each packet within the
given pcap file as if it was receiving it from the wire. The value is a path to a valid pcap file.

rx_pcap=/path/to/file.pcap

• tx_pcap: Defines a transmission stream based on a pcap file. The driver writes each received
packet to the given pcap file. The value is a path to a pcap file. The file is overwritten if it already
exists and it is created if it does not.

tx_pcap=/path/to/file.pcap

• rx_iface: Defines a reception stream based on a network interface name. The driver reads packets
from the given interface using the Linux kernel driver for that interface. The driver captures both
the incoming and outgoing packets on that interface. The value is an interface name.

rx_iface=eth0

• rx_iface_in: Defines a reception stream based on a network interface name. The driver reads pack-
ets from the given interface using the Linux kernel driver for that interface. The driver captures
only the incoming packets on that interface. The value is an interface name.

rx_iface_in=eth0

• tx_iface: Defines a transmission stream based on a network interface name. The driver sends
packets to the given interface using the Linux kernel driver for that interface. The value is an
interface name.

tx_iface=eth0

• iface: Defines a device mapping a network interface. The driver both reads and writes packets
from and to the given interface. The value is an interface name.

iface=eth0

Runtime Config Options

• Use PCAP interface physical MAC

In case iface= configuration is set, user may want to use the selected interface’s physical
MAC address. This can be done with a devarg phy_mac, for example:

--vdev 'net_pcap0,iface=eth0,phy_mac=1'

• Use the RX PCAP file to infinitely receive packets

In case rx_pcap= configuration is set, user may want to use the selected PCAP file for
rudimental performance testing. This can be done with a devarg infinite_rx, for
example:

--vdev 'net_pcap0,rx_pcap=file_rx.pcap,infinite_rx=1'

54.1. Using the Drivers from the EAL Command Line 296

Network Interface Controller Drivers, Release 20.08.0

When this mode is used, it is recommended to drop all packets on transmit by not providing
a tx_pcap or tx_iface.

This option is device wide, so all queues on a device will either have this enabled or dis-
abled. This option should only be provided once per device.

• Drop all packets on transmit

The user may want to drop all packets on tx for a device. This can be done by not providing
a tx_pcap or tx_iface, for example:

--vdev 'net_pcap0,rx_pcap=file_rx.pcap'

In this case, one tx drop queue is created for each rxq on that device.

• Receive no packets on Rx

The user may want to run without receiving any packets on Rx. This can be done by not
providing a rx_pcap or rx_iface, for example:

--vdev 'net_pcap0,tx_pcap=file_tx.pcap'

In this case, one dummy rx queue is created for each tx queue argument passed

Examples of Usage

Read packets from one pcap file and write them to another:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_pcap=file_rx.pcap,tx_pcap=file_tx.pcap' \
-- --port-topology=chained

Read packets from a network interface and write them to a pcap file:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_iface=eth0,tx_pcap=file_tx.pcap' \
-- --port-topology=chained

Read packets from a pcap file and write them to a network interface:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_pcap=file_rx.pcap,tx_iface=eth1' \
-- --port-topology=chained

Forward packets through two network interfaces:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,iface=eth0' --vdev='net_pcap1;iface=eth1'

Enable 2 tx queues on a network interface:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_iface=eth1,tx_iface=eth1,tx_iface=eth1' \
-- --txq 2

Read only incoming packets from a network interface and write them back to the same network interface:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_iface_in=eth1,tx_iface=eth1'

54.1. Using the Drivers from the EAL Command Line 297

Network Interface Controller Drivers, Release 20.08.0

Using libpcap-based PMD with the testpmd Application

One of the first things that testpmd does before starting to forward packets is to flush the RX streams
by reading the first 512 packets on every RX stream and discarding them. When using a libpcap-based
PMD this behavior can be turned off using the following command line option:

--no-flush-rx

It is also available in the runtime command line:

set flush_rx on/off

It is useful for the case where the rx_pcap is being used and no packets are meant to be discarded.
Otherwise, the first 512 packets from the input pcap file will be discarded by the RX flushing operation.

$RTE_TARGET/app/testpmd -l 0-3 -n 4 \
--vdev 'net_pcap0,rx_pcap=file_rx.pcap,tx_pcap=file_tx.pcap' \
-- --port-topology=chained --no-flush-rx

Note: The network interface provided to the PMD should be up. The PMD will return an error if
interface is down, and the PMD itself won’t change the status of the external network interface.

