
Programmer’s Guide
Release 20.08.0

Aug 08, 2020



CONTENTS

1 Introduction 1
1.1 Documentation Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Overview 3
2.1 Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Environment Abstraction Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Core Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Ring Manager (librte_ring) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.2 Memory Pool Manager (librte_mempool) . . . . . . . . . . . . . . . . . . . . 4
2.3.3 Network Packet Buffer Management (librte_mbuf) . . . . . . . . . . . . . . . 6
2.3.4 Timer Manager (librte_timer) . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Ethernet* Poll Mode Driver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Packet Forwarding Algorithm Support . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 librte_net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Environment Abstraction Layer 7
3.1 EAL in a Linux-userland Execution Environment . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Initialization and Core Launching . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Shutdown and Cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Multi-process Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.4 Memory Mapping Discovery and Memory Reservation . . . . . . . . . . . . . 8
3.1.5 Support for Externally Allocated Memory . . . . . . . . . . . . . . . . . . . . 12
3.1.6 Per-lcore and Shared Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.7 Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.8 CPU Feature Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.9 User Space Interrupt Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.10 Blacklisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.11 Misc Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.12 IOVA Mode Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.13 IOVA Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Memory Segments and Memory Zones (memzone) . . . . . . . . . . . . . . . . . . . . 16
3.3 Multiple pthread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 EAL pthread and lcore Affinity . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 non-EAL pthread support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Public Thread API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.4 Control Thread API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.5 Known Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.6 cgroup control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

i



3.4 Malloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.1 Cookies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Alignment and NUMA Constraints . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.3 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.4 Internal Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Service Cores 25
4.1 Service Core Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Enabling Services on Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Service Core Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Trace Library 27
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 DPDK tracing library features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 How to add a tracepoint? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3.1 Create the tracepoint header file . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.2 Register the tracepoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 Fast path tracepoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5 Event record mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.6 Trace file location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.7 View and analyze the recorded events . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.7.1 Use the babeltrace command-line tool . . . . . . . . . . . . . . . . . . . . . . 29
5.7.2 Use the tracecompass GUI tool . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.8 Quick start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.9 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.9.1 Trace metadata creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.9.2 Trace memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.9.3 Trace memory layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 RCU Library 33
6.1 What is Quiescent State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Factors affecting the RCU mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 RCU in DPDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4 How to use this library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.5 Resource reclamation framework for DPDK . . . . . . . . . . . . . . . . . . . . . . . 36

7 Ring Library 39
7.1 References for Ring Implementation in FreeBSD* . . . . . . . . . . . . . . . . . . . . 40
7.2 Lockless Ring Buffer in Linux* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.3 Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.3.1 Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.5 Anatomy of a Ring Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.5.1 Single Producer Enqueue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.5.2 Single Consumer Dequeue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.5.3 Multiple Producers Enqueue . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.5.4 Modulo 32-bit Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.6 Producer/consumer synchronization modes . . . . . . . . . . . . . . . . . . . . . . . . 49
7.6.1 MP/MC (default one) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.6.2 SP/SC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.6.3 MP_RTS/MC_RTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.6.4 MP_HTS/MC_HTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ii



7.7 Ring Peek API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Stack Library 52
8.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.1.1 Lock-based Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.1.2 Lock-free Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9 Mempool Library 54
9.1 Cookies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.2 Stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.3 Memory Alignment Constraints on x86 architecture . . . . . . . . . . . . . . . . . . . 54
9.4 Local Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.5 Mempool Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.6 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10 Mbuf Library 58
10.1 Design of Packet Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.2 Buffers Stored in Memory Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.3 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.4 Allocating and Freeing mbufs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.5 Manipulating mbufs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.6 Meta Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10.6.1 Dynamic fields and flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.7 Direct and Indirect Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.8 Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.9 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

11 Poll Mode Driver 64
11.1 Requirements and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
11.2 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11.3 Logical Cores, Memory and NIC Queues Relationships . . . . . . . . . . . . . . . . . 66
11.4 Device Identification, Ownership and Configuration . . . . . . . . . . . . . . . . . . . 66

11.4.1 Device Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
11.4.2 Port Ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11.4.3 Device Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11.4.4 On-the-Fly Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11.4.5 Configuration of Transmit Queues . . . . . . . . . . . . . . . . . . . . . . . . 68
11.4.6 Free Tx mbuf on Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
11.4.7 Hardware Offload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

11.5 Poll Mode Driver API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.5.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.5.2 Generic Packet Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.5.3 Ethernet Device API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
11.5.4 Ethernet Device Standard Device Arguments . . . . . . . . . . . . . . . . . . 71
11.5.5 Extended Statistics API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
11.5.6 NIC Reset API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

12 Generic flow API (rte_flow) 75
12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
12.2 Flow rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

12.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

iii



12.2.2 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
12.2.3 Pattern item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
12.2.4 Matching pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
12.2.5 Meta item types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
12.2.6 Data matching item types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
12.2.7 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
12.2.8 Action types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
12.2.9 Negative types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.2.10 Planned types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

12.3 Rules management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.3.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.3.2 Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
12.3.3 Destruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
12.3.4 Flush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
12.3.5 Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

12.4 Flow isolated mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
12.5 Verbose error reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12.6 Helpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

12.6.1 Error initializer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12.6.2 Object conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

12.7 Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12.8 PMD interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
12.9 Device compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

12.9.1 Global bit-masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.9.2 Unsupported layer types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.9.3 ANY pattern item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
12.9.4 Unsupported actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
12.9.5 Flow rules priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

12.10 Future evolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

13 Switch Representation within DPDK Applications 123
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
13.2 Port Representors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
13.3 Basic SR-IOV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
13.4 Controlled SR-IOV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

13.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
13.4.2 VF Representors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
13.4.3 Traffic Steering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

13.5 Flow API (rte_flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
13.5.1 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
13.5.2 Traffic Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
13.5.3 Transferring Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
13.5.4 Pattern Items And Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
13.5.5 Actions Order and Repetition . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

13.6 Switching Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
13.6.1 Associating VF 1 with Physical Port 0 . . . . . . . . . . . . . . . . . . . . . . 135
13.6.2 Sharing Broadcasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
13.6.3 Encapsulating VF 2 Traffic in VXLAN . . . . . . . . . . . . . . . . . . . . . . 135

14 Traffic Metering and Policing API 137
14.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
14.2 Configuration steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

iv



14.3 Run-time processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

15 Traffic Management API 139
15.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
15.2 Capability API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
15.3 Scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
15.4 Traffic Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
15.5 Congestion Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
15.6 Packet Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
15.7 Steps to Setup the Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

15.7.1 Initial Hierarchy Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 141
15.7.2 Hierarchy Commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
15.7.3 Run-Time Hierarchy Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

16 Wireless Baseband Device Library 143
16.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
16.2 Device Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

16.2.1 Device Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
16.2.2 Device Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
16.2.3 Device Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
16.2.4 Queues Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
16.2.5 Device & Queues Management . . . . . . . . . . . . . . . . . . . . . . . . . . 145
16.2.6 Logical Cores, Memory and Queues Relationships . . . . . . . . . . . . . . . 145

16.3 Device Operation Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
16.3.1 Capabilities Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

16.4 Operation Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
16.4.1 Enqueue / Dequeue Burst APIs . . . . . . . . . . . . . . . . . . . . . . . . . . 147
16.4.2 Operation Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
16.4.3 Operation Management and Allocation . . . . . . . . . . . . . . . . . . . . . . 148
16.4.4 BBDEV Inbound/Outbound Memory . . . . . . . . . . . . . . . . . . . . . . 148
16.4.5 BBDEV Turbo Encode Operation . . . . . . . . . . . . . . . . . . . . . . . . 150
16.4.6 BBDEV Turbo Decode Operation . . . . . . . . . . . . . . . . . . . . . . . . 152
16.4.7 BBDEV LDPC Encode Operation . . . . . . . . . . . . . . . . . . . . . . . . 153
16.4.8 BBDEV LDPC Decode Operation . . . . . . . . . . . . . . . . . . . . . . . . 157

16.5 Sample code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
16.5.1 BBDEV Device API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

17 Cryptography Device Library 163
17.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
17.2 Device Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

17.2.1 Device Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
17.2.2 Device Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
17.2.3 Device Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
17.2.4 Configuration of Queue Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
17.2.5 Logical Cores, Memory and Queues Pair Relationships . . . . . . . . . . . . . 165

17.3 Device Features and Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
17.3.1 Device Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
17.3.2 Device Operation Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 166
17.3.3 Capabilities Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

17.4 Operation Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
17.4.1 Private data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
17.4.2 Enqueue / Dequeue Burst APIs . . . . . . . . . . . . . . . . . . . . . . . . . . 168

v



17.4.3 Operation Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
17.4.4 Operation Management and Allocation . . . . . . . . . . . . . . . . . . . . . . 169

17.5 Symmetric Cryptography Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
17.5.1 Session and Session Management . . . . . . . . . . . . . . . . . . . . . . . . 169
17.5.2 Transforms and Transform Chaining . . . . . . . . . . . . . . . . . . . . . . . 170
17.5.3 Symmetric Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

17.6 Synchronous mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
17.7 Sample code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
17.8 Asymmetric Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

17.8.1 Session and Session Management . . . . . . . . . . . . . . . . . . . . . . . . 177
17.8.2 Asymmetric Sessionless Support . . . . . . . . . . . . . . . . . . . . . . . . . 177
17.8.3 Transforms and Transform Chaining . . . . . . . . . . . . . . . . . . . . . . . 177
17.8.4 Asymmetric Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

17.9 Asymmetric crypto Sample code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
17.9.1 Asymmetric Crypto Device API . . . . . . . . . . . . . . . . . . . . . . . . . 181

18 Compression Device Library 182
18.1 Device Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

18.1.1 Device Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
18.1.2 Device Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
18.1.3 Device Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
18.1.4 Configuration of Queue Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
18.1.5 Logical Cores, Memory and Queues Pair Relationships . . . . . . . . . . . . . 183

18.2 Device Features and Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
18.2.1 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
18.2.2 Capabilities Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

18.3 Compression Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
18.3.1 Operation Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
18.3.2 Operation Management and Allocation . . . . . . . . . . . . . . . . . . . . . . 184
18.3.3 Passing source data as mbuf-chain . . . . . . . . . . . . . . . . . . . . . . . . 185
18.3.4 Operation Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
18.3.5 Operation status after enqueue / dequeue . . . . . . . . . . . . . . . . . . . . . 185
18.3.6 Produced, Consumed And Operation Status . . . . . . . . . . . . . . . . . . . 185

18.4 Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
18.5 Compression API Hash support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
18.6 Compression API Stateless operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

18.6.1 priv_xform in Stateless operation . . . . . . . . . . . . . . . . . . . . . . . . . 186
18.6.2 Stateless and OUT_OF_SPACE . . . . . . . . . . . . . . . . . . . . . . . . . 189
18.6.3 Hash in Stateless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
18.6.4 Checksum in Stateless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

18.7 Compression API Stateful operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
18.7.1 Stream in Stateful operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
18.7.2 Stateful and OUT_OF_SPACE . . . . . . . . . . . . . . . . . . . . . . . . . . 191
18.7.3 Hash in Stateful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
18.7.4 Checksum in Stateful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

18.8 Burst in compression API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
18.8.1 Enqueue / Dequeue Burst APIs . . . . . . . . . . . . . . . . . . . . . . . . . . 192

18.9 Sample code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
18.9.1 Compression Device API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

19 RegEx Device Library 194
19.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

vi



19.2 Device Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
19.2.1 Device Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
19.2.2 Device Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
19.2.3 Device Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
19.2.4 Configuration of Rules Database . . . . . . . . . . . . . . . . . . . . . . . . . 195
19.2.5 Configuration of Queue Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
19.2.6 Logical Cores, Memory and Queues Pair Relationships . . . . . . . . . . . . . 196

19.3 Device Features and Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
19.3.1 Enqueue / Dequeue Burst APIs . . . . . . . . . . . . . . . . . . . . . . . . . . 196

20 Security Library 197
20.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

20.1.1 Inline Crypto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
20.1.2 Inline protocol offload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
20.1.3 Lookaside protocol offload . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
20.1.4 PDCP Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
20.1.5 DOCSIS Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

20.2 Device Features and Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
20.2.1 Device Capabilities For Security Operations . . . . . . . . . . . . . . . . . . . 202
20.2.2 Capabilities Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
20.2.3 Security Session Create/Free . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
20.2.4 Security session configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 205
20.2.5 Security API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
20.2.6 Flow based Security Session . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

21 Rawdevice Library 209
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
21.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

21.2.1 Device Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

22 Link Bonding Poll Mode Driver Library 211
22.1 Link Bonding Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
22.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

22.2.1 Link Status Change Interrupts / Polling . . . . . . . . . . . . . . . . . . . . . 217
22.2.2 Requirements / Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
22.2.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

22.3 Using Link Bonding Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
22.3.1 Using the Poll Mode Driver from an Application . . . . . . . . . . . . . . . . 219
22.3.2 Using Link Bonding Devices from the EAL Command Line . . . . . . . . . . 219

23 Timer Library 222
23.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
23.2 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
23.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

24 Hash Library 224
24.1 Hash API Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
24.2 Multi-process support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
24.3 Multi-thread support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
24.4 Extendable Bucket Functionality support . . . . . . . . . . . . . . . . . . . . . . . . . 226
24.5 Implementation Details (non Extendable Bucket Case) . . . . . . . . . . . . . . . . . . 226
24.6 Implementation Details (with Extendable Bucket) . . . . . . . . . . . . . . . . . . . . 227

vii



24.7 Entry distribution in hash table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
24.8 Use Case: Flow Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
24.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

25 Elastic Flow Distributor Library 230
25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
25.2 Flow Based Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

25.2.1 Computation Based Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
25.2.2 Flow-Table Based Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
25.2.3 EFD Based Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

25.3 Example of EFD Library Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
25.4 Library API Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

25.4.1 EFD Table Create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
25.4.2 EFD Insert and Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
25.4.3 EFD Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
25.4.4 EFD Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

25.5 Library Internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
25.5.1 Insert Function Internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
25.5.2 Lookup Function Internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
25.5.3 Group Rebalancing Function Internals . . . . . . . . . . . . . . . . . . . . . . 238

25.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

26 Membership Library 240
26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
26.2 Vector of Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
26.3 Hash-Table based Set-Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

26.3.1 Set-Summaries with False Negative Probability . . . . . . . . . . . . . . . . . 244
26.4 Library API Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

26.4.1 Set-summary Create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
26.4.2 Set-summary Element Insertion . . . . . . . . . . . . . . . . . . . . . . . . . 246
26.4.3 Set-summary Element Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . 246
26.4.4 Set-summary Element Delete . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

26.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

27 LPM Library 248
27.1 LPM API Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
27.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

27.2.1 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
27.2.2 Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
27.2.3 Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
27.2.4 Limitations in the Number of Rules . . . . . . . . . . . . . . . . . . . . . . . 251
27.2.5 Use Case: IPv4 Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
27.2.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

28 LPM6 Library 253
28.1 LPM6 API Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

28.1.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
28.1.2 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
28.1.3 Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
28.1.4 Limitations in the Number of Rules . . . . . . . . . . . . . . . . . . . . . . . 256

28.2 Use Case: IPv6 Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

viii



29 Flow Classification Library 257
29.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

29.1.1 Classifier creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
29.1.2 Adding a table to the Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . 260
29.1.3 Flow Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
29.1.4 Adding Flow Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
29.1.5 Deleting Flow Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
29.1.6 Packet Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

30 Packet Distributor Library 264
30.1 Distributor Core Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
30.2 Worker Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

31 Reorder Library 267
31.1 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
31.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
31.3 Use Case: Packet Distributor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

32 IP Fragmentation and Reassembly Library 269
32.1 Packet fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
32.2 Packet reassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

32.2.1 IP Fragment Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
32.2.2 Packet Reassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
32.2.3 Debug logging and Statistics Collection . . . . . . . . . . . . . . . . . . . . . 270

33 Generic Receive Offload Library 272
33.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
33.2 Two Sets of API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

33.2.1 Lightweight Mode API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
33.2.2 Heavyweight Mode API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

33.3 Reassembly Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
33.3.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
33.3.2 Key-based Reassembly Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 273

33.4 TCP/IPv4 GRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
33.5 VxLAN GRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
33.6 GRO Library Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

34 Generic Segmentation Offload Library 276
34.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
34.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
34.3 Packet Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

34.3.1 GSO Output Segment Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
34.4 Supported GSO Packet Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

34.4.1 TCP/IPv4 GSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
34.4.2 UDP/IPv4 GSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
34.4.3 VxLAN GSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
34.4.4 GRE GSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

34.5 How to Segment a Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

35 The librte_pdump Library 281
35.1 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
35.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

ix



35.3 Use Case: Packet Capturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

36 Multi-process Support 283
36.1 Memory Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
36.2 Deployment Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

36.2.1 Symmetric/Peer Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
36.2.2 Asymmetric/Non-Peer Processes . . . . . . . . . . . . . . . . . . . . . . . . . 285
36.2.3 Running Multiple Independent DPDK Applications . . . . . . . . . . . . . . . 285
36.2.4 Running Multiple Independent Groups of DPDK Applications . . . . . . . . . 286

36.3 Multi-process Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
36.4 Communication between multiple processes . . . . . . . . . . . . . . . . . . . . . . . 287

36.4.1 Registering for incoming messages . . . . . . . . . . . . . . . . . . . . . . . . 287
36.4.2 Sending messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
36.4.3 Sending requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
36.4.4 Receiving and responding to messages . . . . . . . . . . . . . . . . . . . . . . 288
36.4.5 Misc considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

37 Kernel NIC Interface 290
37.1 The DPDK KNI Kernel Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

37.1.1 Loopback Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
37.1.2 Kernel Thread Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
37.1.3 Default Carrier State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

37.2 KNI Creation and Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
37.3 DPDK mbuf Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
37.4 Use Case: Ingress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
37.5 Use Case: Egress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
37.6 IOVA = VA: Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
37.7 Ethtool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

38 Thread Safety of DPDK Functions 296
38.1 Fast-Path APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
38.2 Performance Insensitive API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
38.3 Library Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
38.4 Interrupt Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

39 Event Device Library 298
39.1 Event struct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

39.1.1 Event Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
39.1.2 Event Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
39.1.3 Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
39.1.4 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

39.2 API Walk-through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
39.2.1 Init and Config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
39.2.2 Setting up Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
39.2.3 Setting up Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
39.2.4 Linking Queues and Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
39.2.5 Starting the EventDev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
39.2.6 Ingress of New Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
39.2.7 Forwarding of Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
39.2.8 Egress of Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

39.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

x



40 Event Ethernet Rx Adapter Library 305
40.1 API Walk-through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

40.1.1 Creating an Adapter Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
40.1.2 Adding Rx Queues to the Adapter Instance . . . . . . . . . . . . . . . . . . . 306
40.1.3 Querying Adapter Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 306
40.1.4 Configuring the Service Function . . . . . . . . . . . . . . . . . . . . . . . . . 306
40.1.5 Starting the Adapter Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
40.1.6 Getting Adapter Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
40.1.7 Interrupt Based Rx Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
40.1.8 Rx Callback for SW Rx Adapter . . . . . . . . . . . . . . . . . . . . . . . . . 307

41 Event Ethernet Tx Adapter Library 308
41.1 API Walk-through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

41.1.1 Creating an Adapter Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
41.1.2 Adding Tx Queues to the Adapter Instance . . . . . . . . . . . . . . . . . . . 309
41.1.3 Querying Adapter Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 309
41.1.4 Linking a Queue to the Adapter’s Event Port . . . . . . . . . . . . . . . . . . . 309
41.1.5 Configuring the Service Function . . . . . . . . . . . . . . . . . . . . . . . . . 309
41.1.6 Starting the Adapter Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
41.1.7 Enqueuing Packets to the Adapter . . . . . . . . . . . . . . . . . . . . . . . . 309
41.1.8 Getting Adapter Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

42 Event Timer Adapter Library 311
42.1 Event Timer struct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

42.1.1 Timer Expiry Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
42.1.2 Timeout Ticks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
42.1.3 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
42.1.4 User Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

42.2 API Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
42.2.1 Create and Configure an Adapter Instance . . . . . . . . . . . . . . . . . . . . 312
42.2.2 Retrieve Event Timer Adapter Contextual Information . . . . . . . . . . . . . 313
42.2.3 Configuring the Service Component . . . . . . . . . . . . . . . . . . . . . . . 313
42.2.4 Starting the Adapter Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
42.2.5 Arming Event Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
42.2.6 Canceling Event Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

42.3 Processing Timer Expiry Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
42.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

43 Event Crypto Adapter Library 316
43.1 Adapter Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

43.1.1 RTE_EVENT_CRYPTO_ADAPTER_OP_NEW mode . . . . . . . . . . . . . 316
43.1.2 RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD mode . . . . . . . . . . 316

43.2 API Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
43.2.1 Create an adapter instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
43.2.2 Querying adapter capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
43.2.3 Adding queue pair to the adapter instance . . . . . . . . . . . . . . . . . . . . 319
43.2.4 Configure the service function . . . . . . . . . . . . . . . . . . . . . . . . . . 319
43.2.5 Set event request/response information . . . . . . . . . . . . . . . . . . . . . . 319
43.2.6 Start the adapter instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
43.2.7 Get adapter statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

44 Quality of Service (QoS) Framework 322

xi



44.1 Packet Pipeline with QoS Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
44.2 Hierarchical Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

44.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
44.2.2 Scheduling Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
44.2.3 Application Programming Interface (API) . . . . . . . . . . . . . . . . . . . . 327
44.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
44.2.5 Worst Case Scenarios for Performance . . . . . . . . . . . . . . . . . . . . . . 347

44.3 Dropper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
44.3.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
44.3.2 Enqueue Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
44.3.3 Queue Empty Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
44.3.4 Source Files Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
44.3.5 Integration with the DPDK QoS Scheduler . . . . . . . . . . . . . . . . . . . . 355
44.3.6 Integration with the DPDK QoS Scheduler Sample Application . . . . . . . . . 356
44.3.7 Application Programming Interface (API) . . . . . . . . . . . . . . . . . . . . 357

44.4 Traffic Metering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
44.4.1 Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
44.4.2 Implementation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

45 Power Management 360
45.1 CPU Frequency Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
45.2 Core-load Throttling through C-States . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
45.3 Per-core Turbo Boost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
45.4 Use of Power Library in a Hyper-Threaded Environment . . . . . . . . . . . . . . . . . 361
45.5 API Overview of the Power Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
45.6 User Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
45.7 Empty Poll API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

45.7.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
45.7.2 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
45.7.3 API Overview for Empty Poll Power Management . . . . . . . . . . . . . . . 363

45.8 User Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
45.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

46 Packet Classification and Access Control 364
46.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

46.1.1 Rule definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
46.1.2 RT memory size limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
46.1.3 Classification methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

46.2 Application Programming Interface (API) Usage . . . . . . . . . . . . . . . . . . . . . 369
46.2.1 Classify with Multiple Categories . . . . . . . . . . . . . . . . . . . . . . . . 370

47 Packet Framework 373
47.1 Design Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
47.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
47.3 Port Library Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

47.3.1 Port Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
47.3.2 Port Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

47.4 Table Library Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
47.4.1 Table Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
47.4.2 Table Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
47.4.3 Hash Table Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

47.5 Pipeline Library Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

xii



47.5.1 Connectivity of Ports and Tables . . . . . . . . . . . . . . . . . . . . . . . . . 391
47.5.2 Port Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
47.5.3 Table Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

47.6 Multicore Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
47.6.1 Shared Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

47.7 Interfacing with Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

48 Vhost Library 395
48.1 Vhost API Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
48.2 Vhost-user Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
48.3 Guest memory requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
48.4 Vhost supported vSwitch reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
48.5 Vhost data path acceleration (vDPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

49 Metrics Library 402
49.1 Initializing the library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
49.2 Registering metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
49.3 Updating metric values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
49.4 Querying metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
49.5 Deinitialising the library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
49.6 Bit-rate statistics library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

49.6.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
49.6.2 Controlling the sampling rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

49.7 Latency statistics library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
49.7.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
49.7.2 Triggering statistic updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
49.7.3 Library shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
49.7.4 Timestamp and latency calculation . . . . . . . . . . . . . . . . . . . . . . . . 406

50 Telemetry Library 407
50.1 Creating Callback Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

50.1.1 Function Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
50.1.2 Formatting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

50.2 Registering Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
50.3 Using Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

51 Berkeley Packet Filter Library 410
51.1 Packet data load instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
51.2 Not currently supported eBPF features . . . . . . . . . . . . . . . . . . . . . . . . . . 411

52 IPsec Packet Processing Library 412
52.1 SA level API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

52.1.1 RTE_SECURITY_ACTION_TYPE_NONE . . . . . . . . . . . . . . . . . . . 413
52.1.2 RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO . . . . . . . . . . . . . . 413
52.1.3 RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO . . . . . . . . . . . . 413
52.1.4 RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL . . . . . . . . . . 414
52.1.5 RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL . . . . . . . 414

52.2 SA database API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
52.2.1 Create/destroy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
52.2.2 Add/delete rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
52.2.3 Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

52.3 Supported features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

xiii



52.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

53 Graph Library and Inbuilt Nodes 418
53.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
53.2 Advantages of Graph architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
53.3 Performance tuning parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
53.4 Programming model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

53.4.1 Anatomy of Node: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
53.4.2 Node creation and registration . . . . . . . . . . . . . . . . . . . . . . . . . . 420
53.4.3 Link the Nodes to create the graph topology . . . . . . . . . . . . . . . . . . . 421
53.4.4 Create the graph object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
53.4.5 Multicore graph processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
53.4.6 In fast path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
53.4.7 Context update when graph walk in action . . . . . . . . . . . . . . . . . . . . 422
53.4.8 Get the node statistics using graph cluster . . . . . . . . . . . . . . . . . . . . 422
53.4.9 Node writing guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
53.4.10 Static nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
53.4.11 Intermediate nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

53.5 Graph object memory layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
53.6 Inbuilt Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

53.6.1 ethdev_rx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
53.6.2 ethdev_tx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
53.6.3 pkt_drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
53.6.4 ip4_lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
53.6.5 ip4_rewrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
53.6.6 null . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

54 Source Organization 427
54.1 Makefiles and Config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
54.2 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
54.3 Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
54.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

55 Development Kit Build System 429
55.1 Building the Development Kit Binary . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

55.1.1 Build Directory Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
55.2 Building External Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
55.3 Makefile Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

55.3.1 General Rules For DPDK Makefiles . . . . . . . . . . . . . . . . . . . . . . . 430
55.3.2 Makefile Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
55.3.3 Internally Generated Build Tools . . . . . . . . . . . . . . . . . . . . . . . . . 432
55.3.4 Useful Variables Provided by the Build System . . . . . . . . . . . . . . . . . 432
55.3.5 Variables that Can be Set/Overridden in a Makefile Only . . . . . . . . . . . . 433
55.3.6 Variables that can be Set/Overridden by the User on the Command Line Only . 434
55.3.7 Variables that Can be Set/Overridden by the User in a Makefile or Command

Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

56 Development Kit Root Makefile Help 435
56.1 Configuration Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
56.2 Build Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
56.3 Install Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
56.4 Test Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

xiv



56.5 Documentation Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
56.6 Misc Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
56.7 Other Useful Command-line Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 437
56.8 Make in a Build Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
56.9 Compiling for Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

57 Installing DPDK Using the meson build system 438
57.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
57.2 Getting the Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
57.3 Configuring the Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
57.4 Performing the Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
57.5 Installing the Compiled Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
57.6 Cross Compiling DPDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
57.7 Using the DPDK within an Application . . . . . . . . . . . . . . . . . . . . . . . . . . 440

58 Running DPDK Unit Tests with Meson 442
58.1 Grouping of test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
58.2 Dealing with skipped test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

59 Building Your Own Application 444
59.1 Compiling a Sample Application in the Development Kit Directory . . . . . . . . . . . 444
59.2 Build Your Own Application Outside the Development Kit . . . . . . . . . . . . . . . . 444
59.3 Customizing Makefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

59.3.1 Application Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
59.3.2 Library Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
59.3.3 Customize Makefile Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

60 External Application/Library Makefile help 446
60.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
60.2 Build Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
60.3 Help Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
60.4 Other Useful Command-line Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 447
60.5 Make from Another Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

61 Performance Optimization Guidelines 448
61.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

62 Writing Efficient Code 449
62.1 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

62.1.1 Memory Copy: Do not Use libc in the Data Plane . . . . . . . . . . . . . . . . 449
62.1.2 Memory Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
62.1.3 Concurrent Access to the Same Memory Area . . . . . . . . . . . . . . . . . . 450
62.1.4 NUMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
62.1.5 Distribution Across Memory Channels . . . . . . . . . . . . . . . . . . . . . . 450
62.1.6 Locking memory pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

62.2 Communication Between lcores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
62.3 PMD Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

62.3.1 Lower Packet Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
62.4 Locks and Atomic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

62.4.1 Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
62.4.2 Atomic Operations: Use C11 Atomic Builtins . . . . . . . . . . . . . . . . . . 452

62.5 Coding Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

xv



62.5.1 Inline Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
62.5.2 Branch Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

62.6 Setting the Target CPU Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

63 Link Time Optimization 454

64 Profile Your Application 455
64.1 Profiling on x86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

64.1.1 Profiling with VTune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
64.2 Profiling on ARM64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

64.2.1 Using Linux perf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
64.2.2 Low-resolution generic counter . . . . . . . . . . . . . . . . . . . . . . . . . . 456
64.2.3 High-resolution cycle counter . . . . . . . . . . . . . . . . . . . . . . . . . . 456

65 Glossary 457

xvi



CHAPTER

ONE

INTRODUCTION

This document provides software architecture information, development environment information and
optimization guidelines.

For programming examples and for instructions on compiling and running each sample application, see
the DPDK Sample Applications User Guide for details.

For general information on compiling and running applications, see the DPDK Getting Started Guide.

1.1 Documentation Roadmap

The following is a list of DPDK documents in the suggested reading order:

• Release Notes : Provides release-specific information, including supported features, limitations,
fixed issues, known issues and so on. Also, provides the answers to frequently asked questions in
FAQ format.

• Getting Started Guide : Describes how to install and configure the DPDK software; designed to
get users up and running quickly with the software.

• FreeBSD* Getting Started Guide : A document describing the use of the DPDK with FreeBSD*
has been added in DPDK Release 1.6.0. Refer to this guide for installation and configuration
instructions to get started using the DPDK with FreeBSD*.

• Programmer’s Guide (this document): Describes:

– The software architecture and how to use it (through examples), specifically in a Linux*
application (linux) environment

– The content of the DPDK, the build system (including the commands that can be used in
the root DPDK Makefile to build the development kit and an application) and guidelines for
porting an application

– Optimizations used in the software and those that should be considered for new development

A glossary of terms is also provided.

• API Reference : Provides detailed information about DPDK functions, data structures and other
programming constructs.

• Sample Applications User Guide: Describes a set of sample applications. Each chapter describes
a sample application that showcases specific functionality and provides instructions on how to
compile, run and use the sample application.

1



Programmer’s Guide, Release 20.08.0

1.2 Related Publications

The following documents provide information that is relevant to the development of applications using
the DPDK:

• Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3A: System Program-
ming Guide

Part 1: Architecture Overview

1.2. Related Publications 2



CHAPTER

TWO

OVERVIEW

This section gives a global overview of the architecture of Data Plane Development Kit (DPDK).

The main goal of the DPDK is to provide a simple, complete framework for fast packet processing in
data plane applications. Users may use the code to understand some of the techniques employed, to
build upon for prototyping or to add their own protocol stacks. Alternative ecosystem options that use
the DPDK are available.

The framework creates a set of libraries for specific environments through the creation of an Environment
Abstraction Layer (EAL), which may be specific to a mode of the Intel® architecture (32-bit or 64-bit),
Linux* user space compilers or a specific platform. These environments are created through the use of
make files and configuration files. Once the EAL library is created, the user may link with the library
to create their own applications. Other libraries, outside of EAL, including the Hash, Longest Prefix
Match (LPM) and rings libraries are also provided. Sample applications are provided to help show the
user how to use various features of the DPDK.

The DPDK implements a run to completion model for packet processing, where all resources must be
allocated prior to calling Data Plane applications, running as execution units on logical processing cores.
The model does not support a scheduler and all devices are accessed by polling. The primary reason for
not using interrupts is the performance overhead imposed by interrupt processing.

In addition to the run-to-completion model, a pipeline model may also be used by passing packets or
messages between cores via the rings. This allows work to be performed in stages and may allow more
efficient use of code on cores.

2.1 Development Environment

The DPDK project installation requires Linux and the associated toolchain, such as one or more compil-
ers, assembler, make utility, editor and various libraries to create the DPDK components and libraries.

Once these libraries are created for the specific environment and architecture, they may then be used to
create the user’s data plane application.

When creating applications for the Linux user space, the glibc library is used. For DPDK applications,
two environmental variables (RTE_SDK and RTE_TARGET) must be configured before compiling the
applications. The following are examples of how the variables can be set:

export RTE_SDK=/home/user/DPDK
export RTE_TARGET=x86_64-native-linux-gcc

See the DPDK Getting Started Guide for information on setting up the development environment.

3



Programmer’s Guide, Release 20.08.0

2.2 Environment Abstraction Layer

The Environment Abstraction Layer (EAL) provides a generic interface that hides the environment
specifics from the applications and libraries. The services provided by the EAL are:

• DPDK loading and launching

• Support for multi-process and multi-thread execution types

• Core affinity/assignment procedures

• System memory allocation/de-allocation

• Atomic/lock operations

• Time reference

• PCI bus access

• Trace and debug functions

• CPU feature identification

• Interrupt handling

• Alarm operations

• Memory management (malloc)

The EAL is fully described in Environment Abstraction Layer.

2.3 Core Components

The core components are a set of libraries that provide all the elements needed for high-performance
packet processing applications.

2.3.1 Ring Manager (librte_ring)

The ring structure provides a lockless multi-producer, multi-consumer FIFO API in a finite size table. It
has some advantages over lockless queues; easier to implement, adapted to bulk operations and faster.
A ring is used by the Memory Pool Manager (librte_mempool) and may be used as a general communi-
cation mechanism between cores and/or execution blocks connected together on a logical core.

This ring buffer and its usage are fully described in Ring Library.

2.3.2 Memory Pool Manager (librte_mempool)

The Memory Pool Manager is responsible for allocating pools of objects in memory. A pool is identified
by name and uses a ring to store free objects. It provides some other optional services, such as a per-
core object cache and an alignment helper to ensure that objects are padded to spread them equally on
all RAM channels.

This memory pool allocator is described in Mempool Library.

2.2. Environment Abstraction Layer 4



Programmer’s Guide, Release 20.08.0

rte_malloc rte_eal + libc

rte_ring
rte_mempool

rte_mbuf

rte_timer

X uses Y

Allocation of named
memory zones using
libc's malloc()

Environment abstraction
layer: RTE loading, memory
allocation, time reference,
PCI access, logging

Timer facilities. Based
on HPET interface that
is provided by EAL.

Handle a pool of objects
using a ring to store
them. Allow bulk
enqueue/dequeue and
per-CPU cache.

Fixed-size lockless 
FIFO for storing objects
in a table.

Manipulation of packet
buffers carrying network
data.

rte_debug

Provides debug helpers

X Y

Fig. 2.1: Core Components Architecture

2.3. Core Components 5



Programmer’s Guide, Release 20.08.0

2.3.3 Network Packet Buffer Management (librte_mbuf)

The mbuf library provides the facility to create and destroy buffers that may be used by the DPDK
application to store message buffers. The message buffers are created at startup time and stored in a
mempool, using the DPDK mempool library.

This library provides an API to allocate/free mbufs, manipulate packet buffers which are used to carry
network packets.

Network Packet Buffer Management is described in Mbuf Library.

2.3.4 Timer Manager (librte_timer)

This library provides a timer service to DPDK execution units, providing the ability to execute a function
asynchronously. It can be periodic function calls, or just a one-shot call. It uses the timer interface pro-
vided by the Environment Abstraction Layer (EAL) to get a precise time reference and can be initiated
on a per-core basis as required.

The library documentation is available in Timer Library.

2.4 Ethernet* Poll Mode Driver Architecture

The DPDK includes Poll Mode Drivers (PMDs) for 1 GbE, 10 GbE and 40GbE, and para virtualized
virtio Ethernet controllers which are designed to work without asynchronous, interrupt-based signaling
mechanisms.

See Poll Mode Driver.

2.5 Packet Forwarding Algorithm Support

The DPDK includes Hash (librte_hash) and Longest Prefix Match (LPM,librte_lpm) libraries to support
the corresponding packet forwarding algorithms.

See Hash Library and LPM Library for more information.

2.6 librte_net

The librte_net library is a collection of IP protocol definitions and convenience macros. It is based on
code from the FreeBSD* IP stack and contains protocol numbers (for use in IP headers), IP-related
macros, IPv4/IPv6 header structures and TCP, UDP and SCTP header structures.

2.4. Ethernet* Poll Mode Driver Architecture 6



CHAPTER

THREE

ENVIRONMENT ABSTRACTION LAYER

The Environment Abstraction Layer (EAL) is responsible for gaining access to low-level resources such
as hardware and memory space. It provides a generic interface that hides the environment specifics from
the applications and libraries. It is the responsibility of the initialization routine to decide how to allocate
these resources (that is, memory space, devices, timers, consoles, and so on).

Typical services expected from the EAL are:

• DPDK Loading and Launching: The DPDK and its application are linked as a single application
and must be loaded by some means.

• Core Affinity/Assignment Procedures: The EAL provides mechanisms for assigning execution
units to specific cores as well as creating execution instances.

• System Memory Reservation: The EAL facilitates the reservation of different memory zones, for
example, physical memory areas for device interactions.

• Trace and Debug Functions: Logs, dump_stack, panic and so on.

• Utility Functions: Spinlocks and atomic counters that are not provided in libc.

• CPU Feature Identification: Determine at runtime if a particular feature, for example, Intel® AVX
is supported. Determine if the current CPU supports the feature set that the binary was compiled
for.

• Interrupt Handling: Interfaces to register/unregister callbacks to specific interrupt sources.

• Alarm Functions: Interfaces to set/remove callbacks to be run at a specific time.

3.1 EAL in a Linux-userland Execution Environment

In a Linux user space environment, the DPDK application runs as a user-space application using the
pthread library.

The EAL performs physical memory allocation using mmap() in hugetlbfs (using huge page sizes to
increase performance). This memory is exposed to DPDK service layers such as the Mempool Library.

At this point, the DPDK services layer will be initialized, then through pthread setaffinity calls, each
execution unit will be assigned to a specific logical core to run as a user-level thread.

The time reference is provided by the CPU Time-Stamp Counter (TSC) or by the HPET kernel API
through a mmap() call.

7



Programmer’s Guide, Release 20.08.0

3.1.1 Initialization and Core Launching

Part of the initialization is done by the start function of glibc. A check is also performed at initialization
time to ensure that the micro architecture type chosen in the config file is supported by the CPU. Then,
the main() function is called. The core initialization and launch is done in rte_eal_init() (see the API doc-
umentation). It consist of calls to the pthread library (more specifically, pthread_self(), pthread_create(),
and pthread_setaffinity_np()).

Note: Initialization of objects, such as memory zones, rings, memory pools, lpm tables and hash tables,
should be done as part of the overall application initialization on the master lcore. The creation and
initialization functions for these objects are not multi-thread safe. However, once initialized, the objects
themselves can safely be used in multiple threads simultaneously.

3.1.2 Shutdown and Cleanup

During the initialization of EAL resources such as hugepage backed memory can be allocated by
core components. The memory allocated during rte_eal_init() can be released by calling the
rte_eal_cleanup() function. Refer to the API documentation for details.

3.1.3 Multi-process Support

The Linux EAL allows a multi-process as well as a multi-threaded (pthread) deployment model. See
chapter Multi-process Support for more details.

3.1.4 Memory Mapping Discovery and Memory Reservation

The allocation of large contiguous physical memory is done using the hugetlbfs kernel filesystem. The
EAL provides an API to reserve named memory zones in this contiguous memory. The physical address
of the reserved memory for that memory zone is also returned to the user by the memory zone reservation
API.

There are two modes in which DPDK memory subsystem can operate: dynamic mode, and legacy mode.
Both modes are explained below.

Note: Memory reservations done using the APIs provided by rte_malloc are also backed by pages from
the hugetlbfs filesystem.

• Dynamic memory mode

Currently, this mode is only supported on Linux.

In this mode, usage of hugepages by DPDK application will grow and shrink based on application’s
requests. Any memory allocation through rte_malloc(), rte_memzone_reserve() or other
methods, can potentially result in more hugepages being reserved from the system. Similarly, any mem-
ory deallocation can potentially result in hugepages being released back to the system.

Memory allocated in this mode is not guaranteed to be IOVA-contiguous. If large chunks of IOVA-
contiguous are required (with “large” defined as “more than one page”), it is recommended to either use

3.1. EAL in a Linux-userland Execution Environment 8



Programmer’s Guide, Release 20.08.0

Master lcore lcore 1 lcore 2

main()

rte_eal_init()

rte_eal_memory_init()
rte_eal_logs_init()
rte_eal_pci_init()
...

pthread_create(1)

pthread_create(2)

per-thread init

wait per-thread init

wait

wait all threads

per_lcore_
  app_init()

per_lcore_
  app_init()

rte_eal_mp_wait_lcore()

application
...

wait wait

application
...

application
...

rte_eal_remote_launch(app)

rte_eal_remote_launch(
   per_lcore_app_init)

other inits (libs, drivers)

Fig. 3.1: EAL Initialization in a Linux Application Environment

3.1. EAL in a Linux-userland Execution Environment 9



Programmer’s Guide, Release 20.08.0

VFIO driver for all physical devices (so that IOVA and VA addresses can be the same, thereby bypassing
physical addresses entirely), or use legacy memory mode.

For chunks of memory which must be IOVA-contiguous, it is recommended to use
rte_memzone_reserve() function with RTE_MEMZONE_IOVA_CONTIG flag specified.
This way, memory allocator will ensure that, whatever memory mode is in use, either reserved memory
will satisfy the requirements, or the allocation will fail.

There is no need to preallocate any memory at startup using -m or --socket-mem command-line
parameters, however it is still possible to do so, in which case preallocate memory will be “pinned”
(i.e. will never be released by the application back to the system). It will be possible to allocate
more hugepages, and deallocate those, but any preallocated pages will not be freed. If neither -m nor
--socket-mem were specified, no memory will be preallocated, and all memory will be allocated at
runtime, as needed.

Another available option to use in dynamic memory mode is --single-file-segments
command-line option. This option will put pages in single files (per memseg list), as opposed to creating
a file per page. This is normally not needed, but can be useful for use cases like userspace vhost, where
there is limited number of page file descriptors that can be passed to VirtIO.

If the application (or DPDK-internal code, such as device drivers) wishes to receive notifica-
tions about newly allocated memory, it is possible to register for memory event callbacks via
rte_mem_event_callback_register() function. This will call a callback function any time
DPDK’s memory map has changed.

If the application (or DPDK-internal code, such as device drivers) wishes to be notified about memory
allocations above specified threshold (and have a chance to deny them), allocation validator callbacks
are also available via rte_mem_alloc_validator_callback_register() function.

A default validator callback is provided by EAL, which can be enabled with a --socket-limit
command-line option, for a simple way to limit maximum amount of memory that can be used by
DPDK application.

Warning: Memory subsystem uses DPDK IPC internally, so memory allocations/callbacks and IPC
must not be mixed: it is not safe to allocate/free memory inside memory-related or IPC callbacks,
and it is not safe to use IPC inside memory-related callbacks. See chapter Multi-process Support for
more details about DPDK IPC.

• Legacy memory mode

This mode is enabled by specifying --legacy-mem command-line switch to the EAL. This switch
will have no effect on FreeBSD as FreeBSD only supports legacy mode anyway.

This mode mimics historical behavior of EAL. That is, EAL will reserve all memory at startup, sort all
memory into large IOVA-contiguous chunks, and will not allow acquiring or releasing hugepages from
the system at runtime.

If neither -m nor --socket-mem were specified, the entire available hugepage memory will be preal-
located.

• Hugepage allocation matching

This behavior is enabled by specifying the --match-allocations command-line switch to the
EAL. This switch is Linux-only and not supported with --legacy-mem nor --no-huge.

Some applications using memory event callbacks may require that hugepages be freed exactly as they

3.1. EAL in a Linux-userland Execution Environment 10



Programmer’s Guide, Release 20.08.0

were allocated. These applications may also require that any allocation from the malloc heap not span
across allocations associated with two different memory event callbacks. Hugepage allocation matching
can be used by these types of applications to satisfy both of these requirements. This can result in some
increased memory usage which is very dependent on the memory allocation patterns of the application.

• 32-bit support

Additional restrictions are present when running in 32-bit mode. In dynamic memory mode, by default
maximum of 2 gigabytes of VA space will be preallocated, and all of it will be on master lcore NUMA
node unless --socket-mem flag is used.

In legacy mode, VA space will only be preallocated for segments that were requested (plus padding, to
keep IOVA-contiguousness).

• Maximum amount of memory

All possible virtual memory space that can ever be used for hugepage mapping in a DPDK process is
preallocated at startup, thereby placing an upper limit on how much memory a DPDK application can
have. DPDK memory is stored in segment lists, each segment is strictly one physical page. It is possible
to change the amount of virtual memory being preallocated at startup by editing the following config
variables:

• CONFIG_RTE_MAX_MEMSEG_LISTS controls how many segment lists can DPDK have

• CONFIG_RTE_MAX_MEM_MB_PER_LIST controls how much megabytes of memory each seg-
ment list can address

• CONFIG_RTE_MAX_MEMSEG_PER_LIST controls how many segments each segment can have

• CONFIG_RTE_MAX_MEMSEG_PER_TYPE controls how many segments each memory type can
have (where “type” is defined as “page size + NUMA node” combination)

• CONFIG_RTE_MAX_MEM_MB_PER_TYPE controls how much megabytes of memory each
memory type can address

• CONFIG_RTE_MAX_MEM_MB places a global maximum on the amount of memory DPDK can
reserve

Normally, these options do not need to be changed.

Note: Preallocated virtual memory is not to be confused with preallocated hugepage memory! All
DPDK processes preallocate virtual memory at startup. Hugepages can later be mapped into that preal-
located VA space (if dynamic memory mode is enabled), and can optionally be mapped into it at startup.

• Segment file descriptors

On Linux, in most cases, EAL will store segment file descriptors in EAL. This can become a problem
when using smaller page sizes due to underlying limitations of glibc library. For example, Linux API
calls such as select() may not work correctly because glibc does not support more than certain
number of file descriptors.

There are two possible solutions for this problem. The recommended solution is to use
--single-file-segments mode, as that mode will not use a file descriptor per each page, and
it will keep compatibility with Virtio with vhost-user backend. This option is not available when using
--legacy-mem mode.

Another option is to use bigger page sizes. Since fewer pages are required to cover the same memory
area, fewer file descriptors will be stored internally by EAL.

3.1. EAL in a Linux-userland Execution Environment 11



Programmer’s Guide, Release 20.08.0

3.1.5 Support for Externally Allocated Memory

It is possible to use externally allocated memory in DPDK. There are two ways in which using externally
allocated memory can work: the malloc heap API’s, and manual memory management.

• Using heap API’s for externally allocated memory

Using a set of malloc heap API’s is the recommended way to use externally allocated memory in
DPDK. In this way, support for externally allocated memory is implemented through overloading
the socket ID - externally allocated heaps will have socket ID’s that would be considered invalid un-
der normal circumstances. Requesting an allocation to take place from a specified externally allo-
cated memory is a matter of supplying the correct socket ID to DPDK allocator, either directly (e.g.
through a call to rte_malloc) or indirectly (through data structure-specific allocation API’s such as
rte_ring_create). Using these API’s also ensures that mapping of externally allocated memory
for DMA is also performed on any memory segment that is added to a DPDK malloc heap.

Since there is no way DPDK can verify whether memory is available or valid, this responsibility falls
on the shoulders of the user. All multiprocess synchronization is also user’s responsibility, as well
as ensuring that all calls to add/attach/detach/remove memory are done in the correct order. It is not
required to attach to a memory area in all processes - only attach to memory areas as needed.

The expected workflow is as follows:

• Get a pointer to memory area

• Create a named heap

• Add memory area(s) to the heap

– If IOVA table is not specified, IOVA addresses will be assumed to be unavailable, and
DMA mappings will not be performed

– Other processes must attach to the memory area before they can use it

• Get socket ID used for the heap

• Use normal DPDK allocation procedures, using supplied socket ID

• If memory area is no longer needed, it can be removed from the heap

– Other processes must detach from this memory area before it can be removed

• If heap is no longer needed, remove it

– Socket ID will become invalid and will not be reused

For more information, please refer to rte_malloc API documentation, specifically the
rte_malloc_heap_* family of function calls.

• Using externally allocated memory without DPDK API’s

While using heap API’s is the recommended method of using externally allocated memory in DPDK,
there are certain use cases where the overhead of DPDK heap API is undesirable - for example, when
manual memory management is performed on an externally allocated area. To support use cases where
externally allocated memory will not be used as part of normal DPDK workflow, there is also another
set of API’s under the rte_extmem_* namespace.

These API’s are (as their name implies) intended to allow registering or unregistering externally allocated
memory to/from DPDK’s internal page table, to allow API’s like rte_mem_virt2memseg etc. to
work with externally allocated memory. Memory added this way will not be available for any regular
DPDK allocators; DPDK will leave this memory for the user application to manage.

3.1. EAL in a Linux-userland Execution Environment 12



Programmer’s Guide, Release 20.08.0

The expected workflow is as follows:

• Get a pointer to memory area

• Register memory within DPDK

– If IOVA table is not specified, IOVA addresses will be assumed to be unavailable

– Other processes must attach to the memory area before they can use it

• Perform DMA mapping with rte_dev_dma_map if needed

• Use the memory area in your application

• If memory area is no longer needed, it can be unregistered

– If the area was mapped for DMA, unmapping must be performed before unregistering
memory

– Other processes must detach from the memory area before it can be unregistered

Since these externally allocated memory areas will not be managed by DPDK, it is therefore up to the
user application to decide how to use them and what to do with them once they’re registered.

3.1.6 Per-lcore and Shared Variables

Note: lcore refers to a logical execution unit of the processor, sometimes called a hardware thread.

Shared variables are the default behavior. Per-lcore variables are implemented using Thread Local
Storage (TLS) to provide per-thread local storage.

3.1.7 Logs

A logging API is provided by EAL. By default, in a Linux application, logs are sent to syslog and
also to the console. However, the log function can be overridden by the user to use a different logging
mechanism.

Trace and Debug Functions

There are some debug functions to dump the stack in glibc. The rte_panic() function can voluntarily
provoke a SIG_ABORT, which can trigger the generation of a core file, readable by gdb.

3.1.8 CPU Feature Identification

The EAL can query the CPU at runtime (using the rte_cpu_get_features() function) to determine which
CPU features are available.

3.1.9 User Space Interrupt Event

• User Space Interrupt and Alarm Handling in Host Thread

3.1. EAL in a Linux-userland Execution Environment 13



Programmer’s Guide, Release 20.08.0

The EAL creates a host thread to poll the UIO device file descriptors to detect the interrupts. Callbacks
can be registered or unregistered by the EAL functions for a specific interrupt event and are called in
the host thread asynchronously. The EAL also allows timed callbacks to be used in the same way as for
NIC interrupts.

Note: In DPDK PMD, the only interrupts handled by the dedicated host thread are those for link status
change (link up and link down notification) and for sudden device removal.

• RX Interrupt Event

The receive and transmit routines provided by each PMD don’t limit themselves to execute in polling
thread mode. To ease the idle polling with tiny throughput, it’s useful to pause the polling and wait until
the wake-up event happens. The RX interrupt is the first choice to be such kind of wake-up event, but
probably won’t be the only one.

EAL provides the event APIs for this event-driven thread mode. Taking Linux as an example, the
implementation relies on epoll. Each thread can monitor an epoll instance in which all the wake-up
events’ file descriptors are added. The event file descriptors are created and mapped to the interrupt
vectors according to the UIO/VFIO spec. From FreeBSD’s perspective, kqueue is the alternative way,
but not implemented yet.

EAL initializes the mapping between event file descriptors and interrupt vectors, while each device
initializes the mapping between interrupt vectors and queues. In this way, EAL actually is unaware of
the interrupt cause on the specific vector. The eth_dev driver takes responsibility to program the latter
mapping.

Note: Per queue RX interrupt event is only allowed in VFIO which supports multiple MSI-X vector. In
UIO, the RX interrupt together with other interrupt causes shares the same vector. In this case, when RX
interrupt and LSC(link status change) interrupt are both enabled(intr_conf.lsc == 1 && intr_conf.rxq ==
1), only the former is capable.

The RX interrupt are controlled/enabled/disabled by ethdev APIs - ‘rte_eth_dev_rx_intr_*’. They return
failure if the PMD hasn’t support them yet. The intr_conf.rxq flag is used to turn on the capability of
RX interrupt per device.

• Device Removal Event

This event is triggered by a device being removed at a bus level. Its underlying resources may have been
made unavailable (i.e. PCI mappings unmapped). The PMD must make sure that on such occurrence,
the application can still safely use its callbacks.

This event can be subscribed to in the same way one would subscribe to a link status change event. The
execution context is thus the same, i.e. it is the dedicated interrupt host thread.

Considering this, it is likely that an application would want to close a device having emitted a Device
Removal Event. In such case, calling rte_eth_dev_close() can trigger it to unregister its own
Device Removal Event callback. Care must be taken not to close the device from the interrupt handler
context. It is necessary to reschedule such closing operation.

3.1. EAL in a Linux-userland Execution Environment 14



Programmer’s Guide, Release 20.08.0

3.1.10 Blacklisting

The EAL PCI device blacklist functionality can be used to mark certain NIC ports as blacklisted, so
they are ignored by the DPDK. The ports to be blacklisted are identified using the PCIe* description
(Domain:Bus:Device.Function).

3.1.11 Misc Functions

Locks and atomic operations are per-architecture (i686 and x86_64).

3.1.12 IOVA Mode Detection

IOVA Mode is selected by considering what the current usable Devices on the system require and/or
support.

On FreeBSD, RTE_IOVA_PA is always the default. On Linux, the IOVA mode is detected based on a
2-step heuristic detailed below.

For the first step, EAL asks each bus its requirement in terms of IOVA mode and decides on a preferred
IOVA mode.

• if all buses report RTE_IOVA_PA, then the preferred IOVA mode is RTE_IOVA_PA,

• if all buses report RTE_IOVA_VA, then the preferred IOVA mode is RTE_IOVA_VA,

• if all buses report RTE_IOVA_DC, no bus expressed a preferrence, then the preferred mode is
RTE_IOVA_DC,

• if the buses disagree (at least one wants RTE_IOVA_PA and at least one wants RTE_IOVA_VA),
then the preferred IOVA mode is RTE_IOVA_DC (see below with the check on Physical Addresses
availability),

If the buses have expressed no preference on which IOVA mode to pick, then a default is selected using
the following logic:

• if physical addresses are not available, RTE_IOVA_VA mode is used

• if /sys/kernel/iommu_groups is not empty, RTE_IOVA_VA mode is used

• otherwise, RTE_IOVA_PA mode is used

In the case when the buses had disagreed on their preferred IOVA mode, part of the buses won’t work
because of this decision.

The second step checks if the preferred mode complies with the Physical Addresses availability since
those are only available to root user in recent kernels. Namely, if the preferred mode is RTE_IOVA_PA
but there is no access to Physical Addresses, then EAL init fails early, since later probing of the devices
would fail anyway.

Note: The RTE_IOVA_VA mode is preferred as the default in most cases for the following reasons:

• All drivers are expected to work in RTE_IOVA_VA mode, irrespective of physical address avail-
ability.

3.1. EAL in a Linux-userland Execution Environment 15



Programmer’s Guide, Release 20.08.0

• By default, the mempool, first asks for IOVA-contiguous memory using
RTE_MEMZONE_IOVA_CONTIG. This is slow in RTE_IOVA_PA mode and it may affect
the application boot time.

• It is easy to enable large amount of IOVA-contiguous memory use-cases with IOVA in VA mode.

It is expected that all PCI drivers work in both RTE_IOVA_PA and RTE_IOVA_VA modes.

If a PCI driver does not support RTE_IOVA_PA mode, the RTE_PCI_DRV_NEED_IOVA_AS_VA flag
is used to dictate that this PCI driver can only work in RTE_IOVA_VA mode.

When the KNI kernel module is detected, RTE_IOVA_PA mode is preferred as a performance penalty
is expected in RTE_IOVA_VA mode.

3.1.13 IOVA Mode Configuration

Auto detection of the IOVA mode, based on probing the bus and IOMMU configuration, may not report
the desired addressing mode when virtual devices that are not directly attached to the bus are present.
To facilitate forcing the IOVA mode to a specific value the EAL command line option --iova-mode
can be used to select either physical addressing(‘pa’) or virtual addressing(‘va’).

3.2 Memory Segments and Memory Zones (memzone)

The mapping of physical memory is provided by this feature in the EAL. As physical memory can
have gaps, the memory is described in a table of descriptors, and each descriptor (called rte_memseg )
describes a physical page.

On top of this, the memzone allocator’s role is to reserve contiguous portions of physical memory. These
zones are identified by a unique name when the memory is reserved.

The rte_memzone descriptors are also located in the configuration structure. This structure is accessed
using rte_eal_get_configuration(). The lookup (by name) of a memory zone returns a descriptor con-
taining the physical address of the memory zone.

Memory zones can be reserved with specific start address alignment by supplying the align parameter
(by default, they are aligned to cache line size). The alignment value should be a power of two and not
less than the cache line size (64 bytes). Memory zones can also be reserved from either 2 MB or 1 GB
hugepages, provided that both are available on the system.

Both memsegs and memzones are stored using rte_fbarray structures. Please refer to DPDK API
Reference for more information.

3.3 Multiple pthread

DPDK usually pins one pthread per core to avoid the overhead of task switching. This allows for
significant performance gains, but lacks flexibility and is not always efficient.

Power management helps to improve the CPU efficiency by limiting the CPU runtime frequency. How-
ever, alternately it is possible to utilize the idle cycles available to take advantage of the full capability
of the CPU.

3.2. Memory Segments and Memory Zones (memzone) 16



Programmer’s Guide, Release 20.08.0

By taking advantage of cgroup, the CPU utilization quota can be simply assigned. This gives another
way to improve the CPU efficiency, however, there is a prerequisite; DPDK must handle the context
switching between multiple pthreads per core.

For further flexibility, it is useful to set pthread affinity not only to a CPU but to a CPU set.

3.3.1 EAL pthread and lcore Affinity

The term “lcore” refers to an EAL thread, which is really a Linux/FreeBSD pthread. “EAL pthreads”
are created and managed by EAL and execute the tasks issued by remote_launch. In each EAL pthread,
there is a TLS (Thread Local Storage) called _lcore_id for unique identification. As EAL pthreads
usually bind 1:1 to the physical CPU, the _lcore_id is typically equal to the CPU ID.

When using multiple pthreads, however, the binding is no longer always 1:1 between an EAL pthread
and a specified physical CPU. The EAL pthread may have affinity to a CPU set, and as such the _lcore_id
will not be the same as the CPU ID. For this reason, there is an EAL long option ‘–lcores’ defined to
assign the CPU affinity of lcores. For a specified lcore ID or ID group, the option allows setting the CPU
set for that EAL pthread.

The format pattern: –lcores=’<lcore_set>[@cpu_set][,<lcore_set>[@cpu_set],...]’

‘lcore_set’ and ‘cpu_set’ can be a single number, range or a group.

A number is a “digit([0-9]+)”; a range is “<number>-<number>”; a group is “(<num-
ber|range>[,<number|range>,...])”.

If a ‘@cpu_set’ value is not supplied, the value of ‘cpu_set’ will default to the value of ‘lcore_set’.

For example, "--lcores='1,2@(5-7),(3-5)@(0,2),(0,6),7-8'" which means start 9 EAL thread;
lcore 0 runs on cpuset 0x41 (cpu 0,6);
lcore 1 runs on cpuset 0x2 (cpu 1);
lcore 2 runs on cpuset 0xe0 (cpu 5,6,7);
lcore 3,4,5 runs on cpuset 0x5 (cpu 0,2);
lcore 6 runs on cpuset 0x41 (cpu 0,6);
lcore 7 runs on cpuset 0x80 (cpu 7);
lcore 8 runs on cpuset 0x100 (cpu 8).

Using this option, for each given lcore ID, the associated CPUs can be assigned. It’s also compatible
with the pattern of corelist(‘-l’) option.

3.3.2 non-EAL pthread support

It is possible to use the DPDK execution context with any user pthread (aka. non-EAL pthreads). There
are two kinds of non-EAL pthreads:

• a registered non-EAL pthread with a valid _lcore_id that was successfully assigned by calling
rte_thread_register(),

• a non registered non-EAL pthread with a LCORE_ID_ANY,

For non registered non-EAL pthread (with a LCORE_ID_ANY _lcore_id), some libraries will use an al-
ternative unique ID (e.g. TID), some will not be impacted at all, and some will work but with limitations
(e.g. timer and mempool libraries).

All these impacts are mentioned in Known Issues section.

3.3. Multiple pthread 17



Programmer’s Guide, Release 20.08.0

3.3.3 Public Thread API

There are two public APIs rte_thread_set_affinity() and
rte_thread_get_affinity() introduced for threads. When they’re used in any pthread
context, the Thread Local Storage(TLS) will be set/get.

Those TLS include _cpuset and _socket_id:

• _cpuset stores the CPUs bitmap to which the pthread is affinitized.

• _socket_id stores the NUMA node of the CPU set. If the CPUs in CPU set belong to different
NUMA node, the _socket_id will be set to SOCKET_ID_ANY.

3.3.4 Control Thread API

It is possible to create Control Threads using the public API rte_ctrl_thread_create(). Those
threads can be used for management/infrastructure tasks and are used internally by DPDK for multi
process support and interrupt handling.

Those threads will be scheduled on CPUs part of the original process CPU affinity from which the
dataplane and service lcores are excluded.

For example, on a 8 CPUs system, starting a dpdk application with -l 2,3 (dataplane cores), then de-
pending on the affinity configuration which can be controlled with tools like taskset (Linux) or cpuset
(FreeBSD),

• with no affinity configuration, the Control Threads will end up on 0-1,4-7 CPUs.

• with affinity restricted to 2-4, the Control Threads will end up on CPU 4.

• with affinity restricted to 2-3, the Control Threads will end up on CPU 2 (master lcore, which is
the default when no CPU is available).

3.3.5 Known Issues

• rte_mempool

The rte_mempool uses a per-lcore cache inside the mempool. For unregistered non-EAL
pthreads, rte_lcore_id() will not return a valid number. So for now, when rte_mempool
is used with unregistered non-EAL pthreads, the put/get operations will bypass the default
mempool cache and there is a performance penalty because of this bypass. Only user-
owned external caches can be used in an unregistered non-EAL context in conjunction with
rte_mempool_generic_put() and rte_mempool_generic_get() that accept an ex-
plicit cache parameter.

• rte_ring

rte_ring supports multi-producer enqueue and multi-consumer dequeue. However, it is non-
preemptive, this has a knock on effect of making rte_mempool non-preemptable.

Note: The “non-preemptive” constraint means:

– a pthread doing multi-producers enqueues on a given ring must not be preempted by another
pthread doing a multi-producer enqueue on the same ring.

3.3. Multiple pthread 18



Programmer’s Guide, Release 20.08.0

– a pthread doing multi-consumers dequeues on a given ring must not be preempted by another
pthread doing a multi-consumer dequeue on the same ring.

Bypassing this constraint may cause the 2nd pthread to spin until the 1st one is scheduled again.
Moreover, if the 1st pthread is preempted by a context that has an higher priority, it may even
cause a dead lock.

This means, use cases involving preemptible pthreads should consider using rte_ring carefully.

1. It CAN be used for preemptible single-producer and single-consumer use case.

2. It CAN be used for non-preemptible multi-producer and preemptible single-consumer use
case.

3. It CAN be used for preemptible single-producer and non-preemptible multi-consumer use
case.

4. It MAY be used by preemptible multi-producer and/or preemptible multi-consumer pthreads
whose scheduling policy are all SCHED_OTHER(cfs), SCHED_IDLE or SCHED_BATCH.
User SHOULD be aware of the performance penalty before using it.

5. It MUST not be used by multi-producer/consumer pthreads, whose scheduling policies are
SCHED_FIFO or SCHED_RR.

Alternatively, applications can use the lock-free stack mempool handler. When considering this
handler, note that:

– It is currently limited to the aarch64 and x86_64 platforms, because it uses an instruction
(16-byte compare-and-swap) that is not yet available on other platforms.

– It has worse average-case performance than the non-preemptive rte_ring, but software
caching (e.g. the mempool cache) can mitigate this by reducing the number of stack ac-
cesses.

• rte_timer

Running rte_timer_manage() on an unregistered non-EAL pthread is not allowed. How-
ever, resetting/stopping the timer from a non-EAL pthread is allowed.

• rte_log

In unregistered non-EAL pthreads, there is no per thread loglevel and logtype, global loglevels are
used.

• misc

The debug statistics of rte_ring, rte_mempool and rte_timer are not supported in an unregistered
non-EAL pthread.

3.3.6 cgroup control

The following is a simple example of cgroup control usage, there are two pthreads(t0 and t1) doing
packet I/O on the same core ($CPU). We expect only 50% of CPU spend on packet IO.

mkdir /sys/fs/cgroup/cpu/pkt_io
mkdir /sys/fs/cgroup/cpuset/pkt_io

echo $cpu > /sys/fs/cgroup/cpuset/cpuset.cpus

3.3. Multiple pthread 19



Programmer’s Guide, Release 20.08.0

echo $t0 > /sys/fs/cgroup/cpu/pkt_io/tasks
echo $t0 > /sys/fs/cgroup/cpuset/pkt_io/tasks

echo $t1 > /sys/fs/cgroup/cpu/pkt_io/tasks
echo $t1 > /sys/fs/cgroup/cpuset/pkt_io/tasks

cd /sys/fs/cgroup/cpu/pkt_io
echo 100000 > pkt_io/cpu.cfs_period_us
echo 50000 > pkt_io/cpu.cfs_quota_us

3.4 Malloc

The EAL provides a malloc API to allocate any-sized memory.

The objective of this API is to provide malloc-like functions to allow allocation from hugepage memory
and to facilitate application porting. The DPDK API Reference manual describes the available functions.

Typically, these kinds of allocations should not be done in data plane processing because they are slower
than pool-based allocation and make use of locks within the allocation and free paths. However, they
can be used in configuration code.

Refer to the rte_malloc() function description in the DPDK API Reference manual for more information.

3.4.1 Cookies

When CONFIG_RTE_MALLOC_DEBUG is enabled, the allocated memory contains overwrite protec-
tion fields to help identify buffer overflows.

3.4.2 Alignment and NUMA Constraints

The rte_malloc() takes an align argument that can be used to request a memory area that is aligned on a
multiple of this value (which must be a power of two).

On systems with NUMA support, a call to the rte_malloc() function will return memory that has been
allocated on the NUMA socket of the core which made the call. A set of APIs is also provided, to allow
memory to be explicitly allocated on a NUMA socket directly, or by allocated on the NUMA socket
where another core is located, in the case where the memory is to be used by a logical core other than
on the one doing the memory allocation.

3.4.3 Use Cases

This API is meant to be used by an application that requires malloc-like functions at initialization time.

For allocating/freeing data at runtime, in the fast-path of an application, the memory pool library should
be used instead.

3.4.4 Internal Implementation

Data Structures

There are two data structure types used internally in the malloc library:

3.4. Malloc 20



Programmer’s Guide, Release 20.08.0

• struct malloc_heap - used to track free space on a per-socket basis

• struct malloc_elem - the basic element of allocation and free-space tracking inside the library.

Structure: malloc_heap

The malloc_heap structure is used to manage free space on a per-socket basis. Internally, there is one
heap structure per NUMA node, which allows us to allocate memory to a thread based on the NUMA
node on which this thread runs. While this does not guarantee that the memory will be used on that
NUMA node, it is no worse than a scheme where the memory is always allocated on a fixed or random
node.

The key fields of the heap structure and their function are described below (see also diagram above):

• lock - the lock field is needed to synchronize access to the heap. Given that the free space in the
heap is tracked using a linked list, we need a lock to prevent two threads manipulating the list at
the same time.

• free_head - this points to the first element in the list of free nodes for this malloc heap.

• first - this points to the first element in the heap.

• last - this points to the last element in the heap.

Free element header

Used element header

Free space

Allocated data

Pad element header Padding

Unavailable space

size

pad

prev/next prev/next

size

next free next free

prev/next prev/next

Fig. 3.2: Example of a malloc heap and malloc elements within the malloc library

Structure: malloc_elem

The malloc_elem structure is used as a generic header structure for various blocks of memory. It is used
in two different ways - all shown in the diagram above:

1. As a header on a block of free or allocated memory - normal case

2. As a padding header inside a block of memory

The most important fields in the structure and how they are used are described below.

Malloc heap is a doubly-linked list, where each element keeps track of its previous and next elements.
Due to the fact that hugepage memory can come and go, neighboring malloc elements may not nec-
essarily be adjacent in memory. Also, since a malloc element may span multiple pages, its contents

3.4. Malloc 21



Programmer’s Guide, Release 20.08.0

may not necessarily be IOVA-contiguous either - each malloc element is only guaranteed to be virtually
contiguous.

Note: If the usage of a particular field in one of the above three usages is not described, the field can be
assumed to have an undefined value in that situation, for example, for padding headers only the “state”
and “pad” fields have valid values.

• heap - this pointer is a reference back to the heap structure from which this block was allocated.
It is used for normal memory blocks when they are being freed, to add the newly-freed block to
the heap’s free-list.

• prev - this pointer points to previous header element/block in memory. When freeing a block, this
pointer is used to reference the previous block to check if that block is also free. If so, and the
two blocks are immediately adjacent to each other, then the two free blocks are merged to form a
single larger block.

• next - this pointer points to next header element/block in memory. When freeing a block, this
pointer is used to reference the next block to check if that block is also free. If so, and the two
blocks are immediately adjacent to each other, then the two free blocks are merged to form a
single larger block.

• free_list - this is a structure pointing to previous and next elements in this heap’s free list. It is
only used in normal memory blocks; on malloc() to find a suitable free block to allocate and
on free() to add the newly freed element to the free-list.

• state - This field can have one of three values: FREE, BUSY or PAD. The former two are to indicate
the allocation state of a normal memory block and the latter is to indicate that the element structure
is a dummy structure at the end of the start-of-block padding, i.e. where the start of the data within
a block is not at the start of the block itself, due to alignment constraints. In that case, the pad
header is used to locate the actual malloc element header for the block.

• pad - this holds the length of the padding present at the start of the block. In the case of a normal
block header, it is added to the address of the end of the header to give the address of the start of
the data area, i.e. the value passed back to the application on a malloc. Within a dummy header
inside the padding, this same value is stored, and is subtracted from the address of the dummy
header to yield the address of the actual block header.

• size - the size of the data block, including the header itself.

Memory Allocation

On EAL initialization, all preallocated memory segments are setup as part of the malloc heap. This
setup involves placing an element header with FREE at the start of each virtually contiguous segment of
memory. The FREE element is then added to the free_list for the malloc heap.

This setup also happens whenever memory is allocated at runtime (if supported), in which case newly
allocated pages are also added to the heap, merging with any adjacent free segments if there are any.

When an application makes a call to a malloc-like function, the malloc function will first index the
lcore_config structure for the calling thread, and determine the NUMA node of that thread. The
NUMA node is used to index the array of malloc_heap structures which is passed as a parameter to
the heap_alloc() function, along with the requested size, type, alignment and boundary parameters.

3.4. Malloc 22



Programmer’s Guide, Release 20.08.0

The heap_alloc() function will scan the free_list of the heap, and attempt to find a free block
suitable for storing data of the requested size, with the requested alignment and boundary constraints.

When a suitable free element has been identified, the pointer to be returned to the user is calculated.
The cache-line of memory immediately preceding this pointer is filled with a struct malloc_elem header.
Because of alignment and boundary constraints, there could be free space at the start and/or end of the
element, resulting in the following behavior:

1. Check for trailing space. If the trailing space is big enough, i.e. > 128 bytes, then the free element
is split. If it is not, then we just ignore it (wasted space).

2. Check for space at the start of the element. If the space at the start is small, i.e. <=128 bytes,
then a pad header is used, and the remaining space is wasted. If, however, the remaining space is
greater, then the free element is split.

The advantage of allocating the memory from the end of the existing element is that no adjustment of
the free list needs to take place - the existing element on the free list just has its size value adjusted, and
the next/previous elements have their “prev”/”next” pointers redirected to the newly created element.

In case when there is not enough memory in the heap to satisfy allocation request, EAL will attempt
to allocate more memory from the system (if supported) and, following successful allocation, will retry
reserving the memory again. In a multiprocessing scenario, all primary and secondary processes will
synchronize their memory maps to ensure that any valid pointer to DPDK memory is guaranteed to be
valid at all times in all currently running processes.

Failure to synchronize memory maps in one of the processes will cause allocation to fail, even though
some of the processes may have allocated the memory successfully. The memory is not added to the
malloc heap unless primary process has ensured that all other processes have mapped this memory
successfully.

Any successful allocation event will trigger a callback, for which user applications and other DPDK sub-
systems can register. Additionally, validation callbacks will be triggered before allocation if the newly
allocated memory will exceed threshold set by the user, giving a chance to allow or deny allocation.

Note: Any allocation of new pages has to go through primary process. If the primary process is not
active, no memory will be allocated even if it was theoretically possible to do so. This is because pri-
mary’s process map acts as an authority on what should or should not be mapped, while each secondary
process has its own, local memory map. Secondary processes do not update the shared memory map,
they only copy its contents to their local memory map.

Freeing Memory

To free an area of memory, the pointer to the start of the data area is passed to the free function. The size
of the malloc_elem structure is subtracted from this pointer to get the element header for the block.
If this header is of type PAD then the pad length is further subtracted from the pointer to get the proper
element header for the entire block.

From this element header, we get pointers to the heap from which the block was allocated and to where it
must be freed, as well as the pointer to the previous and next elements. These next and previous elements
are then checked to see if they are also FREE and are immediately adjacent to the current one, and if so,
they are merged with the current element. This means that we can never have two FREE memory blocks
adjacent to one another, as they are always merged into a single block.

3.4. Malloc 23



Programmer’s Guide, Release 20.08.0

If deallocating pages at runtime is supported, and the free element encloses one or more pages, those
pages can be deallocated and be removed from the heap. If DPDK was started with command-line
parameters for preallocating memory (-m or --socket-mem), then those pages that were allocated at
startup will not be deallocated.

Any successful deallocation event will trigger a callback, for which user applications and other DPDK
subsystems can register.

3.4. Malloc 24



CHAPTER

FOUR

SERVICE CORES

DPDK has a concept known as service cores, which enables a dynamic way of performing work on
DPDK lcores. Service core support is built into the EAL, and an API is provided to optionally allow
applications to control how the service cores are used at runtime.

The service cores concept is built up out of services (components of DPDK that require CPU cycles to
operate) and service cores (DPDK lcores, tasked with running services). The power of the service core
concept is that the mapping between service cores and services can be configured to abstract away the
difference between platforms and environments.

For example, the Eventdev has hardware and software PMDs. Of these the software PMD requires an
lcore to perform the scheduling operations, while the hardware PMD does not. With service cores, the
application would not directly notice that the scheduling is done in software.

For detailed information about the service core API, please refer to the docs.

4.1 Service Core Initialization

There are two methods to having service cores in a DPDK application, either by using the service
coremask, or by dynamically adding cores using the API. The simpler of the two is to pass the -s
coremask argument to EAL, which will take any cores available in the main DPDK coremask, and if the
bits are also set in the service coremask the cores become service-cores instead of DPDK application
lcores.

4.2 Enabling Services on Cores

Each registered service can be individually mapped to a service core, or set of service cores. Enabling a
service on a particular core means that the lcore in question will run the service. Disabling that core on
the service stops the lcore in question from running the service.

Using this method, it is possible to assign specific workloads to each service core, and map N workloads
to M number of service cores. Each service lcore loops over the services that are enabled for that core,
and invokes the function to run the service.

4.3 Service Core Statistics

The service core library is capable of collecting runtime statistics like number of calls to a specific ser-
vice, and number of cycles used by the service. The cycle count collection is dynamically configurable,

25



Programmer’s Guide, Release 20.08.0

allowing any application to profile the services running on the system at any time.

4.3. Service Core Statistics 26



CHAPTER

FIVE

TRACE LIBRARY

5.1 Overview

Tracing is a technique used to understand what goes on in a running software system. The software used
for tracing is called a tracer, which is conceptually similar to a tape recorder. When recording, specific
instrumentation points placed in the software source code generate events that are saved on a giant tape:
a trace file. The trace file then later can be opened in trace viewers to visualize and analyze the trace
events with timestamps and multi-core views. Such a mechanism will be useful for resolving a wide
range of problems such as multi-core synchronization issues, latency measurements, finding out the post
analysis information like CPU idle time, etc that would otherwise be extremely challenging to get.

Tracing is often compared to logging. However, tracers and loggers are two different tools, serving
two different purposes. Tracers are designed to record much lower-level events that occur much more
frequently than log messages, often in the range of thousands per second, with very little execution over-
head. Logging is more appropriate for a very high-level analysis of less frequent events: user accesses,
exceptional conditions (errors and warnings, for example), database transactions, instant messaging
communications, and such. Simply put, logging is one of the many use cases that can be satisfied with
tracing.

5.2 DPDK tracing library features

• A framework to add tracepoints in control and fast path APIs with minimum impact on perfor-
mance. Typical trace overhead is ~20 cycles and instrumentation overhead is 1 cycle.

• Enable and disable the tracepoints at runtime.

• Save the trace buffer to the filesystem at any point in time.

• Support overwrite and discard trace mode operations.

• String-based tracepoint object lookup.

• Enable and disable a set of tracepoints based on regular expression and/or globbing.

• Generate trace in Common Trace Format (CTF). CTF is an open-source trace format and
is compatible with LTTng. For detailed information, refer to Common Trace Format.

5.3 How to add a tracepoint?

This section steps you through the details of adding a simple tracepoint.

27

https://diamon.org/ctf/


Programmer’s Guide, Release 20.08.0

5.3.1 Create the tracepoint header file

#include <rte_trace_point.h>

RTE_TRACE_POINT(
app_trace_string,
RTE_TRACE_POINT_ARGS(const char *str),
rte_trace_point_emit_string(str);

)

The above macro creates app_trace_string tracepoint. The user can choose any
name for the tracepoint. However, when adding a tracepoint in the DPDK library, the
rte_<library_name>_trace_[<domain>_]<name> naming convention must be followed.
The examples are rte_eal_trace_generic_str, rte_mempool_trace_create.

The RTE_TRACE_POINT macro expands from above definition as the following function template:

static __rte_always_inline void
app_trace_string(const char *str)
{

/* Trace subsystem hooks */
...
rte_trace_point_emit_string(str);

}

The consumer of this tracepoint can invoke app_trace_string(const char *str) to emit
the trace event to the trace buffer.

5.3.2 Register the tracepoint

#include <rte_trace_point_register.h>

#include <my_tracepoint.h>

RTE_TRACE_POINT_REGISTER(app_trace_string, app.trace.string)

The above code snippet registers the app_trace_string tracepoint to trace library. Here, the
my_tracepoint.h is the header file that the user created in the first step Create the tracepoint header
file.

The second argument for the RTE_TRACE_POINT_REGISTER is the name for the tracepoint. This
string will be used for tracepoint lookup or regular expression and/or glob based tracepoint operations.
There is no requirement for the tracepoint function and its name to be similar. However, it is recom-
mended to have a similar name for a better naming convention.

Note: The rte_trace_point_register.h header must be included before any inclusion of the
rte_trace_point.h header.

Note: The RTE_TRACE_POINT_REGISTER defines the placeholder for the
rte_trace_point_t tracepoint object. The user must export a __<trace_function_name>
symbol in the library .map file for this tracepoint to be used out of the library, in shared builds. For
example, __app_trace_string will be the exported symbol in the above example.

5.3. How to add a tracepoint? 28



Programmer’s Guide, Release 20.08.0

5.4 Fast path tracepoint

In order to avoid performance impact in fast path code, the library introduced
RTE_TRACE_POINT_FP. When adding the tracepoint in fast path code, the user must use
RTE_TRACE_POINT_FP instead of RTE_TRACE_POINT.

RTE_TRACE_POINT_FP is compiled out by default and it can be enabled using
CONFIG_RTE_ENABLE_TRACE_FP configuration parameter. The enable_trace_fp op-
tion shall be used for the same for meson build.

5.5 Event record mode

Event record mode is an attribute of trace buffers. Trace library exposes the following modes:

Overwrite When the trace buffer is full, new trace events overwrites the existing captured events in the
trace buffer.

Discard When the trace buffer is full, new trace events will be discarded.

The mode can be configured either using EAL command line parameter --trace-mode on application
boot up or use rte_trace_mode_set() API to configure at runtime.

5.6 Trace file location

On rte_trace_save() or rte_eal_cleanup() invocation, the library saves
the trace buffers to the filesystem. By default, the trace files are stored in
$HOME/dpdk-traces/rte-yyyy-mm-dd-[AP]M-hh-mm-ss/. It can be overridden by
the --trace-dir=<directory path> EAL command line option.

For more information, refer to ../linux_gsg/linux_eal_parameters for trace EAL command line options.

5.7 View and analyze the recorded events

Once the trace directory is available, the user can view/inspect the recorded events.

There are many tools you can use to read DPDK traces:

1. babeltrace is a command-line utility that converts trace formats; it supports the format that DPDK
trace library produces, CTF, as well as a basic text output that can be grep’ed. The babeltrace command
is part of the Open Source Babeltrace project.

2. Trace Compass is a graphical user interface for viewing and analyzing any type of logs or traces,
including DPDK traces.

5.7.1 Use the babeltrace command-line tool

The simplest way to list all the recorded events of a trace is to pass its path to babeltrace with no options:

babeltrace </path-to-trace-events/rte-yyyy-mm-dd-[AP]M-hh-mm-ss/>

5.4. Fast path tracepoint 29



Programmer’s Guide, Release 20.08.0

babeltrace finds all traces recursively within the given path and prints all their events, merging them
in chronological order.

You can pipe the output of the babeltrace into a tool like grep(1) for further filtering. Below example
grep the events for ethdev only:

babeltrace /tmp/my-dpdk-trace | grep ethdev

You can pipe the output of babeltrace into a tool like wc(1) to count the recorded events. Below example
count the number of ethdev events:

babeltrace /tmp/my-dpdk-trace | grep ethdev | wc --lines

5.7.2 Use the tracecompass GUI tool

Tracecompass is another tool to view/analyze the DPDK traces which gives a graphical view of
events. Like babeltrace, tracecompass also provides an interface to search for a particular event. To
use tracecompass, following are the minimum required steps:

• Install tracecompass to the localhost. Variants are available for Linux, Windows, and OS-X.

• Launch tracecompass which will open a graphical window with trace management interfaces.

• Open a trace using File->Open Trace option and select metadata file which is to be
viewed/analyzed.

For more details, refer Trace Compass.

5.8 Quick start

This section steps you through the details of generating trace and viewing it.

• Start the dpdk-test:

echo "quit" | ./build/app/test/dpdk-test --no-huge --trace=.*

• View the traces with babeltrace viewer:

babeltrace $HOME/dpdk-traces/rte-yyyy-mm-dd-[AP]M-hh-mm-ss/

5.9 Implementation details

As DPDK trace library is designed to generate traces that uses Common Trace Format (CTF).
CTF specification consists of the following units to create a trace.

• Stream Sequence of packets.

• Packet Header and one or more events.

• Event Header and payload.

For detailed information, refer to Common Trace Format.

The implementation details broadly divided into the following areas:

5.8. Quick start 30

https://www.eclipse.org/tracecompass/
https://diamon.org/ctf/


Programmer’s Guide, Release 20.08.0

5.9.1 Trace metadata creation

Based on the CTF specification, one of a CTF trace’s streams is mandatory: the metadata stream. It
contains exactly what you would expect: data about the trace itself. The metadata stream contains a
textual description of the binary layouts of all the other streams.

This description is written using the Trace Stream Description Language (TSDL), a declarative language
that exists only in the realm of CTF. The purpose of the metadata stream is to make CTF readers know
how to parse a trace’s binary streams of events without CTF specifying any fixed layout. The only stream
layout known in advance is, in fact, the metadata stream’s one.

The internal trace_metadata_create() function generates the metadata.

5.9.2 Trace memory

The trace memory will be allocated through an internal function
__rte_trace_mem_per_thread_alloc(). The trace memory will be allocated per thread
to enable lock less trace-emit function. The memory for the trace memory for DPDK lcores will be
allocated on rte_eal_init() if the trace is enabled through a EAL option. For non DPDK threads,
on the first trace emission, the memory will be allocated.

5.9.3 Trace memory layout

Table 5.1: Trace
memory layout.

packet.header
packet.context
trace 0 header
trace 0 payload
trace 1 header
trace 1 payload
trace N header
trace N payload

packet.header

Table 5.2: Packet
header layout.

uint32_t magic
rte_uuid_t uuid

5.9. Implementation details 31



Programmer’s Guide, Release 20.08.0

packet.context

Table 5.3: Packet con-
text layout.

uint32_t thread_id
char thread_name[32]

trace.header

Table 5.4: Trace
header layout.

event_id [63:48]
timestamp [47:0]

The trace header is 64 bits, it consists of 48 bits of timestamp and 16 bits event ID.

The packet.header and packet.context will be written in the slow path at the time of trace
memory creation. The trace.header and trace payload will be emitted when the tracepoint function
is invoked.

5.9. Implementation details 32



CHAPTER

SIX

RCU LIBRARY

Lockless data structures provide scalability and determinism. They enable use cases where locking may
not be allowed (for example real-time applications).

In the following sections, the term “memory” refers to memory allocated by typical APIs like malloc()
or anything that is representative of memory, for example an index of a free element array.

Since these data structures are lockless, the writers and readers are accessing the data structures concur-
rently. Hence, while removing an element from a data structure, the writers cannot return the memory
to the allocator, without knowing that the readers are not referencing that element/memory anymore.
Hence, it is required to separate the operation of removing an element into two steps:

1. Delete: in this step, the writer removes the reference to the element from the data structure but
does not return the associated memory to the allocator. This will ensure that new readers will not
get a reference to the removed element. Removing the reference is an atomic operation.

2. Free (Reclaim): in this step, the writer returns the memory to the memory allocator only after
knowing that all the readers have stopped referencing the deleted element.

This library helps the writer determine when it is safe to free the memory by making use of thread
Quiescent State (QS).

6.1 What is Quiescent State

Quiescent State can be defined as “any point in the thread execution where the thread does not hold a
reference to shared memory”. It is the responsibility of the application to determine its quiescent state.

Let us consider the following diagram:

As shown in Fig. 6.1, reader thread 1 accesses data structures D1 and D2. When it is accessing D1, if
the writer has to remove an element from D1, the writer cannot free the memory associated with that
element immediately. The writer can return the memory to the allocator only after the reader stops
referencing D1. In other words, reader thread RT1 has to enter a quiescent state.

Similarly, since reader thread 2 is also accessing D1, the writer has to wait till thread 2 enters quiescent
state as well.

However, the writer does not need to wait for reader thread 3 to enter quiescent state. Reader thread 3
was not accessing D1 when the delete operation happened. So, reader thread 3 will not have a reference
to the deleted entry.

It can be noted that, the critical sections for D2 is a quiescent state for D1. i.e. for a given data structure
Dx, any point in the thread execution that does not reference Dx is a quiescent state.

33



Programmer’s Guide, Release 20.08.0

D1 D2Reader Thread 1

D1 D2T 2

D1 D2T 3

Time

Remove reference to entry1

Delete

Delete entry1 from D1

Free memory for entries1 and 2 after every reader has gone through at least 1 quiescent state  

Free

Grace Period

Delete entry2 from D1

Critical sections

Quiescent states

while(1) loop

Reader thread is not accessing any shared data structure.i.e. non critical section or quiescent state.

Dx
Reader thread is accessing the shared data structure Dx.i.e. critical section.

Point in time when the reference to the entry is removed using an atomic operation.Delete

Point in time when the writer can free the deleted entry.Free

Time duration between Delete and Free, during which memory cannot be freed.Grace Period

Remove reference to entry2

Fig. 6.1: Phases in the Quiescent State model.

6.1. What is Quiescent State 34



Programmer’s Guide, Release 20.08.0

Since memory is not freed immediately, there might be a need for provisioning of additional memory,
depending on the application requirements.

6.2 Factors affecting the RCU mechanism

It is important to make sure that this library keeps the overhead of identifying the end of grace period
and subsequent freeing of memory, to a minimum. The following paras explain how grace period and
critical section affect this overhead.

The writer has to poll the readers to identify the end of grace period. Polling introduces memory accesses
and wastes CPU cycles. The memory is not available for reuse during the grace period. Longer grace
periods exasperate these conditions.

The length of the critical section and the number of reader threads is proportional to the duration of the
grace period. Keeping the critical sections smaller will keep the grace period smaller. However, keeping
the critical sections smaller requires additional CPU cycles (due to additional reporting) in the readers.

Hence, we need the characteristics of a small grace period and large critical section. This library ad-
dresses these characteristics by allowing the writer to do other work without having to block until the
readers report their quiescent state.

6.3 RCU in DPDK

For DPDK applications, the beginning and end of a while(1) loop (where no references to shared
data structures are kept) act as perfect quiescent states. This will combine all the shared data struc-
ture accesses into a single, large critical section which helps keep the overhead on the reader side to a
minimum.

DPDK supports a pipeline model of packet processing and service cores. In these use cases, a given
data structure may not be used by all the workers in the application. The writer has to wait only for the
workers that use the data structure to report their quiescent state. To provide the required flexibility, this
library has a concept of a QS variable. If required, the application can create one QS variable per data
structure to help it track the end of grace period for each data structure. This helps keep the length of
grace period to a minimum.

6.4 How to use this library

The application must allocate memory and initialize a QS variable.

Applications can call rte_rcu_qsbr_get_memsize() to calculate the size of memory to allocate.
This API takes a maximum number of reader threads, using this variable, as a parameter.

Further, the application can initialize a QS variable using the API rte_rcu_qsbr_init().

Each reader thread is assumed to have a unique thread ID. Currently, the management of the thread ID
(for example allocation/free) is left to the application. The thread ID should be in the range of 0 to
maximum number of threads provided while creating the QS variable. The application could also use
lcore_id as the thread ID where applicable.

The rte_rcu_qsbr_thread_register()API will register a reader thread to report its quiescent
state. This can be called from a reader thread. A control plane thread can also call this on behalf

6.2. Factors affecting the RCU mechanism 35



Programmer’s Guide, Release 20.08.0

of a reader thread. The reader thread must call rte_rcu_qsbr_thread_online() API to start
reporting its quiescent state.

Some of the use cases might require the reader threads to make blocking API calls (for example while
using eventdev APIs). The writer thread should not wait for such reader threads to enter quiescent state.
The reader thread must call rte_rcu_qsbr_thread_offline() API, before calling blocking
APIs. It can call rte_rcu_qsbr_thread_online() API once the blocking API call returns.

The writer thread can trigger the reader threads to report their quiescent state by calling the API
rte_rcu_qsbr_start(). It is possible for multiple writer threads to query the quiescent state
status simultaneously. Hence, rte_rcu_qsbr_start() returns a token to each caller.

The writer thread must call rte_rcu_qsbr_check()API with the token to get the current quiescent
state status. Option to block till all the reader threads enter the quiescent state is provided. If this API
indicates that all the reader threads have entered the quiescent state, the application can free the deleted
entry.

The APIs rte_rcu_qsbr_start() and rte_rcu_qsbr_check() are lock free. Hence, they
can be called concurrently from multiple writers even while running as worker threads.

The separation of triggering the reporting from querying the status provides the writer threads flexibility
to do useful work instead of blocking for the reader threads to enter the quiescent state or go offline. This
reduces the memory accesses due to continuous polling for the status. But, since the resource is freed at
a later time, the token and the reference to the deleted resource need to be stored for later queries.

The rte_rcu_qsbr_synchronize() API combines the functionality of
rte_rcu_qsbr_start() and blocking rte_rcu_qsbr_check() into a single API. This
API triggers the reader threads to report their quiescent state and polls till all the readers enter the
quiescent state or go offline. This API does not allow the writer to do useful work while waiting and
introduces additional memory accesses due to continuous polling. However, the application does not
have to store the token or the reference to the deleted resource. The resource can be freed immediately
after rte_rcu_qsbr_synchronize() API returns.

The reader thread must call rte_rcu_qsbr_thread_offline() and
rte_rcu_qsbr_thread_unregister() APIs to remove itself from reporting its quies-
cent state. The rte_rcu_qsbr_check() API will not wait for this reader thread to report the
quiescent state status anymore.

The reader threads should call rte_rcu_qsbr_quiescent() API to indicate that they entered a
quiescent state. This API checks if a writer has triggered a quiescent state query and update the state
accordingly.

The rte_rcu_qsbr_lock() and rte_rcu_qsbr_unlock() are empty functions. How-
ever, when CONFIG_RTE_LIBRTE_RCU_DEBUG is enabled, these APIs aid in debugging issues.
One can mark the access to shared data structures on the reader side using these APIs. The
rte_rcu_qsbr_quiescent() will check if all the locks are unlocked.

6.5 Resource reclamation framework for DPDK

Lock-free algorithms place additional burden of resource reclamation on the application. When a writer
deletes an entry from a data structure, the writer:

1. Has to start the grace period

2. Has to store a reference to the deleted resources in a FIFO

6.5. Resource reclamation framework for DPDK 36



Programmer’s Guide, Release 20.08.0

3. Should check if the readers have completed a grace period and free the resources.

There are several APIs provided to help with this process. The writer can create a FIFO to
store the references to deleted resources using rte_rcu_qsbr_dq_create(). The resources
can be enqueued to this FIFO using rte_rcu_qsbr_dq_enqueue(). If the FIFO is full,
rte_rcu_qsbr_dq_enqueue will reclaim the resources before enqueuing. It will also re-
claim resources on regular basis to keep the FIFO from growing too large. If the writer runs
out of resources, the writer can call rte_rcu_qsbr_dq_reclaim API to reclaim resources.
rte_rcu_qsbr_dq_delete is provided to reclaim any remaining resources and free the FIFO while
shutting down.

However, if this resource reclamation process were to be integrated in lock-free data structure libraries,
it hides this complexity from the application and makes it easier for the application to adopt lock-free
algorithms. The following paragraphs discuss how the reclamation process can be integrated in DPDK
libraries.

In any DPDK application, the resource reclamation process using QSBR can be split into 4 parts:

1. Initialization

2. Quiescent State Reporting

3. Reclaiming Resources

4. Shutdown

The design proposed here assigns different parts of this process to client libraries and applications. The
term ‘client library’ refers to lock-free data structure libraries such at rte_hash, rte_lpm etc. in DPDK
or similar libraries outside of DPDK. The term ‘application’ refers to the packet processing application
that makes use of DPDK such as L3 Forwarding example application, OVS, VPP etc..

The application has to handle ‘Initialization’ and ‘Quiescent State Reporting’. So,

• the application has to create the RCU variable and register the reader threads to report their qui-
escent state.

• the application has to register the same RCU variable with the client library.

• reader threads in the application have to report the quiescent state. This allows for the application
to control the length of the critical section/how frequently the application wants to report the
quiescent state.

The client library will handle ‘Reclaiming Resources’ part of the process. The client libraries will make
use of the writer thread context to execute the memory reclamation algorithm. So,

• client library should provide an API to register a RCU variable that it will use. It should call
rte_rcu_qsbr_dq_create() to create the FIFO to store the references to deleted entries.

• client library should use rte_rcu_qsbr_dq_enqueue to enqueue the deleted resources on
the FIFO and start the grace period.

• if the library runs out of resources while adding entries, it should call
rte_rcu_qsbr_dq_reclaim to reclaim the resources and try the resource allocation
again.

The ‘Shutdown’ process needs to be shared between the application and the client library.

• the application should make sure that the reader threads are not using the shared data structure,
unregister the reader threads from the QSBR variable before calling the client library’s shutdown
function.

6.5. Resource reclamation framework for DPDK 37



Programmer’s Guide, Release 20.08.0

• client library should call rte_rcu_qsbr_dq_delete to reclaim any remaining resources and
free the FIFO.

Integrating the resource reclamation with client libraries removes the burden from the application and
makes it easy to use lock-free algorithms.

This design has several advantages over currently known methods.

1. Application does not need a dedicated thread to reclaim resources. Memory reclamation happens
as part of the writer thread with little impact on performance.

2. The client library has better control over the resources. For example: the client library can attempt
to reclaim when it has run out of resources.

6.5. Resource reclamation framework for DPDK 38



CHAPTER

SEVEN

RING LIBRARY

The ring allows the management of queues. Instead of having a linked list of infinite size, the rte_ring
has the following properties:

• FIFO

• Maximum size is fixed, the objects are stored in a table

• Objects can be pointers or elements of multiple of 4 byte size

• Lockless implementation

• Multi-consumer or single-consumer dequeue

• Multi-producer or single-producer enqueue

• Bulk dequeue - Dequeues the specified count of objects if successful; otherwise fails

• Bulk enqueue - Enqueues the specified count of objects if successful; otherwise fails

• Burst dequeue - Dequeue the maximum available objects if the specified count cannot be fulfilled

• Burst enqueue - Enqueue the maximum available objects if the specified count cannot be fulfilled

The advantages of this data structure over a linked list queue are as follows:

• Faster; only requires a single 32 bit Compare-And-Swap instruction instead of several pointer size
Compare-And-Swap instructions.

• Simpler than a full lockless queue.

• Adapted to bulk enqueue/dequeue operations. As objects are stored in a table, a dequeue of several
objects will not produce as many cache misses as in a linked queue. Also, a bulk dequeue of many
objects does not cost more than a dequeue of a simple object.

The disadvantages:

• Size is fixed

• Having many rings costs more in terms of memory than a linked list queue. An empty ring
contains at least N objects.

A simplified representation of a Ring is shown in with consumer and producer head and tail pointers to
objects stored in the data structure.

39



Programmer’s Guide, Release 20.08.0

obj1 obj2 obj3

cons_head
cons_tail

prod_head
prod_tail

Fig. 7.1: Ring Structure

7.1 References for Ring Implementation in FreeBSD*

The following code was added in FreeBSD 8.0, and is used in some network device drivers (at least in
Intel drivers):

• bufring.h in FreeBSD

• bufring.c in FreeBSD

7.2 Lockless Ring Buffer in Linux*

The following is a link describing the Linux Lockless Ring Buffer Design.

7.3 Additional Features

7.3.1 Name

A ring is identified by a unique name. It is not possible to create two rings with the same name
(rte_ring_create() returns NULL if this is attempted).

7.4 Use Cases

Use cases for the Ring library include:

• Communication between applications in the DPDK

• Used by memory pool allocator

7.5 Anatomy of a Ring Buffer

This section explains how a ring buffer operates. The ring structure is composed of two head and tail
couples; one is used by producers and one is used by the consumers. The figures of the following
sections refer to them as prod_head, prod_tail, cons_head and cons_tail.

7.1. References for Ring Implementation in FreeBSD* 40

http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/sys/buf_ring.h?revision=199625&amp;view=markup
http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/kern/subr_bufring.c?revision=199625&amp;view=markup
http://lwn.net/Articles/340400/


Programmer’s Guide, Release 20.08.0

Each figure represents a simplified state of the ring, which is a circular buffer. The content of the function
local variables is represented on the top of the figure, and the content of ring structure is represented on
the bottom of the figure.

7.5.1 Single Producer Enqueue

This section explains what occurs when a producer adds an object to the ring. In this example, only the
producer head and tail (prod_head and prod_tail) are modified, and there is only one producer.

The initial state is to have a prod_head and prod_tail pointing at the same location.

Enqueue First Step

First, ring->prod_head and ring->cons_tail are copied in local variables. The prod_next local variable
points to the next element of the table, or several elements after in case of bulk enqueue.

If there is not enough room in the ring (this is detected by checking cons_tail), it returns an error.

obj1 obj2 obj3

cons_head
cons_tail

prod_head
prod_tail

local variables

structure state

cons_tail prod_head prod_next

Fig. 7.2: Enqueue first step

Enqueue Second Step

The second step is to modify ring->prod_head in ring structure to point to the same location as
prod_next.

The added object is copied in the ring (obj4).

7.5. Anatomy of a Ring Buffer 41



Programmer’s Guide, Release 20.08.0

obj1 obj2 obj3

cons_head
cons_tail

prod_headprod_tail

local variables

structure state

cons_tail prod_head prod_next

obj4

Fig. 7.3: Enqueue second step

Enqueue Last Step

Once the object is added in the ring, ring->prod_tail in the ring structure is modified to point to the same
location as ring->prod_head. The enqueue operation is finished.

7.5.2 Single Consumer Dequeue

This section explains what occurs when a consumer dequeues an object from the ring. In this example,
only the consumer head and tail (cons_head and cons_tail) are modified and there is only one consumer.

The initial state is to have a cons_head and cons_tail pointing at the same location.

Dequeue First Step

First, ring->cons_head and ring->prod_tail are copied in local variables. The cons_next local variable
points to the next element of the table, or several elements after in the case of bulk dequeue.

If there are not enough objects in the ring (this is detected by checking prod_tail), it returns an error.

Dequeue Second Step

The second step is to modify ring->cons_head in the ring structure to point to the same location as
cons_next.

The dequeued object (obj1) is copied in the pointer given by the user.

7.5. Anatomy of a Ring Buffer 42



Programmer’s Guide, Release 20.08.0

obj1 obj2 obj3

cons_head
cons_tail prod_head

prod_tail

local variables

structure state

cons_tail prod_head prod_next

obj4

Fig. 7.4: Enqueue last step

obj1 obj2 obj3

cons_head
cons_tail prod_head

prod_tail

local variables

structure state

obj4

cons_head prod_tailcons_next

Fig. 7.5: Dequeue last step

7.5. Anatomy of a Ring Buffer 43



Programmer’s Guide, Release 20.08.0

obj2 obj3

cons_headcons_tail
prod_head
prod_tail

local variables

structure state

cons_head prod_tailcons_next

obj4

Fig. 7.6: Dequeue second step

Dequeue Last Step

Finally, ring->cons_tail in the ring structure is modified to point to the same location as ring->cons_head.
The dequeue operation is finished.

7.5.3 Multiple Producers Enqueue

This section explains what occurs when two producers concurrently add an object to the ring. In this
example, only the producer head and tail (prod_head and prod_tail) are modified.

The initial state is to have a prod_head and prod_tail pointing at the same location.

Multiple Producers Enqueue First Step

On both cores, ring->prod_head and ring->cons_tail are copied in local variables. The prod_next local
variable points to the next element of the table, or several elements after in the case of bulk enqueue.

If there is not enough room in the ring (this is detected by checking cons_tail), it returns an error.

Multiple Producers Enqueue Second Step

The second step is to modify ring->prod_head in the ring structure to point to the same location as
prod_next. This operation is done using a Compare And Swap (CAS) instruction, which does the fol-
lowing operations atomically:

7.5. Anatomy of a Ring Buffer 44



Programmer’s Guide, Release 20.08.0

obj2 obj3

cons_head
cons_tail prod_head

prod_tail

local variables

structure state

cons_head prod_tailcons_next

obj4

Fig. 7.7: Dequeue last step

obj1 obj2 obj3

cons_head
cons_tail

prod_head
prod_tail

local variables 
core 2

structure state

cons_tail prod_head prod_nextlocal variables
core 1

cons_tail prod_head prod_next

Fig. 7.8: Multiple producer enqueue first step

7.5. Anatomy of a Ring Buffer 45



Programmer’s Guide, Release 20.08.0

• If ring->prod_head is different to local variable prod_head, the CAS operation fails, and the code
restarts at first step.

• Otherwise, ring->prod_head is set to local prod_next, the CAS operation is successful, and pro-
cessing continues.

In the figure, the operation succeeded on core 1, and step one restarted on core 2.

obj1 obj2 obj3

cons_head
cons_tail

prod_head
prod_tail

local variables
core 2

structure state

cons_tail prod_head prod_nextlocal variables
core 1

cons_tail prod_head prod_next

compare and swap succeeds
on core 1 and fails on core 2

Fig. 7.9: Multiple producer enqueue second step

Multiple Producers Enqueue Third Step

The CAS operation is retried on core 2 with success.

The core 1 updates one element of the ring(obj4), and the core 2 updates another one (obj5).

Multiple Producers Enqueue Fourth Step

Each core now wants to update ring->prod_tail. A core can only update it if ring->prod_tail is equal to
the prod_head local variable. This is only true on core 1. The operation is finished on core 1.

Multiple Producers Enqueue Last Step

Once ring->prod_tail is updated by core 1, core 2 is allowed to update it too. The operation is also
finished on core 2.

7.5. Anatomy of a Ring Buffer 46



Programmer’s Guide, Release 20.08.0

obj1 obj2 obj3

cons_head
cons_tail

prod_head
prod_tail

local variables
core 2

structure state

cons_tail prod_head prod_nextlocal variables
core 1

cons_tail prod_head prod_next

compare and swap succeeds
on core 2

obj4 obj5

Fig. 7.10: Multiple producer enqueue third step

obj1 obj2 obj3

cons_head
cons_tail

prod_head
prod_tail

local variables
core 2

structure state

cons_tail prod_head prod_nextlocal variables
core 1

cons_tail prod_head prod_next

core 2 is waiting for
r->prod_tail == prod_head

obj4 obj5

Fig. 7.11: Multiple producer enqueue fourth step

7.5. Anatomy of a Ring Buffer 47



Programmer’s Guide, Release 20.08.0

obj1 obj2 obj3

cons_head
cons_tail

prod_head
prod_tail

local variables
core 2

structure state

cons_tail prod_head prod_next

obj4 obj5

Fig. 7.12: Multiple producer enqueue last step

7.5.4 Modulo 32-bit Indexes

In the preceding figures, the prod_head, prod_tail, cons_head and cons_tail indexes are represented
by arrows. In the actual implementation, these values are not between 0 and size(ring)-1 as would be
assumed. The indexes are between 0 and 2^32 -1, and we mask their value when we access the object
table (the ring itself). 32-bit modulo also implies that operations on indexes (such as, add/subtract) will
automatically do 2^32 modulo if the result overflows the 32-bit number range.

The following are two examples that help to explain how indexes are used in a ring.

Note: To simplify the explanation, operations with modulo 16-bit are used instead of modulo 32-bit. In
addition, the four indexes are defined as unsigned 16-bit integers, as opposed to unsigned 32-bit integers
in the more realistic case.

0 16384 32768 49152 65536
0 0

16384 1638432768 49152 65536

ring

ch
ct

ph
pt

value for
indexes
(prod_head,
prod_tail, ...)

used entries in ring

size = 16384
mask = 16383
ph = pt = 14000
ct = ch = 3000
used_entries = (pt - ch) % 65536 = 11000
free_entries = (mask + ct - ph) % 65536 = 5383

used_entries

Fig. 7.13: Modulo 32-bit indexes - Example 1

7.5. Anatomy of a Ring Buffer 48



Programmer’s Guide, Release 20.08.0

This ring contains 11000 entries.

0 16384 32768 49152 65536
0 0

16384 1638432768 49152 65536

ring

ch
ct

ph
pt

value for
indexes
(prod_head,
prod_tail, ...)

used entries in ring

size = 16384
mask = 16383
ph = pt = 6000
ct = ch = 59000
used_entries = (pt - ch) % 65536 = 12536
free_entries = (mask + ct - ph) % 65536 = 3847

used_entries

Fig. 7.14: Modulo 32-bit indexes - Example 2

This ring contains 12536 entries.

Note: For ease of understanding, we use modulo 65536 operations in the above examples. In real
execution cases, this is redundant for low efficiency, but is done automatically when the result overflows.

The code always maintains a distance between producer and consumer between 0 and size(ring)-1.
Thanks to this property, we can do subtractions between 2 index values in a modulo-32bit base: that’s
why the overflow of the indexes is not a problem.

At any time, entries and free_entries are between 0 and size(ring)-1, even if only the first term of sub-
traction has overflowed:

uint32_t entries = (prod_tail - cons_head);
uint32_t free_entries = (mask + cons_tail -prod_head);

7.6 Producer/consumer synchronization modes

rte_ring supports different synchronization modes for producers and consumers. These modes can be
specified at ring creation/init time via flags parameter. That should help users to configure ring in the
most suitable way for his specific usage scenarios. Currently supported modes:

7.6.1 MP/MC (default one)

Multi-producer (/multi-consumer) mode. This is a default enqueue (/dequeue) mode for the ring. In
this mode multiple threads can enqueue (/dequeue) objects to (/from) the ring. For ‘classic’ DPDK
deployments (with one thread per core) this is usually the most suitable and fastest synchronization
mode. As a well known limitation - it can perform quite pure on some overcommitted scenarios.

7.6.2 SP/SC

Single-producer (/single-consumer) mode. In this mode only one thread at a time is allowed to enqueue
(/dequeue) objects to (/from) the ring.

7.6. Producer/consumer synchronization modes 49



Programmer’s Guide, Release 20.08.0

7.6.3 MP_RTS/MC_RTS

Multi-producer (/multi-consumer) with Relaxed Tail Sync (RTS) mode. The main difference from
the original MP/MC algorithm is that tail value is increased not by every thread that finished en-
queue/dequeue, but only by the last one. That allows threads to avoid spinning on ring tail value,
leaving actual tail value change to the last thread at a given instance. That technique helps to avoid the
Lock-Waiter-Preemption (LWP) problem on tail update and improves average enqueue/dequeue times
on overcommitted systems. To achieve that RTS requires 2 64-bit CAS for each enqueue(/dequeue)
operation: one for head update, second for tail update. In comparison the original MP/MC algorithm
requires one 32-bit CAS for head update and waiting/spinning on tail value.

7.6.4 MP_HTS/MC_HTS

Multi-producer (/multi-consumer) with Head/Tail Sync (HTS) mode. In that mode enqueue/dequeue op-
eration is fully serialized: at any given moment only one enqueue/dequeue operation can proceed. This
is achieved by allowing a thread to proceed with changing head.value only when head.value
== tail.value. Both head and tail values are updated atomically (as one 64-bit value). To achieve
that 64-bit CAS is used by head update routine. That technique also avoids the Lock-Waiter-Preemption
(LWP) problem on tail update and helps to improve ring enqueue/dequeue behavior in overcommitted
scenarios. Another advantage of fully serialized producer/consumer - it provides the ability to implement
MT safe peek API for rte_ring.

7.7 Ring Peek API

For ring with serialized producer/consumer (HTS sync mode) it is possible to split public en-
queue/dequeue API into two phases:

• enqueue/dequeue start

• enqueue/dequeue finish

That allows user to inspect objects in the ring without removing them from it (aka MT safe peek) and
reserve space for the objects in the ring before actual enqueue. Note that this API is available only for
two sync modes:

• Single Producer/Single Consumer (SP/SC)

• Multi-producer/Multi-consumer with Head/Tail Sync (HTS)

It is a user responsibility to create/init ring with appropriate sync modes selected. As an example of
usage:

/* read 1 elem from the ring: */
uint32_t n = rte_ring_dequeue_bulk_start(ring, &obj, 1, NULL);
if (n != 0) {

/* examine object */
if (object_examine(obj) == KEEP)

/* decided to keep it in the ring. */
rte_ring_dequeue_finish(ring, 0);

else
/* decided to remove it from the ring. */
rte_ring_dequeue_finish(ring, n);

}

7.7. Ring Peek API 50



Programmer’s Guide, Release 20.08.0

Note that between _start_ and _finish_ none other thread can proceed with enqueue(/dequeue)
operation till _finish_ completes.

7.8 References

• bufring.h in FreeBSD (version 8)

• bufring.c in FreeBSD (version 8)

• Linux Lockless Ring Buffer Design

7.8. References 51

http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/sys/buf_ring.h?revision=199625&amp;view=markup
http://svn.freebsd.org/viewvc/base/release/8.0.0/sys/kern/subr_bufring.c?revision=199625&amp;view=markup
http://lwn.net/Articles/340400/


CHAPTER

EIGHT

STACK LIBRARY

DPDK’s stack library provides an API for configuration and use of a bounded stack of pointers.

The stack library provides the following basic operations:

• Create a uniquely named stack of a user-specified size and using a user-specified socket, with
either standard (lock-based) or lock-free behavior.

• Push and pop a burst of one or more stack objects (pointers). These function are multi-threading
safe.

• Free a previously created stack.

• Lookup a pointer to a stack by its name.

• Query a stack’s current depth and number of free entries.

8.1 Implementation

The library supports two types of stacks: standard (lock-based) and lock-free. Both types use the same
set of interfaces, but their implementations differ.

8.1.1 Lock-based Stack

The lock-based stack consists of a contiguous array of pointers, a current index, and a spinlock. Accesses
to the stack are made multi-thread safe by the spinlock.

8.1.2 Lock-free Stack

The lock-free stack consists of a linked list of elements, each containing a data pointer and a next pointer,
and an atomic stack depth counter. The lock-free property means that multiple threads can push and pop
simultaneously, and one thread being preempted/delayed in a push or pop operation will not impede the
forward progress of any other thread.

The lock-free push operation enqueues a linked list of pointers by pointing the list’s tail to the current
stack head, and using a CAS to swing the stack head pointer to the head of the list. The operation retries
if it is unsuccessful (i.e. the list changed between reading the head and modifying it), else it adjusts the
stack length and returns.

The lock-free pop operation first reserves one or more list elements by adjusting the stack length, to
ensure the dequeue operation will succeed without blocking. It then dequeues pointers by walking the

52



Programmer’s Guide, Release 20.08.0

list – starting from the head – then swinging the head pointer (using a CAS as well). While walking the
list, the data pointers are recorded in an object table.

The linked list elements themselves are maintained in a lock-free LIFO, and are allocated before stack
pushes and freed after stack pops. Since the stack has a fixed maximum depth, these elements do not
need to be dynamically created.

The lock-free behavior is selected by passing the RTE_STACK_F_LF flag to rte_stack_create().

Preventing the ABA Problem

To prevent the ABA problem, this algorithm stack uses a 128-bit compare-and-swap instruction to atom-
ically update both the stack top pointer and a modification counter. The ABA problem can occur without
a modification counter if, for example:

1. Thread A reads head pointer X and stores the pointed-to list element.

2. Other threads modify the list such that the head pointer is once again X, but its pointed-to data is
different than what thread A read.

3. Thread A changes the head pointer with a compare-and-swap and succeeds.

In this case thread A would not detect that the list had changed, and would both pop stale data and
incorrect change the head pointer. By adding a modification counter that is updated on every push and
pop as part of the compare-and-swap, the algorithm can detect when the list changes even if the head
pointer remains the same.

8.1. Implementation 53



CHAPTER

NINE

MEMPOOL LIBRARY

A memory pool is an allocator of a fixed-sized object. In the DPDK, it is identified by name and uses
a mempool handler to store free objects. The default mempool handler is ring based. It provides some
other optional services such as a per-core object cache and an alignment helper to ensure that objects are
padded to spread them equally on all DRAM or DDR3 channels.

This library is used by the Mbuf Library.

9.1 Cookies

In debug mode (CONFIG_RTE_LIBRTE_MEMPOOL_DEBUG is enabled), cookies are added at the
beginning and end of allocated blocks. The allocated objects then contain overwrite protection fields to
help debugging buffer overflows.

9.2 Stats

In debug mode (CONFIG_RTE_LIBRTE_MEMPOOL_DEBUG is enabled), statistics about get
from/put in the pool are stored in the mempool structure. Statistics are per-lcore to avoid concurrent
access to statistics counters.

9.3 Memory Alignment Constraints on x86 architecture

Depending on hardware memory configuration on X86 architecture, performance can be greatly im-
proved by adding a specific padding between objects. The objective is to ensure that the beginning of
each object starts on a different channel and rank in memory so that all channels are equally loaded.

This is particularly true for packet buffers when doing L3 forwarding or flow classification. Only the
first 64 bytes are accessed, so performance can be increased by spreading the start addresses of objects
among the different channels.

The number of ranks on any DIMM is the number of independent sets of DRAMs that can be accessed
for the full data bit-width of the DIMM. The ranks cannot be accessed simultaneously since they share
the same data path. The physical layout of the DRAM chips on the DIMM itself does not necessarily
relate to the number of ranks.

When running an application, the EAL command line options provide the ability to add the number of
memory channels and ranks.

54



Programmer’s Guide, Release 20.08.0

Note: The command line must always have the number of memory channels specified for the processor.

Examples of alignment for different DIMM architectures are shown in Fig. 9.1 and Fig. 9.2.

Channel
Rank

packet 1 packet 2padding

0 1 0 0 01 1 1
1 1 10 0 02 2 23 3

memory addresses

pkt1 starts at
channel 0, rank 0

pkt2 starts at
channel 1, rank 1

64 bytes wide

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 ...Block num

0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3

Fig. 9.1: Two Channels and Quad-ranked DIMM Example

In this case, the assumption is that a packet is 16 blocks of 64 bytes, which is not true.

The Intel® 5520 chipset has three channels, so in most cases, no padding is required between objects
(except for objects whose size are n x 3 x 64 bytes blocks).

Channel
Rank

packet 1 packet 2

0 1 0 1 1
1 1 10 0 00 0 01 1

memory addresses

pkt0 starts at
channel 0, rank 1

pkt2 starts at
channel 1, rank 0
(no padding needed)

64 bytes wide

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 ...Block num

0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3

2 1 02

DIMM 0 0 011 1

Fig. 9.2: Three Channels and Two Dual-ranked DIMM Example

When creating a new pool, the user can specify to use this feature or not.

9.4 Local Cache

In terms of CPU usage, the cost of multiple cores accessing a memory pool’s ring of free buffers may be
high since each access requires a compare-and-set (CAS) operation. To avoid having too many access
requests to the memory pool’s ring, the memory pool allocator can maintain a per-core cache and do
bulk requests to the memory pool’s ring, via the cache with many fewer locks on the actual memory
pool structure. In this way, each core has full access to its own cache (with locks) of free objects and
only when the cache fills does the core need to shuffle some of the free objects back to the pools ring or
obtain more objects when the cache is empty.

While this may mean a number of buffers may sit idle on some core’s cache, the speed at which a core
can access its own cache for a specific memory pool without locks provides performance gains.

The cache is composed of a small, per-core table of pointers and its length (used as a stack). This internal
cache can be enabled or disabled at creation of the pool.

The maximum size of the cache is static and is defined at compilation time (CON-
FIG_RTE_MEMPOOL_CACHE_MAX_SIZE).

9.4. Local Cache 55



Programmer’s Guide, Release 20.08.0

Fig. 9.3 shows a cache in operation.

mempool
rte_ring: stores memory pool's free objects

Object caches for 

obj n

obj 0

header trailer

elt_size

obj 2

obj 1

core 0 

core 1 

Core 0
App A - ring

Core 1
App B - ring

App C - ring

If cache empty get from ring
if cache full move to ring

Fig. 9.3: A mempool in Memory with its Associated Ring

Alternatively to the internal default per-lcore local cache, an application can create and manage ex-
ternal caches through the rte_mempool_cache_create(), rte_mempool_cache_free()
and rte_mempool_cache_flush() calls. These user-owned caches can be explicitly
passed to rte_mempool_generic_put() and rte_mempool_generic_get(). The
rte_mempool_default_cache() call returns the default internal cache if any. In contrast to
the default caches, user-owned caches can be used by unregistered non-EAL threads too.

9.5 Mempool Handlers

This allows external memory subsystems, such as external hardware memory management systems and
software based memory allocators, to be used with DPDK.

There are two aspects to a mempool handler.

• Adding the code for your new mempool operations (ops). This is achieved by adding a new
mempool ops code, and using the MEMPOOL_REGISTER_OPS macro.

• Using the new API to call rte_mempool_create_empty() and
rte_mempool_set_ops_byname() to create a new mempool and specifying which
ops to use.

Several different mempool handlers may be used in the same application. A new mem-
pool can be created by using the rte_mempool_create_empty() function, then using
rte_mempool_set_ops_byname() to point the mempool to the relevant mempool handler call-
back (ops) structure.

Legacy applications may continue to use the old rte_mempool_create() API call, which uses
a ring based mempool handler by default. These applications will need to be modified to use a new
mempool handler.

For applications that use rte_pktmbuf_create(), there is a config setting
(RTE_MBUF_DEFAULT_MEMPOOL_OPS) that allows the application to make use of an alterna-
tive mempool handler.

9.5. Mempool Handlers 56



Programmer’s Guide, Release 20.08.0

Note: When running a DPDK application with shared libraries, mempool handler shared
objects specified with the ‘-d’ EAL command-line parameter are dynamically loaded. When
running a multi-process application with shared libraries, the -d arguments for mempool
handlers must be specified in the same order for all processes to ensure correct operation.

9.6 Use Cases

All allocations that require a high level of performance should use a pool-based memory allocator. Below
are some examples:

• Mbuf Library

• Environment Abstraction Layer , for logging service

• Any application that needs to allocate fixed-sized objects in the data plane and that will be contin-
uously utilized by the system.

9.6. Use Cases 57



CHAPTER

TEN

MBUF LIBRARY

The mbuf library provides the ability to allocate and free buffers (mbufs) that may be used by the DPDK
application to store message buffers. The message buffers are stored in a mempool, using the Mempool
Library.

A rte_mbuf struct generally carries network packet buffers, but it can actually be any data (control data,
events, ...). The rte_mbuf header structure is kept as small as possible and currently uses just two cache
lines, with the most frequently used fields being on the first of the two cache lines.

10.1 Design of Packet Buffers

For the storage of the packet data (including protocol headers), two approaches were considered:

1. Embed metadata within a single memory buffer the structure followed by a fixed size area for the
packet data.

2. Use separate memory buffers for the metadata structure and for the packet data.

The advantage of the first method is that it only needs one operation to allocate/free the whole mem-
ory representation of a packet. On the other hand, the second method is more flexible and allows the
complete separation of the allocation of metadata structures from the allocation of packet data buffers.

The first method was chosen for the DPDK. The metadata contains control information such as message
type, length, offset to the start of the data and a pointer for additional mbuf structures allowing buffer
chaining.

Message buffers that are used to carry network packets can handle buffer chaining where multiple buffers
are required to hold the complete packet. This is the case for jumbo frames that are composed of many
mbufs linked together through their next field.

For a newly allocated mbuf, the area at which the data begins in the message buffer is
RTE_PKTMBUF_HEADROOM bytes after the beginning of the buffer, which is cache aligned. Mes-
sage buffers may be used to carry control information, packets, events, and so on between different
entities in the system. Message buffers may also use their buffer pointers to point to other message
buffer data sections or other structures.

Fig. 10.1 and Fig. 10.2 show some of these scenarios.

The Buffer Manager implements a fairly standard set of buffer access functions to manipulate network
packets.

58



Programmer’s Guide, Release 20.08.0

struct rte_mbuf 

m->buf_addr
(m->buf_iova is the
corresponding physical address)

rte_pktmbuf_mtod(m)

mbuf
struct

m->pkt.next = NULL rte_pktmbuf_pktlen(m)
or rte_pktmbuf_datalen(m)

headroom tailroom

Fig. 10.1: An mbuf with One Segment

multi-segmented rte_mbuf

m->pkt.next = NULLm->pkt.next = mseg3m->pkt.next = mseg2

m mseg2 mseg3

rte_pktmbuf_mtod(m)

rte_pktmbuf_pktlen(m) = rte_pktmbuf_datalen(m) +
            rte_pktmbuf_datalen(mseg2) + rte_pktmbuf_datalen(mseg3)

rte_pktmbuf_datalen(m) rte_pktmbuf_datalen(m) rte_pktmbuf_datalen(m)

Fig. 10.2: An mbuf with Three Segments

10.1. Design of Packet Buffers 59



Programmer’s Guide, Release 20.08.0

10.2 Buffers Stored in Memory Pools

The Buffer Manager uses the Mempool Library to allocate buffers. Therefore, it ensures that the packet
header is interleaved optimally across the channels and ranks for L3 processing. An mbuf contains a
field indicating the pool that it originated from. When calling rte_pktmbuf_free(m), the mbuf returns to
its original pool.

10.3 Constructors

Packet mbuf constructors are provided by the API. The rte_pktmbuf_init() function initializes some
fields in the mbuf structure that are not modified by the user once created (mbuf type, origin pool, buffer
start address, and so on). This function is given as a callback function to the rte_mempool_create()
function at pool creation time.

10.4 Allocating and Freeing mbufs

Allocating a new mbuf requires the user to specify the mempool from which the mbuf should be taken.
For any newly-allocated mbuf, it contains one segment, with a length of 0. The offset to data is initialized
to have some bytes of headroom in the buffer (RTE_PKTMBUF_HEADROOM).

Freeing a mbuf means returning it into its original mempool. The content of an mbuf is not modified
when it is stored in a pool (as a free mbuf). Fields initialized by the constructor do not need to be
re-initialized at mbuf allocation.

When freeing a packet mbuf that contains several segments, all of them are freed and returned to their
original mempool.

10.5 Manipulating mbufs

This library provides some functions for manipulating the data in a packet mbuf. For instance:

• Get data length

• Get a pointer to the start of data

• Prepend data before data

• Append data after data

• Remove data at the beginning of the buffer (rte_pktmbuf_adj())

• Remove data at the end of the buffer (rte_pktmbuf_trim()) Refer to the DPDK API Reference for
details.

10.6 Meta Information

Some information is retrieved by the network driver and stored in an mbuf to make processing easier. For
instance, the VLAN, the RSS hash result (see Poll Mode Driver) and a flag indicating that the checksum
was computed by hardware.

10.2. Buffers Stored in Memory Pools 60



Programmer’s Guide, Release 20.08.0

An mbuf also contains the input port (where it comes from), and the number of segment mbufs in the
chain.

For chained buffers, only the first mbuf of the chain stores this meta information.

For instance, this is the case on RX side for the IEEE1588 packet timestamp mechanism, the VLAN
tagging and the IP checksum computation.

On TX side, it is also possible for an application to delegate some processing to the hardware if it
supports it. For instance, the PKT_TX_IP_CKSUM flag allows to offload the computation of the IPv4
checksum.

The following examples explain how to configure different TX offloads on a vxlan-encapsulated tcp
packet: out_eth/out_ip/out_udp/vxlan/in_eth/in_ip/in_tcp/payload

• calculate checksum of out_ip:

mb->l2_len = len(out_eth)
mb->l3_len = len(out_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM
set out_ip checksum to 0 in the packet

This is supported on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM.

• calculate checksum of out_ip and out_udp:

mb->l2_len = len(out_eth)
mb->l3_len = len(out_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM | PKT_TX_UDP_CKSUM
set out_ip checksum to 0 in the packet
set out_udp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM and
DEV_TX_OFFLOAD_UDP_CKSUM.

• calculate checksum of in_ip:

mb->l2_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM
set in_ip checksum to 0 in the packet

This is similar to case 1), but l2_len is different. It is supported on hardware advertising
DEV_TX_OFFLOAD_IPV4_CKSUM. Note that it can only work if outer L4 checksum is 0.

• calculate checksum of in_ip and in_tcp:

mb->l2_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CSUM | PKT_TX_TCP_CKSUM
set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is similar to case 2), but l2_len is different. It is supported on hardware advertising
DEV_TX_OFFLOAD_IPV4_CKSUM and DEV_TX_OFFLOAD_TCP_CKSUM. Note that it
can only work if outer L4 checksum is 0.

• segment inner TCP:

mb->l2_len = len(out_eth + out_ip + out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->l4_len = len(in_tcp)
mb->ol_flags |= PKT_TX_IPV4 | PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM |

PKT_TX_TCP_SEG;
set in_ip checksum to 0 in the packet

10.6. Meta Information 61



Programmer’s Guide, Release 20.08.0

set in_tcp checksum to pseudo header without including the IP
payload length using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX_OFFLOAD_TCP_TSO. Note that it can only
work if outer L4 checksum is 0.

• calculate checksum of out_ip, in_ip, in_tcp:

mb->outer_l2_len = len(out_eth)
mb->outer_l3_len = len(out_ip)
mb->l2_len = len(out_udp + vxlan + in_eth)
mb->l3_len = len(in_ip)
mb->ol_flags |= PKT_TX_OUTER_IPV4 | PKT_TX_OUTER_IP_CKSUM | \

PKT_TX_IP_CKSUM | PKT_TX_TCP_CKSUM;
set out_ip checksum to 0 in the packet
set in_ip checksum to 0 in the packet
set in_tcp checksum to pseudo header using rte_ipv4_phdr_cksum()

This is supported on hardware advertising DEV_TX_OFFLOAD_IPV4_CKSUM,
DEV_TX_OFFLOAD_UDP_CKSUM and DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM.

The list of flags and their precise meaning is described in the mbuf API documentation (rte_mbuf.h).
Also refer to the testpmd source code (specifically the csumonly.c file) for details.

10.6.1 Dynamic fields and flags

The size of the mbuf is constrained and limited; while the amount of metadata to save for each packet
is quite unlimited. The most basic networking information already find their place in the existing mbuf
fields and flags.

If new features need to be added, the new fields and flags should fit in the “dynamic space”, by registering
some room in the mbuf structure:

dynamic field named area in the mbuf structure, with a given size (at least 1 byte) and alignment con-
straint.

dynamic flag named bit in the mbuf structure, stored in the field ol_flags.

The dynamic fields and flags are managed with the functions rte_mbuf_dyn*.

It is not possible to unregister fields or flags.

10.7 Direct and Indirect Buffers

A direct buffer is a buffer that is completely separate and self-contained. An indirect buffer behaves like
a direct buffer but for the fact that the buffer pointer and data offset in it refer to data in another direct
buffer. This is useful in situations where packets need to be duplicated or fragmented, since indirect
buffers provide the means to reuse the same packet data across multiple buffers.

A buffer becomes indirect when it is “attached” to a direct buffer using the rte_pktmbuf_attach() func-
tion. Each buffer has a reference counter field and whenever an indirect buffer is attached to the direct
buffer, the reference counter on the direct buffer is incremented. Similarly, whenever the indirect buffer
is detached, the reference counter on the direct buffer is decremented. If the resulting reference counter
is equal to 0, the direct buffer is freed since it is no longer in use.

There are a few things to remember when dealing with indirect buffers. First of all, an indirect buffer
is never attached to another indirect buffer. Attempting to attach buffer A to indirect buffer B that is

10.7. Direct and Indirect Buffers 62



Programmer’s Guide, Release 20.08.0

attached to C, makes rte_pktmbuf_attach() automatically attach A to C, effectively cloning B. Secondly,
for a buffer to become indirect, its reference counter must be equal to 1, that is, it must not be already
referenced by another indirect buffer. Finally, it is not possible to reattach an indirect buffer to the direct
buffer (unless it is detached first).

While the attach/detach operations can be invoked directly using the recommended rte_pktmbuf_attach()
and rte_pktmbuf_detach() functions, it is suggested to use the higher-level rte_pktmbuf_clone() function,
which takes care of the correct initialization of an indirect buffer and can clone buffers with multiple
segments.

Since indirect buffers are not supposed to actually hold any data, the memory pool for indirect buffers
should be configured to indicate the reduced memory consumption. Examples of the initialization of
a memory pool for indirect buffers (as well as use case examples for indirect buffers) can be found in
several of the sample applications, for example, the IPv4 Multicast sample application.

10.8 Debug

In debug mode (CONFIG_RTE_MBUF_DEBUG is enabled), the functions of the mbuf library perform
sanity checks before any operation (such as, buffer corruption, bad type, and so on).

10.9 Use Cases

All networking application should use mbufs to transport network packets.

10.8. Debug 63



CHAPTER

ELEVEN

POLL MODE DRIVER

The DPDK includes 1 Gigabit, 10 Gigabit and 40 Gigabit and para virtualized virtio Poll Mode Drivers.

A Poll Mode Driver (PMD) consists of APIs, provided through the BSD driver running in user space,
to configure the devices and their respective queues. In addition, a PMD accesses the RX and TX de-
scriptors directly without any interrupts (with the exception of Link Status Change interrupts) to quickly
receive, process and deliver packets in the user’s application. This section describes the requirements of
the PMDs, their global design principles and proposes a high-level architecture and a generic external
API for the Ethernet PMDs.

11.1 Requirements and Assumptions

The DPDK environment for packet processing applications allows for two models, run-to-completion
and pipe-line:

• In the run-to-completion model, a specific port’s RX descriptor ring is polled for packets through
an API. Packets are then processed on the same core and placed on a port’s TX descriptor ring
through an API for transmission.

• In the pipe-line model, one core polls one or more port’s RX descriptor ring through an API.
Packets are received and passed to another core via a ring. The other core continues to process the
packet which then may be placed on a port’s TX descriptor ring through an API for transmission.

In a synchronous run-to-completion model, each logical core assigned to the DPDK executes a packet
processing loop that includes the following steps:

• Retrieve input packets through the PMD receive API

• Process each received packet one at a time, up to its forwarding

• Send pending output packets through the PMD transmit API

Conversely, in an asynchronous pipe-line model, some logical cores may be dedicated to the retrieval
of received packets and other logical cores to the processing of previously received packets. Received
packets are exchanged between logical cores through rings. The loop for packet retrieval includes the
following steps:

• Retrieve input packets through the PMD receive API

• Provide received packets to processing lcores through packet queues

The loop for packet processing includes the following steps:

• Retrieve the received packet from the packet queue

64



Programmer’s Guide, Release 20.08.0

• Process the received packet, up to its retransmission if forwarded

To avoid any unnecessary interrupt processing overhead, the execution environment must not use any
asynchronous notification mechanisms. Whenever needed and appropriate, asynchronous communica-
tion should be introduced as much as possible through the use of rings.

Avoiding lock contention is a key issue in a multi-core environment. To address this issue, PMDs are
designed to work with per-core private resources as much as possible. For example, a PMD maintains
a separate transmit queue per-core, per-port, if the PMD is not DEV_TX_OFFLOAD_MT_LOCKFREE
capable. In the same way, every receive queue of a port is assigned to and polled by a single logical core
(lcore).

To comply with Non-Uniform Memory Access (NUMA), memory management is designed to assign to
each logical core a private buffer pool in local memory to minimize remote memory access. The con-
figuration of packet buffer pools should take into account the underlying physical memory architecture
in terms of DIMMS, channels and ranks. The application must ensure that appropriate parameters are
given at memory pool creation time. See Mempool Library.

11.2 Design Principles

The API and architecture of the Ethernet* PMDs are designed with the following guidelines in mind.

PMDs must help global policy-oriented decisions to be enforced at the upper application level. Con-
versely, NIC PMD functions should not impede the benefits expected by upper-level global policies, or
worse prevent such policies from being applied.

For instance, both the receive and transmit functions of a PMD have a maximum number of pack-
ets/descriptors to poll. This allows a run-to-completion processing stack to statically fix or to dynami-
cally adapt its overall behavior through different global loop policies, such as:

• Receive, process immediately and transmit packets one at a time in a piecemeal fashion.

• Receive as many packets as possible, then process all received packets, transmitting them imme-
diately.

• Receive a given maximum number of packets, process the received packets, accumulate them and
finally send all accumulated packets to transmit.

To achieve optimal performance, overall software design choices and pure software optimization tech-
niques must be considered and balanced against available low-level hardware-based optimization fea-
tures (CPU cache properties, bus speed, NIC PCI bandwidth, and so on). The case of packet transmission
is an example of this software/hardware tradeoff issue when optimizing burst-oriented network packet
processing engines. In the initial case, the PMD could export only an rte_eth_tx_one function to transmit
one packet at a time on a given queue. On top of that, one can easily build an rte_eth_tx_burst func-
tion that loops invoking the rte_eth_tx_one function to transmit several packets at a time. However, an
rte_eth_tx_burst function is effectively implemented by the PMD to minimize the driver-level transmit
cost per packet through the following optimizations:

• Share among multiple packets the un-amortized cost of invoking the rte_eth_tx_one function.

• Enable the rte_eth_tx_burst function to take advantage of burst-oriented hardware features
(prefetch data in cache, use of NIC head/tail registers) to minimize the number of CPU cycles
per packet, for example by avoiding unnecessary read memory accesses to ring transmit descrip-
tors, or by systematically using arrays of pointers that exactly fit cache line boundaries and sizes.

11.2. Design Principles 65



Programmer’s Guide, Release 20.08.0

• Apply burst-oriented software optimization techniques to remove operations that would otherwise
be unavoidable, such as ring index wrap back management.

Burst-oriented functions are also introduced via the API for services that are intensively used by the
PMD. This applies in particular to buffer allocators used to populate NIC rings, which provide func-
tions to allocate/free several buffers at a time. For example, an mbuf_multiple_alloc function returning
an array of pointers to rte_mbuf buffers which speeds up the receive poll function of the PMD when
replenishing multiple descriptors of the receive ring.

11.3 Logical Cores, Memory and NIC Queues Relationships

The DPDK supports NUMA allowing for better performance when a processor’s logical cores and inter-
faces utilize its local memory. Therefore, mbuf allocation associated with local PCIe* interfaces should
be allocated from memory pools created in the local memory. The buffers should, if possible, remain on
the local processor to obtain the best performance results and RX and TX buffer descriptors should be
populated with mbufs allocated from a mempool allocated from local memory.

The run-to-completion model also performs better if packet or data manipulation is in local memory
instead of a remote processors memory. This is also true for the pipe-line model provided all logical
cores used are located on the same processor.

Multiple logical cores should never share receive or transmit queues for interfaces since this would
require global locks and hinder performance.

If the PMD is DEV_TX_OFFLOAD_MT_LOCKFREE capable, multiple threads can invoke
rte_eth_tx_burst() concurrently on the same tx queue without SW lock. This PMD feature
found in some NICs and useful in the following use cases:

• Remove explicit spinlock in some applications where lcores are not mapped to Tx queues with
1:1 relation.

• In the eventdev use case, avoid dedicating a separate TX core for transmitting and thus enables
more scaling as all workers can send the packets.

See Hardware Offload for DEV_TX_OFFLOAD_MT_LOCKFREE capability probing details.

11.4 Device Identification, Ownership and Configuration

11.4.1 Device Identification

Each NIC port is uniquely designated by its (bus/bridge, device, function) PCI identifiers assigned by
the PCI probing/enumeration function executed at DPDK initialization. Based on their PCI identifier,
NIC ports are assigned two other identifiers:

• A port index used to designate the NIC port in all functions exported by the PMD API.

• A port name used to designate the port in console messages, for administration or debugging
purposes. For ease of use, the port name includes the port index.

11.3. Logical Cores, Memory and NIC Queues Relationships 66



Programmer’s Guide, Release 20.08.0

11.4.2 Port Ownership

The Ethernet devices ports can be owned by a single DPDK entity (application, library, PMD, process,
etc). The ownership mechanism is controlled by ethdev APIs and allows to set/remove/get a port owner
by DPDK entities. Allowing this should prevent any multiple management of Ethernet port by different
entities.

Note: It is the DPDK entity responsibility to set the port owner before using it and to manage the port
usage synchronization between different threads or processes.

11.4.3 Device Configuration

The configuration of each NIC port includes the following operations:

• Allocate PCI resources

• Reset the hardware (issue a Global Reset) to a well-known default state

• Set up the PHY and the link

• Initialize statistics counters

The PMD API must also export functions to start/stop the all-multicast feature of a port and functions to
set/unset the port in promiscuous mode.

Some hardware offload features must be individually configured at port initialization through specific
configuration parameters. This is the case for the Receive Side Scaling (RSS) and Data Center Bridging
(DCB) features for example.

11.4.4 On-the-Fly Configuration

All device features that can be started or stopped “on the fly” (that is, without stopping the device) do
not require the PMD API to export dedicated functions for this purpose.

All that is required is the mapping address of the device PCI registers to implement the configuration of
these features in specific functions outside of the drivers.

For this purpose, the PMD API exports a function that provides all the information associated with a
device that can be used to set up a given device feature outside of the driver. This includes the PCI
vendor identifier, the PCI device identifier, the mapping address of the PCI device registers, and the
name of the driver.

The main advantage of this approach is that it gives complete freedom on the choice of the API used to
configure, to start, and to stop such features.

As an example, refer to the configuration of the IEEE1588 feature for the Intel® 82576 Gigabit Ethernet
Controller and the Intel® 82599 10 Gigabit Ethernet Controller controllers in the testpmd application.

Other features such as the L3/L4 5-Tuple packet filtering feature of a port can be configured in the same
way. Ethernet* flow control (pause frame) can be configured on the individual port. Refer to the testpmd
source code for details. Also, L4 (UDP/TCP/ SCTP) checksum offload by the NIC can be enabled for
an individual packet as long as the packet mbuf is set up correctly. See Hardware Offload for details.

11.4. Device Identification, Ownership and Configuration 67



Programmer’s Guide, Release 20.08.0

11.4.5 Configuration of Transmit Queues

Each transmit queue is independently configured with the following information:

• The number of descriptors of the transmit ring

• The socket identifier used to identify the appropriate DMA memory zone from which to allocate
the transmit ring in NUMA architectures

• The values of the Prefetch, Host and Write-Back threshold registers of the transmit queue

• The minimum transmit packets to free threshold (tx_free_thresh). When the number of descriptors
used to transmit packets exceeds this threshold, the network adaptor should be checked to see if
it has written back descriptors. A value of 0 can be passed during the TX queue configuration to
indicate the default value should be used. The default value for tx_free_thresh is 32. This ensures
that the PMD does not search for completed descriptors until at least 32 have been processed by
the NIC for this queue.

• The minimum RS bit threshold. The minimum number of transmit descriptors to use before setting
the Report Status (RS) bit in the transmit descriptor. Note that this parameter may only be valid for
Intel 10 GbE network adapters. The RS bit is set on the last descriptor used to transmit a packet
if the number of descriptors used since the last RS bit setting, up to the first descriptor used to
transmit the packet, exceeds the transmit RS bit threshold (tx_rs_thresh). In short, this parameter
controls which transmit descriptors are written back to host memory by the network adapter. A
value of 0 can be passed during the TX queue configuration to indicate that the default value
should be used. The default value for tx_rs_thresh is 32. This ensures that at least 32 descriptors
are used before the network adapter writes back the most recently used descriptor. This saves
upstream PCIe* bandwidth resulting from TX descriptor write-backs. It is important to note that
the TX Write-back threshold (TX wthresh) should be set to 0 when tx_rs_thresh is greater than 1.
Refer to the Intel® 82599 10 Gigabit Ethernet Controller Datasheet for more details.

The following constraints must be satisfied for tx_free_thresh and tx_rs_thresh:

• tx_rs_thresh must be greater than 0.

• tx_rs_thresh must be less than the size of the ring minus 2.

• tx_rs_thresh must be less than or equal to tx_free_thresh.

• tx_free_thresh must be greater than 0.

• tx_free_thresh must be less than the size of the ring minus 3.

• For optimal performance, TX wthresh should be set to 0 when tx_rs_thresh is greater than 1.

One descriptor in the TX ring is used as a sentinel to avoid a hardware race condition, hence the maxi-
mum threshold constraints.

Note: When configuring for DCB operation, at port initialization, both the number of transmit queues
and the number of receive queues must be set to 128.

11.4.6 Free Tx mbuf on Demand

Many of the drivers do not release the mbuf back to the mempool, or local cache, immediately after
the packet has been transmitted. Instead, they leave the mbuf in their Tx ring and either perform a bulk

11.4. Device Identification, Ownership and Configuration 68



Programmer’s Guide, Release 20.08.0

release when the tx_rs_thresh has been crossed or free the mbuf when a slot in the Tx ring is
needed.

An application can request the driver to release used mbufs with the
rte_eth_tx_done_cleanup() API. This API requests the driver to release mbufs that are
no longer in use, independent of whether or not the tx_rs_thresh has been crossed. There are two
scenarios when an application may want the mbuf released immediately:

• When a given packet needs to be sent to multiple destination interfaces (either for Layer 2 flooding
or Layer 3 multi-cast). One option is to make a copy of the packet or a copy of the header
portion that needs to be manipulated. A second option is to transmit the packet and then poll the
rte_eth_tx_done_cleanup() API until the reference count on the packet is decremented.
Then the same packet can be transmitted to the next destination interface. The application is
still responsible for managing any packet manipulations needed between the different destination
interfaces, but a packet copy can be avoided. This API is independent of whether the packet was
transmitted or dropped, only that the mbuf is no longer in use by the interface.

• Some applications are designed to make multiple runs, like a packet generator. For performance
reasons and consistency between runs, the application may want to reset back to an initial state
between each run, where all mbufs are returned to the mempool. In this case, it can call the
rte_eth_tx_done_cleanup() API for each destination interface it has been using to re-
quest it to release of all its used mbufs.

To determine if a driver supports this API, check for the Free Tx mbuf on demand feature in the Network
Interface Controller Drivers document.

11.4.7 Hardware Offload

Depending on driver capabilities advertised by rte_eth_dev_info_get(), the PMD may sup-
port hardware offloading feature like checksumming, TCP segmentation, VLAN insertion or lockfree
multithreaded TX burst on the same TX queue.

The support of these offload features implies the addition of dedicated status bit(s) and value field(s)
into the rte_mbuf data structure, along with their appropriate handling by the receive/transmit func-
tions exported by each PMD. The list of flags and their precise meaning is described in the mbuf API
documentation and in the in Mbuf Library, section “Meta Information”.

Per-Port and Per-Queue Offloads

In the DPDK offload API, offloads are divided into per-port and per-queue offloads as follows:

• A per-queue offloading can be enabled on a queue and disabled on another queue at the same time.

• A pure per-port offload is the one supported by device but not per-queue type.

• A pure per-port offloading can’t be enabled on a queue and disabled on another queue at the same
time.

• A pure per-port offloading must be enabled or disabled on all queues at the same time.

• Any offloading is per-queue or pure per-port type, but can’t be both types at same devices.

• Port capabilities = per-queue capabilities + pure per-port capabilities.

• Any supported offloading can be enabled on all queues.

11.4. Device Identification, Ownership and Configuration 69



Programmer’s Guide, Release 20.08.0

The different offloads capabilities can be queried using rte_eth_dev_info_get(). The
dev_info->[rt]x_queue_offload_capa returned from rte_eth_dev_info_get() in-
cludes all per-queue offloading capabilities. The dev_info->[rt]x_offload_capa returned
from rte_eth_dev_info_get() includes all pure per-port and per-queue offloading capabilities.
Supported offloads can be either per-port or per-queue.

Offloads are enabled using the existing DEV_TX_OFFLOAD_* or DEV_RX_OFFLOAD_*
flags. Any requested offloading by an application must be within the device ca-
pabilities. Any offloading is disabled by default if it is not set in the parame-
ter dev_conf->[rt]xmode.offloads to rte_eth_dev_configure() and
[rt]x_conf->offloads to rte_eth_[rt]x_queue_setup().

If any offloading is enabled in rte_eth_dev_configure() by an application, it is enabled on all
queues no matter whether it is per-queue or per-port type and no matter whether it is set or cleared in
[rt]x_conf->offloads to rte_eth_[rt]x_queue_setup().

If a per-queue offloading hasn’t been enabled in rte_eth_dev_configure(), it can be enabled
or disabled in rte_eth_[rt]x_queue_setup() for individual queue. A newly added offloads
in [rt]x_conf->offloads to rte_eth_[rt]x_queue_setup() input by application is the
one which hasn’t been enabled in rte_eth_dev_configure() and is requested to be enabled in
rte_eth_[rt]x_queue_setup(). It must be per-queue type, otherwise trigger an error log.

11.5 Poll Mode Driver API

11.5.1 Generalities

By default, all functions exported by a PMD are lock-free functions that are assumed not to be invoked
in parallel on different logical cores to work on the same target object. For instance, a PMD receive
function cannot be invoked in parallel on two logical cores to poll the same RX queue of the same port.
Of course, this function can be invoked in parallel by different logical cores on different RX queues. It
is the responsibility of the upper-level application to enforce this rule.

If needed, parallel accesses by multiple logical cores to shared queues can be explicitly protected by
dedicated inline lock-aware functions built on top of their corresponding lock-free functions of the PMD
API.

11.5.2 Generic Packet Representation

A packet is represented by an rte_mbuf structure, which is a generic metadata structure containing
all necessary housekeeping information. This includes fields and status bits corresponding to offload
hardware features, such as checksum computation of IP headers or VLAN tags.

The rte_mbuf data structure includes specific fields to represent, in a generic way, the offload features
provided by network controllers. For an input packet, most fields of the rte_mbuf structure are filled in
by the PMD receive function with the information contained in the receive descriptor. Conversely, for
output packets, most fields of rte_mbuf structures are used by the PMD transmit function to initialize
transmit descriptors.

The mbuf structure is fully described in the Mbuf Library chapter.

11.5. Poll Mode Driver API 70



Programmer’s Guide, Release 20.08.0

11.5.3 Ethernet Device API

The Ethernet device API exported by the Ethernet PMDs is described in the DPDK API Reference.

11.5.4 Ethernet Device Standard Device Arguments

Standard Ethernet device arguments allow for a set of commonly used arguments/ parameters which are
applicable to all Ethernet devices to be available to for specification of specific device and for passing
common configuration parameters to those ports.

• representor for a device which supports the creation of representor ports this argument allows
user to specify which switch ports to enable port representors for.:

-w DBDF,representor=0
-w DBDF,representor=[0,4,6,9]
-w DBDF,representor=[0-31]

Note: PMDs are not required to support the standard device arguments and users should consult the
relevant PMD documentation to see support devargs.

11.5.5 Extended Statistics API

The extended statistics API allows a PMD to expose all statistics that are available to it, including
statistics that are unique to the device. Each statistic has three properties name, id and value:

• name: A human readable string formatted by the scheme detailed below.

• id: An integer that represents only that statistic.

• value: A unsigned 64-bit integer that is the value of the statistic.

Note that extended statistic identifiers are driver-specific, and hence might not be the same for different
ports. The API consists of various rte_eth_xstats_*() functions, and allows an application to be
flexible in how it retrieves statistics.

Scheme for Human Readable Names

A naming scheme exists for the strings exposed to clients of the API. This is to allow scraping of the API
for statistics of interest. The naming scheme uses strings split by a single underscore _. The scheme is
as follows:

• direction

• detail 1

• detail 2

• detail n

• unit

Examples of common statistics xstats strings, formatted to comply to the scheme proposed above:

• rx_bytes

• rx_crc_errors

• tx_multicast_packets

11.5. Poll Mode Driver API 71



Programmer’s Guide, Release 20.08.0

The scheme, although quite simple, allows flexibility in presenting and reading information from the
statistic strings. The following example illustrates the naming scheme:rx_packets. In this example,
the string is split into two components. The first component rx indicates that the statistic is associated
with the receive side of the NIC. The second component packets indicates that the unit of measure is
packets.

A more complicated example: tx_size_128_to_255_packets. In this example, tx indicates
transmission, size is the first detail, 128 etc are more details, and packets indicates that this is a
packet counter.

Some additions in the metadata scheme are as follows:

• If the first part does not match rx or tx, the statistic does not have an affinity with either receive
of transmit.

• If the first letter of the second part is q and this q is followed by a number, this statistic is part of
a specific queue.

An example where queue numbers are used is as follows: tx_q7_bytes which indicates this statistic
applies to queue number 7, and represents the number of transmitted bytes on that queue.

API Design

The xstats API uses the name, id, and value to allow performant lookup of specific statistics. Perfor-
mant lookup means two things;

• No string comparisons with the name of the statistic in fast-path

• Allow requesting of only the statistics of interest

The API ensures these requirements are met by mapping the name of the statistic to a unique id, which
is used as a key for lookup in the fast-path. The API allows applications to request an array of id values,
so that the PMD only performs the required calculations. Expected usage is that the application scans
the name of each statistic, and caches the id if it has an interest in that statistic. On the fast-path, the
integer can be used to retrieve the actual value of the statistic that the id represents.

API Functions

The API is built out of a small number of functions, which can be used to retrieve the number of statistics
and the names, IDs and values of those statistics.

• rte_eth_xstats_get_names_by_id(): returns the names of the statistics. When given
a NULL parameter the function returns the number of statistics that are available.

• rte_eth_xstats_get_id_by_name(): Searches for the statistic ID that matches
xstat_name. If found, the id integer is set.

• rte_eth_xstats_get_by_id(): Fills in an array of uint64_t values with matching the
provided ids array. If the ids array is NULL, it returns all statistics that are available.

Application Usage

Imagine an application that wants to view the dropped packet count. If no packets are dropped, the appli-
cation does not read any other metrics for performance reasons. If packets are dropped, the application

11.5. Poll Mode Driver API 72



Programmer’s Guide, Release 20.08.0

has a particular set of statistics that it requests. This “set” of statistics allows the app to decide what next
steps to perform. The following code-snippets show how the xstats API can be used to achieve this goal.

First step is to get all statistics names and list them:

struct rte_eth_xstat_name *xstats_names;
uint64_t *values;
int len, i;

/* Get number of stats */
len = rte_eth_xstats_get_names_by_id(port_id, NULL, NULL, 0);
if (len < 0) {

printf("Cannot get xstats count\n");
goto err;

}

xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * len);
if (xstats_names == NULL) {

printf("Cannot allocate memory for xstat names\n");
goto err;

}

/* Retrieve xstats names, passing NULL for IDs to return all statistics */
if (len != rte_eth_xstats_get_names_by_id(port_id, xstats_names, NULL, len)) {

printf("Cannot get xstat names\n");
goto err;

}

values = malloc(sizeof(values) * len);
if (values == NULL) {

printf("Cannot allocate memory for xstats\n");
goto err;

}

/* Getting xstats values */
if (len != rte_eth_xstats_get_by_id(port_id, NULL, values, len)) {

printf("Cannot get xstat values\n");
goto err;

}

/* Print all xstats names and values */
for (i = 0; i < len; i++) {

printf("%s: %"PRIu64"\n", xstats_names[i].name, values[i]);
}

The application has access to the names of all of the statistics that the PMD exposes. The application
can decide which statistics are of interest, cache the ids of those statistics by looking up the name as
follows:

uint64_t id;
uint64_t value;
const char *xstat_name = "rx_errors";

if(!rte_eth_xstats_get_id_by_name(port_id, xstat_name, &id)) {
rte_eth_xstats_get_by_id(port_id, &id, &value, 1);
printf("%s: %"PRIu64"\n", xstat_name, value);

}
else {

printf("Cannot find xstats with a given name\n");
goto err;

}

The API provides flexibility to the application so that it can look up multiple statistics using an array

11.5. Poll Mode Driver API 73



Programmer’s Guide, Release 20.08.0

containing multiple id numbers. This reduces the function call overhead of retrieving statistics, and
makes lookup of multiple statistics simpler for the application.

#define APP_NUM_STATS 4
/* application cached these ids previously; see above */
uint64_t ids_array[APP_NUM_STATS] = {3,4,7,21};
uint64_t value_array[APP_NUM_STATS];

/* Getting multiple xstats values from array of IDs */
rte_eth_xstats_get_by_id(port_id, ids_array, value_array, APP_NUM_STATS);

uint32_t i;
for(i = 0; i < APP_NUM_STATS; i++) {

printf("%d: %"PRIu64"\n", ids_array[i], value_array[i]);
}

This array lookup API for xstats allows the application create multiple “groups” of statistics, and look up
the values of those IDs using a single API call. As an end result, the application is able to achieve its goal
of monitoring a single statistic (“rx_errors” in this case), and if that shows packets being dropped, it can
easily retrieve a “set” of statistics using the IDs array parameter to rte_eth_xstats_get_by_id
function.

11.5.6 NIC Reset API

int rte_eth_dev_reset(uint16_t port_id);

Sometimes a port has to be reset passively. For example when a PF is reset, all its VFs should also be
reset by the application to make them consistent with the PF. A DPDK application also can call this
function to trigger a port reset. Normally, a DPDK application would invokes this function when an
RTE_ETH_EVENT_INTR_RESET event is detected.

It is the duty of the PMD to trigger RTE_ETH_EVENT_INTR_RESET events and the application should
register a callback function to handle these events. When a PMD needs to trigger a reset, it can trigger an
RTE_ETH_EVENT_INTR_RESET event. On receiving an RTE_ETH_EVENT_INTR_RESET event,
applications can handle it as follows: Stop working queues, stop calling Rx and Tx functions, and then
call rte_eth_dev_reset(). For thread safety all these operations should be called from the same thread.

For example when PF is reset, the PF sends a message to notify VFs of this event and also trig-
ger an interrupt to VFs. Then in the interrupt service routine the VFs detects this notification mes-
sage and calls _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET, NULL). This
means that a PF reset triggers an RTE_ETH_EVENT_INTR_RESET event within VFs. The function
_rte_eth_dev_callback_process() will call the registered callback function. The callback function can
trigger the application to handle all operations the VF reset requires including stopping Rx/Tx queues
and calling rte_eth_dev_reset().

The rte_eth_dev_reset() itself is a generic function which only does some hardware reset operations
through calling dev_unint() and dev_init(), and itself does not handle synchronization, which is handled
by application.

The PMD itself should not call rte_eth_dev_reset(). The PMD can trigger the application to handle reset
event. It is duty of application to handle all synchronization before it calls rte_eth_dev_reset().

11.5. Poll Mode Driver API 74



CHAPTER

TWELVE

GENERIC FLOW API (RTE_FLOW)

12.1 Overview

This API provides a generic means to configure hardware to match specific ingress or egress traffic, alter
its fate and query related counters according to any number of user-defined rules.

It is named rte_flow after the prefix used for all its symbols, and is defined in rte_flow.h.

• Matching can be performed on packet data (protocol headers, payload) and properties (e.g. asso-
ciated physical port, virtual device function ID).

• Possible operations include dropping traffic, diverting it to specific queues, to virtual/physical
device functions or ports, performing tunnel offloads, adding marks and so on.

It is slightly higher-level than the legacy filtering framework which it encompasses and supersedes (in-
cluding all functions and filter types) in order to expose a single interface with an unambiguous behavior
that is common to all poll-mode drivers (PMDs).

12.2 Flow rule

12.2.1 Description

A flow rule is the combination of attributes with a matching pattern and a list of actions. Flow rules form
the basis of this API.

Flow rules can have several distinct actions (such as counting, encapsulating, decapsulating before redi-
recting packets to a particular queue, etc.), instead of relying on several rules to achieve this and having
applications deal with hardware implementation details regarding their order.

Support for different priority levels on a rule basis is provided, for example in order to force a more
specific rule to come before a more generic one for packets matched by both. However hardware support
for more than a single priority level cannot be guaranteed. When supported, the number of available
priority levels is usually low, which is why they can also be implemented in software by PMDs (e.g.
missing priority levels may be emulated by reordering rules).

In order to remain as hardware-agnostic as possible, by default all rules are considered to have the same
priority, which means that the order between overlapping rules (when a packet is matched by several
filters) is undefined.

PMDs may refuse to create overlapping rules at a given priority level when they can be detected (e.g. if
a pattern matches an existing filter).

75



Programmer’s Guide, Release 20.08.0

Thus predictable results for a given priority level can only be achieved with non-overlapping rules, using
perfect matching on all protocol layers.

Flow rules can also be grouped, the flow rule priority is specific to the group they belong to. All flow
rules in a given group are thus processed within the context of that group. Groups are not linked by
default, so the logical hierarchy of groups must be explicitly defined by flow rules themselves in each
group using the JUMP action to define the next group to redirect too. Only flow rules defined in the
default group 0 are guarantee to be matched against, this makes group 0 the origin of any group hierarchy
defined by an application.

Support for multiple actions per rule may be implemented internally on top of non-default hardware
priorities, as a result both features may not be simultaneously available to applications.

Considering that allowed pattern/actions combinations cannot be known in advance and would result in
an impractically large number of capabilities to expose, a method is provided to validate a given rule
from the current device configuration state.

This enables applications to check if the rule types they need is supported at initialization time, before
starting their data path. This method can be used anytime, its only requirement being that the resources
needed by a rule should exist (e.g. a target RX queue should be configured first).

Each defined rule is associated with an opaque handle managed by the PMD, applications are responsible
for keeping it. These can be used for queries and rules management, such as retrieving counters or other
data and destroying them.

To avoid resource leaks on the PMD side, handles must be explicitly destroyed by the application before
releasing associated resources such as queues and ports.

The following sections cover:

• Attributes (represented by struct rte_flow_attr): properties of a flow rule such as its
direction (ingress or egress) and priority.

• Pattern item (represented by struct rte_flow_item): part of a matching pattern that ei-
ther matches specific packet data or traffic properties. It can also describe properties of the pattern
itself, such as inverted matching.

• Matching pattern: traffic properties to look for, a combination of any number of items.

• Actions (represented by struct rte_flow_action): operations to perform whenever a
packet is matched by a pattern.

12.2.2 Attributes

Attribute: Group

Flow rules can be grouped by assigning them a common group number. Groups allow a logical hierarchy
of flow rule groups (tables) to be defined. These groups can be supported virtually in the PMD or in the
physical device. Group 0 is the default group and this is the only group which flows are guarantee to
matched against, all subsequent groups can only be reached by way of the JUMP action from a matched
flow rule.

Although optional, applications are encouraged to group similar rules as much as possible to fully take
advantage of hardware capabilities (e.g. optimized matching) and work around limitations (e.g. a single
pattern type possibly allowed in a given group), while being aware that the groups hierarchies must be
programmed explicitly.

12.2. Flow rule 76



Programmer’s Guide, Release 20.08.0

Note that support for more than a single group is not guaranteed.

Attribute: Priority

A priority level can be assigned to a flow rule, lower values denote higher priority, with 0 as the maxi-
mum.

Priority levels are arbitrary and up to the application, they do not need to be contiguous nor start from 0,
however the maximum number varies between devices and may be affected by existing flow rules.

A flow which matches multiple rules in the same group will always matched by the rule with the highest
priority in that group.

If a packet is matched by several rules of a given group for a given priority level, the outcome is unde-
fined. It can take any path, may be duplicated or even cause unrecoverable errors.

Note that support for more than a single priority level is not guaranteed.

Attribute: Traffic direction

Flow rule patterns apply to inbound and/or outbound traffic.

In the context of this API, ingress and egress respectively stand for inbound and outbound based on
the standpoint of the application creating a flow rule.

There are no exceptions to this definition.

Several pattern items and actions are valid and can be used in both directions. At least one direction
must be specified.

Specifying both directions at once for a given rule is not recommended but may be valid in a few cases
(e.g. shared counters).

Attribute: Transfer

Instead of simply matching the properties of traffic as it would appear on a given DPDK port ID, enabling
this attribute transfers a flow rule to the lowest possible level of any device endpoints found in the pattern.

When supported, this effectively enables an application to reroute traffic not necessarily intended for it
(e.g. coming from or addressed to different physical ports, VFs or applications) at the device level.

It complements the behavior of some pattern items such as Item: PHY_PORT and is meaningless without
them.

When transferring flow rules, ingress and egress attributes (Attribute: Traffic direction) keep their orig-
inal meaning, as if processing traffic emitted or received by the application.

12.2.3 Pattern item

Pattern items fall in two categories:

• Matching protocol headers and packet data, usually associated with a specification structure.
These must be stacked in the same order as the protocol layers to match inside packets, start-
ing from the lowest.

12.2. Flow rule 77



Programmer’s Guide, Release 20.08.0

• Matching meta-data or affecting pattern processing, often without a specification structure. Since
they do not match packet contents, their position in the list is usually not relevant.

Item specification structures are used to match specific values among protocol fields (or item properties).
Documentation describes for each item whether they are associated with one and their type name if so.

Up to three structures of the same type can be set for a given item:

• spec: values to match (e.g. a given IPv4 address).

• last: upper bound for an inclusive range with corresponding fields in spec.

• mask: bit-mask applied to both spec and last whose purpose is to distinguish the values to
take into account and/or partially mask them out (e.g. in order to match an IPv4 address prefix).

Usage restrictions and expected behavior:

• Setting either mask or last without spec is an error.

• Field values in last which are either 0 or equal to the corresponding values in spec are ignored;
they do not generate a range. Nonzero values lower than those in spec are not supported.

• Setting spec and optionally lastwithout mask causes the PMD to use the default mask defined
for that item (defined as rte_flow_item_{name}_mask constants).

• Not setting any of them (assuming item type allows it) is equivalent to providing an empty (zeroed)
mask for broad (nonspecific) matching.

• mask is a simple bit-mask applied before interpreting the contents of spec and last, which
may yield unexpected results if not used carefully. For example, if for an IPv4 address field,
spec provides 10.1.2.3, last provides 10.3.4.5 and mask provides 255.255.0.0, the effective
range becomes 10.1.0.0 to 10.3.255.255.

Example of an item specification matching an Ethernet header:

Table 12.1: Ethernet item

Field Subfield Value

spec
src 00:00:01:02:03:04
dst 00:00:2a:66:00:01
type 0x22aa

last unspecified

mask
src 00:00:ff:ff:ff:00
dst 00:00:00:00:00:ff
type 0x0000

Non-masked bits stand for any value (shown as ? below), Ethernet headers with the following properties
are thus matched:

• src: ??:??:01:02:03:??

• dst: ??:??:??:??:??:01

• type: 0x????

12.2.4 Matching pattern

A pattern is formed by stacking items starting from the lowest protocol layer to match. This stacking
restriction does not apply to meta items which can be placed anywhere in the stack without affecting the

12.2. Flow rule 78



Programmer’s Guide, Release 20.08.0

meaning of the resulting pattern.

Patterns are terminated by END items.

Examples:

Table 12.2: TCPv4
as L4

Index Item
0 Ethernet
1 IPv4
2 TCP
3 END

Table 12.3: TCPv6
in VXLAN

Index Item
0 Ethernet
1 IPv4
2 UDP
3 VXLAN
4 Ethernet
5 IPv6
6 TCP
7 END

Table 12.4: TCPv4
as L4 with meta
items

Index Item
0 VOID
1 Ethernet
2 VOID
3 IPv4
4 TCP
5 VOID
6 VOID
7 END

The above example shows how meta items do not affect packet data matching items, as long as those
remain stacked properly. The resulting matching pattern is identical to “TCPv4 as L4”.

12.2. Flow rule 79



Programmer’s Guide, Release 20.08.0

Table 12.5:
UDPv6 any-
where

Index Item
0 IPv6
1 UDP
2 END

If supported by the PMD, omitting one or several protocol layers at the bottom of the stack as in the
above example (missing an Ethernet specification) enables looking up anywhere in packets.

It is unspecified whether the payload of supported encapsulations (e.g. VXLAN payload) is matched by
such a pattern, which may apply to inner, outer or both packets.

Table 12.6: Invalid,
missing L3

Index Item
0 Ethernet
1 UDP
2 END

The above pattern is invalid due to a missing L3 specification between L2 (Ethernet) and L4 (UDP).
Doing so is only allowed at the bottom and at the top of the stack.

12.2.5 Meta item types

They match meta-data or affect pattern processing instead of matching packet data directly, most of them
do not need a specification structure. This particularity allows them to be specified anywhere in the stack
without causing any side effect.

Item: END

End marker for item lists. Prevents further processing of items, thereby ending the pattern.

• Its numeric value is 0 for convenience.

• PMD support is mandatory.

• spec, last and mask are ignored.

Table 12.7: END

Field Value
spec ignored
last ignored
mask ignored

Item: VOID

Used as a placeholder for convenience. It is ignored and simply discarded by PMDs.

12.2. Flow rule 80



Programmer’s Guide, Release 20.08.0

• PMD support is mandatory.

• spec, last and mask are ignored.

Table 12.8: VOID

Field Value
spec ignored
last ignored
mask ignored

One usage example for this type is generating rules that share a common prefix quickly without reallo-
cating memory, only by updating item types:

Table 12.9: TCP, UDP or ICMP as
L4

Index Item
0 Ethernet
1 IPv4
2 UDP VOID VOID
3 VOID TCP VOID
4 VOID VOID ICMP
5 END

Item: INVERT

Inverted matching, i.e. process packets that do not match the pattern.

• spec, last and mask are ignored.

Table 12.10:
INVERT

Field Value
spec ignored
last ignored
mask ignored

Usage example, matching non-TCPv4 packets only:

Table 12.11:
Anything but TCPv4

Index Item
0 INVERT
1 Ethernet
2 IPv4
3 TCP
4 END

12.2. Flow rule 81



Programmer’s Guide, Release 20.08.0

Item: PF

Matches traffic originating from (ingress) or going to (egress) the physical function of the current device.

If supported, should work even if the physical function is not managed by the application and thus not
associated with a DPDK port ID.

• Can be combined with any number of Item: VF to match both PF and VF traffic.

• spec, last and mask must not be set.

Table 12.12: PF

Field Value
spec unset
last unset
mask unset

Item: VF

Matches traffic originating from (ingress) or going to (egress) a given virtual function of the current
device.

If supported, should work even if the virtual function is not managed by the application and thus not
associated with a DPDK port ID.

Note this pattern item does not match VF representors traffic which, as separate entities, should be
addressed through their own DPDK port IDs.

• Can be specified multiple times to match traffic addressed to several VF IDs.

• Can be combined with a PF item to match both PF and VF traffic.

• Default mask matches any VF ID.

Table 12.13: VF

Field Subfield Value
spec id destination VF ID
last id upper range value
mask id zeroed to match any VF ID

Item: PHY_PORT

Matches traffic originating from (ingress) or going to (egress) a physical port of the underlying device.

The first PHY_PORT item overrides the physical port normally associated with the specified DPDK
input port (port_id). This item can be provided several times to match additional physical ports.

Note that physical ports are not necessarily tied to DPDK input ports (port_id) when those are not under
DPDK control. Possible values are specific to each device, they are not necessarily indexed from zero
and may not be contiguous.

As a device property, the list of allowed values as well as the value associated with a port_id should be
retrieved by other means.

12.2. Flow rule 82



Programmer’s Guide, Release 20.08.0

• Default mask matches any port index.

Table 12.14: PHY_PORT

Field Subfield Value
spec index physical port index
last index upper range value
mask index zeroed to match any port index

Item: PORT_ID

Matches traffic originating from (ingress) or going to (egress) a given DPDK port ID.

Normally only supported if the port ID in question is known by the underlying PMD and related to the
device the flow rule is created against.

This must not be confused with Item: PHY_PORT which refers to the physical port of a device, whereas
Item: PORT_ID refers to a struct rte_eth_dev object on the application side (also known as
“port representor” depending on the kind of underlying device).

• Default mask matches the specified DPDK port ID.

Table 12.15: PORT_ID

Field Subfield Value
spec id DPDK port ID
last id upper range value
mask id zeroed to match any port ID

Item: MARK

Matches an arbitrary integer value which was set using the MARK action in a previously matched rule.

This item can only specified once as a match criteria as the MARK action can only be specified once in a
flow action.

Note the value of MARK field is arbitrary and application defined.

Depending on the underlying implementation the MARK item may be supported on the physical device,
with virtual groups in the PMD or not at all.

• Default mask matches any integer value.

Table 12.16: MARK

Field Subfield Value
spec id | integer value
last id | upper range value
mask id zeroed to match any value

12.2. Flow rule 83



Programmer’s Guide, Release 20.08.0

Item: TAG

Matches tag item set by other flows. Multiple tags are supported by specifying index.

• Default mask matches the specified tag value and index.

Table 12.17: TAG

Field Subfield | Value

spec
data 32 bit flow tag value
index index of flow tag

last
data upper range value
index field is ignored

mask
data bit-mask applies to “spec” and “last”
index field is ignored

Item: META

Matches 32 bit metadata item set.

On egress, metadata can be set either by mbuf metadata field with PKT_TX_DYNF_METADATA flag
or SET_META action. On ingress, SET_META action sets metadata for a packet and the metadata will
be reported via metadata dynamic field of rte_mbuf with PKT_RX_DYNF_METADATA flag.

• Default mask matches the specified Rx metadata value.

Table 12.18: META

Field Subfield Value
spec data 32 bit metadata value
last data upper range value
mask data bit-mask applies to “spec” and “last”

12.2.6 Data matching item types

Most of these are basically protocol header definitions with associated bit-masks. They must be specified
(stacked) from lowest to highest protocol layer to form a matching pattern.

The following list is not exhaustive, new protocols will be added in the future.

Item: ANY

Matches any protocol in place of the current layer, a single ANY may also stand for several protocol
layers.

This is usually specified as the first pattern item when looking for a protocol anywhere in a packet.

• Default mask stands for any number of layers.

12.2. Flow rule 84



Programmer’s Guide, Release 20.08.0

Table 12.19: ANY

Field Subfield Value
spec num number of layers covered
last num upper range value
mask num zeroed to cover any number of layers

Example for VXLAN TCP payload matching regardless of outer L3 (IPv4 or IPv6) and L4 (UDP) both
matched by the first ANY specification, and inner L3 (IPv4 or IPv6) matched by the second ANY
specification:

Table 12.20: TCP in VXLAN with wildcards

Index Item Field Subfield Value
0 Ethernet
1 ANY spec num 2
2 VXLAN
3 Ethernet
4 ANY spec num 1
5 TCP
6 END

Item: RAW

Matches a byte string of a given length at a given offset.

Offset is either absolute (using the start of the packet) or relative to the end of the previous matched item
in the stack, in which case negative values are allowed.

If search is enabled, offset is used as the starting point. The search area can be delimited by setting limit
to a nonzero value, which is the maximum number of bytes after offset where the pattern may start.

Matching a zero-length pattern is allowed, doing so resets the relative offset for subsequent items.

• This type does not support ranges (last field).

• Default mask matches all fields exactly.

Table 12.21: RAW

Field Subfield Value

spec

relative look for pattern after the previous item
search search pattern from offset (see also limit)
reserved reserved, must be set to zero
offset absolute or relative offset for pattern
limit search area limit for start of pattern
length pattern length
pattern byte string to look for

last if specified, either all 0 or with the same values as spec
mask bit-mask applied to spec values with usual behavior

Example pattern looking for several strings at various offsets of a UDP payload, using combined RAW
items:

12.2. Flow rule 85



Programmer’s Guide, Release 20.08.0

Table 12.22: UDP payload matching

Index Item Field Subfield Value
0 Ethernet
1 IPv4
2 UDP

3 RAW spec

relative 1
search 1
offset 10
limit 0
length 3
pattern “foo”

4 RAW spec

relative 1
search 0
offset 20
limit 0
length 3
pattern “bar”

5 RAW spec

relative 1
search 0
offset -29
limit 0
length 3
pattern “baz”

6 END

This translates to:

• Locate “foo” at least 10 bytes deep inside UDP payload.

• Locate “bar” after “foo” plus 20 bytes.

• Locate “baz” after “bar” minus 29 bytes.

Such a packet may be represented as follows (not to scale):

0 >= 10 B == 20 B
| |<--------->| |<--------->|
| | | | |
|-----|------|-----|-----|-----|-----|-----------|-----|------|
| ETH | IPv4 | UDP | ... | baz | foo | ......... | bar | .... |
|-----|------|-----|-----|-----|-----|-----------|-----|------|

| |
|<--------------------------->|

== 29 B

Note that matching subsequent pattern items would resume after “baz”, not “bar” since matching is
always performed after the previous item of the stack.

Item: ETH

Matches an Ethernet header.

The type field either stands for “EtherType” or “TPID” when followed by so-called layer 2.5 pattern
items such as RTE_FLOW_ITEM_TYPE_VLAN. In the latter case, type refers to that of the outer
header, with the inner EtherType/TPID provided by the subsequent pattern item. This is the same order

12.2. Flow rule 86



Programmer’s Guide, Release 20.08.0

as on the wire. If the type field contains a TPID value, then only tagged packets with the specified
TPID will match the pattern. Otherwise, only untagged packets will match the pattern. If the ETH item
is the only item in the pattern, and the type field is not specified, then both tagged and untagged packets
will match the pattern.

• dst: destination MAC.

• src: source MAC.

• type: EtherType or TPID.

• Default mask matches destination and source addresses only.

Item: VLAN

Matches an 802.1Q/ad VLAN tag.

The corresponding standard outer EtherType (TPID) values are RTE_ETHER_TYPE_VLAN or
RTE_ETHER_TYPE_QINQ. It can be overridden by the preceding pattern item. If a VLAN item is
present in the pattern, then only tagged packets will match the pattern.

• tci: tag control information.

• inner_type: inner EtherType or TPID.

• Default mask matches the VID part of TCI only (lower 12 bits).

Item: IPV4

Matches an IPv4 header.

Note: IPv4 options are handled by dedicated pattern items.

• hdr: IPv4 header definition (rte_ip.h).

• Default mask matches source and destination addresses only.

Item: IPV6

Matches an IPv6 header.

Note: IPv6 options are handled by dedicated pattern items, see Item: IPV6_EXT .

• hdr: IPv6 header definition (rte_ip.h).

• Default mask matches source and destination addresses only.

Item: ICMP

Matches an ICMP header.

• hdr: ICMP header definition (rte_icmp.h).

• Default mask matches ICMP type and code only.

12.2. Flow rule 87



Programmer’s Guide, Release 20.08.0

Item: UDP

Matches a UDP header.

• hdr: UDP header definition (rte_udp.h).

• Default mask matches source and destination ports only.

Item: TCP

Matches a TCP header.

• hdr: TCP header definition (rte_tcp.h).

• Default mask matches source and destination ports only.

Item: SCTP

Matches a SCTP header.

• hdr: SCTP header definition (rte_sctp.h).

• Default mask matches source and destination ports only.

Item: VXLAN

Matches a VXLAN header (RFC 7348).

• flags: normally 0x08 (I flag).

• rsvd0: reserved, normally 0x000000.

• vni: VXLAN network identifier.

• rsvd1: reserved, normally 0x00.

• Default mask matches VNI only.

Item: E_TAG

Matches an IEEE 802.1BR E-Tag header.

The corresponding standard outer EtherType (TPID) value is RTE_ETHER_TYPE_ETAG. It can be
overridden by the preceding pattern item.

• epcp_edei_in_ecid_b: E-Tag control information (E-TCI), E-PCP (3b), E-DEI (1b),
ingress E-CID base (12b).

• rsvd_grp_ecid_b: reserved (2b), GRP (2b), E-CID base (12b).

• in_ecid_e: ingress E-CID ext.

• ecid_e: E-CID ext.

• inner_type: inner EtherType or TPID.

• Default mask simultaneously matches GRP and E-CID base.

12.2. Flow rule 88



Programmer’s Guide, Release 20.08.0

Item: NVGRE

Matches a NVGRE header (RFC 7637).

• c_k_s_rsvd0_ver: checksum (1b), undefined (1b), key bit (1b), sequence number (1b), re-
served 0 (9b), version (3b). This field must have value 0x2000 according to RFC 7637.

• protocol: protocol type (0x6558).

• tni: virtual subnet ID.

• flow_id: flow ID.

• Default mask matches TNI only.

Item: MPLS

Matches a MPLS header.

• label_tc_s_ttl: label, TC, Bottom of Stack and TTL.

• Default mask matches label only.

Item: GRE

Matches a GRE header.

• c_rsvd0_ver: checksum, reserved 0 and version.

• protocol: protocol type.

• Default mask matches protocol only.

Item: GRE_KEY

Matches a GRE key field. This should be preceded by item GRE.

• Value to be matched is a big-endian 32 bit integer.

• When this item present it implicitly match K bit in default mask as “1”

Item: FUZZY

Fuzzy pattern match, expect faster than default.

This is for device that support fuzzy match option. Usually a fuzzy match is fast but the cost is accuracy.
i.e. Signature Match only match pattern’s hash value, but it is possible two different patterns have the
same hash value.

Matching accuracy level can be configured by threshold. Driver can divide the range of threshold and
map to different accuracy levels that device support.

Threshold 0 means perfect match (no fuzziness), while threshold 0xffffffff means fuzziest match.

12.2. Flow rule 89



Programmer’s Guide, Release 20.08.0

Table 12.23: FUZZY

Field Subfield Value
spec threshold 0 as perfect match, 0xffffffff as fuzziest match
last threshold upper range value
mask threshold bit-mask apply to “spec” and “last”

Usage example, fuzzy match a TCPv4 packets:

Table 12.24: Fuzzy
matching

Index Item
0 FUZZY
1 Ethernet
2 IPv4
3 TCP
4 END

Item: GTP, GTPC, GTPU

Matches a GTPv1 header.

Note: GTP, GTPC and GTPU use the same structure. GTPC and GTPU item are defined for a user-
friendly API when creating GTP-C and GTP-U flow rules.

• v_pt_rsv_flags: version (3b), protocol type (1b), reserved (1b), extension header flag (1b),
sequence number flag (1b), N-PDU number flag (1b).

• msg_type: message type.

• msg_len: message length.

• teid: tunnel endpoint identifier.

• Default mask matches teid only.

Item: ESP

Matches an ESP header.

• hdr: ESP header definition (rte_esp.h).

• Default mask matches SPI only.

Item: GENEVE

Matches a GENEVE header.

• ver_opt_len_o_c_rsvd0: version (2b), length of the options fields (6b), OAM packet (1b),
critical options present (1b), reserved 0 (6b).

• protocol: protocol type.

• vni: virtual network identifier.

12.2. Flow rule 90



Programmer’s Guide, Release 20.08.0

• rsvd1: reserved, normally 0x00.

• Default mask matches VNI only.

Item: VXLAN-GPE

Matches a VXLAN-GPE header (draft-ietf-nvo3-vxlan-gpe-05).

• flags: normally 0x0C (I and P flags).

• rsvd0: reserved, normally 0x0000.

• protocol: protocol type.

• vni: VXLAN network identifier.

• rsvd1: reserved, normally 0x00.

• Default mask matches VNI only.

Item: ARP_ETH_IPV4

Matches an ARP header for Ethernet/IPv4.

• hdr: hardware type, normally 1.

• pro: protocol type, normally 0x0800.

• hln: hardware address length, normally 6.

• pln: protocol address length, normally 4.

• op: opcode (1 for request, 2 for reply).

• sha: sender hardware address.

• spa: sender IPv4 address.

• tha: target hardware address.

• tpa: target IPv4 address.

• Default mask matches SHA, SPA, THA and TPA.

Item: IPV6_EXT

Matches the presence of any IPv6 extension header.

• next_hdr: next header.

• Default mask matches next_hdr.

Normally preceded by any of:

• Item: IPV6

• Item: IPV6_EXT

12.2. Flow rule 91



Programmer’s Guide, Release 20.08.0

Item: ICMP6

Matches any ICMPv6 header.

• type: ICMPv6 type.

• code: ICMPv6 code.

• checksum: ICMPv6 checksum.

• Default mask matches type and code.

Item: ICMP6_ND_NS

Matches an ICMPv6 neighbor discovery solicitation.

• type: ICMPv6 type, normally 135.

• code: ICMPv6 code, normally 0.

• checksum: ICMPv6 checksum.

• reserved: reserved, normally 0.

• target_addr: target address.

• Default mask matches target address only.

Item: ICMP6_ND_NA

Matches an ICMPv6 neighbor discovery advertisement.

• type: ICMPv6 type, normally 136.

• code: ICMPv6 code, normally 0.

• checksum: ICMPv6 checksum.

• rso_reserved: route flag (1b), solicited flag (1b), override flag (1b), reserved (29b).

• target_addr: target address.

• Default mask matches target address only.

Item: ICMP6_ND_OPT

Matches the presence of any ICMPv6 neighbor discovery option.

• type: ND option type.

• length: ND option length.

• Default mask matches type only.

Normally preceded by any of:

• Item: ICMP6_ND_NA

• Item: ICMP6_ND_NS

• Item: ICMP6_ND_OPT

12.2. Flow rule 92



Programmer’s Guide, Release 20.08.0

Item: ICMP6_ND_OPT_SLA_ETH

Matches an ICMPv6 neighbor discovery source Ethernet link-layer address option.

• type: ND option type, normally 1.

• length: ND option length, normally 1.

• sla: source Ethernet LLA.

• Default mask matches source link-layer address only.

Normally preceded by any of:

• Item: ICMP6_ND_NA

• Item: ICMP6_ND_OPT

Item: ICMP6_ND_OPT_TLA_ETH

Matches an ICMPv6 neighbor discovery target Ethernet link-layer address option.

• type: ND option type, normally 2.

• length: ND option length, normally 1.

• tla: target Ethernet LLA.

• Default mask matches target link-layer address only.

Normally preceded by any of:

• Item: ICMP6_ND_NS

• Item: ICMP6_ND_OPT

Item: META

Matches an application specific 32 bit metadata item.

• Default mask matches the specified metadata value.

Item: GTP_PSC

Matches a GTP PDU extension header with type 0x85.

• pdu_type: PDU type.

• qfi: QoS flow identifier.

• Default mask matches QFI only.

Item: PPPOES, PPPOED

Matches a PPPoE header.

• version_type: version (4b), type (4b).

• code: message type.

12.2. Flow rule 93



Programmer’s Guide, Release 20.08.0

• session_id: session identifier.

• length: payload length.

Item: PPPOE_PROTO_ID

Matches a PPPoE session protocol identifier.

• proto_id: PPP protocol identifier.

• Default mask matches proto_id only.

Item: NSH

Matches a network service header (RFC 8300).

• version: normally 0x0 (2 bits).

• oam_pkt: indicate oam packet (1 bit).

• reserved: reserved bit (1 bit).

• ttl: maximum SFF hopes (6 bits).

• length: total length in 4 bytes words (6 bits).

• reserved1: reserved1 bits (4 bits).

• mdtype: ndicates format of NSH header (4 bits).

• next_proto: indicates protocol type of encap data (8 bits).

• spi: service path identifier (3 bytes).

• sindex: service index (1 byte).

• Default mask matches mdtype, next_proto, spi, sindex.

Item: IGMP

Matches a Internet Group Management Protocol (RFC 2236).

• type: IGMP message type (Query/Report).

• max_resp_time: max time allowed before sending report.

• checksum: checksum, 1s complement of whole IGMP message.

• group_addr: group address, for Query value will be 0.

• Default mask matches group_addr.

Item: AH

Matches a IP Authentication Header (RFC 4302).

• next_hdr: next payload after AH.

• payload_len: total length of AH in 4B words.

12.2. Flow rule 94



Programmer’s Guide, Release 20.08.0

• reserved: reserved bits.

• spi: security parameters index.

• seq_num: counter value increased by 1 on each packet sent.

• Default mask matches spi.

Item: HIGIG2

Matches a HIGIG2 header field. It is layer 2.5 protocol and used in Broadcom switches.

• Default mask matches classification and vlan.

Item: L2TPV3OIP

Matches a L2TPv3 over IP header.

• session_id: L2TPv3 over IP session identifier.

• Default mask matches session_id only.

Item: PFCP

Matches a PFCP Header.

• s_field: S field.

• msg_type: message type.

• msg_len: message length.

• seid: session endpoint identifier.

• Default mask matches s_field and seid.

Item: ECPRI

Matches a eCPRI header.

• hdr: eCPRI header definition (rte_ecpri.h).

• Default mask matches nothing, for all eCPRI messages.

12.2.7 Actions

Each possible action is represented by a type. An action can have an associated configuration object.
Several actions combined in a list can be assigned to a flow rule and are performed in order.

They fall in three categories:

• Actions that modify the fate of matching traffic, for instance by dropping or assigning it a specific
destination.

• Actions that modify matching traffic contents or its properties. This includes adding/removing
encapsulation, encryption, compression and marks.

12.2. Flow rule 95



Programmer’s Guide, Release 20.08.0

• Actions related to the flow rule itself, such as updating counters or making it non-terminating.

Flow rules being terminating by default, not specifying any action of the fate kind results in undefined
behavior. This applies to both ingress and egress.

PASSTHRU, when supported, makes a flow rule non-terminating.

Like matching patterns, action lists are terminated by END items.

Example of action that redirects packets to queue index 10:

Table 12.25:
Queue action

Field Value
index 10

Actions are performed in list order:

Table 12.26: Count
then drop

Index Action
0 COUNT
1 DROP
2 END

Table 12.27: Mark, count then redirect

Index Action Field Value
0 MARK mark 0x2a

1 COUNT
shared 0
id 0

2 QUEUE queue 10
3 END

Table 12.28: Redirect to queue 5

Index Action Field Value
0 DROP
1 QUEUE queue 5
2 END

In the above example, while DROP and QUEUE must be performed in order, both have to happen before
reaching END. Only QUEUE has a visible effect.

Note that such a list may be thought as ambiguous and rejected on that basis.

12.2. Flow rule 96



Programmer’s Guide, Release 20.08.0

Table 12.29: Redirect to queues 5 and
3

Index Action Field Value
0 QUEUE queue 5
1 VOID
2 QUEUE queue 3
3 END

As previously described, all actions must be taken into account. This effectively duplicates traffic to
both queues. The above example also shows that VOID is ignored.

12.2.8 Action types

Common action types are described in this section. Like pattern item types, this list is not exhaustive as
new actions will be added in the future.

Action: END

End marker for action lists. Prevents further processing of actions, thereby ending the list.

• Its numeric value is 0 for convenience.

• PMD support is mandatory.

• No configurable properties.

Table 12.30:
END

Field
no properties

Action: VOID

Used as a placeholder for convenience. It is ignored and simply discarded by PMDs.

• PMD support is mandatory.

• No configurable properties.

Table 12.31:
VOID

Field
no properties

Action: PASSTHRU

Leaves traffic up for additional processing by subsequent flow rules; makes a flow rule non-terminating.

• No configurable properties.

12.2. Flow rule 97



Programmer’s Guide, Release 20.08.0

Table 12.32:
PASSTHRU

Field
no properties

Example to copy a packet to a queue and continue processing by subsequent flow rules:

Table 12.33: Copy to queue 8

Index Action Field Value
0 PASSTHRU
1 QUEUE queue 8
2 END

Action: JUMP

Redirects packets to a group on the current device.

In a hierarchy of groups, which can be used to represent physical or logical flow group/tables on the
device, this action redirects the matched flow to the specified group on that device.

If a matched flow is redirected to a table which doesn’t contain a matching rule for that flow then the
behavior is undefined and the resulting behavior is up to the specific device. Best practice when using
groups would be define a default flow rule for each group which a defines the default actions in that
group so a consistent behavior is defined.

Defining an action for matched flow in a group to jump to a group which is higher in the group hierarchy
may not be supported by physical devices, depending on how groups are mapped to the physical devices.
In the definitions of jump actions, applications should be aware that it may be possible to define flow
rules which trigger an undefined behavior causing flows to loop between groups.

Table 12.34: JUMP

Field Value
group Group to redirect packets to

Action: MARK

Attaches an integer value to packets and sets PKT_RX_FDIR and PKT_RX_FDIR_ID mbuf flags.

This value is arbitrary and application-defined. Maximum allowed value depends on the underlying
implementation. It is returned in the hash.fdir.hi mbuf field.

Table 12.35: MARK

Field Value
id integer value to return with packets

12.2. Flow rule 98



Programmer’s Guide, Release 20.08.0

Action: FLAG

Flags packets. Similar to Action: MARK without a specific value; only sets the PKT_RX_FDIR mbuf
flag.

• No configurable properties.

Table 12.36:
FLAG

Field
no properties

Action: QUEUE

Assigns packets to a given queue index.

Table 12.37: QUEUE

Field Value
index queue index to use

Action: DROP

Drop packets.

• No configurable properties.

Table 12.38:
DROP

Field
no properties

Action: COUNT

Adds a counter action to a matched flow.

If more than one count action is specified in a single flow rule, then each action must specify a unique
id.

Counters can be retrieved and reset through rte_flow_query(), see struct
rte_flow_query_count.

The shared flag indicates whether the counter is unique to the flow rule the action is specified with, or
whether it is a shared counter.

For a count action with the shared flag set, then a global device namespace is assumed for the counter
id, so that any matched flow rules using a count action with the same counter id on the same port will
contribute to that counter.

For ports within the same switch domain then the counter id namespace extends to all ports within that
switch domain.

12.2. Flow rule 99



Programmer’s Guide, Release 20.08.0

Table 12.39: COUNT

Field Value
shared shared counter flag
id counter id

Query structure to retrieve and reset flow rule counters:

Table 12.40: COUNT query

Field I/O Value
reset in reset counter after query
hits_set out hits field is set
bytes_set out bytes field is set
hits out number of hits for this rule
bytes out number of bytes through this rule

Action: RSS

Similar to QUEUE, except RSS is additionally performed on packets to spread them among several
queues according to the provided parameters.

Unlike global RSS settings used by other DPDK APIs, unsetting the types field does not disable RSS
in a flow rule. Doing so instead requests safe unspecified “best-effort” settings from the underlying
PMD, which depending on the flow rule, may result in anything ranging from empty (single queue) to
all-inclusive RSS.

Note: RSS hash result is stored in the hash.rss mbuf field which overlaps hash.fdir.lo. Since
Action: MARK sets the hash.fdir.hi field only, both can be requested simultaneously.

Also, regarding packet encapsulation level:

• 0 requests the default behavior. Depending on the packet type, it can mean outermost, innermost,
anything in between or even no RSS.

It basically stands for the innermost encapsulation level RSS can be performed on according to
PMD and device capabilities.

• 1 requests RSS to be performed on the outermost packet encapsulation level.

• 2 and subsequent values request RSS to be performed on the specified inner packet encapsu-
lation level, from outermost to innermost (lower to higher values).

Values other than 0 are not necessarily supported.

Requesting a specific RSS level on unrecognized traffic results in undefined behavior. For predictable
results, it is recommended to make the flow rule pattern match packet headers up to the requested en-
capsulation level so that only matching traffic goes through.

12.2. Flow rule 100



Programmer’s Guide, Release 20.08.0

Table 12.41: RSS

Field Value
func RSS hash function to apply
level encapsulation level for types
types specific RSS hash types (see ETH_RSS_*)
key_len hash key length in bytes
queue_num number of entries in queue
key hash key
queue queue indices to use

Action: PF

Directs matching traffic to the physical function (PF) of the current device.

See Item: PF.

• No configurable properties.

Table 12.42:
PF

Field
no properties

Action: VF

Directs matching traffic to a given virtual function of the current device.

Packets matched by a VF pattern item can be redirected to their original VF ID instead of the specified
one. This parameter may not be available and is not guaranteed to work properly if the VF part is
matched by a prior flow rule or if packets are not addressed to a VF in the first place.

See Item: VF.

Table 12.43: VF

Field Value
original use original VF ID if possible
id VF ID

Action: PHY_PORT

Directs matching traffic to a given physical port index of the underlying device.

See Item: PHY_PORT .

12.2. Flow rule 101



Programmer’s Guide, Release 20.08.0

Table 12.44: PHY_PORT

Field Value
original use original port index if possible
index physical port index

Action: PORT_ID

Directs matching traffic to a given DPDK port ID.

See Item: PORT_ID.

Table 12.45: PORT_ID

Field Value
original use original DPDK port ID if possible
id DPDK port ID

Action: METER

Applies a stage of metering and policing.

The metering and policing (MTR) object has to be first created using the rte_mtr_create() API function.
The ID of the MTR object is specified as action parameter. More than one flow can use the same MTR
object through the meter action. The MTR object can be further updated or queried using the rte_mtr*
API.

Table 12.46: METER

Field Value
mtr_id MTR object ID

Action: SECURITY

Perform the security action on flows matched by the pattern items according to the configuration of the
security session.

This action modifies the payload of matched flows. For INLINE_CRYPTO, the security protocol headers
and IV are fully provided by the application as specified in the flow pattern. The payload of matching
packets is encrypted on egress, and decrypted and authenticated on ingress. For INLINE_PROTOCOL,
the security protocol is fully offloaded to HW, providing full encapsulation and decapsulation of packets
in security protocols. The flow pattern specifies both the outer security header fields and the inner packet
fields. The security session specified in the action must match the pattern parameters.

The security session specified in the action must be created on the same port as the flow action that is
being specified.

The ingress/egress flow attribute should match that specified in the security session if the security session
supports the definition of the direction.

Multiple flows can be configured to use the same security session.

12.2. Flow rule 102



Programmer’s Guide, Release 20.08.0

Table 12.47: SECURITY

Field Value
security_session security session to apply

The following is an example of configuring IPsec inline using the INLINE_CRYPTO security session:

The encryption algorithm, keys and salt are part of the opaque rte_security_session. The SA
is identified according to the IP and ESP fields in the pattern items.

Table 12.48: IPsec
inline crypto flow
pattern items.

Index Item
0 Ethernet
1 IPv4
2 ESP
3 END

Table 12.49: IPsec in-
line flow actions.

Index Action
0 SECURITY
1 END

Action: OF_SET_MPLS_TTL

Implements OFPAT_SET_MPLS_TTL (“MPLS TTL”) as defined by the OpenFlow Switch Specifica-
tion.

Table 12.50:
OF_SET_MPLS_TTL

Field Value
mpls_ttl MPLS TTL

Action: OF_DEC_MPLS_TTL

Implements OFPAT_DEC_MPLS_TTL (“decrement MPLS TTL”) as defined by the OpenFlow Switch
Specification.

Table 12.51:
OF_DEC_MPLS_TTL

Field
no properties

12.2. Flow rule 103

https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/


Programmer’s Guide, Release 20.08.0

Action: OF_SET_NW_TTL

Implements OFPAT_SET_NW_TTL (“IP TTL”) as defined by the OpenFlow Switch Specification.

Table 12.52:
OF_SET_NW_TTL

Field Value
nw_ttl IP TTL

Action: OF_DEC_NW_TTL

Implements OFPAT_DEC_NW_TTL (“decrement IP TTL”) as defined by the OpenFlow Switch Specifi-
cation.

Table 12.53:
OF_DEC_NW_TTL

Field
no properties

Action: OF_COPY_TTL_OUT

Implements OFPAT_COPY_TTL_OUT (“copy TTL “outwards” – from next-to-outermost to outer-
most”) as defined by the OpenFlow Switch Specification.

Table 12.54:
OF_COPY_TTL_OUT

Field
no properties

Action: OF_COPY_TTL_IN

Implements OFPAT_COPY_TTL_IN (“copy TTL “inwards” – from outermost to next-to-outermost”)
as defined by the OpenFlow Switch Specification.

Table 12.55:
OF_COPY_TTL_IN

Field
no properties

Action: OF_POP_VLAN

Implements OFPAT_POP_VLAN (“pop the outer VLAN tag”) as defined by the OpenFlow Switch Spec-
ification.

12.2. Flow rule 104

https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/


Programmer’s Guide, Release 20.08.0

Table 12.56:
OF_POP_VLAN

Field
no properties

Action: OF_PUSH_VLAN

Implements OFPAT_PUSH_VLAN (“push a new VLAN tag”) as defined by the OpenFlow Switch Spec-
ification.

Table 12.57:
OF_PUSH_VLAN

Field Value
ethertype EtherType

Action: OF_SET_VLAN_VID

Implements OFPAT_SET_VLAN_VID (“set the 802.1q VLAN id”) as defined by the OpenFlow Switch
Specification.

Table 12.58:
OF_SET_VLAN_VID

Field Value
vlan_vid VLAN id

Action: OF_SET_VLAN_PCP

Implements OFPAT_SET_LAN_PCP (“set the 802.1q priority”) as defined by the OpenFlow Switch
Specification.

Table 12.59:
OF_SET_VLAN_PCP

Field Value
vlan_pcp VLAN priority

Action: OF_POP_MPLS

Implements OFPAT_POP_MPLS (“pop the outer MPLS tag”) as defined by the OpenFlow Switch Spec-
ification.

Table 12.60:
OF_POP_MPLS

Field Value
ethertype EtherType

12.2. Flow rule 105

https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/


Programmer’s Guide, Release 20.08.0

Action: OF_PUSH_MPLS

Implements OFPAT_PUSH_MPLS (“push a new MPLS tag”) as defined by the OpenFlow Switch Spec-
ification.

Table 12.61:
OF_PUSH_MPLS

Field Value
ethertype EtherType

Action: VXLAN_ENCAP

Performs a VXLAN encapsulation action by encapsulating the matched flow in the VXLAN tunnel as
defined in the‘‘rte_flow_action_vxlan_encap‘‘ flow items definition.

This action modifies the payload of matched flows. The flow definition specified in the
rte_flow_action_tunnel_encap action structure must define a valid VLXAN network over-
lay which conforms with RFC 7348 (Virtual eXtensible Local Area Network (VXLAN): A Framework
for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks). The pattern must be terminated
with the RTE_FLOW_ITEM_TYPE_END item type.

Table 12.62: VXLAN_ENCAP

Field Value
definition Tunnel end-point overlay definition

Table 12.63: IPv4
VxLAN flow pattern
example.

Index Item
0 Ethernet
1 IPv4
2 UDP
3 VXLAN
4 END

Action: VXLAN_DECAP

Performs a decapsulation action by stripping all headers of the VXLAN tunnel network overlay from
the matched flow.

The flow items pattern defined for the flow rule with which a VXLAN_DECAP action is specified, must
define a valid VXLAN tunnel as per RFC7348. If the flow pattern does not specify a valid VXLAN
tunnel then a RTE_FLOW_ERROR_TYPE_ACTION error should be returned.

This action modifies the payload of matched flows.

12.2. Flow rule 106

https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/


Programmer’s Guide, Release 20.08.0

Action: NVGRE_ENCAP

Performs a NVGRE encapsulation action by encapsulating the matched flow in the NVGRE tunnel as
defined in the‘‘rte_flow_action_tunnel_encap‘‘ flow item definition.

This action modifies the payload of matched flows. The flow definition specified in the
rte_flow_action_tunnel_encap action structure must defined a valid NVGRE network over-
lay which conforms with RFC 7637 (NVGRE: Network Virtualization Using Generic Routing Encap-
sulation). The pattern must be terminated with the RTE_FLOW_ITEM_TYPE_END item type.

Table 12.64: NVGRE_ENCAP

Field Value
definition NVGRE end-point overlay definition

Table 12.65: IPv4
NVGRE flow pat-
tern example.

Index Item
0 Ethernet
1 IPv4
2 NVGRE
3 END

Action: NVGRE_DECAP

Performs a decapsulation action by stripping all headers of the NVGRE tunnel network overlay from the
matched flow.

The flow items pattern defined for the flow rule with which a NVGRE_DECAP action is specified, must
define a valid NVGRE tunnel as per RFC7637. If the flow pattern does not specify a valid NVGRE
tunnel then a RTE_FLOW_ERROR_TYPE_ACTION error should be returned.

This action modifies the payload of matched flows.

Action: RAW_ENCAP

Adds outer header whose template is provided in its data buffer, as defined in the
rte_flow_action_raw_encap definition.

This action modifies the payload of matched flows. The data supplied must be a valid header, either
holding layer 2 data in case of adding layer 2 after decap layer 3 tunnel (for example MPLSoGRE) or
complete tunnel definition starting from layer 2 and moving to the tunnel item itself. When applied to
the original packet the resulting packet must be a valid packet.

Table 12.66: RAW_ENCAP

Field Value
data Encapsulation data
preserve Bit-mask of data to preserve on output
size Size of data and preserve

12.2. Flow rule 107



Programmer’s Guide, Release 20.08.0

Action: RAW_DECAP

Remove outer header whose template is provided in its data buffer, as defined in the
rte_flow_action_raw_decap

This action modifies the payload of matched flows. The data supplied must be a valid header, either
holding layer 2 data in case of removing layer 2 before encapsulation of layer 3 tunnel (for example
MPLSoGRE) or complete tunnel definition starting from layer 2 and moving to the tunnel item itself.
When applied to the original packet the resulting packet must be a valid packet.

Table 12.67: RAW_DECAP

Field Value
data Decapsulation data
size Size of data

Action: SET_IPV4_SRC

Set a new IPv4 source address in the outermost IPv4 header.

It must be used with a valid RTE_FLOW_ITEM_TYPE_IPV4 flow pattern item. Otherwise,
RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.68: SET_IPV4_SRC

Field | Value
ipv4_addr new IPv4 source address

Action: SET_IPV4_DST

Set a new IPv4 destination address in the outermost IPv4 header.

It must be used with a valid RTE_FLOW_ITEM_TYPE_IPV4 flow pattern item. Otherwise,
RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.69: SET_IPV4_DST

Field Value
ipv4_addr new IPv4 destination address

Action: SET_IPV6_SRC

Set a new IPv6 source address in the outermost IPv6 header.

It must be used with a valid RTE_FLOW_ITEM_TYPE_IPV6 flow pattern item. Otherwise,
RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.70: SET_IPV6_SRC

Field Value
ipv6_addr new IPv6 source address

12.2. Flow rule 108



Programmer’s Guide, Release 20.08.0

Action: SET_IPV6_DST

Set a new IPv6 destination address in the outermost IPv6 header.

It must be used with a valid RTE_FLOW_ITEM_TYPE_IPV6 flow pattern item. Otherwise,
RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.71: SET_IPV6_DST

Field Value
ipv6_addr new IPv6 destination address

Action: SET_TP_SRC

Set a new source port number in the outermost TCP/UDP header.

It must be used with a valid RTE_FLOW_ITEM_TYPE_TCP or RTE_FLOW_ITEM_TYPE_UDP flow
pattern item. Otherwise, RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.72: SET_TP_SRC

Field Value
port | new TCP/UDP source port

Action: SET_TP_DST

Set a new destination port number in the outermost TCP/UDP header.

It must be used with a valid RTE_FLOW_ITEM_TYPE_TCP or RTE_FLOW_ITEM_TYPE_UDP flow
pattern item. Otherwise, RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.73: SET_TP_DST

Field Value
port | new TCP/UDP destination port

Action: MAC_SWAP

Swap the source and destination MAC addresses in the outermost Ethernet header.

It must be used with a valid RTE_FLOW_ITEM_TYPE_ETH flow pattern item. Otherwise,
RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.74:
MAC_SWAP

Field
no properties

12.2. Flow rule 109



Programmer’s Guide, Release 20.08.0

Action: DEC_TTL

Decrease TTL value.

If there is no valid RTE_FLOW_ITEM_TYPE_IPV4 or RTE_FLOW_ITEM_TYPE_IPV6 in pattern,
Some PMDs will reject rule because behavior will be undefined.