54.1.2 Rings-based PMD

To run a DPDK application on a machine without any Ethernet devices, a pair of ring-based rte_ethdevs
can be used as below. The device names passed to the –vdev option must start with net_ring and take no
additional parameters. Multiple devices may be specified, separated by commas.

./testpmd -l 1-3 -n 4 --vdev=net_ring0 --vdev=net_ring1 -- -i
EAL: Detected lcore 1 as core 1 on socket 0
...

Interactive-mode selected
Configuring Port 0 (socket 0)
Configuring Port 1 (socket 0)
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Port 1 Link Up - speed 10000 Mbps - full-duplex
Done

testpmd> start tx_first
io packet forwarding - CRC stripping disabled - packets/burst=16
nb forwarding cores=1 - nb forwarding ports=2
RX queues=1 - RX desc=128 - RX free threshold=0
RX threshold registers: pthresh=8 hthresh=8 wthresh=4
TX queues=1 - TX desc=512 - TX free threshold=0
TX threshold registers: pthresh=36 hthresh=0 wthresh=0
TX RS bit threshold=0 - TXQ flags=0x0

testpmd> stop
Telling cores to stop...
Waiting for lcores to finish...

54.1. Using the Drivers from the EAL Command Line 298

Network Interface Controller Drivers, Release 20.08.0

+++++++++++++++ Accumulated forward statistics for allports++++++++++
RX-packets: 462384736 RX-dropped: 0 RX-total: 462384736
TX-packets: 462384768 TX-dropped: 0 TX-total: 462384768
+++

Done.

54.1.3 Using the Poll Mode Driver from an Application

Both drivers can provide similar APIs to allow the user to create a PMD, that is, rte_ethdev
structure, instances at run-time in the end-application, for example, using rte_eth_from_rings() or
rte_eth_from_pcaps() APIs. For the rings-based PMD, this functionality could be used, for example,
to allow data exchange between cores using rings to be done in exactly the same way as sending or
receiving packets from an Ethernet device. For the libpcap-based PMD, it allows an application to open
one or more pcap files and use these as a source of packet input to the application.

Usage Examples

To create two pseudo-Ethernet ports where all traffic sent to a port is looped back for reception on the
same port (error handling omitted for clarity):

#define RING_SIZE 256
#define NUM_RINGS 2
#define SOCKET0 0

struct rte_ring *ring[NUM_RINGS];
int port0, port1;

ring[0] = rte_ring_create("R0", RING_SIZE, SOCKET0, RING_F_SP_ENQ|RING_F_SC_DEQ);
ring[1] = rte_ring_create("R1", RING_SIZE, SOCKET0, RING_F_SP_ENQ|RING_F_SC_DEQ);

/* create two ethdev's */

port0 = rte_eth_from_rings("net_ring0", ring, NUM_RINGS, ring, NUM_RINGS, SOCKET0);
port1 = rte_eth_from_rings("net_ring1", ring, NUM_RINGS, ring, NUM_RINGS, SOCKET0);

To create two pseudo-Ethernet ports where the traffic is switched between them, that is, traffic sent to
port 0 is read back from port 1 and vice-versa, the final two lines could be changed as below:

port0 = rte_eth_from_rings("net_ring0", &ring[0], 1, &ring[1], 1, SOCKET0);
port1 = rte_eth_from_rings("net_ring1", &ring[1], 1, &ring[0], 1, SOCKET0);

This type of configuration could be useful in a pipeline model, for example, where one may want to
have inter-core communication using pseudo Ethernet devices rather than raw rings, for reasons of API
consistency.

Enqueuing and dequeuing items from an rte_ring using the rings-based PMD may be slower than using
the native rings API. This is because DPDK Ethernet drivers make use of function pointers to call the

54.1. Using the Drivers from the EAL Command Line 299

Network Interface Controller Drivers, Release 20.08.0

appropriate enqueue or dequeue functions, while the rte_ring specific functions are direct function calls
in the code and are often inlined by the compiler.

Once an ethdev has been created, for either a ring or a pcap-based PMD, it should be
configured and started in the same way as a regular Ethernet device, that is, by calling
rte_eth_dev_configure() to set the number of receive and transmit queues, then calling
rte_eth_rx_queue_setup() / tx_queue_setup() for each of those queues and finally calling
rte_eth_dev_start() to allow transmission and reception of packets to begin.