Table 12.75:
DEC_TTL

Field
no properties

Action: SET_TTL

Assigns a new TTL value.

If there is no valid RTE_FLOW_ITEM_TYPE_IPV4 or RTE_FLOW_ITEM_TYPE_IPV6 in pattern,
Some PMDs will reject rule because behavior will be undefined.

Table 12.76: SET_TTL

Field Value
ttl_value new TTL value

Action: SET_MAC_SRC

Set source MAC address.

It must be used with a valid RTE_FLOW_ITEM_TYPE_ETH flow pattern item. Otherwise,
RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.77: SET_MAC_SRC

Field Value
mac_addr MAC address

Action: SET_MAC_DST

Set destination MAC address.

It must be used with a valid RTE_FLOW_ITEM_TYPE_ETH flow pattern item. Otherwise,
RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.78: SET_MAC_DST

Field Value
mac_addr MAC address

12.2. Flow rule 110



Programmer’s Guide, Release 20.08.0

Action: INC_TCP_SEQ

Increase sequence number in the outermost TCP header. Value to increase TCP sequence number by is
a big-endian 32 bit integer.

Using this action on non-matching traffic will result in undefined behavior.

Action: DEC_TCP_SEQ

Decrease sequence number in the outermost TCP header. Value to decrease TCP sequence number by is
a big-endian 32 bit integer.

Using this action on non-matching traffic will result in undefined behavior.

Action: INC_TCP_ACK

Increase acknowledgment number in the outermost TCP header. Value to increase TCP acknowledgment
number by is a big-endian 32 bit integer.

Using this action on non-matching traffic will result in undefined behavior.

Action: DEC_TCP_ACK

Decrease acknowledgment number in the outermost TCP header. Value to decrease TCP acknowledg-
ment number by is a big-endian 32 bit integer.

Using this action on non-matching traffic will result in undefined behavior.

Action: SET_TAG

Set Tag.

Tag is a transient data used during flow matching. This is not delivered to application. Multiple tags are
supported by specifying index.

Table 12.79: SET_TAG

Field Value
data 32 bit tag value
mask bit-mask applies to “data”
index index of tag to set

Action: SET_META

Set metadata. Item META matches metadata.

Metadata set by mbuf metadata field with PKT_TX_DYNF_METADATA flag on egress will be overrid-
den by this action. On ingress, the metadata will be carried by metadata dynamic field of rte_mbuf
which can be accessed by RTE_FLOW_DYNF_METADATA(). PKT_RX_DYNF_METADATA flag will
be set along with the data.

12.2. Flow rule 111



Programmer’s Guide, Release 20.08.0

The mbuf dynamic field must be registered by calling rte_flow_dynf_metadata_register()
prior to use SET_META action.

Altering partial bits is supported with mask. For bits which have never been set, unpredictable value
will be seen depending on driver implementation. For loopback/hairpin packet, metadata set on Rx/Tx
may or may not be propagated to the other path depending on HW capability.

Table 12.80: SET_META

Field Value
data 32 bit metadata value
mask bit-mask applies to “data”

Action: SET_IPV4_DSCP

Set IPv4 DSCP.

Modify DSCP in IPv4 header.

It must be used with RTE_FLOW_ITEM_TYPE_IPV4 in pattern. Otherwise,
RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.81: SET_IPV4_DSCP

Field Value
dscp DSCP in low 6 bits, rest ignore

Action: SET_IPV6_DSCP

Set IPv6 DSCP.

Modify DSCP in IPv6 header.

It must be used with RTE_FLOW_ITEM_TYPE_IPV6 in pattern. Otherwise,
RTE_FLOW_ERROR_TYPE_ACTION error will be returned.

Table 12.82: SET_IPV6_DSCP

Field Value
dscp DSCP in low 6 bits, rest ignore

Action: AGE

Set ageing timeout configuration to a flow.

Event RTE_ETH_EVENT_FLOW_AGED will be reported if timeout passed without any matching on
the flow.

12.2. Flow rule 112



Programmer’s Guide, Release 20.08.0

Table 12.83: AGE

Field Value
timeout 24 bits timeout value
reserved 8 bits reserved, must be zero
context user input flow context

12.2.9 Negative types

All specified pattern items (enum rte_flow_item_type) and actions (enum
rte_flow_action_type) use positive identifiers.

The negative space is reserved for dynamic types generated by PMDs during run-time. PMDs may
encounter them as a result but must not accept negative identifiers they are not aware of.

A method to generate them remains to be defined.

12.2.10 Planned types

Pattern item types will be added as new protocols are implemented.

Variable headers support through dedicated pattern items, for example in order to match specific IPv4
options and IPv6 extension headers would be stacked after IPv4/IPv6 items.

Other action types are planned but are not defined yet. These include the ability to alter packet data in
several ways, such as performing encapsulation/decapsulation of tunnel headers.

12.3 Rules management

A rather simple API with few functions is provided to fully manage flow rules.

Each created flow rule is associated with an opaque, PMD-specific handle pointer. The application is
responsible for keeping it until the rule is destroyed.

Flows rules are represented by struct rte_flow objects.

12.3.1 Validation

Given that expressing a definite set of device capabilities is not practical, a dedicated function is provided
to check if a flow rule is supported and can be created.

int
rte_flow_validate(uint16_t port_id,

const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error);

The flow rule is validated for correctness and whether it could be accepted by the device given sufficient
resources. The rule is checked against the current device mode and queue configuration. The flow rule
may also optionally be validated against existing flow rules and device resources. This function has no
effect on the target device.

12.3. Rules management 113



Programmer’s Guide, Release 20.08.0

The returned value is guaranteed to remain valid only as long as no successful calls to
rte_flow_create() or rte_flow_destroy() are made in the meantime and no device pa-
rameter affecting flow rules in any way are modified, due to possible collisions or resource limitations
(although in such cases EINVAL should not be returned).

Arguments:

• port_id: port identifier of Ethernet device.

• attr: flow rule attributes.

• pattern: pattern specification (list terminated by the END pattern item).

• actions: associated actions (list terminated by the END action).

• error: perform verbose error reporting if not NULL. PMDs initialize this structure in case of
error only.

Return values:

• 0 if flow rule is valid and can be created. A negative errno value otherwise (rte_errno is also
set), the following errors are defined.

• -ENOSYS: underlying device does not support this functionality.

• -EINVAL: unknown or invalid rule specification.

• -ENOTSUP: valid but unsupported rule specification (e.g. partial bit-masks are unsupported).

• EEXIST: collision with an existing rule. Only returned if device supports flow rule collision
checking and there was a flow rule collision. Not receiving this return code is no guarantee that
creating the rule will not fail due to a collision.

• ENOMEM: not enough memory to execute the function, or if the device supports resource valida-
tion, resource limitation on the device.

• -EBUSY: action cannot be performed due to busy device resources, may succeed if the affected
queues or even the entire port are in a stopped state (see rte_eth_dev_rx_queue_stop()
and rte_eth_dev_stop()).

12.3.2 Creation

Creating a flow rule is similar to validating one, except the rule is actually created and a handle returned.

struct rte_flow *
rte_flow_create(uint16_t port_id,

const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action *actions[],
struct rte_flow_error *error);

Arguments:

• port_id: port identifier of Ethernet device.

• attr: flow rule attributes.

• pattern: pattern specification (list terminated by the END pattern item).

• actions: associated actions (list terminated by the END action).

12.3. Rules management 114



Programmer’s Guide, Release 20.08.0

• error: perform verbose error reporting if not NULL. PMDs initialize this structure in case of
error only.

Return values:

A valid handle in case of success, NULL otherwise and rte_errno is set to the positive version of
one of the error codes defined for rte_flow_validate().

12.3.3 Destruction

Flow rules destruction is not automatic, and a queue or a port should not be released if any are still
attached to them. Applications must take care of performing this step before releasing resources.

int
rte_flow_destroy(uint16_t port_id,

struct rte_flow *flow,
struct rte_flow_error *error);

Failure to destroy a flow rule handle may occur when other flow rules depend on it, and destroying it
would result in an inconsistent state.

This function is only guaranteed to succeed if handles are destroyed in reverse order of their creation.

Arguments:

• port_id: port identifier of Ethernet device.

• flow: flow rule handle to destroy.

• error: perform verbose error reporting if not NULL. PMDs initialize this structure in case of
error only.

Return values:

• 0 on success, a negative errno value otherwise and rte_errno is set.

12.3.4 Flush

Convenience function to destroy all flow rule handles associated with a port. They are released as with
successive calls to rte_flow_destroy().

int
rte_flow_flush(uint16_t port_id,

struct rte_flow_error *error);

In the unlikely event of failure, handles are still considered destroyed and no longer valid but the port
must be assumed to be in an inconsistent state.

Arguments:

• port_id: port identifier of Ethernet device.

• error: perform verbose error reporting if not NULL. PMDs initialize this structure in case of
error only.

Return values:

• 0 on success, a negative errno value otherwise and rte_errno is set.

12.3. Rules management 115



Programmer’s Guide, Release 20.08.0

12.3.5 Query

Query an existing flow rule.

This function allows retrieving flow-specific data such as counters. Data is gathered by special actions
which must be present in the flow rule definition.

int
rte_flow_query(uint16_t port_id,

struct rte_flow *flow,
const struct rte_flow_action *action,
void *data,
struct rte_flow_error *error);

Arguments:

• port_id: port identifier of Ethernet device.

• flow: flow rule handle to query.

• action: action to query, this must match prototype from flow rule.

• data: pointer to storage for the associated query data type.

• error: perform verbose error reporting if not NULL. PMDs initialize this structure in case of
error only.

Return values:

• 0 on success, a negative errno value otherwise and rte_errno is set.

12.4 Flow isolated mode

The general expectation for ingress traffic is that flow rules process it first; the remaining unmatched
or pass-through traffic usually ends up in a queue (with or without RSS, locally or in some sub-device
instance) depending on the global configuration settings of a port.

While fine from a compatibility standpoint, this approach makes drivers more complex as they have to
check for possible side effects outside of this API when creating or destroying flow rules. It results in a
more limited set of available rule types due to the way device resources are assigned (e.g. no support for
the RSS action even on capable hardware).

Given that nonspecific traffic can be handled by flow rules as well, isolated mode is a means for appli-
cations to tell a driver that ingress on the underlying port must be injected from the defined flow rules
only; that no default traffic is expected outside those rules.

This has the following benefits:

• Applications get finer-grained control over the kind of traffic they want to receive (no traffic by
default).

• More importantly they control at what point nonspecific traffic is handled relative to other flow
rules, by adjusting priority levels.

• Drivers can assign more hardware resources to flow rules and expand the set of supported rule
types.

Because toggling isolated mode may cause profound changes to the ingress processing path of a driver,
it may not be possible to leave it once entered. Likewise, existing flow rules or global configuration
settings may prevent a driver from entering isolated mode.

12.4. Flow isolated mode 116



Programmer’s Guide, Release 20.08.0

Applications relying on this mode are therefore encouraged to toggle it as soon as possible after device
initialization, ideally before the first call to rte_eth_dev_configure() to avoid possible failures
due to conflicting settings.

Once effective, the following functionality has no effect on the underlying port and may return errors
such as ENOTSUP (“not supported”):

• Toggling promiscuous mode.

• Toggling allmulticast mode.

• Configuring MAC addresses.

• Configuring multicast addresses.

• Configuring VLAN filters.

• Configuring Rx filters through the legacy API (e.g. FDIR).

• Configuring global RSS settings.

int
rte_flow_isolate(uint16_t port_id, int set, struct rte_flow_error *error);

Arguments:

• port_id: port identifier of Ethernet device.

• set: nonzero to enter isolated mode, attempt to leave it otherwise.

• error: perform verbose error reporting if not NULL. PMDs initialize this structure in case of
error only.

Return values:

• 0 on success, a negative errno value otherwise and rte_errno is set.

12.5 Verbose error reporting

The defined errno values may not be accurate enough for users or application developers who want to
investigate issues related to flow rules management. A dedicated error object is defined for this purpose:

enum rte_flow_error_type {
RTE_FLOW_ERROR_TYPE_NONE, /**< No error. */
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, /**< Cause unspecified. */
RTE_FLOW_ERROR_TYPE_HANDLE, /**< Flow rule (handle). */
RTE_FLOW_ERROR_TYPE_ATTR_GROUP, /**< Group field. */
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY, /**< Priority field. */
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS, /**< Ingress field. */
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS, /**< Egress field. */
RTE_FLOW_ERROR_TYPE_ATTR, /**< Attributes structure. */
RTE_FLOW_ERROR_TYPE_ITEM_NUM, /**< Pattern length. */
RTE_FLOW_ERROR_TYPE_ITEM, /**< Specific pattern item. */
RTE_FLOW_ERROR_TYPE_ACTION_NUM, /**< Number of actions. */
RTE_FLOW_ERROR_TYPE_ACTION, /**< Specific action. */

};

struct rte_flow_error {
enum rte_flow_error_type type; /**< Cause field and error types. */
const void *cause; /**< Object responsible for the error. */
const char *message; /**< Human-readable error message. */

};

12.5. Verbose error reporting 117



Programmer’s Guide, Release 20.08.0

Error type RTE_FLOW_ERROR_TYPE_NONE stands for no error, in which case remaining fields can
be ignored. Other error types describe the type of the object pointed by cause.

If non-NULL, cause points to the object responsible for the error. For a flow rule, this may be a pattern
item or an individual action.

If non-NULL, message provides a human-readable error message.

This object is normally allocated by applications and set by PMDs in case of error, the message points
to a constant string which does not need to be freed by the application, however its pointer can be
considered valid only as long as its associated DPDK port remains configured. Closing the underlying
device or unloading the PMD invalidates it.

12.6 Helpers

12.6.1 Error initializer

static inline int
rte_flow_error_set(struct rte_flow_error *error,

int code,
enum rte_flow_error_type type,
const void *cause,
const char *message);

This function initializes error (if non-NULL) with the provided parameters and sets rte_errno to
code. A negative error code is then returned.

12.6.2 Object conversion

int
rte_flow_conv(enum rte_flow_conv_op op,

void *dst,
size_t size,
const void *src,
struct rte_flow_error *error);

Convert src to dst according to operation op. Possible operations include:

• Attributes, pattern item or action duplication.

• Duplication of an entire pattern or list of actions.

• Duplication of a complete flow rule description.

• Pattern item or action name retrieval.

12.7 Caveats

• DPDK does not keep track of flow rules definitions or flow rule objects automatically. Applica-
tions may keep track of the former and must keep track of the latter. PMDs may also do it for
internal needs, however this must not be relied on by applications.

• Flow rules are not maintained between successive port initializations. An application exiting
without releasing them and restarting must re-create them from scratch.

• API operations are synchronous and blocking (EAGAIN cannot be returned).

12.6. Helpers 118



Programmer’s Guide, Release 20.08.0

• There is no provision for re-entrancy/multi-thread safety, although nothing should prevent differ-
ent devices from being configured at the same time. PMDs may protect their control path functions
accordingly.

• Stopping the data path (TX/RX) should not be necessary when managing flow rules. If this can-
not be achieved naturally or with workarounds (such as temporarily replacing the burst function
pointers), an appropriate error code must be returned (EBUSY).

• PMDs, not applications, are responsible for maintaining flow rules configuration when stopping
and restarting a port or performing other actions which may affect them. They can only be de-
stroyed explicitly by applications.

For devices exposing multiple ports sharing global settings affected by flow rules:

• All ports under DPDK control must behave consistently, PMDs are responsible for making sure
that existing flow rules on a port are not affected by other ports.

• Ports not under DPDK control (unaffected or handled by other applications) are user’s responsi-
bility. They may affect existing flow rules and cause undefined behavior. PMDs aware of this may
prevent flow rules creation altogether in such cases.

12.8 PMD interface

The PMD interface is defined in rte_flow_driver.h. It is not subject to API/ABI versioning
constraints as it is not exposed to applications and may evolve independently.

It is currently implemented on top of the legacy filtering framework through filter type
RTE_ETH_FILTER_GENERIC that accepts the single operation RTE_ETH_FILTER_GET to return
PMD-specific rte_flow callbacks wrapped inside struct rte_flow_ops.

This overhead is temporarily necessary in order to keep compatibility with the legacy filtering frame-
work, which should eventually disappear.

• PMD callbacks implement exactly the interface described in Rules management, except for the
port ID argument which has already been converted to a pointer to the underlying struct
rte_eth_dev.

• Public API functions do not process flow rules definitions at all before calling PMD functions
(no basic error checking, no validation whatsoever). They only make sure these callbacks are
non-NULL or return the ENOSYS (function not supported) error.

This interface additionally defines the following helper function:

• rte_flow_ops_get(): get generic flow operations structure from a port.

More will be added over time.

12.9 Device compatibility

No known implementation supports all the described features.

Unsupported features or combinations are not expected to be fully emulated in software by PMDs for
performance reasons. Partially supported features may be completed in software as long as hardware
performs most of the work (such as queue redirection and packet recognition).

12.8. PMD interface 119



Programmer’s Guide, Release 20.08.0

However PMDs are expected to do their best to satisfy application requests by working around hardware
limitations as long as doing so does not affect the behavior of existing flow rules.

The following sections provide a few examples of such cases and describe how PMDs should handle
them, they are based on limitations built into the previous APIs.

12.9.1 Global bit-masks

Each flow rule comes with its own, per-layer bit-masks, while hardware may support only a single,
device-wide bit-mask for a given layer type, so that two IPv4 rules cannot use different bit-masks.

The expected behavior in this case is that PMDs automatically configure global bit-masks according to
the needs of the first flow rule created.

Subsequent rules are allowed only if their bit-masks match those, the EEXIST error code should be
returned otherwise.

12.9.2 Unsupported layer types

Many protocols can be simulated by crafting patterns with the Item: RAW type.

PMDs can rely on this capability to simulate support for protocols with headers not directly recognized
by hardware.

12.9.3 ANY pattern item

This pattern item stands for anything, which can be difficult to translate to something hardware would
understand, particularly if followed by more specific types.

Consider the following pattern:

Table 12.84: Pattern with
ANY as L3

Index Item
0 ETHER
1 ANY num 1
2 TCP
3 END

Knowing that TCP does not make sense with something other than IPv4 and IPv6 as L3, such a pattern
may be translated to two flow rules instead:

Table 12.85: ANY replaced
with IPV4

Index Item
0 ETHER
1 IPV4 (zeroed mask)
2 TCP
3 END

12.9. Device compatibility 120



Programmer’s Guide, Release 20.08.0

Table 12.86: ANY replaced
with IPV6

Index Item
0 ETHER
1 IPV6 (zeroed mask)
2 TCP
3 END

Note that as soon as a ANY rule covers several layers, this approach may yield a large number of hidden
flow rules. It is thus suggested to only support the most common scenarios (anything as L2 and/or L3).

12.9.4 Unsupported actions

• When combined with Action: QUEUE, packet counting (Action: COUNT) and tagging (Action:
MARK or Action: FLAG) may be implemented in software as long as the target queue is used by
a single rule.

• When a single target queue is provided, Action: RSS can also be implemented through Action:
QUEUE.

12.9.5 Flow rules priority

While it would naturally make sense, flow rules cannot be assumed to be processed by hardware in the
same order as their creation for several reasons:

• They may be managed internally as a tree or a hash table instead of a list.

• Removing a flow rule before adding another one can either put the new rule at the end of the list
or reuse a freed entry.

• Duplication may occur when packets are matched by several rules.

For overlapping rules (particularly in order to use Action: PASSTHRU) predictable behavior is only
guaranteed by using different priority levels.

Priority levels are not necessarily implemented in hardware, or may be severely limited (e.g. a single
priority bit).

For these reasons, priority levels may be implemented purely in software by PMDs.

• For devices expecting flow rules to be added in the correct order, PMDs may destroy and re-create
existing rules after adding a new one with a higher priority.

• A configurable number of dummy or empty rules can be created at initialization time to save high
priority slots for later.

• In order to save priority levels, PMDs may evaluate whether rules are likely to collide and adjust
their priority accordingly.

12.9. Device compatibility 121



Programmer’s Guide, Release 20.08.0

12.10 Future evolutions

• A device profile selection function which could be used to force a permanent profile instead of
relying on its automatic configuration based on existing flow rules.

• A method to optimize rte_flow rules with specific pattern items and action types generated on the
fly by PMDs. DPDK should assign negative numbers to these in order to not collide with the
existing types. See Negative types.

• Adding specific egress pattern items and actions as described in Attribute: Traffic direction.

• Optional software fallback when PMDs are unable to handle requested flow rules so applications
do not have to implement their own.

12.10. Future evolutions 122



CHAPTER

THIRTEEN

SWITCH REPRESENTATION WITHIN DPDK APPLICATIONS

• Introduction

• Port Representors

• Basic SR-IOV

• Controlled SR-IOV

– Initialization

– VF Representors

– Traffic Steering

• Flow API (rte_flow)

– Extensions

– Traffic Direction

– Transferring Traffic

* Without Port Representors

* With Port Representors

– Pattern Items And Actions

* PORT Pattern Item

* PORT Action

* PORT_ID Pattern Item

* PORT_ID Action

* PF Pattern Item

* PF Action

* VF Pattern Item

* VF Action

* *_ENCAP actions

* *_DECAP actions

– Actions Order and Repetition

123



Programmer’s Guide, Release 20.08.0

• Switching Examples

– Associating VF 1 with Physical Port 0

– Sharing Broadcasts

– Encapsulating VF 2 Traffic in VXLAN

13.1 Introduction

Network adapters with multiple physical ports and/or SR-IOV capabilities usually support the offload of
traffic steering rules between their virtual functions (VFs), physical functions (PFs) and ports.

Like for standard Ethernet switches, this involves a combination of automatic MAC learning and manual
configuration. For most purposes it is managed by the host system and fully transparent to users and
applications.

On the other hand, applications typically found on hypervisors that process layer 2 (L2) traffic (such as
OVS) need to steer traffic themselves according on their own criteria.

Without a standard software interface to manage traffic steering rules between VFs, PFs and the var-
ious physical ports of a given device, applications cannot take advantage of these offloads; software
processing is mandatory even for traffic which ends up re-injected into the device it originates from.

This document describes how such steering rules can be configured through the DPDK flow API
(rte_flow), with emphasis on the SR-IOV use case (PF/VF steering) using a single physical port for
clarity, however the same logic applies to any number of ports without necessarily involving SR-IOV.

13.2 Port Representors

In many cases, traffic steering rules cannot be determined in advance; applications usually have to pro-
cess a bit of traffic in software before thinking about offloading specific flows to hardware.

Applications therefore need the ability to receive and inject traffic to various device endpoints (other
VFs, PFs or physical ports) before connecting them together. Device drivers must provide means to
hook the “other end” of these endpoints and to refer them when configuring flow rules.

This role is left to so-called “port representors” (also known as “VF representors” in the specific context
of VFs), which are to DPDK what the Ethernet switch device driver model (switchdev) 1 is to Linux,
and which can be thought as a software “patch panel” front-end for applications.

• DPDK port representors are implemented as additional virtual Ethernet device (ethdev) instances,
spawned on an as needed basis through configuration parameters passed to the driver of the un-
derlying device using devargs.

-w pci:dbdf,representor=0
-w pci:dbdf,representor=[0-3]
-w pci:dbdf,representor=[0,5-11]

• As virtual devices, they may be more limited than their physical counterparts, for instance by
exposing only a subset of device configuration callbacks and/or by not necessarily having Rx/Tx
capability.

1 Ethernet switch device driver model (switchdev)

13.1. Introduction 124

https://www.kernel.org/doc/Documentation/networking/switchdev.txt


Programmer’s Guide, Release 20.08.0

• Among other things, they can be used to assign MAC addresses to the resource they represent.

• Applications can tell port representors apart from other physical of virtual port
by checking the dev_flags field within their device information structure for the
RTE_ETH_DEV_REPRESENTOR bit-field.

struct rte_eth_dev_info {
...
uint32_t dev_flags; /**< Device flags */
...

};

• The device or group relationship of ports can be discovered using the switch domain_id field
within the devices switch information structure. By default the switch domain_id of a port will
be RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID to indicate that the port doesn’t support
the concept of a switch domain, but ports which do support the concept will be allocated a unique
switch domain_id, ports within the same switch domain will share the same domain_id. The
switch port_id is used to specify the port_id in terms of the switch, so in the case of SR-IOV
devices the switch port_id would represent the virtual function identifier of the port.

/**
* Ethernet device associated switch information

*/
struct rte_eth_switch_info {

const char *name; /**< switch name */
uint16_t domain_id; /**< switch domain id */
uint16_t port_id; /**< switch port id */

};

13.3 Basic SR-IOV

“Basic” in the sense that it is not managed by applications, which nonetheless expect traffic to flow
between the various endpoints and the outside as if everything was linked by an Ethernet hub.

The following diagram pictures a setup involving a device with one PF, two VFs and one shared physical
port

.-------------. .-------------. .-------------.
| hypervisor | | VM 1 | | VM 2 |
| application | | application | | application |
`--+----------' `----------+--' `--+----------'

| | |
.-----+-----. | |
| port_id 3 | | |
`-----+-----' | |

| | |
.-+--. .---+--. .--+---.
| PF | | VF 1 | | VF 2 |
`-+--' `---+--' `--+---'
| | |
`---------. .-----------------------' |

| | .-------------------------'
| | |

.--+-----+-----+--.
| interconnection |
`--------+--------'

|
.----+-----.
| physical |

13.3. Basic SR-IOV 125



Programmer’s Guide, Release 20.08.0

| port 0 |
`----------'

• A DPDK application running on the hypervisor owns the PF device, which is arbitrarily assigned
port index 3.

• Both VFs are assigned to VMs and used by unknown applications; they may be DPDK-based or
anything else.

• Interconnection is not necessarily done through a true Ethernet switch and may not even exist as a
separate entity. The role of this block is to show that something brings PF, VFs and physical ports
together and enables communication between them, with a number of built-in restrictions.

Subsequent sections in this document describe means for DPDK applications running on the hypervi-
sor to freely assign specific flows between PF, VFs and physical ports based on traffic properties, by
managing this interconnection.

13.4 Controlled SR-IOV

13.4.1 Initialization

When a DPDK application gets assigned a PF device and is deliberately not started in basic SR-IOV
mode, any traffic coming from physical ports is received by PF according to default rules, while VFs
remain isolated.

.-------------. .-------------. .-------------.
| hypervisor | | VM 1 | | VM 2 |
| application | | application | | application |
`--+----------' `----------+--' `--+----------'

| | |
.-----+-----. | |
| port_id 3 | | |
`-----+-----' | |

| | |
.-+--. .---+--. .--+---.
| PF | | VF 1 | | VF 2 |
`-+--' `------' `------'

|
`-----.

|
.--+----------------------.
| managed interconnection |
`------------+------------'

|
.----+-----.
| physical |
| port 0 |
`----------'

In this mode, interconnection must be configured by the application to enable VF communication, for
instance by explicitly directing traffic with a given destination MAC address to VF 1 and allowing that
with the same source MAC address to come out of it.

For this to work, hypervisor applications need a way to refer to either VF 1 or VF 2 in addition to the
PF. This is addressed by VF representors.

13.4. Controlled SR-IOV 126



Programmer’s Guide, Release 20.08.0

13.4.2 VF Representors

VF representors are virtual but standard DPDK network devices (albeit with limited capabilities) created
by PMDs when managing a PF device.

Since they represent VF instances used by other applications, configuring them (e.g. assigning a MAC
address or setting up promiscuous mode) affects interconnection accordingly. If supported, they may
also be used as two-way communication ports with VFs (assuming switchdev topology)

.-------------. .-------------. .-------------.
| hypervisor | | VM 1 | | VM 2 |
| application | | application | | application |
`--+---+---+--' `----------+--' `--+----------'

| | | | |
| | `-------------------. | |
| `---------. | | |
| | | | |

.-----+-----. .-----+-----. .-----+-----. | |
| port_id 3 | | port_id 4 | | port_id 5 | | |
`-----+-----' `-----+-----' `-----+-----' | |

| | | | |
.-+--. .-----+-----. .-----+-----. .---+--. .--+---.
| PF | | VF 1 rep. | | VF 2 rep. | | VF 1 | | VF 2 |
`-+--' `-----+-----' `-----+-----' `---+--' `--+---'

| | | | |
| | .---------' | |
`-----. | | .-----------------' |

| | | | .---------------------'
| | | | |

.--+-------+---+---+---+--.
| managed interconnection |
`------------+------------'

|
.----+-----.
| physical |
| port 0 |
`----------'

• VF representors are assigned arbitrary port indices 4 and 5 in the hypervisor application and are
respectively associated with VF 1 and VF 2.

• They can’t be dissociated; even if VF 1 and VF 2 were not connected, representors could still be
used for configuration.

• In this context, port index 3 can be thought as a representor for physical port 0.

As previously described, the “interconnection” block represents a logical concept. Interconnection oc-
curs when hardware configuration enables traffic flows from one place to another (e.g. physical port 0
to VF 1) according to some criteria.

This is discussed in more detail in traffic steering.

13.4.3 Traffic Steering

In the following diagram, each meaningful traffic origin or endpoint as seen by the hypervisor application
is tagged with a unique letter from A to F.

.-------------. .-------------. .-------------.
| hypervisor | | VM 1 | | VM 2 |
| application | | application | | application |
`--+---+---+--' `----------+--' `--+----------'

13.4. Controlled SR-IOV 127



Programmer’s Guide, Release 20.08.0

| | | | |
| | `-------------------. | |
| `---------. | | |
| | | | |

.----(A)----. .----(B)----. .----(C)----. | |
| port_id 3 | | port_id 4 | | port_id 5 | | |
`-----+-----' `-----+-----' `-----+-----' | |

| | | | |
.-+--. .-----+-----. .-----+-----. .---+--. .--+---.
| PF | | VF 1 rep. | | VF 2 rep. | | VF 1 | | VF 2 |
`-+--' `-----+-----' `-----+-----' `--(D)-' `-(E)--'

| | | | |
| | .---------' | |
`-----. | | .-----------------' |

| | | | .---------------------'
| | | | |

.--+-------+---+---+---+--.
| managed interconnection |
`------------+------------'

|
.---(F)----.
| physical |
| port 0 |
`----------'

• A: PF device.

• B: port representor for VF 1.

• C: port representor for VF 2.

• D: VF 1 proper.

• E: VF 2 proper.

• F: physical port.

Although uncommon, some devices do not enforce a one to one mapping between PF and physical ports.
For instance, by default all ports of mlx4 adapters are available to all their PF/VF instances, in which
case additional ports appear next to F in the above diagram.

Assuming no interconnection is provided by default in this mode, setting up a basic SR-IOV configura-
tion involving physical port 0 could be broken down as:

PF:

• A to F: let everything through.

• F to A: PF MAC as destination.

VF 1:

• A to D, E to D and F to D: VF 1 MAC as destination.

• D to A: VF 1 MAC as source and PF MAC as destination.

• D to E: VF 1 MAC as source and VF 2 MAC as destination.

• D to F: VF 1 MAC as source.

VF 2:

• A to E, D to E and F to E: VF 2 MAC as destination.

• E to A: VF 2 MAC as source and PF MAC as destination.

13.4. Controlled SR-IOV 128



Programmer’s Guide, Release 20.08.0

• E to D: VF 2 MAC as source and VF 1 MAC as destination.

• E to F: VF 2 MAC as source.

Devices may additionally support advanced matching criteria such as IPv4/IPv6 addresses or TCP/UDP
ports.

The combination of matching criteria with target endpoints fits well with rte_flow 6, which expresses
flow rules as combinations of patterns and actions.

Enhancing rte_flow with the ability to make flow rules match and target these endpoints provides a
standard interface to manage their interconnection without introducing new concepts and whole new
API to implement them. This is described in flow API (rte_flow).

13.5 Flow API (rte_flow)

13.5.1 Extensions

Compared to creating a brand new dedicated interface, rte_flow was deemed flexible enough to manage
representor traffic only with minor extensions:

• Using physical ports, PF, VF or port representors as targets.

• Affecting traffic that is not necessarily addressed to the DPDK port ID a flow rule is associated
with (e.g. forcing VF traffic redirection to PF).

For advanced uses:

• Rule-based packet counters.

• The ability to combine several identical actions for traffic duplication (e.g. VF representor in
addition to a physical port).

• Dedicated actions for traffic encapsulation / decapsulation before reaching an endpoint.

13.5.2 Traffic Direction

From an application standpoint, “ingress” and “egress” flow rule attributes apply to the DPDK port ID
they are associated with. They select a traffic direction for matching patterns, but have no impact on
actions.

When matching traffic coming from or going to a different place than the immediate port ID a flow rule
is associated with, these attributes keep their meaning while applying to the chosen origin, as highlighted
by the following diagram

.-------------. .-------------. .-------------.
| hypervisor | | VM 1 | | VM 2 |
| application | | application | | application |
`--+---+---+--' `----------+--' `--+----------'

| | | | |
| | `-------------------. | |
| `---------. | | |
| ^ | ^ | ^ | |
| | ingress | | ingress | | ingress | |
| | egress | | egress | | egress | |
| v | v | v | |

6 Generic flow API (rte_flow)

13.5. Flow API (rte_flow) 129



Programmer’s Guide, Release 20.08.0

.----(A)----. .----(B)----. .----(C)----. | |
| port_id 3 | | port_id 4 | | port_id 5 | | |
`-----+-----' `-----+-----' `-----+-----' | |

| | | | |
.-+--. .-----+-----. .-----+-----. .---+--. .--+---.
| PF | | VF 1 rep. | | VF 2 rep. | | VF 1 | | VF 2 |
`-+--' `-----+-----' `-----+-----' `--(D)-' `-(E)--'

| | | ^ | | ^
| | | egress | | | | egress
| | | ingress | | | | ingress
| | .---------' v | | v
`-----. | | .-----------------' |

| | | | .---------------------'
| | | | |

.--+-------+---+---+---+--.
| managed interconnection |
`------------+------------'

^ |
ingress | |
egress | |

v |
.---(F)----.
| physical |
| port 0 |
`----------'

Ingress and egress are defined as relative to the application creating the flow rule.

For instance, matching traffic sent by VM 2 would be done through an ingress flow rule on VF 2 (E).
Likewise for incoming traffic on physical port (F). This also applies to C and A respectively.

13.5.3 Transferring Traffic

Without Port Representors

Traffic direction describes how an application could match traffic coming from or going to a specific
place reachable from a DPDK port ID. This makes sense when the traffic in question is normally seen
(i.e. sent or received) by the application creating the flow rule (e.g. as in “redirect all traffic coming
from VF 1 to local queue 6”).

However this does not force such traffic to take a specific route. Creating a flow rule on A matching
traffic coming from D is only meaningful if it can be received by A in the first place, otherwise doing so
simply has no effect.

A new flow rule attribute named “transfer” is necessary for that. Combining it with “ingress” or “egress”
and a specific origin requests a flow rule to be applied at the lowest level

ingress only : ingress + transfer
:

.-------------. .-------------. : .-------------. .-------------.
| hypervisor | | VM 1 | : | hypervisor | | VM 1 |
| application | | application | : | application | | application |
`------+------' `--+----------' : `------+------' `--+----------'

| | | traffic : | | | traffic
.----(A)----. | v : .----(A)----. | v
| port_id 3 | | : | port_id 3 | |
`-----+-----' | : `-----+-----' |

| | : | ^ |
| | : | | traffic |

.-+--. .---+--. : .-+--. .---+--.

13.5. Flow API (rte_flow) 130



Programmer’s Guide, Release 20.08.0

| PF | | VF 1 | : | PF | | VF 1 |
`-+--' `--(D)-' : `-+--' `--(D)-'

| | | traffic : | ^ | | traffic
| | v : | | traffic | v

.--+-----------+--. : .--+-----------+--.
| interconnection | : | interconnection |
`--------+--------' : `--------+--------'

| | traffic : |
| v : |

.---(F)----. : .---(F)----.
| physical | : | physical |
| port 0 | : | port 0 |
`----------' : `----------'

With “ingress” only, traffic is matched on A thus still goes to physical port F by default

testpmd> flow create 3 ingress pattern vf id is 1 / end
actions queue index 6 / end

With “ingress + transfer”, traffic is matched on D and is therefore successfully assigned to queue 6 on A
testpmd> flow create 3 ingress transfer pattern vf id is 1 / end

actions queue index 6 / end

With Port Representors

When port representors exist, implicit flow rules with the “transfer” attribute (described in without port
representors) are be assumed to exist between them and their represented resources. These may be
immutable.

In this case, traffic is received by default through the representor and neither the “transfer” attribute nor
traffic origin in flow rule patterns are necessary. They simply have to be created on the representor port
directly and may target a different representor as described in PORT_ID action.

Implicit traffic flow with port representor

.-------------. .-------------.
| hypervisor | | VM 1 |
| application | | application |
`--+-------+--' `----------+--'

| | ^ | | traffic
| | | traffic | v
| `-----. |
| | |

.----(A)----. .----(B)----. |
| port_id 3 | | port_id 4 | |
`-----+-----' `-----+-----' |

| | |
.-+--. .-----+-----. .---+--.
| PF | | VF 1 rep. | | VF 1 |
`-+--' `-----+-----' `--(D)-'

| | |
.--|-------------|-----------|--.
| | | | |
| | `-----------' |
| | <-- traffic |
`--|----------------------------'

|
.---(F)----.
| physical |
| port 0 |
`----------'

13.5. Flow API (rte_flow) 131



Programmer’s Guide, Release 20.08.0

13.5.4 Pattern Items And Actions

PORT Pattern Item

Matches traffic originating from (ingress) or going to (egress) a physical port of the underlying device.

Using this pattern item without specifying a port index matches the physical port associated with the
current DPDK port ID by default. As described in traffic steering, specifying it should be rarely needed.

• Matches F in traffic steering.

PORT Action

Directs matching traffic to a given physical port index.

• Targets F in traffic steering.

PORT_ID Pattern Item

Matches traffic originating from (ingress) or going to (egress) a given DPDK port ID.

Normally only supported if the port ID in question is known by the underlying PMD and related to the
device the flow rule is created against.

This must not be confused with the PORT pattern item which refers to the physical port of a device.
PORT_ID refers to a struct rte_eth_dev object on the application side (also known as “port
representor” depending on the kind of underlying device).

• Matches A, B or C in traffic steering.

PORT_ID Action

Directs matching traffic to a given DPDK port ID.

Same restrictions as PORT_ID pattern item.

• Targets A, B or C in traffic steering.

PF Pattern Item

Matches traffic originating from (ingress) or going to (egress) the physical function of the current device.

If supported, should work even if the physical function is not managed by the application and thus not
associated with a DPDK port ID. Its behavior is otherwise similar to PORT_ID pattern item using PF
port ID.

• Matches A in traffic steering.

PF Action

Directs matching traffic to the physical function of the current device.

Same restrictions as PF pattern item.

13.5. Flow API (rte_flow) 132



Programmer’s Guide, Release 20.08.0

• Targets A in traffic steering.

VF Pattern Item

Matches traffic originating from (ingress) or going to (egress) a given virtual function of the current
device.

If supported, should work even if the virtual function is not managed by the application and thus not
associated with a DPDK port ID. Its behavior is otherwise similar to PORT_ID pattern item using VF
port ID.

Note this pattern item does not match VF representors traffic which, as separate entities, should be
addressed through their own port IDs.

• Matches D or E in traffic steering.

VF Action

Directs matching traffic to a given virtual function of the current device.

Same restrictions as VF pattern item.

• Targets D or E in traffic steering.

*_ENCAP actions

These actions are named according to the protocol they encapsulate traffic with (e.g. VXLAN_ENCAP)
and using specific parameters (e.g. VNI for VXLAN).

While they modify traffic and can be used multiple times (order matters), unlike PORT_ID action and
friends, they have no impact on steering.

As described in actions order and repetition this means they are useless if used alone in an action list,
the resulting traffic gets dropped unless combined with either PASSTHRU or other endpoint-targeting
actions.

*_DECAP actions

They perform the reverse of *_ENCAP actions by popping protocol headers from traffic instead of
pushing them. They can be used multiple times as well.

Note that using these actions on non-matching traffic results in undefined behavior. It is recommended to
match the protocol headers to decapsulate on the pattern side of a flow rule in order to use these actions
or otherwise make sure only matching traffic goes through.

13.5.5 Actions Order and Repetition

Flow rules are currently restricted to at most a single action of each supported type, performed in an
unpredictable order (or all at once). To repeat actions in a predictable fashion, applications have to make
rules pass-through and use priority levels.

13.5. Flow API (rte_flow) 133



Programmer’s Guide, Release 20.08.0

It’s now clear that PMD support for chaining multiple non-terminating flow rules of varying priority
levels is prohibitively difficult to implement compared to simply allowing multiple identical actions
performed in a defined order by a single flow rule.

• This change is required to support protocol encapsulation offloads and the ability to perform them
multiple times (e.g. VLAN then VXLAN).

• It makes the DUP action redundant since multiple QUEUE actions can be combined for duplication.

• The (non-)terminating property of actions must be discarded. Instead, flow rules themselves must
be considered terminating by default (i.e. dropping traffic if there is no specific target) unless a
PASSTHRU action is also specified.

13.6 Switching Examples

This section provides practical examples based on the established testpmd flow command syntax 2, in
the context described in traffic steering

.-------------. .-------------. .-------------.
| hypervisor | | VM 1 | | VM 2 |
| application | | application | | application |
`--+---+---+--' `----------+--' `--+----------'

| | | | |
| | `-------------------. | |
| `---------. | | |
| | | | |

.----(A)----. .----(B)----. .----(C)----. | |
| port_id 3 | | port_id 4 | | port_id 5 | | |
`-----+-----' `-----+-----' `-----+-----' | |

| | | | |
.-+--. .-----+-----. .-----+-----. .---+--. .--+---.
| PF | | VF 1 rep. | | VF 2 rep. | | VF 1 | | VF 2 |
`-+--' `-----+-----' `-----+-----' `--(D)-' `-(E)--'

| | | | |
| | .---------' | |
`-----. | | .-----------------' |

| | | | .---------------------'
| | | | |

.--|-------|---|---|---|--.
| | | `---|---' |
| | `-------' |
| `---------. |
`------------|------------'

|
.---(F)----.
| physical |
| port 0 |
`----------'

By default, PF (A) can communicate with the physical port it is associated with (F), while VF 1 (D)
and VF 2 (E) are isolated and restricted to communicate with the hypervisor application through their
respective representors (B and C) if supported.

Examples in subsequent sections apply to hypervisor applications only and are based on port represen-
tors A, B and C.

2 Flow syntax

13.6. Switching Examples 134



Programmer’s Guide, Release 20.08.0

13.6.1 Associating VF 1 with Physical Port 0

Assign all port traffic (F) to VF 1 (D) indiscriminately through their representors

flow create 3 ingress pattern / end actions port_id id 4 / end
flow create 4 ingress pattern / end actions port_id id 3 / end

More practical example with MAC address restrictions

flow create 3 ingress
pattern eth dst is {VF 1 MAC} / end
actions port_id id 4 / end

flow create 4 ingress
pattern eth src is {VF 1 MAC} / end
actions port_id id 3 / end

13.6.2 Sharing Broadcasts

From outside to PF and VFs

flow create 3 ingress
pattern eth dst is ff:ff:ff:ff:ff:ff / end
actions port_id id 3 / port_id id 4 / port_id id 5 / end

Note port_id id 3 is necessary otherwise only VFs would receive matching traffic.

From PF to outside and VFs

flow create 3 egress
pattern eth dst is ff:ff:ff:ff:ff:ff / end
actions port / port_id id 4 / port_id id 5 / end

From VFs to outside and PF

flow create 4 ingress
pattern eth dst is ff:ff:ff:ff:ff:ff src is {VF 1 MAC} / end
actions port_id id 3 / port_id id 5 / end

flow create 5 ingress
pattern eth dst is ff:ff:ff:ff:ff:ff src is {VF 2 MAC} / end
actions port_id id 4 / port_id id 4 / end

Similar 33:33:* rules based on known MAC addresses should be added for IPv6 traffic.

13.6.3 Encapsulating VF 2 Traffic in VXLAN

Assuming pass-through flow rules are supported

flow create 5 ingress
pattern eth / end
actions vxlan_encap vni 42 / passthru / end

flow create 5 egress
pattern vxlan vni is 42 / end
actions vxlan_decap / passthru / end

Here passthru is needed since as described in actions order and repetition, flow rules are otherwise
terminating; if supported, a rule without a target endpoint will drop traffic.

Without pass-through support, ingress encapsulation on the destination endpoint might not be supported
and action list must provide one

13.6. Switching Examples 135



Programmer’s Guide, Release 20.08.0

flow create 5 ingress
pattern eth src is {VF 2 MAC} / end
actions vxlan_encap vni 42 / port_id id 3 / end

flow create 3 ingress
pattern vxlan vni is 42 / end
actions vxlan_decap / port_id id 5 / end

13.6. Switching Examples 136



CHAPTER

FOURTEEN

TRAFFIC METERING AND POLICING API

14.1 Overview

This is the generic API for the Quality of Service (QoS) Traffic Metering and Policing (MTR) of Ethernet
devices. This API is agnostic of the underlying HW, SW or mixed HW-SW implementation.

The main features are:

• Part of DPDK rte_ethdev API

• Capability query API

• Metering algorithms: RFC 2697 Single Rate Three Color Marker (srTCM), RFC 2698 and RFC
4115 Two Rate Three Color Marker (trTCM)

• Policer actions (per meter output color): recolor, drop

• Statistics (per policer output color)

14.2 Configuration steps

The metering and policing stage typically sits on top of flow classification, which is why the MTR
objects are enabled through a special “meter” action.

The MTR objects are created and updated in their own name space (rte_mtr) within the
librte_ethdev library. Whether an MTR object is private to a flow or potentially shared by several
flows has to be specified at its creation time.

Once successfully created, an MTR object is hooked into the RX processing path of the Ethernet device
by linking it to one or several flows through the dedicated “meter” flow action. One or several “meter”
actions can be registered for the same flow. An MTR object can only be destroyed if there are no flows
using it.

14.3 Run-time processing

Traffic metering determines the color for the current packet (green, yellow, red) based on the previous
history for this flow as maintained by the MTR object. The policer can do nothing, override the color
the packet or drop the packet. Statistics counters are maintained for MTR object, as configured.

The processing done for each input packet hitting an MTR object is:

137



Programmer’s Guide, Release 20.08.0

• Traffic metering: The packet is assigned a color (the meter output color) based on the previous
traffic history reflected in the current state of the MTR object, according to the specific traffic
metering algorithm. The traffic metering algorithm can typically work in color aware mode, in
which case the input packet already has an initial color (the input color), or in color blind mode,
which is equivalent to considering all input packets initially colored as green.

• Policing: There is a separate policer action configured for each meter output color, which can:

– Drop the packet.

– Keep the same packet color: the policer output color matches the meter output color (essen-
tially a no-op action).

– Recolor the packet: the policer output color is set to a different color than the meter output
color. The policer output color is the output color of the packet, which is set in the packet
meta-data (i.e. struct rte_mbuf::sched::color).

• Statistics: The set of counters maintained for each MTR object is configurable and subject to the
implementation support. This set includes the number of packets and bytes dropped or passed for
each output color.

14.3. Run-time processing 138



CHAPTER

FIFTEEN

TRAFFIC MANAGEMENT API

15.1 Overview

This is the generic API for the Quality of Service (QoS) Traffic Management of Ethernet devices, which
includes the following main features: hierarchical scheduling, traffic shaping, congestion management,
packet marking. This API is agnostic of the underlying HW, SW or mixed HW-SW implementation.

Main features:

• Part of DPDK rte_ethdev API

• Capability query API per port, per hierarchy level and per hierarchy node

• Scheduling algorithms: Strict Priority (SP), Weighed Fair Queuing (WFQ)

• Traffic shaping: single/dual rate, private (per node) and shared (by multiple nodes) shapers

• Congestion management for hierarchy leaf nodes: algorithms of tail drop, head drop, WRED,
private (per node) and shared (by multiple nodes) WRED contexts

• Packet marking: IEEE 802.1q (VLAN DEI), IETF RFC 3168 (IPv4/IPv6 ECN for TCP and
SCTP), IETF RFC 2597 (IPv4 / IPv6 DSCP)

15.2 Capability API

The aim of these APIs is to advertise the capability information (i.e critical parameter values) that the
TM implementation (HW/SW) is able to support for the application. The APIs supports the information
disclosure at the TM level, at any hierarchical level of the TM and at any node level of the specific hierar-
chical level. Such information helps towards rapid understanding of whether a specific implementation
does meet the needs to the user application.

At the TM level, users can get high level idea with the help of various parameters such as maximum
number of nodes, maximum number of hierarchical levels, maximum number of shapers, maximum
number of private shapers, type of scheduling algorithm (Strict Priority, Weighted Fair Queuing , etc.),
etc., supported by the implementation.

Likewise, users can query the capability of the TM at the hierarchical level to have more granular knowl-
edge about the specific level. The various parameters such as maximum number of nodes at the level,
maximum number of leaf/non-leaf nodes at the level, type of the shaper(dual rate, single rate) supported
at the level if node is non-leaf type etc., are exposed as a result of hierarchical level capability query.

139



Programmer’s Guide, Release 20.08.0

Finally, the node level capability API offers knowledge about the capability supported by the node at
any specific level. The information whether the support is available for private shaper, dual rate shaper,
maximum and minimum shaper rate, etc. is exposed by node level capability API.

15.3 Scheduling Algorithms

The fundamental scheduling algorithms that are supported are Strict Priority (SP) and Weighted Fair
Queuing (WFQ). The SP and WFQ algorithms are supported at the level of each node of the scheduling
hierarchy, regardless of the node level/position in the tree. The SP algorithm is used to schedule between
sibling nodes with different priority, while WFQ is used to schedule between groups of siblings that have
the same priority.

Algorithms such as Weighed Round Robin (WRR), byte-level WRR, Deficit WRR (DWRR), etc are con-
sidered approximations of the ideal WFQ and are therefore assimilated to WFQ, although an associated
implementation-dependent accuracy, performance and resource usage trade-off might exist.

15.4 Traffic Shaping

The TM API provides support for single rate and dual rate shapers (rate limiters) for the hierarchy nodes,
subject to the specific implementation support being available.

Each hierarchy node has zero or one private shaper (only one node using it) and/or zero, one or several
shared shapers (multiple nodes use the same shaper instance). A private shaper is used to perform traffic
shaping for a single node, while a shared shaper is used to perform traffic shaping for a group of nodes.

The configuration of private and shared shapers is done through the definition of shaper profiles. Any
shaper profile (single rate or dual rate shaper) can be used by one or several shaper instances (either
private or shared).

Single rate shapers use a single token bucket. Therefore, single rate shaper is configured by setting the
rate of the committed bucket to zero, which effectively disables this bucket. The peak bucket is used to
limit the rate and the burst size for the single rate shaper. Dual rate shapers use both the committed and
the peak token buckets. The rate of the peak bucket has to be bigger than zero, as well as greater than or
equal to the rate of the committed bucket.

15.5 Congestion Management

Congestion management is used to control the admission of packets into a packet queue or group of
packet queues on congestion. The congestion management algorithms that are supported are: Tail Drop,
Head Drop and Weighted Random Early Detection (WRED). They are made available for every leaf
node in the hierarchy, subject to the specific implementation supporting them. On request of writing a
new packet into the current queue while the queue is full, the Tail Drop algorithm drops the new packet
while leaving the queue unmodified, as opposed to the Head Drop* algorithm, which drops the packet
at the head of the queue (the oldest packet waiting in the queue) and admits the new packet at the tail of
the queue.

The Random Early Detection (RED) algorithm works by proactively dropping more and more input
packets as the queue occupancy builds up. When the queue is full or almost full, RED effectively works
as Tail Drop. The Weighted RED (WRED) algorithm uses a separate set of RED thresholds for each
packet color and uses separate set of RED thresholds for each packet color.

15.3. Scheduling Algorithms 140



Programmer’s Guide, Release 20.08.0

Each hierarchy leaf node with WRED enabled as its congestion management mode has zero or one pri-
vate WRED context (only one leaf node using it) and/or zero, one or several shared WRED contexts
(multiple leaf nodes use the same WRED context). A private WRED context is used to perform conges-
tion management for a single leaf node, while a shared WRED context is used to perform congestion
management for a group of leaf nodes.

The configuration of WRED private and shared contexts is done through the definition of WRED pro-
files. Any WRED profile can be used by one or several WRED contexts (either private or shared).

15.6 Packet Marking

The TM APIs have been provided to support various types of packet marking such as VLAN DEI packet
marking (IEEE 802.1Q), IPv4/IPv6 ECN marking of TCP and SCTP packets (IETF RFC 3168) and
IPv4/IPv6 DSCP packet marking (IETF RFC 2597). All VLAN frames of a given color get their DEI
bit set if marking is enabled for this color. In case, when marking for a given color is not enabled, the
DEI bit is left as is (either set or not).

All IPv4/IPv6 packets of a given color with ECN set to 2’b01 or 2’b10 carrying TCP or SCTP have their
ECN set to 2’b11 if the marking feature is enabled for the current color, otherwise the ECN field is left
as is.

All IPv4/IPv6 packets have their color marked into DSCP bits 3 and 4 as follows: green mapped to Low
Drop Precedence (2’b01), yellow to Medium (2’b10) and red to High (2’b11). Marking needs to be
explicitly enabled for each color; when not enabled for a given color, the DSCP field of all packets with
that color is left as is.

15.7 Steps to Setup the Hierarchy

The TM hierarchical tree consists of leaf nodes and non-leaf nodes. Each leaf node sits on top of a
scheduling queue of the current Ethernet port. Therefore, the leaf nodes have predefined IDs in the
range of 0... (N-1), where N is the number of scheduling queues of the current Ethernet port. The non-
leaf nodes have their IDs generated by the application outside of the above range, which is reserved for
leaf nodes.

Each non-leaf node has multiple inputs (its children nodes) and single output (which is input to its parent
node). It arbitrates its inputs using Strict Priority (SP) and Weighted Fair Queuing (WFQ) algorithms to
schedule input packets to its output while observing its shaping (rate limiting) constraints.

The children nodes with different priorities are scheduled using the SP algorithm based on their priority,
with 0 as the highest priority. Children with the same priority are scheduled using the WFQ algorithm
according to their weights. The WFQ weight of a given child node is relative to the sum of the weights
of all its sibling nodes that have the same priority, with 1 as the lowest weight. For each SP priority, the
WFQ weight mode can be set as either byte-based or packet-based.

15.7.1 Initial Hierarchy Specification

The hierarchy is specified by incrementally adding nodes to build up the scheduling tree. The first node
that is added to the hierarchy becomes the root node and all the nodes that are subsequently added
have to be added as descendants of the root node. The parent of the root node has to be specified as
RTE_TM_NODE_ID_NULL and there can only be one node with this parent ID (i.e. the root node).

15.6. Packet Marking 141



Programmer’s Guide, Release 20.08.0

The unique ID that is assigned to each node when the node is created is further used to update the node
configuration or to connect children nodes to it.

During this phase, some limited checks on the hierarchy specification can be conducted, usually limited
in scope to the current node, its parent node and its sibling nodes. At this time, since the hierarchy is not
fully defined, there is typically no real action performed by the underlying implementation.

15.7.2 Hierarchy Commit

The hierarchy commit API is called during the port initialization phase (before the Ethernet port is
started) to freeze the start-up hierarchy. This function typically performs the following steps:

• It validates the start-up hierarchy that was previously defined for the current port through succes-
sive node add API invocations.

• Assuming successful validation, it performs all the necessary implementation specific operations
to install the specified hierarchy on the current port, with immediate effect once the port is started.

This function fails when the currently configured hierarchy is not supported by the Ethernet port, in
which case the user can abort or try out another hierarchy configuration (e.g. a hierarchy with less leaf
nodes), which can be built from scratch or by modifying the existing hierarchy configuration. Note that
this function can still fail due to other causes (e.g. not enough memory available in the system, etc.),
even though the specified hierarchy is supported in principle by the current port.

15.7.3 Run-Time Hierarchy Updates

The TM API provides support for on-the-fly changes to the scheduling hierarchy, thus operations such as
node add/delete, node suspend/resume, parent node update, etc., can be invoked after the Ethernet port
has been started, subject to the specific implementation supporting them. The set of dynamic updates
supported by the implementation is advertised through the port capability set.

15.7. Steps to Setup the Hierarchy 142



CHAPTER

SIXTEEN

WIRELESS BASEBAND DEVICE LIBRARY

The Wireless Baseband library provides a common programming framework that abstracts HW ac-
celerators based on FPGA and/or Fixed Function Accelerators that assist with 3GPP Physical Layer
processing. Furthermore, it decouples the application from the compute-intensive wireless functions by
abstracting their optimized libraries to appear as virtual bbdev devices.

The functional scope of the BBDEV library are those functions in relation to the 3GPP Layer 1 signal
processing (channel coding, modulation, ...).

The framework currently only supports Turbo Code FEC function.

16.1 Design Principles

The Wireless Baseband library follows the same ideology of DPDK’s Ethernet Device and Crypto De-
vice frameworks. Wireless Baseband provides a generic acceleration abstraction framework which sup-
ports both physical (hardware) and virtual (software) wireless acceleration functions.

16.2 Device Management

16.2.1 Device Creation

Physical bbdev devices are discovered during the PCI probe/enumeration of the EAL function which is
executed at DPDK initialization, based on their PCI device identifier, each unique PCI BDF (bus/bridge,
device, function).

Virtual devices can be created by two mechanisms, either using the EAL command line options or from
within the application using an EAL API directly.

From the command line using the –vdev EAL option

--vdev 'baseband_turbo_sw,max_nb_queues=8,socket_id=0'

Or using the rte_vdev_init API within the application code.

rte_vdev_init("baseband_turbo_sw", "max_nb_queues=2,socket_id=0")

All virtual bbdev devices support the following initialization parameters:

• max_nb_queues - maximum number of queues supported by the device.

• socket_id - socket on which to allocate the device resources on.

143



Programmer’s Guide, Release 20.08.0

16.2.2 Device Identification

Each device, whether virtual or physical is uniquely designated by two identifiers:

• A unique device index used to designate the bbdev device in all functions exported by the bbdev
API.

• A device name used to designate the bbdev device in console messages, for administration or
debugging purposes. For ease of use, the port name includes the port index.

16.2.3 Device Configuration

From the application point of view, each instance of a bbdev device consists of one or more queues
identified by queue IDs. While different devices may have different capabilities (e.g. support different
operation types), all queues on a device support identical configuration possibilities. A queue is con-
figured for only one type of operation and is configured at initialization time. When an operation is
enqueued to a specific queue ID, the result is dequeued from the same queue ID.

Configuration of a device has two different levels: configuration that applies to the whole device, and
configuration that applies to a single queue.

Device configuration is applied with rte_bbdev_setup_queues(dev_id,num_queues,socket_id)
and queue configuration is applied with rte_bbdev_queue_configure(dev_id,queue_id,conf).
Note that, although all queues on a device support same capabilities, they can be configured differ-
ently and will then behave differently. Devices supporting interrupts can enable them by using
rte_bbdev_intr_enable(dev_id).

The configuration of each bbdev device includes the following operations:

• Allocation of resources, including hardware resources if a physical device.

• Resetting the device into a well-known default state.

• Initialization of statistics counters.

The rte_bbdev_setup_queues API is used to setup queues for a bbdev device.

int rte_bbdev_setup_queues(uint16_t dev_id, uint16_t num_queues,
int socket_id);

• num_queues argument identifies the total number of queues to setup for this device.

• socket_id specifies which socket will be used to allocate the memory.

The rte_bbdev_intr_enable API is used to enable interrupts for a bbdev device, if supported by
the driver. Should be called before starting the device.

int rte_bbdev_intr_enable(uint16_t dev_id);

16.2.4 Queues Configuration

Each bbdev devices queue is individually configured through the
rte_bbdev_queue_configure() API. Each queue resources may be allocated on a speci-
fied socket.

struct rte_bbdev_queue_conf {
int socket;
uint32_t queue_size;
uint8_t priority;

16.2. Device Management 144



Programmer’s Guide, Release 20.08.0

bool deferred_start;
enum rte_bbdev_op_type op_type;

};

16.2.5 Device & Queues Management

After initialization, devices are in a stopped state, so must be started by the application. If an application
is finished using a device it can close the device. Once closed, it cannot be restarted.

int rte_bbdev_start(uint16_t dev_id)
int rte_bbdev_stop(uint16_t dev_id)
int rte_bbdev_close(uint16_t dev_id)
int rte_bbdev_queue_start(uint16_t dev_id, uint16_t queue_id)
int rte_bbdev_queue_stop(uint16_t dev_id, uint16_t queue_id)

By default, all queues are started when the device is started, but they can be stopped individually.

int rte_bbdev_queue_start(uint16_t dev_id, uint16_t queue_id)
int rte_bbdev_queue_stop(uint16_t dev_id, uint16_t queue_id)

16.2.6 Logical Cores, Memory and Queues Relationships

The bbdev poll mode device driver library supports NUMA architecture, in which a processor’s logical
cores and interfaces utilize it’s local memory. Therefore with baseband operations, the mbuf being
operated on should be allocated from memory pools created in the local memory. The buffers should,
if possible, remain on the local processor to obtain the best performance results and buffer descriptors
should be populated with mbufs allocated from a mempool allocated from local memory.

The run-to-completion model also performs better, especially in the case of virtual bbdev devices, if the
baseband operation and data buffers are in local memory instead of a remote processor’s memory. This
is also true for the pipe-line model provided all logical cores used are located on the same processor.

Multiple logical cores should never share the same queue for enqueuing operations or dequeuing op-
erations on the same bbdev device since this would require global locks and hinder performance. It is
however possible to use a different logical core to dequeue an operation on a queue pair from the logical
core which it was enqueued on. This means that a baseband burst enqueue/dequeue APIs are a logical
place to transition from one logical core to another in a packet processing pipeline.

16.3 Device Operation Capabilities

Capabilities (in terms of operations supported, max number of queues, etc.) identify what a bbdev is
capable of performing that differs from one device to another. For the full scope of the bbdev capability
see the definition of the structure in the DPDK API Reference.

struct rte_bbdev_op_cap;

A device reports its capabilities when registering itself in the bbdev framework. With the aid of this
capabilities mechanism, an application can query devices to discover which operations within the 3GPP
physical layer they are capable of performing. Below is an example of the capabilities for a PMD it
supports in relation to Turbo Encoding and Decoding operations.

static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
{

.type = RTE_BBDEV_OP_TURBO_DEC,

.cap.turbo_dec = {

16.3. Device Operation Capabilities 145



Programmer’s Guide, Release 20.08.0

.capability_flags =
RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
RTE_BBDEV_TURBO_CRC_TYPE_24B |
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
RTE_BBDEV_TURBO_EARLY_TERMINATION,

.max_llr_modulus = 16,

.num_buffers_src = RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,

.num_buffers_hard_out =
RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,

.num_buffers_soft_out = 0,
}

},
{

.type = RTE_BBDEV_OP_TURBO_ENC,

.cap.turbo_enc = {
.capability_flags =

RTE_BBDEV_TURBO_CRC_24B_ATTACH |
RTE_BBDEV_TURBO_CRC_24A_ATTACH |
RTE_BBDEV_TURBO_RATE_MATCH |
RTE_BBDEV_TURBO_RV_INDEX_BYPASS,

.num_buffers_src = RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,

.num_buffers_dst = RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
}

},
RTE_BBDEV_END_OF_CAPABILITIES_LIST()

};

16.3.1 Capabilities Discovery

Discovering the features and capabilities of a bbdev device poll mode driver is achieved through the
rte_bbdev_info_get() function.

int rte_bbdev_info_get(uint16_t dev_id, struct rte_bbdev_info *dev_info)

This allows the user to query a specific bbdev PMD and get all the device capabilities. The
rte_bbdev_info structure provides two levels of information:

• Device relevant information, like: name and related rte_bus.

• Driver specific information, as defined by the struct rte_bbdev_driver_info structure,
this is where capabilities reside along with other specifics like: maximum queue sizes and priority
level.

struct rte_bbdev_info {
int socket_id;
const char *dev_name;
const struct rte_device *device;
uint16_t num_queues;
bool started;
struct rte_bbdev_driver_info drv;

};

16.4 Operation Processing

Scheduling of baseband operations on DPDK’s application data path is performed using a burst oriented
asynchronous API set. A queue on a bbdev device accepts a burst of baseband operations using enqueue
burst API. On physical bbdev devices the enqueue burst API will place the operations to be processed

16.4. Operation Processing 146



Programmer’s Guide, Release 20.08.0

on the device’s hardware input queue, for virtual devices the processing of the baseband operations is
usually completed during the enqueue call to the bbdev device. The dequeue burst API will retrieve any
processed operations available from the queue on the bbdev device, from physical devices this is usually
directly from the device’s processed queue, and for virtual device’s from a rte_ring where processed
operations are placed after being processed on the enqueue call.

16.4.1 Enqueue / Dequeue Burst APIs

The burst enqueue API uses a bbdev device identifier and a queue identifier to specify the bbdev device
queue to schedule the processing on. The num_ops parameter is the number of operations to process
which are supplied in the ops array of rte_bbdev_*_op structures. The enqueue function returns
the number of operations it actually enqueued for processing, a return value equal to num_ops means
that all packets have been enqueued.

uint16_t rte_bbdev_enqueue_enc_ops(uint16_t dev_id, uint16_t queue_id,
struct rte_bbdev_enc_op **ops, uint16_t num_ops)

uint16_t rte_bbdev_enqueue_dec_ops(uint16_t dev_id, uint16_t queue_id,
struct rte_bbdev_dec_op **ops, uint16_t num_ops)

The dequeue API uses the same format as the enqueue API of processed but the num_ops and ops
parameters are now used to specify the max processed operations the user wishes to retrieve and the
location in which to store them. The API call returns the actual number of processed operations returned,
this can never be larger than num_ops.

uint16_t rte_bbdev_dequeue_enc_ops(uint16_t dev_id, uint16_t queue_id,
struct rte_bbdev_enc_op **ops, uint16_t num_ops)

uint16_t rte_bbdev_dequeue_dec_ops(uint16_t dev_id, uint16_t queue_id,
struct rte_bbdev_dec_op **ops, uint16_t num_ops)

16.4.2 Operation Representation

An encode bbdev operation is represented by rte_bbdev_enc_op structure, and by
rte_bbdev_dec_op for decode. These structures act as metadata containers for all necessary in-
formation required for the bbdev operation to be processed on a particular bbdev device poll mode
driver.

struct rte_bbdev_enc_op {
int status;
struct rte_mempool *mempool;
void *opaque_data;
union {

struct rte_bbdev_op_turbo_enc turbo_enc;
struct rte_bbdev_op_ldpc_enc ldpc_enc;

}
};

struct rte_bbdev_dec_op {
int status;
struct rte_mempool *mempool;
void *opaque_data;
union {

struct rte_bbdev_op_turbo_dec turbo_enc;
struct rte_bbdev_op_ldpc_dec ldpc_enc;

}
};

16.4. Operation Processing 147



Programmer’s Guide, Release 20.08.0

The operation structure by itself defines the operation type. It includes an operation status, a reference
to the operation specific data, which can vary in size and content depending on the operation being
provisioned. It also contains the source mempool for the operation, if it is allocated from a mempool.

If bbdev operations are allocated from a bbdev operation mempool, see next section, there is also the
ability to allocate private memory with the operation for applications purposes.

Application software is responsible for specifying all the operation specific fields in the
rte_bbdev_*_op structure which are then used by the bbdev PMD to process the requested op-
eration.

16.4.3 Operation Management and Allocation

The bbdev library provides an API set for managing bbdev operations which utilize the Mempool Library
to allocate operation buffers. Therefore, it ensures that the bbdev operation is interleaved optimally
across the channels and ranks for optimal processing.

struct rte_mempool *
rte_bbdev_op_pool_create(const char *name, enum rte_bbdev_op_type type,

unsigned int num_elements, unsigned int cache_size,
int socket_id)

rte_bbdev_*_op_alloc_bulk() and rte_bbdev_*_op_free_bulk() are used to allocate
bbdev operations of a specific type from a given bbdev operation mempool.

int rte_bbdev_enc_op_alloc_bulk(struct rte_mempool *mempool,
struct rte_bbdev_enc_op **ops, uint16_t num_ops)

int rte_bbdev_dec_op_alloc_bulk(struct rte_mempool *mempool,
struct rte_bbdev_dec_op **ops, uint16_t num_ops)

rte_bbdev_*_op_free_bulk() is called by the application to return an operation to its allocating
pool.

void rte_bbdev_dec_op_free_bulk(struct rte_bbdev_dec_op **ops,
unsigned int num_ops)

void rte_bbdev_enc_op_free_bulk(struct rte_bbdev_enc_op **ops,
unsigned int num_ops)

16.4.4 BBDEV Inbound/Outbound Memory

The bbdev operation structure contains all the mutable data relating to performing Turbo and LDPC
coding on a referenced mbuf data buffer. It is used for either encode or decode operations.

Table 16.1: Operation I/O

FEC In Out
Turbo Encode input output
Turbo Decode input hard output

soft output (optional)
LDPC Encode input output
LDPC Decode input hard output

HQ combine (optional) HQ combine (optional)
soft output (optional)

It is expected that the application provides input and output mbuf pointers allocated and ready to use.

16.4. Operation Processing 148



Programmer’s Guide, Release 20.08.0

The baseband framework supports FEC coding on Code Blocks (CB) and Transport Blocks (TB).

For the output buffer(s), the application is required to provide an allocated and free mbuf, to which the
resulting output will be written.

The support of split “scattered” buffers is a driver-specific feature, so it is reported individually by the
supporting driver as a capability.

Input and output data buffers are identified by rte_bbdev_op_data structure, as follows:

struct rte_bbdev_op_data {
struct rte_mbuf *data;
uint32_t offset;
uint32_t length;

};

This structure has three elements:

• data: This is the mbuf data structure representing the data for BBDEV operation.

This mbuf pointer can point to one Code Block (CB) data buffer or multiple CBs contiguously
located next to each other. A Transport Block (TB) represents a whole piece of data that is divided
into one or more CBs. Maximum number of CBs can be contained in one TB is defined by
RTE_BBDEV_(TURBO/LDPC)MAX_CODE_BLOCKS.

An mbuf data structure cannot represent more than one TB. The smallest piece of data that can be
contained in one mbuf is one CB. An mbuf can include one contiguous CB, subset of contiguous
CBs that are belonging to one TB, or all contiguous CBs that belong to one TB.

If a BBDEV PMD supports the extended capability “Scatter-Gather”, then it is capable of col-
lecting (gathering) non-contiguous (scattered) data from multiple locations in the memory. This
capability is reported by the capability flags:

– RTE_BBDEV_TURBO_ENC_SCATTER_GATHER, RTE_BBDEV_TURBO_DEC_SCATTER_GATHER,

– RTE_BBDEV_LDPC_ENC_SCATTER_GATHER, RTE_BBDEV_LDPC_DEC_SCATTER_GATHER.

Chained mbuf data structures are only accepted if a BBDEV PMD supports this feature. A chained
mbuf can represent one non-contiguous CB or multiple non-contiguous CBs. The first mbuf
segment in the given chained mbuf represents the first piece of the CB. Offset is only applicable
to the first segment. length is the total length of the CB.

BBDEV driver is responsible for identifying where the split is and enqueue the split data to its
internal queues.

If BBDEV PMD does not support this feature, it will assume inbound mbuf data contains one
segment.

The output mbuf data though is always one segment, even if the input was a chained mbuf.

• offset: This is the starting point of the BBDEV (encode/decode) operation, in bytes.

BBDEV starts to read data past this offset. In case of chained mbuf, this offset applies only to the
first mbuf segment.

• length: This is the total data length to be processed in one operation, in bytes.

In case the mbuf data is representing one CB, this is the length of the CB undergoing the operation.
If it is for multiple CBs, this is the total length of those CBs undergoing the operation. If it is for
one TB, this is the total length of the TB under operation. In case of chained mbuf, this data length
includes the lengths of the “scattered” data segments undergoing the operation.

16.4. Operation Processing 149



Programmer’s Guide, Release 20.08.0

16.4.5 BBDEV Turbo Encode Operation

struct rte_bbdev_op_turbo_enc {
struct rte_bbdev_op_data input;
struct rte_bbdev_op_data output;

uint32_t op_flags;
uint8_t rv_index;
uint8_t code_block_mode;
union {

struct rte_bbdev_op_enc_cb_params cb_params;
struct rte_bbdev_op_enc_tb_params tb_params;

};
};

The Turbo encode structure includes the input and output mbuf data pointers. The provided mbuf
pointer of input needs to be big enough to stretch for extra CRC trailers.

Table 16.2: struct rte_bbdev_op_turbo_enc parameters

Parameter Description
input input CB or TB data
output rate matched CB or TB output buffer
op_flags bitmask of all active operation capabilities
rv_index redundancy version index [0..3]
code_block_mode code block or transport block mode
cb_params code block specific parameters (code block mode only)
tb_params transport block specific parameters (transport block mode only)

The encode interface works on both the code block (CB) and the transport block (TB). An operation
executes in “CB-mode” when the CB is standalone. While “TB-mode” executes when an operation
performs on one or multiple CBs that belong to a TB. Therefore, a given data can be standalone CB,
full-size TB or partial TB. Partial TB means that only a subset of CBs belonging to a bigger TB are
being enqueued.

NOTE: It is assumed that all enqueued ops in one rte_bbdev_enqueue_enc_ops()
call belong to one mode, either CB-mode or TB-mode.

In case that the TB is smaller than Z (6144 bits), then effectively the TB = CB. CRC24A is appended to
the tail of the CB. The application is responsible for calculating and appending CRC24A before calling
BBDEV in case that the underlying driver does not support CRC24A generation.

In CB-mode, CRC24A/B is an optional operation. The CB parameter k is the size of the CB (this maps
to K as described in 3GPP TS 36.212 section 5.1.2), this size is inclusive of CRC24A/B. The length
is inclusive of CRC24A/B and equals to k in this case.

Not all BBDEV PMDs are capable of CRC24A/B calculation. Flags
RTE_BBDEV_TURBO_CRC_24A_ATTACH and RTE_BBDEV_TURBO_CRC_24B_ATTACH in-
forms the application with relevant capability. These flags can be set in the op_flags parameter
to indicate to BBDEV to calculate and append CRC24A/B to CB before going forward with Turbo
encoding.

Output format of the CB encode will have the encoded CB in e size output (this maps to E described
in 3GPP TS 36.212 section 5.1.4.1.2). The output mbuf buffer size needs to be big enough to hold the
encoded buffer of size e.

In TB-mode, CRC24A is assumed to be pre-calculated and appended to the inbound TB mbuf data

16.4. Operation Processing 150



Programmer’s Guide, Release 20.08.0

buffer. The output mbuf data structure is expected to be allocated by the application with enough room
for the output data.

The difference between the partial and full-size TB is that we need to know the index of the first CB in
this group and the number of CBs contained within. The first CB index is given by r but the number of
the remaining CBs is calculated automatically by BBDEV before passing down to the driver.

The number of remaining CBs should not be confused with c. c is the total number of CBs that com-
poses the whole TB (this maps to C as described in 3GPP TS 36.212 section 5.1.2).

The length is total size of the CBs inclusive of any CRC24A and CRC24B in case they were appended
by the application.

The case when one CB belongs to TB and is being enqueued individually to BBDEV, this case is consid-
ered as a special case of partial TB where its number of CBs is 1. Therefore, it requires to get processed
in TB-mode.

The figure below visualizes the encoding of CBs using BBDEV interface in TB-mode. CB-mode is a
reduced version, where only one CB exists:

offset

lengthoffset

or

CB1

C
R

C
2

4
B

CB2

C
R

C
2

4
B

... CBc-1

C
R

C
2

4
B

CBc
C

R
C

2
4

A
C

R
C

2
4

B

k_neg k_pos

- CRC24B & CRC24A were pre-calculated
by the application
- The raw TB is given as a contiguous
buffer

- Only CRC24A was pre-calculated by the
application, therefore
RTE_BBDEV_TURBO_CRC_24B_ATTACH
is set in op_flags
- The raw TB is given as a contiguous
buffer

offset length

or

k_neg

CB1 CB2 ... CBc-1 CBc

C
R

C
2

4
A

k_pos

k_neg k_pos

mbuf seg 1 mbuf seg 2

offset length

CB1 CB2 ... CBN CBN ... CBc-1

C
R

C
2

4
A

CBc

- CRC24A was pre-calculated and 
RTE_BBDEV_TURBO_CRC_24B_ATTACH
is set in op_flags
- The raw TB is given as a "scattered"
buffer through a chained mbuf

e
n
co

d
e

length

CB1

ea

... CBc-1 CBc

eb

CB2
Result is encoded back into the given
output mbuf as one contiguous buffer

Fig. 16.1: Turbo encoding of Code Blocks in mbuf structure

16.4. Operation Processing 151



Programmer’s Guide, Release 20.08.0

16.4.6 BBDEV Turbo Decode Operation

struct rte_bbdev_op_turbo_dec {
struct rte_bbdev_op_data input;
struct rte_bbdev_op_data hard_output;
struct rte_bbdev_op_data soft_output;

uint32_t op_flags;
uint8_t rv_index;
uint8_t iter_min:4;
uint8_t iter_max:4;
uint8_t iter_count;
uint8_t ext_scale;
uint8_t num_maps;
uint8_t code_block_mode;
union {

struct rte_bbdev_op_dec_cb_params cb_params;
struct rte_bbdev_op_dec_tb_params tb_params;

};
};

The Turbo decode structure includes the input, hard_output and optionally the soft_output
mbuf data pointers.

Table 16.3: struct rte_bbdev_op_turbo_dec parameters

Parameter Description
input virtual circular buffer, wk, size 3*Kpi for each CB
hard output hard decisions buffer, decoded output, size K for each CB
soft output soft LLR output buffer (optional)
op_flags bitmask of all active operation capabilities
rv_index redundancy version index [0..3]
iter_max maximum number of iterations to perofrm in decode all CBs
iter_min minimum number of iterations to perform in decoding all CBs
iter_count number of iterations to performed in decoding all CBs
ext_scale scale factor on extrinsic info (5 bits)
num_maps number of MAP engines to use in decode
code_block_mode code block or transport block mode
cb_params code block specific parameters (code block mode only)
tb_params transport block specific parameters (transport block mode only)

Similarly, the decode interface works on both the code block (CB) and the transport block (TB). An
operation executes in “CB-mode” when the CB is standalone. While “TB-mode” executes when an
operation performs on one or multiple CBs that belong to a TB. Therefore, a given data can be standalone
CB, full-size TB or partial TB. Partial TB means that only a subset of CBs belonging to a bigger TB are
being enqueued.

NOTE: It is assumed that all enqueued ops in one rte_bbdev_enqueue_dec_ops()
call belong to one mode, either CB-mode or TB-mode.

The CB parameter k is the size of the decoded CB (this maps to K as described in 3GPP TS 36.212
section 5.1.2), this size is inclusive of CRC24A/B. The length is inclusive of CRC24A/B and equals
to k in this case.

The input encoded CB data is the Virtual Circular Buffer data stream, wk, with the null padding included
as described in 3GPP TS 36.212 section 5.1.4.1.2 and shown in 3GPP TS 36.212 section 5.1.4.1 Figure
5.1.4-1. The size of the virtual circular buffer is 3*Kpi, where Kpi is the 32 byte aligned value of K, as

16.4. Operation Processing 152



Programmer’s Guide, Release 20.08.0

specified in 3GPP TS 36.212 section 5.1.4.1.1.

Each byte in the input circular buffer is the LLR value of each bit of the original CB.

hard_output is a mandatory capability that all BBDEV PMDs support. This is the decoded CBs
of K sizes (CRC24A/B is the last 24-bit in each decoded CB). Soft output is an optional capability for
BBDEV PMDs. Setting flag RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP in op_flags directs
BBDEV to retain CRC24B at the end of each CB. This might be useful for the application in debug
mode. An LLR rate matched output is computed in the soft_output buffer structure for the given
CB parameter e size (this maps to E described in 3GPP TS 36.212 section 5.1.4.1.2). The output mbuf
buffer size needs to be big enough to hold the encoded buffer of size e.

The first CB Virtual Circular Buffer (VCB) index is given by r but the number of the remaining CB
VCBs is calculated automatically by BBDEV before passing down to the driver.

The number of remaining CB VCBs should not be confused with c. c is the total number of CBs that
composes the whole TB (this maps to C as described in 3GPP TS 36.212 section 5.1.2).

The length is total size of the CBs inclusive of any CRC24A and CRC24B in case they were appended
by the application.

The case when one CB belongs to TB and is being enqueued individually to BBDEV, this case is consid-
ered as a special case of partial TB where its number of CBs is 1. Therefore, it requires to get processed
in TB-mode.

The output mbuf data structure is expected to be allocated by the application with enough room for the
output data.

The figure below visualizes the decoding of CBs using BBDEV interface in TB-mode. CB-mode is a
reduced version, where only one CB exists:

16.4.7 BBDEV LDPC Encode Operation

The operation flags that can be set for each LDPC encode operation are given below.

NOTE: The actual operation flags that may be used with a specific BBDEV PMD are
dependent on the driver capabilities as reported via rte_bbdev_info_get(), and may
be a subset of those below.

16.4. Operation Processing 153



Programmer’s Guide, Release 20.08.0

wk LLR circular buffer ... wk LLR circular buffer

lengthoffset

The encoded TB is given as a
contiguous buffer

or

or

offset

wk LLR circular buffer wk LLR circular buffer

length

.. ..
The encoded TB is given as a
"scattered" buffer through a
chained mbuf

Result is decoded back into the given output
mbuf as one contiguous buffer with no 
CRC24B retaining

d
e
co

d
e

Result is decoded back into the given output
mbuf as one contiguous buffer with CRC24B
retained in place when
RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP
is set in op_flags

offset length

CB1

hard
CB2

hard

k_neg

...
CBc-1

hard
CBc

hard

C
R

C
2

4
A

k_pos

offset

k_neg

length

k_pos

CB1

hard

C
R

C
2

4
B

CB2

hard

C
R

C
2

4
B

...
CBc-1

hard

C
R

C
2

4
B

CBc

hard

C
R

C
2

4
A

C
R

C
2

4
B

mbuf seg 1 mbuf seg 2

Fig. 16.2: Turbo decoding of Code Blocks in mbuf structure

16.4. Operation Processing 154



Programmer’s Guide, Release 20.08.0

Description of LDPC encode capability flags

RTE_BBDEV_LDPC_INTERLEAVER_BYPASS Set to bypass bit-level interleaver on output
stream

RTE_BBDEV_LDPC_RATE_MATCH Set to enabling the RATE_MATCHING processing

RTE_BBDEV_LDPC_CRC_24A_ATTACH Set to attach transport block CRC-24A

RTE_BBDEV_LDPC_CRC_24B_ATTACH Set to attach code block CRC-24B

RTE_BBDEV_LDPC_CRC_16_ATTACH Set to attach code block CRC-16

RTE_BBDEV_LDPC_ENC_INTERRUPTS Set if a device supports encoder dequeue interrupts

RTE_BBDEV_LDPC_ENC_SCATTER_GATHER Set if a device supports scatter-gather func-
tionality

RTE_BBDEV_LDPC_ENC_CONCATENATION Set if a device supports concatenation of non
byte aligned output

The structure passed for each LDPC encode operation is given below, with the operation flags forming
a bitmask in the op_flags field.

struct rte_bbdev_op_ldpc_enc {

struct rte_bbdev_op_data input;
struct rte_bbdev_op_data output;

uint32_t op_flags;
uint8_t rv_index;
uint8_t basegraph;
uint16_t z_c;
uint16_t n_cb;
uint8_t q_m;
uint16_t n_filler;
uint8_t code_block_mode;
union {

struct rte_bbdev_op_enc_ldpc_cb_params cb_params;
struct rte_bbdev_op_enc_ldpc_tb_params tb_params;

};
};

The LDPC encode parameters are set out in the table below.

16.4. Operation Processing 155



Programmer’s Guide, Release 20.08.0

Parameter Description
input input CB or TB data
output rate matched CB or TB output buffer
op_flags bitmask of all active operation capabilities
rv_index redundancy version index [0..3]
basegraph Basegraph 1 or 2
z_c Zc, LDPC lifting size
n_cb Ncb, length of the circular buffer in bits.
q_m Qm, modulation order {2,4,6,8,10}
n_filler number of filler bits
code_block_mode code block or transport block mode
op_flags bitmask of all active operation capabilities
cb_params code block specific parameters (code block mode only)

e E, length of the rate matched output sequence in bits
tb_params transport block specific parameters (transport block mode only)

c number of CBs in the TB or partial TB
r index of the first CB in the inbound mbuf data
c_ab number of CBs that use Ea before switching to Eb
ea Ea, length of the RM output sequence in bits, r < cab
eb Eb, length of the RM output sequence in bits, r >= cab

The mbuf input input is mandatory for all BBDEV PMDs and is the incoming code block or transport
block data.

The mbuf output output is mandatory and is the encoded CB(s). In CB-mode ut contains the encoded
CB of size e (E in 3GPP TS 38.212 section 6.2.5). In TB-mode it contains multiple contiguous encoded
CBs of size ea or eb. The output buffer is allocated by the application with enough room for the
output data.

The encode interface works on both a code block (CB) and a transport block (TB) basis.

NOTE: All enqueued ops in one rte_bbdev_enqueue_enc_ops() call belong to
one mode, either CB-mode or TB-mode.

The valid modes of operation are:

• CB-mode: one CB (attach CRC24B if required)

• CB-mode: one CB making up one TB (attach CRC24A if required)

• TB-mode: one or more CB of a partial TB (attach CRC24B(s) if required)

• TB-mode: one or more CB of a complete TB (attach CRC24AB(s) if required)

In CB-mode if RTE_BBDEV_LDPC_CRC_24A_ATTACH is set then CRC24A is appended to the CB.
If RTE_BBDEV_LDPC_CRC_24A_ATTACH is not set the application is responsible for calculating and
appending CRC24A before calling BBDEV. The input data mbuf length is inclusive of CRC24A/B
where present and is equal to the code block size K.

In TB-mode, CRC24A is assumed to be pre-calculated and appended to the inbound TB data buffer,
unless the RTE_BBDEV_LDPC_CRC_24A_ATTACH flag is set when it is the responsibility of BBDEV.
The input data mbuf length is total size of the CBs inclusive of any CRC24A and CRC24B in the case
they were appended by the application.

Not all BBDEV PMDs may be capable of CRC24A/B calculation. Flags
RTE_BBDEV_LDPC_CRC_24A_ATTACH and RTE_BBDEV_LDPC_CRC_24B_ATTACH inform the

16.4. Operation Processing 156



Programmer’s Guide, Release 20.08.0

application of the relevant capability. These flags can be set in the op_flags parameter to indicate
BBDEV to calculate and append CRC24A to CB before going forward with LDPC encoding.

The difference between the partial and full-size TB is that BBDEV needs the index of the first CB in this
group and the number of CBs in the group. The first CB index is given by r but the number of the CBs
is calculated by BBDEV before signalling to the driver.

The number of CBs in the group should not be confused with c, the total number of CBs in the full TB
(C as per 3GPP TS 38.212 section 5.2.2)

Figure Fig. 16.1 above showing the Turbo encoding of CBs using BBDEV interface in TB-mode is also
valid for LDPC encode.

16.4.8 BBDEV LDPC Decode Operation

The operation flags that can be set for each LDPC decode operation are given below.

NOTE: The actual operation flags that may be used with a specific BBDEV PMD are
dependent on the driver capabilities as reported via rte_bbdev_info_get(), and may
be a subset of those below.

16.4. Operation Processing 157



Programmer’s Guide, Release 20.08.0

Description of LDPC decode capability flags

RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK Set for transport block CRC-24A checking

RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK Set for code block CRC-24B checking

RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP Set to drop the last CRC bits decoding output

RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS Set for bit-level de-interleaver bypass on
input stream

RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE Set for HARQ combined input stream
enable

RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE Set for HARQ combined output
stream enable

RTE_BBDEV_LDPC_DECODE_BYPASS Set for LDPC decoder bypass
RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE must be set

RTE_BBDEV_LDPC_DECODE_SOFT_OUT Set for soft-output stream enable

RTE_BBDEV_LDPC_SOFT_OUT_RM_BYPASS Set for Rate-Matching bypass on soft-out
stream

RTE_BBDEV_LDPC_SOFT_OUT_DEINTERLEAVER_BYPASS Set for bit-level de-
interleaver bypass on soft-output stream

RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE Set for iteration stopping on successful
decode condition enable
Where a successful decode is a successful syndrome check

RTE_BBDEV_LDPC_DEC_INTERRUPTS Set if a device supports decoder dequeue interrupts

RTE_BBDEV_LDPC_DEC_SCATTER_GATHER Set if a device supports scatter-gather func-
tionality

RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION Set if a device supports input/output
HARQ compression

RTE_BBDEV_LDPC_LLR_COMPRESSION Set if a device supports input LLR compression

RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE Set if a device sup-
ports HARQ input to device’s internal memory

RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE Set if a device sup-
ports HARQ output to device’s internal memory

RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK Set if a device sup-
ports loopback access to HARQ internal memory

16.4. Operation Processing 158



Programmer’s Guide, Release 20.08.0

The structure passed for each LDPC decode operation is given below, with the operation flags forming
a bitmask in the op_flags field.

struct rte_bbdev_op_ldpc_dec {

struct rte_bbdev_op_data input;
struct rte_bbdev_op_data hard_output;
struct rte_bbdev_op_data soft_output;
struct rte_bbdev_op_data harq_combined_input;
struct rte_bbdev_op_data harq_combined_output;

uint32_t op_flags;
uint8_t rv_index;
uint8_t basegraph;
uint16_t z_c;
uint16_t n_cb;
uint8_t q_m;
uint16_t n_filler;
uint8_t iter_max;
uint8_t iter_count;
uint8_t code_block_mode;
union {

struct rte_bbdev_op_dec_ldpc_cb_params cb_params;
struct rte_bbdev_op_dec_ldpc_tb_params tb_params;

};
};

The LDPC decode parameters are set out in the table below.

Parameter Description
input input CB or TB data
hard_output hard decisions buffer, decoded output
soft_output soft LLR output buffer (optional)
harq_comb_input HARQ combined input buffer (optional)
harq_comb_output HARQ combined output buffer (optional)
op_flags bitmask of all active operation capabilities
rv_index redundancy version index [0..3]
basegraph Basegraph 1 or 2
z_c Zc, LDPC lifting size
n_cb Ncb, length of the circular buffer in bits.
q_m Qm, modulation order {1,2,4,6,8} from pi/2-BPSK to 256QAM
n_filler number of filler bits
iter_max maximum number of iterations to perform in decode all CBs
iter_count number of iterations performed in decoding all CBs
code_block_mode code block or transport block mode
op_flags bitmask of all active operation capabilities
cb_params code block specific parameters (code block mode only)

e E, length of the rate matched output sequence in bits
tb_params transport block specific parameters (transport block mode only)

c number of CBs in the TB or partial TB
r index of the first CB in the inbound mbuf data
c_ab number of CBs that use Ea before switching to Eb
ea Ea, length of the RM output sequence in bits, r < cab
eb Eb, length of the RM output sequence in bits r >= cab

The mbuf input input encoded CB data is mandatory for all BBDEV PMDs and is the Virtual Circular
Buffer data stream with null padding. Each byte in the input circular buffer is the LLR value of each bit

16.4. Operation Processing 159



Programmer’s Guide, Release 20.08.0

of the original CB.

The mbuf output hard_output is mandatory and is the decoded CBs size K (CRC24A/B is the last
24-bit in each decoded CB).

The mbuf output soft_output is optional and is an LLR rate matched output of size e (this is E as
per 3GPP TS 38.212 section 6.2.5).

The mbuf input harq_combine_input is optional and is a buffer with the
input to the HARQ combination function of the device. If the capability
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE is set then the HARQ is
stored in memory internal to the device and not visible to BBDEV.

The mbuf output harq_combine_output is optional and is a buffer for the
output of the HARQ combination function of the device. If the capability
RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE is set then the HARQ is
stored in memory internal to the device and not visible to BBDEV.

The output mbuf data structures are expected to be allocated by the application with enough room for
the output data.

As with the LDPC encode, the decode interface works on both a code block (CB) and a transport block
(TB) basis.

NOTE: All enqueued ops in one rte_bbdev_enqueue_dec_ops() call belong to
one mode, either CB-mode or TB-mode.

The valid modes of operation are:

• CB-mode: one CB (check CRC24B if required)

• CB-mode: one CB making up one TB (check CRC24A if required)

• TB-mode: one or more CB making up a partial TB (check CRC24B(s) if required)

• TB-mode: one or more CB making up a complete TB (check CRC24B(s) if required)

The mbuf length is inclusive of CRC24A/B where present and is equal the code block size K.

The first CB Virtual Circular Buffer (VCB) index is given by r but the number of the remaining CB
VCBs is calculated automatically by BBDEV and passed down to the driver.

The number of remaining CB VCBs should not be confused with c, the total number of CBs in the full
TB (C as per 3GPP TS 38.212 section 5.2.2)

The length is total size of the CBs inclusive of any CRC24A and CRC24B in case they were appended
by the application.

Figure Fig. 16.2 above showing the Turbo decoding of CBs using BBDEV interface in TB-mode is also
valid for LDPC decode.

16.5 Sample code

The baseband device sample application gives an introduction on how to use the bbdev framework, by
giving a sample code performing a loop-back operation with a baseband processor capable of transceiv-
ing data packets.

The following sample C-like pseudo-code shows the basic steps to encode several buffers using
(sw_turbo) bbdev PMD.

16.5. Sample code 160



Programmer’s Guide, Release 20.08.0

/* EAL Init */
ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

/* Get number of available bbdev devices */
nb_bbdevs = rte_bbdev_count();
if (nb_bbdevs == 0)

rte_exit(EXIT_FAILURE, "No bbdevs detected!\n");

/* Create bbdev op pools */
bbdev_op_pool[RTE_BBDEV_OP_TURBO_ENC] =

rte_bbdev_op_pool_create("bbdev_op_pool_enc",
RTE_BBDEV_OP_TURBO_ENC, NB_MBUF, 128, rte_socket_id());

/* Get information for this device */
rte_bbdev_info_get(dev_id, &info);

/* Setup BBDEV device queues */
ret = rte_bbdev_setup_queues(dev_id, qs_nb, info.socket_id);
if (ret < 0)

rte_exit(EXIT_FAILURE,
"ERROR(%d): BBDEV %u not configured properly\n",
ret, dev_id);

/* setup device queues */
qconf.socket = info.socket_id;
qconf.queue_size = info.drv.queue_size_lim;
qconf.op_type = RTE_BBDEV_OP_TURBO_ENC;

for (q_id = 0; q_id < qs_nb; q_id++) {
/* Configure all queues belonging to this bbdev device */
ret = rte_bbdev_queue_configure(dev_id, q_id, &qconf);
if (ret < 0)

rte_exit(EXIT_FAILURE,
"ERROR(%d): BBDEV %u queue %u not configured properly\n",
ret, dev_id, q_id);

}

/* Start bbdev device */
ret = rte_bbdev_start(dev_id);

/* Create the mbuf mempool for pkts */
mbuf_pool = rte_pktmbuf_pool_create("bbdev_mbuf_pool",

NB_MBUF, MEMPOOL_CACHE_SIZE, 0,
RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());

if (mbuf_pool == NULL)
rte_exit(EXIT_FAILURE,

"Unable to create '%s' pool\n", pool_name);

while (!global_exit_flag) {

/* Allocate burst of op structures in preparation for enqueue */
if (rte_bbdev_enc_op_alloc_bulk(bbdev_op_pool[RTE_BBDEV_OP_TURBO_ENC],

ops_burst, op_num) != 0)
continue;

/* Allocate input mbuf pkts */
ret = rte_pktmbuf_alloc_bulk(mbuf_pool, input_pkts_burst, MAX_PKT_BURST);
if (ret < 0)

continue;

/* Allocate output mbuf pkts */

16.5. Sample code 161



Programmer’s Guide, Release 20.08.0

ret = rte_pktmbuf_alloc_bulk(mbuf_pool, output_pkts_burst, MAX_PKT_BURST);
if (ret < 0)

continue;

for (j = 0; j < op_num; j++) {
/* Append the size of the ethernet header */
rte_pktmbuf_append(input_pkts_burst[j],

sizeof(struct rte_ether_hdr));

/* set op */

ops_burst[j]->turbo_enc.input.offset =
sizeof(struct rte_ether_hdr);

ops_burst[j]->turbo_enc->input.length =
rte_pktmbuf_pkt_len(bbdev_pkts[j]);

ops_burst[j]->turbo_enc->input.data =
input_pkts_burst[j];

ops_burst[j]->turbo_enc->output.offset =
sizeof(struct rte_ether_hdr);

ops_burst[j]->turbo_enc->output.data =
output_pkts_burst[j];

}

/* Enqueue packets on BBDEV device */
op_num = rte_bbdev_enqueue_enc_ops(qconf->bbdev_id,

qconf->bbdev_qs[q], ops_burst,
MAX_PKT_BURST);

/* Dequeue packets from BBDEV device*/
op_num = rte_bbdev_dequeue_enc_ops(qconf->bbdev_id,

qconf->bbdev_qs[q], ops_burst,
MAX_PKT_BURST);

}

16.5.1 BBDEV Device API

The bbdev Library API is described in the DPDK API Reference document.

16.5. Sample code 162



CHAPTER

SEVENTEEN

CRYPTOGRAPHY DEVICE LIBRARY

The cryptodev library provides a Crypto device framework for management and provisioning of hard-
ware and software Crypto poll mode drivers, defining generic APIs which support a number of dif-
ferent Crypto operations. The framework currently only supports cipher, authentication, chained ci-
pher/authentication and AEAD symmetric and asymmetric Crypto operations.

17.1 Design Principles

The cryptodev library follows the same basic principles as those used in DPDK’s Ethernet Device frame-
work. The Crypto framework provides a generic Crypto device framework which supports both physical
(hardware) and virtual (software) Crypto devices as well as a generic Crypto API which allows Crypto
devices to be managed and configured and supports Crypto operations to be provisioned on Crypto poll
mode driver.

17.2 Device Management

17.2.1 Device Creation

Physical Crypto devices are discovered during the PCI probe/enumeration of the EAL function which is
executed at DPDK initialization, based on their PCI device identifier, each unique PCI BDF (bus/bridge,
device, function). Specific physical Crypto devices, like other physical devices in DPDK can be white-
listed or black-listed using the EAL command line options.

Virtual devices can be created by two mechanisms, either using the EAL command line options or from
within the application using an EAL API directly.

From the command line using the –vdev EAL option

--vdev 'crypto_aesni_mb0,max_nb_queue_pairs=2,socket_id=0'

Note:

• If DPDK application requires multiple software crypto PMD devices then required number of
--vdev with appropriate libraries are to be added.

• An Application with crypto PMD instances sharing the same library requires unique ID.

Example: --vdev 'crypto_aesni_mb0' --vdev 'crypto_aesni_mb1'

Or using the rte_vdev_init API within the application code.

163



Programmer’s Guide, Release 20.08.0

rte_vdev_init("crypto_aesni_mb",
"max_nb_queue_pairs=2,socket_id=0")

All virtual Crypto devices support the following initialization parameters:

• max_nb_queue_pairs - maximum number of queue pairs supported by the device.

• socket_id - socket on which to allocate the device resources on.

17.2.2 Device Identification

Each device, whether virtual or physical is uniquely designated by two identifiers:

• A unique device index used to designate the Crypto device in all functions exported by the cryp-
todev API.

• A device name used to designate the Crypto device in console messages, for administration or
debugging purposes. For ease of use, the port name includes the port index.

17.2.3 Device Configuration

The configuration of each Crypto device includes the following operations:

• Allocation of resources, including hardware resources if a physical device.

• Resetting the device into a well-known default state.

• Initialization of statistics counters.

The rte_cryptodev_configure API is used to configure a Crypto device.

int rte_cryptodev_configure(uint8_t dev_id,
struct rte_cryptodev_config *config)

The rte_cryptodev_config structure is used to pass the configuration parameters for socket se-
lection and number of queue pairs.

struct rte_cryptodev_config {
int socket_id;
/**< Socket to allocate resources on */
uint16_t nb_queue_pairs;
/**< Number of queue pairs to configure on device */

};

17.2.4 Configuration of Queue Pairs

Each Crypto devices queue pair is individually configured through the
rte_cryptodev_queue_pair_setup API. Each queue pairs resources may be allocated
on a specified socket.

int rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
const struct rte_cryptodev_qp_conf *qp_conf,
int socket_id)

struct rte_cryptodev_qp_conf {
uint32_t nb_descriptors; /**< Number of descriptors per queue pair */
struct rte_mempool *mp_session;
/**< The mempool for creating session in sessionless mode */
struct rte_mempool *mp_session_private;

17.2. Device Management 164



Programmer’s Guide, Release 20.08.0

/**< The mempool for creating sess private data in sessionless mode */
};

The fields mp_session and mp_session_private are used for creating temporary session to
process the crypto operations in the session-less mode. They can be the same other different mempools.
Please note not all Cryptodev PMDs supports session-less mode.

17.2.5 Logical Cores, Memory and Queues Pair Relationships

The Crypto device Library as the Poll Mode Driver library support NUMA for when a processor’s logical
cores and interfaces utilize its local memory. Therefore Crypto operations, and in the case of symmetric
Crypto operations, the session and the mbuf being operated on, should be allocated from memory pools
created in the local memory. The buffers should, if possible, remain on the local processor to obtain
the best performance results and buffer descriptors should be populated with mbufs allocated from a
mempool allocated from local memory.

The run-to-completion model also performs better, especially in the case of virtual Crypto devices, if
the Crypto operation and session and data buffer is in local memory instead of a remote processor’s
memory. This is also true for the pipe-line model provided all logical cores used are located on the same
processor.

Multiple logical cores should never share the same queue pair for enqueuing operations or dequeuing
operations on the same Crypto device since this would require global locks and hinder performance. It is
however possible to use a different logical core to dequeue an operation on a queue pair from the logical
core which it was enqueued on. This means that a crypto burst enqueue/dequeue APIs are a logical place
to transition from one logical core to another in a packet processing pipeline.

17.3 Device Features and Capabilities

Crypto devices define their functionality through two mechanisms, global device features and algorithm
capabilities. Global devices features identify device wide level features which are applicable to the whole
device such as the device having hardware acceleration or supporting symmetric and/or asymmetric
Crypto operations.

The capabilities mechanism defines the individual algorithms/functions which the device supports, such
as a specific symmetric Crypto cipher, authentication operation or Authenticated Encryption with Asso-
ciated Data (AEAD) operation.