54.1. Using the Drivers from the EAL Command Line 300

CHAPTER

FIFTYFIVE

FAIL-SAFE POLL MODE DRIVER LIBRARY

The Fail-safe poll mode driver library (librte_pmd_failsafe) implements a virtual device that allows
using device supporting hotplug, without modifying other components relying on such device (applica-
tion, other PMDs). In this context, hotplug support is meant as plugging or removing a device from its
bus suddenly.

Additionally to the Seamless Hotplug feature, the Fail-safe PMD offers the ability to redirect operations
to a secondary device when the primary has been removed from the system.

Note: The library is enabled by default. You can enable it or disable it manually by setting the
CONFIG_RTE_LIBRTE_PMD_FAILSAFE configuration option.

55.1 Features

The Fail-safe PMD only supports a limited set of features. If you plan to use a device underneath the
Fail-safe PMD with a specific feature, this feature must also be supported by the Fail-safe PMD.

A notable exception is the device removal feature. The fail-safe PMD is not meant to be removed itself,
unlike its sub-devices which should support it. If a sub-device supports hotplugging, the fail-safe PMD
will enable its use automatically by detecting capable devices and registering the relevant handler.

Check the feature matrix for the complete set of supported features.

55.2 Compilation option

Available options within the $RTE_TARGET/build/.config file:

• CONFIG_RTE_LIBRTE_PMD_FAILSAFE (default y)

This option enables or disables compiling librte_pmd_failsafe.

55.3 Using the Fail-safe PMD from the EAL command line

The Fail-safe PMD can be used like most other DPDK virtual devices, by passing a --vdev parameter
to the EAL when starting the application. The device name must start with the net_failsafe prefix,
followed by numbers or letters. This name must be unique for each device. Each fail-safe instance must
have at least one sub-device, and at most two.

301

Network Interface Controller Drivers, Release 20.08.0

A sub-device can be any DPDK device, including possibly another fail-safe device.

55.3.1 Fail-safe command line parameters

• dev(<iface>) parameter

This parameter allows the user to define a sub-device. The <iface> part of this parameter must
be a valid device definition. It follows the same format provided to any -w or --vdev options.

Enclosing the device definition within parentheses here allows using additional sub-device param-
eters if need be. They will be passed on to the sub-device.

Note: In case where the sub-device is also used as a whitelist device, using -w on the EAL command
line, the fail-safe PMD will use the device with the options provided to the EAL instead of its own
parameters.

When trying to use a PCI device automatically probed by the blacklist mode, the name for the fail-
safe sub-device must be the full PCI id: Domain:Bus:Device.Function, i.e. 00:00:00.0 instead of
00:00.0, as the second form is historically accepted by the DPDK.

• exec(<shell command>) parameter

This parameter allows the user to provide a command to the fail-safe PMD to execute and define a
sub-device. It is done within a regular shell context. The first line of its output is read by the fail-
safe PMD and otherwise interpreted as if passed to a dev parameter. Any other line is discarded.
If the command fails or output an incorrect string, the sub-device is not initialized. All commas
within the shell command are replaced by spaces before executing the command. This helps
using scripts to specify devices.

• fd(<file descriptor number>) parameter

This parameter reads a device definition from an arbitrary file descriptor number in <iface>
format as described above.

The file descriptor is read in non-blocking mode and is never closed in order to take only the last
line into account (unlike exec()) at every probe attempt.

• mac parameter [MAC address]

This parameter allows the user to set a default MAC address to the fail-safe and all of its sub-
devices. If no default mac address is provided, the fail-safe PMD will read the MAC address of
the first of its sub-device to be successfully probed and use it as its default MAC address, trying to
set it to all of its other sub-devices. If no sub-device was successfully probed at initialization, then
a random MAC address is generated, that will be subsequently applied to all sub-devices once
they are probed.

• hotplug_poll parameter [UINT64] (default 2000)

This parameter allows the user to configure the amount of time in milliseconds between two sub-
device upkeep round.

55.3.2 Usage example

This section shows some example of using testpmd with a fail-safe PMD.

55.3. Using the Fail-safe PMD from the EAL command line 302

Network Interface Controller Drivers, Release 20.08.0

1. To build a PMD and configure DPDK, refer to the document compiling and testing a PMD for a
NIC.

2. Start testpmd. The sub-device 84:00.0 should be blacklisted from normal EAL operations to
avoid probing it twice, as the PCI bus is in blacklist mode.

$RTE_TARGET/build/app/testpmd -c 0xff -n 4 \
--vdev 'net_failsafe0,mac=de:ad:be:ef:01:02,dev(84:00.0),dev(net_ring0)' \
-b 84:00.0 -b 00:04.0 -- -i

If the sub-device 84:00.0 is not blacklisted, it will be probed by the EAL first. When the
fail-safe then tries to initialize it the probe operation fails.

Note that PCI blacklist mode is the default PCI operating mode.

3. Alternatively, it can be used alongside any other device in whitelist mode.

$RTE_TARGET/build/app/testpmd -c 0xff -n 4 \
--vdev 'net_failsafe0,mac=de:ad:be:ef:01:02,dev(84:00.0),dev(net_ring0)' \
-w 81:00.0 -- -i

4. Start testpmd using a flexible device definition

$RTE_TARGET/build/app/testpmd -c 0xff -n 4 -w ff:ff.f \
--vdev='net_failsafe0,exec(echo 84:00.0)' -- -i

5. Start testpmd, automatically probing the device 84:00.0 and using it with the fail-safe.

$RTE_TARGET/build/app/testpmd -c 0xff -n 4 \
--vdev 'net_failsafe0,dev(0000:84:00.0),dev(net_ring0)' -- -i

55.4 Using the Fail-safe PMD from an application

This driver strives to be as seamless as possible to existing applications, in order to propose the hotplug
functionality in the easiest way possible.

Care must be taken, however, to respect the ether API concerning device access, and in particular, using
the RTE_ETH_FOREACH_DEV macro to iterate over ethernet devices, instead of directly accessing
them or by writing one’s own device iterator.

unsigned int i;

/* VALID iteration over eth-dev. */
RTE_ETH_FOREACH_DEV(i) {

[...]
}

/* INVALID iteration over eth-dev. */
for (i = 0; i < RTE_MAX_ETHPORTS; i++) {

[...]
}

55.5 Plug-in feature

A sub-device can be defined without existing on the system when the fail-safe PMD is initialized. Upon
probing this device, the fail-safe PMD will detect its absence and postpone its use. It will then register
for a periodic check on any missing sub-device.

55.4. Using the Fail-safe PMD from an application 303

Network Interface Controller Drivers, Release 20.08.0

During this time, the fail-safe PMD can be used normally, configured and told to emit and receive
packets. It will store any applied configuration but will fail to emit anything, returning 0 from its TX
function. Any unsent packet must be freed.

Upon the probing of its missing sub-device, the current stored configuration will be applied. After this
configuration pass, the new sub-device will be synchronized with other sub-devices, i.e. be started if the
fail-safe PMD has been started by the user before.

55.6 Plug-out feature

A sub-device supporting the device removal event can be removed from its bus at any time. The fail-safe
PMD will register a callback for such event and react accordingly. It will try to safely stop, close and
uninit the sub-device having emitted this event, allowing it to free its eventual resources.

55.7 Fail-safe glossary

Fallback device Also called Secondary device.

The fail-safe will fail-over onto this device when the preferred device is absent.

Preferred device Also called Primary device.

The first declared sub-device in the fail-safe parameters. When this device is plugged, it is always
used as emitting device. It is the main sub-device and is used as target for configuration operations
if there is any ambiguity.

Upkeep round Periodical event during which sub-devices are serviced. Each devices having a state
different to that of the fail-safe device itself, is synchronized with it (brought down or up accord-
ingly). Additionally, any sub-device marked for removal is cleaned-up.

Slave In the context of the fail-safe PMD, synonymous to sub-device.

Sub-device A device being utilized by the fail-safe PMD. This is another PMD running underneath the
fail-safe PMD. Any sub-device can disappear at any time. The fail-safe will ensure that the device
removal happens gracefully.