17.3.1 Device Features

Currently the following Crypto device features are defined:

• Symmetric Crypto operations

• Asymmetric Crypto operations

• Chaining of symmetric Crypto operations

• SSE accelerated SIMD vector operations

• AVX accelerated SIMD vector operations

• AVX2 accelerated SIMD vector operations

17.3. Device Features and Capabilities 165



Programmer’s Guide, Release 20.08.0

• AESNI accelerated instructions

• Hardware off-load processing

17.3.2 Device Operation Capabilities

Crypto capabilities which identify particular algorithm which the Crypto PMD supports are defined
by the operation type, the operation transform, the transform identifier and then the particulars of the
transform. For the full scope of the Crypto capability see the definition of the structure in the DPDK
API Reference.

struct rte_cryptodev_capabilities;

Each Crypto poll mode driver defines its own private array of capabilities for the operations it sup-
ports. Below is an example of the capabilities for a PMD which supports the authentication algorithm
SHA1_HMAC and the cipher algorithm AES_CBC.

static const struct rte_cryptodev_capabilities pmd_capabilities[] = {
{ /* SHA1 HMAC */

.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,

.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
.auth = {

.algo = RTE_CRYPTO_AUTH_SHA1_HMAC,

.block_size = 64,

.key_size = {
.min = 64,
.max = 64,
.increment = 0

},
.digest_size = {

.min = 12,

.max = 12,

.increment = 0
},
.aad_size = { 0 },
.iv_size = { 0 }

}
}

},
{ /* AES CBC */

.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,

.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
.cipher = {

.algo = RTE_CRYPTO_CIPHER_AES_CBC,

.block_size = 16,

.key_size = {
.min = 16,
.max = 32,
.increment = 8

},
.iv_size = {

.min = 16,

.max = 16,

.increment = 0
}

}
}

}
}

17.3. Device Features and Capabilities 166



Programmer’s Guide, Release 20.08.0

17.3.3 Capabilities Discovery

Discovering the features and capabilities of a Crypto device poll mode driver is achieved through the
rte_cryptodev_info_get function.

void rte_cryptodev_info_get(uint8_t dev_id,
struct rte_cryptodev_info *dev_info);

This allows the user to query a specific Crypto PMD and get all the device features and capabilities. The
rte_cryptodev_info structure contains all the relevant information for the device.

struct rte_cryptodev_info {
const char *driver_name;
uint8_t driver_id;
struct rte_device *device;

uint64_t feature_flags;

const struct rte_cryptodev_capabilities *capabilities;

unsigned max_nb_queue_pairs;

struct {
unsigned max_nb_sessions;

} sym;
};

17.4 Operation Processing

Scheduling of Crypto operations on DPDK’s application data path is performed using a burst oriented
asynchronous API set. A queue pair on a Crypto device accepts a burst of Crypto operations using
enqueue burst API. On physical Crypto devices the enqueue burst API will place the operations to be
processed on the devices hardware input queue, for virtual devices the processing of the Crypto op-
erations is usually completed during the enqueue call to the Crypto device. The dequeue burst API
will retrieve any processed operations available from the queue pair on the Crypto device, from phys-
ical devices this is usually directly from the devices processed queue, and for virtual device’s from a
rte_ring where processed operations are placed after being processed on the enqueue call.

17.4.1 Private data

For session-based operations, the set and get API provides a mechanism for an application to store and
retrieve the private user data information stored along with the crypto session.

For example, suppose an application is submitting a crypto operation with a session associated and
wants to indicate private user data information which is required to be used after completion of the
crypto operation. In this case, the application can use the set API to set the user data and retrieve it using
get API.

int rte_cryptodev_sym_session_set_user_data(
struct rte_cryptodev_sym_session *sess, void *data, uint16_t size);

void * rte_cryptodev_sym_session_get_user_data(
struct rte_cryptodev_sym_session *sess);

Please note the size passed to set API cannot be bigger than the predefined user_data_szwhen cre-
ating the session header mempool, otherwise the function will return error. Also when user_data_sz
was defined as 0 when creating the session header mempool, the get API will always return NULL.

17.4. Operation Processing 167



Programmer’s Guide, Release 20.08.0

For session-less mode, the private user data information can be placed along with the struct
rte_crypto_op. The rte_crypto_op::private_data_offset indicates the start of pri-
vate data information. The offset is counted from the start of the rte_crypto_op including other crypto
information such as the IVs (since there can be an IV also for authentication).

17.4.2 Enqueue / Dequeue Burst APIs

The burst enqueue API uses a Crypto device identifier and a queue pair identifier to specify the Crypto
device queue pair to schedule the processing on. The nb_ops parameter is the number of operations
to process which are supplied in the ops array of rte_crypto_op structures. The enqueue function
returns the number of operations it actually enqueued for processing, a return value equal to nb_ops
means that all packets have been enqueued.

uint16_t rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id,
struct rte_crypto_op **ops, uint16_t nb_ops)

The dequeue API uses the same format as the enqueue API of processed but the nb_ops and ops
parameters are now used to specify the max processed operations the user wishes to retrieve and the
location in which to store them. The API call returns the actual number of processed operations returned,
this can never be larger than nb_ops.

uint16_t rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id,
struct rte_crypto_op **ops, uint16_t nb_ops)

17.4.3 Operation Representation

An Crypto operation is represented by an rte_crypto_op structure, which is a generic metadata container
for all necessary information required for the Crypto operation to be processed on a particular Crypto
device poll mode driver.

Crypto Operation

Operation Specific Data (struct rte_crypto_sym_op)

private data

General Operation Data (struct rte_crypto_op)

The operation structure includes the operation type, the operation status and the session type (session-
based/less), a reference to the operation specific data, which can vary in size and content depending on
the operation being provisioned. It also contains the source mempool for the operation, if it allocated
from a mempool.

If Crypto operations are allocated from a Crypto operation mempool, see next section, there is also the
ability to allocate private memory with the operation for applications purposes.

17.4. Operation Processing 168



Programmer’s Guide, Release 20.08.0

Application software is responsible for specifying all the operation specific fields in the
rte_crypto_op structure which are then used by the Crypto PMD to process the requested oper-
ation.

17.4.4 Operation Management and Allocation

The cryptodev library provides an API set for managing Crypto operations which utilize the Mem-
pool Library to allocate operation buffers. Therefore, it ensures that the crypto operation is interleaved
optimally across the channels and ranks for optimal processing. A rte_crypto_op contains a field
indicating the pool that it originated from. When calling rte_crypto_op_free(op), the operation
returns to its original pool.

extern struct rte_mempool *
rte_crypto_op_pool_create(const char *name, enum rte_crypto_op_type type,

unsigned nb_elts, unsigned cache_size, uint16_t priv_size,
int socket_id);

During pool creation rte_crypto_op_init() is called as a constructor to initialize each Crypto
operation which subsequently calls __rte_crypto_op_reset() to configure any operation type
specific fields based on the type parameter.

rte_crypto_op_alloc() and rte_crypto_op_bulk_alloc() are used to allocate Crypto
operations of a specific type from a given Crypto operation mempool. __rte_crypto_op_reset()
is called on each operation before being returned to allocate to a user so the operation is always in a good
known state before use by the application.

struct rte_crypto_op *rte_crypto_op_alloc(struct rte_mempool *mempool,
enum rte_crypto_op_type type)

unsigned rte_crypto_op_bulk_alloc(struct rte_mempool *mempool,
enum rte_crypto_op_type type,
struct rte_crypto_op **ops, uint16_t nb_ops)

rte_crypto_op_free() is called by the application to return an operation to its allocating pool.

void rte_crypto_op_free(struct rte_crypto_op *op)

17.5 Symmetric Cryptography Support

The cryptodev library currently provides support for the following symmetric Crypto operations; cipher,
authentication, including chaining of these operations, as well as also supporting AEAD operations.

17.5.1 Session and Session Management

Sessions are used in symmetric cryptographic processing to store the immutable data defined in a cryp-
tographic transform which is used in the operation processing of a packet flow. Sessions are used to
manage information such as expand cipher keys and HMAC IPADs and OPADs, which need to be cal-
culated for a particular Crypto operation, but are immutable on a packet to packet basis for a flow.
Crypto sessions cache this immutable data in a optimal way for the underlying PMD and this allows
further acceleration of the offload of Crypto workloads.

The Crypto device framework provides APIs to create session mempool and allocate and initial-
ize sessions for crypto devices, where sessions are mempool objects. The application has to use
rte_cryptodev_sym_session_pool_create() to create the session header mempool that

17.5. Symmetric Cryptography Support 169



Programmer’s Guide, Release 20.08.0

Crypto Driver Private SessionCrypto Symmetric Session

uint16_t nb_drivers;

struct {
void *data;

} session_data[];

uint16_t user_data_sz;

user_data

uint16_t refcnt;

uint64_t opaque_data;
Private Session Data

Crypto Driver Private Session

Private Session Data

...

creates a mempool with proper element size automatically and stores necessary information for safely
accessing the session in the mempool’s private data field.

To create a mempool for storing session private data, the application has two options. The first is to
create another mempool with elt size equal to or bigger than the maximum session private data size of
all crypto devices that will share the same session header. The creation of the mempool shall use the
traditional rte_mempool_create() with the correct elt_size. The other option is to change
the elt_size parameter in rte_cryptodev_sym_session_pool_create() to the correct
value. The first option is more complex to implement but may result in better memory usage as a session
header normally takes smaller memory footprint as the session private data.

Once the session mempools have been created, rte_cryptodev_sym_session_create() is
used to allocate an uninitialized session from the given mempool. The session then must be initialized
using rte_cryptodev_sym_session_init() for each of the required crypto devices. A sym-
metric transform chain is used to specify the operation and its parameters. See the section below for
details on transforms.

When a session is no longer used, user must call rte_cryptodev_sym_session_clear() for
each of the crypto devices that are using the session, to free all driver private session data. Once this is
done, session should be freed using rte_cryptodev_sym_session_free which returns them to
their mempool.

17.5.2 Transforms and Transform Chaining

Symmetric Crypto transforms (rte_crypto_sym_xform) are the mechanism used to specify the
details of the Crypto operation. For chaining of symmetric operations such as cipher encrypt and au-
thentication generate, the next pointer allows transform to be chained together. Crypto devices which
support chaining must publish the chaining of symmetric Crypto operations feature flag. Allocation of
the xform structure is in the application domain. To allow future API extensions in a backwardly com-
patible manner, e.g. addition of a new parameter, the application should zero the full xform struct before

17.5. Symmetric Cryptography Support 170



Programmer’s Guide, Release 20.08.0

populating it.

Currently there are three transforms types cipher, authentication and AEAD. Also it is important to note
that the order in which the transforms are passed indicates the order of the chaining.

struct rte_crypto_sym_xform {
struct rte_crypto_sym_xform *next;
/**< next xform in chain */
enum rte_crypto_sym_xform_type type;
/**< xform type */
union {

struct rte_crypto_auth_xform auth;
/**< Authentication / hash xform */
struct rte_crypto_cipher_xform cipher;
/**< Cipher xform */
struct rte_crypto_aead_xform aead;
/**< AEAD xform */

};
};

The API does not place a limit on the number of transforms that can be chained together but this will be
limited by the underlying Crypto device poll mode driver which is processing the operation.

Symmetric Transform (struct rte_crypto_sym_xform)

Transform Parameters  struct rte_crypto_auth_xform  struct rte_crypto_cipher_xformstruct rte_crypto_aead_xform

next transform  (struct rte_crypto_sym_xform *)

transform type (enum rte_crypto_sym_xform_type)Symmetric Transform (struct rte_crypto_sym_xform)

Transform Parameters  struct rte_crypto_auth_xform  struct rte_crypto_cipher_xformstruct rte_crypto_aead_xform

next transform  (struct rte_crypto_sym_xform *)

transform type (enum rte_crypto_sym_xform_type)

17.5.3 Symmetric Operations

The symmetric Crypto operation structure contains all the mutable data relating to performing symmetric
cryptographic processing on a referenced mbuf data buffer. It is used for either cipher, authentication,
AEAD and chained operations.

As a minimum the symmetric operation must have a source data buffer (m_src), a valid session (or
transform chain if in session-less mode) and the minimum authentication/ cipher/ AEAD parameters

17.5. Symmetric Cryptography Support 171



Programmer’s Guide, Release 20.08.0

required depending on the type of operation specified in the session or the transform chain.

struct rte_crypto_sym_op {
struct rte_mbuf *m_src;
struct rte_mbuf *m_dst;

union {
struct rte_cryptodev_sym_session *session;
/**< Handle for the initialised session context */
struct rte_crypto_sym_xform *xform;
/**< Session-less API Crypto operation parameters */

};

union {
struct {

struct {
uint32_t offset;
uint32_t length;

} data; /**< Data offsets and length for AEAD */

struct {
uint8_t *data;
rte_iova_t phys_addr;

} digest; /**< Digest parameters */

struct {
uint8_t *data;
rte_iova_t phys_addr;

} aad;
/**< Additional authentication parameters */

} aead;

struct {
struct {

struct {
uint32_t offset;
uint32_t length;

} data; /**< Data offsets and length for ciphering */
} cipher;

struct {
struct {

uint32_t offset;
uint32_t length;

} data;
/**< Data offsets and length for authentication */

struct {
uint8_t *data;
rte_iova_t phys_addr;

} digest; /**< Digest parameters */
} auth;

};
};

};

17.6 Synchronous mode

Some cryptodevs support synchronous mode alongside with a standard asynchronous mode. In that case
operations are performed directly when calling rte_cryptodev_sym_cpu_crypto_process
method instead of enqueuing and dequeuing an operation before. This mode of operation al-

17.6. Synchronous mode 172



Programmer’s Guide, Release 20.08.0

lows cryptodevs which utilize CPU cryptographic acceleration to have significant performance boost
comparing to standard asynchronous approach. Cryptodevs supporting synchronous mode have
RTE_CRYPTODEV_FF_SYM_CPU_CRYPTO feature flag set.

To perform a synchronous operation a call to rte_cryptodev_sym_cpu_crypto_process has
to be made with vectorized operation descriptor (struct rte_crypto_sym_vec) containing:

• num - number of operations to perform,

• pointer to an array of size num containing a scatter-gather list descriptors of performed oper-
ations (struct rte_crypto_sgl). Each instance of struct rte_crypto_sgl con-
sists of a number of segments and a pointer to an array of segment descriptors struct
rte_crypto_vec;

• pointers to arrays of size num containing IV, AAD and digest information,

• pointer to an array of size num where status information will be stored for each operation.

Function returns a number of successfully completed operations and sets appropriate status number for
each operation in the status array provided as a call argument. Status different than zero must be treated
as error.

For more details, e.g. how to convert an mbuf to an SGL, please refer to an example usage in the IPsec
library implementation.

17.7 Sample code

There are various sample applications that show how to use the cryptodev library, such as the L2fwd with
Crypto sample application (L2fwd-crypto) and the IPsec Security Gateway application (ipsec-secgw).

While these applications demonstrate how an application can be created to perform generic crypto op-
eration, the required complexity hides the basic steps of how to use the cryptodev APIs.

The following sample code shows the basic steps to encrypt several buffers with AES-CBC (although
performing other crypto operations is similar), using one of the crypto PMDs available in DPDK.

/*
* Simple example to encrypt several buffers with AES-CBC using

* the Cryptodev APIs.

*/

#define MAX_SESSIONS 1024
#define NUM_MBUFS 1024
#define POOL_CACHE_SIZE 128
#define BURST_SIZE 32
#define BUFFER_SIZE 1024
#define AES_CBC_IV_LENGTH 16
#define AES_CBC_KEY_LENGTH 16
#define IV_OFFSET (sizeof(struct rte_crypto_op) + \

sizeof(struct rte_crypto_sym_op))

struct rte_mempool *mbuf_pool, *crypto_op_pool;
struct rte_mempool *session_pool, *session_priv_pool;
unsigned int session_size;
int ret;

/* Initialize EAL. */
ret = rte_eal_init(argc, argv);
if (ret < 0)

17.7. Sample code 173



Programmer’s Guide, Release 20.08.0

rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

uint8_t socket_id = rte_socket_id();

/* Create the mbuf pool. */
mbuf_pool = rte_pktmbuf_pool_create("mbuf_pool",

NUM_MBUFS,
POOL_CACHE_SIZE,
0,
RTE_MBUF_DEFAULT_BUF_SIZE,
socket_id);

if (mbuf_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");

/*
* The IV is always placed after the crypto operation,

* so some private data is required to be reserved.

*/
unsigned int crypto_op_private_data = AES_CBC_IV_LENGTH;

/* Create crypto operation pool. */
crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",

RTE_CRYPTO_OP_TYPE_SYMMETRIC,
NUM_MBUFS,
POOL_CACHE_SIZE,
crypto_op_private_data,
socket_id);

if (crypto_op_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");

/* Create the virtual crypto device. */
char args[128];
const char *crypto_name = "crypto_aesni_mb0";
snprintf(args, sizeof(args), "socket_id=%d", socket_id);
ret = rte_vdev_init(crypto_name, args);
if (ret != 0)

rte_exit(EXIT_FAILURE, "Cannot create virtual device");

uint8_t cdev_id = rte_cryptodev_get_dev_id(crypto_name);

/* Get private session data size. */
session_size = rte_cryptodev_sym_get_private_session_size(cdev_id);

#ifdef USE_TWO_MEMPOOLS
/* Create session mempool for the session header. */
session_pool = rte_cryptodev_sym_session_pool_create("session_pool",

MAX_SESSIONS,
0,
POOL_CACHE_SIZE,
0,
socket_id);

/*
* Create session private data mempool for the

* private session data for the crypto device.

*/
session_priv_pool = rte_mempool_create("session_pool",

MAX_SESSIONS,
session_size,
POOL_CACHE_SIZE,
0, NULL, NULL, NULL,
NULL, socket_id,
0);

17.7. Sample code 174



Programmer’s Guide, Release 20.08.0

#else
/* Use of the same mempool for session header and private data */

session_pool = rte_cryptodev_sym_session_pool_create("session_pool",
MAX_SESSIONS * 2,
session_size,
POOL_CACHE_SIZE,
0,
socket_id);

session_priv_pool = session_pool;

#endif

/* Configure the crypto device. */
struct rte_cryptodev_config conf = {

.nb_queue_pairs = 1,

.socket_id = socket_id
};

struct rte_cryptodev_qp_conf qp_conf = {
.nb_descriptors = 2048,
.mp_session = session_pool,
.mp_session_private = session_priv_pool

};

if (rte_cryptodev_configure(cdev_id, &conf) < 0)
rte_exit(EXIT_FAILURE, "Failed to configure cryptodev %u", cdev_id);

if (rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf, socket_id) < 0)
rte_exit(EXIT_FAILURE, "Failed to setup queue pair\n");

if (rte_cryptodev_start(cdev_id) < 0)
rte_exit(EXIT_FAILURE, "Failed to start device\n");

/* Create the crypto transform. */
uint8_t cipher_key[16] = {0};
struct rte_crypto_sym_xform cipher_xform = {

.next = NULL,

.type = RTE_CRYPTO_SYM_XFORM_CIPHER,

.cipher = {
.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT,
.algo = RTE_CRYPTO_CIPHER_AES_CBC,
.key = {

.data = cipher_key,

.length = AES_CBC_KEY_LENGTH
},
.iv = {

.offset = IV_OFFSET,

.length = AES_CBC_IV_LENGTH
}

}
};

/* Create crypto session and initialize it for the crypto device. */
struct rte_cryptodev_sym_session *session;
session = rte_cryptodev_sym_session_create(session_pool);
if (session == NULL)

rte_exit(EXIT_FAILURE, "Session could not be created\n");

if (rte_cryptodev_sym_session_init(cdev_id, session,
&cipher_xform, session_priv_pool) < 0)

rte_exit(EXIT_FAILURE, "Session could not be initialized "

17.7. Sample code 175



Programmer’s Guide, Release 20.08.0

"for the crypto device\n");

/* Get a burst of crypto operations. */
struct rte_crypto_op *crypto_ops[BURST_SIZE];
if (rte_crypto_op_bulk_alloc(crypto_op_pool,

RTE_CRYPTO_OP_TYPE_SYMMETRIC,
crypto_ops, BURST_SIZE) == 0)

rte_exit(EXIT_FAILURE, "Not enough crypto operations available\n");

/* Get a burst of mbufs. */
struct rte_mbuf *mbufs[BURST_SIZE];
if (rte_pktmbuf_alloc_bulk(mbuf_pool, mbufs, BURST_SIZE) < 0)

rte_exit(EXIT_FAILURE, "Not enough mbufs available");

/* Initialize the mbufs and append them to the crypto operations. */
unsigned int i;
for (i = 0; i < BURST_SIZE; i++) {

if (rte_pktmbuf_append(mbufs[i], BUFFER_SIZE) == NULL)
rte_exit(EXIT_FAILURE, "Not enough room in the mbuf\n");

crypto_ops[i]->sym->m_src = mbufs[i];
}

/* Set up the crypto operations. */
for (i = 0; i < BURST_SIZE; i++) {

struct rte_crypto_op *op = crypto_ops[i];
/* Modify bytes of the IV at the end of the crypto operation */
uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,

IV_OFFSET);

generate_random_bytes(iv_ptr, AES_CBC_IV_LENGTH);

op->sym->cipher.data.offset = 0;
op->sym->cipher.data.length = BUFFER_SIZE;

/* Attach the crypto session to the operation */
rte_crypto_op_attach_sym_session(op, session);

}

/* Enqueue the crypto operations in the crypto device. */
uint16_t num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, 0,

crypto_ops, BURST_SIZE);

/*
* Dequeue the crypto operations until all the operations

* are processed in the crypto device.

*/
uint16_t num_dequeued_ops, total_num_dequeued_ops = 0;
do {

struct rte_crypto_op *dequeued_ops[BURST_SIZE];
num_dequeued_ops = rte_cryptodev_dequeue_burst(cdev_id, 0,

dequeued_ops, BURST_SIZE);
total_num_dequeued_ops += num_dequeued_ops;

/* Check if operation was processed successfully */
for (i = 0; i < num_dequeued_ops; i++) {

if (dequeued_ops[i]->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
rte_exit(EXIT_FAILURE,

"Some operations were not processed correctly");
}

rte_mempool_put_bulk(crypto_op_pool, (void **)dequeued_ops,
num_dequeued_ops);

} while (total_num_dequeued_ops < num_enqueued_ops);

17.7. Sample code 176



Programmer’s Guide, Release 20.08.0

17.8 Asymmetric Cryptography

The cryptodev library currently provides support for the following asymmetric Crypto operations; RSA,
Modular exponentiation and inversion, Diffie-Hellman public and/or private key generation and shared
secret compute, DSA Signature generation and verification.

17.8.1 Session and Session Management

Sessions are used in asymmetric cryptographic processing to store the immutable data defined in asym-
metric cryptographic transform which is further used in the operation processing. Sessions typically
stores information, such as, public and private key information or domain params or prime modulus data
i.e. immutable across data sets. Crypto sessions cache this immutable data in a optimal way for the
underlying PMD and this allows further acceleration of the offload of Crypto workloads.

Like symmetric, the Crypto device framework provides APIs to allocate and initialize asymmetric ses-
sions for crypto devices, where sessions are mempool objects. It is the application’s responsibility to
create and manage the session mempools. Application using both symmetric and asymmetric sessions
should allocate and maintain different sessions pools for each type.

An application can use rte_cryptodev_get_asym_session_private_size() to get the
private size of asymmetric session on a given crypto device. This function would allow an application
to calculate the max device asymmetric session size of all crypto devices to create a single session
mempool. If instead an application creates multiple asymmetric session mempools, the Crypto device
framework also provides rte_cryptodev_asym_get_header_session_size() to get the
size of an uninitialized session.

Once the session mempools have been created, rte_cryptodev_asym_session_create() is
used to allocate an uninitialized asymmetric session from the given mempool. The session then must
be initialized using rte_cryptodev_asym_session_init() for each of the required crypto
devices. An asymmetric transform chain is used to specify the operation and its parameters. See the
section below for details on transforms.

When a session is no longer used, user must call rte_cryptodev_asym_session_clear() for
each of the crypto devices that are using the session, to free all driver private asymmetric session data.
Once this is done, session should be freed using rte_cryptodev_asym_session_free()which
returns them to their mempool.

17.8.2 Asymmetric Sessionless Support

Asymmetric crypto framework supports session-less operations as well.

Fields that should be set by user are:

Member xform of struct rte_crypto_asym_op should point to the user created rte_crypto_asym_xform.
Note that rte_crypto_asym_xform should be immutable for the lifetime of associated crypto_op.

Member sess_type of rte_crypto_op should also be set to RTE_CRYPTO_OP_SESSIONLESS.

17.8.3 Transforms and Transform Chaining

Asymmetric Crypto transforms (rte_crypto_asym_xform) are the mechanism used to specify the
details of the asymmetric Crypto operation. Next pointer within xform allows transform to be chained

17.8. Asymmetric Cryptography 177



Programmer’s Guide, Release 20.08.0

together. Also it is important to note that the order in which the transforms are passed indicates the order
of the chaining. Allocation of the xform structure is in the application domain. To allow future API
extensions in a backwardly compatible manner, e.g. addition of a new parameter, the application should
zero the full xform struct before populating it.

Not all asymmetric crypto xforms are supported for chaining. Currently supported asymmetric crypto
chaining is Diffie-Hellman private key generation followed by public generation. Also, currently API
does not support chaining of symmetric and asymmetric crypto xforms.

Each xform defines specific asymmetric crypto algo. Currently supported are: * RSA * Modular op-
erations (Exponentiation and Inverse) * Diffie-Hellman * DSA * None - special case where PMD may
support a passthrough mode. More for diagnostic purpose

See DPDK API Reference for details on each rte_crypto_xxx_xform struct

17.8.4 Asymmetric Operations

The asymmetric Crypto operation structure contains all the mutable data relating to asymmetric cryp-
tographic processing on an input data buffer. It uses either RSA, Modular, Diffie-Hellman or DSA
operations depending upon session it is attached to.

Every operation must carry a valid session handle which further carries information on xform or xform-
chain to be performed on op. Every xform type defines its own set of operational params in their
respective rte_crypto_xxx_op_param struct. Depending on xform information within session, PMD
picks up and process respective op_param struct. Unlike symmetric, asymmetric operations do not use
mbufs for input/output. They operate on data buffer of type rte_crypto_param.

See DPDK API Reference for details on each rte_crypto_xxx_op_param struct

17.9 Asymmetric crypto Sample code

There’s a unit test application test_cryptodev_asym.c inside unit test framework that show how to setup
and process asymmetric operations using cryptodev library.

The following sample code shows the basic steps to compute modular exponentiation using 1024-bit
modulus length using openssl PMD available in DPDK (performing other crypto operations is similar
except change to respective op and xform setup).

/*
* Simple example to compute modular exponentiation with 1024-bit key

*
*/

#define MAX_ASYM_SESSIONS 10
#define NUM_ASYM_BUFS 10

struct rte_mempool *crypto_op_pool, *asym_session_pool;
unsigned int asym_session_size;
int ret;

/* Initialize EAL. */
ret = rte_eal_init(argc, argv);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");

uint8_t socket_id = rte_socket_id();

17.9. Asymmetric crypto Sample code 178



Programmer’s Guide, Release 20.08.0

/* Create crypto operation pool. */
crypto_op_pool = rte_crypto_op_pool_create(

"crypto_op_pool",
RTE_CRYPTO_OP_TYPE_ASYMMETRIC,
NUM_ASYM_BUFS, 0, 0,
socket_id);

if (crypto_op_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");

/* Create the virtual crypto device. */
char args[128];
const char *crypto_name = "crypto_openssl";
snprintf(args, sizeof(args), "socket_id=%d", socket_id);
ret = rte_vdev_init(crypto_name, args);
if (ret != 0)

rte_exit(EXIT_FAILURE, "Cannot create virtual device");

uint8_t cdev_id = rte_cryptodev_get_dev_id(crypto_name);

/* Get private asym session data size. */
asym_session_size = rte_cryptodev_get_asym_private_session_size(cdev_id);

/*
* Create session mempool, with two objects per session,

* one for the session header and another one for the

* private asym session data for the crypto device.

*/
asym_session_pool = rte_mempool_create("asym_session_pool",

MAX_ASYM_SESSIONS * 2,
asym_session_size,
0,
0, NULL, NULL, NULL,
NULL, socket_id,
0);

/* Configure the crypto device. */
struct rte_cryptodev_config conf = {

.nb_queue_pairs = 1,

.socket_id = socket_id
};
struct rte_cryptodev_qp_conf qp_conf = {

.nb_descriptors = 2048
};

if (rte_cryptodev_configure(cdev_id, &conf) < 0)
rte_exit(EXIT_FAILURE, "Failed to configure cryptodev %u", cdev_id);

if (rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
socket_id, asym_session_pool) < 0)

rte_exit(EXIT_FAILURE, "Failed to setup queue pair\n");

if (rte_cryptodev_start(cdev_id) < 0)
rte_exit(EXIT_FAILURE, "Failed to start device\n");

/* Setup crypto xform to do modular exponentiation with 1024 bit

* length modulus

*/
struct rte_crypto_asym_xform modex_xform = {

.next = NULL,

.xform_type = RTE_CRYPTO_ASYM_XFORM_MODEX,

.modex = {
.modulus = {

.data =

17.9. Asymmetric crypto Sample code 179



Programmer’s Guide, Release 20.08.0

(uint8_t *)
("\xb3\xa1\xaf\xb7\x13\x08\x00\x0a\x35\xdc\x2b\x20\x8d"
"\xa1\xb5\xce\x47\x8a\xc3\x80\xf4\x7d\x4a\xa2\x62\xfd\x61\x7f"
"\xb5\xa8\xde\x0a\x17\x97\xa0\xbf\xdf\x56\x5a\x3d\x51\x56\x4f"
"\x70\x70\x3f\x63\x6a\x44\x5b\xad\x84\x0d\x3f\x27\x6e\x3b\x34"
"\x91\x60\x14\xb9\xaa\x72\xfd\xa3\x64\xd2\x03\xa7\x53\x87\x9e"
"\x88\x0b\xc1\x14\x93\x1a\x62\xff\xb1\x5d\x74\xcd\x59\x63\x18"
"\x11\x3d\x4f\xba\x75\xd4\x33\x4e\x23\x6b\x7b\x57\x44\xe1\xd3"
"\x03\x13\xa6\xf0\x8b\x60\xb0\x9e\xee\x75\x08\x9d\x71\x63\x13"
"\xcb\xa6\x81\x92\x14\x03\x22\x2d\xde\x55"),
.length = 128

},
.exponent = {

.data = (uint8_t *)("\x01\x00\x01"),

.length = 3
}

}
};
/* Create asym crypto session and initialize it for the crypto device. */
struct rte_cryptodev_asym_session *asym_session;
asym_session = rte_cryptodev_asym_session_create(asym_session_pool);
if (asym_session == NULL)

rte_exit(EXIT_FAILURE, "Session could not be created\n");

if (rte_cryptodev_asym_session_init(cdev_id, asym_session,
&modex_xform, asym_session_pool) < 0)

rte_exit(EXIT_FAILURE, "Session could not be initialized "
"for the crypto device\n");

/* Get a burst of crypto operations. */
struct rte_crypto_op *crypto_ops[1];
if (rte_crypto_op_bulk_alloc(crypto_op_pool,

RTE_CRYPTO_OP_TYPE_ASYMMETRIC,
crypto_ops, 1) == 0)

rte_exit(EXIT_FAILURE, "Not enough crypto operations available\n");

/* Set up the crypto operations. */
struct rte_crypto_asym_op *asym_op = crypto_ops[0]->asym;

/* calculate mod exp of value 0xf8 */
static unsigned char base[] = {0xF8};
asym_op->modex.base.data = base;
asym_op->modex.base.length = sizeof(base);

asym_op->modex.base.iova = base;

/* Attach the asym crypto session to the operation */
rte_crypto_op_attach_asym_session(op, asym_session);

/* Enqueue the crypto operations in the crypto device. */
uint16_t num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, 0,

crypto_ops, 1);

/*
* Dequeue the crypto operations until all the operations

* are processed in the crypto device.

*/
uint16_t num_dequeued_ops, total_num_dequeued_ops = 0;
do {

struct rte_crypto_op *dequeued_ops[1];
num_dequeued_ops = rte_cryptodev_dequeue_burst(cdev_id, 0,

dequeued_ops, 1);
total_num_dequeued_ops += num_dequeued_ops;

17.9. Asymmetric crypto Sample code 180



Programmer’s Guide, Release 20.08.0

/* Check if operation was processed successfully */
if (dequeued_ops[0]->status != RTE_CRYPTO_OP_STATUS_SUCCESS)

rte_exit(EXIT_FAILURE,
"Some operations were not processed correctly");

} while (total_num_dequeued_ops < num_enqueued_ops);

17.9.1 Asymmetric Crypto Device API

The cryptodev Library API is described in the DPDK API Reference

17.9. Asymmetric crypto Sample code 181

https://doc.dpdk.org/api/


CHAPTER

EIGHTEEN

COMPRESSION DEVICE LIBRARY

The compression framework provides a generic set of APIs to perform compression services as well as
to query and configure compression devices both physical(hardware) and virtual(software) to perform
those services. The framework currently only supports lossless compression schemes: Deflate and LZS.

18.1 Device Management

18.1.1 Device Creation

Physical compression devices are discovered during the bus probe of the EAL function which is executed
at DPDK initialization, based on their unique device identifier. For e.g. PCI devices can be identified
using PCI BDF (bus/bridge, device, function). Specific physical compression devices, like other physical
devices in DPDK can be white-listed or black-listed using the EAL command line options.

Virtual devices can be created by two mechanisms, either using the EAL command line options or from
within the application using an EAL API directly.

From the command line using the –vdev EAL option

--vdev '<pmd name>,socket_id=0'

Note:

• If DPDK application requires multiple software compression PMD devices then required number
of --vdev with appropriate libraries are to be added.

• An Application with multiple compression device instances exposed by the same PMD must spec-
ify a unique name for each device.

Example: --vdev 'pmd0' --vdev 'pmd1'

Or, by using the rte_vdev_init API within the application code.

rte_vdev_init("<pmd_name>","socket_id=0")

All virtual compression devices support the following initialization parameters:

• socket_id - socket on which to allocate the device resources on.

18.1.2 Device Identification

Each device, whether virtual or physical is uniquely designated by two identifiers:

182



Programmer’s Guide, Release 20.08.0

• A unique device index used to designate the compression device in all functions exported by the
compressdev API.

• A device name used to designate the compression device in console messages, for administration
or debugging purposes.

18.1.3 Device Configuration

The configuration of each compression device includes the following operations:

• Allocation of resources, including hardware resources if a physical device.

• Resetting the device into a well-known default state.

• Initialization of statistics counters.

The rte_compressdev_configure API is used to configure a compression device.

The rte_compressdev_config structure is used to pass the configuration parameters.

See DPDK API Reference for details.

18.1.4 Configuration of Queue Pairs

Each compression device queue pair is individually configured through the
rte_compressdev_queue_pair_setup API.

The max_inflight_ops is used to pass maximum number of rte_comp_op that could be present in
a queue at-a-time. PMD then can allocate resources accordingly on a specified socket.

See DPDK API Reference for details.

18.1.5 Logical Cores, Memory and Queues Pair Relationships

Library supports NUMA similarly as described in Cryptodev library section.

A queue pair cannot be shared and should be exclusively used by a single processing context for enqueu-
ing operations or dequeuing operations on the same compression device since sharing would require
global locks and hinder performance. It is however possible to use a different logical core to dequeue an
operation on a queue pair from the logical core on which it was enqueued. This means that a compres-
sion burst enqueue/dequeue APIs are a logical place to transition from one logical core to another in a
data processing pipeline.

18.2 Device Features and Capabilities

Compression devices define their functionality through two mechanisms, global device features and
algorithm features. Global devices features identify device wide level features which are applicable to
the whole device such as supported hardware acceleration and CPU features. List of compression device
features can be seen in the RTE_COMPDEV_FF_XXX macros.

The algorithm features lists individual algo feature which device supports per-algorithm, such as a state-
ful compression/decompression, checksums operation etc. List of algorithm features can be seen in the
RTE_COMP_FF_XXX macros.

18.2. Device Features and Capabilities 183



Programmer’s Guide, Release 20.08.0

18.2.1 Capabilities

Each PMD has a list of capabilities, including algorithms listed in enum rte_comp_algorithm
and its associated feature flag and sliding window range in log base 2 value. Sliding window tells the
minimum and maximum size of lookup window that algorithm uses to find duplicates.

See DPDK API Reference for details.

Each Compression poll mode driver defines its array of capabilities for each algorithm it supports. See
PMD implementation for capability initialization.

18.2.2 Capabilities Discovery

PMD capability and features are discovered via rte_compressdev_info_get function.

The rte_compressdev_info structure contains all the relevant information for the device.

See DPDK API Reference for details.

18.3 Compression Operation

DPDK compression supports two types of compression methodologies:

• Stateless, data associated to a compression operation is compressed without any reference to an-
other compression operation.

• Stateful, data in each compression operation is compressed with reference to previous compres-
sion operations in the same data stream i.e. history of data is maintained between the operations.

For more explanation, please refer RFC https://www.ietf.org/rfc/rfc1951.txt

18.3.1 Operation Representation

Compression operation is described via struct rte_comp_op, which contains both input and out-
put data. The operation structure includes the operation type (stateless or stateful), the operation status
and the priv_xform/stream handle, source, destination and checksum buffer pointers. It also contains the
source mempool from which the operation is allocated. PMD updates consumed field with amount of
data read from source buffer and produced field with amount of data of written into destination buffer
along with status of operation. See section Produced, Consumed And Operation Status for more details.

Compression operations mempool also has an ability to allocate private memory with the operation for
application’s purposes. Application software is responsible for specifying all the operation specific fields
in the rte_comp_op structure which are then used by the compression PMD to process the requested
operation.

18.3.2 Operation Management and Allocation

The compressdev library provides an API set for managing compression operations which utilize the
Mempool Library to allocate operation buffers. Therefore, it ensures that the compression operation is
interleaved optimally across the channels and ranks for optimal processing.

A rte_comp_op contains a field indicating the pool it originated from.

18.3. Compression Operation 184

https://www.ietf.org/rfc/rfc1951.txt


Programmer’s Guide, Release 20.08.0

rte_comp_op_alloc() and rte_comp_op_bulk_alloc() are used to allocate compression
operations from a given compression operation mempool. The operation gets reset before being returned
to a user so that operation is always in a good known state before use by the application.

rte_comp_op_free() is called by the application to return an operation to its allocating pool.

See DPDK API Reference for details.

18.3.3 Passing source data as mbuf-chain

If input data is scattered across several different buffers, then Application can either parse through all
such buffers and make one mbuf-chain and enqueue it for processing or, alternatively, it can make
multiple sequential enqueue_burst() calls for each of them processing them statefully. See Compression
API Stateful Operation for stateful processing of ops.

18.3.4 Operation Status

Each operation carries a status information updated by PMD after it is processed. Following are currently
supported:

• RTE_COMP_OP_STATUS_SUCCESS, Operation is successfully completed

• RTE_COMP_OP_STATUS_NOT_PROCESSED, Operation has not yet been processed by the
device

• RTE_COMP_OP_STATUS_INVALID_ARGS, Operation failed due to invalid arguments in
request

• RTE_COMP_OP_STATUS_ERROR, Operation failed because of internal error

• RTE_COMP_OP_STATUS_INVALID_STATE, Operation is invoked in invalid state

• RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED, Output buffer ran out of
space during processing. Error case, PMD cannot continue from here.

• RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE, Output buffer ran out of
space before operation completed, but this is not an error case. Output data up to op.produced
can be used and next op in the stream should continue on from op.consumed+1.

18.3.5 Operation status after enqueue / dequeue

Some of the above values may arise in the op after an rte_compressdev_enqueue_burst(). If
number ops enqueued < number ops requested then the app should check the op.status of nb_enqd+1.
If status is RTE_COMP_OP_STATUS_NOT_PROCESSED, it likely indicates a full-queue case for a
hardware device and a retry after dequeuing some ops is likely to be successful. If the op holds any
other status, e.g. RTE_COMP_OP_STATUS_INVALID_ARGS, a retry with the same op is unlikely to
be successful.

18.3.6 Produced, Consumed And Operation Status

• If status is RTE_COMP_OP_STATUS_SUCCESS, consumed = amount of data read from in-
put buffer, and produced = amount of data written in destination buffer

• If status is RTE_COMP_OP_STATUS_ERROR, consumed = produced = undefined

18.3. Compression Operation 185



Programmer’s Guide, Release 20.08.0

• If status is RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED, consumed = 0
and produced = usually 0, but in decompression cases a PMD may return > 0 i.e. amount of
data successfully produced until out of space condition hit. Application can consume output
data in this case, if required.

• If status is RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE, consumed =
amount of data read, and produced = amount of data successfully produced until out of
space condition hit. PMD has ability to recover from here, so application can submit next op
from consumed+1 and a destination buffer with available space.

18.4 Transforms

Compression transforms (rte_comp_xform) are the mechanism to specify the details of the com-
pression operation such as algorithm, window size and checksum.

18.5 Compression API Hash support

Compression API allows application to enable digest calculation alongside compression and decom-
pression of data. A PMD reflects its support for hash algorithms via capability algo feature flags. If
supported, PMD calculates digest always on plaintext i.e. before compression and after decompression.

Currently supported list of hash algos are SHA-1 and SHA2 family SHA256.

See DPDK API Reference for details.

If required, application should set valid hash algo in compress or de-
compress xforms during rte_compressdev_stream_create() or
rte_compressdev_private_xform_create() and pass a valid output buffer in
rte_comp_op hash field struct to store the resulting digest. Buffer passed should be contigu-
ous and large enough to store digest which is 20 bytes for SHA-1 and 32 bytes for SHA2-256.

18.6 Compression API Stateless operation

An op is processed stateless if it has - op_type set to RTE_COMP_OP_STATELESS - flush value set to
RTE_COMP_FLUSH_FULL or RTE_COMP_FLUSH_FINAL (required only on compression side), -
All required input in source buffer

When all of the above conditions are met, PMD initiates stateless processing and releases acquired
resources after processing of current operation is complete. Application can enqueue multiple stateless
ops in a single burst and must attach priv_xform handle to such ops.

18.6.1 priv_xform in Stateless operation

priv_xform is PMD internally managed private data that it maintains to do stateless processing.
priv_xforms are initialized provided a generic xform structure by an application via making call to
rte_compressdev_private_xform_create, at an output PMD returns an opaque priv_xform
reference. If PMD support SHAREABLE priv_xform indicated via algorithm feature flag, then appli-
cation can attach same priv_xform with many stateless ops at-a-time. If not, then application needs to
create as many priv_xforms as it expects to have stateless operations in-flight.

18.4. Transforms 186



Programmer’s Guide, Release 20.08.0

oppriv_xform

oppriv_xform

oppriv_xform

Fig. 18.1: Stateless Ops using Non-Shareable priv_xform

priv_xform

op

op

op

op

Fig. 18.2: Stateless Ops using Shareable priv_xform

18.6. Compression API Stateless operation 187



Programmer’s Guide, Release 20.08.0

Application should call rte_compressdev_private_xform_create()
and attach to stateless op before enqueuing them for processing and free via
rte_compressdev_private_xform_free() during termination.

An example pseudocode to setup and process NUM_OPS stateless ops with each of length OP_LEN
using priv_xform would look like:

/*
* pseudocode for stateless compression

*/

uint8_t cdev_id = rte_compressdev_get_dev_id(<pmd name>);

/* configure the device. */
if (rte_compressdev_configure(cdev_id, &conf) < 0)

rte_exit(EXIT_FAILURE, "Failed to configure compressdev %u", cdev_id);

if (rte_compressdev_queue_pair_setup(cdev_id, 0, NUM_MAX_INFLIGHT_OPS,
socket_id()) < 0)

rte_exit(EXIT_FAILURE, "Failed to setup queue pair\n");

if (rte_compressdev_start(cdev_id) < 0)
rte_exit(EXIT_FAILURE, "Failed to start device\n");

/* setup compress transform */
struct rte_comp_xform compress_xform = {

.type = RTE_COMP_COMPRESS,

.compress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.deflate = {

.huffman = RTE_COMP_HUFFMAN_DEFAULT
},
.level = RTE_COMP_LEVEL_PMD_DEFAULT,
.chksum = RTE_COMP_CHECKSUM_NONE,
.window_size = DEFAULT_WINDOW_SIZE,
.hash_algo = RTE_COMP_HASH_ALGO_NONE

}
};

/* create priv_xform and initialize it for the compression device. */
rte_compressdev_info dev_info;
void *priv_xform = NULL;
int shareable = 1;
rte_compressdev_info_get(cdev_id, &dev_info);
if (dev_info.capabilities->comp_feature_flags & RTE_COMP_FF_SHAREABLE_PRIV_XFORM) {

rte_compressdev_private_xform_create(cdev_id, &compress_xform, &priv_xform);
} else {

shareable = 0;
}

/* create operation pool via call to rte_comp_op_pool_create and alloc ops */
struct rte_comp_op *comp_ops[NUM_OPS];
rte_comp_op_bulk_alloc(op_pool, comp_ops, NUM_OPS);

/* prepare ops for compression operations */
for (i = 0; i < NUM_OPS; i++) {

struct rte_comp_op *op = comp_ops[i];
if (!shareable)

rte_compressdev_private_xform_create(cdev_id, &compress_xform, &op->priv_xform)
else

op->private_xform = priv_xform;
op->op_type = RTE_COMP_OP_STATELESS;
op->flush_flag = RTE_COMP_FLUSH_FINAL;

18.6. Compression API Stateless operation 188



Programmer’s Guide, Release 20.08.0

op->src.offset = 0;
op->dst.offset = 0;
op->src.length = OP_LEN;
op->input_chksum = 0;
setup op->m_src and op->m_dst;

}
num_enqd = rte_compressdev_enqueue_burst(cdev_id, 0, comp_ops, NUM_OPS);
/* wait for this to complete before enqueuing next*/
do {

num_deque = rte_compressdev_dequeue_burst(cdev_id, 0 , &processed_ops, NUM_OPS);
} while (num_dqud < num_enqd);

18.6.2 Stateless and OUT_OF_SPACE

OUT_OF_SPACE is a condition when output buffer runs out of space and where PMD
still has more data to produce. If PMD runs into such condition, then PMD returns
RTE_COMP_OP_OUT_OF_SPACE_TERMINATED error. In such case, PMD resets itself and can
set consumed=0 and produced=amount of output it could produce before hitting out_of_space. Appli-
cation would need to resubmit the whole input with a larger output buffer, if it wants the operation to be
completed.

18.6.3 Hash in Stateless

If hash is enabled, digest buffer will contain valid data after op is successfully processed i.e. dequeued
with status = RTE_COMP_OP_STATUS_SUCCESS.

18.6.4 Checksum in Stateless

If checksum is enabled, checksum will only be available after op is successfully processed i.e. dequeued
with status = RTE_COMP_OP_STATUS_SUCCESS.

18.7 Compression API Stateful operation

Compression API provide RTE_COMP_FF_STATEFUL_COMPRESSION and
RTE_COMP_FF_STATEFUL_DECOMPRESSION feature flag for PMD to reflect its support for
Stateful operations.

A Stateful operation in DPDK compression means application invokes enqueue burst() multiple times
to process related chunk of data because application broke data into several ops.

In such case - ops are setup with op_type RTE_COMP_OP_STATEFUL, - all ops ex-
cept last set to flush value = RTE_COMP_FLUSH_NONE/SYNC and last set to flush value
RTE_COMP_FLUSH_FULL/FINAL.

In case of either one or all of the above conditions, PMD initiates stateful processing and releases
acquired resources after processing operation with flush value = RTE_COMP_FLUSH_FULL/FINAL
is complete. Unlike stateless, application can enqueue only one stateful op from a particular stream at a
time and must attach stream handle to each op.

18.7. Compression API Stateful operation 189



Programmer’s Guide, Release 20.08.0

18.7.1 Stream in Stateful operation

stream in DPDK compression is a logical entity which identifies related set of ops, say, a one large file
broken into multiple chunks then file is represented by a stream and each chunk of that file is represented
by compression op rte_comp_op. Whenever application wants a stateful processing of such data, then it
must get a stream handle via making call to rte_compressdev_stream_create() with xform,
at an output the target PMD will return an opaque stream handle to application which it must attach to
all of the ops carrying data of that stream. In stateful processing, every op requires previous op data for
compression/decompression. A PMD allocates and set up resources such as history, states, etc. within a
stream, which are maintained during the processing of the related ops.

Unlike priv_xforms, stream is always a NON_SHAREABLE entity. One stream handle must be attached
to only one set of related ops and cannot be reused until all of them are processed with status Success or
failure.

stream

op

op

op

op

Fig. 18.3: Stateful Ops

Application should call rte_compressdev_stream_create() and attach to op before enqueu-
ing them for processing and free via rte_compressdev_stream_free() during termination. All
ops that are to be processed statefully should carry same stream.

See DPDK API Reference document for details.

An example pseudocode to set up and process a stream having NUM_CHUNKS with each chunk size
of CHUNK_LEN would look like:

/*
* pseudocode for stateful compression

*/

uint8_t cdev_id = rte_compressdev_get_dev_id(<pmd name>);

/* configure the device. */
if (rte_compressdev_configure(cdev_id, &conf) < 0)

rte_exit(EXIT_FAILURE, "Failed to configure compressdev %u", cdev_id);

if (rte_compressdev_queue_pair_setup(cdev_id, 0, NUM_MAX_INFLIGHT_OPS,
socket_id()) < 0)

rte_exit(EXIT_FAILURE, "Failed to setup queue pair\n");

if (rte_compressdev_start(cdev_id) < 0)
rte_exit(EXIT_FAILURE, "Failed to start device\n");

/* setup compress transform. */
struct rte_comp_xform compress_xform = {

.type = RTE_COMP_COMPRESS,

.compress = {
.algo = RTE_COMP_ALGO_DEFLATE,
.deflate = {

.huffman = RTE_COMP_HUFFMAN_DEFAULT

18.7. Compression API Stateful operation 190



Programmer’s Guide, Release 20.08.0

},
.level = RTE_COMP_LEVEL_PMD_DEFAULT,
.chksum = RTE_COMP_CHECKSUM_NONE,
.window_size = DEFAULT_WINDOW_SIZE,
.hash_algo = RTE_COMP_HASH_ALGO_NONE

}
};

/* create stream */
void *stream;
rte_compressdev_stream_create(cdev_id, &compress_xform, &stream);

/* create an op pool and allocate ops */
rte_comp_op_bulk_alloc(op_pool, comp_ops, NUM_CHUNKS);

/* Prepare source and destination mbufs for compression operations */
unsigned int i;
for (i = 0; i < NUM_CHUNKS; i++) {

if (rte_pktmbuf_append(mbufs[i], CHUNK_LEN) == NULL)
rte_exit(EXIT_FAILURE, "Not enough room in the mbuf\n");

comp_ops[i]->m_src = mbufs[i];
if (rte_pktmbuf_append(dst_mbufs[i], CHUNK_LEN) == NULL)

rte_exit(EXIT_FAILURE, "Not enough room in the mbuf\n");
comp_ops[i]->m_dst = dst_mbufs[i];

}

/* Set up the compress operations. */
for (i = 0; i < NUM_CHUNKS; i++) {

struct rte_comp_op *op = comp_ops[i];
op->stream = stream;
op->m_src = src_buf[i];
op->m_dst = dst_buf[i];
op->op_type = RTE_COMP_OP_STATEFUL;
if (i == NUM_CHUNKS-1) {

/* set to final, if last chunk*/
op->flush_flag = RTE_COMP_FLUSH_FINAL;

} else {
/* set to NONE, for all intermediary ops */
op->flush_flag = RTE_COMP_FLUSH_NONE;

}
op->src.offset = 0;
op->dst.offset = 0;
op->src.length = CHUNK_LEN;
op->input_chksum = 0;
num_enqd = rte_compressdev_enqueue_burst(cdev_id, 0, &op[i], 1);
/* wait for this to complete before enqueuing next*/
do {

num_deqd = rte_compressdev_dequeue_burst(cdev_id, 0 , &processed_ops, 1);
} while (num_deqd < num_enqd);
/* analyze the amount of consumed and produced data before pushing next op*/

}

18.7.2 Stateful and OUT_OF_SPACE

If PMD supports stateful operation, then OUT_OF_SPACE status is not an actual error for the PMD. In
such case, PMD returns with status RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE
with consumed = number of input bytes read and produced = length of complete output buffer. Appli-
cation should enqueue next op with source starting at consumed+1 and an output buffer with available
space.

18.7. Compression API Stateful operation 191



Programmer’s Guide, Release 20.08.0

18.7.3 Hash in Stateful

If enabled, digest buffer will contain valid digest after last op in stream (having flush
= RTE_COMP_FLUSH_FINAL) is successfully processed i.e. dequeued with status =
RTE_COMP_OP_STATUS_SUCCESS.

18.7.4 Checksum in Stateful

If enabled, checksum will only be available after last op in stream (having flush =
RTE_COMP_FLUSH_FINAL) is successfully processed i.e. dequeued with status =
RTE_COMP_OP_STATUS_SUCCESS.

18.8 Burst in compression API

Scheduling of compression operations on DPDK’s application data path is performed using a burst ori-
ented asynchronous API set. A queue pair on a compression device accepts a burst of compression
operations using enqueue burst API. On physical devices the enqueue burst API will place the opera-
tions to be processed on the device’s hardware input queue, for virtual devices the processing of the
operations is usually completed during the enqueue call to the compression device. The dequeue burst
API will retrieve any processed operations available from the queue pair on the compression device,
from physical devices this is usually directly from the devices processed queue, and for virtual device’s
from a rte_ring where processed operations are placed after being processed on the enqueue call.

A burst in DPDK compression can be a combination of stateless and stateful operations with a condition
that for stateful ops only one op at-a-time should be enqueued from a particular stream i.e. no-two ops
should belong to same stream in a single burst. However a burst may contain multiple stateful ops as
long as each op is attached to a different stream i.e. a burst can look like:

enqueue_burst op1.no_flush op2.no_flush op3.flush_final op4.no_flush op5.no_flush

Where, op1 .. op5 all belong to different independent data units. op1, op2, op4, op5 must be stateful as
stateless ops can only use flush full or final and op3 can be of type stateless or stateful. Every op with
type set to RTE_COMP_OP_STATELESS must be attached to priv_xform and Every op with type set
to RTE_COMP_OP_STATEFUL must be attached to stream.

Since each operation in a burst is independent and thus can be completed out-of-order, applications
which need ordering, should setup per-op user data area with reordering information so that it can
determine enqueue order at dequeue.

Also if multiple threads calls enqueue_burst() on same queue pair then it’s application onus to use proper
locking mechanism to ensure exclusive enqueuing of operations.

18.8.1 Enqueue / Dequeue Burst APIs

The burst enqueue API uses a compression device identifier and a queue pair identifier to specify the
compression device queue pair to schedule the processing on. The nb_ops parameter is the number of
operations to process which are supplied in the ops array of rte_comp_op structures. The enqueue
function returns the number of operations it actually enqueued for processing, a return value equal to
nb_ops means that all packets have been enqueued.

The dequeue API uses the same format as the enqueue API but the nb_ops and ops parameters are
now used to specify the max processed operations the user wishes to retrieve and the location in which

18.8. Burst in compression API 192



Programmer’s Guide, Release 20.08.0

to store them. The API call returns the actual number of processed operations returned, this can never
be larger than nb_ops.

18.9 Sample code

There are unit test applications that show how to use the compressdev library inside
app/test/test_compressdev.c

18.9.1 Compression Device API

The compressdev Library API is described in the DPDK API Reference document.

18.9. Sample code 193



CHAPTER

NINETEEN

REGEX DEVICE LIBRARY

The RegEx library provides a RegEx device framework for management and provisioning of hardware
and software RegEx poll mode drivers, defining generic APIs which support a number of different RegEx
operations.

19.1 Design Principles

The RegEx library follows the same basic principles as those used in DPDK’s Ethernet Device frame-
work and the Crypto framework. The RegEx framework provides a generic Crypto device framework
which supports both physical (hardware) and virtual (software) RegEx devices as well as a generic
RegEx API which allows RegEx devices to be managed and configured and supports RegEx operations
to be provisioned on RegEx poll mode driver.

19.2 Device Management

19.2.1 Device Creation

Physical RegEx devices are discovered during the PCI probe/enumeration of the EAL function which is
executed at DPDK initialization, based on their PCI device identifier, each unique PCI BDF (bus/bridge,
device, function). Specific physical ReEx devices, like other physical devices in DPDK can be white-
listed or black-listed using the EAL command line options.

19.2.2 Device Identification

Each device, whether virtual or physical is uniquely designated by two identifiers:

• A unique device index used to designate the RegEx device in all functions exported by the
regexdev API.

• A device name used to designate the RegEx device in console messages, for administration or
debugging purposes.

19.2.3 Device Configuration

The configuration of each RegEx device includes the following operations:

• Allocation of resources, including hardware resources if a physical device.

194



Programmer’s Guide, Release 20.08.0

• Resetting the device into a well-known default state.

• Initialization of statistics counters.

The rte_regexdev_configure API is used to configure a RegEx device.

int rte_regexdev_configure(uint8_t dev_id,
const struct rte_regexdev_config *cfg);

The rte_regexdev_config structure is used to pass the configuration parameters for the RegEx
device for example number of queue pairs, number of groups, max number of matches and so on.

struct rte_regexdev_config {
uint16_t nb_max_matches;
/**< Maximum matches per scan configured on this device.

* This value cannot exceed the *max_matches*
* which previously provided in rte_regexdev_info_get().

* The value 0 is allowed, in which case, value 1 used.

* @see struct rte_regexdev_info::max_matches

*/
uint16_t nb_queue_pairs;
/**< Number of RegEx queue pairs to configure on this device.

* This value cannot exceed the *max_queue_pairs* which previously

* provided in rte_regexdev_info_get().

* @see struct rte_regexdev_info::max_queue_pairs

*/
uint32_t nb_rules_per_group;
/**< Number of rules per group to configure on this device.

* This value cannot exceed the *max_rules_per_group*
* which previously provided in rte_regexdev_info_get().

* The value 0 is allowed, in which case,

* struct rte_regexdev_info::max_rules_per_group used.

* @see struct rte_regexdev_info::max_rules_per_group

*/
uint16_t nb_groups;
/**< Number of groups to configure on this device.

* This value cannot exceed the *max_groups*
* which previously provided in rte_regexdev_info_get().

* @see struct rte_regexdev_info::max_groups

*/
const char *rule_db;
/**< Import initial set of prebuilt rule database on this device.

* The value NULL is allowed, in which case, the device will not

* be configured prebuilt rule database. Application may use

* rte_regexdev_rule_db_update() or rte_regexdev_rule_db_import() API

* to update or import rule database after the

* rte_regexdev_configure().

* @see rte_regexdev_rule_db_update(), rte_regexdev_rule_db_import()

*/
uint32_t rule_db_len;
/**< Length of *rule_db* buffer. */
uint32_t dev_cfg_flags;
/**< RegEx device configuration flags, See RTE_REGEXDEV_CFG_* */

};

19.2.4 Configuration of Rules Database

Each Regex device should be configured with the rule database. There are two modes of setting the rule
database, online or offline. The online mode means, that the rule database in being compiled by the
RegEx PMD while in the offline mode the rule database is compiled by external compiler, and is being
loaded to the PMD as a buffer. The configuration mode is depended on the PMD capabilities.

19.2. Device Management 195



Programmer’s Guide, Release 20.08.0

Online rule configuration is done using the following API functions:
rte_regexdev_rule_db_update which add / remove rules from the rules precomplied
list, and rte_regexdev_rule_db_compile_activate which compile the rules and loads
them to the RegEx HW.

Offline rule configuration can be done by adding a pointer to the compiled rule database in the configu-
ration step, or by using rte_regexdev_rule_db_import API.

19.2.5 Configuration of Queue Pairs

Each RegEx device can be configured with number of queue pairs. Each queue pair is configured using
rte_regexdev_queue_pair_setup

19.2.6 Logical Cores, Memory and Queues Pair Relationships

Multiple logical cores should never share the same queue pair for enqueuing operations or dequeuing
operations on the same RegEx device since this would require global locks and hinder performance.

19.3 Device Features and Capabilities

RegEx devices may support different feature set. In order to get the supported PMD feature
rte_regexdev_info_get API which return the info of the device and it’s supported features.

19.3.1 Enqueue / Dequeue Burst APIs

The burst enqueue API uses a RegEx device identifier and a queue pair identifier to specify the device
queue pair to schedule the processing on. The nb_ops parameter is the number of operations to process
which are supplied in the ops array of rte_regex_ops structures. The enqueue function returns the
number of operations it actually enqueued for processing, a return value equal to nb_ops means that
all packets have been enqueued.

Data pointed in each op, should not be released until the dequeue of for that op.

The dequeue API uses the same format as the enqueue API of processed but the nb_ops and ops
parameters are now used to specify the max processed operations the user wishes to retrieve and the
location in which to store them. The API call returns the actual number of processed operations returned,
this can never be larger than nb_ops.

19.3. Device Features and Capabilities 196



CHAPTER

TWENTY

SECURITY LIBRARY

The security library provides a framework for management and provisioning of security protocol oper-
ations offloaded to hardware based devices. The library defines generic APIs to create and free security
sessions which can support full protocol offload as well as inline crypto operation with NIC or crypto
devices. The framework currently only supports the IPsec, PDCP and DOCSIS protocols and associated
operations, other protocols will be added in the future.

20.1 Design Principles

The security library provides an additional offload capability to an existing crypto device and/or ethernet
device.

+---------------+
| rte_security |
+---------------+
\ /

+-----------+ +--------------+
| NIC PMD | | CRYPTO PMD |
+-----------+ +--------------+

Note: Currently, the security library does not support the case of multi-process. It will be updated in
the future releases.

The supported offload types are explained in the sections below.

20.1.1 Inline Crypto

RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO: The crypto processing for security protocol
(e.g. IPsec) is processed inline during receive and transmission on NIC port. The flow based security
action should be configured on the port.

Ingress Data path - The packet is decrypted in RX path and relevant crypto status is set in Rx descriptors.
After the successful inline crypto processing the packet is presented to host as a regular Rx packet
however all security protocol related headers are still attached to the packet. e.g. In case of IPsec, the
IPsec tunnel headers (if any), ESP/AH headers will remain in the packet but the received packet contains
the decrypted data where the encrypted data was when the packet arrived. The driver Rx path check the
descriptors and based on the crypto status sets additional flags in the rte_mbuf.ol_flags field.

197



Programmer’s Guide, Release 20.08.0

Note: The underlying device may not support crypto processing for all ingress packet matching to a
particular flow (e.g. fragmented packets), such packets will be passed as encrypted packets. It is the
responsibility of application to process such encrypted packets using other crypto driver instance.

Egress Data path - The software prepares the egress packet by adding relevant security protocol head-
ers. Only the data will not be encrypted by the software. The driver will accordingly configure the tx
descriptors. The hardware device will encrypt the data before sending the packet out.

Note: The underlying device may support post encryption TSO.

Egress Data Path
|

+--------|--------+
| egress IPsec |
| | |
| +------V------+ |
| | SADB lookup | |
| +------|------+ |
| +------V------+ |
| | Tunnel | | <------ Add tunnel header to packet
| +------|------+ |
| +------V------+ |
| | ESP | | <------ Add ESP header without trailer to packet
| | | | <------ Mark packet to be offloaded, add trailer
| +------|------+ | meta-data to mbuf
+--------V--------+

|
+--------V--------+
| L2 Stack |
+--------|--------+

|
+--------V--------+
| |
| NIC PMD | <------ Set hw context for inline crypto offload
| |
+--------|--------+

|
+--------|--------+
| HW ACCELERATED | <------ Packet Encryption and
| NIC | Authentication happens inline
| |
+-----------------+

20.1.2 Inline protocol offload

RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL: The crypto and protocol processing for se-
curity protocol (e.g. IPsec) is processed inline during receive and transmission. The flow based security
action should be configured on the port.

Ingress Data path - The packet is decrypted in the RX path and relevant crypto status is set in the Rx
descriptors. After the successful inline crypto processing the packet is presented to the host as a regular
Rx packet but all security protocol related headers are optionally removed from the packet. e.g. in the
case of IPsec, the IPsec tunnel headers (if any), ESP/AH headers will be removed from the packet and
the received packet will contains the decrypted packet only. The driver Rx path checks the descriptors
and based on the crypto status sets additional flags in rte_mbuf.ol_flags field. The driver would

20.1. Design Principles 198



Programmer’s Guide, Release 20.08.0

also set device-specific metadata in rte_mbuf.udata64 field. This will allow the application to
identify the security processing done on the packet.

Note: The underlying device in this case is stateful. It is expected that the device shall support crypto
processing for all kind of packets matching to a given flow, this includes fragmented packets (post
reassembly). E.g. in case of IPsec the device may internally manage anti-replay etc. It will provide a
configuration option for anti-replay behavior i.e. to drop the packets or pass them to driver with error
flags set in the descriptor.

Egress Data path - The software will send the plain packet without any security protocol headers added
to the packet. The driver will configure the security index and other requirement in tx descriptors. The
hardware device will do security processing on the packet that includes adding the relevant protocol
headers and encrypting the data before sending the packet out. The software should make sure that the
buffer has required head room and tail room for any protocol header addition. The software may also do
early fragmentation if the resultant packet is expected to cross the MTU size.

Note: The underlying device will manage state information required for egress processing. E.g. in case
of IPsec, the seq number will be added to the packet, however the device shall provide indication when
the sequence number is about to overflow. The underlying device may support post encryption TSO.

Egress Data Path
|

+--------|--------+
| egress IPsec |
| | |
| +------V------+ |
| | SADB lookup | |
| +------|------+ |
| +------V------+ |
| | Desc | | <------ Mark packet to be offloaded
| +------|------+ |
+--------V--------+

|
+--------V--------+
| L2 Stack |
+--------|--------+

|
+--------V--------+
| |
| NIC PMD | <------ Set hw context for inline crypto offload
| |
+--------|--------+

|
+--------|--------+
| HW ACCELERATED | <------ Add tunnel, ESP header etc header to
| NIC | packet. Packet Encryption and
| | Authentication happens inline.
+-----------------+

20.1.3 Lookaside protocol offload

RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL: This extends librte_cryptodev to
support the programming of IPsec Security Association (SA) as part of a crypto session creation includ-
ing the definition. In addition to standard crypto processing, as defined by the cryptodev, the security

20.1. Design Principles 199



Programmer’s Guide, Release 20.08.0

protocol processing is also offloaded to the crypto device.

Decryption: The packet is sent to the crypto device for security protocol processing. The device will
decrypt the packet and it will also optionally remove additional security headers from the packet. E.g.
in case of IPsec, IPsec tunnel headers (if any), ESP/AH headers will be removed from the packet and
the decrypted packet may contain plain data only.

Note: In case of IPsec the device may internally manage anti-replay etc. It will provide a configuration
option for anti-replay behavior i.e. to drop the packets or pass them to driver with error flags set in
descriptor.

Encryption: The software will submit the packet to cryptodev as usual for encryption, the hardware
device in this case will also add the relevant security protocol header along with encrypting the packet.
The software should make sure that the buffer has required head room and tail room for any protocol
header addition.

Note: In the case of IPsec, the seq number will be added to the packet, It shall provide an indication
when the sequence number is about to overflow.

Egress Data Path
|

+--------|--------+
| egress IPsec |
| | |
| +------V------+ |
| | SADB lookup | | <------ SA maps to cryptodev session
| +------|------+ |
| +------|------+ |
| | \--------------------\
| | Crypto | | | <- Crypto processing through
| | /----------------\ | inline crypto PMD
| +------|------+ | | |
+--------V--------+ | |

| | |
+--------V--------+ | | create <-- SA is added to hw
| L2 Stack | | | inline using existing create
+--------|--------+ | | session sym session APIs

| | | |
+--------V--------+ +---|---|----V---+
| | | \---/ | | <--- Add tunnel, ESP header etc
| NIC PMD | | INLINE | | header to packet.Packet
| | | CRYPTO PMD | | Encryption/Decryption and
+--------|--------+ +----------------+ Authentication happens

| inline.
+--------|--------+
| NIC |
+--------|--------+

V

20.1.4 PDCP Flow Diagram

Based on 3GPP TS 36.323 Evolved Universal Terrestrial Radio Access (E-UTRA); Packet Data Con-
vergence Protocol (PDCP) specification

Transmitting PDCP Entity Receiving PDCP Entity
| ^

20.1. Design Principles 200



Programmer’s Guide, Release 20.08.0

| +-----------|-----------+
V | In order delivery and |

+---------|----------+ | Duplicate detection |
| Sequence Numbering | | (Data Plane only) |
+---------|----------+ +-----------|-----------+

| |
+---------|----------+ +-----------|----------+
| Header Compression*| | Header Decompression*|
| (Data-Plane only) | | (Data Plane only) |
+---------|----------+ +-----------|----------+

| |
+---------|-----------+ +-----------|----------+
| Integrity Protection| |Integrity Verification|
| (Control Plane only)| | (Control Plane only) |
+---------|-----------+ +-----------|----------+
+---------|-----------+ +----------|----------+
| Ciphering | | Deciphering |
+---------|-----------+ +----------|----------+
+---------|-----------+ +----------|----------+
| Add PDCP header | | Remove PDCP Header |
+---------|-----------+ +----------|----------+

| |
+----------------->>----------------+

Note:

• Header Compression and decompression are not supported currently.

Just like IPsec, in case of PDCP also header addition/deletion, cipher/ de-cipher, integrity protec-
tion/verification is done based on the action type chosen.

20.1.5 DOCSIS Protocol

The Data Over Cable Service Interface Specification (DOCSIS) support comprises the combination of
encryption/decryption and CRC generation/verification, for use in a DOCSIS-MAC pipeline.

Downlink Uplink
-------- ------

Ethernet frame Ethernet frame
from core network to core network

| ^
~ |
| ~ ----+
V | |

+---------|----------+ +----------|---------+ |
| CRC generation | | CRC verification | |
+---------|----------+ +----------|---------+ | combined

| | > Crypto + CRC
+---------|----------+ +----------|---------+ |
| Encryption | | Decryption | |
+---------|----------+ +----------|---------+ |

| ^ |
~ | ----+
| ~
V |

DOCSIS frame DOCSIS frame
to Cable Modem from Cable Modem

20.1. Design Principles 201



Programmer’s Guide, Release 20.08.0

The encryption/decryption is a combination of CBC and CFB modes using either AES
or DES algorithms as specified in the DOCSIS Security Specification (from DPDK
lib_rtecryptodev perspective, these are RTE_CRYPTO_CIPHER_AES_DOCSISBPI and
RTE_CRYPTO_CIPHER_DES_DOCSISBPI).

The CRC is Ethernet CRC-32 as specified in Ethernet/[ISO/IEC 8802-3].

Note:

• The offset and length of data for which CRC needs to be computed are specified via the auth offset
and length fields of the rte_crypto_sym_op.

• Other DOCSIS protocol functionality such as Header Checksum (HCS) calculation may be added
in the future.

20.2 Device Features and Capabilities

20.2.1 Device Capabilities For Security Operations

The device (crypto or ethernet) capabilities which support security operations, are defined by the security
action type, security protocol, protocol capabilities and corresponding crypto capabilities for security.
For the full scope of the Security capability see definition of rte_security_capability structure in the
DPDK API Reference.

struct rte_security_capability;

Each driver (crypto or ethernet) defines its own private array of capabilities for the operations it supports.
Below is an example of the capabilities for a PMD which supports the IPsec and PDCP protocol.

static const struct rte_security_capability pmd_security_capabilities[] = {
{ /* IPsec Lookaside Protocol offload ESP Tunnel Egress */

.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,

.protocol = RTE_SECURITY_PROTOCOL_IPSEC,

.ipsec = {
.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP,
.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL,
.direction = RTE_SECURITY_IPSEC_SA_DIR_EGRESS,
.options = { 0 }

},
.crypto_capabilities = pmd_capabilities

},
{ /* IPsec Lookaside Protocol offload ESP Tunnel Ingress */

.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,

.protocol = RTE_SECURITY_PROTOCOL_IPSEC,

.ipsec = {
.proto = RTE_SECURITY_IPSEC_SA_PROTO_ESP,
.mode = RTE_SECURITY_IPSEC_SA_MODE_TUNNEL,
.direction = RTE_SECURITY_IPSEC_SA_DIR_INGRESS,
.options = { 0 }

},
.crypto_capabilities = pmd_capabilities

},
{ /* PDCP Lookaside Protocol offload Data Plane */

.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,

.protocol = RTE_SECURITY_PROTOCOL_PDCP,

.pdcp = {
.domain = RTE_SECURITY_PDCP_MODE_DATA,

20.2. Device Features and Capabilities 202



Programmer’s Guide, Release 20.08.0

.capa_flags = 0
},
.crypto_capabilities = pmd_capabilities

},
{ /* PDCP Lookaside Protocol offload Control */

.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,

.protocol = RTE_SECURITY_PROTOCOL_PDCP,

.pdcp = {
.domain = RTE_SECURITY_PDCP_MODE_CONTROL,
.capa_flags = 0

},
.crypto_capabilities = pmd_capabilities

},
{

.action = RTE_SECURITY_ACTION_TYPE_NONE
}

};
static const struct rte_cryptodev_capabilities pmd_capabilities[] = {

{ /* SHA1 HMAC */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
.sym = {

.xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,

.auth = {
.algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
.block_size = 64,
.key_size = {

.min = 64,

.max = 64,

.increment = 0
},
.digest_size = {

.min = 12,

.max = 12,

.increment = 0
},
.aad_size = { 0 },
.iv_size = { 0 }

}
}

},
{ /* AES CBC */

.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,

.sym = {
.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
.cipher = {

.algo = RTE_CRYPTO_CIPHER_AES_CBC,

.block_size = 16,

.key_size = {
.min = 16,
.max = 32,
.increment = 8

},
.iv_size = {

.min = 16,

.max = 16,

.increment = 0
}

}
}

}
}

Below is an example of the capabilities for a PMD which supports the DOCSIS protocol.

20.2. Device Features and Capabilities 203



Programmer’s Guide, Release 20.08.0

static const struct rte_security_capability pmd_security_capabilities[] = {
{ /* DOCSIS Uplink */

.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,

.protocol = RTE_SECURITY_PROTOCOL_DOCSIS,

.docsis = {
.direction = RTE_SECURITY_DOCSIS_UPLINK

},
.crypto_capabilities = pmd_capabilities

},
{ /* DOCSIS Downlink */

.action = RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,

.protocol = RTE_SECURITY_PROTOCOL_DOCSIS,

.docsis = {
.direction = RTE_SECURITY_DOCSIS_DOWNLINK

},
.crypto_capabilities = pmd_capabilities

},
{

.action = RTE_SECURITY_ACTION_TYPE_NONE
}

};
static const struct rte_cryptodev_capabilities pmd_capabilities[] = {

{ /* AES DOCSIS BPI */
.op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
.sym = {

.xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,

.cipher = {
.algo = RTE_CRYPTO_CIPHER_AES_DOCSISBPI,
.block_size = 16,
.key_size = {

.min = 16,

.max = 32,

.increment = 16
},
.iv_size = {

.min = 16,

.max = 16,

.increment = 0
}

}
}

},

RTE_CRYPTODEV_END_OF_CAPABILITIES_LIST()
};

20.2.2 Capabilities Discovery

Discovering the features and capabilities of a driver (crypto/ethernet) is achieved through the
rte_security_capabilities_get() function.

const struct rte_security_capability *rte_security_capabilities_get(uint16_t id);

This allows the user to query a specific driver and get all device security capabilities. It returns an array
of rte_security_capability structures which contains all the capabilities for that device.

20.2.3 Security Session Create/Free

Security Sessions are created to store the immutable fields of a particular Security Association for a
particular protocol which is defined by a security session configuration structure which is used in the

20.2. Device Features and Capabilities 204



Programmer’s Guide, Release 20.08.0

operation processing of a packet flow. Sessions are used to manage protocol specific information as well
as crypto parameters. Security sessions cache this immutable data in a optimal way for the underlying
PMD and this allows further acceleration of the offload of Crypto workloads.

The Security framework provides APIs to create and free sessions for crypto/ethernet devices, where
sessions are mempool objects. It is the application’s responsibility to create and manage the session
mempools. The mempool object size should be able to accommodate the driver’s private data of security
session.

Once the session mempools have been created, rte_security_session_create() is used to
allocate and initialize a session for the required crypto/ethernet device.

Session APIs need a parameter rte_security_ctx to identify the crypto/ethernet security ops. This
parameter can be retrieved using the APIs rte_cryptodev_get_sec_ctx() (for crypto device)
or rte_eth_dev_get_sec_ctx (for ethernet port).

Sessions already created can be updated with rte_security_session_update().

When a session is no longer used, the user must call rte_security_session_destroy() to free
the driver private session data and return the memory back to the mempool.

For look aside protocol offload to hardware crypto device, the rte_crypto_op created by the appli-
cation is attached to the security session by the API rte_security_attach_session().

For Inline Crypto and Inline protocol offload, device specific defined metadata is updated in the mbuf us-
ing rte_security_set_pkt_metadata() if DEV_TX_OFFLOAD_SEC_NEED_MDATA is set.

For inline protocol offloaded ingress traffic, the application can register a pointer, userdata , in the
security session. When the packet is received, rte_security_get_userdata() would return the
userdata registered for the security session which processed the packet.

Note: In case of inline processed packets, rte_mbuf.udata64 field would be used by the driver to
relay information on the security processing associated with the packet. In ingress, the driver would set
this in Rx path while in egress, rte_security_set_pkt_metadata() would perform a similar
operation. The application is expected not to modify the field when it has relevant info. For ingress,
this device-specific 64 bit value is required to derive other information (like userdata), required for
identifying the security processing done on the packet.

20.2.4 Security session configuration

Security Session configuration structure is defined as rte_security_session_conf

struct rte_security_session_conf {
enum rte_security_session_action_type action_type;
/**< Type of action to be performed on the session */
enum rte_security_session_protocol protocol;
/**< Security protocol to be configured */
union {

struct rte_security_ipsec_xform ipsec;
struct rte_security_macsec_xform macsec;
struct rte_security_pdcp_xform pdcp;
struct rte_security_docsis_xform docsis;

};
/**< Configuration parameters for security session */
struct rte_crypto_sym_xform *crypto_xform;
/**< Security Session Crypto Transformations */

20.2. Device Features and Capabilities 205



Programmer’s Guide, Release 20.08.0

void *userdata;
/**< Application specific userdata to be saved with session */

};

The configuration structure reuses the rte_crypto_sym_xform struct for crypto related configura-
tion. The rte_security_session_action_type struct is used to specify whether the session
is configured for Lookaside Protocol offload or Inline Crypto or Inline Protocol Offload.

enum rte_security_session_action_type {
RTE_SECURITY_ACTION_TYPE_NONE,
/**< No security actions */
RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO,
/**< Crypto processing for security protocol is processed inline

* during transmission

*/
RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL,
/**< All security protocol processing is performed inline during

* transmission

*/
RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,
/**< All security protocol processing including crypto is performed

* on a lookaside accelerator

*/
RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO
/**< Similar to ACTION_TYPE_NONE but crypto processing for security

* protocol is processed synchronously by a CPU.

*/
};

The rte_security_session_protocol is defined as

enum rte_security_session_protocol {
RTE_SECURITY_PROTOCOL_IPSEC = 1,
/**< IPsec Protocol */
RTE_SECURITY_PROTOCOL_MACSEC,
/**< MACSec Protocol */
RTE_SECURITY_PROTOCOL_PDCP,
/**< PDCP Protocol */
RTE_SECURITY_PROTOCOL_DOCSIS,
/**< DOCSIS Protocol */

};

Currently the library defines configuration parameters for IPsec and PDCP only. For other protocols like
MACSec, structures and enums are defined as place holders which will be updated in the future.

IPsec related configuration parameters are defined in rte_security_ipsec_xform

struct rte_security_ipsec_xform {
uint32_t spi;
/**< SA security parameter index */
uint32_t salt;
/**< SA salt */
struct rte_security_ipsec_sa_options options;
/**< various SA options */
enum rte_security_ipsec_sa_direction direction;
/**< IPsec SA Direction - Egress/Ingress */
enum rte_security_ipsec_sa_protocol proto;
/**< IPsec SA Protocol - AH/ESP */
enum rte_security_ipsec_sa_mode mode;
/**< IPsec SA Mode - transport/tunnel */
struct rte_security_ipsec_tunnel_param tunnel;
/**< Tunnel parameters, NULL for transport mode */

};

20.2. Device Features and Capabilities 206



Programmer’s Guide, Release 20.08.0

PDCP related configuration parameters are defined in rte_security_pdcp_xform

struct rte_security_pdcp_xform {
int8_t bearer; /**< PDCP bearer ID */
/** Enable in order delivery, this field shall be set only if

* driver/HW is capable. See RTE_SECURITY_PDCP_ORDERING_CAP.

*/
uint8_t en_ordering;
/** Notify driver/HW to detect and remove duplicate packets.

* This field should be set only when driver/hw is capable.

* See RTE_SECURITY_PDCP_DUP_DETECT_CAP.

*/
uint8_t remove_duplicates;
/** PDCP mode of operation: Control or data */
enum rte_security_pdcp_domain domain;
/** PDCP Frame Direction 0:UL 1:DL */
enum rte_security_pdcp_direction pkt_dir;
/** Sequence number size, 5/7/12/15/18 */
enum rte_security_pdcp_sn_size sn_size;
/** Starting Hyper Frame Number to be used together with the SN

* from the PDCP frames

*/
uint32_t hfn;
/** HFN Threshold for key renegotiation */
uint32_t hfn_threshold;

};

DOCSIS related configuration parameters are defined in rte_security_docsis_xform

struct rte_security_docsis_xform {
enum rte_security_docsis_direction direction;
/**< DOCSIS direction */

};

20.2.5 Security API

The rte_security Library API is described in the DPDK API Reference document.

20.2.6 Flow based Security Session

In the case of NIC based offloads, the security session specified in the ‘rte_flow_action_security’ must
be created on the same port as the flow action that is being specified.

The ingress/egress flow attribute should match that specified in the security session if the security session
supports the definition of the direction.

Multiple flows can be configured to use the same security session. For example if the security session
specifies an egress IPsec SA, then multiple flows can be specified to that SA. In the case of an ingress
IPsec SA then it is only valid to have a single flow to map to that security session.

Configuration Path
|

+--------|--------+
| Add/Remove |
| IPsec SA | <------ Build security flow action of
| | | ipsec transform
|--------|--------|

|
+--------V--------+
| Flow API |

20.2. Device Features and Capabilities 207



Programmer’s Guide, Release 20.08.0

+--------|--------+
|

+--------V--------+
| |
| NIC PMD | <------ Add/Remove SA to/from hw context
| |
+--------|--------+

|
+--------|--------+
| HW ACCELERATED |
| NIC |
| |
+--------|--------+

• Add/Delete SA flow: To add a new inline SA construct a rte_flow_item for Ethernet + IP + ESP
using the SA selectors and the rte_crypto_ipsec_xform as the rte_flow_action.
Note that any rte_flow_items may be empty, which means it is not checked.

In its most basic form, IPsec flow specification is as follows:
+-------+ +----------+ +--------+ +-----+
| Eth | -> | IP4/6 | -> | ESP | -> | END |
+-------+ +----------+ +--------+ +-----+

However, the API can represent, IPsec crypto offload with any encapsulation:
+-------+ +--------+ +-----+
| Eth | -> ... -> | ESP | -> | END |
+-------+ +--------+ +-----+

20.2. Device Features and Capabilities 208



CHAPTER

TWENTYONE

RAWDEVICE LIBRARY

21.1 Introduction

In terms of device flavor (type) support, DPDK currently has ethernet (lib_ether), cryptodev (libcryp-
todev), eventdev (libeventdev) and vdev (virtual device) support.

For a new type of device, for example an accelerator, there are not many options except: 1. create another
lib/librte_MySpecialDev, driver/MySpecialDrv and use it through Bus/PMD model. 2. Or, create a vdev
and implement necessary custom APIs which are directly exposed from driver layer. However this may
still require changes in bus code in DPDK.

The DPDK Rawdev library is an abstraction that provides the DPDK framework a way to manage such
devices in a generic manner without expecting changes to library or EAL for each device type. This
library provides a generic set of operations and APIs for framework and Applications to use, respectively,
for interfacing with such type of devices.

21.2 Design

Key factors guiding design of the Rawdevice library:

1. Following are some generic operations which can be treated as applicable to a large subset of
device types. None of the operations are mandatory to be implemented by a driver. Application
should also be designed for proper handling for unsupported APIs.

• Device Start/Stop - In some cases, ‘reset’ might also be required which has different semantics
than a start-stop-start cycle.

• Configuration - Device, Queue or any other sub-system configuration

• I/O - Sending a series of buffers which can enclose any arbitrary data

• Statistics - Fetch arbitrary device statistics

• Firmware Management - Firmware load/unload/status

2. Application API should be able to pass along arbitrary state information to/from device driver.
This can be achieved by maintaining context information through opaque data or pointers.

Figure below outlines the layout of the rawdevice library and device vis-a-vis other well known device
types like eth and crypto:

+-----------------------------------------------------------+
| Application(s) |
+------------------------------.----------------------------+

|

209



Programmer’s Guide, Release 20.08.0

|
+------------------------------'----------------------------+
| DPDK Framework (APIs) |
+--------------|----|-----------------|---------------------+

/ \ \
(crypto ops) (eth ops) (rawdev ops) +----+
/ \ \ |DrvA|

+-----'---+ +----`----+ +---'-----+ +----+
| crypto | | ethdev | | raw |
+--/------+ +---/-----+ +----/----+ +----+

/\ __/\ / ..........|DrvB|
/ \ / \ / ../ \ +----+

+====+ +====+ +====+ +====+ +==/=+ ```Bus Probe
|DevA| |DevB| |DevC| |DevD| |DevF|
+====+ +====+ +====+ +====+ +====+

| | | | |
``|``````|````````|``````|`````````````````|````````Bus Scan
(PCI) | (PCI) (PCI) (PCI)

(BusA)

* It is assumed above that DrvB is a PCI type driver which registers itself
with PCI Bus

* Thereafter, when the PCI scan is done, during probe DrvB would match the
rawdev DevF ID and take control of device

* Applications can then continue using the device through rawdev API
interfaces

21.2.1 Device Identification

Physical rawdev devices are discovered during the Bus scan executed at DPDK initialization, based
on their identification and probing with corresponding driver. Thus, a generic device needs to have an
identifier and a driver capable of identifying it through this identifier.

Virtual devices can be created by two mechanisms, either using the EAL command line options or from
within the application using an EAL API directly.

From the command line using the –vdev EAL option

--vdev 'rawdev_dev1'

Or using the rte_vdev_init API within the application code.

rte_vdev_init("rawdev_dev1", NULL)

21.2. Design 210



CHAPTER

TWENTYTWO

LINK BONDING POLL MODE DRIVER LIBRARY

In addition to Poll Mode Drivers (PMDs) for physical and virtual hardware, DPDK also includes a
pure-software library that allows physical PMDs to be bonded together to create a single logical PMD.

DPDK
bonded ethdev

User Application

ethdev port ethdev port ethdev port ethdev port ethdev port

Fig. 22.1: Bonded PMDs

The Link Bonding PMD library(librte_pmd_bond) supports bonding of groups of rte_eth_dev ports
of the same speed and duplex to provide similar capabilities to that found in Linux bonding driver
to allow the aggregation of multiple (slave) NICs into a single logical interface between a server and
a switch. The new bonded PMD will then process these interfaces based on the mode of operation
specified to provide support for features such as redundant links, fault tolerance and/or load balancing.

The librte_pmd_bond library exports a C API which provides an API for the creation of bonded devices
as well as the configuration and management of the bonded device and its slave devices.

Note: The Link Bonding PMD Library is enabled by default in the build configuration files, the library
can be disabled by setting CONFIG_RTE_LIBRTE_PMD_BOND=n and recompiling the DPDK.

22.1 Link Bonding Modes Overview

Currently the Link Bonding PMD library supports following modes of operation:

• Round-Robin (Mode 0):

• Active Backup (Mode 1):

211



Programmer’s Guide, Release 20.08.0

User Application

DPDK

bonded ethdev

ethdev port ethdev port ethdev port

1

2

3

4

5

1 2 3

4 5

Fig. 22.2: Round-Robin (Mode 0)

This mode provides load balancing and fault tolerance by transmission of packets in sequential order
from the first available slave device through the last. Packets are bulk dequeued from devices then
serviced in a round-robin manner. This mode does not guarantee in order reception of packets and
down stream should be able to handle out of order packets.

User Application

DPDK

bonded ethdev

ethdev port ethdev port ethdev port

1

2

3

1

2

3

Fig. 22.3: Active Backup (Mode 1)

In this mode only one slave in the bond is active at any time, a different slave becomes active if,
and only if, the primary active slave fails, thereby providing fault tolerance to slave failure. The
single logical bonded interface’s MAC address is externally visible on only one NIC (port) to avoid
confusing the network switch.

22.1. Link Bonding Modes Overview 212



Programmer’s Guide, Release 20.08.0

• Balance XOR (Mode 2):

User Application

DPDK

bonded ethdev

ethdev port ethdev port ethdev port

1

2

3

4

5

6

2

4

61

3

5

Fig. 22.4: Balance XOR (Mode 2)

This mode provides transmit load balancing (based on the selected transmission policy) and fault
tolerance. The default policy (layer2) uses a simple calculation based on the packet flow source and
destination MAC addresses as well as the number of active slaves available to the bonded device to
classify the packet to a specific slave to transmit on. Alternate transmission policies supported are
layer 2+3, this takes the IP source and destination addresses into the calculation of the transmit slave
port and the final supported policy is layer 3+4, this uses IP source and destination addresses as well
as the TCP/UDP source and destination port.

Note: The coloring differences of the packets are used to identify different flow classification calculated
by the selected transmit policy

• Broadcast (Mode 3):

• Link Aggregation 802.3AD (Mode 4):

• Transmit Load Balancing (Mode 5):

22.2 Implementation Details

The librte_pmd_bond bonded device are compatible with the Ethernet device API exported by the Eth-
ernet PMDs described in the DPDK API Reference.

The Link Bonding Library supports the creation of bonded devices at application startup time
during EAL initialization using the --vdev option as well as programmatically via the C API
rte_eth_bond_create function.

22.2. Implementation Details 213



Programmer’s Guide, Release 20.08.0

User Application

DPDK

bonded ethdev

ethdev port ethdev port ethdev port

1

2

3

1

2

3

1

2

3

1

2

3

Fig. 22.5: Broadcast (Mode 3)

This mode provides fault tolerance by transmission of packets on all slave ports.

Bonded devices support the dynamical addition and removal of slave devices using the
rte_eth_bond_slave_add / rte_eth_bond_slave_remove APIs.

After a slave device is added to a bonded device slave is stopped using rte_eth_dev_stop and
then reconfigured using rte_eth_dev_configure the RX and TX queues are also reconfigured
using rte_eth_tx_queue_setup / rte_eth_rx_queue_setup with the parameters use to
configure the bonding device. If RSS is enabled for bonding device, this mode is also enabled on new
slave and configured as well. Any flow which was configured to the bond device also is configured to
the added slave.

Setting up multi-queue mode for bonding device to RSS, makes it fully RSS-capable, so all slaves are
synchronized with its configuration. This mode is intended to provide RSS configuration on slaves
transparent for client application implementation.

Bonding device stores its own version of RSS settings i.e. RETA, RSS hash function and RSS key, used
to set up its slaves. That let to define the meaning of RSS configuration of bonding device as desired
configuration of whole bonding (as one unit), without pointing any of slave inside. It is required to
ensure consistency and made it more error-proof.

RSS hash function set for bonding device, is a maximal set of RSS hash functions supported by all
bonded slaves. RETA size is a GCD of all its RETA’s sizes, so it can be easily used as a pattern providing
expected behavior, even if slave RETAs’ sizes are different. If RSS Key is not set for bonded device, it’s
not changed on the slaves and default key for device is used.

As RSS configurations, there is flow consistency in the bonded slaves for the next rte flow operations:

Validate:

• Validate flow for each slave, failure at least for one slave causes to bond validation failure.

Create:

• Create the flow in all slaves.

22.2. Implementation Details 214



Programmer’s Guide, Release 20.08.0

User Application

DPDK

bonded ethdev

ethdev port ethdev port ethdev port

1

2

3

4

5

6

2

4 6

1

3

5

O

O

O

Fig. 22.6: Link Aggregation 802.3AD (Mode 4)

This mode provides dynamic link aggregation according to the 802.3ad specification. It negotiates
and monitors aggregation groups that share the same speed and duplex settings using the selected
balance transmit policy for balancing outgoing traffic.
DPDK implementation of this mode provide some additional requirements of the application.

1. It needs to call rte_eth_tx_burst and rte_eth_rx_burst with intervals period of
less than 100ms.

2. Calls to rte_eth_tx_burstmust have a buffer size of at least 2xN, where N is the number
of slaves. This is a space required for LACP frames. Additionally LACP packets are included
in the statistics, but they are not returned to the application.

22.2. Implementation Details 215



Programmer’s Guide, Release 20.08.0

User Application

DPDK

bonded ethdev

ethdev port ethdev port ethdev port

5006

5005

0001

0002

12003

0001

0002 5006

5005 12003

Fig. 22.7: Transmit Load Balancing (Mode 5)

This mode provides an adaptive transmit load balancing. It dynamically changes the transmitting
slave, according to the computed load. Statistics are collected in 100ms intervals and scheduled
every 10ms.

22.2. Implementation Details 216



Programmer’s Guide, Release 20.08.0

• Save all the slaves created flows objects in bonding internal flow structure.

• Failure in flow creation for existed slave rejects the flow.

• Failure in flow creation for new slaves in slave adding time rejects the slave.

Destroy:

• Destroy the flow in all slaves and release the bond internal flow memory.

Flush:

• Destroy all the bonding PMD flows in all the slaves.

Note: Don’t call slaves flush directly, It destroys all the slave flows which may include external flows
or the bond internal LACP flow.

Query:

• Summarize flow counters from all the slaves, relevant only for
RTE_FLOW_ACTION_TYPE_COUNT.

Isolate:

• Call to flow isolate for all slaves.

• Failure in flow isolation for existed slave rejects the isolate mode.

• Failure in flow isolation for new slaves in slave adding time rejects the slave.

All settings are managed through the bonding port API and always are propagated in one direction (from
bonding to slaves).

22.2.1 Link Status Change Interrupts / Polling

Link bonding devices support the registration of a link status change callback, using the
rte_eth_dev_callback_register API, this will be called when the status of the bonding de-
vice changes. For example in the case of a bonding device which has 3 slaves, the link status will change
to up when one slave becomes active or change to down when all slaves become inactive. There is no
callback notification when a single slave changes state and the previous conditions are not met. If a user
wishes to monitor individual slaves then they must register callbacks with that slave directly.

The link bonding library also supports devices which do not implement link status change inter-
rupts, this is achieved by polling the devices link status at a defined period which is set using the
rte_eth_bond_link_monitoring_set API, the default polling interval is 10ms. When a de-
vice is added as a slave to a bonding device it is determined using the RTE_PCI_DRV_INTR_LSC flag
whether the device supports interrupts or whether the link status should be monitored by polling it.

22.2.2 Requirements / Limitations

The current implementation only supports devices that support the same speed and duplex to be added
as a slaves to the same bonded device. The bonded device inherits these attributes from the first active
slave added to the bonded device and then all further slaves added to the bonded device must support
these parameters.

A bonding device must have a minimum of one slave before the bonding device itself can be started.

22.2. Implementation Details 217



Programmer’s Guide, Release 20.08.0

To use a bonding device dynamic RSS configuration feature effectively, it is also required, that all slaves
should be RSS-capable and support, at least one common hash function available for each of them.
Changing RSS key is only possible, when all slave devices support the same key size.

To prevent inconsistency on how slaves process packets, once a device is added to a bonding device,
RSS and rte flow configurations should be managed through the bonding device API, and not directly
on the slave.

Like all other PMD, all functions exported by a PMD are lock-free functions that are assumed not to be
invoked in parallel on different logical cores to work on the same target object.

It should also be noted that the PMD receive function should not be invoked directly on a slave devices
after they have been to a bonded device since packets read directly from the slave device will no longer
be available to the bonded device to read.

22.2.3 Configuration

Link bonding devices are created using the rte_eth_bond_create API which requires a unique
device name, the bonding mode, and the socket Id to allocate the bonding device’s resources on. The
other configurable parameters for a bonded device are its slave devices, its primary slave, a user defined
MAC address and transmission policy to use if the device is in balance XOR mode.

Slave Devices

Bonding devices support up to a maximum of RTE_MAX_ETHPORTS slave devices of the same speed
and duplex. Ethernet devices can be added as a slave to a maximum of one bonded device. Slave devices
are reconfigured with the configuration of the bonded device on being added to a bonded device.

The bonded also guarantees to return the MAC address of the slave device to its original value of removal
of a slave from it.

Primary Slave

The primary slave is used to define the default port to use when a bonded device is in active backup
mode. A different port will only be used if, and only if, the current primary port goes down. If the user
does not specify a primary port it will default to being the first port added to the bonded device.

MAC Address

The bonded device can be configured with a user specified MAC address, this address will be inherited
by the some/all slave devices depending on the operating mode. If the device is in active backup mode
then only the primary device will have the user specified MAC, all other slaves will retain their original
MAC address. In mode 0, 2, 3, 4 all slaves devices are configure with the bonded devices MAC address.

If a user defined MAC address is not defined then the bonded device will default to using the primary
slaves MAC address.

Balance XOR Transmit Policies

There are 3 supported transmission policies for bonded device running in Balance XOR mode. Layer 2,
Layer 2+3, Layer 3+4.

22.2. Implementation Details 218



Programmer’s Guide, Release 20.08.0

• Layer 2: Ethernet MAC address based balancing is the default transmission policy for Balance
XOR bonding mode. It uses a simple XOR calculation on the source MAC address and destination
MAC address of the packet and then calculate the modulus of this value to calculate the slave
device to transmit the packet on.

• Layer 2 + 3: Ethernet MAC address & IP Address based balancing uses a combination of
source/destination MAC addresses and the source/destination IP addresses of the data packet to
decide which slave port the packet will be transmitted on.

• Layer 3 + 4: IP Address & UDP Port based balancing uses a combination of source/destination
IP Address and the source/destination UDP ports of the packet of the data packet to decide which
slave port the packet will be transmitted on.

All these policies support 802.1Q VLAN Ethernet packets, as well as IPv4, IPv6 and UDP protocols for
load balancing.

22.3 Using Link Bonding Devices

The librte_pmd_bond library supports two modes of device creation, the libraries export full C API or
using the EAL command line to statically configure link bonding devices at application startup. Using
the EAL option it is possible to use link bonding functionality transparently without specific knowledge
of the libraries API, this can be used, for example, to add bonding functionality, such as active backup,
to an existing application which has no knowledge of the link bonding C API.

22.3.1 Using the Poll Mode Driver from an Application

Using the librte_pmd_bond libraries API it is possible to dynamically create and manage link
bonding device from within any application. Link bonding devices are created using the
rte_eth_bond_create API which requires a unique device name, the link bonding mode to initial
the device in and finally the socket Id which to allocate the devices resources onto. After successful
creation of a bonding device it must be configured using the generic Ethernet device configure API
rte_eth_dev_configure and then the RX and TX queues which will be used must be setup using
rte_eth_tx_queue_setup / rte_eth_rx_queue_setup.

Slave devices can be dynamically added and removed from a link bonding device using the
rte_eth_bond_slave_add / rte_eth_bond_slave_remove APIs but at least one slave de-
vice must be added to the link bonding device before it can be started using rte_eth_dev_start.

The link status of a bonded device is dictated by that of its slaves, if all slave device link status are down
or if all slaves are removed from the link bonding device then the link status of the bonding device will
go down.

It is also possible to configure / query the configuration of the control parame-
ters of a bonded device using the provided APIs rte_eth_bond_mode_set/
get, rte_eth_bond_primary_set/get, rte_eth_bond_mac_set/reset and
rte_eth_bond_xmit_policy_set/get.

22.3.2 Using Link Bonding Devices from the EAL Command Line

Link bonding devices can be created at application startup time using the --vdev EAL command line
option. The device name must start with the net_bonding prefix followed by numbers or letters. The
name must be unique for each device. Each device can have multiple options arranged in a comma

22.3. Using Link Bonding Devices 219



Programmer’s Guide, Release 20.08.0

separated list. Multiple devices definitions can be arranged by calling the --vdev option multiple
times.

Device names and bonding options must be separated by commas as shown below:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev 'net_bonding0,bond_opt0=..,bond opt1=..'--vdev 'net_bonding1,bond _opt0=..,bond_opt1=..'

Link Bonding EAL Options

There are multiple ways of definitions that can be assessed and combined as long as the following two
rules are respected:

• A unique device name, in the format of net_bondingX is provided, where X can be any combina-
tion of numbers and/or letters, and the name is no greater than 32 characters long.

• A least one slave device is provided with for each bonded device definition.

• The operation mode of the bonded device being created is provided.

The different options are:

• mode: Integer value defining the bonding mode of the device. Currently supports modes
0,1,2,3,4,5 (round-robin, active backup, balance, broadcast, link aggregation, transmit load bal-
ancing).

mode=2

• slave: Defines the PMD device which will be added as slave to the bonded device. This option
can be selected multiple times, for each device to be added as a slave. Physical devices should be
specified using their PCI address, in the format domain:bus:devid.function

slave=0000:0a:00.0,slave=0000:0a:00.1

• primary: Optional parameter which defines the primary slave port, is used in active backup mode
to select the primary slave for data TX/RX if it is available. The primary port also is used to select
the MAC address to use when it is not defined by the user. This defaults to the first slave added to
the device if it is specified. The primary device must be a slave of the bonded device.

primary=0000:0a:00.0

• socket_id: Optional parameter used to select which socket on a NUMA device the bonded devices
resources will be allocated on.

socket_id=0

• mac: Optional parameter to select a MAC address for link bonding device, this overrides the value
of the primary slave device.

mac=00:1e:67:1d:fd:1d

• xmit_policy: Optional parameter which defines the transmission policy when the bonded device
is in balance mode. If not user specified this defaults to l2 (layer 2) forwarding, the other trans-
mission policies available are l23 (layer 2+3) and l34 (layer 3+4)

xmit_policy=l23

• lsc_poll_period_ms: Optional parameter which defines the polling interval in milli-seconds at
which devices which don’t support lsc interrupts are checked for a change in the devices link
status

lsc_poll_period_ms=100

22.3. Using Link Bonding Devices 220



Programmer’s Guide, Release 20.08.0

• up_delay: Optional parameter which adds a delay in milli-seconds to the propagation of a devices
link status changing to up, by default this parameter is zero.

up_delay=10

• down_delay: Optional parameter which adds a delay in milli-seconds to the propagation of a
devices link status changing to down, by default this parameter is zero.

down_delay=50

Examples of Usage

Create a bonded device in round robin mode with two slaves specified by their PCI address:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev 'net_bonding0,mode=0,slave=0000:0a:00.01,slave=0000:04:00.00' -- --port-topology=chained

Create a bonded device in round robin mode with two slaves specified by their PCI address and an
overriding MAC address:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev 'net_bonding0,mode=0,slave=0000:0a:00.01,slave=0000:04:00.00,mac=00:1e:67:1d:fd:1d' -- --port-topology=chained

Create a bonded device in active backup mode with two slaves specified, and a primary slave specified
by their PCI addresses:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev 'net_bonding0,mode=1,slave=0000:0a:00.01,slave=0000:04:00.00,primary=0000:0a:00.01' -- --port-topology=chained

Create a bonded device in balance mode with two slaves specified by their PCI addresses, and a trans-
mission policy of layer 3 + 4 forwarding:

$RTE_TARGET/app/testpmd -l 0-3 -n 4 --vdev 'net_bonding0,mode=2,slave=0000:0a:00.01,slave=0000:04:00.00,xmit_policy=l34' -- --port-topology=chained

22.3. Using Link Bonding Devices 221



CHAPTER

TWENTYTHREE

TIMER LIBRARY

The Timer library provides a timer service to DPDK execution units to enable execution of callback
functions asynchronously. Features of the library are:

• Timers can be periodic (multi-shot) or single (one-shot).

• Timers can be loaded from one core and executed on another. It has to be specified in the call to
rte_timer_reset().

• Timers provide high precision (depends on the call frequency to rte_timer_manage() that checks
timer expiration for the local core).

• If not required in the application, timers can be disabled at compilation time by not calling the
rte_timer_manage() to increase performance.

The timer library uses the rte_get_timer_cycles() function that uses the High Precision Event Timer
(HPET) or the CPUs Time Stamp Counter (TSC) to provide a reliable time reference.

This library provides an interface to add, delete and restart a timer. The API is based on BSD callout()
with a few differences. Refer to the callout manual.

23.1 Implementation Details

Timers are tracked on a per-lcore basis, with all pending timers for a core being maintained in order
of timer expiry in a skiplist data structure. The skiplist used has ten levels and each entry in the table
appears in each level with probability ¼^level. This means that all entries are present in level 0, 1 in
every 4 entries is present at level 1, one in every 16 at level 2 and so on up to level 9. This means that
adding and removing entries from the timer list for a core can be done in log(n) time, up to 4^10 entries,
that is, approximately 1,000,000 timers per lcore.

A timer structure contains a special field called status, which is a union of a timer state (stopped, pending,
running, config) and an owner (lcore id). Depending on the timer state, we know if a timer is present in
a list or not:

• STOPPED: no owner, not in a list

• CONFIG: owned by a core, must not be modified by another core, maybe in a list or not, depending
on previous state

• PENDING: owned by a core, present in a list

• RUNNING: owned by a core, must not be modified by another core, present in a list

222

http://www.daemon-systems.org/man/callout.9.html


Programmer’s Guide, Release 20.08.0

Resetting or stopping a timer while it is in a CONFIG or RUNNING state is not allowed. When modi-
fying the state of a timer, a Compare And Swap instruction should be used to guarantee that the status
(state+owner) is modified atomically.

Inside the rte_timer_manage() function, the skiplist is used as a regular list by iterating along the level 0
list, which contains all timer entries, until an entry which has not yet expired has been encountered. To
improve performance in the case where there are entries in the timer list but none of those timers have
yet expired, the expiry time of the first list entry is maintained within the per-core timer list structure
itself. On 64-bit platforms, this value can be checked without the need to take a lock on the overall
structure. (Since expiry times are maintained as 64-bit values, a check on the value cannot be done on
32-bit platforms without using either a compare-and-swap (CAS) instruction or using a lock, so this
additional check is skipped in favor of checking as normal once the lock has been taken.) On both 64-bit
and 32-bit platforms, a call to rte_timer_manage() returns without taking a lock in the case where the
timer list for the calling core is empty.

23.2 Use Cases

The timer library is used for periodic calls, such as garbage collectors, or some state machines (ARP,
bridging, and so on).

23.3 References

• callout manual - The callout facility that provides timers with a mechanism to execute a function
at a given time.

• HPET - Information about the High Precision Event Timer (HPET).

23.2. Use Cases 223

http://www.daemon-systems.org/man/callout.9.html
http://en.wikipedia.org/wiki/HPET


CHAPTER

TWENTYFOUR

HASH LIBRARY

The DPDK provides a Hash Library for creating hash table for fast lookup. The hash table is a data
structure optimized for searching through a set of entries that are each identified by a unique key. For
increased performance the DPDK Hash requires that all the keys have the same number of bytes which
is set at the hash creation time.

24.1 Hash API Overview

The main configuration parameters for the hash table are:

• Total number of hash entries in the table

• Size of the key in bytes

• An extra flag to describe additional settings, for example the multithreading mode of operation
and extendable bucket functionality (as will be described later)

The hash table also allows the configuration of some low-level implementation related parameters such
as:

• Hash function to translate the key into a hash value

The main methods exported by the Hash Library are:

• Add entry with key: The key is provided as input. If the new entry is successfully added to the
hash table for the specified key, or there is already an entry in the hash table for the specified key,
then the position of the entry is returned. If the operation was not successful, for example due to
lack of free entries in the hash table, then a negative value is returned.

• Delete entry with key: The key is provided as input. If an entry with the specified key is found
in the hash, then the entry is removed from the hash table and the position where the entry was
found in the hash table is returned. If no entry with the specified key exists in the hash table, then
a negative value is returned

• Lookup for entry with key: The key is provided as input. If an entry with the specified key is
found in the hash table (i.e., lookup hit), then the position of the entry is returned, otherwise (i.e.,
lookup miss) a negative value is returned.

Apart from the basic methods explained above, the Hash Library API provides a few more advanced
methods to query and update the hash table:

• Add / lookup / delete entry with key and precomputed hash: Both the key and its precomputed
hash are provided as input. This allows the user to perform these operations faster, as the hash
value is already computed.

224



Programmer’s Guide, Release 20.08.0

• Add / lookup entry with key and data: A data is provided as input for add. Add allows the user
to store not only the key, but also the data which may be either a 8-byte integer or a pointer to
external data (if data size is more than 8 bytes).

• Combination of the two options above: User can provide key, precomputed hash, and data.

• Ability to not free the position of the entry in the hash table upon calling delete. This is useful for
multi-threaded scenarios where readers continue to use the position even after the entry is deleted.

Also, the API contains a method to allow the user to look up entries in batches, achieving higher perfor-
mance than looking up individual entries, as the function prefetches next entries at the time it is operating
with the current ones, which reduces significantly the performance overhead of the necessary memory
accesses.

The actual data associated with each key can be either managed by the user using a separate table
that mirrors the hash in terms of number of entries and position of each entry, as shown in the Flow
Classification use case described in the following sections, or stored in the hash table itself.

The example hash tables in the L2/L3 Forwarding sample applications define which port to forward a
packet to based on a packet flow identified by the five-tuple lookup. However, this table could also
be used for more sophisticated features and provide many other functions and actions that could be
performed on the packets and flows.

24.2 Multi-process support

The hash library can be used in a multi-process environment. The only function that can only be used
in single-process mode is rte_hash_set_cmp_func(), which sets up a custom compare function, which is
assigned to a function pointer (therefore, it is not supported in multi-process mode).

24.3 Multi-thread support

The hash library supports multithreading, and the user specifies the needed mode of operation at the
creation time of the hash table by appropriately setting the flag. In all modes of operation lookups are
thread-safe meaning lookups can be called from multiple threads concurrently.

For concurrent writes, and concurrent reads and writes the following flag values define the corresponding
modes of operation:

• If the multi-writer flag (RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD) is set, multiple
threads writing to the table is allowed. Key add, delete, and table reset are protected from other
writer threads. With only this flag set, readers are not protected from ongoing writes.

• If the read/write concurrency (RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY) is set,
multithread read/write operation is safe (i.e., application does not need to stop the readers from
accessing the hash table until writers finish their updates. Readers and writers can operate on the
table concurrently). The library uses a reader-writer lock to provide the concurrency.

• In addition to these two flag values, if the transactional memory flag
(RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT) is also set, the reader-writer
lock will use hardware transactional memory (e.g., Intel® TSX) if supported to guarantee thread
safety. If the platform supports Intel® TSX, it is advised to set the transactional memory flag, as
this will speed up concurrent table operations. Otherwise concurrent operations will be slower
because of the overhead associated with the software locking mechanisms.

24.2. Multi-process support 225



Programmer’s Guide, Release 20.08.0

• If lock free read/write concurrency (RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY_LF)
is set, read/write concurrency is provided without using reader-writer lock. For platforms
(e.g., current ARM based platforms) that do not support transactional memory, it is ad-
vised to set this flag to achieve greater scalability in performance. If this flag is set, the
(RTE_HASH_EXTRA_FLAGS_NO_FREE_ON_DEL) flag is set by default.

• If the ‘do not free on delete’ (RTE_HASH_EXTRA_FLAGS_NO_FREE_ON_DEL) flag is set,
the position of the entry in the hash table is not freed upon calling delete(). This flag is enabled
by default when the lock free read/write concurrency flag is set. The application should free the
position after all the readers have stopped referencing the position. Where required, the applica-
tion can make use of RCU mechanisms to determine when the readers have stopped referencing
the position.

24.4 Extendable Bucket Functionality support

An extra flag is used to enable this functionality (flag is not set by default). When the
(RTE_HASH_EXTRA_FLAGS_EXT_TABLE) is set and in the very unlikely case due to excessive
hash collisions that a key has failed to be inserted, the hash table bucket is extended with a linked
list to insert these failed keys. This feature is important for the workloads (e.g. telco workloads) that
need to insert up to 100% of the hash table size and can’t tolerate any key insertion failure (even if
very few). Please note that with the ‘lock free read/write concurrency’ flag enabled, users need to call
‘rte_hash_free_key_with_position’ API in order to free the empty buckets and deleted keys, to maintain
the 100% capacity guarantee.

24.5 Implementation Details (non Extendable Bucket Case)

The hash table has two main tables:

• First table is an array of buckets each of which consists of multiple entries, Each entry contains
the signature of a given key (explained below), and an index to the second table.

• The second table is an array of all the keys stored in the hash table and its data associated to each
key.

The hash library uses the Cuckoo Hash algorithm to resolve collisions. For any input key, there are two
possible buckets (primary and secondary/alternative location) to store that key in the hash table, therefore
only the entries within those two buckets need to be examined when the key is looked up. The Hash
Library uses a hash function (configurable) to translate the input key into a 4-byte hash value. The bucket
index and a 2-byte signature is derived from the hash value using partial-key hashing [partial-key].

Once the buckets are identified, the scope of the key add, delete, and lookup operations is reduced to the
entries in those buckets (it is very likely that entries are in the primary bucket).

To speed up the search logic within the bucket, each hash entry stores the 2-byte key signature together
with the full key for each hash table entry. For large key sizes, comparing the input key against a key
from the bucket can take significantly more time than comparing the 2-byte signature of the input key
against the signature of a key from the bucket. Therefore, the signature comparison is done first and
the full key comparison is done only when the signatures matches. The full key comparison is still
necessary, as two input keys from the same bucket can still potentially have the same 2-byte signature,
although this event is relatively rare for hash functions providing good uniform distributions for the set
of input keys.

24.4. Extendable Bucket Functionality support 226



Programmer’s Guide, Release 20.08.0

Example of lookup:

First of all, the primary bucket is identified and entry is likely to be stored there. If signature was stored
there, we compare its key against the one provided and return the position where it was stored and/or the
data associated to that key if there is a match. If signature is not in the primary bucket, the secondary
bucket is looked up, where same procedure is carried out. If there is no match there either, key is not in
the table and a negative value will be returned.

Example of addition:

Like lookup, the primary and secondary buckets are identified. If there is an empty entry in the primary
bucket, a signature is stored in that entry, key and data (if any) are added to the second table and the
index in the second table is stored in the entry of the first table. If there is no space in the primary bucket,
one of the entries on that bucket is pushed to its alternative location, and the key to be added is inserted in
its position. To know where the alternative bucket of the evicted entry is, a mechanism called partial-key
hashing [partial-key] is used. If there is room in the alternative bucket, the evicted entry is stored in it. If
not, same process is repeated (one of the entries gets pushed) until an empty entry is found. Notice that
despite all the entry movement in the first table, the second table is not touched, which would impact
greatly in performance.

In the very unlikely event that an empty entry cannot be found after certain number of displacements,
key is considered not able to be added (unless extendable bucket flag is set, and in that case the bucket
is extended to insert the key, as will be explained later). With random keys, this method allows the
user to get more than 90% table utilization, without having to drop any stored entry (e.g. using a LRU
replacement policy) or allocate more memory (extendable buckets or rehashing).

Example of deletion:

Similar to lookup, the key is searched in its primary and secondary buckets. If the key is found, the entry
is marked as empty. If the hash table was configured with ‘no free on delete’ or ‘lock free read/write
concurrency’, the position of the key is not freed. It is the responsibility of the user to free the position
after readers are not referencing the position anymore.

24.6 Implementation Details (with Extendable Bucket)

When the RTE_HASH_EXTRA_FLAGS_EXT_TABLE flag is set, the hash table implementation still
uses the same Cuckoo Hash algorithm to store the keys into the first and second tables. However, in
the very unlikely event that a key can’t be inserted after certain number of the Cuckoo displacements is
reached, the secondary bucket of this key is extended with a linked list of extra buckets and the key is
stored in this linked list.

In case of lookup for a certain key, as before, the primary bucket is searched for a match and then the
secondary bucket is looked up. If there is no match there either, the extendable buckets (linked list of
extra buckets) are searched one by one for a possible match and if there is no match the key is considered
not to be in the table.

The deletion is the same as the case when the RTE_HASH_EXTRA_FLAGS_EXT_TABLE flag is not
set. With one exception, if a key is deleted from any bucket and an empty location is created, the last
entry from the extendable buckets associated with this bucket is displaced into this empty location to
possibly shorten the linked list.

24.6. Implementation Details (with Extendable Bucket) 227



Programmer’s Guide, Release 20.08.0

24.7 Entry distribution in hash table

As mentioned above, Cuckoo hash implementation pushes elements out of their bucket, if there is a
new entry to be added which primary location coincides with their current bucket, being pushed to
their alternative location. Therefore, as user adds more entries to the hash table, distribution of the
hash values in the buckets will change, being most of them in their primary location and a few in their
secondary location, which the later will increase, as table gets busier. This information is quite useful,
as performance may be lower as more entries are evicted to their secondary location.

See the tables below showing example entry distribution as table utilization increases.

Table 24.1: Entry distribution measured with an example table with 1024
random entries using jhash algorithm

% Table used % In Primary location % In Secondary location
25 100 0
50 96.1 3.9
75 88.2 11.8
80 86.3 13.7
85 83.1 16.9
90 77.3 22.7
95.8 64.5 35.5

Table 24.2: Entry distribution measured with an example table with 1
million random entries using jhash algorithm

% Table used % In Primary location % In Secondary location
50 96 4
75 86.9 13.1
80 83.9 16.1
85 80.1 19.9
90 74.8 25.2
94.5 67.4 32.6

Note: Last values on the tables above are the average maximum table utilization with random keys and
using Jenkins hash function.

24.8 Use Case: Flow Classification

Flow classification is used to map each input packet to the connection/flow it belongs to. This operation
is necessary as the processing of each input packet is usually done in the context of their connection, so
the same set of operations is applied to all the packets from the same flow.

Applications using flow classification typically have a flow table to manage, with each separate flow
having an entry associated with it in this table. The size of the flow table entry is application specific,

24.7. Entry distribution in hash table 228



Programmer’s Guide, Release 20.08.0

with typical values of 4, 16, 32 or 64 bytes.

Each application using flow classification typically has a mechanism defined to uniquely identify a flow
based on a number of fields read from the input packet that make up the flow key. One example is to use
the DiffServ 5-tuple made up of the following fields of the IP and transport layer packet headers: Source
IP Address, Destination IP Address, Protocol, Source Port, Destination Port.

The DPDK hash provides a generic method to implement an application specific flow classification
mechanism. Given a flow table implemented as an array, the application should create a hash object
with the same number of entries as the flow table and with the hash key size set to the number of bytes
in the selected flow key.

The flow table operations on the application side are described below:

• Add flow: Add the flow key to hash. If the returned position is valid, use it to access the flow entry
in the flow table for adding a new flow or updating the information associated with an existing
flow. Otherwise, the flow addition failed, for example due to lack of free entries for storing new
flows.

• Delete flow: Delete the flow key from the hash. If the returned position is valid, use it to access
the flow entry in the flow table to invalidate the information associated with the flow.

• Free flow: Free flow key position. If ‘no free on delete’ or ‘lock-free read/write concurrency’
flags are set, wait till the readers are not referencing the position returned during add/delete flow
and then free the position. RCU mechanisms can be used to find out when the readers are not
referencing the position anymore.

• Lookup flow: Lookup for the flow key in the hash. If the returned position is valid (flow lookup
hit), use the returned position to access the flow entry in the flow table. Otherwise (flow lookup
miss) there is no flow registered for the current packet.

24.9 References

• Donald E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching (2nd
Edition), 1998, Addison-Wesley Professional

• [partial-key] Bin Fan, David G. Andersen, and Michael Kaminsky, MemC3: compact and concur-
rent MemCache with dumber caching and smarter hashing, 2013, NSDI

24.9. References 229



CHAPTER

TWENTYFIVE

ELASTIC FLOW DISTRIBUTOR LIBRARY

25.1 Introduction

In Data Centers today, clustering and scheduling of distributed workloads is a very common task. Many
workloads require a deterministic partitioning of a flat key space among a cluster of machines. When a
packet enters the cluster, the ingress node will direct the packet to its handling node. For example, data-
centers with disaggregated storage use storage metadata tables to forward I/O requests to the correct
back end storage cluster, stateful packet inspection will use match incoming flows to signatures in flow
tables to send incoming packets to their intended deep packet inspection (DPI) devices, and so on.

EFD is a distributor library that uses perfect hashing to determine a target/value for a given incoming
flow key. It has the following advantages: first, because it uses perfect hashing it does not store the
key itself and hence lookup performance is not dependent on the key size. Second, the target/value can
be any arbitrary value hence the system designer and/or operator can better optimize service rates and
inter-cluster network traffic locating. Third, since the storage requirement is much smaller than a hash-
based flow table (i.e. better fit for CPU cache), EFD can scale to millions of flow keys. Finally, with the
current optimized library implementation, performance is fully scalable with any number of CPU cores.

25.2 Flow Based Distribution

25.2.1 Computation Based Schemes

Flow distribution and/or load balancing can be simply done using a stateless computation, for instance
using round-robin or a simple computation based on the flow key as an input. For example, a hash
function can be used to direct a certain flow to a target based on the flow key (e.g. h(key) mod n)
where h(key) is the hash value of the flow key and n is the number of possible targets.

In this scheme (Fig. 25.1), the front end server/distributor/load balancer extracts the flow key from the
input packet and applies a computation to determine where this flow should be directed. Intuitively,
this scheme is very simple and requires no state to be kept at the front end node, and hence, storage
requirements are minimum.

A widely used flow distributor that belongs to the same category of computation-based schemes is
consistent hashing, shown in Fig. 25.2. Target destinations (shown in red) are hashed into the
same space as the flow keys (shown in blue), and keys are mapped to the nearest target in a clockwise
fashion. Dynamically adding and removing targets with consistent hashing requires only K/n keys to be
remapped on average, where K is the number of keys, and n is the number of targets. In contrast, in a
traditional hash-based scheme, a change in the number of targets causes nearly all keys to be remapped.

230



Programmer’s Guide, Release 20.08.0

LB

Target 1

Target 2

Target N

Fig. 25.1: Load Balancing Using Front End Node

Target Hashed Value

Keys

Fig. 25.2: Consistent Hashing

25.2. Flow Based Distribution 231



Programmer’s Guide, Release 20.08.0

Although computation-based schemes are simple and need very little storage requirement, they suffer
from the drawback that the system designer/operator can’t fully control the target to assign a specific
key, as this is dictated by the hash function. Deterministically co-locating of keys together (for example,
to minimize inter-server traffic or to optimize for network traffic conditions, target load, etc.) is simply
not possible.

25.2.2 Flow-Table Based Schemes

When using a Flow-Table based scheme to handle flow distribution/load balancing, in contrast with
computation-based schemes, the system designer has the flexibility of assigning a given flow to any
given target. The flow table (e.g. DPDK RTE Hash Library) will simply store both the flow key and the
target value.

Packet Header Payload

Flow Key

Fields of the packet are used to form a flow Key

H(..)
Hash function is used to create a flow table index

Key 1Action 1Key 2Action 2

Key xAction xKey yAction yKey zAction z

Key NAction N

Load Balancing Flow Table

Hash value used to index Flow table

Key x Key z

Match

Key y

Flow Key

Retrieved keys are matched with input key

Action

Fig. 25.3: Table Based Flow Distribution

As shown in Fig. 25.3, when doing a lookup, the flow-table is indexed with the hash of the flow key and
the keys (more than one is possible, because of hash collision) stored in this index and corresponding
values are retrieved. The retrieved key(s) is matched with the input flow key and if there is a match the
value (target id) is returned.

The drawback of using a hash table for flow distribution/load balancing is the storage requirement, since
the flow table need to store keys, signatures and target values. This doesn’t allow this scheme to scale
to millions of flow keys. Large tables will usually not fit in the CPU cache, and hence, the lookup
performance is degraded because of the latency to access the main memory.

25.2. Flow Based Distribution 232



Programmer’s Guide, Release 20.08.0

25.2.3 EFD Based Scheme

EFD combines the advantages of both flow-table based and computation-based schemes. It doesn’t
require the large storage necessary for flow-table based schemes (because EFD doesn’t store the key as
explained below), and it supports any arbitrary value for any given key.

Key 1Key 2...Key 28

Target Value

010 000
H1(x)

110
H2(x)

010
Hm(x)…..

Store m for this group of keys

Fig. 25.4: Searching for Perfect Hash Function

The basic idea of EFD is when a given key is to be inserted, a family of hash functions is searched until
the correct hash function that maps the input key to the correct value is found, as shown in Fig. 25.4.
However, rather than explicitly storing all keys and their associated values, EFD stores only indices of
hash functions that map keys to values, and thereby consumes much less space than conventional flow-
based tables. The lookup operation is very simple, similar to a computational-based scheme: given an
input key the lookup operation is reduced to hashing that key with the correct hash function.

All Keys

Group 1 Group 2 Group 3 Group X

H7 H267 H46 H132

Store hash function index for each group of keys

Fig. 25.5: Divide and Conquer for Millions of Keys

Intuitively, finding a hash function that maps each of a large number (millions) of input keys to the
correct output value is effectively impossible, as a result EFD, as shown in Fig. 25.5, breaks the problem
into smaller pieces (divide and conquer). EFD divides the entire input key set into many small groups.
Each group consists of approximately 20-28 keys (a configurable parameter for the library), then, for
each small group, a brute force search to find a hash function that produces the correct outputs for each
key in the group.

It should be mentioned that, since the online lookup table for EFD doesn’t store the key itself, the size
of the EFD table is independent of the key size and hence EFD lookup performance which is almost
constant irrespective of the length of the key which is a highly desirable feature especially for longer
keys.

In summary, EFD is a set separation data structure that supports millions of keys. It is used to distribute
a given key to an intended target. By itself EFD is not a FIB data structure with an exact match the input
flow key.

25.2. Flow Based Distribution 233



Programmer’s Guide, Release 20.08.0

25.3 Example of EFD Library Usage

EFD can be used along the data path of many network functions and middleboxes. As previously
mentioned, it can used as an index table for <key,value> pairs, meta-data for objects, a flow-level load
balancer, etc. Fig. 25.6 shows an example of using EFD as a flow-level load balancer, where flows
are received at a front end server before being forwarded to the target back end server for processing.
The system designer would deterministically co-locate flows together in order to minimize cross-server
interaction. (For example, flows requesting certain webpage objects are co-located together, to minimize
forwarding of common objects across servers).

Key 1Action 1Key 2Action 2

Key xAction xKey yAction yKey zAction z

Key NAction N

Local Table for N Specific Flows Serviced at Node 1

EFD Table

Group_id Hash index

Supports X*N Flows

Frontend Serveror Load Balancer  

Backend Server 1

Backend Server 2

Backend Server X

Key 1Action 1Key 2Action 2

Key xAction xKey yAction yKey zAction z

Key NAction N

Local Table for N Specific Flows Serviced at Node X

Supports N Flows

Fig. 25.6: EFD as a Flow-Level Load Balancer

As shown in Fig. 25.6, the front end server will have an EFD table that stores for each group what is
the perfect hash index that satisfies the correct output. Because the table size is small and fits in cache
(since keys are not stored), it sustains a large number of flows (N*X, where N is the maximum number
of flows served by each back end server of the X possible targets).

With an input flow key, the group id is computed (for example, using last few bits of CRC hash) and
then the EFD table is indexed with the group id to retrieve the corresponding hash index to use. Once the
index is retrieved the key is hashed using this hash function and the result will be the intended correct
target where this flow is supposed to be processed.

It should be noted that as a result of EFD not matching the exact key but rather distributing the flows to
a target back end node based on the perfect hash index, a key that has not been inserted before will be
distributed to a valid target. Hence, a local table which stores the flows served at each node is used and
is exact matched with the input key to rule out new never seen before flows.

25.4 Library API Overview

The EFD library API is created with a very similar semantics of a hash-index or a flow table. The
application creates an EFD table for a given maximum number of flows, a function is called to insert a

25.3. Example of EFD Library Usage 234



Programmer’s Guide, Release 20.08.0

flow key with a specific target value, and another function is used to retrieve target values for a given
individual flow key or a bulk of keys.

25.4.1 EFD Table Create

The function rte_efd_create() is used to create and return a pointer to an EFD table that is sized
to hold up to num_flows key. The online version of the EFD table (the one that does not store the keys
and is used for lookups) will be allocated and created in the last level cache (LLC) of the socket defined
by the online_socket_bitmask, while the offline EFD table (the one that stores the keys and is used for
key inserts and for computing the perfect hashing) is allocated and created in the LLC of the socket
defined by offline_socket_bitmask. It should be noted, that for highest performance the socket id should
match that where the thread is running, i.e. the online EFD lookup table should be created on the same
socket as where the lookup thread is running.

25.4.2 EFD Insert and Update

The EFD function to insert a key or update a key to a new value is rte_efd_update(). This function
will update an existing key to a new value (target) if the key has already been inserted before, or will
insert the <key,value> pair if this key has not been inserted before. It will return 0 upon success. It
will return EFD_UPDATE_WARN_GROUP_FULL (1) if the operation is insert, and the last available
space in the key’s group was just used. It will return EFD_UPDATE_FAILED (2) when the insertion
or update has failed (either it failed to find a suitable perfect hash or the group was full). The function
will return EFD_UPDATE_NO_CHANGE (3) if there is no change to the EFD table (i.e, same value
already exists).

Note: This function is not multi-thread safe and should only be called from one thread.

25.4.3 EFD Lookup

To lookup a certain key in an EFD table, the function rte_efd_lookup() is used to return the value
associated with single key. As previously mentioned, if the key has been inserted, the correct value
inserted is returned, if the key has not been inserted before, a ‘random’ value (based on hashing of the
key) is returned. For better performance and to decrease the overhead of function calls per key, it is
always recommended to use a bulk lookup function (simultaneous lookup of multiple keys) instead of
a single key lookup function. rte_efd_lookup_bulk() is the bulk lookup function, that looks up
num_keys simultaneously stored in the key_list and the corresponding return values will be returned in
the value_list.

Note: This function is multi-thread safe, but there should not be other threads writing in the EFD table,
unless locks are used.

25.4.4 EFD Delete

To delete a certain key in an EFD table, the function rte_efd_delete() can be used. The function
returns zero upon success when the key has been found and deleted. Socket_id is the parameter to use

25.4. Library API Overview 235



Programmer’s Guide, Release 20.08.0

to lookup the existing value, which is ideally the caller’s socket id. The previous value associated with
this key will be returned in the prev_value argument.

Note: This function is not multi-thread safe and should only be called from one thread.

25.5 Library Internals

This section provides the brief high-level idea and an overview of the library internals to accompany the
RFC. The intent of this section is to explain to readers the high-level implementation of insert, lookup
and group rebalancing in the EFD library.

25.5.1 Insert Function Internals

As previously mentioned the EFD divides the whole set of keys into groups of a manageable size (e.g.
28 keys) and then searches for the perfect hash that satisfies the intended target value for each key. EFD
stores two version of the <key,value> table:

• Offline Version (in memory): Only used for the insertion/update operation, which is less frequent
than the lookup operation. In the offline version the exact keys for each group is stored. When a
new key is added, the hash function is updated that will satisfy the value for the new key together
with the all old keys already inserted in this group.

• Online Version (in cache): Used for the frequent lookup operation. In the online version, as
previously mentioned, the keys are not stored but rather only the hash index for each group.

Key1

hash

0x0102ABCD

Key2

hash

0x0103CDAB

Key3

hash

0x0102BAAD

Key4

hash

0x0104BEEF

Key5

hash

0x0103DABD

Key6

hash

0x0102ADCB

Key7

hash

0x0104DBCA

0x0102

4

0x0103

2

0x0104

1

Groups

group id

- Keys separated into  

groups based on  

some bits from hash

- Groups contain a  

small number of  

keys (<28)

Group  
Identifier  

(simplified)
· Keys separated into groups based on some bits from hash.· Groups contain a small number of keys (<28)

Total # of keys in group so far

Fig. 25.7: Group Assignment

Fig. 25.7 depicts the group assignment for 7 flow keys as an example. Given a flow key, a hash function
(in our implementation CRC hash) is used to get the group id. As shown in the figure, the groups can be
unbalanced. (We highlight group rebalancing further below).

Focusing on one group that has four keys, Fig. 25.8 depicts the search algorithm to find the perfect hash
function. Assuming that the target value bit for the keys is as shown in the figure, then the online EFD
table will store a 16 bit hash index and 16 bit lookup table per group per value bit.

25.5. Library Internals 236



Programmer’s Guide, Release 20.08.0

hash_index
(integer, 16 bits)

lookup_table
(16 bits)

Group ID: 0x0102
Key1: Value = 0

Key3: Value = 1

Key4: Value = 0

Key7: Value = 1

Fig. 25.8: Perfect Hash Search - Assigned Keys & Target Value

(hash(key, seed1) + hash_index *  hash(key, seed2)) % 16

lookup_tablebit  
index for key1

lookup_tablebit  
index for key3

lookup_tablebit  
index for key4

lookup_tablebit  
index for key7

CRC32 (32  
bit output)

Goal: Find a valid  
hash_index

Lookup Table has  
16 bits

CRC32 (32  
bit output)

Goal is to find a hash_index that produces  

a lookup_table with no contradictions

Key1: Value = 0

Key3: Value = 1

Key4: Value = 0

Key7: Value = 1

Fig. 25.9: Perfect Hash Search - Satisfy Target Values

For a given keyX, a hash function (h(keyX,seed1) + index * h(keyX,seed2)) is used to
point to certain bit index in the 16bit lookup_table value, as shown in Fig. 25.9. The insert function will
brute force search for all possible values for the hash index until a non conflicting lookup_table is found.

Key1: Value = 0

Key3: Value = 1

Key4: Value = 0

Key7: Value = 1

F (key,  
hash_index =  i)

Key1: Position 4

Key3: Position 6

Key4: Position 14

Key7: Position 14

0000  0 010 0000 00? 0

Values
Lookup_table

(16 bits)

Fig. 25.10: Finding Hash Index for Conflict Free lookup_table

For example, since both key3 and key7 have a target bit value of 1, it is okay if the hash function of both
keys point to the same bit in the lookup table. A conflict will occur if a hash index is used that maps both
Key4 and Key7 to the same index in the lookup_table, as shown in Fig. 25.10, since their target value
bit are not the same. Once a hash index is found that produces a lookup_table with no contradictions,
this index is stored for this group. This procedure is repeated for each bit of target value.

25.5. Library Internals 237



Programmer’s Guide, Release 20.08.0

25.5.2 Lookup Function Internals

The design principle of EFD is that lookups are much more frequent than inserts, and hence, EFD’s
design optimizes for the lookups which are faster and much simpler than the slower insert procedure
(inserts are slow, because of perfect hash search as previously discussed).

Key

hash

0x0102ABCD

hash_index =  
38123

lookup_table =
0110 1100 0101 1101

Group ID: 0x0102

Position = 6

Apply the equation  

to retrieve the bit  

position in the  

lookup_table

Retrieve the value “0' from the specified location in the lookup table

F(Key, hash_index = 38123

Apply the equation to retrieve the bit position in the lookup_table

(Hash(key,seed1)+38123*hash(key,seed2))%16

Fig. 25.11: EFD Lookup Operation

Fig. 25.11 depicts the lookup operation for EFD. Given an input key, the group id is computed (using
CRC hash) and then the hash index for this group is retrieved from the EFD table. Using the retrieved
hash index, the hash function h(key,seed1) + index *h(key,seed2) is used which will re-
sult in an index in the lookup_table, the bit corresponding to this index will be the target value bit. This
procedure is repeated for each bit of the target value.

25.5.3 Group Rebalancing Function Internals

When discussing EFD inserts and lookups, the discussion is simplified by assuming that a group id is
simply a result of hash function. However, since hashing in general is not perfect and will not always
produce a uniform output, this simplified assumption will lead to unbalanced groups, i.e., some group
will have more keys than other groups. Typically, and to minimize insert time with an increasing number
of keys, it is preferable that all groups will have a balanced number of keys, so the brute force search for
the perfect hash terminates with a valid hash index. In order to achieve this target, groups are rebalanced
during runtime inserts, and keys are moved around from a busy group to a less crowded group as the
more keys are inserted.

Fig. 25.12 depicts the high level idea of group rebalancing, given an input key the hash result is split into
two parts a chunk id and 8-bit bin id. A chunk contains 64 different groups and 256 bins (i.e. for any
given bin it can map to 4 distinct groups). When a key is inserted, the bin id is computed, for example in
Fig. 25.12 bin_id=2, and since each bin can be mapped to one of four different groups (2 bit storage), the
four possible mappings are evaluated and the one that will result in a balanced key distribution across
these four is selected the mapping result is stored in these two bits.

25.6 References

1- EFD is based on collaborative research work between Intel and Carnegie Mel-
lon University (CMU), interested readers can refer to the paper “Scaling Up Clus-

25.6. References 238



Programmer’s Guide, Release 20.08.0

Bins Groups

0

Chunks

1

…

variable  
# of  
chunks
(power  
of 2)

0 4
1
2 3+1
3
4 0
5

6
7 2
8
9
10 1
11
12
…
255

…

5

4 2
4

10

1+4

3

1 2
7

5-3

0 0

4

64 96

7

6 98

5

2 99

9

7 97

6

Insert key    

hash

0x0102ABCD

chunk id

bin id

Move bin from group 1 to 4

Fig. 25.12: Runtime Group Rebalancing

tered Network Appliances with ScaleBricks” Dong Zhou et al. at SIGCOMM 2015
(http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p241.pdf ) for more information.

25.6. References 239



CHAPTER

TWENTYSIX

MEMBERSHIP LIBRARY

26.1 Introduction

The DPDK Membership Library provides an API for DPDK applications to insert a new member, delete
an existing member, or query the existence of a member in a given set, or a group of sets. For the case
of a group of sets, the library will return not only whether the element has been inserted before in one
of the sets but also which set it belongs to. The Membership Library is an extension and generalization
of a traditional filter structure (for example Bloom Filter [Member-bloom]) that has multiple usages in
a wide variety of workloads and applications. In general, the Membership Library is a data structure
that provides a “set-summary” on whether a member belongs to a set, and as discussed in detail later,
there are two advantages of using such a set-summary rather than operating on a “full-blown” complete
list of elements: first, it has a much smaller storage requirement than storing the whole list of elements
themselves, and secondly checking an element membership (or other operations) in this set-summary is
much faster than checking it for the original full-blown complete list of elements.

We use the term “Set-Summary” in this guide to refer to the space-efficient, probabilistic membership
data structure that is provided by the library. A membership test for an element will return the set
this element belongs to or that the element is “not-found” with very high probability of accuracy. Set-
summary is a fundamental data aggregation component that can be used in many network (and other)
applications. It is a crucial structure to address performance and scalability issues of diverse network
applications including overlay networks, data-centric networks, flow table summaries, network statistics
and traffic monitoring. A set-summary is useful for applications who need to include a list of elements
while a complete list requires too much space and/or too much processing cost. In these situations, the
set-summary works as a lossy hash-based representation of a set of members. It can dramatically reduce
space requirement and significantly improve the performance of set membership queries at the cost of
introducing a very small membership test error probability.

There are various usages for a Membership Library in a very large set of applications and workloads.
Interested readers can refer to [Member-survey] for a survey of possible networking usages. The above
figure provide a small set of examples of using the Membership Library:

• Sub-figure (a) depicts a distributed web cache architecture where a collection of proxies attempt to
share their web caches (cached from a set of back-end web servers) to provide faster responses to
clients, and the proxies use the Membership Library to share summaries of what web pages/objects
they are caching. With the Membership Library, a proxy receiving an http request will inquire the
set-summary to find its location and quickly determine whether to retrieve the requested web page
from a nearby proxy or from a back-end web server.

• Sub-figure (b) depicts another example for using the Membership Library to prevent routing loops
which is typically done using slow TTL countdown and dropping packets when TTL expires. As
shown in Sub-figure (b), an embedded set-summary in the packet header itself can be used to
summarize the set of nodes a packet has gone through, and each node upon receiving a packet can

240



Programmer’s Guide, Release 20.08.0

List 1 matching Criteria 1List 1 matching Criteria 1
List 2List 2

List 1 matching Criteria 1List 1 matching Criteria 1
setsum List 2 matching Criteria 2List 2 matching Criteria 2

S
e
t 

S
u

m
m

a
ry

Flow Key

New Flow => New Assignment

Old Flow => forward to specific thread

SUM Packet

SUM Packet

Encode ID

setsum

Clients
Distributed Cache

Web Servers

(a) Distributed Web Cache (b) Detecting Routing Loops

(c) In-order Workload Scheduler (d) Database Semi-join Operations

Fig. 26.1: Example Usages of Membership Library

check whether its id is a member of the set of visited nodes, and if it is, then a routing loop is
detected.

• Sub-Figure (c) presents another usage of the Membership Library to load-balance flows to worker
threads with in-order guarantee where a set-summary is used to query if a packet belongs to an
existing flow or a new flow. Packets belonging to a new flow are forwarded to the current least
loaded worker thread, while those belonging to an existing flow are forwarded to the pre-assigned
thread to guarantee in-order processing.

• Sub-figure (d) highlights yet another usage example in the database domain where a set-summary
is used to determine joins between sets instead of creating a join by comparing each element of
a set against the other elements in a different set, a join is done on the summaries since they can
efficiently encode members of a given set.

Membership Library is a configurable library that is optimized to cover set membership functionality
for both a single set and multi-set scenarios. Two set-summary schemes are presented including (a)
vector of Bloom Filters and (b) Hash-Table based set-summary schemes with and without false negative
probability. This guide first briefly describes these different types of set-summaries, usage examples for
each, and then it highlights the Membership Library API.

26.2 Vector of Bloom Filters

Bloom Filter (BF) [Member-bloom] is a well-known space-efficient probabilistic data structure that
answers set membership queries (test whether an element is a member of a set) with some probability
of false positives and zero false negatives; a query for an element returns either it is “possibly in a set”
(with very high probability) or “definitely not in a set”.

The BF is a method for representing a set of n elements (for example flow keys in network applications

26.2. Vector of Bloom Filters 241



Programmer’s Guide, Release 20.08.0

domain) to support membership queries. The idea of BF is to allocate a bit-vector v with m bits, which
are initially all set to 0. Then it chooses k independent hash functions h1, h2, ... hk with hash values
range from 0 to m-1 to perform hashing calculations on each element to be inserted. Every time when
an element X being inserted into the set, the bits at positions h1(X), h2(X), ... hk(X) in v are set to
1 (any particular bit might be set to 1 multiple times for multiple different inserted elements). Given a
query for any element Y, the bits at positions h1(Y), h2(Y), ... hk(Y) are checked. If any of them is
0, then Y is definitely not in the set. Otherwise there is a high probability that Y is a member of the set
with certain false positive probability. As shown in the next equation, the false positive probability can
be made arbitrarily small by changing the number of hash functions (k) and the vector length (m).

False Positive Probability = (1-(1-1/m)kn)k ≃ (1-ekn/m)k

Fig. 26.2: Bloom Filter False Positive Probability

Without BF, an accurate membership testing could involve a costly hash table lookup and full element
comparison. The advantage of using a BF is to simplify the membership test into a series of hash
calculations and memory accesses for a small bit-vector, which can be easily optimized. Hence the
lookup throughput (set membership test) can be significantly faster than a normal hash table lookup
with element comparison.

BF of IDs Packet

BF of IDs Packet

Encode ID

Fig. 26.3: Detecting Routing Loops Using BF

BF is used for applications that need only one set, and the membership of elements is checked against
the BF. The example discussed in the above figure is one example of potential applications that uses only
one set to capture the node IDs that have been visited so far by the packet. Each node will then check
this embedded BF in the packet header for its own id, and if the BF indicates that the current node is
definitely not in the set then a loop-free route is guaranteed.

To support membership test for both multiple sets and a single set, the library implements a Vector
Bloom Filter (vBF) scheme. vBF basically composes multiple bloom filters into a vector of bloom

26.2. Vector of Bloom Filters 242



Programmer’s Guide, Release 20.08.0

Element

BF-1

h1, h2 .. hk

BF-2 BF-X BF-L

Hashing for lookup/Insertion into a vector of BFs happens once

Lookup/Insertion is done in the series of BFs, one by one or can be optimized to do in parallel.  

Fig. 26.4: Vector Bloom Filter (vBF) Overview

filers. The membership test is conducted on all of the bloom filters concurrently to determine which
set(s) it belongs to or none of them. The basic idea of vBF is shown in the above figure where an
element is used to address multiple bloom filters concurrently and the bloom filter index(es) with a hit
is returned.

vBF  

Flow Key

New Flow => New Assignment

Old Flow => forward to specific thread
A BF corresponding to each worker thread

Fig. 26.5: vBF for Flow Scheduling to Worker Thread

As previously mentioned, there are many usages of such structures. vBF is used for applications that
need to check membership against multiple sets simultaneously. The example shown in the above figure
uses a set to capture all flows being assigned for processing at a given worker thread. Upon receiving a
packet the vBF is used to quickly figure out if this packet belongs to a new flow so as to be forwarded
to the current least loaded worker thread, or otherwise it should be queued for an existing thread to
guarantee in-order processing (i.e. the property of vBF to indicate right away that a given flow is a new
one or not is critical to minimize response time latency).

It should be noted that vBF can be implemented using a set of single bloom filters with sequential lookup
of each BF. However, being able to concurrently search all set-summaries is a big throughput advantage.
In the library, certain parallelism is realized by the implementation of checking all bloom filters together.

26.3 Hash-Table based Set-Summaries

Hash-table based set-summary (HTSS) is another scheme in the membership library. Cuckoo filter
[Member-cfilter] is an example of HTSS. HTSS supports multi-set membership testing like vBF does.
However, while vBF is better for a small number of targets, HTSS is more suitable and can easily
outperform vBF when the number of sets is large, since HTSS uses a single hash table for membership
testing while vBF requires testing a series of Bloom Filters each corresponding to one set. As a result,

26.3. Hash-Table based Set-Summaries 243



Programmer’s Guide, Release 20.08.0

generally speaking vBF is more adequate for the case of a small limited number of sets while HTSS
should be used with a larger number of sets.

Signatures fortarget 1

Match 1

Packet Payload

Attack Signature Length 1

Signatures fortarget 2

Attack Signature Length 2 Attack Signature Length L

Match 2

Attack Signature Length X

HTSS

Fig. 26.6: Using HTSS for Attack Signature Matching

As shown in the above figure, attack signature matching where each set represents a certain signature
length (for correctness of this example, an attack signature should not be a subset of another one) in the
payload is a good example for using HTSS with 0% false negative (i.e., when an element returns not
found, it has a 100% certainty that it is not a member of any set). The packet inspection application
benefits from knowing right away that the current payload does not match any attack signatures in the
database to establish its legitimacy, otherwise a deep inspection of the packet is needed.

HTSS employs a similar but simpler data structure to a traditional hash table, and the major difference
is that HTSS stores only the signatures but not the full keys/elements which can significantly reduce the
footprint of the table. Along with the signature, HTSS also stores a value to indicate the target set. When
looking up an element, the element is hashed and the HTSS is addressed to retrieve the signature stored.
If the signature matches then the value is retrieved corresponding to the index of the target set which
the element belongs to. Because signatures can collide, HTSS can still has false positive probability.
Furthermore, if elements are allowed to be overwritten or evicted when the hash table becomes full, it
will also have a false negative probability. We discuss this case in the next section.

26.3.1 Set-Summaries with False Negative Probability

As previously mentioned, traditional set-summaries (e.g. Bloom Filters) do not have a false negative
probability, i.e., it is 100% certain when an element returns “not to be present” for a given set. However,
the Membership Library also supports a set-summary probabilistic data structure based on HTSS which
allows for false negative probability.

In HTSS, when the hash table becomes full, keys/elements will fail to be added into the table and the
hash table has to be resized to accommodate for these new elements, which can be expensive. However,
if we allow new elements to overwrite or evict existing elements (as a cache typically does), then the
resulting set-summary will begin to have false negative probability. This is because the element that was
evicted from the set-summary may still be present in the target set. For subsequent inquiries the set-
summary will falsely report the element not being in the set, hence having a false negative probability.

The major usage of HTSS with false negative is to use it as a cache for distributing elements to different
target sets. By allowing HTSS to evict old elements, the set-summary can keep track of the most recent

26.3. Hash-Table based Set-Summaries 244



Programmer’s Guide, Release 20.08.0

elements (i.e. active) as a cache typically does. Old inactive elements (infrequently used elements) will
automatically and eventually get evicted from the set-summary. It is worth noting that the set-summary
still has false positive probability, which means the application either can tolerate certain false positive
or it has fall-back path when false positive happens.

Flow Keys Matching Mask 1

Match

Flow ID1

Flow Mask 1

Flow Keys Matching Mask 2

HTSS with False Negative (Cache)

Active

Target for Flow ID 1

Flow ID2

New/Inactive

Miss

Flow Mask 2 Flow Mask X Flow Mask L

Fig. 26.7: Using HTSS with False Negatives for Wild Card Classification

HTSS with false negative (i.e. a cache) also has its wide set of applications. For example wild card flow
classification (e.g. ACL rules) highlighted in the above figure is an example of such application. In that
case each target set represents a sub-table with rules defined by a certain flow mask. The flow masks
are non-overlapping, and for flows matching more than one rule only the highest priority one is inserted
in the corresponding sub-table (interested readers can refer to the Open vSwitch (OvS) design of Mega
Flow Cache (MFC) [Member-OvS] for further details). Typically the rules will have a large number of
distinct unique masks and hence, a large number of target sets each corresponding to one mask. Because
the active set of flows varies widely based on the network traffic, HTSS with false negative will act as a
cache for <flowid, target ACL sub-table> pair for the current active set of flows. When a miss occurs (as
shown in red in the above figure) the sub-tables will be searched sequentially one by one for a possible
match, and when found the flow key and target sub-table will be inserted into the set-summary (i.e.
cache insertion) so subsequent packets from the same flow don’t incur the overhead of the sequential
search of sub-tables.

26.4 Library API Overview

The design goal of the Membership Library API is to be as generic as possible to support all the different
types of set-summaries we discussed in previous sections and beyond. Fundamentally, the APIs need to
include creation, insertion, deletion, and lookup.

26.4. Library API Overview 245



Programmer’s Guide, Release 20.08.0

26.4.1 Set-summary Create

The rte_member_create() function is used to create a set-summary structure, the input parameter
is a struct to pass in parameters that needed to initialize the set-summary, while the function returns the
pointer to the created set-summary or NULL if the creation failed.

The general input arguments used when creating the set-summary should include name which is
the name of the created set-summary, type which is one of the types supported by the library (e.g.
RTE_MEMBER_TYPE_HT for HTSS or RTE_MEMBER_TYPE_VBF for vBF), and key_len which is
the length of the element/key. There are other parameters are only used for certain type of set-summary,
or which have a slightly different meaning for different types of set-summary. For example, num_keys
parameter means the maximum number of entries for Hash table based set-summary. However, for
bloom filter, this value means the expected number of keys that could be inserted into the bloom filter(s).
The value is used to calculate the size of each bloom filter.

We also pass two seeds: prim_hash_seed and sec_hash_seed for the primary and secondary
hash functions to calculate two independent hash values. socket_id parameter is the NUMA socket
ID for the memory used to create the set-summary. For HTSS, another parameter is_cache is used
to indicate if this set-summary is a cache (i.e. with false negative probability) or not. For vBF, extra
parameters are needed. For example, num_set is the number of sets needed to initialize the vector
bloom filters. This number is equal to the number of bloom filters will be created. false_pos_rate
is the false positive rate. num_keys and false_pos_rate will be used to determine the number of hash
functions and the bloom filter size.

26.4.2 Set-summary Element Insertion

The rte_member_add() function is used to insert an element/key into a set-summary structure. If
it fails an error is returned. For success the returned value is dependent on the set-summary mode to
provide extra information for the users. For vBF mode, a return value of 0 means a successful insert. For
HTSS mode without false negative, the insert could fail with -ENOSPC if the table is full. With false
negative (i.e. cache mode), for insert that does not cause any eviction (i.e. no overwriting happens to an
existing entry) the return value is 0. For insertion that causes eviction, the return value is 1 to indicate
such situation, but it is not an error.

The input arguments for the function should include the key which is a pointer to the element/key that
needs to be added to the set-summary, and set_id which is the set id associated with the key that needs
to be added.

26.4.3 Set-summary Element Lookup

The rte_member_lookup() function looks up a single key/element in the set-summary structure. It
returns as soon as the first match is found. The return value is 1 if a match is found and 0 otherwise. The
arguments for the function include key which is a pointer to the element/key that needs to be looked up,
and set_id which is used to return the first target set id where the key has matched, if any.

The rte_member_lookup_bulk() function is used to look up a bulk of keys/elements in the set-
summary structure for their first match. Each key lookup returns as soon as the first match is found. The
return value is the number of keys that find a match. The arguments of the function include keys which
is a pointer to a bulk of keys that are to be looked up, num_keys is the number of keys that will be
looked up, and set_ids are the return target set ids for the first match found for each of the input keys.
set_ids is an array needs to be sized according to the num_keys. If there is no match, the set id for
that key will be set to RTE_MEMBER_NO_MATCH.

26.4. Library API Overview 246



Programmer’s Guide, Release 20.08.0

The rte_member_lookup_multi() function looks up a single key/element in the set-summary
structure for multiple matches. It returns ALL the matches (possibly more than one) found for this key
when it is matched against all target sets (it is worth noting that for cache mode HTSS, the current im-
plementation matches at most one target set). The return value is the number of matches that was found
for this key (for cache mode HTSS the return value should be at most 1). The arguments for the function
include key which is a pointer to the element/key that needs to be looked up, max_match_per_key
which is to indicate the maximum number of matches the user expects to find for each key, and set_id
which is used to return all target set ids where the key has matched, if any. The set_id array should
be sized according to max_match_per_key. For vBF, the maximum number of matches per key is
equal to the number of sets. For HTSS, the maximum number of matches per key is equal to two time
entry count per bucket. max_match_per_key should be equal or smaller than the maximum number
of possible matches.

The rte_membership_lookup_multi_bulk() function looks up a bulk of keys/elements in the
set-summary structure for multiple matches, each key lookup returns ALL the matches (possibly more
than one) found for this key when it is matched against all target sets (cache mode HTSS matches at most
one target set). The return value is the number of keys that find one or more matches in the set-summary
structure. The arguments of the function include keys which is a pointer to a bulk of keys that are
to be looked up, num_keys is the number of keys that will be looked up, max_match_per_key is
the possible maximum number of matches for each key, match_count which is the returned number
of matches for each key, and set_ids are the returned target set ids for all matches found for each
keys. set_ids is 2-D array containing a 1-D array for each key (the size of 1-D array per key should
be set by the user according to max_match_per_key). max_match_per_key should be equal or
smaller than the maximum number of possible matches, similar to rte_member_lookup_multi.

26.4.4 Set-summary Element Delete

The rte_membership_delete() function deletes an element/key from a set-summary structure, if
it fails an error is returned. The input arguments should include keywhich is a pointer to the element/key
that needs to be deleted from the set-summary, and set_id which is the set id associated with the key
to delete. It is worth noting that current implementation of vBF does not support deletion 1. An error
code -EINVAL will be returned.

26.5 References

[Member-bloom] B H Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors,” Com-
munications of the ACM, 1970.

[Member-survey] A Broder and M Mitzenmacher, “Network Applications of Bloom Filters: A Survey,”
in Internet Mathematics, 2005.

[Member-cfilter] B Fan, D G Andersen and M Kaminsky, “Cuckoo Filter: Practically Better Than
Bloom,” in Conference on emerging Networking Experiments and Technologies, 2014.

[Member-OvS] B Pfaff, “The Design and Implementation of Open vSwitch,” in NSDI, 2015.

1 Traditional bloom filter does not support proactive deletion. Supporting proactive deletion require additional implemen-
tation and performance overhead.

26.5. References 247



CHAPTER

TWENTYSEVEN

LPM LIBRARY

The DPDK LPM library component implements the Longest Prefix Match (LPM) table search method
for 32-bit keys that is typically used to find the best route match in IP forwarding applications.

27.1 LPM API Overview

The main configuration parameter for LPM component instances is the maximum number of rules to
support. An LPM prefix is represented by a pair of parameters (32- bit key, depth), with depth in the
range of 1 to 32. An LPM rule is represented by an LPM prefix and some user data associated with the
prefix. The prefix serves as the unique identifier of the LPM rule. In this implementation, the user data
is 1-byte long and is called next hop, in correlation with its main use of storing the ID of the next hop in
a routing table entry.

The main methods exported by the LPM component are:

• Add LPM rule: The LPM rule is provided as input. If there is no rule with the same prefix present
in the table, then the new rule is added to the LPM table. If a rule with the same prefix is already
present in the table, the next hop of the rule is updated. An error is returned when there is no
available rule space left.

• Delete LPM rule: The prefix of the LPM rule is provided as input. If a rule with the specified
prefix is present in the LPM table, then it is removed.

• Lookup LPM key: The 32-bit key is provided as input. The algorithm selects the rule that repre-
sents the best match for the given key and returns the next hop of that rule. In the case that there
are multiple rules present in the LPM table that have the same 32-bit key, the algorithm picks
the rule with the highest depth as the best match rule, which means that the rule has the highest
number of most significant bits matching between the input key and the rule key.

27.2 Implementation Details

The current implementation uses a variation of the DIR-24-8 algorithm that trades memory usage for
improved LPM lookup speed. The algorithm allows the lookup operation to be performed with typically
a single memory read access. In the statistically rare case when the best match rule is having a depth
bigger than 24, the lookup operation requires two memory read accesses. Therefore, the performance of
the LPM lookup operation is greatly influenced by whether the specific memory location is present in
the processor cache or not.

The main data structure is built using the following elements:

• A table with 2^24 entries.

248



Programmer’s Guide, Release 20.08.0

• A number of tables (RTE_LPM_TBL8_NUM_GROUPS) with 2^8 entries.

The first table, called tbl24, is indexed using the first 24 bits of the IP address to be looked up, while the
second table(s), called tbl8, is indexed using the last 8 bits of the IP address. This means that depending
on the outcome of trying to match the IP address of an incoming packet to the rule stored in the tbl24
we might need to continue the lookup process in the second level.

Since every entry of the tbl24 can potentially point to a tbl8, ideally, we would have 2^24 tbl8s, which
would be the same as having a single table with 2^32 entries. This is not feasible due to resource
restrictions. Instead, this approach takes advantage of the fact that rules longer than 24 bits are very rare.
By splitting the process in two different tables/levels and limiting the number of tbl8s, we can greatly
reduce memory consumption while maintaining a very good lookup speed (one memory access, most of
the times).

Fig. 27.1: Table split into different levels

An entry in tbl24 contains the following fields:

• next hop / index to the tbl8

• valid flag

• external entry flag

• depth of the rule (length)

The first field can either contain a number indicating the tbl8 in which the lookup process should con-
tinue or the next hop itself if the longest prefix match has already been found. The two flags are used
to determine whether the entry is valid or not and whether the search process have finished or not re-
spectively. The depth or length of the rule is the number of bits of the rule that is stored in a specific
entry.

An entry in a tbl8 contains the following fields:

27.2. Implementation Details 249



Programmer’s Guide, Release 20.08.0

• next hop

• valid

• valid group

• depth

Next hop and depth contain the same information as in the tbl24. The two flags show whether the entry
and the table are valid respectively.

The other main data structure is a table containing the main information about the rules (IP and next
hop). This is a higher level table, used for different things:

• Check whether a rule already exists or not, prior to addition or deletion, without having to actually
perform a lookup.

• When deleting, to check whether there is a rule containing the one that is to be deleted. This is
important, since the main data structure will have to be updated accordingly.

27.2.1 Addition

When adding a rule, there are different possibilities. If the rule’s depth is exactly 24 bits, then:

• Use the rule (IP address) as an index to the tbl24.

• If the entry is invalid (i.e. it doesn’t already contain a rule) then set its next hop to its value, the
valid flag to 1 (meaning this entry is in use), and the external entry flag to 0 (meaning the lookup
process ends at this point, since this is the longest prefix that matches).

If the rule’s depth is exactly 32 bits, then:

• Use the first 24 bits of the rule as an index to the tbl24.

• If the entry is invalid (i.e. it doesn’t already contain a rule) then look for a free tbl8, set the index
to the tbl8 to this value, the valid flag to 1 (meaning this entry is in use), and the external entry flag
to 1 (meaning the lookup process must continue since the rule hasn’t been explored completely).

If the rule’s depth is any other value, prefix expansion must be performed. This means the rule is copied
to all the entries (as long as they are not in use) which would also cause a match.

As a simple example, let’s assume the depth is 20 bits. This means that there are 2^(24 - 20) = 16
different combinations of the first 24 bits of an IP address that would cause a match. Hence, in this case,
we copy the exact same entry to every position indexed by one of these combinations.

By doing this we ensure that during the lookup process, if a rule matching the IP address exists, it is
found in either one or two memory accesses, depending on whether we need to move to the next table
or not. Prefix expansion is one of the keys of this algorithm, since it improves the speed dramatically by
adding redundancy.

27.2.2 Deletion

When deleting a rule, a replacement rule is searched for. Replacement rule is an existing rule that has
the longest prefix match with the rule to be deleted, but has shorter prefix.

If a replacement rule is found, target tbl24 and tbl8 entries are updated to have the same depth and next
hop value with the replacement rule.

27.2. Implementation Details 250



Programmer’s Guide, Release 20.08.0

If no replacement rule can be found, target tbl24 and tbl8 entries will be cleared.

Prefix expansion is performed if the rule’s depth is not exactly 24 bits or 32 bits.

After deleting a rule, a group of tbl8s that belongs to the same tbl24 entry are freed in following cases:

• All tbl8s in the group are empty .

• All tbl8s in the group have the same values and with depth no greater than 24.

Free of tbl8s have different behaviors:

• If RCU is not used, tbl8s are cleared and reclaimed immediately.

• If RCU is used, tbl8s are reclaimed when readers are in quiescent state.

When the LPM is not using RCU, tbl8 group can be freed immediately even though the readers might
be using the tbl8 group entries. This might result in incorrect lookup results.

RCU QSBR process is integrated for safe tbl8 group reclamation. Application has certain responsibilities
while using this feature. Please refer to resource reclamation framework of RCU library for more details.

27.2.3 Lookup

The lookup process is much simpler and quicker. In this case:

• Use the first 24 bits of the IP address as an index to the tbl24. If the entry is not in use, then it
means we don’t have a rule matching this IP. If it is valid and the external entry flag is set to 0,
then the next hop is returned.

• If it is valid and the external entry flag is set to 1, then we use the tbl8 index to find out the tbl8
to be checked, and the last 8 bits of the IP address as an index to this table. Similarly, if the entry
is not in use, then we don’t have a rule matching this IP address. If it is valid then the next hop is
returned.

27.2.4 Limitations in the Number of Rules

There are different things that limit the number of rules that can be added. The first one is the maximum
number of rules, which is a parameter passed through the API. Once this number is reached, it is not
possible to add any more rules to the routing table unless one or more are removed.

The second reason is an intrinsic limitation of the algorithm. As explained before, to avoid high memory
consumption, the number of tbl8s is limited in compilation time (this value is by default 256). If we
exhaust tbl8s, we won’t be able to add any more rules. How many of them are necessary for a specific
routing table is hard to determine in advance.

A tbl8 is consumed whenever we have a new rule with depth bigger than 24, and the first 24 bits of this
rule are not the same as the first 24 bits of a rule previously added. If they are, then the new rule will
share the same tbl8 than the previous one, since the only difference between the two rules is within the
last byte.

With the default value of 256, we can have up to 256 rules longer than 24 bits that differ on their first
three bytes. Since routes longer than 24 bits are unlikely, this shouldn’t be a problem in most setups.
Even if it is, however, the number of tbl8s can be modified.

27.2. Implementation Details 251



Programmer’s Guide, Release 20.08.0

27.2.5 Use Case: IPv4 Forwarding

The LPM algorithm is used to implement Classless Inter-Domain Routing (CIDR) strategy used by
routers implementing IPv4 forwarding.

27.2.6 References

• RFC1519 Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation
Strategy, http://www.ietf.org/rfc/rfc1519

• Pankaj Gupta, Algorithms for Routing Lookups and Packet Classification, PhD Thesis, Stanford
University, 2000 (http://klamath.stanford.edu/~pankaj/thesis/thesis_1sided.pdf )

27.2. Implementation Details 252

http://www.ietf.org/rfc/rfc1519
http://klamath.stanford.edu/~pankaj/thesis/thesis_1sided.pdf


CHAPTER

TWENTYEIGHT

LPM6 LIBRARY

The LPM6 (LPM for IPv6) library component implements the Longest Prefix Match (LPM) table search
method for 128-bit keys that is typically used to find the best match route in IPv6 forwarding applica-
tions.

28.1 LPM6 API Overview

The main configuration parameters for the LPM6 library are:

• Maximum number of rules: This defines the size of the table that holds the rules, and therefore
the maximum number of rules that can be added.

• Number of tbl8s: A tbl8 is a node of the trie that the LPM6 algorithm is based on.

This parameter is related to the number of rules you can have, but there is no way to accurately predict
the number needed to hold a specific number of rules, since it strongly depends on the depth and IP
address of every rule. One tbl8 consumes 1 kb of memory. As a recommendation, 65536 tbl8s should
be sufficient to store several thousand IPv6 rules, but the number can vary depending on the case.

An LPM prefix is represented by a pair of parameters (128-bit key, depth), with depth in the range of 1
to 128. An LPM rule is represented by an LPM prefix and some user data associated with the prefix. The
prefix serves as the unique identifier for the LPM rule. In this implementation, the user data is 21-bits
long and is called “next hop”, which corresponds to its main use of storing the ID of the next hop in a
routing table entry.

The main methods exported for the LPM component are:

• Add LPM rule: The LPM rule is provided as input. If there is no rule with the same prefix present
in the table, then the new rule is added to the LPM table. If a rule with the same prefix is already
present in the table, the next hop of the rule is updated. An error is returned when there is no
available space left.

• Delete LPM rule: The prefix of the LPM rule is provided as input. If a rule with the specified
prefix is present in the LPM table, then it is removed.

• Lookup LPM key: The 128-bit key is provided as input. The algorithm selects the rule that
represents the best match for the given key and returns the next hop of that rule. In the case that
there are multiple rules present in the LPM table that have the same 128-bit value, the algorithm
picks the rule with the highest depth as the best match rule, which means the rule has the highest
number of most significant bits matching between the input key and the rule key.

253



Programmer’s Guide, Release 20.08.0

28.1.1 Implementation Details

This is a modification of the algorithm used for IPv4 (see Implementation Details). In this case, instead
of using two levels, one with a tbl24 and a second with a tbl8, 14 levels are used.

The implementation can be seen as a multi-bit trie where the stride or number of bits inspected on each
level varies from level to level. Specifically, 24 bits are inspected on the root node, and the remaining
104 bits are inspected in groups of 8 bits. This effectively means that the trie has 14 levels at the most,
depending on the rules that are added to the table.

The algorithm allows the lookup operation to be performed with a number of memory accesses that
directly depends on the length of the rule and whether there are other rules with bigger depths and the
same key in the data structure. It can vary from 1 to 14 memory accesses, with 5 being the average value
for the lengths that are most commonly used in IPv6.

The main data structure is built using the following elements:

• A table with 224 entries

• A number of tables, configurable by the user through the API, with 28 entries

The first table, called tbl24, is indexed using the first 24 bits of the IP address be looked up, while the
rest of the tables, called tbl8s, are indexed using the rest of the bytes of the IP address, in chunks of 8
bits. This means that depending on the outcome of trying to match the IP address of an incoming packet
to the rule stored in the tbl24 or the subsequent tbl8s we might need to continue the lookup process in
deeper levels of the tree.

Similar to the limitation presented in the algorithm for IPv4, to store every possible IPv6 rule, we would
need a table with 2^128 entries. This is not feasible due to resource restrictions.

By splitting the process in different tables/levels and limiting the number of tbl8s, we can greatly reduce
memory consumption while maintaining a very good lookup speed (one memory access per level).

Fig. 28.1: Table split into different levels

28.1. LPM6 API Overview 254



Programmer’s Guide, Release 20.08.0

An entry in a table contains the following fields:

• next hop / index to the tbl8

• depth of the rule (length)

• valid flag

• valid group flag

• external entry flag

The first field can either contain a number indicating the tbl8 in which the lookup process should continue
or the next hop itself if the longest prefix match has already been found. The depth or length of the rule
is the number of bits of the rule that is stored in a specific entry. The flags are used to determine whether
the entry/table is valid or not and whether the search process have finished or not respectively.

Both types of tables share the same structure.

The other main data structure is a table containing the main information about the rules (IP, next hop
and depth). This is a higher level table, used for different things:

• Check whether a rule already exists or not, prior to addition or deletion, without having to actually
perform a lookup.

When deleting, to check whether there is a rule containing the one that is to be deleted. This is important,
since the main data structure will have to be updated accordingly.

28.1.2 Addition

When adding a rule, there are different possibilities. If the rule’s depth is exactly 24 bits, then:

• Use the rule (IP address) as an index to the tbl24.

• If the entry is invalid (i.e. it doesn’t already contain a rule) then set its next hop to its value, the
valid flag to 1 (meaning this entry is in use), and the external entry flag to 0 (meaning the lookup
process ends at this point, since this is the longest prefix that matches).

If the rule’s depth is bigger than 24 bits but a multiple of 8, then:

• Use the first 24 bits of the rule as an index to the tbl24.

• If the entry is invalid (i.e. it doesn’t already contain a rule) then look for a free tbl8, set the index
to the tbl8 to this value, the valid flag to 1 (meaning this entry is in use), and the external entry flag
to 1 (meaning the lookup process must continue since the rule hasn’t been explored completely).

• Use the following 8 bits of the rule as an index to the next tbl8.

• Repeat the process until the tbl8 at the right level (depending on the depth) has been reached and
fill it with the next hop, setting the next entry flag to 0.

If the rule’s depth is any other value, prefix expansion must be performed. This means the rule is copied
to all the entries (as long as they are not in use) which would also cause a match.

As a simple example, let’s assume the depth is 20 bits. This means that there are 2^(24-20) = 16 different
combinations of the first 24 bits of an IP address that would cause a match. Hence, in this case, we copy
the exact same entry to every position indexed by one of these combinations.

By doing this we ensure that during the lookup process, if a rule matching the IP address exists, it is
found in, at the most, 14 memory accesses, depending on how many times we need to move to the next

28.1. LPM6 API Overview 255



Programmer’s Guide, Release 20.08.0

table. Prefix expansion is one of the keys of this algorithm, since it improves the speed dramatically by
adding redundancy.

Prefix expansion can be performed at any level. So, for example, is the depth is 34 bits, it will be
performed in the third level (second tbl8-based level).

28.1.3 Lookup

The lookup process is much simpler and quicker. In this case:

• Use the first 24 bits of the IP address as an index to the tbl24. If the entry is not in use, then it
means we don’t have a rule matching this IP. If it is valid and the external entry flag is set to 0,
then the next hop is returned.

• If it is valid and the external entry flag is set to 1, then we use the tbl8 index to find out the tbl8 to
be checked, and the next 8 bits of the IP address as an index to this table. Similarly, if the entry is
not in use, then we don’t have a rule matching this IP address. If it is valid then check the external
entry flag for a new tbl8 to be inspected.

• Repeat the process until either we find an invalid entry (lookup miss) or a valid entry with the
external entry flag set to 0. Return the next hop in the latter case.

28.1.4 Limitations in the Number of Rules

There are different things that limit the number of rules that can be added. The first one is the maximum
number of rules, which is a parameter passed through the API. Once this number is reached, it is not
possible to add any more rules to the routing table unless one or more are removed.

The second limitation is in the number of tbl8s available. If we exhaust tbl8s, we won’t be able to add
any more rules. How to know how many of them are necessary for a specific routing table is hard to
determine in advance.

In this algorithm, the maximum number of tbl8s a single rule can consume is 13, which is the number
of levels minus one, since the first three bytes are resolved in the tbl24. However:

• Typically, on IPv6, routes are not longer than 48 bits, which means rules usually take up to 3 tbl8s.

As explained in the LPM for IPv4 algorithm, it is possible and very likely that several rules will share one
or more tbl8s, depending on what their first bytes are. If they share the same first 24 bits, for instance,
the tbl8 at the second level will be shared. This might happen again in deeper levels, so, effectively, two
48 bit-long rules may use the same three tbl8s if the only difference is in their last byte.

The number of tbl8s is a parameter exposed to the user through the API in this version of the algorithm,
due to its impact in memory consumption and the number or rules that can be added to the LPM table.
One tbl8 consumes 1 kilobyte of memory.

28.2 Use Case: IPv6 Forwarding

The LPM algorithm is used to implement the Classless Inter-Domain Routing (CIDR) strategy used by
routers implementing IP forwarding.

28.2. Use Case: IPv6 Forwarding 256



CHAPTER

TWENTYNINE

FLOW CLASSIFICATION LIBRARY

DPDK provides a Flow Classification library that provides the ability to classify an input packet by
matching it against a set of Flow rules.

The initial implementation supports counting of IPv4 5-tuple packets which match a particular Flow rule
only.

Please refer to the Generic flow API (rte_flow) for more information.

The Flow Classification library uses the librte_table API for managing Flow rules and matching
packets against the Flow rules. The library is table agnostic and can use the following tables: Access
Control List, Hash and Longest Prefix Match(LPM). The Access Control List
table is used in the initial implementation.

Please refer to the Packet Framework for more information.on librte_table.

DPDK provides an Access Control List library that provides the ability to classify an input packet based
on a set of classification rules.

Please refer to the Packet Classification and Access Control library for more information on
librte_acl.

There is also a Flow Classify sample application which demonstrates the use of the Flow Classification
Library API’s.

Please refer to the ../sample_app_ug/flow_classify for more information on the flow_classify sam-
ple application.

29.1 Overview

The library has the following API’s

/**
* Flow classifier create

*
* @param params

* Parameters for flow classifier creation

* @return

* Handle to flow classifier instance on success or NULL otherwise

*/
struct rte_flow_classifier *
rte_flow_classifier_create(struct rte_flow_classifier_params *params);

/**
* Flow classifier free

*

257



Programmer’s Guide, Release 20.08.0

* @param cls

* Handle to flow classifier instance

* @return

* 0 on success, error code otherwise

*/
int
rte_flow_classifier_free(struct rte_flow_classifier *cls);

/**
* Flow classify table create

*
* @param cls

* Handle to flow classifier instance

* @param params

* Parameters for flow_classify table creation

* @return

* 0 on success, error code otherwise

*/
int
rte_flow_classify_table_create(struct rte_flow_classifier *cls,

struct rte_flow_classify_table_params *params);

/**
* Validate the flow classify rule

*
* @param[in] cls

* Handle to flow classifier instance

* @param[in] attr

* Flow rule attributes

* @param[in] pattern

* Pattern specification (list terminated by the END pattern item).

* @param[in] actions

* Associated actions (list terminated by the END pattern item).

* @param[out] error

* Perform verbose error reporting if not NULL. Structure

* initialised in case of error only.

* @return

* 0 on success, error code otherwise

*/
int
rte_flow_classify_validate(struct rte_flow_classifier *cls,

const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error);

/**
* Add a flow classify rule to the flow_classifier table.

*
* @param[in] cls

* Flow classifier handle

* @param[in] attr

* Flow rule attributes

* @param[in] pattern

* Pattern specification (list terminated by the END pattern item).

* @param[in] actions

* Associated actions (list terminated by the END pattern item).

* @param[out] key_found

* returns 1 if rule present already, 0 otherwise.

* @param[out] error

* Perform verbose error reporting if not NULL. Structure

* initialised in case of error only.

* @return

29.1. Overview 258



Programmer’s Guide, Release 20.08.0

* A valid handle in case of success, NULL otherwise.

*/
struct rte_flow_classify_rule *
rte_flow_classify_table_entry_add(struct rte_flow_classifier *cls,

const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
int *key_found;
struct rte_flow_error *error);

/**
* Delete a flow classify rule from the flow_classifier table.

*
* @param[in] cls

* Flow classifier handle

* @param[in] rule

* Flow classify rule

* @return

* 0 on success, error code otherwise.

*/
int
rte_flow_classify_table_entry_delete(struct rte_flow_classifier *cls,

struct rte_flow_classify_rule *rule);

/**
* Query flow classifier for given rule.

*
* @param[in] cls

* Flow classifier handle

* @param[in] pkts

* Pointer to packets to process

* @param[in] nb_pkts

* Number of packets to process

* @param[in] rule

* Flow classify rule

* @param[in] stats

* Flow classify stats

*
* @return

* 0 on success, error code otherwise.

*/
int
rte_flow_classifier_query(struct rte_flow_classifier *cls,

struct rte_mbuf **pkts,
const uint16_t nb_pkts,
struct rte_flow_classify_rule *rule,
struct rte_flow_classify_stats *stats);

29.1.1 Classifier creation

The application creates the Classifier using the rte_flow_classifier_create API. The
rte_flow_classify_params structure must be initialised by the application before calling the
API.

struct rte_flow_classifier_params {
/** flow classifier name */
const char *name;

/** CPU socket ID where memory for the flow classifier and its */
/** elements (tables) should be allocated */
int socket_id;

29.1. Overview 259



Programmer’s Guide, Release 20.08.0

};

The Classifier has the following internal structures:

struct rte_cls_table {
/* Input parameters */
struct rte_table_ops ops;
uint32_t entry_size;
enum rte_flow_classify_table_type type;

/* Handle to the low-level table object */
void *h_table;

};

#define RTE_FLOW_CLASSIFIER_MAX_NAME_SZ 256

struct rte_flow_classifier {
/* Input parameters */
char name[RTE_FLOW_CLASSIFIER_MAX_NAME_SZ];
int socket_id;

/* Internal */
/* ntuple_filter */
struct rte_eth_ntuple_filter ntuple_filter;

/* classifier tables */
struct rte_cls_table tables[RTE_FLOW_CLASSIFY_TABLE_MAX];
uint32_t table_mask;
uint32_t num_tables;

uint16_t nb_pkts;
struct rte_flow_classify_table_entry

*entries[RTE_PORT_IN_BURST_SIZE_MAX];
} __rte_cache_aligned;

29.1.2 Adding a table to the Classifier

The application adds a table to the Classifier using the
rte_flow_classify_table_create API. The rte_flow_classify_table_params
structure must be initialised by the application before calling the API.

struct rte_flow_classify_table_params {
/** Table operations (specific to each table type) */
struct rte_table_ops *ops;

/** Opaque param to be passed to the table create operation */
void *arg_create;

/** Classifier table type */
enum rte_flow_classify_table_type type;

};

To create an ACL table the rte_table_acl_params structure must be initialised and assigned to
arg_create in the rte_flow_classify_table_params structure.

struct rte_table_acl_params {
/** Name */
const char *name;

/** Maximum number of ACL rules in the table */
uint32_t n_rules;

29.1. Overview 260



Programmer’s Guide, Release 20.08.0

/** Number of fields in the ACL rule specification */
uint32_t n_rule_fields;

/** Format specification of the fields of the ACL rule */
struct rte_acl_field_def field_format[RTE_ACL_MAX_FIELDS];

};

The fields for the ACL rule must also be initialised by the application.

An ACL table can be added to the Classifier for each ACL rule, for example another table could
be added for the IPv6 5-tuple rule.

29.1.3 Flow Parsing

The library currently supports three IPv4 5-tuple flow patterns, for UDP, TCP and SCTP.

/* Pattern for IPv4 5-tuple UDP filter */
static enum rte_flow_item_type pattern_ntuple_1[] = {

RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,

};

/* Pattern for IPv4 5-tuple TCP filter */
static enum rte_flow_item_type pattern_ntuple_2[] = {

RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,

};

/* Pattern for IPv4 5-tuple SCTP filter */
static enum rte_flow_item_type pattern_ntuple_3[] = {

RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,

};

The API function rte_flow_classify_validate parses the IPv4 5-tuple pattern, attributes and
actions and returns the 5-tuple data in the rte_eth_ntuple_filter structure.

static int
rte_flow_classify_validate(struct rte_flow_classifier *cls,

const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)

29.1.4 Adding Flow Rules

The rte_flow_classify_table_entry_add API creates an rte_flow_classify object
which contains the flow_classify id and type, the action, a union of add and delete keys and a union of
rules. It uses the rte_flow_classify_validate API function for parsing the flow parameters.
The 5-tuple ACL key data is obtained from the rte_eth_ntuple_filter structure populated by
the classify_parse_ntuple_filter function which parses the Flow rule.

struct acl_keys {
struct rte_table_acl_rule_add_params key_add; /* add key */

29.1. Overview 261



Programmer’s Guide, Release 20.08.0

struct rte_table_acl_rule_delete_params key_del; /* delete key */
};

struct classify_rules {
enum rte_flow_classify_rule_type type;
union {

struct rte_flow_classify_ipv4_5tuple ipv4_5tuple;
} u;

};

struct rte_flow_classify {
uint32_t id; /* unique ID of classify object */
enum rte_flow_classify_table_type tbl_type; /* rule table */
struct classify_rules rules; /* union of rules */
union {

struct acl_keys key;
} u;
int key_found; /* rule key found in table */
struct rte_flow_classify_table_entry entry; /* rule meta data */
void *entry_ptr; /* handle to the table entry for rule meta data */

};

It then calls the table.ops.f_add API to add the rule to the ACL table.

29.1.5 Deleting Flow Rules

The rte_flow_classify_table_entry_delete API calls the table.ops.f_delete
API to delete a rule from the ACL table.

29.1.6 Packet Matching

The rte_flow_classifier_query API is used to find packets which match a given flow
Flow rule in the table. This API calls the flow_classify_run internal function which calls the
table.ops.f_lookup API to see if any packets in a burst match any of the Flow rules in the table.
The meta data for the highest priority rule matched for each packet is returned in the entries array in the
rte_flow_classify object. The internal function action_apply implements the Count action
which is used to return data which matches a particular Flow rule.

The rte_flow_classifier_query API uses the following structures to return data to the application.

/** IPv4 5-tuple data */
struct rte_flow_classify_ipv4_5tuple {

uint32_t dst_ip; /**< Destination IP address in big endian. */
uint32_t dst_ip_mask; /**< Mask of destination IP address. */
uint32_t src_ip; /**< Source IP address in big endian. */
uint32_t src_ip_mask; /**< Mask of destination IP address. */
uint16_t dst_port; /**< Destination port in big endian. */
uint16_t dst_port_mask; /**< Mask of destination port. */
uint16_t src_port; /**< Source Port in big endian. */
uint16_t src_port_mask; /**< Mask of source port. */
uint8_t proto; /**< L4 protocol. */
uint8_t proto_mask; /**< Mask of L4 protocol. */

};

/**
* Flow stats

*
* For the count action, stats can be returned by the query API.

*

29.1. Overview 262



Programmer’s Guide, Release 20.08.0

* Storage for stats is provided by the application.

*
*
*/

struct rte_flow_classify_stats {
void *stats;

};

struct rte_flow_classify_5tuple_stats {
/** count of packets that match IPv4 5tuple pattern */
uint64_t counter1;
/** IPv4 5tuple data */
struct rte_flow_classify_ipv4_5tuple ipv4_5tuple;

};

29.1. Overview 263



CHAPTER

THIRTY

PACKET DISTRIBUTOR LIBRARY

The DPDK Packet Distributor library is a library designed to be used for dynamic load balancing of
traffic while supporting single packet at a time operation. When using this library, the logical cores in
use are to be considered in two roles: firstly a distributor lcore, which is responsible for load balancing
or distributing packets, and a set of worker lcores which are responsible for receiving the packets from
the distributor and operating on them. The model of operation is shown in the diagram below.

Fig. 30.1: Packet Distributor mode of operation

There are two modes of operation of the API in the distributor library, one which sends one packet

264



Programmer’s Guide, Release 20.08.0

at a time to workers using 32-bits for flow_id, and an optimized mode which sends bursts of up to 8
packets at a time to workers, using 15 bits of flow_id. The mode is selected by the type field in the
rte_distributor_create() function.

30.1 Distributor Core Operation

The distributor core does the majority of the processing for ensuring that packets are fairly shared among
workers. The operation of the distributor is as follows:

1. Packets are passed to the distributor component by having the distributor lcore thread call the
“rte_distributor_process()” API

2. The worker lcores all share a single cache line with the distributor core in order to pass messages
and packets to and from the worker. The process API call will poll all the worker cache lines to
see what workers are requesting packets.

3. As workers request packets, the distributor takes packets from the set of packets passed in and
distributes them to the workers. As it does so, it examines the “tag” – stored in the RSS hash field
in the mbuf – for each packet and records what tags are being processed by each worker.

4. If the next packet in the input set has a tag which is already being processed by a worker, then
that packet will be queued up for processing by that worker and given to it in preference to other
packets when that work next makes a request for work. This ensures that no two packets with the
same tag are processed in parallel, and that all packets with the same tag are processed in input
order.

5. Once all input packets passed to the process API have either been distributed to workers or been
queued up for a worker which is processing a given tag, then the process API returns to the caller.

Other functions which are available to the distributor lcore are:

• rte_distributor_returned_pkts()

• rte_distributor_flush()

• rte_distributor_clear_returns()

Of these the most important API call is “rte_distributor_returned_pkts()” which should only be called
on the lcore which also calls the process API. It returns to the caller all packets which have finished
processing by all worker cores. Within this set of returned packets, all packets sharing the same tag will
be returned in their original order.

NOTE: If worker lcores buffer up packets internally for transmission in bulk afterwards, the packets
sharing a tag will likely get out of order. Once a worker lcore requests a new packet, the distributor
assumes that it has completely finished with the previous packet and therefore that additional packets
with the same tag can safely be distributed to other workers – who may then flush their buffered packets
sooner and cause packets to get out of order.

NOTE: No packet ordering guarantees are made about packets which do not share a common packet
tag.

Using the process and returned_pkts API, the following application workflow can be used, while allow-
ing packet order within a packet flow – identified by a tag – to be maintained.

The flush and clear_returns API calls, mentioned previously, are likely of less use that the process and
returned_pkts APIS, and are principally provided to aid in unit testing of the library. Descriptions of
these functions and their use can be found in the DPDK API Reference document.

30.1. Distributor Core Operation 265



Programmer’s Guide, Release 20.08.0

Fig. 30.2: Application workflow

30.2 Worker Operation

Worker cores are the cores which do the actual manipulation of the packets distributed by the packet dis-
tributor. Each worker calls “rte_distributor_get_pkt()” API to request a new packet when it has finished
processing the previous one. [The previous packet should be returned to the distributor component by
passing it as the final parameter to this API call.]

Since it may be desirable to vary the number of worker cores, depending on the traffic load i.e. to
save power at times of lighter load, it is possible to have a worker stop processing packets by calling
“rte_distributor_return_pkt()” to indicate that it has finished the current packet and does not want a new
one.

30.2. Worker Operation 266



CHAPTER

THIRTYONE

REORDER LIBRARY

The Reorder Library provides a mechanism for reordering mbufs based on their sequence number.

31.1 Operation

The reorder library is essentially a buffer that reorders mbufs. The user inserts out of order mbufs into
the reorder buffer and pulls in-order mbufs from it.

At a given time, the reorder buffer contains mbufs whose sequence number are inside the sequence
window. The sequence window is determined by the minimum sequence number and the number of
entries that the buffer was configured to hold. For example, given a reorder buffer with 200 entries and
a minimum sequence number of 350, the sequence window has low and high limits of 350 and 550
respectively.

When inserting mbufs, the reorder library differentiates between valid, early and late mbufs depending
on the sequence number of the inserted mbuf:

• valid: the sequence number is inside the window.

• late: the sequence number is outside the window and less than the low limit.

• early: the sequence number is outside the window and greater than the high limit.

The reorder buffer directly returns late mbufs and tries to accommodate early mbufs.

31.2 Implementation Details

The reorder library is implemented as a pair of buffers, which referred to as the Order buffer and the
Ready buffer.

On an insert call, valid mbufs are inserted directly into the Order buffer and late mbufs are returned to
the user with an error.

In the case of early mbufs, the reorder buffer will try to move the window (incrementing the minimum
sequence number) so that the mbuf becomes a valid one. To that end, mbufs in the Order buffer are
moved into the Ready buffer. Any mbufs that have not arrived yet are ignored and therefore will become
late mbufs. This means that as long as there is room in the Ready buffer, the window will be moved to
accommodate early mbufs that would otherwise be outside the reordering window.

For example, assuming that we have a buffer of 200 entries with a 350 minimum sequence number, and
we need to insert an early mbuf with 565 sequence number. That means that we would need to move the
windows at least 15 positions to accommodate the mbuf. The reorder buffer would try to move mbufs

267



Programmer’s Guide, Release 20.08.0

from at least the next 15 slots in the Order buffer to the Ready buffer, as long as there is room in the
Ready buffer. Any gaps in the Order buffer at that point are skipped, and those packet will be reported
as late packets when they arrive. The process of moving packets to the Ready buffer continues beyond
the minimum required until a gap, i.e. missing mbuf, in the Order buffer is encountered.

When draining mbufs, the reorder buffer would return mbufs in the Ready buffer first and then from the
Order buffer until a gap is found (mbufs that have not arrived yet).

31.3 Use Case: Packet Distributor

An application using the DPDK packet distributor could make use of the reorder library to transmit
packets in the same order they were received.

A basic packet distributor use case would consist of a distributor with multiple workers cores. The
processing of packets by the workers is not guaranteed to be in order, hence a reorder buffer can be used
to order as many packets as possible.

In such a scenario, the distributor assigns a sequence number to mbufs before delivering them to the
workers. As the workers finish processing the packets, the distributor inserts those mbufs into the reorder
buffer and finally transmit drained mbufs.

NOTE: Currently the reorder buffer is not thread safe so the same thread is responsible for inserting and
draining mbufs.

31.3. Use Case: Packet Distributor 268



CHAPTER

THIRTYTWO

IP FRAGMENTATION AND REASSEMBLY LIBRARY

The IP Fragmentation and Reassembly Library implements IPv4 and IPv6 packet fragmentation and
reassembly.

32.1 Packet fragmentation

Packet fragmentation routines divide input packet into number of fragments. Both
rte_ipv4_fragment_packet() and rte_ipv6_fragment_packet() functions assume that input mbuf
data points to the start of the IP header of the packet (i.e. L2 header is already stripped out). To
avoid copying of the actual packet’s data zero-copy technique is used (rte_pktmbuf_attach). For each
fragment two new mbufs are created:

• Direct mbuf – mbuf that will contain L3 header of the new fragment.

• Indirect mbuf – mbuf that is attached to the mbuf with the original packet. It’s data field points to
the start of the original packets data plus fragment offset.

Then L3 header is copied from the original mbuf into the ‘direct’ mbuf and updated to reflect new
fragmented status. Note that for IPv4, header checksum is not recalculated and is set to zero.

Finally ‘direct’ and ‘indirect’ mbufs for each fragment are linked together via mbuf’s next filed to com-
pose a packet for the new fragment.

The caller has an ability to explicitly specify which mempools should be used to allocate ‘direct’ and
‘indirect’ mbufs from.

For more information about direct and indirect mbufs, refer to Direct and Indirect Buffers.

32.2 Packet reassembly

32.2.1 IP Fragment Table

Fragment table maintains information about already received fragments of the packet.

Each IP packet is uniquely identified by triple <Source IP address>, <Destination IP address>, <ID>.

Note that all update/lookup operations on Fragment Table are not thread safe. So if different execu-
tion contexts (threads/processes) will access the same table simultaneously, then some external syncing
mechanism have to be provided.

Each table entry can hold information about packets consisting of up to RTE_LIBRTE_IP_FRAG_MAX
(by default: 4) fragments.

269



Programmer’s Guide, Release 20.08.0

Code example, that demonstrates creation of a new Fragment table:

frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S * max_flow_ttl;
bucket_num = max_flow_num + max_flow_num / 4;
frag_tbl = rte_ip_frag_table_create(max_flow_num, bucket_entries, max_flow_num, frag_cycles, socket_id);

Internally Fragment table is a simple hash table. The basic idea is to use two hash functions and
<bucket_entries> * associativity. This provides 2 * <bucket_entries> possible locations in the hash
table for each key. When the collision occurs and all 2 * <bucket_entries> are occupied, instead of
reinserting existing keys into alternative locations, ip_frag_tbl_add() just returns a failure.

Also, entries that resides in the table longer then <max_cycles> are considered as invalid, and could be
removed/replaced by the new ones.

Note that reassembly demands a lot of mbuf’s to be allocated. At any given time up to (2 * bucket_entries
* RTE_LIBRTE_IP_FRAG_MAX * <maximum number of mbufs per packet>) can be stored inside
Fragment Table waiting for remaining fragments.

32.2.2 Packet Reassembly

Fragmented packets processing and reassembly is done by the
rte_ipv4_frag_reassemble_packet()/rte_ipv6_frag_reassemble_packet. Functions. They either re-
turn a pointer to valid mbuf that contains reassembled packet, or NULL (if the packet can’t be
reassembled for some reason).

These functions are responsible for:

1. Search the Fragment Table for entry with packet’s <IPv4 Source Address, IPv4 Destination Ad-
dress, Packet ID>.

2. If the entry is found, then check if that entry already timed-out. If yes, then free all previously
received fragments, and remove information about them from the entry.

3. If no entry with such key is found, then try to create a new one by one of two ways:

(a) Use as empty entry.

(b) Delete a timed-out entry, free mbufs associated with it mbufs and store a new entry with
specified key in it.

4. Update the entry with new fragment information and check if a packet can be reassembled (the
packet’s entry contains all fragments).

(a) If yes, then, reassemble the packet, mark table’s entry as empty and return the reassembled
mbuf to the caller.

(b) If no, then return a NULL to the caller.

If at any stage of packet processing an error is encountered (e.g: can’t insert new entry into the Frag-
ment Table, or invalid/timed-out fragment), then the function will free all associated with the packet
fragments, mark the table entry as invalid and return NULL to the caller.

32.2.3 Debug logging and Statistics Collection

The RTE_LIBRTE_IP_FRAG_TBL_STAT config macro controls statistics collection for the Fragment
Table. This macro is not enabled by default.

32.2. Packet reassembly 270



Programmer’s Guide, Release 20.08.0

The RTE_LIBRTE_IP_FRAG_DEBUG controls debug logging of IP fragments processing and re-
assembling. This macro is disabled by default. Note that while logging contains a lot of detailed in-
formation, it slows down packet processing and might cause the loss of a lot of packets.

32.2. Packet reassembly 271



CHAPTER

THIRTYTHREE

GENERIC RECEIVE OFFLOAD LIBRARY

Generic Receive Offload (GRO) is a widely used SW-based offloading technique to reduce per-packet
processing overheads. By reassembling small packets into larger ones, GRO enables applications to
process fewer large packets directly, thus reducing the number of packets to be processed. To bene-
fit DPDK-based applications, like Open vSwitch, DPDK also provides own GRO implementation. In
DPDK, GRO is implemented as a standalone library. Applications explicitly use the GRO library to
reassemble packets.

33.1 Overview

In the GRO library, there are many GRO types which are defined by packet types. One GRO type is in
charge of process one kind of packets. For example, TCP/IPv4 GRO processes TCP/IPv4 packets.

Each GRO type has a reassembly function, which defines own algorithm and table structure to reassem-
ble packets. We assign input packets to the corresponding GRO functions by MBUF->packet_type.

The GRO library doesn’t check if input packets have correct checksums and doesn’t re-calculate check-
sums for merged packets. The GRO library assumes the packets are complete (i.e., MF==0 &&
frag_off==0), when IP fragmentation is possible (i.e., DF==0). Additionally, it complies RFC 6864
to process the IPv4 ID field.

Currently, the GRO library provides GRO supports for TCP/IPv4 packets and VxLAN packets which
contain an outer IPv4 header and an inner TCP/IPv4 packet.

33.2 Two Sets of API

For different usage scenarios, the GRO library provides two sets of API. The one is called the lightweight
mode API, which enables applications to merge a small number of packets rapidly; the other is called
the heavyweight mode API, which provides fine-grained controls to applications and supports to merge
a large number of packets.

33.2.1 Lightweight Mode API

The lightweight mode only has one function rte_gro_reassemble_burst(), which process
N packets at a time. Using the lightweight mode API to merge packets is very simple. Calling
rte_gro_reassemble_burst() is enough. The GROed packets are returned to applications as
soon as it finishes.

272



Programmer’s Guide, Release 20.08.0

In rte_gro_reassemble_burst(), table structures of different GRO types are allocated in the
stack. This design simplifies applications’ operations. However, limited by the stack size, the maximum
number of packets that rte_gro_reassemble_burst() can process in an invocation should be
less than or equal to RTE_GRO_MAX_BURST_ITEM_NUM.

33.2.2 Heavyweight Mode API

Compared with the lightweight mode, using the heavyweight mode API is relatively com-
plex. Firstly, applications need to create a GRO context by rte_gro_ctx_create().
rte_gro_ctx_create() allocates tables structures in the heap and stores their pointers in the GRO
context. Secondly, applications use rte_gro_reassemble() to merge packets. If input packets
have invalid parameters, rte_gro_reassemble() returns them to applications. For example, pack-
ets of unsupported GRO types or TCP SYN packets are returned. Otherwise, the input packets are
either merged with the existed packets in the tables or inserted into the tables. Finally, applications use
rte_gro_timeout_flush() to flush packets from the tables, when they want to get the GROed
packets.

Note that all update/lookup operations on the GRO context are not thread safe. So if different processes
or threads want to access the same context object simultaneously, some external syncing mechanisms
must be used.

33.3 Reassembly Algorithm

The reassembly algorithm is used for reassembling packets. In the GRO library, different GRO types
can use different algorithms. In this section, we will introduce an algorithm, which is used by TCP/IPv4
GRO and VxLAN GRO.

33.3.1 Challenges

The reassembly algorithm determines the efficiency of GRO. There are two challenges in the algorithm
design:

• a high cost algorithm/implementation would cause packet dropping in a high speed network.

• packet reordering makes it hard to merge packets. For example, Linux GRO fails to merge packets
when encounters packet reordering.

The above two challenges require our algorithm is:

• lightweight enough to scale fast networking speed

• capable of handling packet reordering

In DPDK GRO, we use a key-based algorithm to address the two challenges.

33.3.2 Key-based Reassembly Algorithm

Fig. 33.1 illustrates the procedure of the key-based algorithm. Packets are classified into “flows” by
some header fields (we call them as “key”). To process an input packet, the algorithm searches for a
matched “flow” (i.e., the same value of key) for the packet first, then checks all packets in the “flow”
and tries to find a “neighbor” for it. If find a “neighbor”, merge the two packets together. If can’t find a

33.3. Reassembly Algorithm 273



Programmer’s Guide, Release 20.08.0

“neighbor”, store the packet into its “flow”. If can’t find a matched “flow”, insert a new “flow” and store
the packet into the “flow”.

Note: Packets in the same “flow” that can’t merge are always caused by packet reordering.

The key-based algorithm has two characters:

• classifying packets into “flows” to accelerate packet aggregation is simple (address challenge 1).

• storing out-of-order packets makes it possible to merge later (address challenge 2).

Categorize into an existed “flow”

Search for a “neighbor”

Insert a new “flow” and store the packet

Store the packet

Merge the packet

packet

find a “flow”

find a “neighbor”

not find

not find

Fig. 33.1: Key-based Reassembly Algorithm

33.4 TCP/IPv4 GRO

The table structure used by TCP/IPv4 GRO contains two arrays: flow array and item array. The flow
array keeps flow information, and the item array keeps packet information.

Header fields used to define a TCP/IPv4 flow include:

• source and destination: Ethernet and IP address, TCP port

• TCP acknowledge number

TCP/IPv4 packets whose FIN, SYN, RST, URG, PSH, ECE or CWR bit is set won’t be processed.

Header fields deciding if two packets are neighbors include:

• TCP sequence number

• IPv4 ID. The IPv4 ID fields of the packets, whose DF bit is 0, should be increased by 1.

33.5 VxLAN GRO

The table structure used by VxLAN GRO, which is in charge of processing VxLAN packets with an
outer IPv4 header and inner TCP/IPv4 packet, is similar with that of TCP/IPv4 GRO. Differently, the
header fields used to define a VxLAN flow include:

33.4. TCP/IPv4 GRO 274



Programmer’s Guide, Release 20.08.0

• outer source and destination: Ethernet and IP address, UDP port

• VxLAN header (VNI and flag)

• inner source and destination: Ethernet and IP address, TCP port

Header fields deciding if packets are neighbors include:

• outer IPv4 ID. The IPv4 ID fields of the packets, whose DF bit in the outer IPv4 header is 0,
should be increased by 1.

• inner TCP sequence number

• inner IPv4 ID. The IPv4 ID fields of the packets, whose DF bit in the inner IPv4 header is 0,
should be increased by 1.

Note: We comply RFC 6864 to process the IPv4 ID field. Specifically, we check IPv4 ID fields for
the packets whose DF bit is 0 and ignore IPv4 ID fields for the packets whose DF bit is 1. Additionally,
packets which have different value of DF bit can’t be merged.

33.6 GRO Library Limitations

• GRO library uses MBUF->l2_len/l3_len/l4_len/outer_l2_len/ outer_l3_len/packet_type to get
protocol headers for the input packet, rather than parsing the packet header. There-
fore, before call GRO APIs to merge packets, user applications must set MBUF-
>l2_len/l3_len/l4_len/outer_l2_len/outer_l3_len/ packet_type to the same values as the protocol
headers of the packet.

• GRO library doesn’t support to process the packets with IPv4 Options or VLAN tagged.

• GRO library just supports to process the packet organized in a single MBUF. If the input packet
consists of multiple MBUFs (i.e. chained MBUFs), GRO reassembly behaviors are unknown.

33.6. GRO Library Limitations 275



CHAPTER

THIRTYFOUR

GENERIC SEGMENTATION OFFLOAD LIBRARY

34.1 Overview

Generic Segmentation Offload (GSO) is a widely used software implementation of TCP Segmentation
Offload (TSO), which reduces per-packet processing overhead. Much like TSO, GSO gains performance
by enabling upper layer applications to process a smaller number of large packets (e.g. MTU size of
64KB), instead of processing higher numbers of small packets (e.g. MTU size of 1500B), thus reducing
per-packet overhead.

For example, GSO allows guest kernel stacks to transmit over-sized TCP segments that far exceed the
kernel interface’s MTU; this eliminates the need to segment packets within the guest, and improves the
data-to-overhead ratio of both the guest-host link, and PCI bus. The expectation of the guest network
stack in this scenario is that segmentation of egress frames will take place either in the NIC HW, or
where that hardware capability is unavailable, either in the host application, or network stack.

Bearing that in mind, the GSO library enables DPDK applications to segment packets in software.
Note however, that GSO is implemented as a standalone library, and not via a ‘fallback’ mechanism
(i.e. for when TSO is unsupported in the underlying hardware); that is, applications must explicitly
invoke the GSO library to segment packets. The size of GSO segments (segsz) is configurable by the
application.

34.2 Limitations

1. The GSO library doesn’t check if input packets have correct checksums.

2. In addition, the GSO library doesn’t re-calculate checksums for segmented packets (that task is
left to the application).

3. IP fragments are unsupported by the GSO library.

4. The egress interface’s driver must support multi-segment packets.

5. Currently, the GSO library supports the following IPv4 packet types:

• TCP

• UDP

• VxLAN

• GRE

See Supported GSO Packet Types for further details.

276



Programmer’s Guide, Release 20.08.0

34.3 Packet Segmentation

The rte_gso_segment() function is the GSO library’s primary segmentation API.

Before performing segmentation, an application must create a GSO context object (struct
rte_gso_ctx), which provides the library with some of the information required to understand
how the packet should be segmented. Refer to How to Segment a Packet for additional details on
same. Once the GSO context has been created, and populated, the application can then use the
rte_gso_segment() function to segment packets.

The GSO library typically stores each segment that it creates in two parts: the first part contains a copy
of the original packet’s headers, while the second part contains a pointer to an offset within the original
packet. This mechanism is explained in more detail in GSO Output Segment Format.

The GSO library supports both single- and multi-segment input mbufs.

34.3.1 GSO Output Segment Format

To reduce the number of expensive memcpy operations required when segmenting a packet, the GSO
library typically stores each segment that it creates as a two-part mbuf (technically, this is termed a ‘two-
segment’ mbuf; however, since the elements produced by the API are also called ‘segments’, for clarity
the term ‘part’ is used here instead).

The first part of each output segment is a direct mbuf and contains a copy of the original packet’s headers,
which must be prepended to each output segment. These headers are copied from the original packet
into each output segment.

The second part of each output segment, represents a section of data from the original packet, i.e. a data
segment. Rather than copy the data directly from the original packet into the output segment (which
would impact performance considerably), the second part of each output segment is an indirect mbuf,
which contains no actual data, but simply points to an offset within the original packet.

The combination of the ‘header’ segment and the ‘data’ segment constitutes a single logical output GSO
segment of the original packet. This is illustrated in Fig. 34.1.