55.6. Plug-out feature 304

	Overview of Networking Drivers
	Features Overview
	Speed capabilities
	Link status
	Link status event
	Removal event
	Queue status event
	Rx interrupt
	Lock-free Tx queue
	Fast mbuf free
	Free Tx mbuf on demand
	Queue start/stop
	MTU update
	Jumbo frame
	Scattered Rx
	LRO
	TSO
	Promiscuous mode
	Allmulticast mode
	Unicast MAC filter
	Multicast MAC filter
	RSS hash
	Inner RSS
	RSS key update
	RSS reta update
	VMDq
	SR-IOV
	DCB
	VLAN filter
	Flow control
	Flow API
	Rate limitation
	Traffic mirroring
	Inline crypto
	Inline protocol
	CRC offload
	VLAN offload
	QinQ offload
	L3 checksum offload
	L4 checksum offload
	Timestamp offload
	MACsec offload
	Inner L3 checksum
	Inner L4 checksum
	Packet type parsing
	Timesync
	Rx descriptor status
	Tx descriptor status
	Basic stats
	Extended stats
	Stats per queue
	FW version
	EEPROM dump
	Module EEPROM dump
	Registers dump
	LED
	Multiprocess aware
	BSD nic_uio
	Linux UIO
	Linux VFIO
	Other kdrv
	ARMv7
	ARMv8
	Power8
	x86-32
	x86-64
	Usage doc
	Design doc
	Perf doc
	Runtime Rx queue setup
	Runtime Tx queue setup
	Burst mode info
	Other dev ops not represented by a Feature

	Compiling and testing a PMD for a NIC
	Driver Compilation
	Running testpmd in Linux

	AF_PACKET Poll Mode Driver
	Options and inherent limitations
	Prerequisites
	Set up an af_packet interface

	AF_XDP Poll Mode Driver
	Options
	Prerequisites
	Set up an af_xdp interface
	Limitations

	ARK Poll Mode Driver
	Overview
	Device Parameters
	Data Path Interface
	Configuration Information
	Building DPDK
	Supported ARK RTL PCIe Instances
	Supported Operating Systems
	Supported Features
	Unsupported Features
	Pre-Requisites
	Usage Example

	Aquantia Atlantic DPDK Driver
	Supported features
	Experimental API features
	Configuration Information
	Application Programming Interface
	Limitations or Known issues
	Supported Chipsets and NICs

	AVP Poll Mode Driver
	Features and Limitations of the AVP PMD
	Prerequisites
	Launching a VM with an AVP type network attachment

	AXGBE Poll Mode Driver
	Supported Features
	Configuration Information
	Building DPDK
	Prerequisites and Pre-conditions
	Usage Example

	BNX2X Poll Mode Driver
	Supported Features
	Non-supported Features
	Co-existence considerations
	Supported QLogic NICs
	Prerequisites
	Pre-Installation Configuration
	Config File Options

	Driver compilation and testing
	Jumbo: Limitation
	SR-IOV: Prerequisites and sample Application Notes

	BNXT Poll Mode Driver
	CPU Support
	Kernel Dependency
	Running BNXT PMD
	Running on VF
	Running on PF

	Features
	Port Control
	Packet Filtering
	Stateless Offloads
	VLAN Insert/Strip
	Time Synchronization
	Statistics Collection
	Generic Flow Offload

	Notes
	Virtual Function Port Representors
	Application Support
	Firmware
	Multiple Processes
	Runtime Queue Setup
	Descriptor Status
	Bonding

	Vector Processing
	Appendix
	Supported Chipsets and Adapters

	CXGBE Poll Mode Driver
	Features
	Limitations
	Supported Chelsio T5 NICs
	Supported Chelsio T6 NICs
	Supported SR-IOV Chelsio NICs
	Prerequisites
	Pre-Installation Configuration
	Config File Options
	Runtime Options

	Driver compilation and testing
	Linux
	Linux Installation
	Running testpmd
	Configuring SR-IOV Virtual Functions

	FreeBSD
	FreeBSD Installation
	Running testpmd

	Sample Application Notes
	Enable/Disable Flow Control
	Jumbo Mode

	DPAA Poll Mode Driver
	NXP DPAA (Data Path Acceleration Architecture - Gen 1)
	DPAA Overview

	DPAA DPDK - Poll Mode Driver Overview
	DPAA Bus driver
	DPAA NIC Driver (PMD)
	DPAA Mempool Driver

	Whitelisting & Blacklisting
	Supported DPAA SoCs
	Prerequisites
	Pre-Installation Configuration
	Config File Options
	Environment Variables

	Driver compilation and testing
	Limitations
	Platform Requirement
	Maximum packet length
	Multiprocess Support

	DPAA2 Poll Mode Driver
	NXP DPAA2 (Data Path Acceleration Architecture Gen2)
	DPAA2 Overview
	Overview of DPAA2 Objects
	DPAA2 Objects for an Ethernet Network Interface
	Object Connections
	Interrupts

	DPAA2 DPDK - Poll Mode Driver Overview
	DPAA2 bus driver
	DPIO driver
	DPBP based Mempool driver
	DPAA2 NIC Driver

	Supported DPAA2 SoCs
	Prerequisites
	Pre-Installation Configuration
	Config File Options

	Driver compilation and testing
	Enabling logs
	Whitelisting & Blacklisting
	Limitations
	Platform Requirement
	Maximum packet length
	Other Limitations

	Driver for VM Emulated Devices
	Validated Hypervisors
	Recommended Guest Operating System in Virtual Machine
	Setting Up a KVM Virtual Machine
	Known Limitations of Emulated Devices

	ENA Poll Mode Driver
	Overview
	Management Interface
	Data Path Interface
	Configuration information
	Building DPDK
	Supported ENA adapters
	Supported Operating Systems
	Supported features
	Prerequisites
	Usage example

	ENETC Poll Mode Driver
	ENETC
	ENETC Overview
	ENETC Features
	NIC Driver (PMD)
	Supported ENETC SoCs
	Prerequisites
	Driver compilation and testing

	ENIC Poll Mode Driver
	How to obtain ENIC PMD integrated DPDK
	Configuration information
	SR-IOV mode utilization
	Generic Flow API support
	Overlay Offload
	Ingress VLAN Rewrite
	Vectorized Rx Handler
	Limitations
	How to build the suite
	Supported Cisco VIC adapters
	Supported Operating Systems
	Supported features
	Known bugs and unsupported features in this release
	Prerequisites
	Additional Reference
	Contact Information

	FM10K Poll Mode Driver
	FTAG Based Forwarding of FM10K
	Vector PMD for FM10K
	RX Constraints
	TX Constraint

	Limitations
	Switch manager
	Support for Switch Restart
	CRC stripping
	Maximum packet length
	Statistic Polling Frequency
	Interrupt mode

	HINIC Poll Mode Driver
	Features
	Prerequisites
	Pre-Installation Configuration
	Config File Options

	Driver compilation and testing
	Limitations or Known issues

	HNS3 Poll Mode Driver
	Features
	Prerequisites
	Pre-Installation Configuration
	Config File Options

	Driver compilation and testing
	Limitations or Known issues

	I40E Poll Mode Driver
	Features
	Prerequisites
	Recommended Matching List
	Pre-Installation Configuration
	Config File Options
	Runtime Config Options
	Vector RX Pre-conditions

	Driver compilation and testing
	SR-IOV: Prerequisites and sample Application Notes
	Sample Application Notes
	Vlan filter
	Flow Director
	Floating VEB
	Dynamic Device Personalization (DDP)
	Input set configuration
	Queue region configuration
	Generic flow API

	Limitations or Known issues
	MPLS packet classification
	16 Byte RX Descriptor setting on DPDK VF
	Receive packets with Ethertype 0x88A8
	Incorrect Rx statistics when packet is oversize
	VF & TC max bandwidth setting
	TC TX scheduling mode setting
	VF performance is impacted by PCI extended tag setting
	Vlan strip of VF
	DCB function
	Global configuration warning
	Cloud Filter

	High Performance of Small Packets on 40GbE NIC
	Use 16 Bytes RX Descriptor Size
	Input set requirement of each pctype for FDIR

	Example of getting best performance with l3fwd example
	Tx bytes affected by the link status change

	ICE Poll Mode Driver
	Prerequisites
	Pre-Installation Configuration
	Config File Options
	Runtime Config Options

	Driver compilation and testing
	Features
	Vector PMD
	Malicious driver detection (MDD)
	Device Config Function (DCF)

	Sample Application Notes
	Vlan filter

	Limitations or Known issues
	limitation

	IGB Poll Mode Driver
	Features
	Limitations or Known issues
	Supported Chipsets and NICs