Payload 0 Payload 1 Payload 2Header

Header Payload 1

Indirect mbuf

(pointer to data)

Memory copy No Memory Copy

Logical output segment

Two-part output segment
Direct mbuf

(copy of headers)

next

segsz

Input packet

Fig. 34.1: Two-part GSO output segment

In one situation, the output segment may contain additional ‘data’ segments. This only occurs when:

34.3. Packet Segmentation 277



Programmer’s Guide, Release 20.08.0

• the input packet on which GSO is to be performed is represented by a multi-segment mbuf.

• the output segment is required to contain data that spans the boundaries between segments of the
input multi-segment mbuf.

The GSO library traverses each segment of the input packet, and produces numerous output segments;
for optimal performance, the number of output segments is kept to a minimum. Consequently, the GSO
library maximizes the amount of data contained within each output segment; i.e. each output segment
segsz bytes of data. The only exception to this is in the case of the very final output segment; if
pkt_len % segsz, then the final segment is smaller than the rest.

In order for an output segment to meet its MSS, it may need to include data from multiple input segments.
Due to the nature of indirect mbufs (each indirect mbuf can point to only one direct mbuf), the solution
here is to add another indirect mbuf to the output segment; this additional segment then points to the next
input segment. If necessary, this chaining process is repeated, until the sum of all of the data ‘contained’
in the output segment reaches segsz. This ensures that the amount of data contained within each output
segment is uniform, with the possible exception of the last segment, as previously described.

Fig. 34.2 illustrates an example of a three-part output segment. In this example, the output segment
needs to include data from the end of one input segment, and the beginning of another. To achieve this,
an additional indirect mbuf is chained to the second part of the output segment, and is attached to the
next input segment (i.e. it points to the data in the next input segment).

Payload 0 Payload 1Header

Header Payload 1 Logical output segment

Direct mbuf

(copy of headers)

next

segsz

Payload 1 Payload 2 Multi-segment input packet

Indirect mbuf
(pointer to data)

next

pkt_len  

% segsz

1 2 next
Indirect mbuf

(pointer to data)

3

(pointer to data)

Three-part output segment

Fig. 34.2: Three-part GSO output segment

34.4 Supported GSO Packet Types

34.4.1 TCP/IPv4 GSO

TCP/IPv4 GSO supports segmentation of suitably large TCP/IPv4 packets, which may also contain an
optional VLAN tag.

34.4.2 UDP/IPv4 GSO

UDP/IPv4 GSO supports segmentation of suitably large UDP/IPv4 packets, which may also contain an
optional VLAN tag. UDP GSO is the same as IP fragmentation. Specifically, UDP GSO treats the UDP

34.4. Supported GSO Packet Types 278



Programmer’s Guide, Release 20.08.0

header as a part of the payload and does not modify it during segmentation. Therefore, after UDP GSO,
only the first output packet has the original UDP header, and others just have l2 and l3 headers.

34.4.3 VxLAN GSO

VxLAN packets GSO supports segmentation of suitably large VxLAN packets, which contain an outer
IPv4 header, inner TCP/IPv4 headers, and optional inner and/or outer VLAN tag(s).

34.4.4 GRE GSO

GRE GSO supports segmentation of suitably large GRE packets, which contain an outer IPv4 header,
inner TCP/IPv4 headers, and an optional VLAN tag.

34.5 How to Segment a Packet

To segment an outgoing packet, an application must:

1. First create a GSO context (struct rte_gso_ctx); this contains:

• a pointer to the mbuf pool for allocating the direct buffers, which are used to store the GSO
segments’ packet headers.

• a pointer to the mbuf pool for allocating indirect buffers, which are used to locate GSO
segments’ packet payloads.

Note: An application may use the same pool for both direct and indirect buffers. However,
since indirect mbufs simply store a pointer, the application may reduce its memory con-
sumption by creating a separate memory pool, containing smaller elements, for the indirect
pool.

• the size of each output segment, including packet headers and payload, measured in bytes.

• the bit mask of required GSO types. The GSO library uses the same macros as those that de-
scribe a physical device’s TX offloading capabilities (i.e. DEV_TX_OFFLOAD_*_TSO)
for gso_types. For example, if an application wants to segment TCP/IPv4 packets, it
should set gso_types to DEV_TX_OFFLOAD_TCP_TSO. The only other supported val-
ues currently supported for gso_types are DEV_TX_OFFLOAD_VXLAN_TNL_TSO, and
DEV_TX_OFFLOAD_GRE_TNL_TSO; a combination of these macros is also allowed.

• a flag, that indicates whether the IPv4 headers of output segments should contain fixed or
incremental ID values.

2. Set the appropriate ol_flags in the mbuf.

• The GSO library use the value of an mbuf’s ol_flags attribute to determine how a packet
should be segmented. It is the application’s responsibility to ensure that these flags are set.

• For example, in order to segment TCP/IPv4 packets, the application should add the
PKT_TX_IPV4 and PKT_TX_TCP_SEG flags to the mbuf’s ol_flags.

• If checksum calculation in hardware is required, the application should also add the
PKT_TX_TCP_CKSUM and PKT_TX_IP_CKSUM flags.

34.5. How to Segment a Packet 279



Programmer’s Guide, Release 20.08.0

3. Check if the packet should be processed. Packets with one of the following properties are not
processed and are returned immediately:

• Packet length is less than segsz (i.e. GSO is not required).

• Packet type is not supported by GSO library (see Supported GSO Packet Types).

• Application has not enabled GSO support for the packet type.

• Packet’s ol_flags have been incorrectly set.

4. Allocate space in which to store the output GSO segments. If the amount of space allocated by
the application is insufficient, segmentation will fail.

5. Invoke the GSO segmentation API, rte_gso_segment().

6. If required, update the L3 and L4 checksums of the newly-created segments. For tunneled packets,
the outer IPv4 headers’ checksums should also be updated. Alternatively, the application may
offload checksum calculation to HW.

34.5. How to Segment a Packet 280



CHAPTER

THIRTYFIVE

THE LIBRTE_PDUMP LIBRARY

The librte_pdump library provides a framework for packet capturing in DPDK. The library does the
complete copy of the Rx and Tx mbufs to a new mempool and hence it slows down the performance of
the applications, so it is recommended to use this library for debugging purposes.

The library provides the following APIs to initialize the packet capture framework, to enable or disable
the packet capture, and to uninitialize it:

• rte_pdump_init(): This API initializes the packet capture framework.

• rte_pdump_enable(): This API enables the packet capture on a given port and queue. Note:
The filter option in the API is a place holder for future enhancements.

• rte_pdump_enable_by_deviceid(): This API enables the packet capture on a given
device id (vdev name or pci address) and queue. Note: The filter option in the API
is a place holder for future enhancements.

• rte_pdump_disable(): This API disables the packet capture on a given port and queue.

• rte_pdump_disable_by_deviceid(): This API disables the packet capture on a given
device id (vdev name or pci address) and queue.

• rte_pdump_uninit(): This API uninitializes the packet capture framework.

35.1 Operation

The librte_pdump library works on a client/server model. The server is responsible for enabling or
disabling the packet capture and the clients are responsible for requesting the enabling or disabling of
the packet capture.

The packet capture framework, as part of its initialization, creates the pthread and the server socket in the
pthread. The application that calls the framework initialization will have the server socket created, either
under the path that the application has passed or under the default path i.e. either /var/run/.dpdk
for root user or ~/.dpdk for non root user.

Applications that request enabling or disabling of the packet capture will have the client socket
created either under the path that the application has passed or under the default path i.e. either
/var/run/.dpdk for root user or ~/.dpdk for not root user to send the requests to the server.
The server socket will listen for client requests for enabling or disabling the packet capture.

281



Programmer’s Guide, Release 20.08.0

35.2 Implementation Details

The library API rte_pdump_init(), initializes the packet capture framework by creating the pdump
server by calling rte_mp_action_register() function. The server will listen to the client re-
quests to enable or disable the packet capture.

The library APIs rte_pdump_enable() and rte_pdump_enable_by_deviceid() enables
the packet capture. On each call to these APIs, the library creates a separate client socket, creates the
“pdump enable” request and sends the request to the server. The server that is listening on the socket
will take the request and enable the packet capture by registering the Ethernet RX and TX callbacks for
the given port or device_id and queue combinations. Then the server will mirror the packets to the new
mempool and enqueue them to the rte_ring that clients have passed to these APIs. The server also sends
the response back to the client about the status of the request that was processed. After the response is
received from the server, the client socket is closed.

The library APIs rte_pdump_disable() and rte_pdump_disable_by_deviceid() dis-
ables the packet capture. On each call to these APIs, the library creates a separate client socket, creates
the “pdump disable” request and sends the request to the server. The server that is listening on the socket
will take the request and disable the packet capture by removing the Ethernet RX and TX callbacks for
the given port or device_id and queue combinations. The server also sends the response back to the
client about the status of the request that was processed. After the response is received from the server,
the client socket is closed.

The library API rte_pdump_uninit(), uninitializes the packet capture framework by calling
rte_mp_action_unregister() function.

35.3 Use Case: Packet Capturing

The DPDK app/pdump tool is developed based on this library to capture packets in DPDK. Users can
use this as an example to develop their own packet capturing tools.

35.2. Implementation Details 282



CHAPTER

THIRTYSIX

MULTI-PROCESS SUPPORT

In the DPDK, multi-process support is designed to allow a group of DPDK processes to work together
in a simple transparent manner to perform packet processing, or other workloads. To support this func-
tionality, a number of additions have been made to the core DPDK Environment Abstraction Layer
(EAL).

The EAL has been modified to allow different types of DPDK processes to be spawned, each with
different permissions on the hugepage memory used by the applications. For now, there are two types
of process specified:

• primary processes, which can initialize and which have full permissions on shared memory

• secondary processes, which cannot initialize shared memory, but can attach to pre- initialized
shared memory and create objects in it.

Standalone DPDK processes are primary processes, while secondary processes can only run alongside
a primary process or after a primary process has already configured the hugepage shared memory for
them.

Note: Secondary processes should run alongside primary process with same DPDK version.

Secondary processes which requires access to physical devices in Primary process, must be passed with
the same whitelist and blacklist options.

To support these two process types, and other multi-process setups described later, two additional
command-line parameters are available to the EAL:

• --proc-type: for specifying a given process instance as the primary or secondary DPDK
instance

• --file-prefix: to allow processes that do not want to co-operate to have different memory
regions

A number of example applications are provided that demonstrate how multiple DPDK processes can be
used together. These are more fully documented in the “Multi- process Sample Application” chapter in
the DPDK Sample Application’s User Guide.

36.1 Memory Sharing

The key element in getting a multi-process application working using the DPDK is to ensure that mem-
ory resources are properly shared among the processes making up the multi-process application. Once

283



Programmer’s Guide, Release 20.08.0

there are blocks of shared memory available that can be accessed by multiple processes, then issues such
as inter-process communication (IPC) becomes much simpler.

On application start-up in a primary or standalone process, the DPDK records to memory-mapped files
the details of the memory configuration it is using - hugepages in use, the virtual addresses they are
mapped at, the number of memory channels present, etc. When a secondary process is started, these
files are read and the EAL recreates the same memory configuration in the secondary process so that all
memory zones are shared between processes and all pointers to that memory are valid, and point to the
same objects, in both processes.

Note: Refer to Multi-process Limitations for details of how Linux kernel Address-Space Layout Ran-
domization (ASLR) can affect memory sharing.

If the primary process was run with --legacy-mem or --single-file-segments switch, sec-
ondary processes must be run with the same switch specified. Otherwise, memory corruption may occur.

Primary Process
Secondary Process

struct rte_config

struct hugepage[]

IPC Queue

IPC Queue

Hugepage
DPDK

Memory

Mbuf Pool

Local PointersLocal Pointers

Local Data
Local Data

Fig. 36.1: Memory Sharing in the DPDK Multi-process Sample Application

The EAL also supports an auto-detection mode (set by EAL --proc-type=auto flag ), whereby an
DPDK process is started as a secondary instance if a primary instance is already running.

36.1. Memory Sharing 284



Programmer’s Guide, Release 20.08.0

36.2 Deployment Models

36.2.1 Symmetric/Peer Processes

DPDK multi-process support can be used to create a set of peer processes where each process performs
the same workload. This model is equivalent to having multiple threads each running the same main-
loop function, as is done in most of the supplied DPDK sample applications. In this model, the first
of the processes spawned should be spawned using the --proc-type=primary EAL flag, while all
subsequent instances should be spawned using the --proc-type=secondary flag.

The simple_mp and symmetric_mp sample applications demonstrate this usage model. They are de-
scribed in the “Multi-process Sample Application” chapter in the DPDK Sample Application’s User
Guide.

36.2.2 Asymmetric/Non-Peer Processes

An alternative deployment model that can be used for multi-process applications is to have a single pri-
mary process instance that acts as a load-balancer or server distributing received packets among worker
or client threads, which are run as secondary processes. In this case, extensive use of rte_ring objects is
made, which are located in shared hugepage memory.

The client_server_mp sample application shows this usage model. It is described in the “Multi-process
Sample Application” chapter in the DPDK Sample Application’s User Guide.

36.2.3 Running Multiple Independent DPDK Applications

In addition to the above scenarios involving multiple DPDK processes working together, it is possible
to run multiple DPDK processes side-by-side, where those processes are all working independently.
Support for this usage scenario is provided using the --file-prefix parameter to the EAL.

By default, the EAL creates hugepage files on each hugetlbfs filesystem using the rtemap_X filename,
where X is in the range 0 to the maximum number of hugepages -1. Similarly, it creates shared con-
figuration files, memory mapped in each process, using the /var/run/.rte_config filename, when run as
root (or $HOME/.rte_config when run as a non-root user; if filesystem and device permissions are set
up to allow this). The rte part of the filenames of each of the above is configurable using the file-prefix
parameter.

In addition to specifying the file-prefix parameter, any DPDK applications that are to be run side-by-side
must explicitly limit their memory use. This is less of a problem on Linux, as by default, applications will
not allocate more memory than they need. However if --legacy-mem is used, DPDK will attempt to
preallocate all memory it can get to, and memory use must be explicitly limited. This is done by passing
the -m flag to each process to specify how much hugepage memory, in megabytes, each process can use
(or passing --socket-mem to specify how much hugepage memory on each socket each process can
use).

Note: Independent DPDK instances running side-by-side on a single machine cannot share any network
ports. Any network ports being used by one process should be blacklisted in every other process.

36.2. Deployment Models 285



Programmer’s Guide, Release 20.08.0

36.2.4 Running Multiple Independent Groups of DPDK Applications

In the same way that it is possible to run independent DPDK applications side- by-side on a single
system, this can be trivially extended to multi-process groups of DPDK applications running side-by-
side. In this case, the secondary processes must use the same --file-prefix parameter as the
primary process whose shared memory they are connecting to.

Note: All restrictions and issues with multiple independent DPDK processes running side-by-side
apply in this usage scenario also.

36.3 Multi-process Limitations

There are a number of limitations to what can be done when running DPDK multi-process applications.
Some of these are documented below:

• The multi-process feature requires that the exact same hugepage memory mappings be present in
all applications. This makes secondary process startup process generally unreliable. Disabling
Linux security feature - Address-Space Layout Randomization (ASLR) may help getting more
consistent mappings, but not necessarily more reliable - if the mappings are wrong, they will be
consistently wrong!

Warning: Disabling Address-Space Layout Randomization (ASLR) may have security implica-
tions, so it is recommended that it be disabled only when absolutely necessary, and only when the
implications of this change have been understood.

• All DPDK processes running as a single application and using shared memory must have distinct
coremask/corelist arguments. It is not possible to have a primary and secondary instance, or two
secondary instances, using any of the same logical cores. Attempting to do so can cause corruption
of memory pool caches, among other issues.

• The delivery of interrupts, such as Ethernet* device link status interrupts, do not work in sec-
ondary processes. All interrupts are triggered inside the primary process only. Any application
needing interrupt notification in multiple processes should provide its own mechanism to trans-
fer the interrupt information from the primary process to any secondary process that needs the
information.

• The use of function pointers between multiple processes running based of different compiled
binaries is not supported, since the location of a given function in one process may be different
to its location in a second. This prevents the librte_hash library from behaving properly as in a
multi-process instance, since it uses a pointer to the hash function internally.

To work around this issue, it is recommended that multi-process applications perform the
hash calculations by directly calling the hashing function from the code and then using the
rte_hash_add_with_hash()/rte_hash_lookup_with_hash() functions instead of the functions which do
the hashing internally, such as rte_hash_add()/rte_hash_lookup().

• Depending upon the hardware in use, and the number of DPDK processes used, it may not be
possible to have HPET timers available in each DPDK instance. The minimum number of HPET
comparators available to Linux* userspace can be just a single comparator, which means that only
the first, primary DPDK process instance can open and mmap /dev/hpet. If the number of required

36.3. Multi-process Limitations 286



Programmer’s Guide, Release 20.08.0

DPDK processes exceeds that of the number of available HPET comparators, the TSC (which is
the default timer in this release) must be used as a time source across all processes instead of the
HPET.

36.4 Communication between multiple processes

While there are multiple ways one can approach inter-process communication in DPDK, there is also
a native DPDK IPC API available. It is not intended to be performance-critical, but rather is intended
to be a convenient, general purpose API to exchange short messages between primary and secondary
processes.

DPDK IPC API supports the following communication modes:

• Unicast message from secondary to primary

• Broadcast message from primary to all secondaries

In other words, any IPC message sent in a primary process will be delivered to all secondaries, while
any IPC message sent in a secondary process will only be delivered to primary process. Unicast from
primary to secondary or from secondary to secondary is not supported.

There are three types of communications that are available within DPDK IPC API:

• Message

• Synchronous request

• Asynchronous request

A “message” type does not expect a response and is meant to be a best-effort notification mechanism,
while the two types of “requests” are meant to be a two way communication mechanism, with the
requester expecting a response from the other side.

Both messages and requests will trigger a named callback on the receiver side. These callbacks will be
called from within a dedicated IPC or interrupt thread that are not part of EAL lcore threads.

36.4.1 Registering for incoming messages

Before any messages can be received, a callback will need to be registered. This is accomplished by
calling rte_mp_action_register() function. This function accepts a unique callback name, and
a function pointer to a callback that will be called when a message or a request matching this callback
name arrives.

If the application is no longer willing to receive messages intended for a specific callback function,
rte_mp_action_unregister() function can be called to ensure that callback will not be trig-
gered again.

36.4.2 Sending messages

To send a message, a rte_mp_msg descriptor must be populated first. The list of fields to be populated
are as follows:

• name - message name. This name must match receivers’ callback name.

• param - message data (up to 256 bytes).

36.4. Communication between multiple processes 287



Programmer’s Guide, Release 20.08.0

• len_param - length of message data.

• fds - file descriptors to pass long with the data (up to 8 fd’s).

• num_fds - number of file descriptors to send.

Once the structure is populated, calling rte_mp_sendmsg() will send the descriptor either to all sec-
ondary processes (if sent from primary process), or to primary process (if sent from secondary process).
The function will return a value indicating whether sending the message succeeded or not.

36.4.3 Sending requests

Sending requests involves waiting for the other side to reply, so they can block for a relatively long time.

To send a request, a message descriptor rte_mp_msg must be populated. Additionally, a timespec
value must be specified as a timeout, after which IPC will stop waiting and return.

For synchronous requests, the rte_mp_reply descriptor must also be created. This is where the
responses will be stored. The list of fields that will be populated by IPC are as follows:

• nb_sent - number indicating how many requests were sent (i.e. how many peer processes were
active at the time of the request).

• nb_received - number indicating how many responses were received (i.e. of those peer pro-
cesses that were active at the time of request, how many have replied)

• msgs - pointer to where all of the responses are stored. The order in which responses appear is
undefined. When doing synchronous requests, this memory must be freed by the requestor after
request completes!

For asynchronous requests, a function pointer to the callback function must be provided instead. This
callback will be called when the request either has timed out, or will have received a response to all the
messages that were sent.

Warning: When an asynchronous request times out, the callback will be called not by a dedicated
IPC thread, but rather from EAL interrupt thread. Because of this, it may not be possible for DPDK to
trigger another interrupt-based event (such as an alarm) while handling asynchronous IPC callback.

When the callback is called, the original request descriptor will be provided (so that it would be pos-
sible to determine for which sent message this is a callback to), along with a response descriptor like
the one described above. When doing asynchronous requests, there is no need to free the resulting
rte_mp_reply descriptor.

36.4.4 Receiving and responding to messages

To receive a message, a name callback must be registered using the rte_mp_action_register()
function. The name of the callback must match the name field in sender’s rte_mp_msg message
descriptor in order for this message to be delivered and for the callback to be trigger.

The callback’s definition is rte_mp_t, and consists of the incoming message pointer msg, and an
opaque pointer peer. Contents of msg will be identical to ones sent by the sender.

36.4. Communication between multiple processes 288



Programmer’s Guide, Release 20.08.0

If a response is required, a new rte_mp_msg message descriptor must be constructed and sent via
rte_mp_reply() function, along with peer pointer. The resulting response will then be delivered
to the correct requestor.

Warning: Simply returning a value when processing a request callback will not send a response
to the request - it must always be explicitly sent even in case of errors. Implementation of error
signalling rests with the application, there is no built-in way to indicate success or error for a request.
Failing to do so will cause the requestor to time out while waiting on a response.

36.4.5 Misc considerations

Due to the underlying IPC implementation being single-threaded, recursive requests (i.e. sending a
request while responding to another request) is not supported. However, since sending messages (not
requests) does not involve an IPC thread, sending messages while processing another message or request
is supported.

Since the memory sybsystem uses IPC internally, memory allocations and IPC must not be mixed: it is
not safe to use IPC inside a memory-related callback, nor is it safe to allocate/free memory inside IPC
callbacks. Attempting to do so may lead to a deadlock.

Asynchronous request callbacks may be triggered either from IPC thread or from interrupt thread, de-
pending on whether the request has timed out. It is therefore suggested to avoid waiting for interrupt-
based events (such as alarms) inside asynchronous IPC request callbacks. This limitation does not apply
to messages or synchronous requests.

If callbacks spend a long time processing the incoming requests, the requestor might time out, so setting
the right timeout value on the requestor side is imperative.

If some of the messages timed out, nb_sent and nb_received fields in the rte_mp_reply de-
scriptor will not have matching values. This is not treated as error by the IPC API, and it is expected
that the user will be responsible for deciding how to handle such cases.

If a callback has been registered, IPC will assume that it is safe to call it. This is important when
registering callbacks during DPDK initialization. During initialization, IPC will consider the receiving
side as non-existing if the callback has not been registered yet. However, once the callback has been
registered, it is expected that IPC should be safe to trigger it, even if the rest of the DPDK initialization
hasn’t finished yet.

36.4. Communication between multiple processes 289



CHAPTER

THIRTYSEVEN

KERNEL NIC INTERFACE

The DPDK Kernel NIC Interface (KNI) allows userspace applications access to the Linux* control
plane.

The benefits of using the DPDK KNI are:

• Faster than existing Linux TUN/TAP interfaces (by eliminating system calls and
copy_to_user()/copy_from_user() operations.

• Allows management of DPDK ports using standard Linux net tools such as ethtool, ifconfig and
tcpdump.

• Allows an interface with the kernel network stack.

The components of an application using the DPDK Kernel NIC Interface are shown in Fig. 37.1.

37.1 The DPDK KNI Kernel Module

The KNI kernel loadable module rte_kni provides the kernel interface for DPDK applications.

When the rte_kni module is loaded, it will create a device /dev/kni that is used by the DPDK KNI
API functions to control and communicate with the kernel module.

The rte_kni kernel module contains several optional parameters which can be specified when the
module is loaded to control its behavior:

# modinfo rte_kni.ko
<snip>
parm: lo_mode: KNI loopback mode (default=lo_mode_none):

lo_mode_none Kernel loopback disabled
lo_mode_fifo Enable kernel loopback with fifo
lo_mode_fifo_skb Enable kernel loopback with fifo and skb buffer
(charp)

parm: kthread_mode: Kernel thread mode (default=single):
single Single kernel thread mode enabled.
multiple Multiple kernel thread mode enabled.
(charp)

parm: carrier: Default carrier state for KNI interface (default=off):
off Interfaces will be created with carrier state set to off.
on Interfaces will be created with carrier state set to on.
(charp)

Loading the rte_kni kernel module without any optional parameters is the typical way a DPDK ap-
plication gets packets into and out of the kernel network stack. Without any parameters, only one kernel
thread is created for all KNI devices for packet receiving in kernel side, loopback mode is disabled, and
the default carrier state of KNI interfaces is set to off.

290



Programmer’s Guide, Release 20.08.0

Fig. 37.1: Components of a DPDK KNI Application

37.1. The DPDK KNI Kernel Module 291



Programmer’s Guide, Release 20.08.0

# insmod kmod/rte_kni.ko

37.1.1 Loopback Mode

For testing, the rte_kni kernel module can be loaded in loopback mode by specifying the lo_mode
parameter:

# insmod kmod/rte_kni.ko lo_mode=lo_mode_fifo

The lo_mode_fifo loopback option will loop back ring enqueue/dequeue operations in kernel space.

# insmod kmod/rte_kni.ko lo_mode=lo_mode_fifo_skb

The lo_mode_fifo_skb loopback option will loop back ring enqueue/dequeue operations and sk
buffer copies in kernel space.

If the lo_mode parameter is not specified, loopback mode is disabled.

37.1.2 Kernel Thread Mode

To provide flexibility of performance, the rte_kni KNI kernel module can be loaded with the
kthread_mode parameter. The rte_kni kernel module supports two options: “single kernel thread”
mode and “multiple kernel thread” mode.

Single kernel thread mode is enabled as follows:

# insmod kmod/rte_kni.ko kthread_mode=single

This mode will create only one kernel thread for all KNI interfaces to receive data on the kernel side. By
default, this kernel thread is not bound to any particular core, but the user can set the core affinity for this
kernel thread by setting the core_id and force_bind parameters in struct rte_kni_conf
when the first KNI interface is created:

For optimum performance, the kernel thread should be bound to a core in on the same socket as the
DPDK lcores used in the application.

The KNI kernel module can also be configured to start a separate kernel thread for each KNI interface
created by the DPDK application. Multiple kernel thread mode is enabled as follows:

# insmod kmod/rte_kni.ko kthread_mode=multiple

This mode will create a separate kernel thread for each KNI interface to receive data on the kernel side.
The core affinity of each kni_thread kernel thread can be specified by setting the core_id and
force_bind parameters in struct rte_kni_conf when each KNI interface is created.

Multiple kernel thread mode can provide scalable higher performance if sufficient unused cores are
available on the host system.

If the kthread_mode parameter is not specified, the “single kernel thread” mode is used.

37.1.3 Default Carrier State

The default carrier state of KNI interfaces created by the rte_kni kernel module is controlled via the
carrier option when the module is loaded.

If carrier=off is specified, the kernel module will leave the carrier state of the interface down when
the interface is management enabled. The DPDK application can set the carrier state of the KNI interface

37.1. The DPDK KNI Kernel Module 292



Programmer’s Guide, Release 20.08.0

using the rte_kni_update_link() function. This is useful for DPDK applications which require
that the carrier state of the KNI interface reflect the actual link state of the corresponding physical NIC
port.

If carrier=on is specified, the kernel module will automatically set the carrier state of the interface
to up when the interface is management enabled. This is useful for DPDK applications which use the
KNI interface as a purely virtual interface that does not correspond to any physical hardware and do
not wish to explicitly set the carrier state of the interface with rte_kni_update_link(). It is also
useful for testing in loopback mode where the NIC port may not be physically connected to anything.

To set the default carrier state to on:

# insmod kmod/rte_kni.ko carrier=on

To set the default carrier state to off :

# insmod kmod/rte_kni.ko carrier=off

If the carrier parameter is not specified, the default carrier state of KNI interfaces will be set to off.

37.2 KNI Creation and Deletion

Before any KNI interfaces can be created, the rte_kni kernel module must be loaded into the kernel
and configured withe rte_kni_init() function.

The KNI interfaces are created by a DPDK application dynamically via the rte_kni_alloc() func-
tion.

The struct rte_kni_conf structure contains fields which allow the user to specify the interface
name, set the MTU size, set an explicit or random MAC address and control the affinity of the kernel Rx
thread(s) (both single and multi-threaded modes). By default the KNI sample example gets the MTU
from the matching device, and in case of KNI PMD it is derived from mbuf buffer length.

The struct rte_kni_ops structure contains pointers to functions to handle requests from the
rte_kni kernel module. These functions allow DPDK applications to perform actions when the KNI
interfaces are manipulated by control commands or functions external to the application.

For example, the DPDK application may wish to enabled/disable a physical NIC port when a user
enabled/disables a KNI interface with ip link set [up|down] dev <ifaceX>. The DPDK
application can register a callback for config_network_if which will be called when the interface
management state changes.

There are currently four callbacks for which the user can register application functions:

config_network_if:

Called when the management state of the KNI interface changes. For example, when the
user runs ip link set [up|down] dev <ifaceX>.

change_mtu:

Called when the user changes the MTU size of the KNI interface. For example, when the
user runs ip link set mtu <size> dev <ifaceX>.

config_mac_address:

Called when the user changes the MAC address of the KNI interface. For example, when
the user runs ip link set address <MAC> dev <ifaceX>. If the user sets this
callback function to NULL, but sets the port_id field to a value other than -1, a default

37.2. KNI Creation and Deletion 293



Programmer’s Guide, Release 20.08.0

callback handler in the rte_kni library kni_config_mac_address() will be called
which calls rte_eth_dev_default_mac_addr_set() on the specified port_id.

config_promiscusity:

Called when the user changes the promiscuity state of the KNI interface. For example, when
the user runs ip link set promisc [on|off] dev <ifaceX>. If the user sets
this callback function to NULL, but sets the port_id field to a value other than -1, a
default callback handler in the rte_kni library kni_config_promiscusity() will be
called which calls rte_eth_promiscuous_<enable|disable>() on the speci-
fied port_id.

config_allmulticast:

Called when the user changes the allmulticast state of the KNI interface. For example, when
the user runs ifconfig <ifaceX> [-]allmulti. If the user sets this callback func-
tion to NULL, but sets the port_id field to a value other than -1, a default callback han-
dler in the rte_kni library kni_config_allmulticast() will be called which calls
rte_eth_allmulticast_<enable|disable>() on the specified port_id.

In order to run these callbacks, the application must periodically call the
rte_kni_handle_request() function. Any user callback function registered will be called
directly from rte_kni_handle_request() so care must be taken to prevent deadlock and to not
block any DPDK fastpath tasks. Typically DPDK applications which use these callbacks will need to
create a separate thread or secondary process to periodically call rte_kni_handle_request().

The KNI interfaces can be deleted by a DPDK application with rte_kni_release(). All KNI
interfaces not explicitly deleted will be deleted when the /dev/kni device is closed, either explicitly
with rte_kni_close() or when the DPDK application is closed.

37.3 DPDK mbuf Flow

To minimize the amount of DPDK code running in kernel space, the mbuf mempool is managed in
userspace only. The kernel module will be aware of mbufs, but all mbuf allocation and free operations
will be handled by the DPDK application only.

Fig. 37.2 shows a typical scenario with packets sent in both directions.

37.4 Use Case: Ingress

On the DPDK RX side, the mbuf is allocated by the PMD in the RX thread context. This thread will
enqueue the mbuf in the rx_q FIFO, and the next pointers in mbuf-chain will convert to physical address.
The KNI thread will poll all KNI active devices for the rx_q. If an mbuf is dequeued, it will be converted
to a sk_buff and sent to the net stack via netif_rx(). The dequeued mbuf must be freed, so the same
pointer is sent back in the free_q FIFO, and next pointers must convert back to virtual address if exists
before put in the free_q FIFO.

The RX thread, in the same main loop, polls this FIFO and frees the mbuf after dequeuing it. The
address conversion of the next pointer is to prevent the chained mbuf in different hugepage segments
from causing kernel crash.

37.3. DPDK mbuf Flow 294



Programmer’s Guide, Release 20.08.0

Fig. 37.2: Packet Flow via mbufs in the DPDK KNI

37.5 Use Case: Egress

For packet egress the DPDK application must first enqueue several mbufs to create an mbuf cache on
the kernel side.

The packet is received from the Linux net stack, by calling the kni_net_tx() callback. The mbuf is
dequeued (without waiting due the cache) and filled with data from sk_buff. The sk_buff is then freed
and the mbuf sent in the tx_q FIFO.

The DPDK TX thread dequeues the mbuf and sends it to the PMD via rte_eth_tx_burst(). It
then puts the mbuf back in the cache.

37.6 IOVA = VA: Support

KNI operates in IOVA_VA scheme when

• LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0) and

• EAL option iova-mode=va is passed or bus IOVA scheme in the DPDK is selected as
RTE_IOVA_VA.

Due to IOVA to KVA address translations, based on the KNI use case there can be a performance
impact. For mitigation, forcing IOVA to PA via EAL “–iova-mode=pa” option can be used, IOVA_DC
bus iommu scheme can also result in IOVA as PA.

37.7 Ethtool

Ethtool is a Linux-specific tool with corresponding support in the kernel. The current version of kni
provides minimal ethtool functionality including querying version and link state. It does not support
link control, statistics, or dumping device registers.

37.5. Use Case: Egress 295



CHAPTER

THIRTYEIGHT

THREAD SAFETY OF DPDK FUNCTIONS

The DPDK is comprised of several libraries. Some of the functions in these libraries can be safely called
from multiple threads simultaneously, while others cannot. This section allows the developer to take
these issues into account when building their own application.

The run-time environment of the DPDK is typically a single thread per logical core. In some cases, it is
not only multi-threaded, but multi-process. Typically, it is best to avoid sharing data structures between
threads and/or processes where possible. Where this is not possible, then the execution blocks must
access the data in a thread- safe manner. Mechanisms such as atomics or locking can be used that will
allow execution blocks to operate serially. However, this can have an effect on the performance of the
application.

38.1 Fast-Path APIs

Applications operating in the data plane are performance sensitive but certain functions within those
libraries may not be safe to call from multiple threads simultaneously. The hash, LPM and mempool
libraries and RX/TX in the PMD are examples of this.

The hash and LPM libraries are, by design, thread unsafe in order to maintain performance. However,
if required the developer can add layers on top of these libraries to provide thread safety. Locking is not
needed in all situations, and in both the hash and LPM libraries, lookups of values can be performed
in parallel in multiple threads. Adding, removing or modifying values, however, cannot be done in
multiple threads without using locking when a single hash or LPM table is accessed. Another alternative
to locking would be to create multiple instances of these tables allowing each thread its own copy.

The RX and TX of the PMD are the most critical aspects of a DPDK application and it is recommended
that no locking be used as it will impact performance. Note, however, that these functions can safely be
used from multiple threads when each thread is performing I/O on a different NIC queue. If multiple
threads are to use the same hardware queue on the same NIC port, then locking, or some other form of
mutual exclusion, is necessary.

The ring library is based on a lockless ring-buffer algorithm that maintains its original design for
thread safety. Moreover, it provides high performance for either multi- or single-consumer/producer
enqueue/dequeue operations. The mempool library is based on the DPDK lockless ring library and
therefore is also multi-thread safe.

38.2 Performance Insensitive API

Outside of the performance sensitive areas described in Section 25.1, the DPDK provides a thread-safe
API for most other libraries. For example, malloc and memzone functions are safe for use in multi-

296



Programmer’s Guide, Release 20.08.0

threaded and multi-process environments.

The setup and configuration of the PMD is not performance sensitive, but is not thread safe either. It
is possible that the multiple read/writes during PMD setup and configuration could be corrupted in a
multi-thread environment. Since this is not performance sensitive, the developer can choose to add their
own layer to provide thread-safe setup and configuration. It is expected that, in most applications, the
initial configuration of the network ports would be done by a single thread at startup.

38.3 Library Initialization

It is recommended that DPDK libraries are initialized in the main thread at application startup rather than
subsequently in the forwarding threads. However, the DPDK performs checks to ensure that libraries
are only initialized once. If initialization is attempted more than once, an error is returned.

In the multi-process case, the configuration information of shared memory will only be initialized by the
primary process. Thereafter, both primary and secondary processes can allocate/release any objects of
memory that finally rely on rte_malloc or memzones.

38.4 Interrupt Thread

The DPDK works almost entirely in Linux user space in polling mode. For certain infrequent operations,
such as receiving a PMD link status change notification, callbacks may be called in an additional thread
outside the main DPDK processing threads. These function callbacks should avoid manipulating DPDK
objects that are also managed by the normal DPDK threads, and if they need to do so, it is up to the
application to provide the appropriate locking or mutual exclusion restrictions around those objects.

38.3. Library Initialization 297



CHAPTER

THIRTYNINE

EVENT DEVICE LIBRARY

The DPDK Event device library is an abstraction that provides the application with features to schedule
events. This is achieved using the PMD architecture similar to the ethdev or cryptodev APIs, which may
already be familiar to the reader.

The eventdev framework introduces the event driven programming model. In a polling model, lcores
poll ethdev ports and associated Rx queues directly to look for a packet. By contrast in an event driven
model, lcores call the scheduler that selects packets for them based on programmer-specified criteria.
The Eventdev library adds support for an event driven programming model, which offers applications
automatic multicore scaling, dynamic load balancing, pipelining, packet ingress order maintenance and
synchronization services to simplify application packet processing.

By introducing an event driven programming model, DPDK can support both polling and event driven
programming models for packet processing, and applications are free to choose whatever model (or
combination of the two) best suits their needs.

Step-by-step instructions of the eventdev design is available in the API Walk-through section later in this
document.

39.1 Event struct

The eventdev API represents each event with a generic struct, which contains a payload and metadata
required for scheduling by an eventdev. The rte_event struct is a 16 byte C structure, defined in
libs/librte_eventdev/rte_eventdev.h.

39.1.1 Event Metadata

The rte_event structure contains the following metadata fields, which the application fills in to have the
event scheduled as required:

• flow_id - The targeted flow identifier for the enq/deq operation.

• event_type - The source of this event, e.g. RTE_EVENT_TYPE_ETHDEV or CPU.

• sub_event_type - Distinguishes events inside the application, that have the same event_type
(see above)

• op - This field takes one of the RTE_EVENT_OP_* values, and tells the eventdev about the status
of the event - valid values are NEW, FORWARD or RELEASE.

• sched_type - Represents the type of scheduling that should be performed on this event, valid
values are the RTE_SCHED_TYPE_ORDERED, ATOMIC and PARALLEL.

298



Programmer’s Guide, Release 20.08.0

• queue_id - The identifier for the event queue that the event is sent to.

• priority - The priority of this event, see RTE_EVENT_DEV_PRIORITY.

39.1.2 Event Payload

The rte_event struct contains a union for payload, allowing flexibility in what the actual event being
scheduled is. The payload is a union of the following:

• uint64_t u64

• void *event_ptr

• struct rte_mbuf *mbuf

These three items in a union occupy the same 64 bits at the end of the rte_event structure. The application
can utilize the 64 bits directly by accessing the u64 variable, while the event_ptr and mbuf are provided
as convenience variables. For example the mbuf pointer in the union can used to schedule a DPDK
packet.

39.1.3 Queues

An event queue is a queue containing events that are scheduled by the event device. An event queue
contains events of different flows associated with scheduling types, such as atomic, ordered, or parallel.

Queue All Types Capable

If RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES capability bit is set in the event device, then events
of any type may be sent to any queue. Otherwise, the queues only support events of the type that it was
created with.

Queue All Types Incapable

In this case, each stage has a specified scheduling type. The application configures each queue for a
specific type of scheduling, and just enqueues all events to the eventdev. An example of a PMD of this
type is the eventdev software PMD.

The Eventdev API supports the following scheduling types per queue:

• Atomic

• Ordered

• Parallel

Atomic, Ordered and Parallel are load-balanced scheduling types: the output of the queue can be spread
out over multiple CPU cores.

Atomic scheduling on a queue ensures that a single flow is not present on two different CPU cores at the
same time. Ordered allows sending all flows to any core, but the scheduler must ensure that on egress the
packets are returned to ingress order on downstream queue enqueue. Parallel allows sending all flows to
all CPU cores, without any re-ordering guarantees.

39.1. Event struct 299



Programmer’s Guide, Release 20.08.0

Single Link Flag

There is a SINGLE_LINK flag which allows an application to indicate that only one port will be con-
nected to a queue. Queues configured with the single-link flag follow a FIFO like structure, maintaining
ordering but it is only capable of being linked to a single port (see below for port and queue linking
details).

39.1.4 Ports

Ports are the points of contact between worker cores and the eventdev. The general use-case will see one
CPU core using one port to enqueue and dequeue events from an eventdev. Ports are linked to queues in
order to retrieve events from those queues (more details in Linking Queues and Ports below).

39.2 API Walk-through

This section will introduce the reader to the eventdev API, showing how to create and configure an
eventdev and use it for a two-stage atomic pipeline with one core each for RX and TX. RX and TX
cores are shown here for illustration, refer to Eventdev Adapter documentation for further details. The
diagram below shows the final state of the application after this walk-through:

In Intf Out Intf
RXCore TXCore

Atomic Q 1 Atomic Q 2 Single Link

Stage 1 Stage 2

Worker4Core
Worker3Core

Worker2Core
Worker1Core

Worker4Core
Worker3Core

Worker2Core
Worker1Core

Fig. 39.1: Sample eventdev usage, with RX, two atomic stages and a single-link to TX.

A high level overview of the setup steps are:

• rte_event_dev_configure()

• rte_event_queue_setup()

• rte_event_port_setup()

• rte_event_port_link()

• rte_event_dev_start()

39.2.1 Init and Config

The eventdev library uses vdev options to add devices to the DPDK application. The --vdev EAL
option allows adding eventdev instances to your DPDK application, using the name of the eventdev
PMD as an argument.

For example, to create an instance of the software eventdev scheduler, the following vdev arguments
should be provided to the application EAL command line:

./dpdk_application --vdev="event_sw0"

39.2. API Walk-through 300



Programmer’s Guide, Release 20.08.0

In the following code, we configure eventdev instance with 3 queues and 6 ports as follows. The 3
queues consist of 2 Atomic and 1 Single-Link, while the 6 ports consist of 4 workers, 1 RX and 1 TX.

const struct rte_event_dev_config config = {
.nb_event_queues = 3,
.nb_event_ports = 6,
.nb_events_limit = 4096,
.nb_event_queue_flows = 1024,
.nb_event_port_dequeue_depth = 128,
.nb_event_port_enqueue_depth = 128,

};
int err = rte_event_dev_configure(dev_id, &config);

The remainder of this walk-through assumes that dev_id is 0.

39.2.2 Setting up Queues

Once the eventdev itself is configured, the next step is to configure queues. This is done by setting the
appropriate values in a queue_conf structure, and calling the setup function. Repeat this step for each
queue, starting from 0 and ending at nb_event_queues -1 from the event_dev config above.

struct rte_event_queue_conf atomic_conf = {
.schedule_type = RTE_SCHED_TYPE_ATOMIC,
.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
.nb_atomic_flows = 1024,
.nb_atomic_order_sequences = 1024,

};
struct rte_event_queue_conf single_link_conf = {

.event_queue_cfg = RTE_EVENT_QUEUE_CFG_SINGLE_LINK,
};
int dev_id = 0;
int atomic_q_1 = 0;
int atomic_q_2 = 1;
int single_link_q = 2;
int err = rte_event_queue_setup(dev_id, atomic_q_1, &atomic_conf);
int err = rte_event_queue_setup(dev_id, atomic_q_2, &atomic_conf);
int err = rte_event_queue_setup(dev_id, single_link_q, &single_link_conf);

As shown above, queue IDs are as follows:

• id 0, atomic queue #1

• id 1, atomic queue #2

• id 2, single-link queue

These queues are used for the remainder of this walk-through.

39.2.3 Setting up Ports

Once queues are set up successfully, create the ports as required.

struct rte_event_port_conf rx_conf = {
.dequeue_depth = 128,
.enqueue_depth = 128,
.new_event_threshold = 1024,

};
struct rte_event_port_conf worker_conf = {

.dequeue_depth = 16,

.enqueue_depth = 64,

.new_event_threshold = 4096,

39.2. API Walk-through 301



Programmer’s Guide, Release 20.08.0

};
struct rte_event_port_conf tx_conf = {

.dequeue_depth = 128,

.enqueue_depth = 128,

.new_event_threshold = 4096,
};
int dev_id = 0;
int rx_port_id = 0;
int worker_port_id;
int err = rte_event_port_setup(dev_id, rx_port_id, &rx_conf);

for (worker_port_id = 1; worker_port_id <= 4; worker_port_id++) {
int err = rte_event_port_setup(dev_id, worker_port_id, &worker_conf);

}

int tx_port_id = 5;
int err = rte_event_port_setup(dev_id, tx_port_id, &tx_conf);

As shown above:

• port 0: RX core

• ports 1,2,3,4: Workers

• port 5: TX core

These ports are used for the remainder of this walk-through.

39.2.4 Linking Queues and Ports

The final step is to “wire up” the ports to the queues. After this, the eventdev is capable of scheduling
events, and when cores request work to do, the correct events are provided to that core. Note that the
RX core takes input from e.g.: a NIC so it is not linked to any eventdev queues.

Linking all workers to atomic queues, and the TX core to the single-link queue can be achieved like this:

uint8_t rx_port_id = 0;
uint8_t tx_port_id = 5;
uint8_t atomic_qs[] = {0, 1};
uint8_t single_link_q = 2;
uint8_t priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
int worker_port_id;

for (worker_port_id = 1; worker_port_id <= 4; worker_port_id++) {
int links_made = rte_event_port_link(dev_id, worker_port_id, atomic_qs, NULL, 2);

}
int links_made = rte_event_port_link(dev_id, tx_port_id, &single_link_q, &priority, 1);

39.2.5 Starting the EventDev

A single function call tells the eventdev instance to start processing events. Note that all queues must be
linked to for the instance to start, as if any queue is not linked to, enqueuing to that queue will cause the
application to backpressure and eventually stall due to no space in the eventdev.

int err = rte_event_dev_start(dev_id);

Note: EventDev needs to be started before starting the event producers such as event_eth_rx_adapter,
event_timer_adapter and event_crypto_adapter.

39.2. API Walk-through 302



Programmer’s Guide, Release 20.08.0

39.2.6 Ingress of New Events

Now that the eventdev is set up, and ready to receive events, the RX core must enqueue some events
into the system for it to schedule. The events to be scheduled are ordinary DPDK packets, received from
an eth_rx_burst() as normal. The following code shows how those packets can be enqueued into the
eventdev:

const uint16_t nb_rx = rte_eth_rx_burst(eth_port, 0, mbufs, BATCH_SIZE);

for (i = 0; i < nb_rx; i++) {
ev[i].flow_id = mbufs[i]->hash.rss;
ev[i].op = RTE_EVENT_OP_NEW;
ev[i].sched_type = RTE_SCHED_TYPE_ATOMIC;
ev[i].queue_id = atomic_q_1;
ev[i].event_type = RTE_EVENT_TYPE_ETHDEV;
ev[i].sub_event_type = 0;
ev[i].priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
ev[i].mbuf = mbufs[i];

}

const int nb_tx = rte_event_enqueue_burst(dev_id, rx_port_id, ev, nb_rx);
if (nb_tx != nb_rx) {

for(i = nb_tx; i < nb_rx; i++)
rte_pktmbuf_free(mbufs[i]);

}

39.2.7 Forwarding of Events

Now that the RX core has injected events, there is work to be done by the workers. Note that each
worker will dequeue as many events as it can in a burst, process each one individually, and then burst
the packets back into the eventdev.

The worker can lookup the events source from event.queue_id, which should indicate to the
worker what workload needs to be performed on the event. Once done, the worker can update the
event.queue_id to a new value, to send the event to the next stage in the pipeline.

int timeout = 0;
struct rte_event events[BATCH_SIZE];
uint16_t nb_rx = rte_event_dequeue_burst(dev_id, worker_port_id, events, BATCH_SIZE, timeout);

for (i = 0; i < nb_rx; i++) {
/* process mbuf using events[i].queue_id as pipeline stage */
struct rte_mbuf *mbuf = events[i].mbuf;
/* Send event to next stage in pipeline */
events[i].queue_id++;

}

uint16_t nb_tx = rte_event_enqueue_burst(dev_id, worker_port_id, events, nb_rx);

39.2.8 Egress of Events

Finally, when the packet is ready for egress or needs to be dropped, we need to inform the eventdev
that the packet is no longer being handled by the application. This can be done by calling dequeue() or
dequeue_burst(), which indicates that the previous burst of packets is no longer in use by the application.

An event driven worker thread has following typical workflow on fastpath:

while (1) {
rte_event_dequeue_burst(...);

39.2. API Walk-through 303



Programmer’s Guide, Release 20.08.0

(event processing)
rte_event_enqueue_burst(...);

}

39.3 Summary

The eventdev library allows an application to easily schedule events as it requires, either using a run-
to-completion or pipeline processing model. The queues and ports abstract the logical functionality
of an eventdev, providing the application with a generic method to schedule events. With the flexible
PMD infrastructure applications benefit of improvements in existing eventdevs and additions of new
ones without modification.

39.3. Summary 304



CHAPTER

FORTY

EVENT ETHERNET RX ADAPTER LIBRARY

The DPDK Eventdev API allows the application to use an event driven programming model for packet
processing. In this model, the application polls an event device port for receiving events that reference
packets instead of polling Rx queues of ethdev ports. Packet transfer between ethdev and the event
device can be supported in hardware or require a software thread to receive packets from the ethdev port
using ethdev poll mode APIs and enqueue these as events to the event device using the eventdev API.
Both transfer mechanisms may be present on the same platform depending on the particular combination
of the ethdev and the event device. For SW based packet transfer, if the mbuf does not have a timestamp
set, the adapter adds a timestamp to the mbuf using rte_get_tsc_cycles(), this provides a more accurate
timestamp as compared to if the application were to set the timestamp since it avoids event device
schedule latency.

The Event Ethernet Rx Adapter library is intended for the application code to configure both transfer
mechanisms using a common API. A capability API allows the eventdev PMD to advertise features sup-
ported for a given ethdev and allows the application to perform configuration as per supported features.

40.1 API Walk-through

This section will introduce the reader to the adapter API. The application has to first instantiate an adapter
which is associated with a single eventdev, next the adapter instance is configured with Rx queues that
are either polled by a SW thread or linked using hardware support. Finally the adapter is started.

For SW based packet transfers from ethdev to eventdev, the adapter uses a DPDK service function and
the application is also required to assign a core to the service function.

40.1.1 Creating an Adapter Instance

An adapter instance is created using rte_event_eth_rx_adapter_create(). This function is
passed the event device to be associated with the adapter and port configuration for the adapter to setup
an event port if the adapter needs to use a service function.

int err;
uint8_t dev_id;
struct rte_event_dev_info dev_info;
struct rte_event_port_conf rx_p_conf;

err = rte_event_dev_info_get(id, &dev_info);

rx_p_conf.new_event_threshold = dev_info.max_num_events;
rx_p_conf.dequeue_depth = dev_info.max_event_port_dequeue_depth;
rx_p_conf.enqueue_depth = dev_info.max_event_port_enqueue_depth;
err = rte_event_eth_rx_adapter_create(id, dev_id, &rx_p_conf);

305



Programmer’s Guide, Release 20.08.0

If the application desires to have finer control of eventdev port allocation and setup,
it can use the rte_event_eth_rx_adapter_create_ext() function. The
rte_event_eth_rx_adapter_create_ext() function is passed a callback function. The
callback function is invoked if the adapter needs to use a service function and needs to create an event
port for it. The callback is expected to fill the struct rte_event_eth_rx_adapter_conf
structure passed to it.

40.1.2 Adding Rx Queues to the Adapter Instance

Ethdev Rx queues are added to the instance using the rte_event_eth_rx_adapter_queue_add()
function. Configuration for the Rx queue is passed in using a struct
rte_event_eth_rx_adapter_queue_conf parameter. Event information for packets from this
Rx queue is encoded in the ev field of struct rte_event_eth_rx_adapter_queue_conf.
The servicing_weight member of the struct rte_event_eth_rx_adapter_queue_conf is the relative polling
frequency of the Rx queue and is applicable when the adapter uses a service core function.

ev.queue_id = 0;
ev.sched_type = RTE_SCHED_TYPE_ATOMIC;
ev.priority = 0;

queue_config.rx_queue_flags = 0;
queue_config.ev = ev;
queue_config.servicing_weight = 1;

err = rte_event_eth_rx_adapter_queue_add(id,
eth_dev_id,
0, &queue_config);

40.1.3 Querying Adapter Capabilities

The rte_event_eth_rx_adapter_caps_get() function allows the application to
query the adapter capabilities for an eventdev and ethdev combination. For e.g, if the
RTE_EVENT_ETH_RX_ADAPTER_CAP_OVERRIDE_FLOW_ID is set, the application can
override the adapter generated flow ID in the event using rx_queue_flags field in struct
rte_event_eth_rx_adapter_queue_conf which is passed as a parameter to the
rte_event_eth_rx_adapter_queue_add() function.

err = rte_event_eth_rx_adapter_caps_get(dev_id, eth_dev_id, &cap);

queue_config.rx_queue_flags = 0;
if (cap & RTE_EVENT_ETH_RX_ADAPTER_CAP_OVERRIDE_FLOW_ID) {

ev.flow_id = 1;
queue_config.rx_queue_flags =

RTE_EVENT_ETH_RX_ADAPTER_QUEUE_FLOW_ID_VALID;
}

40.1.4 Configuring the Service Function

If the adapter uses a service function, the application is required to assign a service core to the service
function as show below.

uint32_t service_id;

if (rte_event_eth_rx_adapter_service_id_get(0, &service_id) == 0)
rte_service_map_lcore_set(service_id, RX_CORE_ID);

40.1. API Walk-through 306



Programmer’s Guide, Release 20.08.0

40.1.5 Starting the Adapter Instance

The application calls rte_event_eth_rx_adapter_start() to start the adapter. This function
calls the start callbacks of the eventdev PMDs for hardware based eventdev-ethdev connections and
rte_service_run_state_set() to enable the service function if one exists.

Note: The eventdev to which the event_eth_rx_adapter is connected needs to be started before calling
rte_event_eth_rx_adapter_start().

40.1.6 Getting Adapter Statistics

The rte_event_eth_rx_adapter_stats_get() function reports counters defined in struct
rte_event_eth_rx_adapter_stats. The received packet and enqueued event counts are a sum
of the counts from the eventdev PMD callbacks if the callback is supported, and the counts maintained
by the service function, if one exists. The service function also maintains a count of cycles for which it
was not able to enqueue to the event device.

40.1.7 Interrupt Based Rx Queues

The service core function is typically set up to poll ethernet Rx queues for packets. Certain queues may
have low packet rates and it would be more efficient to enable the Rx queue interrupt and read packets
after receiving the interrupt.

The servicing_weight member of struct rte_event_eth_rx_adapter_queue_conf is applicable when the
adapter uses a service core function. The application has to enable Rx queue interrupts when config-
uring the ethernet device using the rte_eth_dev_configure() function and then use a servic-
ing_weight of zero when adding the Rx queue to the adapter.

The adapter creates a thread blocked on the interrupt, on an interrupt this thread enqueues the port id
and the queue id to a ring buffer. The adapter service function dequeues the port id and queue id from
the ring buffer, invokes the rte_eth_rx_burst() to receive packets on the queue and converts the
received packets to events in the same manner as packets received on a polled Rx queue. The interrupt
thread is affinitized to the same CPUs as the lcores of the Rx adapter service function, if the Rx adapter
service function has not been mapped to any lcores, the interrupt thread is mapped to the master lcore.

40.1.8 Rx Callback for SW Rx Adapter

For SW based packet transfers, i.e., when the RTE_EVENT_ETH_RX_ADAPTER_CAP_INTERNAL_PORT
is not set in the adapter’s capabilities flags for a particular ethernet device, the service function tem-
porarily enqueues mbufs to an event buffer before batch enqueuing these to the event device. If
the buffer fills up, the service function stops dequeuing packets from the ethernet device. The
application may want to monitor the buffer fill level and instruct the service function to selectively
enqueue packets to the event device. The application may also use some other criteria to decide
which packets should enter the event device even when the event buffer fill level is low. The
rte_event_eth_rx_adapter_cb_register() function allow the application to register a
callback that selects which packets to enqueue to the event device.

40.1. API Walk-through 307



CHAPTER

FORTYONE

EVENT ETHERNET TX ADAPTER LIBRARY

The DPDK Eventdev API allows the application to use an event driven programming model for packet
processing in which the event device distributes events referencing packets to the application cores in a
dynamic load balanced fashion while handling atomicity and packet ordering. Event adapters provide the
interface between the ethernet, crypto and timer devices and the event device. Event adapter APIs enable
common application code by abstracting PMD specific capabilities. The Event ethernet Tx adapter
provides configuration and data path APIs for the transmit stage of the application allowing the same
application code to use eventdev PMD support or in its absence, a common implementation.

In the common implementation, the application enqueues mbufs to the adapter which runs as a
rte_service function. The service function dequeues events from its event port and transmits the mbufs
referenced by these events.

41.1 API Walk-through

This section will introduce the reader to the adapter API. The application has to first instantiate an
adapter which is associated with a single eventdev, next the adapter instance is configured with Tx
queues, finally the adapter is started and the application can start enqueuing mbufs to it.

41.1.1 Creating an Adapter Instance

An adapter instance is created using rte_event_eth_tx_adapter_create(). This function is
passed the event device to be associated with the adapter and port configuration for the adapter to setup
an event port if the adapter needs to use a service function.

If the application desires to have finer control of eventdev port configuration, it
can use the rte_event_eth_tx_adapter_create_ext() function. The
rte_event_eth_tx_adapter_create_ext() function is passed a callback function. The
callback function is invoked if the adapter needs to use a service function and needs to create an event
port for it. The callback is expected to fill the struct rte_event_eth_tx_adapter_conf
structure passed to it.

struct rte_event_dev_info dev_info;
struct rte_event_port_conf tx_p_conf = {0};

err = rte_event_dev_info_get(id, &dev_info);

tx_p_conf.new_event_threshold = dev_info.max_num_events;
tx_p_conf.dequeue_depth = dev_info.max_event_port_dequeue_depth;
tx_p_conf.enqueue_depth = dev_info.max_event_port_enqueue_depth;

err = rte_event_eth_tx_adapter_create(id, dev_id, &tx_p_conf);

308



Programmer’s Guide, Release 20.08.0

41.1.2 Adding Tx Queues to the Adapter Instance

Ethdev Tx queues are added to the instance using the rte_event_eth_tx_adapter_queue_add()
function. A queue value of -1 is used to indicate all queues within a device.

int err = rte_event_eth_tx_adapter_queue_add(id,
eth_dev_id,
q);

41.1.3 Querying Adapter Capabilities

The rte_event_eth_tx_adapter_caps_get() function allows the application to query the
adapter capabilities for an eventdev and ethdev combination. Currently, the only capability flag defined
is RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT, the application can query this flag to
determine if a service function is associated with the adapter and retrieve its service identifier using the
rte_event_eth_tx_adapter_service_id_get() API.

int err = rte_event_eth_tx_adapter_caps_get(dev_id, eth_dev_id, &cap);

if (!(cap & RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT))
err = rte_event_eth_tx_adapter_service_id_get(id, &service_id);

41.1.4 Linking a Queue to the Adapter’s Event Port

If the adapter uses a service function as described in the previous section, the application is required
to link a queue to the adapter’s event port. The adapter’s event port can be obtained using the
rte_event_eth_tx_adapter_event_port_get() function. The queue can be configured
with the RTE_EVENT_QUEUE_CFG_SINGLE_LINK since it is linked to a single event port.

41.1.5 Configuring the Service Function

If the adapter uses a service function, the application can assign a service core to the service function as
shown below.

if (rte_event_eth_tx_adapter_service_id_get(id, &service_id) == 0)
rte_service_map_lcore_set(service_id, TX_CORE_ID);

41.1.6 Starting the Adapter Instance

The application calls rte_event_eth_tx_adapter_start() to start the adapter.
This function calls the start callback of the eventdev PMD if supported, and the
rte_service_run_state_set() to enable the service function if one exists.

41.1.7 Enqueuing Packets to the Adapter

The application needs to notify the adapter about the transmit port and queue used to send the packet.
The transmit port is set in the struct rte mbuf::port field and the transmit queue is set using
the rte_event_eth_tx_adapter_txq_set() function.

If the eventdev PMD supports the RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT
capability for a given ethernet device, the application should use the
rte_event_eth_tx_adapter_enqueue() function to enqueue packets to the adapter.

41.1. API Walk-through 309



Programmer’s Guide, Release 20.08.0

If the adapter uses a service function for the ethernet device then the application should use the
rte_event_enqueue_burst() function.

struct rte_event event;

if (cap & RTE_EVENT_ETH_TX_ADAPTER_CAP_INTERNAL_PORT) {

event.mbuf = m;
eq_flags = 0;

m->port = tx_port;
rte_event_eth_tx_adapter_txq_set(m, tx_queue_id);

rte_event_eth_tx_adapter_enqueue(dev_id, ev_port, &event, 1, eq_flags);
} else {

event.queue_id = qid; /* event queue linked to adapter port */
event.op = RTE_EVENT_OP_NEW;
event.event_type = RTE_EVENT_TYPE_CPU;
event.sched_type = RTE_SCHED_TYPE_ATOMIC;
event.mbuf = m;

m->port = tx_port;
rte_event_eth_tx_adapter_txq_set(m, tx_queue_id);

rte_event_enqueue_burst(dev_id, ev_port, &event, 1);
}

41.1.8 Getting Adapter Statistics

The rte_event_eth_tx_adapter_stats_get() function reports counters defined in struct
rte_event_eth_tx_adapter_stats. The counter values are the sum of the counts from the
eventdev PMD callback if the callback is supported, and the counts maintained by the service function,
if one exists.

41.1. API Walk-through 310



CHAPTER

FORTYTWO

EVENT TIMER ADAPTER LIBRARY

The DPDK Event Device library introduces an event driven programming model which presents appli-
cations with an alternative to the polling model traditionally used in DPDK applications. Event devices
can be coupled with arbitrary components to provide new event sources by using event adapters. The
Event Timer Adapter is one such adapter; it bridges event devices and timer mechanisms.

The Event Timer Adapter library extends the event driven model by introducing a new type of event that
represents a timer expiration, and providing an API with which adapters can be created or destroyed,
and event timers can be armed and canceled.

The Event Timer Adapter library is designed to interface with hardware or software implementations
of the timer mechanism; it will query an eventdev PMD to determine which implementation should be
used. The default software implementation manages timers using the DPDK Timer library.

Examples of using the API are presented in the API Overview and Processing Timer Expiry Events
sections. Code samples are abstracted and are based on the example of handling a TCP retransmission.

42.1 Event Timer struct

Event timers are timers that enqueue a timer expiration event to an event device upon timer expiration.

The Event Timer Adapter API represents each event timer with a generic struct, which
contains an event and user metadata. The rte_event_timer struct is defined in
lib/librte_event/librte_event_timer_adapter.h.

42.1.1 Timer Expiry Event

The event contained by an event timer is enqueued in the event device when the timer expires, and the
event device uses the attributes below when scheduling it:

• event_queue_id - Application should set this to specify an event queue to which the timer
expiry event should be enqueued

• event_priority - Application can set this to indicate the priority of the timer expiry event in
the event queue relative to other events

• sched_type - Application can set this to specify the scheduling type of the timer expiry event

• flow_id - Application can set this to indicate which flow this timer expiry event corresponds to

• op - Will be set to RTE_EVENT_OP_NEW by the event timer adapter

• event_type - Will be set to RTE_EVENT_TYPE_TIMER by the event timer adapter

311



Programmer’s Guide, Release 20.08.0

42.1.2 Timeout Ticks

The number of ticks from now in which the timer will expire. The ticks value has a resolution
(timer_tick_ns) that is specified in the event timer adapter configuration.

42.1.3 State

Before arming an event timer, the application should initialize its state to
RTE_EVENT_TIMER_NOT_ARMED. The event timer’s state will be updated when a request
to arm or cancel it takes effect.

If the application wishes to rearm the timer after it has expired, it should reset the state back to
RTE_EVENT_TIMER_NOT_ARMED before doing so.

42.1.4 User Metadata

Memory to store user specific metadata. The event timer adapter implementation will not modify this
area.

42.2 API Overview

This section will introduce the reader to the event timer adapter API, showing how to create and config-
ure an event timer adapter and use it to manage event timers.

From a high level, the setup steps are:

• rte_event_timer_adapter_create()

• rte_event_timer_adapter_start()

And to start and stop timers:

• rte_event_timer_arm_burst()

• rte_event_timer_cancel_burst()

42.2.1 Create and Configure an Adapter Instance

To create an event timer adapter instance, initialize an rte_event_timer_adapter_conf struct
with the desired values, and pass it to rte_event_timer_adapter_create().

#define NSECPERSEC 1E9 // No of ns in 1 sec
const struct rte_event_timer_adapter_conf adapter_config = {

.event_dev_id = event_dev_id,

.timer_adapter_id = 0,

.clk_src = RTE_EVENT_TIMER_ADAPTER_CPU_CLK,

.timer_tick_ns = NSECPERSEC / 10, // 100 milliseconds

.max_tmo_nsec = 180 * NSECPERSEC // 2 minutes

.nb_timers = 40000,

.timer_adapter_flags = 0,
};

struct rte_event_timer_adapter *adapter = NULL;
adapter = rte_event_timer_adapter_create(&adapter_config);

42.2. API Overview 312



Programmer’s Guide, Release 20.08.0

if (adapter == NULL) { ... };

Before creating an instance of a timer adapter, the application should create and configure an
event device along with its event ports. Based on the event device capability, it might re-
quire creating an additional event port to be used by the timer adapter. If required, the
rte_event_timer_adapter_create() function will use a default method to configure an event
port; it will examine the current event device configuration, determine the next available port identifier
number, and create a new event port with a default port configuration.

If the application desires to have finer control of event port allocation and setup, it can use the
rte_event_timer_adapter_create_ext() function. This function is passed a callback func-
tion that will be invoked if the adapter needs to create an event port, giving the application the opportu-
nity to control how it is done.

42.2.2 Retrieve Event Timer Adapter Contextual Information

The event timer adapter implementation may have constraints on tick resolution or maximum timer
expiry timeout based on the given event timer adapter or system. In this case, the implementation may
adjust the tick resolution or maximum timeout to the best possible configuration.

Upon successful event timer adapter creation, the application can get the configured resolution and
max timeout with rte_event_timer_adapter_get_info(). This function will return an
rte_event_timer_adapter_info struct, which contains the following members:

• min_resolution_ns - Minimum timer adapter tick resolution in ns.

• max_tmo_ns - Maximum timer timeout(expiry) in ns.

• adapter_conf - Configured event timer adapter attributes

42.2.3 Configuring the Service Component

If the adapter uses a service component, the application is required to map the service to a service core
before starting the adapter:

uint32_t service_id;

if (rte_event_timer_adapter_service_id_get(adapter, &service_id) == 0)
rte_service_map_lcore_set(service_id, EVTIM_CORE_ID);

An event timer adapter uses a service component if the event device PMD indicates that the adapter
should use a software implementation.

42.2.4 Starting the Adapter Instance

The application should call rte_event_timer_adapter_start() to start running the event
timer adapter. This function calls the start entry points defined by eventdev PMDs for hardware im-
plementations or puts a service component into the running state in the software implementation.

Note: The eventdev to which the event_timer_adapter is connected needs to be started before calling
rte_event_timer_adapter_start().

42.2. API Overview 313



Programmer’s Guide, Release 20.08.0

42.2.5 Arming Event Timers

Once an event timer adapter has been started, an application can begin to manage event timers with it.

The application should allocate struct rte_event_timer objects from a mempool or huge-page
backed application buffers of required size. Upon successful allocation, the application should ini-
tialize the event timer, and then set any of the necessary event attributes described in the Timer Ex-
piry Event section. In the following example, assume conn represents a TCP connection and that
event_timer_pool is a mempool that was created previously:

rte_mempool_get(event_timer_pool, (void **)&conn->evtim);
if (conn->evtim == NULL) { ... }

/* Set up the event timer. */
conn->evtim->ev.op = RTE_EVENT_OP_NEW;
conn->evtim->ev.queue_id = event_queue_id;
conn->evtim->ev.sched_type = RTE_SCHED_TYPE_ATOMIC;
conn->evtim->ev.priority = RTE_EVENT_DEV_PRIORITY_NORMAL;
conn->evtim->ev.event_type = RTE_EVENT_TYPE_TIMER;
conn->evtim->ev.event_ptr = conn;
conn->evtim->state = RTE_EVENT_TIMER_NOT_ARMED;
conn->evtim->timeout_ticks = 30; //3 sec Per RFC1122(TCP returns)

Note that it is necessary to initialize the event timer state to RTE_EVENT_TIMER_NOT_ARMED.
Also note that we have saved a pointer to the conn object in the timer’s event payload. This will allow
us to locate the connection object again once we dequeue the timer expiry event from the event device
later. As a convenience, the application may specify no value for ev.event_ptr, and the adapter will by
default set it to point at the event timer itself.

Now we can arm the event timer with rte_event_timer_arm_burst():

ret = rte_event_timer_arm_burst(adapter, &conn->evtim, 1);
if (ret != 1) { ... }

Once an event timer expires, the application may free it or rearm it as necessary. If the application will
rearm the timer, the state should be reset to RTE_EVENT_TIMER_NOT_ARMED by the application
before rearming it.

Multiple Event Timers with Same Expiry Value

In the special case that there is a set of event timers that should all expire at the same time, the applica-
tion may call rte_event_timer_arm_tmo_tick_burst(), which allows the implementation
to optimize the operation if possible.

42.2.6 Canceling Event Timers

An event timer that has been armed as described in Arming Event Timers can be canceled by calling
rte_event_timer_cancel_burst():

/* Ack for the previous tcp data packet has been received;

* cancel the retransmission timer

*/
rte_event_timer_cancel_burst(adapter, &conn->timer, 1);

42.2. API Overview 314



Programmer’s Guide, Release 20.08.0

42.3 Processing Timer Expiry Events

Once an event timer has successfully enqueued a timer expiry event in the event device, the application
will subsequently dequeue it from the event device. The application can use the event payload to retrieve
a pointer to the object associated with the event timer. It can then re-arm the event timer or free the event
timer object as desired:

void
event_processing_loop(...)
{

while (...) {
/* Receive events from the configured event port. */
rte_event_dequeue_burst(event_dev_id, event_port, &ev, 1, 0);
...
switch(ev.event_type) {

...
case RTE_EVENT_TYPE_TIMER:

process_timer_event(ev);
...
break;

}
}

}

uint8_t
process_timer_event(...)
{

/* A retransmission timeout for the connection has been received. */
conn = ev.event_ptr;
/* Retransmit last packet (e.g. TCP segment). */
...
/* Re-arm timer using original values. */
rte_event_timer_arm_burst(adapter_id, &conn->timer, 1);

}

42.4 Summary

The Event Timer Adapter library extends the DPDK event-based programming model by representing
timer expirations as events in the system and allowing applications to use existing event processing loops
to arm and cancel event timers or handle timer expiry events.

42.3. Processing Timer Expiry Events 315



CHAPTER

FORTYTHREE

EVENT CRYPTO ADAPTER LIBRARY

The DPDK Eventdev library provides event driven programming model with features to schedule events.
The Cryptodev library provides an interface to the crypto poll mode drivers which supports different
crypto operations. The Event Crypto Adapter is one of the adapter which is intended to bridge between
the event device and the crypto device.

The packet flow from crypto device to the event device can be accomplished using SW and HW based
transfer mechanism. The Adapter queries an eventdev PMD to determine which mechanism to be used.
The adapter uses an EAL service core function for SW based packet transfer and uses the eventdev PMD
functions to configure HW based packet transfer between the crypto device and the event device. The
crypto adapter uses a new event type called RTE_EVENT_TYPE_CRYPTODEV to indicate the event
source.

The application can choose to submit a crypto operation directly to
crypto device or send it to the crypto adapter via eventdev based on
RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_OP_FWD capability. The first
mode is known as the event new(RTE_EVENT_CRYPTO_ADAPTER_OP_NEW) mode and the sec-
ond as the event forward(RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD) mode. The choice of
mode can be specified while creating the adapter. In the former mode, it is an application responsibility
to enable ingress packet ordering. In the latter mode, it is the adapter responsibility to enable the ingress
packet ordering.

43.1 Adapter Mode

43.1.1 RTE_EVENT_CRYPTO_ADAPTER_OP_NEW mode

In the RTE_EVENT_CRYPTO_ADAPTER_OP_NEW mode, application submits crypto operations di-
rectly to crypto device. The adapter then dequeues crypto completions from crypto device and enqueues
them as events to the event device. This mode does not ensure ingress ordering, if the application directly
enqueues to the cryptodev without going through crypto/atomic stage. In this mode, events dequeued
from the adapter will be treated as new events. The application needs to specify event information
(response information) which is needed to enqueue an event after the crypto operation is completed.

43.1.2 RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD mode

In the RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD mode, if HW supports
RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_OP_FWD capability the applica-
tion can directly submit the crypto operations to the cryptodev. If not, application retrieves crypto
adapter’s event port using rte_event_crypto_adapter_event_port_get() API. Then, links its event queue

316



Programmer’s Guide, Release 20.08.0

1

2

3

4

6

Eventdev

Atomic stage
+

enqueue to
cryptodev

5

CryptodevCrypto
adapter

1. Application dequeues
    events from the previous
    stage

2. Application prepares the
    crypto operations.

3. Crypto operations are
    submitted to cryptodev
    by application..

4. Crypto adapter dequeues
    crypto completions from
    cryptodev.

5. Crypto adapter enqueues
    events to the eventdev.

6. Application dequeues from
    eventdev and prepare for
    further processing

Application

Fig. 43.1: Working model of RTE_EVENT_CRYPTO_ADAPTER_OP_NEW mode

to this port and starts enqueuing crypto operations as events to the eventdev. The adapter then dequeues
the events and submits the crypto operations to the cryptodev. After the crypto completions, the
adapter enqueues events to the event device. Application can use this mode, when ingress packet
ordering is needed. In this mode, events dequeued from the adapter will be treated as forwarded events.
The application needs to specify the cryptodev ID and queue pair ID (request information) needed
to enqueue a crypto operation in addition to the event information (response information) needed to
enqueue an event after the crypto operation has completed.

43.2 API Overview

This section has a brief introduction to the event crypto adapter APIs. The application is expected to
create an adapter which is associated with a single eventdev, then add cryptodev and queue pair to the
adapter instance.

43.2.1 Create an adapter instance

An adapter instance is created using rte_event_crypto_adapter_create(). This function is
called with event device to be associated with the adapter and port configuration for the adapter to setup
an event port(if the adapter needs to use a service function).

Adapter can be started in RTE_EVENT_CRYPTO_ADAPTER_OP_NEW or
RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD mode.

int err;
uint8_t dev_id, id;

43.2. API Overview 317



Programmer’s Guide, Release 20.08.0

1 2

8

7

3

4

5

6

Eventdev

Crypto
Adapter

Application
in ordered

stage

Cryptodev

1. Events from the previous stage.

2. Application in ordered stage
    dequeues events from eventdev.

3. Application enqueues crypto
    operations as events to eventdev.

4. Crypto adapter dequeues event
    from eventdev.

5. Crypto adapter submits crypto
    operations to cryptodev (Atomic
    stage)

6. Crypto adapter dequeues crypto
    completions from cryptodev

7. Crypto adapter enqueues events
    to the eventdev

8. Events to the next stage

Fig. 43.2: Working model of RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD mode

struct rte_event_dev_info dev_info;
struct rte_event_port_conf conf;
enum rte_event_crypto_adapter_mode mode;

err = rte_event_dev_info_get(id, &dev_info);

conf.new_event_threshold = dev_info.max_num_events;
conf.dequeue_depth = dev_info.max_event_port_dequeue_depth;
conf.enqueue_depth = dev_info.max_event_port_enqueue_depth;
mode = RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD;
err = rte_event_crypto_adapter_create(id, dev_id, &conf, mode);

If the application desires to have finer control of eventdev port allocation and setup,
it can use the rte_event_crypto_adapter_create_ext() function. The
rte_event_crypto_adapter_create_ext() function is passed as a callback function. The
callback function is invoked if the adapter needs to use a service function and needs to create an event
port for it. The callback is expected to fill the struct rte_event_crypto_adapter_conf
structure passed to it.

For RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD mode, the event port created by adapter can
be retrieved using rte_event_crypto_adapter_event_port_get() API. Application can
use this event port to link with event queue on which it enqueues events towards the crypto adapter.

uint8_t id, evdev, crypto_ev_port_id, app_qid;
struct rte_event ev;
int ret;

ret = rte_event_crypto_adapter_event_port_get(id, &crypto_ev_port_id);
ret = rte_event_queue_setup(evdev, app_qid, NULL);
ret = rte_event_port_link(evdev, crypto_ev_port_id, &app_qid, NULL, 1);

// Fill in event info and update event_ptr with rte_crypto_op
memset(&ev, 0, sizeof(ev));
ev.queue_id = app_qid;
.

43.2. API Overview 318



Programmer’s Guide, Release 20.08.0

.
ev.event_ptr = op;
ret = rte_event_enqueue_burst(evdev, app_ev_port_id, ev, nb_events);

43.2.2 Querying adapter capabilities

The rte_event_crypto_adapter_caps_get() function allows the application to query the
adapter capabilities for an eventdev and cryptodev combination. This API provides whether cryptodev
and eventdev are connected using internal HW port or not.

rte_event_crypto_adapter_caps_get(dev_id, cdev_id, &cap);

43.2.3 Adding queue pair to the adapter instance

Cryptodev device id and queue pair are created using cryptodev APIs. For more information see here.

struct rte_cryptodev_config conf;
struct rte_cryptodev_qp_conf qp_conf;
uint8_t cdev_id = 0;
uint16_t qp_id = 0;

rte_cryptodev_configure(cdev_id, &conf);
rte_cryptodev_queue_pair_setup(cdev_id, qp_id, &qp_conf);

These cryptodev id and queue pair are added to the instance using the
rte_event_crypto_adapter_queue_pair_add() API. The same is removed
using rte_event_crypto_adapter_queue_pair_del() API. If HW supports
RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_QP_EV_BIND capability, event
information must be passed to the add API.

uint32_t cap;
int ret;

ret = rte_event_crypto_adapter_caps_get(id, evdev, &cap);
if (cap & RTE_EVENT_CRYPTO_ADAPTER_CAP_INTERNAL_PORT_QP_EV_BIND) {

struct rte_event event;

// Fill in event information & pass it to add API
rte_event_crypto_adapter_queue_pair_add(id, cdev_id, qp_id, &event);

} else
rte_event_crypto_adapter_queue_pair_add(id, cdev_id, qp_id, NULL);

43.2.4 Configure the service function

If the adapter uses a service function, the application is required to assign a service core to the service
function as show below.

uint32_t service_id;

if (rte_event_crypto_adapter_service_id_get(id, &service_id) == 0)
rte_service_map_lcore_set(service_id, CORE_ID);

43.2.5 Set event request/response information

In the RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD mode, the application needs to specify
the cryptodev ID and queue pair ID (request information) in addition to the event information (response

43.2. API Overview 319



Programmer’s Guide, Release 20.08.0

information) needed to enqueue an event after the crypto operation has completed. The request and
response information are specified in the struct rte_crypto_op private data or session’s private
data.

In the RTE_EVENT_CRYPTO_ADAPTER_OP_NEW mode, the application is required to provide only
the response information.

The SW adapter or HW PMD uses rte_crypto_op::sess_type to decide whether re-
quest/response data is located in the crypto session/ crypto security session or at an offset in the struct
rte_crypto_op. The rte_crypto_op::private_data_offset is used to locate the re-
quest/ response in the rte_crypto_op.

For crypto session, rte_cryptodev_sym_session_set_user_data()
API will be used to set request/response data. The same data will be ob-
tained by rte_cryptodev_sym_session_get_user_data() API. The
RTE_EVENT_CRYPTO_ADAPTER_CAP_SESSION_PRIVATE_DATA capability indicates whether
HW or SW supports this feature.

For security session, rte_security_session_set_private_data() API
will be used to set request/response data. The same data will be obtained by
rte_security_session_get_private_data() API.

For session-less it is mandatory to place the request/response data with the rte_crypto_op.

union rte_event_crypto_metadata m_data;
struct rte_event ev;
struct rte_crypto_op *op;

/* Allocate & fill op structure */
op = rte_crypto_op_alloc();

memset(&m_data, 0, sizeof(m_data));
memset(&ev, 0, sizeof(ev));
/* Fill event information and update event_ptr to rte_crypto_op */
ev.event_ptr = op;

if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
/* Copy response information */
rte_memcpy(&m_data.response_info, &ev, sizeof(ev));
/* Copy request information */
m_data.request_info.cdev_id = cdev_id;
m_data.request_info.queue_pair_id = qp_id;
/* Call set API to store private data information */
rte_cryptodev_sym_session_set_user_data(

op->sym->session,
&m_data,
sizeof(m_data));

} if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
uint32_t len = IV_OFFSET + MAXIMUM_IV_LENGTH +

(sizeof(struct rte_crypto_sym_xform) * 2);
op->private_data_offset = len;
/* Copy response information */
rte_memcpy(&m_data.response_info, &ev, sizeof(ev));
/* Copy request information */
m_data.request_info.cdev_id = cdev_id;
m_data.request_info.queue_pair_id = qp_id;
/* Store private data information along with rte_crypto_op */
rte_memcpy(op + len, &m_data, sizeof(m_data));

}

43.2. API Overview 320



Programmer’s Guide, Release 20.08.0

43.2.6 Start the adapter instance

The application calls rte_event_crypto_adapter_start() to start the adapter. This function
calls the start callbacks of the eventdev PMDs for hardware based eventdev-cryptodev connections and
rte_service_run_state_set() to enable the service function if one exists.

rte_event_crypto_adapter_start(id, mode);

Note: The eventdev to which the event_crypto_adapter is connected needs to be started before calling
rte_event_crypto_adapter_start().

43.2.7 Get adapter statistics

The rte_event_crypto_adapter_stats_get() function reports counters defined in struct
rte_event_crypto_adapter_stats. The received packet and enqueued event counts are a sum
of the counts from the eventdev PMD callbacks if the callback is supported, and the counts maintained
by the service function, if one exists.

43.2. API Overview 321



CHAPTER

FORTYFOUR

QUALITY OF SERVICE (QOS) FRAMEWORK

This chapter describes the DPDK Quality of Service (QoS) framework.

44.1 Packet Pipeline with QoS Support

An example of a complex packet processing pipeline with QoS support is shown in the following figure.

Fig. 44.1: Complex Packet Processing Pipeline with QoS Support

This pipeline can be built using reusable DPDK software libraries. The main blocks implementing QoS
in this pipeline are: the policer, the dropper and the scheduler. A functional description of each block is
provided in the following table.

322



Programmer’s Guide, Release 20.08.0

Table 44.1: Packet Processing Pipeline Implementing QoS

# Block Functional Description
1 Packet I/O

RX & TX
Packet reception/ transmission from/to multiple NIC ports. Poll mode drivers
(PMDs) for Intel 1 GbE/10 GbE NICs.

2 Packet
parser

Identify the protocol stack of the input packet. Check the integrity of the packet
headers.

3 Flow clas-
sification

Map the input packet to one of the known traffic flows. Exact match table lookup
using configurable hash function (jhash, CRC and so on) and bucket logic to
handle collisions.

4 Policer Packet metering using srTCM (RFC 2697) or trTCM (RFC2698) algorithms.
5 Load

Balancer
Distribute the input packets to the application workers. Provide uniform load to
each worker. Preserve the affinity of traffic flows to workers and the packet order
within each flow.

6 Worker
threads

Placeholders for the customer specific application workload (for example, IP
stack and so on).

7 Dropper Congestion management using the Random Early Detection (RED) algorithm
(specified by the Sally Floyd - Van Jacobson paper) or Weighted RED (WRED).
Drop packets based on the current scheduler queue load level and packet priority.
When congestion is experienced, lower priority packets are dropped first.

8 Hierarchi-
cal
Scheduler

5-level hierarchical scheduler (levels are: output port, subport, pipe, traffic class
and queue) with thousands (typically 64K) leaf nodes (queues). Implements
traffic shaping (for subport and pipe levels), strict priority (for traffic class level)
and Weighted Round Robin (WRR) (for queues within each pipe traffic class).

The infrastructure blocks used throughout the packet processing pipeline are listed in the following table.

Table 44.2: Infrastructure Blocks Used by the Packet Processing Pipeline

# Block Functional Description
1 Buffer manager Support for global buffer pools and private per-thread buffer caches.
2 Queue manager Support for message passing between pipeline blocks.
3 Power saving Support for power saving during low activity periods.

The mapping of pipeline blocks to CPU cores is configurable based on the performance level required
by each specific application and the set of features enabled for each block. Some blocks might consume
more than one CPU core (with each CPU core running a different instance of the same block on different
input packets), while several other blocks could be mapped to the same CPU core.

44.2 Hierarchical Scheduler

The hierarchical scheduler block, when present, usually sits on the TX side just before the transmission
stage. Its purpose is to prioritize the transmission of packets from different users and different traffic
classes according to the policy specified by the Service Level Agreements (SLAs) of each network node.

44.2.1 Overview

The hierarchical scheduler block is similar to the traffic manager block used by network processors that
typically implement per flow (or per group of flows) packet queuing and scheduling. It typically acts
like a buffer that is able to temporarily store a large number of packets just before their transmission

44.2. Hierarchical Scheduler 323



Programmer’s Guide, Release 20.08.0

(enqueue operation); as the NIC TX is requesting more packets for transmission, these packets are later
on removed and handed over to the NIC TX with the packet selection logic observing the predefined
SLAs (dequeue operation).

Fig. 44.2: Hierarchical Scheduler Block Internal Diagram

The hierarchical scheduler is optimized for a large number of packet queues. When only a small number
of queues are needed, message passing queues should be used instead of this block. See Worst Case
Scenarios for Performance for a more detailed discussion.

44.2.2 Scheduling Hierarchy

The scheduling hierarchy is shown in Fig. 44.3. The first level of the hierarchy is the Ethernet TX port
1/10/40 GbE, with subsequent hierarchy levels defined as subport, pipe, traffic class and queue.

Typically, each subport represents a predefined group of users, while each pipe represents an individual
user/subscriber. Each traffic class is the representation of a different traffic type with specific loss rate,
delay and jitter requirements, such as voice, video or data transfers. Each queue hosts packets from one
or multiple connections of the same type belonging to the same user.

The functionality of each hierarchical level is detailed in the following table.

44.2. Hierarchical Scheduler 324



Programmer’s Guide, Release 20.08.0

Queue

TrafficClass

Pipe

Subport

Port

Fig. 44.3: Scheduling Hierarchy per Port

44.2. Hierarchical Scheduler 325



Programmer’s Guide, Release 20.08.0

Table 44.3: Port Scheduling Hierarchy

# Level Siblings per Parent Functional Descrip-
tion

1 Port • 1. Output Ethernet
port 1/10/40 GbE.

2. Multiple ports
are scheduled in
round robin order
with all ports
having equal
priority.

2 Subport Configurable (default:
8) 1. Traffic shap-

ing using token
bucket algorithm
(one token bucket
per subport).

2. Upper limit en-
forced per Traffic
Class (TC) at the
subport level.

3. Lower priority
TCs able to reuse
subport band-
width currently
unused by higher
priority TCs.

3 Pipe Configurable (default:
4K) 1. Traffic shaping

using the token
bucket algorithm
(one token bucket
per pipe.

4 Traffic Class (TC) 13
1. TCs of the same

pipe handled in
strict priority or-
der.

2. Upper limit en-
forced per TC at
the pipe level.

3. Lower priority
TCs able to reuse
pipe bandwidth
currently unused
by higher priority
TCs.

4. When subport TC
is oversubscribed
(configuration
time event), pipe
TC upper limit
is capped to a
dynamically ad-
justed value that
is shared by all
the subport pipes.

5 Queue High priority TCs: 1,
Lowest priority TC: 4 1. All the high pri-

ority TCs (TC0,
TC1, ...,TC11)
have exactly 1
queue, while the
lowest priority TC
(TC12), called
Best Effort (BE),
has 4 queues.

2. Queues of the
lowest priority TC
(BE) are serviced
using Weighted
Round Robin
(WRR) according
to predefined
weights weights.

44.2. Hierarchical Scheduler 326



Programmer’s Guide, Release 20.08.0

44.2.3 Application Programming Interface (API)

Port Scheduler Configuration API

The rte_sched.h file contains configuration functions for port, subport and pipe.

Port Scheduler Enqueue API

The port scheduler enqueue API is very similar to the API of the DPDK PMD TX function.

int rte_sched_port_enqueue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts);

Port Scheduler Dequeue API

The port scheduler dequeue API is very similar to the API of the DPDK PMD RX function.

int rte_sched_port_dequeue(struct rte_sched_port *port, struct rte_mbuf **pkts, uint32_t n_pkts);

Usage Example

/* File "application.c" */

#define N_PKTS_RX 64
#define N_PKTS_TX 48
#define NIC_RX_PORT 0
#define NIC_RX_QUEUE 0
#define NIC_TX_PORT 1
#define NIC_TX_QUEUE 0

struct rte_sched_port *port = NULL;
struct rte_mbuf *pkts_rx[N_PKTS_RX], *pkts_tx[N_PKTS_TX];
uint32_t n_pkts_rx, n_pkts_tx;

/* Initialization */

<initialization code>

/* Runtime */
while (1) {

/* Read packets from NIC RX queue */

n_pkts_rx = rte_eth_rx_burst(NIC_RX_PORT, NIC_RX_QUEUE, pkts_rx, N_PKTS_RX);

/* Hierarchical scheduler enqueue */

rte_sched_port_enqueue(port, pkts_rx, n_pkts_rx);

/* Hierarchical scheduler dequeue */

n_pkts_tx = rte_sched_port_dequeue(port, pkts_tx, N_PKTS_TX);

/* Write packets to NIC TX queue */

rte_eth_tx_burst(NIC_TX_PORT, NIC_TX_QUEUE, pkts_tx, n_pkts_tx);
}

44.2. Hierarchical Scheduler 327



Programmer’s Guide, Release 20.08.0

44.2.4 Implementation

Internal Data Structures per Port

A schematic of the internal data structures in shown in with details in.

44.2. Hierarchical Scheduler 328



Programmer’s Guide, Release 20.08.0

Fig. 44.4: Internal Data Structures per Port

44.2. Hierarchical Scheduler 329



Programmer’s Guide, Release 20.08.0

Table 44.4: Scheduler Internal Data Structures per Port

# Data structure Size (bytes) # per port
Access type Description
Enq Deq

1 Subport table
entry

64 # subports per
port

• Rd, Wr Persistent
subport data
(credits, etc).

2 Pipe table en-
try

64 # pipes per
port

• Rd, Wr Persistent
data for pipe,
its TCs and
its queues
(credits, etc)
that is up-
dated during
run-time.
The pipe
configuration
parameters do
not change
during run-
time. The
same pipe
configuration
parameters
are shared
by multiple
pipes, there-
fore they are
not part of
pipe table
entry.

3 Queue table
entry

4 #queues per
port

Rd, Wr Rd, Wr Persistent
queue data
(read and
write point-
ers). The
queue size
is the same
per TC for
all queues,
allowing the
queue base
address to
be computed
using a fast
formula, so
these two
parameters
are not part of
queue table
entry.
The queue
table entries
for any given
pipe are
stored in the
same cache
line.

4 Queue stor-
age area

Config (de-
fault: 64
x8)

# queues per
port

Wr Rd Array of
elements per
queue; each
element is
8 byte in
size (mbuf
pointer).

5 Active queues
bitmap

1 bit per
queue

1 Wr (Set) Rd, Wr
(Clear)

The bitmap
maintains
one status bit
per queue:
queue not
active (queue
is empty) or
queue active
(queue is not
empty).
Queue bit is
set by the
scheduler
enqueue and
cleared by
the sched-
uler dequeue
when queue
becomes
empty.
Bitmap scan
operation re-
turns the next
non-empty
pipe and its
status (16-bit
mask of ac-
tive queue in
the pipe).

6 Grinder ~128 Config (de-
fault: 8)

• Rd, Wr Short list
of active
pipes cur-
rently under
processing.
The grinder
contains tem-
porary data
during pipe
processing.
Once the
current pipe
exhausts
packets or
credits, it is
replaced with
another active
pipe from the
bitmap.

44.2. Hierarchical Scheduler 330



Programmer’s Guide, Release 20.08.0

Multicore Scaling Strategy

The multicore scaling strategy is:

1. Running different physical ports on different threads. The enqueue and dequeue of the same port
are run by the same thread.

2. Splitting the same physical port to different threads by running different sets of subports of the
same physical port (virtual ports) on different threads. Similarly, a subport can be split into mul-
tiple subports that are each run by a different thread. The enqueue and dequeue of the same port
are run by the same thread. This is only required if, for performance reasons, it is not possible to
handle a full port with a single core.

Enqueue and Dequeue for the Same Output Port

Running enqueue and dequeue operations for the same output port from different cores is likely to cause
significant impact on scheduler’s performance and it is therefore not recommended.

The port enqueue and dequeue operations share access to the following data structures:

1. Packet descriptors

2. Queue table

3. Queue storage area

4. Bitmap of active queues

The expected drop in performance is due to:

1. Need to make the queue and bitmap operations thread safe, which requires either using locking
primitives for access serialization (for example, spinlocks/ semaphores) or using atomic primitives
for lockless access (for example, Test and Set, Compare And Swap, an so on). The impact is much
higher in the former case.

2. Ping-pong of cache lines storing the shared data structures between the cache hierarchies of the
two cores (done transparently by the MESI protocol cache coherency CPU hardware).

Therefore, the scheduler enqueue and dequeue operations have to be run from the same thread, which
allows the queues and the bitmap operations to be non-thread safe and keeps the scheduler data structures
internal to the same core.

Performance Scaling

Scaling up the number of NIC ports simply requires a proportional increase in the number of CPU cores
to be used for traffic scheduling.

Enqueue Pipeline

The sequence of steps per packet:

1. Access the mbuf to read the data fields required to identify the destination queue for the packet.
These fields are: port, subport, traffic class and queue within traffic class, and are typically set by
the classification stage.

44.2. Hierarchical Scheduler 331



Programmer’s Guide, Release 20.08.0

2. Access the queue structure to identify the write location in the queue array. If the queue is full,
then the packet is discarded.

3. Access the queue array location to store the packet (i.e. write the mbuf pointer).

It should be noted the strong data dependency between these steps, as steps 2 and 3 cannot start before
the result from steps 1 and 2 becomes available, which prevents the processor out of order execution
engine to provide any significant performance optimizations.

Given the high rate of input packets and the large amount of queues, it is expected that the data structures
accessed to enqueue the current packet are not present in the L1 or L2 data cache of the current core,
thus the above 3 memory accesses would result (on average) in L1 and L2 data cache misses. A number
of 3 L1/L2 cache misses per packet is not acceptable for performance reasons.

The workaround is to prefetch the required data structures in advance. The prefetch operation has an
execution latency during which the processor should not attempt to access the data structure currently
under prefetch, so the processor should execute other work. The only other work available is to exe-
cute different stages of the enqueue sequence of operations on other input packets, thus resulting in a
pipelined implementation for the enqueue operation.

Fig. 44.5 illustrates a pipelined implementation for the enqueue operation with 4 pipeline stages and
each stage executing 2 different input packets. No input packet can be part of more than one pipeline
stage at a given time.

Fig. 44.5: Prefetch Pipeline for the Hierarchical Scheduler Enqueue Operation

The congestion management scheme implemented by the enqueue pipeline described above is very
basic: packets are enqueued until a specific queue becomes full, then all the packets destined to the
same queue are dropped until packets are consumed (by the dequeue operation). This can be improved
by enabling RED/WRED as part of the enqueue pipeline which looks at the queue occupancy and packet
priority in order to yield the enqueue/drop decision for a specific packet (as opposed to enqueuing all
packets / dropping all packets indiscriminately).

Dequeue State Machine

The sequence of steps to schedule the next packet from the current pipe is:

1. Identify the next active pipe using the bitmap scan operation, prefetch pipe.

2. Read pipe data structure. Update the credits for the current pipe and its subport. Identify the
first active traffic class within the current pipe, select the next queue using WRR, prefetch queue
pointers for all the 16 queues of the current pipe.

3. Read next element from the current WRR queue and prefetch its packet descriptor.

4. Read the packet length from the packet descriptor (mbuf structure). Based on the packet length
and the available credits (of current pipe, pipe traffic class, subport and subport traffic class), take
the go/no go scheduling decision for the current packet.

44.2. Hierarchical Scheduler 332



Programmer’s Guide, Release 20.08.0

To avoid the cache misses, the above data structures (pipe, queue, queue array, mbufs) are prefetched
in advance of being accessed. The strategy of hiding the latency of the prefetch operations is to switch
from the current pipe (in grinder A) to another pipe (in grinder B) immediately after a prefetch is issued
for the current pipe. This gives enough time to the prefetch operation to complete before the execution
switches back to this pipe (in grinder A).

The dequeue pipe state machine exploits the data presence into the processor cache, therefore it tries
to send as many packets from the same pipe TC and pipe as possible (up to the available packets and
credits) before moving to the next active TC from the same pipe (if any) or to another active pipe.

Fig. 44.6: Pipe Prefetch State Machine for the Hierarchical Scheduler Dequeue Operation

44.2. Hierarchical Scheduler 333



Programmer’s Guide, Release 20.08.0

Timing and Synchronization

The output port is modeled as a conveyor belt of byte slots that need to be filled by the scheduler with
data for transmission. For 10 GbE, there are 1.25 billion byte slots that need to be filled by the port
scheduler every second. If the scheduler is not fast enough to fill the slots, provided that enough packets
and credits exist, then some slots will be left unused and bandwidth will be wasted.

In principle, the hierarchical scheduler dequeue operation should be triggered by NIC TX. Usually, once
the occupancy of the NIC TX input queue drops below a predefined threshold, the port scheduler is
woken up (interrupt based or polling based, by continuously monitoring the queue occupancy) to push
more packets into the queue.

Internal Time Reference

The scheduler needs to keep track of time advancement for the credit logic, which requires credit updates
based on time (for example, subport and pipe traffic shaping, traffic class upper limit enforcement, and
so on).

Every time the scheduler decides to send a packet out to the NIC TX for transmission, the scheduler will
increment its internal time reference accordingly. Therefore, it is convenient to keep the internal time
reference in units of bytes, where a byte signifies the time duration required by the physical interface to
send out a byte on the transmission medium. This way, as a packet is scheduled for transmission, the
time is incremented with (n + h), where n is the packet length in bytes and h is the number of framing
overhead bytes per packet.

Internal Time Reference Re-synchronization

The scheduler needs to align its internal time reference to the pace of the port conveyor belt. The reason
is to make sure that the scheduler does not feed the NIC TX with more bytes than the line rate of the
physical medium in order to prevent packet drop (by the scheduler, due to the NIC TX input queue being
full, or later on, internally by the NIC TX).

The scheduler reads the current time on every dequeue invocation. The CPU time stamp can be obtained
by reading either the Time Stamp Counter (TSC) register or the High Precision Event Timer (HPET)
register. The current CPU time stamp is converted from number of CPU clocks to number of bytes:
time_bytes = time_cycles / cycles_per_byte, where cycles_per_byte is the amount of CPU cycles that is
equivalent to the transmission time for one byte on the wire (e.g. for a CPU frequency of 2 GHz and a
10GbE port,*cycles_per_byte = 1.6*).

The scheduler maintains an internal time reference of the NIC time. Whenever a packet is scheduled,
the NIC time is incremented with the packet length (including framing overhead). On every dequeue
invocation, the scheduler checks its internal reference of the NIC time against the current time:

1. If NIC time is in the future (NIC time >= current time), no adjustment of NIC time is needed. This
means that scheduler is able to schedule NIC packets before the NIC actually needs those packets,
so the NIC TX is well supplied with packets;

2. If NIC time is in the past (NIC time < current time), then NIC time should be adjusted by setting
it to the current time. This means that the scheduler is not able to keep up with the speed of the
NIC byte conveyor belt, so NIC bandwidth is wasted due to poor packet supply to the NIC TX.

44.2. Hierarchical Scheduler 334



Programmer’s Guide, Release 20.08.0

Scheduler Accuracy and Granularity

The scheduler round trip delay (SRTD) is the time (number of CPU cycles) between two consecutive
examinations of the same pipe by the scheduler.

To keep up with the output port (that is, avoid bandwidth loss), the scheduler should be able to schedule
n packets faster than the same n packets are transmitted by NIC TX.

The scheduler needs to keep up with the rate of each individual pipe, as configured for the pipe token
bucket, assuming that no port oversubscription is taking place. This means that the size of the pipe token
bucket should be set high enough to prevent it from overflowing due to big SRTD, as this would result
in credit loss (and therefore bandwidth loss) for the pipe.

Credit Logic

Scheduling Decision

The scheduling decision to send next packet from (subport S, pipe P, traffic class TC, queue Q) is
favorable (packet is sent) when all the conditions below are met:

• Pipe P of subport S is currently selected by one of the port grinders;

• Traffic class TC is the highest priority active traffic class of pipe P;

• Queue Q is the next queue selected by WRR within traffic class TC of pipe P;

• Subport S has enough credits to send the packet;

• Subport S has enough credits for traffic class TC to send the packet;

• Pipe P has enough credits to send the packet;

• Pipe P has enough credits for traffic class TC to send the packet.

If all the above conditions are met, then the packet is selected for transmission and the necessary credits
are subtracted from subport S, subport S traffic class TC, pipe P, pipe P traffic class TC.

Framing Overhead

As the greatest common divisor for all packet lengths is one byte, the unit of credit is selected as one
byte. The number of credits required for the transmission of a packet of n bytes is equal to (n+h), where
h is equal to the number of framing overhead bytes per packet.

Table 44.5: Ethernet Frame Overhead Fields

# Packet field Length
(bytes)

Comments

1 Preamble 7
2 Start of Frame

Delimiter (SFD)
1

3 Frame Check Sequence
(FCS)

4 Considered overhead only if not included in the mbuf
packet length field.

4 Inter Frame Gap (IFG) 12
5 Total 24

44.2. Hierarchical Scheduler 335



Programmer’s Guide, Release 20.08.0

Traffic Shaping

The traffic shaping for subport and pipe is implemented using a token bucket per subport/per pipe. Each
token bucket is implemented using one saturated counter that keeps track of the number of available
credits.

The token bucket generic parameters and operations are presented in Table 44.6 and Table 44.7.

Table 44.6: Token Bucket Generic Parameters

# Token Bucket
Parameter

Unit Description

1 bucket_rate Credits per
second

Rate of adding credits to the bucket.

2 bucket_size Credits Max number of credits that can be stored in the
bucket.

Table 44.7: Token Bucket Generic Operations

# Token
Bucket
Operation

Description

1 Initialization Bucket set to a predefined value, e.g. zero or half of the bucket size.
2 Credit

update
Credits are added to the bucket on top of existing ones, either periodically or on
demand, based on the bucket_rate. Credits cannot exceed the upper limit
defined by the bucket_size, so any credits to be added to the bucket while the
bucket is full are dropped.

3 Credit
consumption

As result of packet scheduling, the necessary number of credits is removed from
the bucket. The packet can only be sent if enough credits are in the bucket to
send the full packet (packet bytes and framing overhead for the packet).

To implement the token bucket generic operations described above, the current design uses the persis-
tent data structure presented in Table 44.8, while the implementation of the token bucket operations is
described in Table 44.9.

44.2. Hierarchical Scheduler 336



Programmer’s Guide, Release 20.08.0

Table 44.8: Token Bucket Persistent Data Structure

# Token bucket field Unit Description
1 tb_time Bytes Time of the last credit

update. Measured in
bytes instead of seconds
or CPU cycles for ease
of credit consumption
operation (as the current
time is also maintained
in bytes).
See Section 26.2.4.5.1
“Internal Time Refer-
ence” for an explanation
of why the time is main-
tained in byte units.

2 tb_period Bytes Time period that should
elapse since the last
credit update in order for
the bucket to be awarded
tb_credits_per_period
worth or credits.

3 tb_credits_per_period Bytes Credit allowance per
tb_period.

4 tb_size Bytes Bucket size, i.e. upper
limit for the tb_credits.

5 tb_credits Bytes Number of credits cur-
rently in the bucket.

The bucket rate (in bytes per second) can be computed with the following formula:

bucket_rate = (tb_credits_per_period / tb_period) * r

where, r = port line rate (in bytes per second).

44.2. Hierarchical Scheduler 337



Programmer’s Guide, Release 20.08.0

Table 44.9: Token Bucket Operations

# Token bucket operation Description
1 Initialization tb_credits = 0; or tb_credits =

tb_size / 2;
2 Credit update Credit update options:

• Every time a packet is sent
for a port, update the cred-
its of all the the subports
and pipes of that port. Not
feasible.

• Every time a packet is
sent, update the credits for
the pipe and subport. Very
accurate, but not needed (a
lot of calculations).

• Every time a pipe is se-
lected (that is, picked by
one of the grinders), up-
date the credits for the
pipe and its subport.

The current implementation is
using option 3. According to
Section Dequeue State Machine,
the pipe and subport credits are
updated every time a pipe is se-
lected by the dequeue process
before the pipe and subport cred-
its are actually used.
The implementation uses a trade-
off between accuracy and speed
by updating the bucket cred-
its only when at least a full
tb_period has elapsed since the
last update.

• Full accuracy can be
achieved by select-
ing the value for
tb_period for which
tb_credits_per_period =
1.

• When full accuracy is
not required, better perfor-
mance is achieved by set-
ting tb_credits to a larger
value.

Update operations:
• n_periods = (time -

tb_time) / tb_period;
• tb_credits += n_periods *

tb_credits_per_period;
• tb_credits =

min(tb_credits, tb_size);
• tb_time += n_periods *

tb_period;

3
Credit consumption (on packet

scheduling)

As result of packet scheduling,
the necessary number of cred-
its is removed from the bucket.
The packet can only be sent if
enough credits are in the bucket
to send the full packet (packet
bytes and framing overhead for
the packet).
Scheduling operations:
pkt_credits = pkt_len +
frame_overhead; if (tb_credits
>= pkt_credits){tb_credits -=
pkt_credits;}

44.2. Hierarchical Scheduler 338



Programmer’s Guide, Release 20.08.0

Traffic Classes

Implementation of Strict Priority Scheduling

Strict priority scheduling of traffic classes within the same pipe is implemented by the pipe dequeue state
machine, which selects the queues in ascending order. Therefore, queue 0 (associated with TC 0, highest
priority TC) is handled before queue 1 (TC 1, lower priority than TC 0), which is handled before queue
2 (TC 2, lower priority than TC 1) and it conitnues until queues of all TCs except the lowest priority TC
are handled. At last, queues 12..15 (best effort TC, lowest priority TC) are handled.

Upper Limit Enforcement

The traffic classes at the pipe and subport levels are not traffic shaped, so there is no token bucket
maintained in this context. The upper limit for the traffic classes at the subport and pipe levels is enforced
by periodically refilling the subport / pipe traffic class credit counter, out of which credits are consumed
every time a packet is scheduled for that subport / pipe, as described in Table 44.10 and Table 44.11.

Table 44.10: Subport/Pipe Traffic Class Upper Limit Enforcement Persistent Data Structure

# Subport or pipe field Unit Description
1 tc_time Bytes Time of the next update

(upper limit refill) for
the TCs of the current
subport / pipe.
See Section Internal
Time Reference for the
explanation of why the
time is maintained in
byte units.

2 tc_period Bytes Time between two con-
secutive updates for the
all TCs of the current
subport / pipe. This
is expected to be many
times bigger than the
typical value of the to-
ken bucket tb_period.

3 tc_credits_per_period Bytes Upper limit for the num-
ber of credits allowed
to be consumed by the
current TC during each
enforcement period
tc_period.

4 tc_credits Bytes Current upper limit for
the number of credits
that can be consumed by
the current traffic class
for the remainder of the
current enforcement pe-
riod.

44.2. Hierarchical Scheduler 339



Programmer’s Guide, Release 20.08.0

Table 44.11: Subport/Pipe Traffic Class Upper Limit Enforcement Operations

# Traffic Class Operation Description
1 Initialization tc_credits =

tc_credits_per_period;
tc_time = tc_period;

2 Credit update Update operations:
if (time >= tc_time) {
tc_credits =
tc_credits_per_period;
tc_time = time + tc_period;
}

3 Credit consumption (on packet
scheduling)

As result of packet scheduling,
the TC limit is decreased with
the necessary number of cred-
its. The packet can only be
sent if enough credits are cur-
rently available in the TC limit
to send the full packet (packet
bytes and framing overhead for
the packet).
Scheduling operations:
pkt_credits = pk_len +
frame_overhead;
if (tc_credits >= pkt_credits)
{tc_credits -= pkt_credits;}

Weighted Round Robin (WRR)

The evolution of the WRR design solution for the lowest priority traffic class (best effort TC) from
simple to complex is shown in Table 44.12.

44.2. Hierarchical Scheduler 340



Programmer’s Guide, Release 20.08.0

Table 44.12: Weighted Round Robin (WRR)

# All Queues Ac-
tive?

Equal Weights for
All Queues?

All Packets
Equal?

Strategy

1 Yes Yes Yes Byte level round
robin
Next queue queue
#i, i = (i + 1) % n

2 Yes Yes No Packet level round
robin
Consuming one
byte from queue #i
requires consuming
exactly one token
for queue #i.
T(i) = Accumu-
lated number of
tokens previously
consumed from
queue #i. Every
time a packet is
consumed from
queue #i, T(i) is
updated as: T(i) +=
pkt_len.
Next queue : queue
with the smallest T.

3 Yes No No Packet level
weighted round
robin
This case can be
reduced to the
previous case by
introducing a cost
per byte that is
different for each
queue. Queues
with lower weights
have a higher cost
per byte. This way,
it is still mean-
ingful to compare
the consumption
amongst different
queues in order
to select the next
queue.
w(i) = Weight of
queue #i
t(i) = Tokens per
byte for queue
#i, defined as the
inverse weight
of queue #i.
For example, if
w[0..3] = [1:2:4:8],
then t[0..3] =
[8:4:2:1]; if w[0..3]
= [1:4:15:20],
then t[0..3] =
[60:15:4:3]. Con-
suming one byte
from queue #i
requires consuming
t(i) tokens for
queue #i.
T(i) = Accumu-
lated number of
tokens previously
consumed from
queue #i. Every
time a packet is
consumed from
queue #i, T(i) is
updated as: T(i)
+= pkt_len * t(i).
Next queue : queue
with the smallest T.

4 No No No Packet level
weighted round
robin with vari-
able queue status
Reduce this case
to the previous
case by setting the
consumption of
inactive queues to
a high number, so
that the inactive
queues will never
be selected by the
smallest T logic.
To prevent T from
overflowing as
result of successive
accumulations,
T(i) is truncated
after each packet
consumption for
all queues. For
example, T[0..3] =
[1000, 1100, 1200,
1300] is truncated
to T[0..3] = [0,
100, 200, 300] by
subtracting the min
T from T(i), i =
0..n.
This requires hav-
ing at least one ac-
tive queue in the
set of input queues,
which is guaran-
teed by the dequeue
state machine never
selecting an inac-
tive traffic class.
mask(i) = Satura-
tion mask for queue
#i, defined as:
mask(i) = (queue #i
is active)? 0 :
0xFFFFFFFF;
w(i) = Weight of
queue #i
t(i) = Tokens per
byte for queue
#i, defined as the
inverse weight of
queue #i.
T(i) = Accumu-
lated numbers of
tokens previously
consumed from
queue #i.
Next queue : queue
with smallest T.
Before packet
consumption from
queue #i:
T(i) |= mask(i)
After packet con-
sumption from
queue #i:
T(j) -= T(i), j != i
T(i) = pkt_len * t(i)
Note: T(j) uses the
T(i) value before
T(i) is updated.

44.2. Hierarchical Scheduler 341



Programmer’s Guide, Release 20.08.0

Subport Traffic Class Oversubscription

Problem Statement

Oversubscription for subport traffic class X is a configuration-time event that occurs when more band-
width is allocated for traffic class X at the level of subport member pipes than allocated for the same
traffic class at the parent subport level.

The existence of the oversubscription for a specific subport and traffic class is solely the result of pipe
and subport-level configuration as opposed to being created due to dynamic evolution of the traffic load
at run-time (as congestion is).

When the overall demand for traffic class X for the current subport is low, the existence of the oversub-
scription condition does not represent a problem, as demand for traffic class X is completely satisfied
for all member pipes. However, this can no longer be achieved when the aggregated demand for traffic
class X for all subport member pipes exceeds the limit configured at the subport level.

Solution Space

summarizes some of the possible approaches for handling this problem, with the third approach selected
for implementation.

44.2. Hierarchical Scheduler 342



Programmer’s Guide, Release 20.08.0

Table 44.13: Subport Traffic Class Oversubscription

No. Approach Description
1 Don’t care First come, first served.

This approach is not fair amongst
subport member pipes, as pipes
that are served first will use up
as much bandwidth for TC X as
they need, while pipes that are
served later will receive poor ser-
vice due to bandwidth for TC X
at the subport level being scarce.

2 Scale down all pipes All pipes within the subport have
their bandwidth limit for TC X
scaled down by the same factor.
This approach is not fair among
subport member pipes, as the
low end pipes (that is, pipes
configured with low bandwidth)
can potentially experience severe
service degradation that might
render their service unusable (if
available bandwidth for these
pipes drops below the minimum
requirements for a workable ser-
vice), while the service degrada-
tion for high end pipes might not
be noticeable at all.

3 Cap the high demand pipes Each subport member pipe re-
ceives an equal share of the
bandwidth available at run-time
for TC X at the subport level.
Any bandwidth left unused by
the low-demand pipes is redis-
tributed in equal portions to
the high-demand pipes. This
way, the high-demand pipes are
truncated while the low-demand
pipes are not impacted.

Typically, the subport TC oversubscription feature is enabled only for the lowest priority traffic class,
which is typically used for best effort traffic, with the management plane preventing this condition from
occurring for the other (higher priority) traffic classes.

To ease implementation, it is also assumed that the upper limit for subport best effort TC is set to 100%
of the subport rate, and that the upper limit for pipe best effort TC is set to 100% of pipe rate for all
subport member pipes.

44.2. Hierarchical Scheduler 343



Programmer’s Guide, Release 20.08.0

Implementation Overview

The algorithm computes a watermark, which is periodically updated based on the current demand expe-
rienced by the subport member pipes, whose purpose is to limit the amount of traffic that each pipe is
allowed to send for best effort TC. The watermark is computed at the subport level at the beginning of
each traffic class upper limit enforcement period and the same value is used by all the subport member
pipes throughout the current enforcement period. illustrates how the watermark computed as subport
level at the beginning of each period is propagated to all subport member pipes.

At the beginning of the current enforcement period (which coincides with the end of the previous en-
forcement period), the value of the watermark is adjusted based on the amount of bandwidth allocated
to best effort TC at the beginning of the previous period that was not left unused by the subport member
pipes at the end of the previous period.

If there was subport best effort TC bandwidth left unused, the value of the watermark for the current
period is increased to encourage the subport member pipes to consume more bandwidth. Otherwise,
the value of the watermark is decreased to enforce equality of bandwidth consumption among subport
member pipes for best effort TC.

The increase or decrease in the watermark value is done in small increments, so several enforcement
periods might be required to reach the equilibrium state. This state can change at any moment due to
variations in the demand experienced by the subport member pipes for best effort TC, for example, as
a result of demand increase (when the watermark needs to be lowered) or demand decrease (when the
watermark needs to be increased).

When demand is low, the watermark is set high to prevent it from impeding the subport member pipes
from consuming more bandwidth. The highest value for the watermark is picked as the highest rate
configured for a subport member pipe. Table 44.14 and Table 44.15 illustrates the watermark operation.

44.2. Hierarchical Scheduler 344



Programmer’s Guide, Release 20.08.0

Table 44.14: Watermark Propagation from Subport Level to Member Pipes at the Beginning of Each Traffic
Class Upper Limit Enforcement Period

No. Subport Traffic Class Opera-
tion

Description

1 Initialization Subport level: sub-
port_period_id= 0
Pipe level: pipe_period_id = 0

2 Credit update Subport Level:
if (time>=subport_tc_time)
{ subport_wm = wa-

ter_mark_update();
subport_tc_time = time +
subport_tc_period;
subport_period_id++;

}
Pipelevel:
if(pipe_period_id != sub-
port_period_id)
{

pipe_ov_credits
= subport_wm *
pipe_weight;
pipe_period_id =
subport_period_id;

}
3 Credit consumption (on packet

scheduling)
Pipe level:
pkt_credits = pk_len +
frame_overhead;
if(pipe_ov_credits >=
pkt_credits{

pipe_ov_credits -=
pkt_credits;

}

44.2. Hierarchical Scheduler 345



Programmer’s Guide, Release 20.08.0

Table 44.15: Watermark Calculation

No. Subport Traffic Class Opera-
tion

Description

1 Initialization Subport level:
wm = WM_MAX

2 Credit update Subport level (wa-
ter_mark_update):
tc0_cons = sub-
port_tc0_credits_per_period
- subport_tc0_credits;
tc1_cons = sub-
port_tc1_credits_per_period
- subport_tc1_credits;
tc2_cons = sub-
port_tc2_credits_per_period
- subport_tc2_credits;
tc3_cons = sub-
port_tc3_credits_per_period
- subport_tc3_credits;
tc4_cons = sub-
port_tc4_credits_per_period
- subport_tc4_credits;
tc5_cons = sub-
port_tc5_credits_per_period
- subport_tc5_credits;
tc6_cons = sub-
port_tc6_credits_per_period
- subport_tc6_credits;
tc7_cons = sub-
port_tc7_credits_per_period
- subport_tc7_credits;
tc8_cons = sub-
port_tc8_credits_per_period
- subport_tc8_credits;
tc9_cons = sub-
port_tc9_credits_per_period
- subport_tc9_credits;
tc10_cons = sub-
port_tc10_credits_per_period -
subport_tc10_credits;
tc11_cons = sub-
port_tc11_credits_per_period -
subport_tc11_credits;
tc_be_cons_max = sub-
port_tc_be_credits_per_period
- (tc0_cons + tc1_cons +
tc2_cons + tc3_cons + tc4_cons
+ tc5_cons + tc6_cons +
tc7_cons + tc8_cons + tc9_cons
+ tc10_cons + tc11_cons);
if(tc_be_consumption >
(tc_be_consumption_max -
MTU)){

wm -= wm >> 7;
if(wm < WM_MIN)
wm = WM_MIN;

} else {
wm += (wm >> 7) +
1;
if(wm >
WM_MAX) wm =
WM_MAX;

}

44.2. Hierarchical Scheduler 346



Programmer’s Guide, Release 20.08.0

44.2.5 Worst Case Scenarios for Performance

Lots of Active Queues with Not Enough Credits

The more queues the scheduler has to examine for packets and credits in order to select one packet, the
lower the performance of the scheduler is.

The scheduler maintains the bitmap of active queues, which skips the non-active queues, but in order to
detect whether a specific pipe has enough credits, the pipe has to be drilled down using the pipe dequeue
state machine, which consumes cycles regardless of the scheduling result (no packets are produced or at
least one packet is produced).

This scenario stresses the importance of the policer for the scheduler performance: if the pipe does not
have enough credits, its packets should be dropped as soon as possible (before they reach the hierarchical
scheduler), thus rendering the pipe queues as not active, which allows the dequeue side to skip that pipe
with no cycles being spent on investigating the pipe credits that would result in a “not enough credits”
status.

Single Queue with 100% Line Rate

The port scheduler performance is optimized for a large number of queues. If the number of queues is
small, then the performance of the port scheduler for the same level of active traffic is expected to be
worse than the performance of a small set of message passing queues.

44.3 Dropper

The purpose of the DPDK dropper is to drop packets arriving at a packet scheduler to avoid conges-
tion. The dropper supports the Random Early Detection (RED), Weighted Random Early Detection
(WRED) and tail drop algorithms. Fig. 44.7 illustrates how the dropper integrates with the scheduler.
The DPDK currently does not support congestion management so the dropper provides the only method
for congestion avoidance.

The dropper uses the Random Early Detection (RED) congestion avoidance algorithm as documented
in the reference publication. The purpose of the RED algorithm is to monitor a packet queue, determine
the current congestion level in the queue and decide whether an arriving packet should be enqueued or
dropped. The RED algorithm uses an Exponential Weighted Moving Average (EWMA) filter to compute
average queue size which gives an indication of the current congestion level in the queue.

For each enqueue operation, the RED algorithm compares the average queue size to minimum and
maximum thresholds. Depending on whether the average queue size is below, above or in between these
thresholds, the RED algorithm calculates the probability that an arriving packet should be dropped and
makes a random decision based on this probability.

The dropper also supports Weighted Random Early Detection (WRED) by allowing the scheduler to
select different RED configurations for the same packet queue at run-time. In the case of severe conges-
tion, the dropper resorts to tail drop. This occurs when a packet queue has reached maximum capacity
and cannot store any more packets. In this situation, all arriving packets are dropped.

The flow through the dropper is illustrated in Fig. 44.8. The RED/WRED algorithm is exercised first
and tail drop second.

The use cases supported by the dropper are:

44.3. Dropper 347



Programmer’s Guide, Release 20.08.0

Fig. 44.7: High-level Block Diagram of the DPDK Dropper

• – Initialize configuration data

• – Initialize run-time data

• – Enqueue (make a decision to enqueue or drop an arriving packet)

• – Mark empty (record the time at which a packet queue becomes empty)

The configuration use case is explained in Section2.23.3.1, the enqueue operation is explained in Section
2.23.3.2 and the mark empty operation is explained in Section 2.23.3.3.

44.3.1 Configuration

A RED configuration contains the parameters given in Table 44.16.

Table 44.16: RED Configuration Parameters

Parameter Minimum Maximum Typical
Minimum Threshold 0 1022 1/4 x queue size
Maximum Threshold 1 1023 1/2 x queue size
Inverse Mark Probability 1 255 10
EWMA Filter Weight 1 12 9

The meaning of these parameters is explained in more detail in the following sections. The format
of these parameters as specified to the dropper module API corresponds to the format used by Cisco*
in their RED implementation. The minimum and maximum threshold parameters are specified to the

44.3. Dropper 348



Programmer’s Guide, Release 20.08.0

Fig. 44.8: Flow Through the Dropper

44.3. Dropper 349



Programmer’s Guide, Release 20.08.0

dropper module in terms of number of packets. The mark probability parameter is specified as an inverse
value, for example, an inverse mark probability parameter value of 10 corresponds to a mark probability
of 1/10 (that is, 1 in 10 packets will be dropped). The EWMA filter weight parameter is specified as an
inverse log value, for example, a filter weight parameter value of 9 corresponds to a filter weight of 1/29.

44.3.2 Enqueue Operation

In the example shown in Fig. 44.9, q (actual queue size) is the input value, avg (average queue size) and
count (number of packets since the last drop) are run-time values, decision is the output value and the
remaining values are configuration parameters.

Fig. 44.9: Example Data Flow Through Dropper

EWMA Filter Microblock

The purpose of the EWMA Filter microblock is to filter queue size values to smooth out transient changes
that result from “bursty” traffic. The output value is the average queue size which gives a more stable
view of the current congestion level in the queue.

The EWMA filter has one configuration parameter, filter weight, which determines how quickly or
slowly the average queue size output responds to changes in the actual queue size input. Higher values
of filter weight mean that the average queue size responds more quickly to changes in actual queue size.

Average Queue Size Calculation when the Queue is not Empty

The definition of the EWMA filter is given in the following equation.

Where:

44.3. Dropper 350



Programmer’s Guide, Release 20.08.0

• avg = average queue size

• wq = filter weight

• q = actual queue size

Note:

The filter weight, wq = 1/2^n, where n is the filter weight parameter value passed to the dropper module
on configuration (see Section2.23.3.1 ).

Average Queue Size Calculation when the Queue is Empty

The EWMA filter does not read time stamps and instead assumes that enqueue operations will happen
quite regularly. Special handling is required when the queue becomes empty as the queue could be
empty for a short time or a long time. When the queue becomes empty, average queue size should decay
gradually to zero instead of dropping suddenly to zero or remaining stagnant at the last computed value.
When a packet is enqueued on an empty queue, the average queue size is computed using the following
formula:

Where:

• m = the number of enqueue operations that could have occurred on this queue while the queue
was empty

In the dropper module, m is defined as:

Where:

• time = current time

• qtime = time the queue became empty

• s = typical time between successive enqueue operations on this queue

The time reference is in units of bytes, where a byte signifies the time duration required by the physical
interface to send out a byte on the transmission medium (see Section Internal Time Reference). The
parameter s is defined in the dropper module as a constant with the value: s=2^22. This corresponds to
the time required by every leaf node in a hierarchy with 64K leaf nodes to transmit one 64-byte packet
onto the wire and represents the worst case scenario. For much smaller scheduler hierarchies, it may be
necessary to reduce the parameter s, which is defined in the red header source file (rte_red.h) as:

#define RTE_RED_S

Since the time reference is in bytes, the port speed is implied in the expression: time-qtime. The dropper
does not have to be configured with the actual port speed. It adjusts automatically to low speed and high
speed links.

44.3. Dropper 351



Programmer’s Guide, Release 20.08.0

Implementation

A numerical method is used to compute the factor (1-wq)^m that appears in Equation 2.

This method is based on the following identity:

This allows us to express the following:

In the dropper module, a look-up table is used to compute log2(1-wq) for each value of wq supported by
the dropper module. The factor (1-wq)^m can then be obtained by multiplying the table value by m and
applying shift operations. To avoid overflow in the multiplication, the value, m, and the look-up table
values are limited to 16 bits. The total size of the look-up table is 56 bytes. Once the factor (1-wq)^m is
obtained using this method, the average queue size can be calculated from Equation 2.

Alternative Approaches

Other methods for calculating the factor (1-wq)^m in the expression for computing average queue size
when the queue is empty (Equation 2) were considered. These approaches include:

• Floating-point evaluation

• Fixed-point evaluation using a small look-up table (512B) and up to 16 multiplications (this is the
approach used in the FreeBSD* ALTQ RED implementation)

• Fixed-point evaluation using a small look-up table (512B) and 16 SSE multiplications (SSE opti-
mized version of the approach used in the FreeBSD* ALTQ RED implementation)

• Large look-up table (76 KB)

The method that was finally selected (described above in Section 26.3.2.2.1) out performs all of these
approaches in terms of run-time performance and memory requirements and also achieves accuracy
comparable to floating-point evaluation. Table 44.17 lists the performance of each of these alterna-
tive approaches relative to the method that is used in the dropper. As can be seen, the floating-point
implementation achieved the worst performance.

Table 44.17: Relative Performance of Alternative Approaches

Method Relative Performance
Current dropper method (see Section 23.3.2.1.3) 100%
Fixed-point method with small (512B) look-up table 148%
SSE method with small (512B) look-up table 114%
Large (76KB) look-up table 118%
Floating-point 595%
Note: In this case, since performance is expressed as time spent executing the operation in a specific condition, any relative performance value above 100% runs slower than the reference method.

Drop Decision Block

The Drop Decision block:

44.3. Dropper 352



Programmer’s Guide, Release 20.08.0

• Compares the average queue size with the minimum and maximum thresholds

• Calculates a packet drop probability

• Makes a random decision to enqueue or drop an arriving packet

The calculation of the drop probability occurs in two stages. An initial drop probability is calculated
based on the average queue size, the minimum and maximum thresholds and the mark probability. An
actual drop probability is then computed from the initial drop probability. The actual drop probability
takes the count run-time value into consideration so that the actual drop probability increases as more
packets arrive to the packet queue since the last packet was dropped.

Initial Packet Drop Probability

The initial drop probability is calculated using the following equation.

Where:

• maxp = mark probability

• avg = average queue size

• minth = minimum threshold

• maxth = maximum threshold

The calculation of the packet drop probability using Equation 3 is illustrated in Fig. 44.10. If the average
queue size is below the minimum threshold, an arriving packet is enqueued. If the average queue size is
at or above the maximum threshold, an arriving packet is dropped. If the average queue size is between
the minimum and maximum thresholds, a drop probability is calculated to determine if the packet should
be enqueued or dropped.

Actual Drop Probability

If the average queue size is between the minimum and maximum thresholds, then the actual drop prob-
ability is calculated from the following equation.

Where:

• Pb = initial drop probability (from Equation 3)

• count = number of packets that have arrived since the last drop

The constant 2, in Equation 4 is the only deviation from the drop probability formulae given in the
reference document where a value of 1 is used instead. It should be noted that the value pa computed
from can be negative or greater than 1. If this is the case, then a value of 1 should be used instead.

The initial and actual drop probabilities are shown in Fig. 44.11. The actual drop probability is shown for
the case where the formula given in the reference document1 is used (blue curve) and also for the case

44.3. Dropper 353



Programmer’s Guide, Release 20.08.0

Fig. 44.10: Packet Drop Probability for a Given RED Configuration

44.3. Dropper 354



Programmer’s Guide, Release 20.08.0

where the formula implemented in the dropper module, is used (red curve). The formula in the reference
document results in a significantly higher drop rate compared to the mark probability configuration
parameter specified by the user. The choice to deviate from the reference document is simply a design
decision and one that has been taken by other RED implementations, for example, FreeBSD* ALTQ
RED.

Fig. 44.11: Initial Drop Probability (pb), Actual Drop probability (pa) Computed Using a Factor 1 (Blue
Curve) and a Factor 2 (Red Curve)

44.3.3 Queue Empty Operation

The time at which a packet queue becomes empty must be recorded and saved with the RED run-time
data so that the EWMA filter block can calculate the average queue size on the next enqueue operation.
It is the responsibility of the calling application to inform the dropper module through the API that a
queue has become empty.

44.3.4 Source Files Location

The source files for the DPDK dropper are located at:

• DPDK/lib/librte_sched/rte_red.h

• DPDK/lib/librte_sched/rte_red.c

44.3.5 Integration with the DPDK QoS Scheduler

RED functionality in the DPDK QoS scheduler is disabled by default. To enable it, use the DPDK
configuration parameter:

CONFIG_RTE_SCHED_RED=y

44.3. Dropper 355



Programmer’s Guide, Release 20.08.0

This parameter must be set to y. The parameter is found in the build configuration files in the
DPDK/config directory, for example, DPDK/config/common_linux. RED configuration parameters are
specified in the rte_red_params structure within the rte_sched_port_params structure that is passed to
the scheduler on initialization. RED parameters are specified separately for four traffic classes and three
packet colors (green, yellow and red) allowing the scheduler to implement Weighted Random Early
Detection (WRED).

44.3.6 Integration with the DPDK QoS Scheduler Sample Application

The DPDK QoS Scheduler Application reads a configuration file on start-up. The configuration file
includes a section containing RED parameters. The format of these parameters is described in Sec-
tion2.23.3.1. A sample RED configuration is shown below. In this example, the queue size is 64 packets.

Note: For correct operation, the same EWMA filter weight parameter (wred weight) should be used for
each packet color (green, yellow, red) in the same traffic class (tc).

; RED params per traffic class and color (Green / Yellow / Red)

[red]
tc 0 wred min = 28 22 16
tc 0 wred max = 32 32 32
tc 0 wred inv prob = 10 10 10
tc 0 wred weight = 9 9 9

tc 1 wred min = 28 22 16
tc 1 wred max = 32 32 32
tc 1 wred inv prob = 10 10 10
tc 1 wred weight = 9 9 9

tc 2 wred min = 28 22 16
tc 2 wred max = 32 32 32
tc 2 wred inv prob = 10 10 10
tc 2 wred weight = 9 9 9

tc 3 wred min = 28 22 16
tc 3 wred max = 32 32 32
tc 3 wred inv prob = 10 10 10
tc 3 wred weight = 9 9 9

tc 4 wred min = 28 22 16
tc 4 wred max = 32 32 32
tc 4 wred inv prob = 10 10 10
tc 4 wred weight = 9 9 9

tc 5 wred min = 28 22 16
tc 5 wred max = 32 32 32
tc 5 wred inv prob = 10 10 10
tc 5 wred weight = 9 9 9

tc 6 wred min = 28 22 16
tc 6 wred max = 32 32 32
tc 6 wred inv prob = 10 10 10
tc 6 wred weight = 9 9 9

tc 7 wred min = 28 22 16
tc 7 wred max = 32 32 32
tc 7 wred inv prob = 10 10 10
tc 7 wred weight = 9 9 9

44.3. Dropper 356



Programmer’s Guide, Release 20.08.0

tc 8 wred min = 28 22 16
tc 8 wred max = 32 32 32
tc 8 wred inv prob = 10 10 10
tc 8 wred weight = 9 9 9

tc 9 wred min = 28 22 16
tc 9 wred max = 32 32 32
tc 9 wred inv prob = 10 10 10
tc 9 wred weight = 9 9 9

tc 10 wred min = 28 22 16
tc 10 wred max = 32 32 32
tc 10 wred inv prob = 10 10 10
tc 10 wred weight = 9 9 9

tc 11 wred min = 28 22 16
tc 11 wred max = 32 32 32
tc 11 wred inv prob = 10 10 10
tc 11 wred weight = 9 9 9

tc 12 wred min = 28 22 16
tc 12 wred max = 32 32 32
tc 12 wred inv prob = 10 10 10
tc 12 wred weight = 9 9 9

With this configuration file, the RED configuration that applies to green, yellow and red packets in traffic
class 0 is shown in Table 44.18.

Table 44.18: RED Configuration Corresponding to RED Configuration File

RED Parameter Configuration Name Green Yellow Red
Minimum Threshold tc 0 wred min 28 22 16
Maximum Threshold tc 0 wred max 32 32 32
Mark Probability tc 0 wred inv prob 10 10 10
EWMA Filter Weight tc 0 wred weight 9 9 9

44.3.7 Application Programming Interface (API)

Enqueue API

The syntax of the enqueue API is as follows:

int rte_red_enqueue(const struct rte_red_config *red_cfg, struct rte_red *red, const unsigned q, const uint64_t time)

The arguments passed to the enqueue API are configuration data, run-time data, the current size of the
packet queue (in packets) and a value representing the current time. The time reference is in units of
bytes, where a byte signifies the time duration required by the physical interface to send out a byte on
the transmission medium (see Section 26.2.4.5.1 “Internal Time Reference” ). The dropper reuses the
scheduler time stamps for performance reasons.

Empty API

The syntax of the empty API is as follows:

void rte_red_mark_queue_empty(struct rte_red *red, const uint64_t time)

44.3. Dropper 357



Programmer’s Guide, Release 20.08.0

The arguments passed to the empty API are run-time data and the current time in bytes.

44.4 Traffic Metering

The traffic metering component implements the Single Rate Three Color Marker (srTCM) and Two Rate
Three Color Marker (trTCM) algorithms, as defined by IETF RFC 2697 and 2698 respectively. These
algorithms meter the stream of incoming packets based on the allowance defined in advance for each
traffic flow. As result, each incoming packet is tagged as green, yellow or red based on the monitored
consumption of the flow the packet belongs to.

44.4.1 Functional Overview

The srTCM algorithm defines two token buckets for each traffic flow, with the two buckets sharing the
same token update rate:

• Committed (C) bucket: fed with tokens at the rate defined by the Committed Information Rate
(CIR) parameter (measured in IP packet bytes per second). The size of the C bucket is defined by
the Committed Burst Size (CBS) parameter (measured in bytes);

• Excess (E) bucket: fed with tokens at the same rate as the C bucket. The size of the E bucket is
defined by the Excess Burst Size (EBS) parameter (measured in bytes).

The trTCM algorithm defines two token buckets for each traffic flow, with the two buckets being updated
with tokens at independent rates:

• Committed (C) bucket: fed with tokens at the rate defined by the Committed Information Rate
(CIR) parameter (measured in bytes of IP packet per second). The size of the C bucket is defined
by the Committed Burst Size (CBS) parameter (measured in bytes);

• Peak (P) bucket: fed with tokens at the rate defined by the Peak Information Rate (PIR) parameter
(measured in IP packet bytes per second). The size of the P bucket is defined by the Peak Burst
Size (PBS) parameter (measured in bytes).

Please refer to RFC 2697 (for srTCM) and RFC 2698 (for trTCM) for details on how tokens are con-
sumed from the buckets and how the packet color is determined.

Color Blind and Color Aware Modes

For both algorithms, the color blind mode is functionally equivalent to the color aware mode with input
color set as green. For color aware mode, a packet with red input color can only get the red output color,
while a packet with yellow input color can only get the yellow or red output colors.

The reason why the color blind mode is still implemented distinctly than the color aware mode is that
color blind mode can be implemented with fewer operations than the color aware mode.

44.4.2 Implementation Overview

For each input packet, the steps for the srTCM / trTCM algorithms are:

• Update the C and E / P token buckets. This is done by reading the current time (from the CPU
timestamp counter), identifying the amount of time since the last bucket update and computing the

44.4. Traffic Metering 358



Programmer’s Guide, Release 20.08.0

associated number of tokens (according to the pre-configured bucket rate). The number of tokens
in the bucket is limited by the pre-configured bucket size;

• Identify the output color for the current packet based on the size of the IP packet and the amount
of tokens currently available in the C and E / P buckets; for color aware mode only, the input color
of the packet is also considered. When the output color is not red, a number of tokens equal to
the length of the IP packet are subtracted from the C or E /P or both buckets, depending on the
algorithm and the output color of the packet.

44.4. Traffic Metering 359



CHAPTER

FORTYFIVE

POWER MANAGEMENT

The DPDK Power Management feature allows users space applications to save power by dynamically
adjusting CPU frequency or entering into different C-States.

• Adjusting the CPU frequency dynamically according to the utilization of RX queue.

• Entering into different deeper C-States according to the adaptive algorithms to speculate brief
periods of time suspending the application if no packets are received.

The interfaces for adjusting the operating CPU frequency are in the power management library. C-State
control is implemented in applications according to the different use cases.

45.1 CPU Frequency Scaling

The Linux kernel provides a cpufreq module for CPU frequency scaling for each lcore. For example,
for cpuX, /sys/devices/system/cpu/cpuX/cpufreq/ has the following sys files for frequency scaling:

• affected_cpus

• bios_limit

• cpuinfo_cur_freq

• cpuinfo_max_freq

• cpuinfo_min_freq

• cpuinfo_transition_latency

• related_cpus

• scaling_available_frequencies

• scaling_available_governors

• scaling_cur_freq

• scaling_driver

• scaling_governor

• scaling_max_freq

• scaling_min_freq

• scaling_setspeed

360



Programmer’s Guide, Release 20.08.0

In the DPDK, scaling_governor is configured in user space. Then, a user space application can prompt
the kernel by writing scaling_setspeed to adjust the CPU frequency according to the strategies defined
by the user space application.

45.2 Core-load Throttling through C-States

Core state can be altered by speculative sleeps whenever the specified lcore has nothing to do. In the
DPDK, if no packet is received after polling, speculative sleeps can be triggered according the strategies
defined by the user space application.

45.3 Per-core Turbo Boost

Individual cores can be allowed to enter a Turbo Boost state on a per-core basis. This is achieved
by enabling Turbo Boost Technology in the BIOS, then looping through the relevant cores and en-
abling/disabling Turbo Boost on each core.

45.4 Use of Power Library in a Hyper-Threaded Environment

In the case where the power library is in use on a system with Hyper-Threading enabled, the frequency
on the physical core is set to the highest frequency of the Hyper-Thread siblings. So even though an
application may request a scale down, the core frequency will remain at the highest frequency until all
Hyper-Threads on that core request a scale down.

45.5 API Overview of the Power Library

The main methods exported by power library are for CPU frequency scaling and include the following:

• Freq up: Prompt the kernel to scale up the frequency of the specific lcore.

• Freq down: Prompt the kernel to scale down the frequency of the specific lcore.

• Freq max: Prompt the kernel to scale up the frequency of the specific lcore to the maximum.

• Freq min: Prompt the kernel to scale down the frequency of the specific lcore to the minimum.

• Get available freqs: Read the available frequencies of the specific lcore from the sys file.

• Freq get: Get the current frequency of the specific lcore.

• Freq set: Prompt the kernel to set the frequency for the specific lcore.

• Enable turbo: Prompt the kernel to enable Turbo Boost for the specific lcore.

• Disable turbo: Prompt the kernel to disable Turbo Boost for the specific lcore.

45.6 User Cases

The power management mechanism is used to save power when performing L3 forwarding.

45.2. Core-load Throttling through C-States 361



Programmer’s Guide, Release 20.08.0

45.7 Empty Poll API

45.7.1 Abstract

For packet processing workloads such as DPDK polling is continuous. This means CPU cores always
show 100% busy independent of how much work those cores are doing. It is critical to accurately
determine how busy a core is hugely important for the following reasons:

• No indication of overload conditions

• User does not know how much real load is on a system, resulting in wasted energy as no power
management is utilized

Compared to the original l3fwd-power design, instead of going to sleep after detecting an empty poll,
the new mechanism just lowers the core frequency. As a result, the application does not stop polling the
device, which leads to improved handling of bursts of traffic.

When the system become busy, the empty poll mechanism can also increase the core frequency (in-
cluding turbo) to do best effort for intensive traffic. This gives us more flexible and balanced traffic
awareness over the standard l3fwd-power application.

45.7.2 Proposed Solution

The proposed solution focuses on how many times empty polls are executed. The less the number of
empty polls, means current core is busy with processing workload, therefore, the higher frequency is
needed. The high empty poll number indicates the current core not doing any real work therefore, we
can lower the frequency to safe power.

In the current implementation, each core has 1 empty-poll counter which assume 1 core is dedicated to
1 queue. This will need to be expanded in the future to support multiple queues per core.

Power state definition:

• LOW: Not currently used, reserved for future use.

• MED: the frequency is used to process modest traffic workload.

• HIGH: the frequency is used to process busy traffic workload.

There are two phases to establish the power management system:

• Training phase. This phase is used to measure the optimal frequency change thresholds for a given
system. The thresholds will differ from system to system due to differences in processor micro-
architecture, cache and device configurations. In this phase, the user must ensure that no traffic
can enter the system so that counts can be measured for empty polls at low, medium and high
frequencies. Each frequency is measured for two seconds. Once the training phase is complete,
the threshold numbers are displayed, and normal mode resumes, and traffic can be allowed into the
system. These threshold number can be used on the command line when starting the application
in normal mode to avoid re-training every time.

• Normal phase. Every 10ms the run-time counters are compared to the supplied threshold val-
ues, and the decision will be made whether to move to a different power state (by adjusting the
frequency).

45.7. Empty Poll API 362



Programmer’s Guide, Release 20.08.0

45.7.3 API Overview for Empty Poll Power Management

• State Init: initialize the power management system.

• State Free: free the resource hold by power management system.

• Update Empty Poll Counter: update the empty poll counter.

• Update Valid Poll Counter: update the valid poll counter.

• Set the Frequency Index: update the power state/frequency mapping.

• Detect empty poll state change: empty poll state change detection algorithm then take action.

45.8 User Cases

The mechanism can applied to any device which is based on polling. e.g. NIC, FPGA.

45.9 References

• The ../sample_app_ug/l3_forward_power_man chapter in the ../sample_app_ug/index section.

• The ../sample_app_ug/vm_power_management chapter in the ../sample_app_ug/index section.

45.8. User Cases 363



CHAPTER

FORTYSIX

PACKET CLASSIFICATION AND ACCESS CONTROL

The DPDK provides an Access Control library that gives the ability to classify an input packet based on
a set of classification rules.

The ACL library is used to perform an N-tuple search over a set of rules with multiple categories and
find the best match (highest priority) for each category. The library API provides the following basic
operations:

• Create a new Access Control (AC) context.

• Add rules into the context.

• For all rules in the context, build the runtime structures necessary to perform packet classification.

• Perform input packet classifications.

• Destroy an AC context and its runtime structures and free the associated memory.

46.1 Overview

46.1.1 Rule definition

The current implementation allows the user for each AC context to specify its own rule (set of fields)
over which packet classification will be performed. Though there are few restrictions on the rule fields
layout:

• First field in the rule definition has to be one byte long.

• All subsequent fields has to be grouped into sets of 4 consecutive bytes.

This is done mainly for performance reasons - search function processes the first input byte as part of
the flow setup and then the inner loop of the search function is unrolled to process four input bytes at a
time.

To define each field inside an AC rule, the following structure is used:

struct rte_acl_field_def {
uint8_t type; /*< type - ACL_FIELD_TYPE. */
uint8_t size; /*< size of field 1,2,4, or 8. */
uint8_t field_index; /*< index of field inside the rule. */
uint8_t input_index; /*< 0-N input index. */
uint32_t offset; /*< offset to start of field. */

};

• type The field type is one of three choices:

364



Programmer’s Guide, Release 20.08.0

– _MASK - for fields such as IP addresses that have a value and a mask defining the number
of relevant bits.

– _RANGE - for fields such as ports that have a lower and upper value for the field.

– _BITMASK - for fields such as protocol identifiers that have a value and a bit mask.

• size The size parameter defines the length of the field in bytes. Allowable values are 1, 2, 4,
or 8 bytes. Note that due to the grouping of input bytes, 1 or 2 byte fields must be defined as
consecutive fields that make up 4 consecutive input bytes. Also, it is best to define fields of 8 or
more bytes as 4 byte fields so that the build processes can eliminate fields that are all wild.

• field_index A zero-based value that represents the position of the field inside the rule; 0 to N-1 for
N fields.

• input_index As mentioned above, all input fields, except the very first one, must be in groups of 4
consecutive bytes. The input index specifies to which input group that field belongs to.

• offset The offset field defines the offset for the field. This is the offset from the beginning of the
buffer parameter for the search.

For example, to define classification for the following IPv4 5-tuple structure:

struct ipv4_5tuple {
uint8_t proto;
uint32_t ip_src;
uint32_t ip_dst;
uint16_t port_src;
uint16_t port_dst;

};

The following array of field definitions can be used:

struct rte_acl_field_def ipv4_defs[5] = {
/* first input field - always one byte long. */
{

.type = RTE_ACL_FIELD_TYPE_BITMASK,

.size = sizeof (uint8_t),

.field_index = 0,

.input_index = 0,

.offset = offsetof (struct ipv4_5tuple, proto),
},

/* next input field (IPv4 source address) - 4 consecutive bytes. */
{

.type = RTE_ACL_FIELD_TYPE_MASK,

.size = sizeof (uint32_t),

.field_index = 1,

.input_index = 1,
.offset = offsetof (struct ipv4_5tuple, ip_src),

},

/* next input field (IPv4 destination address) - 4 consecutive bytes. */
{

.type = RTE_ACL_FIELD_TYPE_MASK,

.size = sizeof (uint32_t),

.field_index = 2,

.input_index = 2,
.offset = offsetof (struct ipv4_5tuple, ip_dst),

},

/*
* Next 2 fields (src & dst ports) form 4 consecutive bytes.

46.1. Overview 365



Programmer’s Guide, Release 20.08.0

* They share the same input index.

*/
{

.type = RTE_ACL_FIELD_TYPE_RANGE,

.size = sizeof (uint16_t),

.field_index = 3,

.input_index = 3,

.offset = offsetof (struct ipv4_5tuple, port_src),
},

{
.type = RTE_ACL_FIELD_TYPE_RANGE,
.size = sizeof (uint16_t),
.field_index = 4,
.input_index = 3,
.offset = offsetof (struct ipv4_5tuple, port_dst),

},
};

A typical example of such an IPv4 5-tuple rule is a follows:

source addr/mask destination addr/mask source ports dest ports protocol/mask
192.168.1.0/24 192.168.2.31/32 0:65535 1234:1234 17/0xff

Any IPv4 packets with protocol ID 17 (UDP), source address 192.168.1.[0-255], destination address
192.168.2.31, source port [0-65535] and destination port 1234 matches the above rule.

To define classification for the IPv6 2-tuple: <protocol, IPv6 source address> over the following IPv6
header structure:

struct rte_ipv6_hdr {
uint32_t vtc_flow; /* IP version, traffic class & flow label. */
uint16_t payload_len; /* IP packet length - includes sizeof(ip_header). */
uint8_t proto; /* Protocol, next header. */
uint8_t hop_limits; /* Hop limits. */
uint8_t src_addr[16]; /* IP address of source host. */
uint8_t dst_addr[16]; /* IP address of destination host(s). */

} __rte_packed;

The following array of field definitions can be used:

struct rte_acl_field_def ipv6_2tuple_defs[5] = {
{

.type = RTE_ACL_FIELD_TYPE_BITMASK,

.size = sizeof (uint8_t),

.field_index = 0,

.input_index = 0,

.offset = offsetof (struct rte_ipv6_hdr, proto),
},

{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof (uint32_t),
.field_index = 1,
.input_index = 1,
.offset = offsetof (struct rte_ipv6_hdr, src_addr[0]),

},

{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof (uint32_t),
.field_index = 2,
.input_index = 2,
.offset = offsetof (struct rte_ipv6_hdr, src_addr[4]),

46.1. Overview 366



Programmer’s Guide, Release 20.08.0

},

{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof (uint32_t),
.field_index = 3,
.input_index = 3,

.offset = offsetof (struct rte_ipv6_hdr, src_addr[8]),
},

{
.type = RTE_ACL_FIELD_TYPE_MASK,
.size = sizeof (uint32_t),
.field_index = 4,
.input_index = 4,
.offset = offsetof (struct rte_ipv6_hdr, src_addr[12]),

},
};

A typical example of such an IPv6 2-tuple rule is a follows:

source addr/mask protocol/mask
2001:db8:1234:0000:0000:0000:0000:0000/48 6/0xff

Any IPv6 packets with protocol ID 6 (TCP), and source address inside the range
[2001:db8:1234:0000:0000:0000:0000:0000 - 2001:db8:1234:ffff:ffff:ffff:ffff:ffff] matches the above
rule.

In the following example the last element of the search key is 8-bit long. So it is a case where the 4
consecutive bytes of an input field are not fully occupied. The structure for the classification is:

struct acl_key {
uint8_t ip_proto;
uint32_t ip_src;
uint32_t ip_dst;
uint8_t tos; /*< This is partially using a 32-bit input element */

};

The following array of field definitions can be used:

struct rte_acl_field_def ipv4_defs[4] = {
/* first input field - always one byte long. */
{

.type = RTE_ACL_FIELD_TYPE_BITMASK,

.size = sizeof (uint8_t),

.field_index = 0,

.input_index = 0,

.offset = offsetof (struct acl_key, ip_proto),
},

/* next input field (IPv4 source address) - 4 consecutive bytes. */
{

.type = RTE_ACL_FIELD_TYPE_MASK,

.size = sizeof (uint32_t),

.field_index = 1,

.input_index = 1,
.offset = offsetof (struct acl_key, ip_src),

},

/* next input field (IPv4 destination address) - 4 consecutive bytes. */
{

.type = RTE_ACL_FIELD_TYPE_MASK,

.size = sizeof (uint32_t),

.field_index = 2,

46.1. Overview 367



Programmer’s Guide, Release 20.08.0

.input_index = 2,
.offset = offsetof (struct acl_key, ip_dst),

},

/*
* Next element of search key (Type of Service) is indeed 1 byte long.

* Anyway we need to allocate all the 4 consecutive bytes for it.

*/
{

.type = RTE_ACL_FIELD_TYPE_BITMASK,

.size = sizeof (uint32_t), /* All the 4 consecutive bytes are allocated */

.field_index = 3,

.input_index = 3,

.offset = offsetof (struct acl_key, tos),
},

};

A typical example of such an IPv4 4-tuple rule is as follows:

source addr/mask destination addr/mask tos/mask protocol/mask
192.168.1.0/24 192.168.2.31/32 1/0xff 6/0xff

Any IPv4 packets with protocol ID 6 (TCP), source address 192.168.1.[0-255], destination address
192.168.2.31, ToS 1 matches the above rule.

When creating a set of rules, for each rule, additional information must be supplied also:

• priority: A weight to measure the priority of the rules (higher is better). If the input tuple matches
more than one rule, then the rule with the higher priority is returned. Note that if the input tuple
matches more than one rule and these rules have equal priority, it is undefined which rule is
returned as a match. It is recommended to assign a unique priority for each rule.

• category_mask: Each rule uses a bit mask value to select the relevant category(s) for the rule.
When a lookup is performed, the result for each category is returned. This effectively provides a
“parallel lookup” by enabling a single search to return multiple results if, for example, there were
four different sets of ACL rules, one for access control, one for routing, and so on. Each set could
be assigned its own category and by combining them into a single database, one lookup returns a
result for each of the four sets.

• userdata: A user-defined value. For each category, a successful match returns the userdata field
of the highest priority matched rule. When no rules match, returned value is zero.

Note: When adding new rules into an ACL context, all fields must be in host byte order (LSB). When
the search is performed for an input tuple, all fields in that tuple must be in network byte order (MSB).

46.1.2 RT memory size limit

Build phase (rte_acl_build()) creates for a given set of rules internal structure for further run-time traver-
sal. With current implementation it is a set of multi-bit tries (with stride == 8). Depending on the rules
set, that could consume significant amount of memory. In attempt to conserve some space ACL build
process tries to split the given rule-set into several non-intersecting subsets and construct a separate
trie for each of them. Depending on the rule-set, it might reduce RT memory requirements but might
increase classification time. There is a possibility at build-time to specify maximum memory limit for
internal RT structures for given AC context. It could be done via max_size field of the rte_acl_config
structure. Setting it to the value greater than zero, instructs rte_acl_build() to:

46.1. Overview 368



Programmer’s Guide, Release 20.08.0

• attempt to minimize number of tries in the RT table, but

• make sure that size of RT table wouldn’t exceed given value.

Setting it to zero makes rte_acl_build() to use the default behavior: try to minimize size of the RT
structures, but doesn’t expose any hard limit on it.

That gives the user the ability to decisions about performance/space trade-off. For example:

struct rte_acl_ctx * acx;
struct rte_acl_config cfg;
int ret;

/*
* assuming that acx points to already created and

* populated with rules AC context and cfg filled properly.

*/

/* try to build AC context, with RT structures less then 8MB. */
cfg.max_size = 0x800000;
ret = rte_acl_build(acx, &cfg);

/*
* RT structures can't fit into 8MB for given context.

* Try to build without exposing any hard limit.

*/
if (ret == -ERANGE) {

cfg.max_size = 0;
ret = rte_acl_build(acx, &cfg);

}

46.1.3 Classification methods

After rte_acl_build() over given AC context has finished successfully, it can be used to perform classifi-
cation - search for a rule with highest priority over the input data. There are several implementations of
classify algorithm:

• RTE_ACL_CLASSIFY_SCALAR: generic implementation, doesn’t require any specific HW
support.

• RTE_ACL_CLASSIFY_SSE: vector implementation, can process up to 8 flows in parallel. Re-
quires SSE 4.1 support.

• RTE_ACL_CLASSIFY_AVX2: vector implementation, can process up to 16 flows in parallel.
Requires AVX2 support.

It is purely a runtime decision which method to choose, there is no build-time difference. All implemen-
tations operates over the same internal RT structures and use similar principles. The main difference
is that vector implementations can manually exploit IA SIMD instructions and process several input
data flows in parallel. At startup ACL library determines the highest available classify method for the
given platform and sets it as default one. Though the user has an ability to override the default classifier
function for a given ACL context or perform particular search using non-default classify method. In that
case it is user responsibility to make sure that given platform supports selected classify implementation.

46.2 Application Programming Interface (API) Usage

46.2. Application Programming Interface (API) Usage 369



Programmer’s Guide, Release 20.08.0

Note: For more details about the Access Control API, please refer to the DPDK API Reference.

The following example demonstrates IPv4, 5-tuple classification for rules defined above with multiple
categories in more detail.

46.2.1 Classify with Multiple Categories

struct rte_acl_ctx * acx;
struct rte_acl_config cfg;
int ret;

/* define a structure for the rule with up to 5 fields. */

RTE_ACL_RULE_DEF(acl_ipv4_rule, RTE_DIM(ipv4_defs));

/* AC context creation parameters. */

struct rte_acl_param prm = {
.name = "ACL_example",
.socket_id = SOCKET_ID_ANY,
.rule_size = RTE_ACL_RULE_SZ(RTE_DIM(ipv4_defs)),

/* number of fields per rule. */

.max_rule_num = 8, /* maximum number of rules in the AC context. */
};

struct acl_ipv4_rule acl_rules[] = {

/* matches all packets traveling to 192.168.0.0/16, applies for categories: 0,1 */
{

.data = {.userdata = 1, .category_mask = 3, .priority = 1},

/* destination IPv4 */
.field[2] = {.value.u32 = RTE_IPV4(192,168,0,0),. mask_range.u32 = 16,},

/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

},

/* matches all packets traveling to 192.168.1.0/24, applies for categories: 0 */
{

.data = {.userdata = 2, .category_mask = 1, .priority = 2},

/* destination IPv4 */
.field[2] = {.value.u32 = RTE_IPV4(192,168,1,0),. mask_range.u32 = 24,},

/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

},

/* matches all packets traveling from 10.1.1.1, applies for categories: 1 */
{

46.2. Application Programming Interface (API) Usage 370



Programmer’s Guide, Release 20.08.0

.data = {.userdata = 3, .category_mask = 2, .priority = 3},

/* source IPv4 */
.field[1] = {.value.u32 = RTE_IPV4(10,1,1,1),. mask_range.u32 = 32,},

/* source port */
.field[3] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

/* destination port */
.field[4] = {.value.u16 = 0, .mask_range.u16 = 0xffff,},

},

};

/* create an empty AC context */

if ((acx = rte_acl_create(&prm)) == NULL) {

/* handle context create failure. */

}

/* add rules to the context */

ret = rte_acl_add_rules(acx, acl_rules, RTE_DIM(acl_rules));
if (ret != 0) {

/* handle error at adding ACL rules. */
}

/* prepare AC build config. */

cfg.num_categories = 2;
cfg.num_fields = RTE_DIM(ipv4_defs);

memcpy(cfg.defs, ipv4_defs, sizeof (ipv4_defs));

/* build the runtime structures for added rules, with 2 categories. */

ret = rte_acl_build(acx, &cfg);
if (ret != 0) {

/* handle error at build runtime structures for ACL context. */
}

For a tuple with source IP address: 10.1.1.1 and destination IP address: 192.168.1.15, once the following
lines are executed:

uint32_t results[4]; /* make classify for 4 categories. */

rte_acl_classify(acx, data, results, 1, 4);

then the results[] array contains:

results[4] = {2, 3, 0, 0};

• For category 0, both rules 1 and 2 match, but rule 2 has higher priority, therefore results[0] contains
the userdata for rule 2.

• For category 1, both rules 1 and 3 match, but rule 3 has higher priority, therefore results[1] contains
the userdata for rule 3.

• For categories 2 and 3, there are no matches, so results[2] and results[3] contain zero, which
indicates that no matches were found for those categories.

46.2. Application Programming Interface (API) Usage 371



Programmer’s Guide, Release 20.08.0

For a tuple with source IP address: 192.168.1.1 and destination IP address: 192.168.2.11, once the
following lines are executed:

uint32_t results[4]; /* make classify by 4 categories. */

rte_acl_classify(acx, data, results, 1, 4);

the results[] array contains:

results[4] = {1, 1, 0, 0};

• For categories 0 and 1, only rule 1 matches.

• For categories 2 and 3, there are no matches.

For a tuple with source IP address: 10.1.1.1 and destination IP address: 201.212.111.12, once the fol-
lowing lines are executed:

uint32_t results[4]; /* make classify by 4 categories. */
rte_acl_classify(acx, data, results, 1, 4);

the results[] array contains:

results[4] = {0, 3, 0, 0};

• For category 1, only rule 3 matches.

• For categories 0, 2 and 3, there are no matches.

46.2. Application Programming Interface (API) Usage 372



CHAPTER

FORTYSEVEN

PACKET FRAMEWORK

47.1 Design Objectives

The main design objectives for the DPDK Packet Framework are:

• Provide standard methodology to build complex packet processing pipelines. Provide reusable
and extensible templates for the commonly used pipeline functional blocks;

• Provide capability to switch between pure software and hardware-accelerated implementations for
the same pipeline functional block;

• Provide the best trade-off between flexibility and performance. Hardcoded pipelines usually pro-
vide the best performance, but are not flexible, while developing flexible frameworks is never a
problem, but performance is usually low;

• Provide a framework that is logically similar to Open Flow.

47.2 Overview

Packet processing applications are frequently structured as pipelines of multiple stages, with the logic
of each stage glued around a lookup table. For each incoming packet, the table defines the set of actions
to be applied to the packet, as well as the next stage to send the packet to.

The DPDK Packet Framework minimizes the development effort required to build packet processing
pipelines by defining a standard methodology for pipeline development, as well as providing libraries of
reusable templates for the commonly used pipeline blocks.

The pipeline is constructed by connecting the set of input ports with the set of output ports through the
set of tables in a tree-like topology. As result of lookup operation for the current packet in the current
table, one of the table entries (on lookup hit) or the default table entry (on lookup miss) provides the set
of actions to be applied on the current packet, as well as the next hop for the packet, which can be either
another table, an output port or packet drop.

An example of packet processing pipeline is presented in Fig. 47.1:

47.3 Port Library Design

47.3.1 Port Types

Table 47.1 is a non-exhaustive list of ports that can be implemented with the Packet Framework.

373



Programmer’s Guide, Release 20.08.0

Fig. 47.1: Example of Packet Processing Pipeline where Input Ports 0 and 1 are Connected with Output
Ports 0, 1 and 2 through Tables 0 and 1

Table 47.1: Port Types

# Port
type

Description

1 SW ring SW circular buffer used for message passing between the application threads. Uses
the DPDK rte_ring primitive. Expected to be the most commonly used type of port.

2 HW ring Queue of buffer descriptors used to interact with NIC, switch or accelerator ports.
For NIC ports, it uses the DPDK rte_eth_rx_queue or rte_eth_tx_queue primitives.

3 IP re-
assem-
bly

Input packets are either IP fragments or complete IP datagrams. Output packets are
complete IP datagrams.

4 IP frag-
menta-
tion

Input packets are jumbo (IP datagrams with length bigger than MTU) or non-jumbo
packets. Output packets are non-jumbo packets.

5 Traffic
manager

Traffic manager attached to a specific NIC output port, performing congestion
management and hierarchical scheduling according to pre-defined SLAs.

6 KNI Send/receive packets to/from Linux kernel space.
7 Source Input port used as packet generator. Similar to Linux kernel /dev/zero character

device.
8 Sink Output port used to drop all input packets. Similar to Linux kernel /dev/null

character device.
9 Sym_cryptoOutput port used to extract DPDK Cryptodev operations from a fixed offset of the

packet and then enqueue to the Cryptodev PMD. Input port used to dequeue the
Cryptodev operations from the Cryptodev PMD and then retrieve the packets from
them.

47.3.2 Port Interface

Each port is unidirectional, i.e. either input port or output port. Each input/output port is required to
implement an abstract interface that defines the initialization and run-time operation of the port. The
port abstract interface is described in.

47.3. Port Library Design 374



Programmer’s Guide, Release 20.08.0

Table 47.2: 20 Port Abstract Interface

# Port
Operation

Description

1 Create Create the low-level port object (e.g. queue). Can internally allocate memory.
2 Free Free the resources (e.g. memory) used by the low-level port object.
3 RX Read a burst of input packets. Non-blocking operation. Only defined for input

ports.
4 TX Write a burst of input packets. Non-blocking operation. Only defined for

output ports.
5 Flush Flush the output buffer. Only defined for output ports.

47.4 Table Library Design

47.4.1 Table Types

Table 47.3 is a non-exhaustive list of types of tables that can be implemented with the Packet Framework.

47.4. Table Library Design 375



Programmer’s Guide, Release 20.08.0

Table 47.3: Table Types

# Table Type Description
1 Hash table Lookup key is n-tuple based.

Typically, the lookup key is
hashed to produce a signature
that is used to identify a bucket
of entries where the lookup key
is searched next.
The signature associated with the
lookup key of each input packet
is either read from the packet
descriptor (pre-computed signa-
ture) or computed at table lookup
time.
The table lookup, add entry and
delete entry operations, as well
as any other pipeline block that
pre-computes the signature all
have to use the same hashing al-
gorithm to generate the signa-
ture.
Typically used to implement
flow classification tables, ARP
caches, routing table for tun-
nelling protocols, etc.

2 Longest Prefix Match (LPM) Lookup key is the IP address.
Each table entries has an associ-
ated IP prefix (IP and depth).
The table lookup operation se-
lects the IP prefix that is matched
by the lookup key; in case of
multiple matches, the entry with
the longest prefix depth wins.
Typically used to implement IP
routing tables.

3 Access Control List (ACLs) Lookup key is 7-tuple of two
VLAN/MPLS labels, IP desti-
nation address, IP source ad-
dresses, L4 protocol, L4 destina-
tion port, L4 source port.
Each table entry has an asso-
ciated ACL and priority. The
ACL contains bit masks for the
VLAN/MPLS labels, IP prefix
for IP destination address, IP
prefix for IP source addresses,
L4 protocol and bitmask, L4 des-
tination port and bit mask, L4
source port and bit mask.
The table lookup operation se-
lects the ACL that is matched by
the lookup key; in case of mul-
tiple matches, the entry with the
highest priority wins.
Typically used to implement rule
databases for firewalls, etc.

4 Pattern matching search Lookup key is the packet pay-
load.
Table is a database of patterns,
with each pattern having a prior-
ity assigned.
The table lookup operation se-
lects the patterns that is matched
by the input packet; in case of
multiple matches, the matching
pattern with the highest priority
wins.

5 Array Lookup key is the table entry in-
dex itself.

47.4. Table Library Design 376



Programmer’s Guide, Release 20.08.0

47.4.2 Table Interface

Each table is required to implement an abstract interface that defines the initialization and run-time
operation of the table. The table abstract interface is described in Table 47.4.

Table 47.4: Table Abstract Interface

# Table operation Description
1 Create Create the low-level data struc-

tures of the lookup table. Can in-
ternally allocate memory.

2 Free Free up all the resources used by
the lookup table.

3 Add entry Add new entry to the lookup ta-
ble.

4 Delete entry Delete specific entry from the
lookup table.

5 Lookup Look up a burst of input pack-
ets and return a bit mask speci-
fying the result of the lookup op-
eration for each packet: a set bit
signifies lookup hit for the corre-
sponding packet, while a cleared
bit a lookup miss.
For each lookup hit packet, the
lookup operation also returns a
pointer to the table entry that was
hit, which contains the actions to
be applied on the packet and any
associated metadata.
For each lookup miss packet,
the actions to be applied on the
packet and any associated meta-
data are specified by the de-
fault table entry preconfigured
for lookup miss.

47.4.3 Hash Table Design

Hash Table Overview

Hash tables are important because the key lookup operation is optimized for speed: instead of having
to linearly search the lookup key through all the keys in the table, the search is limited to only the keys
stored in a single table bucket.

Associative Arrays

An associative array is a function that can be specified as a set of (key, value) pairs, with each key from
the possible set of input keys present at most once. For a given associative array, the possible operations
are:

47.4. Table Library Design 377



Programmer’s Guide, Release 20.08.0

1. add (key, value): When no value is currently associated with key, then the (key, value ) association
is created. When key is already associated value value0, then the association (key, value0) is
removed and association (key, value) is created;

2. delete key: When no value is currently associated with key, this operation has no effect. When key
is already associated value, then association (key, value) is removed;

3. lookup key: When no value is currently associated with key, then this operation returns void value
(lookup miss). When key is associated with value, then this operation returns value. The (key,
value) association is not changed.

The matching criterion used to compare the input key against the keys in the associative array is exact
match, as the key size (number of bytes) and the key value (array of bytes) have to match exactly for the
two keys under comparison.

Hash Function

A hash function deterministically maps data of variable length (key) to data of fixed size (hash value or
key signature). Typically, the size of the key is bigger than the size of the key signature. The hash func-
tion basically compresses a long key into a short signature. Several keys can share the same signature
(collisions).

High quality hash functions have uniform distribution. For large number of keys, when dividing the
space of signature values into a fixed number of equal intervals (buckets), it is desirable to have the
key signatures evenly distributed across these intervals (uniform distribution), as opposed to most of
the signatures going into only a few of the intervals and the rest of the intervals being largely unused
(non-uniform distribution).

Hash Table

A hash table is an associative array that uses a hash function for its operation. The reason for using a
hash function is to optimize the performance of the lookup operation by minimizing the number of table
keys that have to be compared against the input key.

Instead of storing the (key, value) pairs in a single list, the hash table maintains multiple lists (buckets).
For any given key, there is a single bucket where that key might exist, and this bucket is uniquely
identified based on the key signature. Once the key signature is computed and the hash table bucket
identified, the key is either located in this bucket or it is not present in the hash table at all, so the key
search can be narrowed down from the full set of keys currently in the table to just the set of keys
currently in the identified table bucket.

The performance of the hash table lookup operation is greatly improved, provided that the table keys are
evenly distributed among the hash table buckets, which can be achieved by using a hash function with
uniform distribution. The rule to map a key to its bucket can simply be to use the key signature (modulo
the number of table buckets) as the table bucket ID:

bucket_id = f_hash(key) % n_buckets;

By selecting the number of buckets to be a power of two, the modulo operator can be replaced by a
bitwise AND logical operation:

bucket_id = f_hash(key) & (n_buckets - 1);

considering n_bits as the number of bits set in bucket_mask = n_buckets - 1, this means that all the keys
that end up in the same hash table bucket have the lower n_bits of their signature identical. In order to
reduce the number of keys in the same bucket (collisions), the number of hash table buckets needs to be
increased.

47.4. Table Library Design 378



Programmer’s Guide, Release 20.08.0

In packet processing context, the sequence of operations involved in hash table operations is described
in Fig. 47.2:

Fig. 47.2: Sequence of Steps for Hash Table Operations in a Packet Processing Context

Hash Table Use Cases

Flow Classification

Description: The flow classification is executed at least once for each input packet. This operation maps
each incoming packet against one of the known traffic flows in the flow database that typically contains
millions of flows.

Hash table name: Flow classification table

Number of keys: Millions

Key format: n-tuple of packet fields that uniquely identify a traffic flow/connection. Example: DiffServ
5-tuple of (Source IP address, Destination IP address, L4 protocol, L4 protocol source port, L4 protocol
destination port). For IPv4 protocol and L4 protocols like TCP, UDP or SCTP, the size of the DiffServ
5-tuple is 13 bytes, while for IPv6 it is 37 bytes.

Key value (key data): actions and action meta-data describing what processing to be applied for the
packets of the current flow. The size of the data associated with each traffic flow can vary from 8 bytes
to kilobytes.

Address Resolution Protocol (ARP)

Description: Once a route has been identified for an IP packet (so the output interface and the IP address
of the next hop station are known), the MAC address of the next hop station is needed in order to
send this packet onto the next leg of the journey towards its destination (as identified by its destination
IP address). The MAC address of the next hop station becomes the destination MAC address of the
outgoing Ethernet frame.

Hash table name: ARP table

Number of keys: Thousands

Key format: The pair of (Output interface, Next Hop IP address), which is typically 5 bytes for IPv4 and
17 bytes for IPv6.

Key value (key data): MAC address of the next hop station (6 bytes).

Hash Table Types

Table 47.5 lists the hash table configuration parameters shared by all different hash table types.

47.4. Table Library Design 379



Programmer’s Guide, Release 20.08.0

Table 47.5: Configuration Parameters Common for All Hash Table Types

# Parameter Details
1 Key size Measured as number of bytes. All keys have the same size.
2 Key value (key data)

size
Measured as number of bytes.

3 Number of buckets Needs to be a power of two.
4 Maximum number

of keys
Needs to be a power of two.

5 Hash function Examples: jhash, CRC hash, etc.
6 Hash function seed Parameter to be passed to the hash function.
7 Key offset Offset of the lookup key byte array within the packet meta-data stored

in the packet buffer.

Bucket Full Problem

On initialization, each hash table bucket is allocated space for exactly 4 keys. As keys are added to the
table, it can happen that a given bucket already has 4 keys when a new key has to be added to this bucket.
The possible options are:

1. Least Recently Used (LRU) Hash Table. One of the existing keys in the bucket is deleted and
the new key is added in its place. The number of keys in each bucket never grows bigger than 4.
The logic to pick the key to be dropped from the bucket is LRU. The hash table lookup operation
maintains the order in which the keys in the same bucket are hit, so every time a key is hit, it
becomes the new Most Recently Used (MRU) key, i.e. the last candidate for drop. When a key
is added to the bucket, it also becomes the new MRU key. When a key needs to be picked and
dropped, the first candidate for drop, i.e. the current LRU key, is always picked. The LRU logic
requires maintaining specific data structures per each bucket.

2. Extendable Bucket Hash Table. The bucket is extended with space for 4 more keys. This is done
by allocating additional memory at table initialization time, which is used to create a pool of free
keys (the size of this pool is configurable and always a multiple of 4). On key add operation, the
allocation of a group of 4 keys only happens successfully within the limit of free keys, otherwise
the key add operation fails. On key delete operation, a group of 4 keys is freed back to the pool of
free keys when the key to be deleted is the only key that was used within its group of 4 keys at that
time. On key lookup operation, if the current bucket is in extended state and a match is not found
in the first group of 4 keys, the search continues beyond the first group of 4 keys, potentially until
all keys in this bucket are examined. The extendable bucket logic requires maintaining specific
data structures per table and per each bucket.

Table 47.6: Configuration Parameters Specific to Extendable Bucket Hash Table

# Parameter Details
1 Number of additional keys Needs to be a power of two, at least equal to 4.

Signature Computation

The possible options for key signature computation are:

47.4. Table Library Design 380



Programmer’s Guide, Release 20.08.0

1. Pre-computed key signature. The key lookup operation is split between two CPU cores. The
first CPU core (typically the CPU core that performs packet RX) extracts the key from the input
packet, computes the key signature and saves both the key and the key signature in the packet
buffer as packet meta-data. The second CPU core reads both the key and the key signature from
the packet meta-data and performs the bucket search step of the key lookup operation.

2. Key signature computed on lookup (“do-sig” version). The same CPU core reads the key from
the packet meta-data, uses it to compute the key signature and also performs the bucket search
step of the key lookup operation.

Table 47.7: Configuration Parameters Specific to Pre-computed Key Signature Hash Table

# Parameter Details
1 Signature offset Offset of the pre-computed key signature within the packet meta-data.

Key Size Optimized Hash Tables

For specific key sizes, the data structures and algorithm of key lookup operation can be specially hand-
crafted for further performance improvements, so following options are possible:

1. Implementation supporting configurable key size.

2. Implementation supporting a single key size. Typical key sizes are 8 bytes and 16 bytes.

Bucket Search Logic for Configurable Key Size Hash Tables

The performance of the bucket search logic is one of the main factors influencing the performance of
the key lookup operation. The data structures and algorithm are designed to make the best use of Intel
CPU architecture resources like: cache memory space, cache memory bandwidth, external memory
bandwidth, multiple execution units working in parallel, out of order instruction execution, special CPU
instructions, etc.

The bucket search logic handles multiple input packets in parallel. It is built as a pipeline of several
stages (3 or 4), with each pipeline stage handling two different packets from the burst of input packets.
On each pipeline iteration, the packets are pushed to the next pipeline stage: for the 4-stage pipeline,
two packets (that just completed stage 3) exit the pipeline, two packets (that just completed stage 2) are
now executing stage 3, two packets (that just completed stage 1) are now executing stage 2, two packets
(that just completed stage 0) are now executing stage 1 and two packets (next two packets to read from
the burst of input packets) are entering the pipeline to execute stage 0. The pipeline iterations continue
until all packets from the burst of input packets execute the last stage of the pipeline.

The bucket search logic is broken into pipeline stages at the boundary of the next memory access. Each
pipeline stage uses data structures that are stored (with high probability) into the L1 or L2 cache memory
of the current CPU core and breaks just before the next memory access required by the algorithm. The
current pipeline stage finalizes by prefetching the data structures required by the next pipeline stage, so
given enough time for the prefetch to complete, when the next pipeline stage eventually gets executed
for the same packets, it will read the data structures it needs from L1 or L2 cache memory and thus avoid
the significant penalty incurred by L2 or L3 cache memory miss.

By prefetching the data structures required by the next pipeline stage in advance (before they are used)
and switching to executing another pipeline stage for different packets, the number of L2 or L3 cache
memory misses is greatly reduced, hence one of the main reasons for improved performance. This is
because the cost of L2/L3 cache memory miss on memory read accesses is high, as usually due to data

47.4. Table Library Design 381



Programmer’s Guide, Release 20.08.0

dependency between instructions, the CPU execution units have to stall until the read operation is com-
pleted from L3 cache memory or external DRAM memory. By using prefetch instructions, the latency
of memory read accesses is hidden, provided that it is preformed early enough before the respective data
structure is actually used.

By splitting the processing into several stages that are executed on different packets (the packets from
the input burst are interlaced), enough work is created to allow the prefetch instructions to complete
successfully (before the prefetched data structures are actually accessed) and also the data dependency
between instructions is loosened. For example, for the 4-stage pipeline, stage 0 is executed on packets
0 and 1 and then, before same packets 0 and 1 are used (i.e. before stage 1 is executed on packets
0 and 1), different packets are used: packets 2 and 3 (executing stage 1), packets 4 and 5 (executing
stage 2) and packets 6 and 7 (executing stage 3). By executing useful work while the data structures
are brought into the L1 or L2 cache memory, the latency of the read memory accesses is hidden. By
increasing the gap between two consecutive accesses to the same data structure, the data dependency
between instructions is loosened; this allows making the best use of the super-scalar and out-of-order
execution CPU architecture, as the number of CPU core execution units that are active (rather than idle
or stalled due to data dependency constraints between instructions) is maximized.

The bucket search logic is also implemented without using any branch instructions. This avoids the
important cost associated with flushing the CPU core execution pipeline on every instance of branch
misprediction.

Configurable Key Size Hash Table

Fig. 47.3, Table 47.8 and Table 47.9 detail the main data structures used to implement configurable key
size hash tables (either LRU or extendable bucket, either with pre-computed signature or “do-sig”).

Fig. 47.3: Data Structures for Configurable Key Size Hash Tables

47.4. Table Library Design 382



Programmer’s Guide, Release 20.08.0

Table 47.8: Main Large Data Structures (Arrays) used for Configurable Key Size Hash Tables

# Array name Number of
entries

Entry size
(bytes)

Description

1 Bucket array n_buckets
(configurable)

32 Buckets of the hash table.

2 Bucket
extensions
array

n_buckets_ext
(configurable)

32 This array is only created for
extendable bucket tables.

3 Key array n_keys key_size
(configurable)

Keys added to the hash table.

4 Data array n_keys entry_size
(configurable)

Key values (key data) associated
with the hash table keys.

47.4. Table Library Design 383



Programmer’s Guide, Release 20.08.0

Table 47.9: Field Description for Bucket Array Entry (Configurable Key Size Hash Tables)

# Field name Field size (bytes) Description
1 Next Ptr/LRU 8 For LRU tables, this

fields represents the
LRU list for the current
bucket stored as array of
4 entries of 2 bytes each.
Entry 0 stores the index
(0 .. 3) of the MRU key,
while entry 3 stores the
index of the LRU key.
For extendable bucket
tables, this field repre-
sents the next pointer
(i.e. the pointer to
the next group of 4
keys linked to the cur-
rent bucket). The next
pointer is not NULL if
the bucket is currently
extended or NULL oth-
erwise. To help the
branchless implementa-
tion, bit 0 (least signif-
icant bit) of this field
is set to 1 if the next
pointer is not NULL and
to 0 otherwise.

2 Sig[0 .. 3] 4 x 2 If key X (X = 0 .. 3) is
valid, then sig X bits 15
.. 1 store the most sig-
nificant 15 bits of key X
signature and sig X bit 0
is set to 1.
If key X is not valid,
then sig X is set to zero.

3 Key Pos [0 .. 3] 4 x 4 If key X is valid (X = 0
.. 3), then Key Pos X
represents the index into
the key array where key
X is stored, as well as
the index into the data
array where the value as-
sociated with key X is
stored.
If key X is not valid,
then the value of Key
Pos X is undefined.

Fig. 47.4 and Table 47.10 detail the bucket search pipeline stages (either LRU or extendable bucket,

47.4. Table Library Design 384



Programmer’s Guide, Release 20.08.0

either with pre-computed signature or “do-sig”). For each pipeline stage, the described operations are
applied to each of the two packets handled by that stage.

Fig. 47.4: Bucket Search Pipeline for Key Lookup Operation (Configurable Key Size Hash Tables)

47.4. Table Library Design 385



Programmer’s Guide, Release 20.08.0

Table 47.10: Description of the Bucket Search Pipeline Stages (Configurable Key Size Hash Tables)

# Stage name Description
0 Prefetch packet meta-data Select next two packets from the

burst of input packets.
Prefetch packet meta-data con-
taining the key and key signa-
ture.

1 Prefetch table bucket Read the key signature from the
packet meta-data (for extendable
bucket hash tables) or read the
key from the packet meta-data
and compute key signature (for
LRU tables).
Identify the bucket ID using the
key signature.
Set bit 0 of the signature to 1 (to
match only signatures of valid
keys from the table).
Prefetch the bucket.

2 Prefetch table key Read the key signatures from the
bucket.
Compare the signature of the in-
put key against the 4 key signa-
tures from the packet. As result,
the following is obtained:
match = equal to TRUE if there
was at least one signature match
and to FALSE in the case of no
signature match;
match_many = equal to TRUE is
there were more than one signa-
ture matches (can be up to 4 sig-
nature matches in the worst case
scenario) and to FALSE other-
wise;
match_pos = the index of the
first key that produced signature
match (only valid if match is
true).
For extendable bucket hash ta-
bles only, set match_many to
TRUE if next pointer is valid.
Prefetch the bucket key indi-
cated by match_pos (even if
match_pos does not point to
valid key valid).

3 Prefetch table data Read the bucket key indicated by
match_pos.
Compare the bucket key against
the input key. As result, the fol-
lowing is obtained: match_key =
equal to TRUE if the two keys
match and to FALSE otherwise.
Report input key as lookup
hit only when both match and
match_key are equal to TRUE
and as lookup miss otherwise.
For LRU tables only, use branch-
less logic to update the bucket
LRU list (the current key be-
comes the new MRU) only on
lookup hit.
Prefetch the key value (key data)
associated with the current key
(to avoid branches, this is done
on both lookup hit and miss).

47.4. Table Library Design 386



Programmer’s Guide, Release 20.08.0

Additional notes:

1. The pipelined version of the bucket search algorithm is executed only if there are at least 7 packets
in the burst of input packets. If there are less than 7 packets in the burst of input packets, a non-
optimized implementation of the bucket search algorithm is executed.

2. Once the pipelined version of the bucket search algorithm has been executed for all the packets
in the burst of input packets, the non-optimized implementation of the bucket search algorithm is
also executed for any packets that did not produce a lookup hit, but have the match_many flag set.
As result of executing the non-optimized version, some of these packets may produce a lookup
hit or lookup miss. This does not impact the performance of the key lookup operation, as the
probability of matching more than one signature in the same group of 4 keys or of having the
bucket in extended state (for extendable bucket hash tables only) is relatively small.

Key Signature Comparison Logic

The key signature comparison logic is described in Table 47.11.

Table 47.11: Lookup Tables for Match, Match_Many and Match_Pos

# mask match (1 bit) match_many (1 bit) match_pos (2 bits)
0 0000 0 0 00
1 0001 1 0 00
2 0010 1 0 01
3 0011 1 1 00
4 0100 1 0 10
5 0101 1 1 00
6 0110 1 1 01
7 0111 1 1 00
8 1000 1 0 11
9 1001 1 1 00
10 1010 1 1 01
11 1011 1 1 00
12 1100 1 1 10
13 1101 1 1 00
14 1110 1 1 01
15 1111 1 1 00

The input mask hash bit X (X = 0 .. 3) set to 1 if input signature is equal to bucket signature X and
set to 0 otherwise. The outputs match, match_many and match_pos are 1 bit, 1 bit and 2 bits in size
respectively and their meaning has been explained above.

As displayed in Table 47.12, the lookup tables for match and match_many can be collapsed into a single
32-bit value and the lookup table for match_pos can be collapsed into a 64-bit value. Given the input
mask, the values for match, match_many and match_pos can be obtained by indexing their respective bit
array to extract 1 bit, 1 bit and 2 bits respectively with branchless logic.

Table 47.12: Collapsed Lookup Tables for Match, Match_Many and Match_Pos

Bit array Hexadecimal value
match 1111_1111_1111_1110 0xFFFELLU
match_many 1111_1110_1110_1000 0xFEE8LLU
match_pos 0001_0010_0001_0011__0001_0010_0001_0000 0x12131210LLU

47.4. Table Library Design 387



Programmer’s Guide, Release 20.08.0

The pseudo-code for match, match_many and match_pos is:

match = (0xFFFELLU >> mask) & 1;

match_many = (0xFEE8LLU >> mask) & 1;

match_pos = (0x12131210LLU >> (mask << 1)) & 3;

Single Key Size Hash Tables

Fig. 47.5, Fig. 47.6, Table 47.13 and Table 47.14 detail the main data structures used to implement 8-
byte and 16-byte key hash tables (either LRU or extendable bucket, either with pre-computed signature
or “do-sig”).

Fig. 47.5: Data Structures for 8-byte Key Hash Tables

Fig. 47.6: Data Structures for 16-byte Key Hash Tables

Table 47.13: Main Large Data Structures (Arrays) used for 8-byte and 16-byte Key Size Hash Tables

# Array name Number of entries Entry size (bytes) Description
1 Bucket array n_buckets (config-

urable)
8-byte key size:
64 + 4 x entry_size
16-byte key size:
128 + 4 x en-
try_size

Buckets of the hash
table.

2 Bucket extensions
array

n_buckets_ext
(configurable)

8-byte key size:
64 + 4 x entry_size
16-byte key size:
128 + 4 x en-
try_size

This array is only
created for extend-
able bucket tables.

47.4. Table Library Design 388



Programmer’s Guide, Release 20.08.0

Table 47.14: Field Description for Bucket Array Entry (8-byte and 16-byte Key Hash Tables)

# Field name Field size (bytes) Description
1 Valid 8 Bit X (X = 0 .. 3) is set

to 1 if key X is valid or
to 0 otherwise.
Bit 4 is only used for ex-
tendable bucket tables to
help with the implemen-
tation of the branchless
logic. In this case, bit 4
is set to 1 if next pointer
is valid (not NULL) or
to 0 otherwise.

2 Next Ptr/LRU 8 For LRU tables, this
fields represents the
LRU list for the current
bucket stored as array of
4 entries of 2 bytes each.
Entry 0 stores the index
(0 .. 3) of the MRU key,
while entry 3 stores the
index of the LRU key.
For extendable bucket
tables, this field repre-
sents the next pointer
(i.e. the pointer to
the next group of 4
keys linked to the cur-
rent bucket). The next
pointer is not NULL if
the bucket is currently
extended or NULL oth-
erwise.

3 Key [0 .. 3] 4 x key_size Full keys.
4 Data [0 .. 3] 4 x entry_size Full key values (key

data) associated with
keys 0 .. 3.

and detail the bucket search pipeline used to implement 8-byte and 16-byte key hash tables (either LRU
or extendable bucket, either with pre-computed signature or “do-sig”). For each pipeline stage, the
described operations are applied to each of the two packets handled by that stage.

Fig. 47.7: Bucket Search Pipeline for Key Lookup Operation (Single Key Size Hash Tables)

47.4. Table Library Design 389



Programmer’s Guide, Release 20.08.0

Table 47.15: Description of the Bucket Search Pipeline Stages (8-byte and 16-byte Key Hash Tables)

# Stage name Description
0 Prefetch packet meta-data

1. Select next two packets
from the burst of input
packets.

2. Prefetch packet meta-data
containing the key and key
signature.

1 Prefetch table bucket
1. Read the key signature

from the packet meta-data
(for extendable bucket
hash tables) or read the
key from the packet
meta-data and compute
key signature (for LRU
tables).

2. Identify the bucket ID us-
ing the key signature.

3. Prefetch the bucket.

2 Prefetch table data
1. Read the bucket.
2. Compare all 4 bucket keys

against the input key.
3. Report input key as lookup

hit only when a match is
identified (more than one
key match is not possible)

4. For LRU tables only, use
branchless logic to update
the bucket LRU list (the
current key becomes the
new MRU) only on lookup
hit.

5. Prefetch the key value
(key data) associated with
the matched key (to avoid
branches, this is done on
both lookup hit and miss).

Additional notes:

1. The pipelined version of the bucket search algorithm is executed only if there are at least 5 packets
in the burst of input packets. If there are less than 5 packets in the burst of input packets, a non-
optimized implementation of the bucket search algorithm is executed.

2. For extendable bucket hash tables only, once the pipelined version of the bucket search algorithm
has been executed for all the packets in the burst of input packets, the non-optimized implementa-
tion of the bucket search algorithm is also executed for any packets that did not produce a lookup

47.4. Table Library Design 390



Programmer’s Guide, Release 20.08.0

hit, but have the bucket in extended state. As result of executing the non-optimized version, some
of these packets may produce a lookup hit or lookup miss. This does not impact the performance
of the key lookup operation, as the probability of having the bucket in extended state is relatively
small.

47.5 Pipeline Library Design

A pipeline is defined by:

1. The set of input ports;

2. The set of output ports;

3. The set of tables;

4. The set of actions.

The input ports are connected with the output ports through tree-like topologies of interconnected tables.
The table entries contain the actions defining the operations to be executed on the input packets and the
packet flow within the pipeline.

47.5.1 Connectivity of Ports and Tables

To avoid any dependencies on the order in which pipeline elements are created, the connectivity of
pipeline elements is defined after all the pipeline input ports, output ports and tables have been created.

General connectivity rules:

1. Each input port is connected to a single table. No input port should be left unconnected;

2. The table connectivity to other tables or to output ports is regulated by the next hop actions of
each table entry and the default table entry. The table connectivity is fluid, as the table entries and
the default table entry can be updated during run-time.

• A table can have multiple entries (including the default entry) connected to the same output
port. A table can have different entries connected to different output ports. Different tables
can have entries (including default table entry) connected to the same output port.

• A table can have multiple entries (including the default entry) connected to another table, in
which case all these entries have to point to the same table. This constraint is enforced by the
API and prevents tree-like topologies from being created (allowing table chaining only), with
the purpose of simplifying the implementation of the pipeline run-time execution engine.

47.5.2 Port Actions

Port Action Handler

An action handler can be assigned to each input/output port to define actions to be executed on each
input packet that is received by the port. Defining the action handler for a specific input/output port is
optional (i.e. the action handler can be disabled).

For input ports, the action handler is executed after RX function. For output ports, the action handler is
executed before the TX function.

The action handler can decide to drop packets.

47.5. Pipeline Library Design 391



Programmer’s Guide, Release 20.08.0

47.5.3 Table Actions

Table Action Handler

An action handler to be executed on each input packet can be assigned to each table. Defining the action
handler for a specific table is optional (i.e. the action handler can be disabled).

The action handler is executed after the table lookup operation is performed and the table entry associ-
ated with each input packet is identified. The action handler can only handle the user-defined actions,
while the reserved actions (e.g. the next hop actions) are handled by the Packet Framework. The action
handler can decide to drop the input packet.

Reserved Actions

The reserved actions are handled directly by the Packet Framework without the user being able to change
their meaning through the table action handler configuration. A special category of the reserved actions
is represented by the next hop actions, which regulate the packet flow between input ports, tables and
output ports through the pipeline. Table 47.16 lists the next hop actions.

Table 47.16: Next Hop Actions (Reserved)

# Next hop
action

Description

1 Drop Drop the current packet.
2 Send to

output port
Send the current packet to specified output port. The output port ID is metadata
stored in the same table entry.

3 Send to table Send the current packet to specified table. The table ID is metadata stored in
the same table entry.

User Actions

For each table, the meaning of user actions is defined through the configuration of the table action
handler. Different tables can be configured with different action handlers, therefore the meaning of
the user actions and their associated meta-data is private to each table. Within the same table, all the
table entries (including the table default entry) share the same definition for the user actions and their
associated meta-data, with each table entry having its own set of enabled user actions and its own copy
of the action meta-data. Table 47.17 contains a non-exhaustive list of user action examples.

47.5. Pipeline Library Design 392



Programmer’s Guide, Release 20.08.0

Table 47.17: User Action Examples

# User action Description
1 Metering Per flow traffic metering using the srTCM and trTCM algorithms.
2 Statistics Update the statistics counters maintained per flow.
3 App ID Per flow state machine fed by variable length sequence of packets at the

flow initialization with the purpose of identifying the traffic type and
application.

4 Push/pop labels Push/pop VLAN/MPLS labels to/from the current packet.
5 Network Address

Translation
(NAT)

Translate between the internal (LAN) and external (WAN) IP
destination/source address and/or L4 protocol destination/source port.

6 TTL update Decrement IP TTL and, in case of IPv4 packets, update the IP checksum.
7 Sym Crypto Generate Cryptodev session based on the user-specified algorithm and

key(s), and assemble the cryptodev operation based on the predefined
offsets.

47.6 Multicore Scaling

A complex application is typically split across multiple cores, with cores communicating through SW
queues. There is usually a performance limit on the number of table lookups and actions that can be
fitted on the same CPU core due to HW constraints like: available CPU cycles, cache memory size,
cache transfer BW, memory transfer BW, etc.

As the application is split across multiple CPU cores, the Packet Framework facilitates the creation of
several pipelines, the assignment of each such pipeline to a different CPU core and the interconnection
of all CPU core-level pipelines into a single application-level complex pipeline. For example, if CPU
core A is assigned to run pipeline P1 and CPU core B pipeline P2, then the interconnection of P1 with
P2 could be achieved by having the same set of SW queues act like output ports for P1 and input ports
for P2.

This approach enables the application development using the pipeline, run-to-completion (clustered) or
hybrid (mixed) models.

It is allowed for the same core to run several pipelines, but it is not allowed for several cores to run the
same pipeline.

47.6.1 Shared Data Structures

The threads performing table lookup are actually table writers rather than just readers. Even if the
specific table lookup algorithm is thread-safe for multiple readers (e. g. read-only access of the search
algorithm data structures is enough to conduct the lookup operation), once the table entry for the current
packet is identified, the thread is typically expected to update the action meta-data stored in the table
entry (e.g. increment the counter tracking the number of packets that hit this table entry), and thus
modify the table entry. During the time this thread is accessing this table entry (either writing or reading;
duration is application specific), for data consistency reasons, no other threads (threads performing table
lookup or entry add/delete operations) are allowed to modify this table entry.

Mechanisms to share the same table between multiple threads:

47.6. Multicore Scaling 393



Programmer’s Guide, Release 20.08.0

1. Multiple writer threads. Threads need to use synchronization primitives like semaphores (dis-
tinct semaphore per table entry) or atomic instructions. The cost of semaphores is usually high,
even when the semaphore is free. The cost of atomic instructions is normally higher than the cost
of regular instructions.

2. Multiple writer threads, with single thread performing table lookup operations and multiple
threads performing table entry add/delete operations. The threads performing table entry
add/delete operations send table update requests to the reader (typically through message passing
queues), which does the actual table updates and then sends the response back to the request
initiator.

3. Single writer thread performing table entry add/delete operations and multiple reader
threads that perform table lookup operations with read-only access to the table entries. The
reader threads use the main table copy while the writer is updating the mirror copy. Once the
writer update is done, the writer can signal to the readers and busy wait until all readers swaps
between the mirror copy (which now becomes the main copy) and the mirror copy (which now
becomes the main copy).

47.7 Interfacing with Accelerators

The presence of accelerators is usually detected during the initialization phase by inspecting the HW
devices that are part of the system (e.g. by PCI bus enumeration). Typical devices with acceleration
capabilities are:

• Inline accelerators: NICs, switches, FPGAs, etc;

• Look-aside accelerators: chipsets, FPGAs, Intel QuickAssist, etc.

Usually, to support a specific functional block, specific implementation of Packet Framework tables
and/or ports and/or actions has to be provided for each accelerator, with all the implementations sharing
the same API: pure SW implementation (no acceleration), implementation using accelerator A, imple-
mentation using accelerator B, etc. The selection between these implementations could be done at build
time or at run-time (recommended), based on which accelerators are present in the system, with no
application changes required.

47.7. Interfacing with Accelerators 394



CHAPTER

FORTYEIGHT

VHOST LIBRARY

The vhost library implements a user space virtio net server allowing the user to manipulate the virtio
ring directly. In another words, it allows the user to fetch/put packets from/to the VM virtio net device.
To achieve this, a vhost library should be able to:

• Access the guest memory:

For QEMU, this is done by using the -object memory-backend-file,share=on,...
option. Which means QEMU will create a file to serve as the guest RAM. The share=on option
allows another process to map that file, which means it can access the guest RAM.

• Know all the necessary information about the vring:

Information such as where the available ring is stored. Vhost defines some messages (passed
through a Unix domain socket file) to tell the backend all the information it needs to know how to
manipulate the vring.

48.1 Vhost API Overview

The following is an overview of some key Vhost API functions:

• rte_vhost_driver_register(path,flags)

This function registers a vhost driver into the system. path specifies the Unix domain socket file
path.

Currently supported flags are:

– RTE_VHOST_USER_CLIENT

DPDK vhost-user will act as the client when this flag is given. See below for an explanation.

– RTE_VHOST_USER_NO_RECONNECT

When DPDK vhost-user acts as the client it will keep trying to reconnect to the server
(QEMU) until it succeeds. This is useful in two cases:

* When QEMU is not started yet.

* When QEMU restarts (for example due to a guest OS reboot).

This reconnect option is enabled by default. However, it can be turned off by setting this
flag.

– RTE_VHOST_USER_DEQUEUE_ZERO_COPY

Dequeue zero copy will be enabled when this flag is set. It is disabled by default.

395



Programmer’s Guide, Release 20.08.0

There are some truths (including limitations) you might want to know while setting this flag:

* zero copy is not good for small packets (typically for packet size below 512).

* zero copy is really good for VM2VM case. For iperf between two VMs, the boost could
be above 70% (when TSO is enabled).

* For zero copy in VM2NIC case, guest Tx used vring may be starved if the PMD driver
consume the mbuf but not release them timely.

For example, i40e driver has an optimization to maximum NIC pipeline which post-
pones returning transmitted mbuf until only tx_free_threshold free descs left. The virtio
TX used ring will be starved if the formula (num_i40e_tx_desc - num_virtio_tx_desc >
tx_free_threshold) is true, since i40e will not return back mbuf.

A performance tip for tuning zero copy in VM2NIC case is to adjust the frequency
of mbuf free (i.e. adjust tx_free_threshold of i40e driver) to balance consumer and
producer.

* Guest memory should be backended with huge pages to achieve better performance.
Using 1G page size is the best.

When dequeue zero copy is enabled, the guest phys address and host phys address
mapping has to be established. Using non-huge pages means far more page segments.
To make it simple, DPDK vhost does a linear search of those segments, thus the fewer
the segments, the quicker we will get the mapping. NOTE: we may speed it by using
tree searching in future.

* zero copy can not work when using vfio-pci with iommu mode currently, this is because
we don’t setup iommu dma mapping for guest memory. If you have to use vfio-pci
driver, please insert vfio-pci kernel module in noiommu mode.

* The consumer of zero copy mbufs should consume these mbufs as soon as possible,
otherwise it may block the operations in vhost.

– RTE_VHOST_USER_IOMMU_SUPPORT

IOMMU support will be enabled when this flag is set. It is disabled by default.

Enabling this flag makes possible to use guest vIOMMU to protect vhost from accessing
memory the virtio device isn’t allowed to, when the feature is negotiated and an IOMMU
device is declared.

– RTE_VHOST_USER_POSTCOPY_SUPPORT

Postcopy live-migration support will be enabled when this flag is set. It is disabled by default.

Enabling this flag should only be done when the calling application does not pre-fault the
guest shared memory, otherwise migration would fail.

– RTE_VHOST_USER_LINEARBUF_SUPPORT

Enabling this flag forces vhost dequeue function to only provide linear pktmbuf (no multi-
segmented pktmbuf).

The vhost library by default provides a single pktmbuf for given a packet, but if for some
reason the data doesn’t fit into a single pktmbuf (e.g., TSO is enabled), the library will
allocate additional pktmbufs from the same mempool and chain them together to create a
multi-segmented pktmbuf.

48.1. Vhost API Overview 396



Programmer’s Guide, Release 20.08.0

However, the vhost application needs to support multi-segmented format. If the vhost appli-
cation does not support that format and requires large buffers to be dequeue, this flag should
be enabled to force only linear buffers (see RTE_VHOST_USER_EXTBUF_SUPPORT) or
drop the packet.

It is disabled by default.

– RTE_VHOST_USER_EXTBUF_SUPPORT

Enabling this flag allows vhost dequeue function to allocate and attach an external buffer to
a pktmbuf if the pkmbuf doesn’t provide enough space to store all data.

This is useful when the vhost application wants to support large packets but doesn’t want to
increase the default mempool object size nor to support multi-segmented mbufs (non-linear).
In this case, a fresh buffer is allocated using rte_malloc() which gets attached to a pktmbuf
using rte_pktmbuf_attach_extbuf().

See RTE_VHOST_USER_LINEARBUF_SUPPORT as well to disable multi-segmented
mbufs for application that doesn’t support chained mbufs.

It is disabled by default.

– RTE_VHOST_USER_ASYNC_COPY

Asynchronous data path will be enabled when this flag is set. Async data path allows ap-
plications to register async copy devices (typically hardware DMA channels) to the vhost
queues. Vhost leverages the copy device registered to free CPU from memory copy opera-
tions. A set of async data path APIs are defined for DPDK applications to make use of the
async capability. Only packets enqueued/dequeued by async APIs are processed through the
async data path.

Currently this feature is only implemented on split ring enqueue data path.

It is disabled by default.

• rte_vhost_driver_set_features(path,features)

This function sets the feature bits the vhost-user driver supports. The vhost-user driver could be
vhost-user net, yet it could be something else, say, vhost-user SCSI.

• rte_vhost_driver_callback_register(path,vhost_device_ops)

This function registers a set of callbacks, to let DPDK applications take the appropriate action
when some events happen. The following events are currently supported:

– new_device(int vid)

This callback is invoked when a virtio device becomes ready. vid is the vhost device ID.

– destroy_device(int vid)

This callback is invoked when a virtio device is paused or shut down.

– vring_state_changed(int vid,uint16_t queue_id,int enable)

This callback is invoked when a specific queue’s state is changed, for example to enabled or
disabled.

– features_changed(int vid,uint64_t features)

This callback is invoked when the features is changed. For example, VHOST_F_LOG_ALL
will be set/cleared at the start/end of live migration, respectively.

48.1. Vhost API Overview 397



Programmer’s Guide, Release 20.08.0

– new_connection(int vid)

This callback is invoked on new vhost-user socket connection. If DPDK acts as the server
the device should not be deleted before destroy_connection callback is received.

– destroy_connection(int vid)

This callback is invoked when vhost-user socket connection is closed. It indicates that device
with id vid is no longer in use and can be safely deleted.

• rte_vhost_driver_disable/enable_features(path,features))

This function disables/enables some features. For example, it can be used to disable mergeable
buffers and TSO features, which both are enabled by default.

• rte_vhost_driver_start(path)

This function triggers the vhost-user negotiation. It should be invoked at the end of initializing a
vhost-user driver.

• rte_vhost_enqueue_burst(vid,queue_id,pkts,count)

Transmits (enqueues) count packets from host to guest.

• rte_vhost_dequeue_burst(vid,queue_id,mbuf_pool,pkts,count)

Receives (dequeues) count packets from guest, and stored them at pkts.

• rte_vhost_crypto_create(vid,cryptodev_id,sess_mempool,socket_id)

As an extension of new_device(), this function adds virtio-crypto workload acceleration capabil-
ity to the device. All crypto workload is processed by DPDK cryptodev with the device ID of
cryptodev_id.

• rte_vhost_crypto_free(vid)

Frees the memory and vhost-user message handlers created in rte_vhost_crypto_create().

• rte_vhost_crypto_fetch_requests(vid,queue_id,ops,nb_ops)

Receives (dequeues) nb_ops virtio-crypto requests from guest, parses them to DPDK Crypto
Operations, and fills the ops with parsing results.

• rte_vhost_crypto_finalize_requests(queue_id,ops,nb_ops)

After the ops are dequeued from Cryptodev, finalizes the jobs and notifies the guest(s).

• rte_vhost_crypto_set_zero_copy(vid,option)

Enable or disable zero copy feature of the vhost crypto backend.

• rte_vhost_async_channel_register(vid,queue_id,features,ops)

Register a vhost queue with async copy device channel. Following device features must be
specified together with the registration:

– async_inorder

Async copy device can guarantee the ordering of copy completion sequence. Copies are
completed in the same order with that at the submission time.

Currently, only async_inorder capable device is supported by vhost.

48.1. Vhost API Overview 398



Programmer’s Guide, Release 20.08.0

– async_threshold

The copy length (in bytes) below which CPU copy will be used even if applications call
async vhost APIs to enqueue/dequeue data.

Typical value is 512~1024 depending on the async device capability.

Applications must provide following ops callbacks for vhost lib to work with the async copy
devices:

– transfer_data(vid,queue_id,descs,opaque_data,count)

vhost invokes this function to submit copy data to the async devices. For non-async_inorder
capable devices, opaque_data could be used for identifying the completed packets.

– check_completed_copies(vid,queue_id,opaque_data,max_packets)

vhost invokes this function to get the copy data completed by async devices.