	IGC Poll Mode Driver
	Config File Options
	Driver compilation and testing
	Supported Chipsets and NICs
	Sample Application Notes

	Vlan filter
	Flow Director

	IONIC Driver
	Identifying the Adapter
	Pre-Installation Configuration
	Building DPDK

	IPN3KE Poll Mode Driver
	Prerequisites
	Pre-Installation Configuration
	Config File Options
	Runtime Config Options

	Driver compilation and testing
	Sample Application Notes
	Packet TX/RX with FPGA Pass-through image
	HQoS and flow acceleration

	Limitations or Known issues
	19.05 limitation

	IXGBE Driver
	Vector PMD for IXGBE
	RX Constraints
	TX Constraint

	Application Programming Interface
	Sample Application Notes
	l3fwd
	load_balancer

	Limitations or Known issues
	Malicious Driver Detection not Supported
	Statistics
	MTU setting
	VF MAC address setting
	X550 does not support legacy interrupt mode

	Inline crypto processing support
	Virtual Function Port Representors
	Supported Chipsets and NICs

	Intel Virtual Function Driver
	SR-IOV Mode Utilization in a DPDK Environment
	Physical and Virtual Function Infrastructure
	Validated Hypervisors
	Expected Guest Operating System in Virtual Machine

	Setting Up a KVM Virtual Machine Monitor
	DPDK SR-IOV PMD PF/VF Driver Usage Model
	Fast Host-based Packet Processing

	SR-IOV (PF/VF) Approach for Inter-VM Communication

	KNI Poll Mode Driver
	Usage
	Default interface configuration
	PMD arguments
	PMD log messages
	PMD testing

	LiquidIO VF Poll Mode Driver
	Supported LiquidIO Adapters
	Pre-Installation Configuration
	SR-IOV: Prerequisites and Sample Application Notes
	Limitations
	VF MTU
	VLAN offload
	Ring size
	CRC stripping

	Memif Poll Mode Driver
	Shared memory
	Zero-copy slave
	Example: testpmd
	Example: testpmd and VPP
	Example: testpmd memif loopback

	MLX4 poll mode driver library
	Implementation details
	Configuration
	Compilation options
	Environment variables
	Run-time configuration
	Kernel module parameters

	Limitations
	Prerequisites
	Current RDMA core package and Linux kernel (recommended)
	Mellanox OFED as a fallback

	Quick Start Guide
	Performance tuning
	Usage example

	MLX5 poll mode driver
	Design
	Features
	Limitations
	Statistics
	Configuration
	Compilation options
	Environment variables
	Run-time configuration
	Firmware configuration

	Prerequisites
	Installation

	Supported NICs
	Quick Start Guide on OFED/EN
	Enable switchdev mode
	Performance tuning
	Supported hardware offloads
	Notes for metadata
	Notes for rte_flow
	Notes for testpmd
	Usage example
	How to dump flows

	MVNETA Poll Mode Driver
	Features
	Limitations
	Prerequisites
	Pre-Installation Configuration
	Config File Options
	Runtime options

	Building DPDK
	Usage Example

	MVPP2 Poll Mode Driver
	Features
	Limitations
	Prerequisites
	Config File Options
	Building DPDK
	Usage Example
	Extended stats
	QoS Configuration
	Configuration syntax

	Flow API
	Supported flow actions
	Supported flow items
	Classifier match engine
	Flow rules usage example
	Limitations

	Traffic metering and policing
	Limitations
	Usage example

	Traffic Management API
	Limitations
	Usage example

	Netvsc poll mode driver
	Features and Limitations of Hyper-V PMD
	Installation
	Prerequisites
	Netvsc PMD arguments

	NFB poll mode driver library
	Prerequisites
	Versions of the packages

	Configuration
	Using the NFB PMD
	NFB card architecture
	Limitations
	Example of usage

	NFP poll mode driver library
	Dependencies
	Building the software
	Driver compilation and testing
	Using the PF
	PF multiport support
	PF multiprocess support
	System configuration

	NULL Poll Mode Driver
	Usage
	Runtime Config Options

	OCTEON TX Poll Mode driver
	Features
	Supported OCTEON TX SoCs
	Unsupported features
	Prerequisites
	Pre-Installation Configuration
	Config File Options
	Driver compilation and testing

	Initialization
	Device arguments
	Dependency

	Limitations
	octeontx_fpavf external mempool handler dependency
	CRC stripping
	Maximum packet length
	Maximum mempool size

	OCTEON TX2 Poll Mode driver
	Features
	Prerequisites
	Compile time Config Options
	Driver compilation and testing
	Runtime Config Options
	Traffic Management API
	Limitations
	mempool_octeontx2 external mempool handler dependency
	CRC stripping
	Multicast MAC filtering
	SDP interface support
	Inline Protocol Processing

	Debugging Options
	RTE Flow Support

	PFE Poll Mode Driver
	PFE
	PFE Overview
	PFE Features
	Supported PFE SoCs
	Prerequisites
	Driver compilation and testing
	Limitations

	QEDE Poll Mode Driver
	Supported Features
	Non-supported Features
	Co-existence considerations
	Supported QLogic Adapters
	Prerequisites
	Performance note
	Config File Options
	Config notes

	Driver compilation and testing
	RTE Flow Support
	SR-IOV: Prerequisites and Sample Application Notes

	Solarflare libefx-based Poll Mode Driver
	Features
	Non-supported Features
	Limitations
	Equal stride super-buffer mode

	Tunnels support
	Flow API support
	Ethernet destination individual/group match
	Exceptions to flow rules

	Supported NICs
	Prerequisites
	Pre-Installation Configuration
	Config File Options
	Per-Device Parameters
	Dynamic Logging Parameters

	Soft NIC Poll Mode Driver
	Flow
	Supported Operating Systems
	Build options
	Soft NIC PMD arguments
	Soft NIC testing
	Soft NIC Firmware
	QoS API Support:
	Flow API support:
	Example:

	SZEDATA2 poll mode driver library
	Prerequisites
	Versions of the packages

	Configuration
	Using the SZEDATA2 PMD
	NFB card architecture
	Limitations
	Example of usage

	Tun|Tap Poll Mode Driver
	Flow API support
	Examples of testpmd flow rules

	Multi-process sharing
	Example
	RSS specifics
	Systems supporting flow API

	ThunderX NICVF Poll Mode Driver
	Features
	Supported ThunderX SoCs
	Prerequisites
	Pre-Installation Configuration
	Config File Options

	Driver compilation and testing
	Linux
	SR-IOV: Prerequisites and sample Application Notes
	Multiple Queue Set per DPDK port configuration
	LBK HW Access
	Example device binding
	Thunder-nic VF's

	Debugging Options
	Module params
	skip_data_bytes

	Limitations
	CRC stripping
	Maximum packet length
	Maximum packet segments
	skip_data_bytes

	VDEV_NETVSC driver
	Implementation details
	Build options
	Run-time parameters

	Poll Mode Driver for Emulated Virtio NIC
	Virtio Implementation in DPDK
	Features and Limitations of virtio PMD
	Prerequisites
	Virtio with kni vhost Back End
	Virtio with qemu virtio Back End
	Virtio PMD Rx/Tx Callbacks
	Interrupt mode
	Prerequisites for Rx interrupts
	Example

	Virtio PMD arguments
	Virtio paths Selection and Usage
	Virtio paths Selection
	Rx/Tx callbacks of each Virtio path
	Virtio paths Support Status from Release to Release
	QEMU Support Status
	How to Debug

	Poll Mode Driver that wraps vhost library
	Vhost Implementation in DPDK
	Features and Limitations of vhost PMD
	Vhost PMD arguments
	Vhost PMD event handling
	Vhost PMD with testpmd application

	Poll Mode Driver for Paravirtual VMXNET3 NIC
	VMXNET3 Implementation in the DPDK
	Features and Limitations of VMXNET3 PMD
	Prerequisites
	VMXNET3 with a Native NIC Connected to a vSwitch
	VMXNET3 Chaining VMs Connected to a vSwitch

	Libpcap and Ring Based Poll Mode Drivers
	Using the Drivers from the EAL Command Line
	Libpcap-based PMD
	Rings-based PMD
	Using the Poll Mode Driver from an Application

	Fail-safe poll mode driver library
	Features
	Compilation option
	Using the Fail-safe PMD from the EAL command line
	Fail-safe command line parameters
	Usage example

	Using the Fail-safe PMD from an application
	Plug-in feature
	Plug-out feature
	Fail-safe glossary