• rte_vhost_async_channel_unregister(vid,queue_id)

Unregister the async copy device channel from a vhost queue.

• rte_vhost_submit_enqueue_burst(vid,queue_id,pkts,count)

Submit an enqueue request to transmit count packets from host to guest by async data path.
Enqueue is not guaranteed to finish upon the return of this API call.

Applications must not free the packets submitted for enqueue until the packets are completed.

• rte_vhost_poll_enqueue_completed(vid,queue_id,pkts,count)

Poll enqueue completion status from async data path. Completed packets are returned to applica-
tions through pkts.

48.2 Vhost-user Implementations

Vhost-user uses Unix domain sockets for passing messages. This means the DPDK vhost-user imple-
mentation has two options:

• DPDK vhost-user acts as the server.

DPDK will create a Unix domain socket server file and listen for connections from the frontend.

Note, this is the default mode, and the only mode before DPDK v16.07.

• DPDK vhost-user acts as the client.

Unlike the server mode, this mode doesn’t create the socket file; it just tries to connect to the
server (which responses to create the file instead).

When the DPDK vhost-user application restarts, DPDK vhost-user will try to connect to the server
again. This is how the “reconnect” feature works.

Note:

– The “reconnect” feature requires QEMU v2.7 (or above).

48.2. Vhost-user Implementations 399



Programmer’s Guide, Release 20.08.0

– The vhost supported features must be exactly the same before and after the restart. For
example, if TSO is disabled and then enabled, nothing will work and issues undefined might
happen.

No matter which mode is used, once a connection is established, DPDK vhost-user will start receiving
and processing vhost messages from QEMU.

For messages with a file descriptor, the file descriptor can be used directly in the vhost process as it is
already installed by the Unix domain socket.

The supported vhost messages are:

• VHOST_SET_MEM_TABLE

• VHOST_SET_VRING_KICK

• VHOST_SET_VRING_CALL

• VHOST_SET_LOG_FD

• VHOST_SET_VRING_ERR

For VHOST_SET_MEM_TABLE message, QEMU will send information for each memory region and
its file descriptor in the ancillary data of the message. The file descriptor is used to map that region.

VHOST_SET_VRING_KICK is used as the signal to put the vhost device into the data plane, and
VHOST_GET_VRING_BASE is used as the signal to remove the vhost device from the data plane.

When the socket connection is closed, vhost will destroy the device.

48.3 Guest memory requirement

• Memory pre-allocation

For non-zerocopy non-async data path, guest memory pre-allocation is not a must. This can help
save of memory. If users really want the guest memory to be pre-allocated (e.g., for performance
reason), we can add option -mem-prealloc when starting QEMU. Or, we can lock all memory
at vhost side which will force memory to be allocated when mmap at vhost side; option –mlockall
in ovs-dpdk is an example in hand.

For async and zerocopy data path, we force the VM memory to be pre-allocated at vhost lib when
mapping the guest memory; and also we need to lock the memory to prevent pages being swapped
out to disk.

• Memory sharing

Make sure share=on QEMU option is given. vhost-user will not work with a QEMU version
without shared memory mapping.

48.4 Vhost supported vSwitch reference

For more vhost details and how to support vhost in vSwitch, please refer to the vhost example in the
DPDK Sample Applications Guide.

48.3. Guest memory requirement 400



Programmer’s Guide, Release 20.08.0

48.5 Vhost data path acceleration (vDPA)

vDPA supports selective datapath in vhost-user lib by enabling virtio ring compatible devices to serve
virtio driver directly for datapath acceleration.

rte_vhost_driver_attach_vdpa_device is used to configure the vhost device with acceler-
ated backend.

Also vhost device capabilities are made configurable to adopt various devices. Such capabilities include
supported features, protocol features, queue number.

Finally, a set of device ops is defined for device specific operations:

• get_queue_num

Called to get supported queue number of the device.

• get_features

Called to get supported features of the device.

• get_protocol_features

Called to get supported protocol features of the device.

• dev_conf

Called to configure the actual device when the virtio device becomes ready.

• dev_close

Called to close the actual device when the virtio device is stopped.

• set_vring_state

Called to change the state of the vring in the actual device when vring state changes.

• set_features

Called to set the negotiated features to device.

• migration_done

Called to allow the device to response to RARP sending.

• get_vfio_group_fd

Called to get the VFIO group fd of the device.

• get_vfio_device_fd

Called to get the VFIO device fd of the device.

• get_notify_area

Called to get the notify area info of the queue.

48.5. Vhost data path acceleration (vDPA) 401



CHAPTER

FORTYNINE

METRICS LIBRARY

The Metrics library implements a mechanism by which producers can publish numeric information for
later querying by consumers. In practice producers will typically be other libraries or primary processes,
whereas consumers will typically be applications.

Metrics themselves are statistics that are not generated by PMDs. Metric information is populated using
a push model, where producers update the values contained within the metric library by calling an update
function on the relevant metrics. Consumers receive metric information by querying the central metric
data, which is held in shared memory.

For each metric, a separate value is maintained for each port id, and when publishing metric val-
ues the producers need to specify which port is being updated. In addition there is a special id
RTE_METRICS_GLOBAL that is intended for global statistics that are not associated with any indi-
vidual device. Since the metrics library is self-contained, the only restriction on port numbers is that
they are less than RTE_MAX_ETHPORTS - there is no requirement for the ports to actually exist.

49.1 Initializing the library

Before the library can be used, it has to be initialized by calling rte_metrics_init() which sets
up the metric store in shared memory. This is where producers will publish metric information to, and
where consumers will query it from.

rte_metrics_init(rte_socket_id());

This function must be called from a primary process, but otherwise producers and consumers can be in
either primary or secondary processes.

49.2 Registering metrics

Metrics must first be registered, which is the way producers declare the names of the metrics they will
be publishing. Registration can either be done individually, or a set of metrics can be registered as a
group. Individual registration is done using rte_metrics_reg_name():

id_1 = rte_metrics_reg_name("mean_bits_in");
id_2 = rte_metrics_reg_name("mean_bits_out");
id_3 = rte_metrics_reg_name("peak_bits_in");
id_4 = rte_metrics_reg_name("peak_bits_out");

or alternatively, a set of metrics can be registered together using rte_metrics_reg_names():

const char * const names[] = {
"mean_bits_in", "mean_bits_out",
"peak_bits_in", "peak_bits_out",

402



Programmer’s Guide, Release 20.08.0

};
id_set = rte_metrics_reg_names(&names[0], 4);

If the return value is negative, it means registration failed. Otherwise the return value is the key for the
metric, which is used when updating values. A table mapping together these key values and the metrics’
names can be obtained using rte_metrics_get_names().

49.3 Updating metric values

Once registered, producers can update the metric for a given port using the
rte_metrics_update_value() function. This uses the metric key that is returned when
registering the metric, and can also be looked up using rte_metrics_get_names().

rte_metrics_update_value(port_id, id_1, values[0]);
rte_metrics_update_value(port_id, id_2, values[1]);
rte_metrics_update_value(port_id, id_3, values[2]);
rte_metrics_update_value(port_id, id_4, values[3]);

if metrics were registered as a single set, they can either be updated individ-
ually using rte_metrics_update_value(), or updated together using the
rte_metrics_update_values() function:

rte_metrics_update_value(port_id, id_set, values[0]);
rte_metrics_update_value(port_id, id_set + 1, values[1]);
rte_metrics_update_value(port_id, id_set + 2, values[2]);
rte_metrics_update_value(port_id, id_set + 3, values[3]);

rte_metrics_update_values(port_id, id_set, values, 4);

Note that rte_metrics_update_values() cannot be used to update metric values from multiple
sets, as there is no guarantee two sets registered one after the other have contiguous id values.

49.4 Querying metrics

Consumers can obtain metric values by querying the metrics library using the
rte_metrics_get_values() function that return an array of struct rte_metric_value.
Each entry within this array contains a metric value and its associated key. A key-name mapping can
be obtained using the rte_metrics_get_names() function that returns an array of struct
rte_metric_name that is indexed by the key. The following will print out all metrics for a given
port:

void print_metrics() {
struct rte_metric_value *metrics;
struct rte_metric_name *names;
int len;

len = rte_metrics_get_names(NULL, 0);
if (len < 0) {

printf("Cannot get metrics count\n");
return;

}
if (len == 0) {

printf("No metrics to display (none have been registered)\n");
return;

}
metrics = malloc(sizeof(struct rte_metric_value) * len);
names = malloc(sizeof(struct rte_metric_name) * len);

49.3. Updating metric values 403



Programmer’s Guide, Release 20.08.0

if (metrics == NULL || names == NULL) {
printf("Cannot allocate memory\n");
free(metrics);
free(names);
return;

}
ret = rte_metrics_get_values(port_id, metrics, len);
if (ret < 0 || ret > len) {

printf("Cannot get metrics values\n");
free(metrics);
free(names);
return;

}
printf("Metrics for port %i:\n", port_id);
for (i = 0; i < len; i++)

printf(" %s: %"PRIu64"\n",
names[metrics[i].key].name, metrics[i].value);

free(metrics);
free(names);

}

49.5 Deinitialising the library

Once the library usage is done, it must be deinitialized by calling rte_metrics_deinit() which
will free the shared memory reserved during initialization.

err = rte_metrics_deinit(void);

If the return value is negative, it means deinitialization failed. This function must be called from a
primary process.

49.6 Bit-rate statistics library

The bit-rate library calculates the exponentially-weighted moving average and peak bit-rates for each
active port (i.e. network device). These statistics are reported via the metrics library using the following
names:

• mean_bits_in: Average inbound bit-rate

• mean_bits_out: Average outbound bit-rate

• ewma_bits_in: Average inbound bit-rate (EWMA smoothed)

• ewma_bits_out: Average outbound bit-rate (EWMA smoothed)

• peak_bits_in: Peak inbound bit-rate

• peak_bits_out: Peak outbound bit-rate

Once initialised and clocked at the appropriate frequency, these statistics can be obtained by querying
the metrics library.

49.6.1 Initialization

Before the library can be used, it has to be initialised by calling rte_stats_bitrate_create(),
which will return a bit-rate calculation object. Since the bit-rate library uses the metrics library to report

49.5. Deinitialising the library 404



Programmer’s Guide, Release 20.08.0

the calculated statistics, the bit-rate library then needs to register the calculated statistics with the metrics
library. This is done using the helper function rte_stats_bitrate_reg().

struct rte_stats_bitrates *bitrate_data;

bitrate_data = rte_stats_bitrate_create();
if (bitrate_data == NULL)

rte_exit(EXIT_FAILURE, "Could not allocate bit-rate data.\n");
rte_stats_bitrate_reg(bitrate_data);

49.6.2 Controlling the sampling rate

Since the library works by periodic sampling but does not use an internal thread, the application has
to periodically call rte_stats_bitrate_calc(). The frequency at which this function is called
should be the intended sampling rate required for the calculated statistics. For instance if per-second
statistics are desired, this function should be called once a second.

tics_datum = rte_rdtsc();
tics_per_1sec = rte_get_timer_hz();

while( 1 ) {
/* ... */
tics_current = rte_rdtsc();
if (tics_current - tics_datum >= tics_per_1sec) {

/* Periodic bitrate calculation */
for (idx_port = 0; idx_port < cnt_ports; idx_port++)

rte_stats_bitrate_calc(bitrate_data, idx_port);
tics_datum = tics_current;

}
/* ... */

}

49.7 Latency statistics library

The latency statistics library calculates the latency of packet processing by a DPDK application, report-
ing the minimum, average, and maximum nano-seconds that packet processing takes, as well as the jitter
in processing delay. These statistics are then reported via the metrics library using the following names:

• min_latency_ns: Minimum processing latency (nano-seconds)

• avg_latency_ns: Average processing latency (nano-seconds)

• mac_latency_ns: Maximum processing latency (nano-seconds)

• jitter_ns: Variance in processing latency (nano-seconds)

Once initialised and clocked at the appropriate frequency, these statistics can be obtained by querying
the metrics library.

49.7.1 Initialization

Before the library can be used, it has to be initialised by calling rte_latencystats_init().

lcoreid_t latencystats_lcore_id = -1;

int ret = rte_latencystats_init(1, NULL);

49.7. Latency statistics library 405



Programmer’s Guide, Release 20.08.0

if (ret)
rte_exit(EXIT_FAILURE, "Could not allocate latency data.\n");

49.7.2 Triggering statistic updates

The rte_latencystats_update() function needs to be called periodically so that latency statis-
tics can be updated.

if (latencystats_lcore_id == rte_lcore_id())
rte_latencystats_update();

49.7.3 Library shutdown

When finished, rte_latencystats_uninit() needs to be called to de-initialise the latency li-
brary.

rte_latencystats_uninit();

49.7.4 Timestamp and latency calculation

The Latency stats library marks the time in the timestamp field of the mbuf for the ingress packets and
sets the PKT_RX_TIMESTAMP flag of ol_flags for the mbuf to indicate the marked time as a valid
one. At the egress, the mbufs with the flag set are considered having valid timestamp and are used for
the latency calculation.

49.7. Latency statistics library 406



CHAPTER

FIFTY

TELEMETRY LIBRARY

The Telemetry library provides an interface to retrieve information from a variety of DPDK libraries.
The library provides this information via socket connection, taking requests from a connected client and
replying with the JSON response containing the requested telemetry information.

Telemetry is enabled to run by default when running a DPDK application, and the telemetry information
from enabled libraries is made available. Libraries are responsible for registering their own commands,
and providing the callback function that will format the library specific stats into the correct data format,
when requested.

50.1 Creating Callback Functions

50.1.1 Function Type

When creating a callback function in a library/app, it must be of the following type:

typedef int (*telemetry_cb)(const char *cmd, const char *params,
struct rte_tel_data *info);

An example callback function is shown below:

static int
handle_example_cmd(const char *cmd __rte_unused, const char *params __rte_unused,

struct rte_tel_data *d)

For more detail on the callback function parameters, please refer to the definition in the API doc

Example Callback

This callback is an example of handling multiple commands in one callback, and also shows the use of
params which holds a port ID. The params input needs to be validated and converted to the required
integer type for port ID. The cmd parameter is then used in a comparison to decide which command was
requested, which will decide what port information should fill the rte_tel_data structure.

int
handle_cmd_request(const char *cmd, const char *params,

struct rte_tel_data *d)
{

int port_id, used = 0;

if (params == NULL || strlen(params) == 0 || !isdigit(*params))
return -1;

port_id = atoi(params);
if (!rte_eth_dev_is_valid_port(port_id))

return -1;

407

https://doc.dpdk.org/api/rte__telemetry_8h.html#a41dc74d561442bb6184ee6dd1f9b5bcc


Programmer’s Guide, Release 20.08.0

if (strcmp(cmd, "/cmd_1") == 0)
/* Build up port data requested for command 1 */

else
/* Build up port data requested for command 2 */

return used;
}

50.1.2 Formatting Data

The callback function provided by the library must format its telemetry information in the required
data format. The Telemetry library provides a data utilities API to build up the data structure with the
required information. The telemetry library is then responsible for formatting the data structure into a
JSON response before sending to the client.

Array Data

Some data will need to be formatted in a list structure. For example, if a callback needs to return five
integer values in the data response, it can be constructed using the following functions to build up the
list:

rte_tel_data_start_array(d, RTE_TEL_INT_VAL);
for(i = 0; i < 5; i++)

rte_tel_data_add_array_int(d, i);

The resulting response to the client shows the list data provided above by the handler function in the
library/app, placed in a JSON reply by telemetry:

{"/example_lib/five_ints": [0, 1, 2, 3, 4]}

Dictionary Data

For data that needs to be structured in a dictionary with key/value pairs, the data utilities API can also
be used. For example, some information about a brownie recipe is constructed in the callback function
shown below:

rte_tel_data_start_dict(d);
rte_tel_data_add_dict_string(d, "Recipe", "Brownies");
rte_tel_data_add_dict_int(d, "Prep time (mins)", 25);
rte_tel_data_add_dict_int(d, "Cooking time (mins)", 30);
rte_tel_data_add_dict_int(d, "Serves", 16);

The resulting response to the client shows the key/value data provided above by the handler function in
telemetry, placed in a JSON reply by telemetry:

{"/example_lib/brownie_recipe": {"Recipe": "Brownies", "Prep time (mins)": 25,
"Cooking time (mins)": 30, "Serves": 16}}

String Data

Telemetry also supports single string data. The data utilities API can again be used for this, see the
example below.

rte_tel_data_string(d, "This is an example string");

50.1. Creating Callback Functions 408



Programmer’s Guide, Release 20.08.0

Giving the following response to the client:

{"/example_lib/string_example": "This is an example string"}

For more information on the range of data functions available in the API, please refer to the API doc

50.2 Registering Commands

Libraries and applications must register commands to make their information available via the Telemetry
library. This involves providing a string command in the required format (“/library/command”), the call-
back function that will handle formatting the information when required, and help text for the command.
An example command being registered is shown below:

rte_telemetry_register_cmd("/example_lib/string_example", handle_string,
"Returns an example string. Takes no parameters");

50.3 Using Commands

To use commands, with a DPDK app running (e.g. testpmd), use the dpdk-telemetry.py script.
For details on its use, see the ../howto/telemetry.

50.2. Registering Commands 409

https://doc.dpdk.org/api-20.05/rte__telemetry_8h.html


CHAPTER

FIFTYONE

BERKELEY PACKET FILTER LIBRARY

The DPDK provides an BPF library that gives the ability to load and execute Enhanced Berkeley Packet
Filter (eBPF) bytecode within user-space dpdk application.

It supports basic set of features from eBPF spec. Please refer to the eBPF spec
<https://www.kernel.org/doc/Documentation/networking/filter.txt> for more information. Also it intro-
duces basic framework to load/unload BPF-based filters on eth devices (right now only via SW RX/TX
callbacks).

The library API provides the following basic operations:

• Create a new BPF execution context and load user provided eBPF code into it.

• Destroy an BPF execution context and its runtime structures and free the associated memory.

• Execute eBPF bytecode associated with provided input parameter.

• Provide information about natively compiled code for given BPF context.

• Load BPF program from the ELF file and install callback to execute it on given ethdev port/queue.

51.1 Packet data load instructions

DPDK supports two non-generic instructions: (BPF_ABS | size | BPF_LD) and (BPF_IND |
size | BPF_LD) which are used to access packet data. These instructions can only be used when
execution context is a pointer to struct rte_mbuf and have seven implicit operands. Register R6
is an implicit input that must contain pointer to rte_mbuf. Register R0 is an implicit output which
contains the data fetched from the packet. Registers R1-R5 are scratch registers and must not be used
to store the data across these instructions. These instructions have implicit program exit condition as
well. When eBPF program is trying to access the data beyond the packet boundary, the interpreter will
abort the execution of the program. JIT compilers therefore must preserve this property. src_reg
and imm32 fields are explicit inputs to these instructions. For example, (BPF_IND | BPF_W |
BPF_LD) means:

uint32_t tmp;
R0 = rte_pktmbuf_read((const struct rte_mbuf *)R6, src_reg + imm32,

sizeof(tmp), &tmp);
if (R0 == NULL) return FAILED;
R0 = ntohl(*(uint32_t *)R0);

and R1-R5 were scratched.

410



Programmer’s Guide, Release 20.08.0

51.2 Not currently supported eBPF features

• JIT support only available for X86_64 and arm64 platforms

• cBPF

• tail-pointer call

• eBPF MAP

• external function calls for 32-bit platforms

51.2. Not currently supported eBPF features 411



CHAPTER

FIFTYTWO

IPSEC PACKET PROCESSING LIBRARY

DPDK provides a library for IPsec data-path processing. The library utilizes the existing DPDK crypto-
dev and security API to provide the application with a transparent and high performant IPsec packet
processing API. The library is concentrated on data-path protocols processing (ESP and AH), IKE pro-
tocol(s) implementation is out of scope for this library.

52.1 SA level API

This API operates on the IPsec Security Association (SA) level. It provides functionality that allows
user for given SA to process inbound and outbound IPsec packets.

To be more specific:

• for inbound ESP/AH packets perform decryption, authentication, integrity checking, remove
ESP/AH related headers

• for outbound packets perform payload encryption, attach ICV, update/add IP headers, add ESP/AH
headers/trailers,

• setup related mbuf fields (ol_flags, tx_offloads, etc.).

• initialize/un-initialize given SA based on user provided parameters.

The SA level API is based on top of crypto-dev/security API and relies on them to perform actual cipher
and integrity checking.

Due to the nature of the crypto-dev API (enqueue/dequeue model) the library introduces an asyn-
chronous API for IPsec packets destined to be processed by the crypto-device.

The expected API call sequence for data-path processing would be:

/* enqueue for processing by crypto-device */
rte_ipsec_pkt_crypto_prepare(...);
rte_cryptodev_enqueue_burst(...);
/* dequeue from crypto-device and do final processing (if any) */
rte_cryptodev_dequeue_burst(...);
rte_ipsec_pkt_crypto_group(...); /* optional */
rte_ipsec_pkt_process(...);

For packets destined for inline processing no extra overhead is required and the synchronous API call:
rte_ipsec_pkt_process() is sufficient for that case.

Note: For more details about the IPsec API, please refer to the DPDK API Reference.

412



Programmer’s Guide, Release 20.08.0

The current implementation supports all four currently defined rte_security types:

52.1.1 RTE_SECURITY_ACTION_TYPE_NONE

In that mode the library functions perform

• for inbound packets:

– check SQN

– prepare rte_crypto_op structure for each input packet

– verify that integrity check and decryption performed by crypto device completed success-
fully

– check padding data

– remove outer IP header (tunnel mode) / update IP header (transport mode)

– remove ESP header and trailer, padding, IV and ICV data

– update SA replay window

• for outbound packets:

– generate SQN and IV

– add outer IP header (tunnel mode) / update IP header (transport mode)

– add ESP header and trailer, padding and IV data

– prepare rte_crypto_op structure for each input packet

– verify that crypto device operations (encryption, ICV generation) were completed success-
fully

52.1.2 RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO

In that mode the library functions perform same operations as in
RTE_SECURITY_ACTION_TYPE_NONE. The only difference is that crypto operations are per-
formed with CPU crypto synchronous API.

52.1.3 RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO

In that mode the library functions perform

• for inbound packets:

– verify that integrity check and decryption performed by rte_security device completed suc-
cessfully

– check SQN

– check padding data

– remove outer IP header (tunnel mode) / update IP header (transport mode)

– remove ESP header and trailer, padding, IV and ICV data

– update SA replay window

52.1. SA level API 413



Programmer’s Guide, Release 20.08.0

• for outbound packets:

– generate SQN and IV

– add outer IP header (tunnel mode) / update IP header (transport mode)

– add ESP header and trailer, padding and IV data

– update ol_flags inside struct rte_mbuf to indicate that inline-crypto processing has to be
performed by HW on this packet

– invoke rte_security device specific set_pkt_metadata() to associate security device specific
data with the packet

52.1.4 RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL

In that mode the library functions perform

• for inbound packets:

– verify that integrity check and decryption performed by rte_security device completed suc-
cessfully

• for outbound packets:

– update ol_flags inside struct rte_mbuf to indicate that inline-crypto processing has to be
performed by HW on this packet

– invoke rte_security device specific set_pkt_metadata() to associate security device specific
data with the packet

52.1.5 RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL

In that mode the library functions perform

• for inbound packets:

– prepare rte_crypto_op structure for each input packet

– verify that integrity check and decryption performed by crypto device completed success-
fully

• for outbound packets:

– prepare rte_crypto_op structure for each input packet

– verify that crypto device operations (encryption, ICV generation) were completed success-
fully

To accommodate future custom implementations function pointers model is used for both
crypto_prepare and process implementations.

52.2 SA database API

SA database(SAD) is a table with <key, value> pairs.

Value is an opaque user provided pointer to the user defined SA data structure.

52.2. SA database API 414



Programmer’s Guide, Release 20.08.0

According to RFC4301 each SA can be uniquely identified by a key which is either:

• security parameter index(SPI)

• or SPI and destination IP(DIP)

• or SPI, DIP and source IP(SIP)

In case of multiple matches, longest matching key will be returned.

52.2.1 Create/destroy

librte_ipsec SAD implementation provides ability to create/destroy SAD tables.

To create SAD table user has to specify how many entries of each key type is required and IP protocol
type (IPv4/IPv6). As an example:

struct rte_ipsec_sad *sad;
struct rte_ipsec_sad_conf conf;

conf.socket_id = -1;
conf.max_sa[RTE_IPSEC_SAD_SPI_ONLY] = some_nb_rules_spi_only;
conf.max_sa[RTE_IPSEC_SAD_SPI_DIP] = some_nb_rules_spi_dip;
conf.max_sa[RTE_IPSEC_SAD_SPI_DIP_SIP] = some_nb_rules_spi_dip_sip;
conf.flags = RTE_IPSEC_SAD_FLAG_RW_CONCURRENCY;

sad = rte_ipsec_sad_create("test", &conf);

Note: for more information please refer to ipsec library API reference

52.2.2 Add/delete rules

Library also provides methods to add or delete key/value pairs from the SAD. To add user has to specify
key, key type and a value which is an opaque pointer to SA. The key type reflects a set of tuple fields that
will be used for lookup of the SA. As mentioned above there are 3 types of a key and the representation
of a key type is:

RTE_IPSEC_SAD_SPI_ONLY,
RTE_IPSEC_SAD_SPI_DIP,
RTE_IPSEC_SAD_SPI_DIP_SIP,

As an example, to add new entry into the SAD for IPv4 addresses:

struct rte_ipsec_sa *sa;
union rte_ipsec_sad_key key;

key.v4.spi = rte_cpu_to_be_32(spi_val);
if (key_type >= RTE_IPSEC_SAD_SPI_DIP) /* DIP is optional*/

key.v4.dip = rte_cpu_to_be_32(dip_val);
if (key_type == RTE_IPSEC_SAD_SPI_DIP_SIP) /* SIP is optional*/

key.v4.sip = rte_cpu_to_be_32(sip_val);

rte_ipsec_sad_add(sad, &key, key_type, sa);

Note: By performance reason it is better to keep spi/dip/sip in net byte order to eliminate byteswap on
lookup

52.2. SA database API 415



Programmer’s Guide, Release 20.08.0

To delete user has to specify key and key type.

Delete code would look like:

union rte_ipsec_sad_key key;

key.v4.spi = rte_cpu_to_be_32(necessary_spi);
if (key_type >= RTE_IPSEC_SAD_SPI_DIP) /* DIP is optional*/

key.v4.dip = rte_cpu_to_be_32(necessary_dip);
if (key_type == RTE_IPSEC_SAD_SPI_DIP_SIP) /* SIP is optional*/

key.v4.sip = rte_cpu_to_be_32(necessary_sip);

rte_ipsec_sad_del(sad, &key, key_type);

52.2.3 Lookup

Library provides lookup by the given {SPI,DIP,SIP} tuple of inbound ipsec packet as a key.

The search key is represented by:

union rte_ipsec_sad_key {
struct rte_ipsec_sadv4_key v4;
struct rte_ipsec_sadv6_key v6;

};

where v4 is a tuple for IPv4:

struct rte_ipsec_sadv4_key {
uint32_t spi;
uint32_t dip;
uint32_t sip;

};

and v6 is a tuple for IPv6:

struct rte_ipsec_sadv6_key {
uint32_t spi;
uint8_t dip[16];
uint8_t sip[16];

};

As an example, lookup related code could look like that:

int i;
union rte_ipsec_sad_key keys[BURST_SZ];
const union rte_ipsec_sad_key *keys_p[BURST_SZ];
void *vals[BURST_SZ];

for (i = 0; i < BURST_SZ_MAX; i++) {
keys[i].v4.spi = esp_hdr[i]->spi;
keys[i].v4.dip = ipv4_hdr[i]->dst_addr;
keys[i].v4.sip = ipv4_hdr[i]->src_addr;
keys_p[i] = &keys[i];

}
rte_ipsec_sad_lookup(sad, keys_p, vals, BURST_SZ);

for (i = 0; i < BURST_SZ_MAX; i++) {
if (vals[i] == NULL)

printf("SA not found for key index %d\n", i);
else

printf("SA pointer is %p\n", vals[i]);
}

52.2. SA database API 416



Programmer’s Guide, Release 20.08.0

52.3 Supported features

• ESP protocol tunnel mode both IPv4/IPv6.

• ESP protocol transport mode both IPv4/IPv6.

• ESN and replay window.

• algorithms: 3DES-CBC, AES-CBC, AES-CTR, AES-GCM, HMAC-SHA1, NULL.

52.4 Limitations

The following features are not properly supported in the current version:

• Hard/soft limit for SA lifetime (time interval/byte count).

52.3. Supported features 417



CHAPTER

FIFTYTHREE

GRAPH LIBRARY AND INBUILT NODES

Graph architecture abstracts the data processing functions as a node and links them together to create
a complex graph to enable reusable/modular data processing functions.

The graph library provides API to enable graph framework operations such as create, lookup, dump and
destroy on graph and node operations such as clone, edge update, and edge shrink, etc. The API also
allows to create the stats cluster to monitor per graph and per node stats.

53.1 Features

Features of the Graph library are:

• Nodes as plugins.

• Support for out of tree nodes.

• Inbuilt nodes for packet processing.

• Multi-process support.

• Low overhead graph walk and node enqueue.

• Low overhead statistics collection infrastructure.

• Support to export the graph as a Graphviz dot file. See rte_graph_export().

• Allow having another graph walk implementation in the future by segregating the fast
path(rte_graph_worker.h) and slow path code.

53.2 Advantages of Graph architecture

• Memory latency is the enemy for high-speed packet processing, moving the similar packet pro-
cessing code to a node will reduce the I cache and D caches misses.

• Exploits the probability that most packets will follow the same nodes in the graph.

• Allow SIMD instructions for packet processing of the node.-

• The modular scheme allows having reusable nodes for the consumers.

• The modular scheme allows us to abstract the vendor HW specific optimizations as a node.

418



Programmer’s Guide, Release 20.08.0

53.3 Performance tuning parameters

• Test with various burst size values (256, 128, 64, 32) using CON-
FIG_RTE_GRAPH_BURST_SIZE config option. The testing shows, on x86 and arm64
servers, The sweet spot is 256 burst size. While on arm64 embedded SoCs, it is either 64 or 128.

• Disable node statistics (using CONFIG_RTE_LIBRTE_GRAPH_STATS config option) if not
needed.

• Use arm64 optimized memory copy for arm64 architecture by selecting
CONFIG_RTE_ARCH_ARM64_MEMCPY.

53.4 Programming model

53.4.1 Anatomy of Node:

The Fig. 53.4.1 diagram depicts the anatomy of a node.

The node is the basic building block of the graph framework.

A node consists of:

process():

The callback function will be invoked by worker thread using rte_graph_walk() function when
there is data to be processed by the node. A graph node process the function using process() and
enqueue to next downstream node using rte_node_enqueue*() function.

53.3. Performance tuning parameters 419



Programmer’s Guide, Release 20.08.0

Context memory:

It is memory allocated by the library to store the node-specific context information. This memory will
be used by process(), init(), fini() callbacks.

init():

The callback function will be invoked by rte_graph_create() on when a node gets attached to a
graph.

fini():

The callback function will be invoked by rte_graph_destroy() on when a node gets detached to
a graph.

Node name:

It is the name of the node. When a node registers to graph library, the library gives the ID as
rte_node_t type. Both ID or Name shall be used lookup the node. rte_node_from_name(),
rte_node_id_to_name() are the node lookup functions.

nb_edges:

The number of downstream nodes connected to this node. The next_nodes[] stores the downstream
nodes objects. rte_node_edge_update() and rte_node_edge_shrink() functions shall
be used to update the next_node[] objects. Consumers of the node APIs are free to update the
next_node[] objects till rte_graph_create() invoked.

next_node[]:

The dynamic array to store the downstream nodes connected to this node. Downstream node should not
be current node itself or a source node.

Source node:

Source nodes are static nodes created using RTE_NODE_REGISTER by passing flags as
RTE_NODE_SOURCE_F. While performing the graph walk, the process() function of all the source
nodes will be called first. So that these nodes can be used as input nodes for a graph.

53.4.2 Node creation and registration

• Node implementer creates the node by implementing ops and attributes of struct
rte_node_register.

• The library registers the node by invoking RTE_NODE_REGISTER on library load using the
constructor scheme. The constructor scheme used here to support multi-process.

53.4. Programming model 420



Programmer’s Guide, Release 20.08.0

53.4.3 Link the Nodes to create the graph topology

The Fig. 53.4.3 diagram shows a graph topology after linking the N nodes.

Once nodes are available to the program, Application or node public API functions can links them
together to create a complex packet processing graph.

There are multiple different types of strategies to link the nodes.

Method (a):

Provide the next_nodes[] at the node registration time. See struct
rte_node_register::nb_edges. This is a use case to address the static node scheme
where one knows upfront the next_nodes[] of the node.

Method (b):

Use rte_node_edge_get(), rte_node_edge_update(), rte_node_edge_shrink()
to update the next_nodes[] links for the node runtime but before graph create.

Method (c):

Use rte_node_clone() to clone a already existing node, created using RTE_NODE_REGISTER.
When rte_node_clone() invoked, The library, would clone all the attributes of the node and creates
a new one. The name for cloned node shall be "parent_node_name-user_provided_name".

This method enables the use case of Rx and Tx nodes where multiple of those nodes need to be cloned
based on the number of CPU available in the system. The cloned nodes will be identical, except the
"context memory". Context memory will have information of port, queue pair in case of Rx and
Tx ethdev nodes.

53.4. Programming model 421



Programmer’s Guide, Release 20.08.0

53.4.4 Create the graph object

Now that the nodes are linked, Its time to create a graph by including the required nodes. The application
can provide a set of node patterns to form a graph object. The famish() API used underneath for the
pattern matching to include the required nodes. After the graph create any changes to nodes or graph is
not allowed.

The rte_graph_create() API shall be used to create the graph.

Example of a graph object creation:

{"ethdev_rx-0-0", ip4*, ethdev_tx-*"}

In the above example, A graph object will be created with ethdev Rx node of port 0 and queue 0, all
ipv4* nodes in the system, and ethdev tx node of all ports.

53.4.5 Multicore graph processing

In the current graph library implementation, specifically, rte_graph_walk() and
rte_node_enqueue* fast path API functions are designed to work on single-core to have
better performance. The fast path API works on graph object, So the multi-core graph processing
strategy would be to create graph object PER WORKER.

53.4.6 In fast path

Typical fast-path code looks like below, where the application gets the fast-path graph object using
rte_graph_lookup() on the worker thread and run the rte_graph_walk() in a tight loop.

struct rte_graph *graph = rte_graph_lookup("worker0");

while (!done) {
rte_graph_walk(graph);

}

53.4.7 Context update when graph walk in action

The fast-path object for the node is struct rte_node.

It may be possible that in slow-path or after the graph walk-in action, the user needs to update the context
of the node hence access to struct rte_node * memory.

rte_graph_foreach_node(), rte_graph_node_get(), rte_graph_node_get_by_name()
APIs can be used to to get the struct rte_node*. rte_graph_foreach_node() iterator
function works on struct rte_graph * fast-path graph object while others works on graph ID or
name.

53.4.8 Get the node statistics using graph cluster

The user may need to know the aggregate stats of the node across multiple graph objects. Especially the
situation where each graph object bound to a worker thread.

Introduced a graph cluster object for statistics. rte_graph_cluster_stats_create()
API shall be used for creating a graph cluster with multiple graph objects and
rte_graph_cluster_stats_get() to get the aggregate node statistics.

53.4. Programming model 422



Programmer’s Guide, Release 20.08.0

An example statistics output from rte_graph_cluster_stats_get()

+---------+-----------+-------------+---------------+-----------+---------------+-----------+
|Node |calls |objs |realloc_count |objs/call |objs/sec(10E6) |cycles/call|
+---------------------+-------------+---------------+-----------+---------------+-----------+
|node0 |12977424 |3322220544 |5 |256.000 |3047.151872 |20.0000 |
|node1 |12977653 |3322279168 |0 |256.000 |3047.210496 |17.0000 |
|node2 |12977696 |3322290176 |0 |256.000 |3047.221504 |17.0000 |
|node3 |12977734 |3322299904 |0 |256.000 |3047.231232 |17.0000 |
|node4 |12977784 |3322312704 |1 |256.000 |3047.243776 |17.0000 |
|node5 |12977825 |3322323200 |0 |256.000 |3047.254528 |17.0000 |
+---------+-----------+-------------+---------------+-----------+---------------+-----------+

53.4.9 Node writing guidelines

The process() function of a node is the fast-path function and that needs to be written carefully to
achieve max performance.

Broadly speaking, there are two different types of nodes.

53.4.10 Static nodes

The first kind of nodes are those that have a fixed next_nodes[] for the complete burst
(like ethdev_rx, ethdev_tx) and it is simple to write. process() function can move
the obj burst to the next node either using rte_node_next_stream_move() or using
rte_node_next_stream_get() and rte_node_next_stream_put().

53.4.11 Intermediate nodes

The second kind of such node is intermediate nodes that decide what is the next_node[] to
send to on a per-packet basis. In these nodes,

• Firstly, there has to be the best possible packet processing logic.

• Secondly, each packet needs to be queued to its next node.

This can be done using rte_node_enqueue_[x1|x2|x4]() APIs if they are to single next or
rte_node_enqueue_next() that takes array of nexts.

In scenario where multiple intermediate nodes are present but most of the time each node using the
same next node for all its packets, the cost of moving every pointer from current node’s stream to next
node’s stream could be avoided. This is called home run and rte_node_next_stream_move()
could be used to just move stream from the current node to the next node with least number of cycles.
Since this can be avoided only in the case where all the packets are destined to the same next node,
node implementation should be also having worst-case handling where every packet could be going to
different next node.

Example of intermediate node implementation with home run:

1. Start with speculation that next_node = node->ctx. This could be the next_node application used in
the previous function call of this node.

2. Get the next_node stream array with required space using
rte_node_next_stream_get(next_node,space).

53.4. Programming model 423



Programmer’s Guide, Release 20.08.0

3. while n_left_from > 0 (i.e packets left to be sent) prefetch next pkt_set and process current pkt_set to
find their next node

4. if all the next nodes of the current pkt_set match speculated next node, just count them as success-
fully speculated(last_spec) till now and continue the loop without actually moving them to the next
node. else if there is a mismatch, copy all the pkt_set pointers that were last_spec and move the
current pkt_set to their respective next’s nodes using rte_enqueue_next_x1(). Also, one of the
next_node can be updated as speculated next_node if it is more probable. Finally, reset last_spec to
zero.

5. if n_left_from != 0 then goto 3) to process remaining packets.

6. if last_spec == nb_objs, All the objects passed were successfully speculated
to single next node. So, the current stream can be moved to next node using
rte_node_next_stream_move(node,next_node). This is the home run where memcpy
of buffer pointers to next node is avoided.

7. Update the node->ctx with more probable next node.

53.5 Graph object memory layout

The Fig. 53.5 diagram shows rte_graph object memory layout. Understanding the memory layout
helps to debug the graph library and improve the performance if needed.

Graph object consists of a header, circular buffer to store the pending stream when walking over the
graph, and variable-length memory to store the rte_node objects.

The graph_nodes_mem_create() creates and populate this memory. The functions such as
rte_graph_walk() and rte_node_enqueue_* use this memory to enable fastpath services.

53.5. Graph object memory layout 424



Programmer’s Guide, Release 20.08.0

53.6 Inbuilt Nodes

DPDK provides a set of nodes for data processing. The following section details the documentation for
the same.

53.6.1 ethdev_rx

This node does rte_eth_rx_burst() into stream buffer passed to it (src node stream) and does
rte_node_next_stream_move() only when there are packets received. Each rte_node works
only on one Rx port and queue that it gets from node->ctx. For each (port X, rx_queue Y), a rte_node is
cloned from ethdev_rx_base_node as ethdev_rx-X-Y in rte_node_eth_config() along with
updating node->ctx. Each graph needs to be associated with a unique rte_node for a (port, rx_queue).

53.6.2 ethdev_tx

This node does rte_eth_tx_burst() for a burst of objs received by it. It sends the burst to a fixed
Tx Port and Queue information from node->ctx. For each (port X), this rte_node is cloned from
ethdev_tx_node_base as “ethdev_tx-X” in rte_node_eth_config() along with updating node-
>context.

Since each graph doesn’t need more than one Txq, per port, a Txq is assigned based on graph id to each
rte_node instance. Each graph needs to be associated with a rte_node for each (port).

53.6.3 pkt_drop

This node frees all the objects passed to it considering them as rte_mbufs that need to be freed.

53.6.4 ip4_lookup

This node is an intermediate node that does LPM lookup for the received ipv4 packets and the result
determines each packets next node.

On successful LPM lookup, the result contains the next_node id and next-hop id with which the
packet needs to be further processed.

On LPM lookup failure, objects are redirected to pkt_drop node. rte_node_ip4_route_add() is
control path API to add ipv4 routes. To achieve home run, node use rte_node_stream_move() as
mentioned in above sections.

53.6.5 ip4_rewrite

This node gets packets from ip4_lookup node with next-hop id for each packet is em-
bedded in node_mbuf_priv1(mbuf)->nh. This id is used to determine the L2 header
to be written to the packet before sending the packet out to a particular ethdev_tx node.
rte_node_ip4_rewrite_add() is control path API to add next-hop info.

53.6. Inbuilt Nodes 425



Programmer’s Guide, Release 20.08.0

53.6.6 null

This node ignores the set of objects passed to it and reports that all are processed.

Part 2: Development Environment

53.6. Inbuilt Nodes 426



CHAPTER

FIFTYFOUR

SOURCE ORGANIZATION

This section describes the organization of sources in the DPDK framework.

54.1 Makefiles and Config

Note: In the following descriptions, RTE_SDK is the environment variable that points to the base
directory into which the tarball was extracted. See Useful Variables Provided by the Build System for
descriptions of other variables.

Makefiles that are provided by the DPDK libraries and applications are located in $(RTE_SDK)/mk.

Config templates are located in $(RTE_SDK)/config. The templates describe the options that are
enabled for each target. The config file also contains items that can be enabled and disabled for many
of the DPDK libraries, including debug options. The user should look at the config file and become
familiar with these options. The config file is also used to create a header file, which will be located in
the new build directory.

54.2 Libraries

Libraries are located in subdirectories of $(RTE_SDK)/lib. By convention a library refers to any
code that provides an API to an application. Typically, it generates an archive file (.a), but a kernel
module would also go in the same directory.

54.3 Drivers

Drivers are special libraries which provide poll-mode driver implementations for devices: either hard-
ware devices or pseudo/virtual devices. They are contained in the drivers subdirectory, classified by
type, and each compiles to a library with the format librte_pmd_X.a where X is the driver name.

Note: Several of the driver/net directories contain a base sub-directory. The base directory
generally contains code the shouldn’t be modified directly by the user. Any enhancements should be
done via the X_osdep.c and/or X_osdep.h files in that directory. Refer to the local README in
the base directories for driver specific instructions.

427



Programmer’s Guide, Release 20.08.0

54.4 Applications

Applications are source files that contain a main() function. They are located in the
$(RTE_SDK)/app and $(RTE_SDK)/examples directories.

The app directory contains sample applications that are used to test DPDK (such as autotests) or the Poll
Mode Drivers (test-pmd).

The examples directory contains Sample applications that show how libraries can be used.

54.4. Applications 428



CHAPTER

FIFTYFIVE

DEVELOPMENT KIT BUILD SYSTEM

The DPDK requires a build system for compilation activities and so on. This section describes the
constraints and the mechanisms used in the DPDK framework.

There are two use-cases for the framework:

• Compilation of the DPDK libraries and sample applications; the framework generates specific
binary libraries, include files and sample applications

• Compilation of an external application or library, using an installed binary DPDK

55.1 Building the Development Kit Binary

The following provides details on how to build the DPDK binary.

55.1.1 Build Directory Concept

After installation, a build directory structure is created. Each build directory contains include files,
libraries, and applications.

A build directory is specific to a configuration that includes architecture + execution environment +
toolchain. It is possible to have several build directories sharing the same sources with different config-
urations.

For instance, to create a new build directory called my_sdk_build_dir using the default configuration
template config/defconfig_x86_64-linux, we use:

cd ${RTE_SDK}
make config T=x86_64-native-linux-gcc O=my_sdk_build_dir

This creates a new my_sdk_build_dir directory. After that, we can compile by doing:

cd my_sdk_build_dir
make

which is equivalent to:

make O=my_sdk_build_dir

Refer to Development Kit Root Makefile Help for details about make commands that can be used from
the root of DPDK.

429



Programmer’s Guide, Release 20.08.0

55.2 Building External Applications

Since DPDK is in essence a development kit, the first objective of end users will be to create an appli-
cation using this SDK. To compile an application, the user must set the RTE_SDK and RTE_TARGET
environment variables.

export RTE_SDK=/opt/DPDK
export RTE_TARGET=x86_64-native-linux-gcc
cd /path/to/my_app

For a new application, the user must create their own Makefile that includes some .mk files, such as
${RTE_SDK}/mk/rte.vars.mk, and ${RTE_SDK}/mk/ rte.app.mk. This is described in Building Your
Own Application.

Depending on the chosen target (architecture, machine, executive environment, toolchain) defined in the
Makefile or as an environment variable, the applications and libraries will compile using the appropriate
.h files and will link with the appropriate .a files. These files are located in ${RTE_SDK}/arch-machine-
execenv-toolchain, which is referenced internally by ${RTE_BIN_SDK}.

To compile their application, the user just has to call make. The compilation result will be located in
/path/to/my_app/build directory.

Sample applications are provided in the examples directory.

55.3 Makefile Description

55.3.1 General Rules For DPDK Makefiles

In the DPDK, Makefiles always follow the same scheme:

1. Include $(RTE_SDK)/mk/rte.vars.mk at the beginning.

2. Define specific variables for RTE build system.

3. Include a specific $(RTE_SDK)/mk/rte.XYZ.mk, where XYZ can be app, lib, extapp, extlib, obj,
gnuconfigure, and so on, depending on what kind of object you want to build. See Makefile Types
below.

4. Include user-defined rules and variables.

The following is a very simple example of an external application Makefile:

include $(RTE_SDK)/mk/rte.vars.mk

# binary name
APP = helloworld

# all source are stored in SRCS-y
SRCS-y := main.c

CFLAGS += -O3
CFLAGS += $(WERROR_FLAGS)

include $(RTE_SDK)/mk/rte.extapp.mk

55.2. Building External Applications 430



Programmer’s Guide, Release 20.08.0

55.3.2 Makefile Types

Depending on the .mk file which is included at the end of the user Makefile, the Makefile will have a
different role. Note that it is not possible to build a library and an application in the same Makefile. For
that, the user must create two separate Makefiles, possibly in two different directories.

In any case, the rte.vars.mk file must be included in the user Makefile as soon as possible.

Application

These Makefiles generate a binary application.

• rte.app.mk: Application in the development kit framework

• rte.extapp.mk: External application

• rte.hostapp.mk: prerequisite tool to build dpdk

Library

Generate a .a library.

• rte.lib.mk: Library in the development kit framework

• rte.extlib.mk: external library

• rte.hostlib.mk: host library in the development kit framework

Install

• rte.install.mk: Does not build anything, it is only used to create links or copy files to the installation
directory. This is useful for including files in the development kit framework.

Kernel Module

• rte.module.mk: Build a kernel module in the development kit framework.

Objects

• rte.obj.mk: Object aggregation (merge several .o in one) in the development kit framework.

• rte.extobj.mk: Object aggregation (merge several .o in one) outside the development kit frame-
work.

Misc

• rte.gnuconfigure.mk: Build an application that is configure-based.

• rte.subdir.mk: Build several directories in the development kit framework.

55.3. Makefile Description 431



Programmer’s Guide, Release 20.08.0

55.3.3 Internally Generated Build Tools

app/dpdk-pmdinfogen

dpdk-pmdinfogen scans an object (.o) file for various well known symbol names. These well known
symbol names are defined by various macros and used to export important information about hardware
support and usage for pmd files. For instance the macro:

RTE_PMD_REGISTER_PCI(name, drv)

Creates the following symbol:

static char this_pmd_name0[] __attribute__((used)) = "<name>";

Which dpdk-pmdinfogen scans for. Using this information other relevant bits of data can
be exported from the object file and used to produce a hardware support description, that
dpdk-pmdinfogen then encodes into a JSON formatted string in the following format:

static char <name_pmd_string>="PMD_INFO_STRING=\"{'name' : '<name>', ...}\"";

These strings can then be searched for by external tools to determine the hardware support of a given
library or application.

55.3.4 Useful Variables Provided by the Build System

• RTE_SDK: The absolute path to the DPDK sources. When compiling the development kit, this
variable is automatically set by the framework. It has to be defined by the user as an environment
variable if compiling an external application.

• RTE_SRCDIR: The path to the root of the sources. When compiling the development kit,
RTE_SRCDIR = RTE_SDK. When compiling an external application, the variable points to the
root of external application sources.

• RTE_OUTPUT: The path to which output files are written. Typically, it is $(RTE_SRCDIR)/build,
but it can be overridden by the O= option in the make command line.

• RTE_TARGET: A string identifying the target for which we are building. The format is arch-
machine-execenv-toolchain. When compiling the SDK, the target is deduced by the build system
from the configuration (.config). When building an external application, it must be specified by
the user in the Makefile or as an environment variable.

• RTE_SDK_BIN: References $(RTE_SDK)/$(RTE_TARGET).

• RTE_ARCH: Defines the architecture (i686, x86_64). It is the same value as CON-
FIG_RTE_ARCH but without the double-quotes around the string.

• RTE_MACHINE: Defines the machine. It is the same value as CONFIG_RTE_MACHINE but
without the double-quotes around the string.

• RTE_TOOLCHAIN: Defines the toolchain (gcc , icc). It is the same value as CON-
FIG_RTE_TOOLCHAIN but without the double-quotes around the string.

• RTE_EXEC_ENV: Defines the executive environment (linux). It is the same value as CON-
FIG_RTE_EXEC_ENV but without the double-quotes around the string.

• RTE_KERNELDIR: This variable contains the absolute path to the kernel sources that will be
used to compile the kernel modules. The kernel headers must be the same as the ones that will be
used on the target machine (the machine that will run the application). By default, the variable is

55.3. Makefile Description 432



Programmer’s Guide, Release 20.08.0

set to /lib/modules/$(shell uname -r)/build, which is correct when the target machine is also the
build machine.

• RTE_DEVEL_BUILD: Stricter options (stop on warning). It defaults to y in a git tree.

55.3.5 Variables that Can be Set/Overridden in a Makefile Only

• VPATH: The path list that the build system will search for sources. By default, RTE_SRCDIR
will be included in VPATH.

• CFLAGS: Flags to use for C compilation. The user should use += to append data in this variable.

• LDFLAGS: Flags to use for linking. The user should use += to append data in this variable.

• ASFLAGS: Flags to use for assembly. The user should use += to append data in this variable.

• CPPFLAGS: Flags to use to give flags to C preprocessor (only useful when assembling .S files).
The user should use += to append data in this variable.

• LDLIBS: In an application, the list of libraries to link with (for example, -L /path/to/libfoo -lfoo
). The user should use += to append data in this variable.

• SRC-y: A list of source files (.c, .S, or .o if the source is a binary) in case of application, library
or object Makefiles. The sources must be available from VPATH.

• INSTALL-y-$(INSTPATH): A list of files to be installed in $(INSTPATH). The files must be
available from VPATH and will be copied in $(RTE_OUTPUT)/$(INSTPATH). Can be used in
almost any RTE Makefile.

• SYMLINK-y-$(INSTPATH): A list of files to be installed in $(INSTPATH). The files must be
available from VPATH and will be linked (symbolically) in $(RTE_OUTPUT)/$(INSTPATH).
This variable can be used in almost any DPDK Makefile.

• PREBUILD: A list of prerequisite actions to be taken before building. The user should use += to
append data in this variable.

• POSTBUILD: A list of actions to be taken after the main build. The user should use += to append
data in this variable.

• PREINSTALL: A list of prerequisite actions to be taken before installing. The user should use +=
to append data in this variable.

• POSTINSTALL: A list of actions to be taken after installing. The user should use += to append
data in this variable.

• PRECLEAN: A list of prerequisite actions to be taken before cleaning. The user should use += to
append data in this variable.

• POSTCLEAN: A list of actions to be taken after cleaning. The user should use += to append data
in this variable.

• DEPDIRS-$(DIR): Only used in the development kit framework to specify if the build of the cur-
rent directory depends on build of another one. This is needed to support parallel builds correctly.

55.3. Makefile Description 433



Programmer’s Guide, Release 20.08.0

55.3.6 Variables that can be Set/Overridden by the User on the Command Line
Only

Some variables can be used to configure the build system behavior. They are documented in Develop-
ment Kit Root Makefile Help and External Application/Library Makefile Help

• WERROR_CFLAGS: By default, this is set to a specific value that depends on the compiler. Users
are encouraged to use this variable as follows:

CFLAGS += $(WERROR_CFLAGS)

This avoids the use of different cases depending on the compiler (icc or gcc). Also, this variable can be
overridden from the command line, which allows bypassing of the flags for testing purposes.

55.3.7 Variables that Can be Set/Overridden by the User in a Makefile or Com-
mand Line

• CFLAGS_my_file.o: Specific flags to add for C compilation of my_file.c.

• LDFLAGS_my_app: Specific flags to add when linking my_app.

• EXTRA_CFLAGS: The content of this variable is appended after CFLAGS when compiling.

• EXTRA_LDFLAGS: The content of this variable is appended after LDFLAGS when linking.

• EXTRA_LDLIBS: The content of this variable is appended after LDLIBS when linking.

• EXTRA_ASFLAGS: The content of this variable is appended after ASFLAGS when assembling.

• EXTRA_CPPFLAGS: The content of this variable is appended after CPPFLAGS when using a C
preprocessor on assembly files.

55.3. Makefile Description 434



CHAPTER

FIFTYSIX

DEVELOPMENT KIT ROOT MAKEFILE HELP

The DPDK provides a root level Makefile with targets for configuration, building, cleaning, testing,
installation and others. These targets are explained in the following sections.

56.1 Configuration Targets

The configuration target requires the name of the target, which is specified using T=mytarget and it is
mandatory. The list of available targets are in $(RTE_SDK)/config (remove the defconfig _ prefix).

Configuration targets also support the specification of the name of the output directory, using
O=mybuilddir. This is an optional parameter, the default output directory is build.

• Config

This will create a build directory, and generates a configuration from a template. A Makefile is
also created in the new build directory.

Example:

make config O=mybuild T=x86_64-native-linux-gcc

56.2 Build Targets

Build targets support the optional specification of the name of the output directory, using O=mybuilddir.
The default output directory is build.

• all, build or just make

Build the DPDK in the output directory previously created by a make config.

Example:

make O=mybuild

• clean

Clean all objects created using make build.

Example:

make clean O=mybuild

• %_sub

Build a subdirectory only, without managing dependencies on other directories.

435



Programmer’s Guide, Release 20.08.0

Example:

make lib/librte_eal_sub O=mybuild

• %_clean

Clean a subdirectory only.

Example:

make lib/librte_eal_clean O=mybuild

56.3 Install Targets

• Install

The list of available targets are in $(RTE_SDK)/config (remove the defconfig_ prefix).

The GNU standards variables may be used: http://gnu.org/prep/standards/html_node/
Directory-Variables.html and http://gnu.org/prep/standards/html_node/DESTDIR.html

Example:

make install DESTDIR=myinstall prefix=/usr

56.4 Test Targets

• test

Launch automatic tests for a build directory specified using O=mybuilddir. It is optional, the
default output directory is build.

Example:

make test O=mybuild

56.5 Documentation Targets

• doc

Generate the documentation (API and guides).

• doc-api-html

Generate the Doxygen API documentation in html.

• doc-guides-html

Generate the guides documentation in html.

• doc-guides-pdf

Generate the guides documentation in pdf.

56.3. Install Targets 436

http://gnu.org/prep/standards/html_node/Directory-Variables.html
http://gnu.org/prep/standards/html_node/Directory-Variables.html
http://gnu.org/prep/standards/html_node/DESTDIR.html


Programmer’s Guide, Release 20.08.0

56.6 Misc Targets

• help

Show a quick help.

56.7 Other Useful Command-line Variables

The following variables can be specified on the command line:

• V=

Enable verbose build (show full compilation command line, and some intermediate commands).

• D=

Enable dependency debugging. This provides some useful information about why a target is built
or not.

• EXTRA_CFLAGS=, EXTRA_LDFLAGS=, EXTRA_LDLIBS=, EXTRA_ASFLAGS=, EX-
TRA_CPPFLAGS=

Append specific compilation, link or asm flags.

• CROSS=

Specify a cross toolchain header that will prefix all gcc/binutils applications. This only works
when using gcc.

56.8 Make in a Build Directory

All targets described above are called from the SDK root $(RTE_SDK). It is possible to run the same
Makefile targets inside the build directory. For instance, the following command:

cd $(RTE_SDK)
make config O=mybuild T=x86_64-native-linux-gcc
make O=mybuild

is equivalent to:

cd $(RTE_SDK)
make config O=mybuild T=x86_64-native-linux-gcc
cd mybuild

# no need to specify O= now
make

56.9 Compiling for Debug

To compile the DPDK and sample applications with debugging information included and the optimiza-
tion level set to 0, the EXTRA_CFLAGS environment variable should be set before compiling as fol-
lows:

export EXTRA_CFLAGS='-O0 -g'

56.6. Misc Targets 437



CHAPTER

FIFTYSEVEN

INSTALLING DPDK USING THE MESON BUILD SYSTEM

57.1 Summary

For many platforms, compiling and installing DPDK should work using the following set of commands:

meson build
cd build
ninja
ninja install

This will compile DPDK in the build subdirectory, and then install the resulting libraries, drivers and
header files onto the system - generally in /usr/local. A package-config file, libdpdk.pc, for DPDK
will also be installed to allow ease of compiling and linking with applications.

After installation, to use DPDK, the necessary CFLAG and LDFLAG variables can be got from pkg-
config:

pkg-config --cflags libdpdk
pkg-config --libs libdpdk

More detail on each of these steps can be got from the following sections.

57.2 Getting the Tools

The meson tool is used to configure a DPDK build. On most Linux distributions this can be got using the
local package management system, e.g. dnf install meson or apt-get install meson. If
meson is not available as a suitable package, it can also be installed using the Python 3 pip tool, e.g.
pip3 install meson. Version 0.47.1 of meson is required - if the version packaged is too old, the
latest version is generally available from “pip”.

The other dependency for building is the ninja tool, which acts similar to make and performs the actual
build using information provided by meson. Installing meson will, in many cases, also install ninja, but,
if not already installed, it too is generally packaged by most Linux distributions. If not available as a
package, it can be downloaded as source or binary from https://ninja-build.org/

57.3 Configuring the Build

To configure a build, run the meson tool, passing the path to the directory to be used for the build e.g.
meson build, as shown above. If calling meson from somewhere other than the root directory of the
DPDK project the path to the root directory should be passed as the first parameter, and the build path
as the second. For example, to build DPDK in /tmp/dpdk-build:

438

https://ninja-build.org/


Programmer’s Guide, Release 20.08.0

user@host:/tmp$ meson ~user/dpdk dpdk-build

Meson will then configure the build based on settings in the project’s meson.build files, and by checking
the build environment for e.g. compiler properties or the presence of dependencies, such as libpcap, or
openssl libcrypto libraries. Once done, meson writes a build.ninja file in the build directory to be
used to do the build itself when ninja is called.

Tuning of the build is possible, both as part of the original meson call, or subsequently using meson
configure command (mesonconf in some older versions). Some options, such as buildtype, or
werror are built into meson, while others, such as max_lcores, or the list of examples to build, are
DPDK-specific. To have a list of all options available run meson configure in the build directory.

Examples of adjusting the defaults when doing initial meson configuration. Project-specific options are
passed used -Doption=value:

meson --werror werrorbuild # build with warnings as errors

meson --buildtype=debug debugbuild # build for debugging

meson -Dexamples=l3fwd,l2fwd fwdbuild # build some examples as
# part of the normal DPDK build

meson -Dmax_lcores=8 smallbuild # scale build for smaller systems

meson -Denable_docs=true fullbuild # build and install docs

meson -Dmachine=default # use builder-independent baseline -march

meson -Ddisable_drivers=event/*,net/tap # disable tap driver and all
# eventdev PMDs for a smaller build

meson -Denable_trace_fp=true tracebuild # build with fast path traces
# enabled

Examples of setting some of the same options using meson configure:

meson configure -Dwerror=true

meson configure -Dbuildtype=debug

meson configure -Dexamples=l3fwd,l2fwd

meson configure -Dmax_lcores=8

meson configure -Denable_trace_fp=true

NOTE: once meson has been run to configure a build in a directory, it cannot be run again on the same
directory. Instead meson configure should be used to change the build settings within the directory,
and when ninja is called to do the build itself, it will trigger the necessary re-scan from meson.

NOTE: machine=default uses a config that works on all supported architectures regardless of the capa-
bilities of the machine where the build is happening.

As well as those settings taken from meson configure, other options such as the compiler to use
can be passed via environment variables. For example:

CC=clang meson clang-build

NOTE: for more comprehensive overriding of compilers or other environment settings, the tools for
cross-compilation may be considered. However, for basic overriding of the compiler etc., the above
form works as expected.

57.3. Configuring the Build 439



Programmer’s Guide, Release 20.08.0

57.4 Performing the Build

Use ninja to perform the actual build inside the build folder previously configured. In most cases no
arguments are necessary.

Ninja accepts a number of flags which are similar to make. For example, to call ninja from outside
the build folder, you can use ninja -C build. Ninja also runs parallel builds by default, but you
can limit this using the -j flag, e.g. ninja -j1 -v to do the build one step at a time, printing each
command on a new line as it runs.

57.5 Installing the Compiled Files

Use ninja install to install the required DPDK files onto the system. The install prefix defaults
to /usr/local but can be used as with other options above. The environment variable DESTDIR can
be used to adjust the root directory for the install, for example when packaging.

With the base install directory, the individual directories for libraries and headers are configurable. By
default, the following will be the installed layout:

headers -> /usr/local/include
libraries -> /usr/local/lib64
drivers -> /usr/local/lib64/dpdk/drivers
libdpdk.pc -> /usr/local/lib64/pkgconfig

For the drivers, these will also be symbolically linked into the library install directory, so that ld.so can
find them in cases where one driver may depend on another, e.g. a NIC PMD depending upon the PCI
bus driver. Within the EAL, the default search path for drivers will be set to the configured driver install
path, so dynamically-linked applications can be run without having to pass in -d /path/to/driver
options for standard drivers.

57.6 Cross Compiling DPDK

To cross-compile DPDK on a desired target machine we can use the following command:

meson cross-build --cross-file <target_machine_configuration>

For example if the target machine is arm64 we can use the following command:

meson arm-build --cross-file config/arm/arm64_armv8_linux_gcc

where config/arm/arm64_armv8_linux_gcc contains settings for the compilers and other build tools to
be used, as well as characteristics of the target machine.

57.7 Using the DPDK within an Application

To compile and link against DPDK within an application, pkg-config should be used to query the correct
parameters. Examples of this are given in the makefiles for the example applications included with
DPDK. They demonstrate how to link either against the DPDK shared libraries, or against the static
versions of the same.

From examples/helloworld/Makefile:

57.4. Performing the Build 440



Programmer’s Guide, Release 20.08.0

PC_FILE := $(shell pkg-config --path libdpdk)
CFLAGS += -O3 $(shell pkg-config --cflags libdpdk)
LDFLAGS_SHARED = $(shell pkg-config --libs libdpdk)
LDFLAGS_STATIC = $(shell pkg-config --static --libs libdpdk)

build/$(APP)-shared: $(SRCS-y) Makefile $(PC_FILE) | build
$(CC) $(CFLAGS) $(SRCS-y) -o $@ $(LDFLAGS) $(LDFLAGS_SHARED)

build/$(APP)-static: $(SRCS-y) Makefile $(PC_FILE) | build
$(CC) $(CFLAGS) $(SRCS-y) -o $@ $(LDFLAGS) $(LDFLAGS_STATIC)

build:
@mkdir -p $@

57.7. Using the DPDK within an Application 441



CHAPTER

FIFTYEIGHT

RUNNING DPDK UNIT TESTS WITH MESON

This section describes how to run test cases with the DPDK meson build system.

Steps to build and install DPDK using meson can be referred in Installing DPDK Using the meson build
system

58.1 Grouping of test cases

Test cases have been classified into four different groups.

• Fast tests.

• Performance tests.

• Driver tests.

• Tests which produce lists of objects as output, and therefore that need manual checking.

These tests can be run using the argument to meson test as --suite project_name:label.

For example:

$ meson test -C <build path> --suite DPDK:fast-tests

If the <build path> is current working directory, the -C <build path> option can be skipped
as below:

$ meson test --suite DPDK:fast-tests

The project name is optional so the following is equivalent to the previous command:

$ meson test --suite fast-tests

The meson command to list all available tests:

$ meson test --list

Test cases are run serially by default for better stability.

Arguments of test() that can be provided in meson.build are as below:

• is_parallel is used to run test case either in parallel or non-parallel mode.

• timeout is used to specify the timeout of test case.

• args is used to specify test specific parameters.

• env is used to specify test specific environment parameters.

442



Programmer’s Guide, Release 20.08.0

58.2 Dealing with skipped test cases

Some unit test cases have a dependency on external libraries, driver modules or config flags, without
which the test cases cannot be run. Such test cases will be reported as skipped if they cannot run. To
enable those test cases, the user should ensure the required dependencies are met. Below are a few
possible causes why tests may be skipped:

1. Optional external libraries are not found.

2. Config flags for the dependent library are not enabled.

3. Dependent driver modules are not installed on the system.

4. Not enough processing cores. Some tests are skipped on machines with 2 or 4 cores.

58.2. Dealing with skipped test cases 443



CHAPTER

FIFTYNINE

BUILDING YOUR OWN APPLICATION

59.1 Compiling a Sample Application in the Development Kit Di-
rectory

When compiling a sample application (for example, hello world), the following variables must be ex-
ported: RTE_SDK and RTE_TARGET.

~/DPDK$ cd examples/helloworld/
~/DPDK/examples/helloworld$ export RTE_SDK=/home/user/DPDK
~/DPDK/examples/helloworld$ export RTE_TARGET=x86_64-native-linux-gcc
~/DPDK/examples/helloworld$ make

CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

The binary is generated in the build directory by default:

~/DPDK/examples/helloworld$ ls build/app
helloworld helloworld.map

59.2 Build Your Own Application Outside the Development Kit

The sample application (Hello World) can be duplicated in a new directory as a starting point for your
development:

~$ cp -r DPDK/examples/helloworld my_rte_app
~$ cd my_rte_app/
~/my_rte_app$ export RTE_SDK=/home/user/DPDK
~/my_rte_app$ export RTE_TARGET=x86_64-native-linux-gcc
~/my_rte_app$ make

CC main.o
LD helloworld
INSTALL-APP helloworld
INSTALL-MAP helloworld.map

59.3 Customizing Makefiles

59.3.1 Application Makefile

The default makefile provided with the Hello World sample application is a good starting point. It
includes:

444



Programmer’s Guide, Release 20.08.0

• $(RTE_SDK)/mk/rte.vars.mk at the beginning

• $(RTE_SDK)/mk/rte.extapp.mk at the end

The user must define several variables:

• APP: Contains the name of the application.

• SRCS-y: List of source files (*.c, *.S).

59.3.2 Library Makefile

It is also possible to build a library in the same way:

• Include $(RTE_SDK)/mk/rte.vars.mk at the beginning.

• Include $(RTE_SDK)/mk/rte.extlib.mk at the end.

The only difference is that APP should be replaced by LIB, which contains the name of the library. For
example, libfoo.a.

59.3.3 Customize Makefile Actions

Some variables can be defined to customize Makefile actions. The most common are listed below. Refer
to Makefile Description section in Development Kit Build System

chapter for details.

• VPATH: The path list where the build system will search for sources. By default, RTE_SRCDIR
will be included in VPATH.

• CFLAGS_my_file.o: The specific flags to add for C compilation of my_file.c.

• CFLAGS: The flags to use for C compilation.

• LDFLAGS: The flags to use for linking.

• CPPFLAGS: The flags to use to provide flags to the C preprocessor (only useful when assembling
.S files)

• LDLIBS: A list of libraries to link with (for example, -L /path/to/libfoo - lfoo)

59.3. Customizing Makefiles 445



CHAPTER

SIXTY

EXTERNAL APPLICATION/LIBRARY MAKEFILE HELP

External applications or libraries should include specific Makefiles from RTE_SDK, located in mk di-
rectory. These Makefiles are:

• ${RTE_SDK}/mk/rte.extapp.mk: Build an application

• ${RTE_SDK}/mk/rte.extlib.mk: Build a static library

• ${RTE_SDK}/mk/rte.extobj.mk: Build objects (.o)

60.1 Prerequisites

The following variables must be defined:

• ${RTE_SDK}: Points to the root directory of the DPDK.

• ${RTE_TARGET}: Reference the target to be used for compilation (for example, x86_64-native-
linux-gcc).

60.2 Build Targets

Build targets support the specification of the name of the output directory, using O=mybuilddir. This is
optional; the default output directory is build.

• all, “nothing” (meaning just make)

Build the application or the library in the specified output directory.

Example:

make O=mybuild

• clean

Clean all objects created using make build.

Example:

make clean O=mybuild

60.3 Help Targets

• help

446



Programmer’s Guide, Release 20.08.0

Show this help.

60.4 Other Useful Command-line Variables

The following variables can be specified at the command line:

• S=

Specify the directory in which the sources are located. By default, it is the current directory.

• M=

Specify the Makefile to call once the output directory is created. By default, it uses $(S)/Makefile.

• V=

Enable verbose build (show full compilation command line and some intermediate commands).

• D=

Enable dependency debugging. This provides some useful information about why a target must
be rebuilt or not.

• EXTRA_CFLAGS=, EXTRA_LDFLAGS=, EXTRA_ASFLAGS=, EXTRA_CPPFLAGS=

Append specific compilation, link or asm flags.

• CROSS=

Specify a cross-toolchain header that will prefix all gcc/binutils applications. This only works
when using gcc.

60.5 Make from Another Directory

It is possible to run the Makefile from another directory, by specifying the output and the source dir. For
example:

export RTE_SDK=/path/to/DPDK
export RTE_TARGET=x86_64-native-linux-icc
make -f /path/to/my_app/Makefile S=/path/to/my_app O=/path/to/build_dir

Part 3: Performance Optimization

60.4. Other Useful Command-line Variables 447



CHAPTER

SIXTYONE

PERFORMANCE OPTIMIZATION GUIDELINES

61.1 Introduction

The following sections describe optimizations used in DPDK and optimizations that should be consid-
ered for new applications.

They also highlight the performance-impacting coding techniques that should, and should not be, used
when developing an application using the DPDK.

And finally, they give an introduction to application profiling using a Performance Analyzer from Intel
to optimize the software.

448



CHAPTER

SIXTYTWO

WRITING EFFICIENT CODE

This chapter provides some tips for developing efficient code using the DPDK. For additional and more
general information, please refer to the Intel® 64 and IA-32 Architectures Optimization Reference Man-
ual which is a valuable reference to writing efficient code.

62.1 Memory

This section describes some key memory considerations when developing applications in the DPDK
environment.

62.1.1 Memory Copy: Do not Use libc in the Data Plane

Many libc functions are available in the DPDK, via the Linux* application environment. This can ease
the porting of applications and the development of the configuration plane. However, many of these
functions are not designed for performance. Functions such as memcpy() or strcpy() should not be
used in the data plane. To copy small structures, the preference is for a simpler technique that can be
optimized by the compiler. Refer to the VTune™ Performance Analyzer Essentials publication from
Intel Press for recommendations.

For specific functions that are called often, it is also a good idea to provide a self-made optimized
function, which should be declared as static inline.

The DPDK API provides an optimized rte_memcpy() function.

62.1.2 Memory Allocation

Other functions of libc, such as malloc(), provide a flexible way to allocate and free memory. In some
cases, using dynamic allocation is necessary, but it is really not advised to use malloc-like functions in
the data plane because managing a fragmented heap can be costly and the allocator may not be optimized
for parallel allocation.

If you really need dynamic allocation in the data plane, it is better to use a memory pool of fixed-size
objects. This API is provided by librte_mempool. This data structure provides several services that in-
crease performance, such as memory alignment of objects, lockless access to objects, NUMA awareness,
bulk get/put and per-lcore cache. The rte_malloc () function uses a similar concept to mempools.

449



Programmer’s Guide, Release 20.08.0

62.1.3 Concurrent Access to the Same Memory Area

Read-Write (RW) access operations by several lcores to the same memory area can generate a lot of data
cache misses, which are very costly. It is often possible to use per-lcore variables, for example, in the
case of statistics. There are at least two solutions for this:

• Use RTE_PER_LCORE variables. Note that in this case, data on lcore X is not available to lcore
Y.

• Use a table of structures (one per lcore). In this case, each structure must be cache-aligned.

Read-mostly variables can be shared among lcores without performance losses if there are no RW vari-
ables in the same cache line.

62.1.4 NUMA

On a NUMA system, it is preferable to access local memory since remote memory access is slower.
In the DPDK, the memzone, ring, rte_malloc and mempool APIs provide a way to create a pool on a
specific socket.

Sometimes, it can be a good idea to duplicate data to optimize speed. For read-mostly variables that are
often accessed, it should not be a problem to keep them in one socket only, since data will be present in
cache.

62.1.5 Distribution Across Memory Channels

Modern memory controllers have several memory channels that can load or store data in parallel. De-
pending on the memory controller and its configuration, the number of channels and the way the memory
is distributed across the channels varies. Each channel has a bandwidth limit, meaning that if all memory
access operations are done on the first channel only, there is a potential bottleneck.

By default, the Mempool Library spreads the addresses of objects among memory channels.

62.1.6 Locking memory pages

The underlying operating system is allowed to load/unload memory pages at its own discretion. These
page loads could impact the performance, as the process is on hold when the kernel fetches them.

To avoid these you could pre-load, and lock them into memory with the mlockall() call.

if (mlockall(MCL_CURRENT | MCL_FUTURE)) {
RTE_LOG(NOTICE, USER1, "mlockall() failed with error \"%s\"\n",

strerror(errno));
}

62.2 Communication Between lcores

To provide a message-based communication between lcores, it is advised to use the DPDK ring API,
which provides a lockless ring implementation.

The ring supports bulk and burst access, meaning that it is possible to read several elements from the
ring with only one costly atomic operation (see Ring Library). Performance is greatly improved when
using bulk access operations.

62.2. Communication Between lcores 450



Programmer’s Guide, Release 20.08.0

The code algorithm that dequeues messages may be something similar to the following:

#define MAX_BULK 32

while (1) {
/* Process as many elements as can be dequeued. */
count = rte_ring_dequeue_burst(ring, obj_table, MAX_BULK, NULL);
if (unlikely(count == 0))

continue;

my_process_bulk(obj_table, count);
}

62.3 PMD Driver

The DPDK Poll Mode Driver (PMD) is also able to work in bulk/burst mode, allowing the factorization
of some code for each call in the send or receive function.

Avoid partial writes. When PCI devices write to system memory through DMA, it costs less if the write
operation is on a full cache line as opposed to part of it. In the PMD code, actions have been taken to
avoid partial writes as much as possible.

62.3.1 Lower Packet Latency

Traditionally, there is a trade-off between throughput and latency. An application can be tuned to achieve
a high throughput, but the end-to-end latency of an average packet will typically increase as a result.
Similarly, the application can be tuned to have, on average, a low end-to-end latency, at the cost of lower
throughput.

In order to achieve higher throughput, the DPDK attempts to aggregate the cost of processing each
packet individually by processing packets in bursts.

Using the testpmd application as an example, the burst size can be set on the command line to a value
of 16 (also the default value). This allows the application to request 16 packets at a time from the PMD.
The testpmd application then immediately attempts to transmit all the packets that were received, in this
case, all 16 packets.

The packets are not transmitted until the tail pointer is updated on the corresponding TX queue of the
network port. This behavior is desirable when tuning for high throughput because the cost of tail pointer
updates to both the RX and TX queues can be spread across 16 packets, effectively hiding the relatively
slow MMIO cost of writing to the PCIe* device. However, this is not very desirable when tuning for low
latency because the first packet that was received must also wait for another 15 packets to be received.
It cannot be transmitted until the other 15 packets have also been processed because the NIC will not
know to transmit the packets until the TX tail pointer has been updated, which is not done until all 16
packets have been processed for transmission.

To consistently achieve low latency, even under heavy system load, the application developer should
avoid processing packets in bunches. The testpmd application can be configured from the command
line to use a burst value of 1. This will allow a single packet to be processed at a time, providing lower
latency, but with the added cost of lower throughput.

62.3. PMD Driver 451



Programmer’s Guide, Release 20.08.0

62.4 Locks and Atomic Operations

This section describes some key considerations when using locks and atomic operations in the DPDK
environment.

62.4.1 Locks

On x86, atomic operations imply a lock prefix before the instruction, causing the processor’s LOCK#
signal to be asserted during execution of the following instruction. This has a big impact on performance
in a multicore environment.

Performance can be improved by avoiding lock mechanisms in the data plane. It can often be replaced
by other solutions like per-lcore variables. Also, some locking techniques are more efficient than others.
For instance, the Read-Copy-Update (RCU) algorithm can frequently replace simple rwlocks.

62.4.2 Atomic Operations: Use C11 Atomic Builtins

DPDK generic rte_atomic operations are implemented by __sync builtins. These __sync builtins result
in full barriers on aarch64, which are unnecessary in many use cases. They can be replaced by __atomic
builtins that conform to the C11 memory model and provide finer memory order control.

So replacing the rte_atomic operations with __atomic builtins might improve performance for aarch64
machines.

Some typical optimization cases are listed below:

Atomicity

Some use cases require atomicity alone, the ordering of the memory operations does not matter. For
example, the packet statistics counters need to be incremented atomically but do not need any particular
memory ordering. So, RELAXED memory ordering is sufficient.

One-way Barrier

Some use cases allow for memory reordering in one way while requiring memory ordering in the other
direction.

For example, the memory operations before the spinlock lock are allowed to move to the critical section,
but the memory operations in the critical section are not allowed to move above the lock. In this case, the
full memory barrier in the compare-and-swap operation can be replaced with ACQUIRE memory order.
On the other hand, the memory operations after the spinlock unlock are allowed to move to the critical
section, but the memory operations in the critical section are not allowed to move below the unlock. So
the full barrier in the store operation can use RELEASE memory order.

Reader-Writer Concurrency

Lock-free reader-writer concurrency is one of the common use cases in DPDK.

62.4. Locks and Atomic Operations 452



Programmer’s Guide, Release 20.08.0

The payload or the data that the writer wants to communicate to the reader, can be written with RE-
LAXED memory order. However, the guard variable should be written with RELEASE memory order.
This ensures that the store to guard variable is observable only after the store to payload is observable.

Correspondingly, on the reader side, the guard variable should be read with ACQUIRE memory order.
The payload or the data the writer communicated, can be read with RELAXED memory order. This
ensures that, if the store to guard variable is observable, the store to payload is also observable.

62.5 Coding Considerations

62.5.1 Inline Functions

Small functions can be declared as static inline in the header file. This avoids the cost of a call instruction
(and the associated context saving). However, this technique is not always efficient; it depends on many
factors including the compiler.

62.5.2 Branch Prediction

The Intel® C/C++ Compiler (icc)/gcc built-in helper functions likely() and unlikely() allow the devel-
oper to indicate if a code branch is likely to be taken or not. For instance:

if (likely(x > 1))
do_stuff();

62.6 Setting the Target CPU Type

The DPDK supports CPU microarchitecture-specific optimizations by means of CON-
FIG_RTE_MACHINE option in the DPDK configuration file. The degree of optimization depends on
the compiler’s ability to optimize for a specific microarchitecture, therefore it is preferable to use the
latest compiler versions whenever possible.

If the compiler version does not support the specific feature set (for example, the Intel® AVX instruction
set), the build process gracefully degrades to whatever latest feature set is supported by the compiler.

Since the build and runtime targets may not be the same, the resulting binary also contains a platform
check that runs before the main() function and checks if the current machine is suitable for running the
binary.

Along with compiler optimizations, a set of preprocessor defines are automatically added to the build
process (regardless of the compiler version). These defines correspond to the instruction sets that the
target CPU should be able to support. For example, a binary compiled for any SSE4.2-capable pro-
cessor will have RTE_MACHINE_CPUFLAG_SSE4_2 defined, thus enabling compile-time code path
selection for different platforms.

62.5. Coding Considerations 453



CHAPTER

SIXTYTHREE

LINK TIME OPTIMIZATION

The DPDK supports compilation with link time optimization turned on. This depends obviously on
the ability of the compiler to do “whole program” optimization at link time and is available only for
compilers that support that feature. To be more specific, compiler (in addition to performing LTO)
have to support creation of ELF objects containing both normal code and internal representation (called
fat-lto-objects in gcc and icc). This is required since during build some code is generated by parsing
produced ELF objects (pmdinfogen).

The amount of performance gain that one can get from LTO depends on the compiler and the code that
is being compiled. However LTO is also useful for additional code analysis done by the compiler. In
particular due to interprocedural analysis compiler can produce additional warnings about variables that
might be used uninitialized. Some of these warnings might be “false positives” though and you might
need to explicitly initialize variable in order to silence the compiler.

Please note that turning LTO on causes considerable extension of build time.

When using make based build, link time optimization can be enabled for the whole DPDK by setting:

CONFIG_RTE_ENABLE_LTO=y

in config file.

For the meson based build it can be enabled by setting meson built-in ‘b_lto’ option:

meson build -Db_lto=true

454



CHAPTER

SIXTYFOUR

PROFILE YOUR APPLICATION

The following sections describe methods of profiling DPDK applications on different architectures.

64.1 Profiling on x86

Intel processors provide performance counters to monitor events. Some tools provided by Intel, such
as Intel® VTune™ Amplifier, can be used to profile and benchmark an application. See the VTune
Performance Analyzer Essentials publication from Intel Press for more information.

For a DPDK application, this can be done in a Linux* application environment only.

The main situations that should be monitored through event counters are:

• Cache misses

• Branch mis-predicts

• DTLB misses

• Long latency instructions and exceptions

Refer to the Intel Performance Analysis Guide for details about application profiling.

64.1.1 Profiling with VTune

To allow VTune attaching to the DPDK application, reconfigure and re-
compile the DPDK with CONFIG_RTE_ETHDEV_RXTX_CALLBACKS and
CONFIG_RTE_ETHDEV_PROFILE_WITH_VTUNE enabled.

64.2 Profiling on ARM64

64.2.1 Using Linux perf

The ARM64 architecture provide performance counters to monitor events. The Linux perf tool can be
used to profile and benchmark an application. In addition to the standard events, perf can be used to
profile arm64 specific PMU (Performance Monitor Unit) events through raw events (-e -rXX).

For more derails refer to the ARM64 specific PMU events enumeration.

455

http://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.100095_0002_04_en/way1382543438508.html


Programmer’s Guide, Release 20.08.0

64.2.2 Low-resolution generic counter

The default cntvct_el0 based rte_rdtsc() provides a portable means to get a wall clock counter
in user space. Typically it runs at a lower clock frequency than the CPU clock frequency. Cycles counted
using this method should be scaled to CPU clock frequency.

64.2.3 High-resolution cycle counter

The alternative method to enable rte_rdtsc() for a high resolution wall clock counter is through the
ARMv8 PMU subsystem. The PMU cycle counter runs at CPU frequency. However, access to the PMU
cycle counter from user space is not enabled by default in the arm64 linux kernel. It is possible to enable
cycle counter for user space access by configuring the PMU from the privileged mode (kernel space).

By default the rte_rdtsc() implementation uses a portable cntvct_el0 scheme. Application can
choose the PMU based implementation with CONFIG_RTE_ARM_EAL_RDTSC_USE_PMU.

The example below shows the steps to configure the PMU based cycle counter on an ARMv8 machine.

git clone https://github.com/jerinjacobk/armv8_pmu_cycle_counter_el0
cd armv8_pmu_cycle_counter_el0
make
sudo insmod pmu_el0_cycle_counter.ko
cd $DPDK_DIR
make config T=arm64-armv8a-linux-gcc
echo "CONFIG_RTE_ARM_EAL_RDTSC_USE_PMU=y" >> build/.config
make

Warning: The PMU based scheme is useful for high accuracy performance profiling with
rte_rdtsc(). However, this method can not be used in conjunction with Linux userspace profil-
ing tools like perf as this scheme alters the PMU registers state.

64.2. Profiling on ARM64 456



CHAPTER

SIXTYFIVE

GLOSSARY

ACL Access Control List

API Application Programming Interface

ASLR Linux* kernel Address-Space Layout Randomization

BSD Berkeley Software Distribution

Clr Clear

CIDR Classless Inter-Domain Routing

Control Plane The control plane is concerned with the routing of packets and with providing a start or
end point.

Core A core may include several lcores or threads if the processor supports hyperthreading.

Core Components A set of libraries provided by the DPDK, including eal, ring, mempool, mbuf,
timers, and so on.

CPU Central Processing Unit

CRC Cyclic Redundancy Check

Data Plane In contrast to the control plane, the data plane in a network architecture are the layers
involved when forwarding packets. These layers must be highly optimized to achieve good per-
formance.

DIMM Dual In-line Memory Module

Doxygen A documentation generator used in the DPDK to generate the API reference.

DPDK Data Plane Development Kit

DRAM Dynamic Random Access Memory

EAL The Environment Abstraction Layer (EAL) provides a generic interface that hides the environ-
ment specifics from the applications and libraries. The services expected from the EAL are:
development kit loading and launching, core affinity/ assignment procedures, system memory
allocation/description, PCI bus access, inter-partition communication.

FIFO First In First Out

FPGA Field Programmable Gate Array

GbE Gigabit Ethernet

HW Hardware

457



Programmer’s Guide, Release 20.08.0

HPET High Precision Event Timer; a hardware timer that provides a precise time reference on x86
platforms.

ID Identifier

IOCTL Input/Output Control

I/O Input/Output

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

lcore A logical execution unit of the processor, sometimes called a hardware thread.

KNI Kernel Network Interface

L1 Layer 1

L2 Layer 2

L3 Layer 3

L4 Layer 4

LAN Local Area Network

LPM Longest Prefix Match

master lcore The execution unit that executes the main() function and that launches other lcores.

mbuf An mbuf is a data structure used internally to carry messages (mainly network packets). The
name is derived from BSD stacks. To understand the concepts of packet buffers or mbuf, refer to
TCP/IP Illustrated, Volume 2: The Implementation.

MESI Modified Exclusive Shared Invalid (CPU cache coherency protocol)

MTU Maximum Transfer Unit

NIC Network Interface Card

OOO Out Of Order (execution of instructions within the CPU pipeline)

NUMA Non-uniform Memory Access

PCI Peripheral Connect Interface

PHY An abbreviation for the physical layer of the OSI model.

pktmbuf An mbuf carrying a network packet.

PMD Poll Mode Driver

QoS Quality of Service

RCU Read-Copy-Update algorithm, an alternative to simple rwlocks.

Rd Read

RED Random Early Detection

RSS Receive Side Scaling

458



Programmer’s Guide, Release 20.08.0

RTE Run Time Environment. Provides a fast and simple framework for fast packet processing, in a
lightweight environment as a Linux* application and using Poll Mode Drivers (PMDs) to increase
speed.

Rx Reception

Slave lcore Any lcore that is not the master lcore.

Socket A physical CPU, that includes several cores.

SLA Service Level Agreement

srTCM Single Rate Three Color Marking

SRTD Scheduler Round Trip Delay

SW Software

Target In the DPDK, the target is a combination of architecture, machine, executive environment and
toolchain. For example: i686-native-linux-gcc.

TCP Transmission Control Protocol

TC Traffic Class

TLB Translation Lookaside Buffer

TLS Thread Local Storage

trTCM Two Rate Three Color Marking

TSC Time Stamp Counter

Tx Transmission

TUN/TAP TUN and TAP are virtual network kernel devices.

VLAN Virtual Local Area Network

Wr Write

WRED Weighted Random Early Detection

WRR Weighted Round Robin

459


	Introduction
	Documentation Roadmap
	Related Publications

	Overview
	Development Environment
	Environment Abstraction Layer
	Core Components
	Ring Manager (librte_ring)
	Memory Pool Manager (librte_mempool)
	Network Packet Buffer Management (librte_mbuf)
	Timer Manager (librte_timer)

	Ethernet* Poll Mode Driver Architecture
	Packet Forwarding Algorithm Support
	librte_net

	Environment Abstraction Layer
	EAL in a Linux-userland Execution Environment
	Initialization and Core Launching
	Shutdown and Cleanup
	Multi-process Support
	Memory Mapping Discovery and Memory Reservation
	Support for Externally Allocated Memory
	Per-lcore and Shared Variables
	Logs
	CPU Feature Identification
	User Space Interrupt Event
	Blacklisting
	Misc Functions
	IOVA Mode Detection
	IOVA Mode Configuration

	Memory Segments and Memory Zones (memzone)
	Multiple pthread
	EAL pthread and lcore Affinity
	non-EAL pthread support
	Public Thread API
	Control Thread API
	Known Issues
	cgroup control

	Malloc
	Cookies
	Alignment and NUMA Constraints
	Use Cases
	Internal Implementation


	Service Cores
	Service Core Initialization
	Enabling Services on Cores
	Service Core Statistics

	Trace Library
	Overview
	DPDK tracing library features
	How to add a tracepoint?
	Create the tracepoint header file
	Register the tracepoint

	Fast path tracepoint
	Event record mode
	Trace file location
	View and analyze the recorded events
	Use the babeltrace command-line tool
	Use the tracecompass GUI tool

	Quick start
	Implementation details
	Trace metadata creation
	Trace memory
	Trace memory layout


	RCU Library
	What is Quiescent State
	Factors affecting the RCU mechanism
	RCU in DPDK
	How to use this library
	Resource reclamation framework for DPDK

	Ring Library
	References for Ring Implementation in FreeBSD*
	Lockless Ring Buffer in Linux*
	Additional Features
	Name

	Use Cases
	Anatomy of a Ring Buffer
	Single Producer Enqueue
	Single Consumer Dequeue
	Multiple Producers Enqueue
	Modulo 32-bit Indexes

	Producer/consumer synchronization modes
	MP/MC (default one)
	SP/SC
	MP_RTS/MC_RTS
	MP_HTS/MC_HTS

	Ring Peek API
	References

	Stack Library
	Implementation
	Lock-based Stack
	Lock-free Stack


	Mempool Library
	Cookies
	Stats
	Memory Alignment Constraints on x86 architecture
	Local Cache
	Mempool Handlers
	Use Cases

	Mbuf Library
	Design of Packet Buffers
	Buffers Stored in Memory Pools
	Constructors
	Allocating and Freeing mbufs
	Manipulating mbufs
	Meta Information
	Dynamic fields and flags

	Direct and Indirect Buffers
	Debug
	Use Cases

	Poll Mode Driver
	Requirements and Assumptions
	Design Principles
	Logical Cores, Memory and NIC Queues Relationships
	Device Identification, Ownership and Configuration
	Device Identification
	Port Ownership
	Device Configuration
	On-the-Fly Configuration
	Configuration of Transmit Queues
	Free Tx mbuf on Demand
	Hardware Offload

	Poll Mode Driver API
	Generalities
	Generic Packet Representation
	Ethernet Device API
	Ethernet Device Standard Device Arguments
	Extended Statistics API
	NIC Reset API


	Generic flow API (rte_flow)
	Overview
	Flow rule
	Description
	Attributes
	Pattern item
	Matching pattern
	Meta item types
	Data matching item types
	Actions
	Action types
	Negative types
	Planned types

	Rules management
	Validation
	Creation
	Destruction
	Flush
	Query

	Flow isolated mode
	Verbose error reporting
	Helpers
	Error initializer
	Object conversion

	Caveats
	PMD interface
	Device compatibility
	Global bit-masks
	Unsupported layer types
	ANY pattern item
	Unsupported actions
	Flow rules priority

	Future evolutions

	Switch Representation within DPDK Applications
	Introduction
	Port Representors
	Basic SR-IOV
	Controlled SR-IOV
	Initialization
	VF Representors
	Traffic Steering

	Flow API (rte_flow)
	Extensions
	Traffic Direction
	Transferring Traffic
	Pattern Items And Actions
	Actions Order and Repetition

	Switching Examples
	Associating VF 1 with Physical Port 0
	Sharing Broadcasts
	Encapsulating VF 2 Traffic in VXLAN


	Traffic Metering and Policing API
	Overview
	Configuration steps
	Run-time processing

	Traffic Management API
	Overview
	Capability API
	Scheduling Algorithms
	Traffic Shaping
	Congestion Management
	Packet Marking
	Steps to Setup the Hierarchy
	Initial Hierarchy Specification
	Hierarchy Commit
	Run-Time Hierarchy Updates


	Wireless Baseband Device Library
	Design Principles
	Device Management
	Device Creation
	Device Identification
	Device Configuration
	Queues Configuration
	Device & Queues Management
	Logical Cores, Memory and Queues Relationships

	Device Operation Capabilities
	Capabilities Discovery

	Operation Processing
	Enqueue / Dequeue Burst APIs
	Operation Representation
	Operation Management and Allocation
	BBDEV Inbound/Outbound Memory
	BBDEV Turbo Encode Operation
	BBDEV Turbo Decode Operation
	BBDEV LDPC Encode Operation
	BBDEV LDPC Decode Operation

	Sample code
	BBDEV Device API


	Cryptography Device Library
	Design Principles
	Device Management
	Device Creation
	Device Identification
	Device Configuration
	Configuration of Queue Pairs
	Logical Cores, Memory and Queues Pair Relationships

	Device Features and Capabilities
	Device Features
	Device Operation Capabilities
	Capabilities Discovery

	Operation Processing
	Private data
	Enqueue / Dequeue Burst APIs
	Operation Representation
	Operation Management and Allocation

	Symmetric Cryptography Support
	Session and Session Management
	Transforms and Transform Chaining
	Symmetric Operations

	Synchronous mode
	Sample code
	Asymmetric Cryptography
	Session and Session Management
	Asymmetric Sessionless Support
	Transforms and Transform Chaining
	Asymmetric Operations

	Asymmetric crypto Sample code
	Asymmetric Crypto Device API


	Compression Device Library
	Device Management
	Device Creation
	Device Identification
	Device Configuration
	Configuration of Queue Pairs
	Logical Cores, Memory and Queues Pair Relationships

	Device Features and Capabilities
	Capabilities
	Capabilities Discovery

	Compression Operation
	Operation Representation
	Operation Management and Allocation
	Passing source data as mbuf-chain
	Operation Status
	Operation status after enqueue / dequeue
	Produced, Consumed And Operation Status

	Transforms
	Compression API Hash support
	Compression API Stateless operation
	priv_xform in Stateless operation
	Stateless and OUT_OF_SPACE
	Hash in Stateless
	Checksum in Stateless

	Compression API Stateful operation
	Stream in Stateful operation
	Stateful and OUT_OF_SPACE
	Hash in Stateful
	Checksum in Stateful

	Burst in compression API
	Enqueue / Dequeue Burst APIs

	Sample code
	Compression Device API


	RegEx Device Library
	Design Principles
	Device Management
	Device Creation
	Device Identification
	Device Configuration
	Configuration of Rules Database
	Configuration of Queue Pairs
	Logical Cores, Memory and Queues Pair Relationships

	Device Features and Capabilities
	Enqueue / Dequeue Burst APIs


	Security Library
	Design Principles
	Inline Crypto
	Inline protocol offload
	Lookaside protocol offload
	PDCP Flow Diagram
	DOCSIS Protocol

	Device Features and Capabilities
	Device Capabilities For Security Operations
	Capabilities Discovery
	Security Session Create/Free
	Security session configuration
	Security API
	Flow based Security Session


	Rawdevice Library
	Introduction
	Design
	Device Identification


	Link Bonding Poll Mode Driver Library
	Link Bonding Modes Overview
	Implementation Details
	Link Status Change Interrupts / Polling
	Requirements / Limitations
	Configuration

	Using Link Bonding Devices
	Using the Poll Mode Driver from an Application
	Using Link Bonding Devices from the EAL Command Line


	Timer Library
	Implementation Details
	Use Cases
	References

	Hash Library
	Hash API Overview
	Multi-process support
	Multi-thread support
	Extendable Bucket Functionality support
	Implementation Details (non Extendable Bucket Case)
	Implementation Details (with Extendable Bucket)
	Entry distribution in hash table
	Use Case: Flow Classification
	References

	Elastic Flow Distributor Library
	Introduction
	Flow Based Distribution
	Computation Based Schemes
	Flow-Table Based Schemes
	EFD Based Scheme

	Example of EFD Library Usage
	Library API Overview
	EFD Table Create
	EFD Insert and Update
	EFD Lookup
	EFD Delete

	Library Internals
	Insert Function Internals
	Lookup Function Internals
	Group Rebalancing Function Internals

	References

	Membership Library
	Introduction
	Vector of Bloom Filters
	Hash-Table based Set-Summaries
	Set-Summaries with False Negative Probability

	Library API Overview
	Set-summary Create
	Set-summary Element Insertion
	Set-summary Element Lookup
	Set-summary Element Delete

	References

	LPM Library
	LPM API Overview
	Implementation Details
	Addition
	Deletion
	Lookup
	Limitations in the Number of Rules
	Use Case: IPv4 Forwarding
	References


	LPM6 Library
	LPM6 API Overview
	Implementation Details
	Addition
	Lookup
	Limitations in the Number of Rules

	Use Case: IPv6 Forwarding

	Flow Classification Library
	Overview
	Classifier creation
	Adding a table to the Classifier
	Flow Parsing
	Adding Flow Rules
	Deleting Flow Rules
	Packet Matching


	Packet Distributor Library
	Distributor Core Operation
	Worker Operation

	Reorder Library
	Operation
	Implementation Details
	Use Case: Packet Distributor

	IP Fragmentation and Reassembly Library
	Packet fragmentation
	Packet reassembly
	IP Fragment Table
	Packet Reassembly
	Debug logging and Statistics Collection


	Generic Receive Offload Library
	Overview
	Two Sets of API
	Lightweight Mode API
	Heavyweight Mode API

	Reassembly Algorithm
	Challenges
	Key-based Reassembly Algorithm

	TCP/IPv4 GRO
	VxLAN GRO
	GRO Library Limitations

	Generic Segmentation Offload Library
	Overview
	Limitations
	Packet Segmentation
	GSO Output Segment Format

	Supported GSO Packet Types
	TCP/IPv4 GSO
	UDP/IPv4 GSO
	VxLAN GSO
	GRE GSO

	How to Segment a Packet

	The librte_pdump Library
	Operation
	Implementation Details
	Use Case: Packet Capturing

	Multi-process Support
	Memory Sharing
	Deployment Models
	Symmetric/Peer Processes
	Asymmetric/Non-Peer Processes
	Running Multiple Independent DPDK Applications
	Running Multiple Independent Groups of DPDK Applications

	Multi-process Limitations
	Communication between multiple processes
	Registering for incoming messages
	Sending messages
	Sending requests
	Receiving and responding to messages
	Misc considerations


	Kernel NIC Interface
	The DPDK KNI Kernel Module
	Loopback Mode
	Kernel Thread Mode
	Default Carrier State

	KNI Creation and Deletion
	DPDK mbuf Flow
	Use Case: Ingress
	Use Case: Egress
	IOVA = VA: Support
	Ethtool

	Thread Safety of DPDK Functions
	Fast-Path APIs
	Performance Insensitive API
	Library Initialization
	Interrupt Thread

	Event Device Library
	Event struct
	Event Metadata
	Event Payload
	Queues
	Ports

	API Walk-through
	Init and Config
	Setting up Queues
	Setting up Ports
	Linking Queues and Ports
	Starting the EventDev
	Ingress of New Events
	Forwarding of Events
	Egress of Events

	Summary

	Event Ethernet Rx Adapter Library
	API Walk-through
	Creating an Adapter Instance
	Adding Rx Queues to the Adapter Instance
	Querying Adapter Capabilities
	Configuring the Service Function
	Starting the Adapter Instance
	Getting Adapter Statistics
	Interrupt Based Rx Queues
	Rx Callback for SW Rx Adapter


	Event Ethernet Tx Adapter Library
	API Walk-through
	Creating an Adapter Instance
	Adding Tx Queues to the Adapter Instance
	Querying Adapter Capabilities
	Linking a Queue to the Adapter's Event Port
	Configuring the Service Function
	Starting the Adapter Instance
	Enqueuing Packets to the Adapter
	Getting Adapter Statistics


	Event Timer Adapter Library
	Event Timer struct
	Timer Expiry Event
	Timeout Ticks
	State
	User Metadata

	API Overview
	Create and Configure an Adapter Instance
	Retrieve Event Timer Adapter Contextual Information
	Configuring the Service Component
	Starting the Adapter Instance
	Arming Event Timers
	Canceling Event Timers

	Processing Timer Expiry Events
	Summary

	Event Crypto Adapter Library
	Adapter Mode
	RTE_EVENT_CRYPTO_ADAPTER_OP_NEW mode
	RTE_EVENT_CRYPTO_ADAPTER_OP_FORWARD mode

	API Overview
	Create an adapter instance
	Querying adapter capabilities
	Adding queue pair to the adapter instance
	Configure the service function
	Set event request/response information
	Start the adapter instance
	Get adapter statistics


	Quality of Service (QoS) Framework
	Packet Pipeline with QoS Support
	Hierarchical Scheduler
	Overview
	Scheduling Hierarchy
	Application Programming Interface (API)
	Implementation
	Worst Case Scenarios for Performance

	Dropper
	Configuration
	Enqueue Operation
	Queue Empty Operation
	Source Files Location
	Integration with the DPDK QoS Scheduler
	Integration with the DPDK QoS Scheduler Sample Application
	Application Programming Interface (API)

	Traffic Metering
	Functional Overview
	Implementation Overview


	Power Management
	CPU Frequency Scaling
	Core-load Throttling through C-States
	Per-core Turbo Boost
	Use of Power Library in a Hyper-Threaded Environment
	API Overview of the Power Library
	User Cases
	Empty Poll API
	Abstract
	Proposed Solution
	API Overview for Empty Poll Power Management

	User Cases
	References

	Packet Classification and Access Control
	Overview
	Rule definition
	RT memory size limit
	Classification methods

	Application Programming Interface (API) Usage
	Classify with Multiple Categories


	Packet Framework
	Design Objectives
	Overview
	Port Library Design
	Port Types
	Port Interface

	Table Library Design
	Table Types
	Table Interface
	Hash Table Design

	Pipeline Library Design
	Connectivity of Ports and Tables
	Port Actions
	Table Actions

	Multicore Scaling
	Shared Data Structures

	Interfacing with Accelerators

	Vhost Library
	Vhost API Overview
	Vhost-user Implementations
	Guest memory requirement
	Vhost supported vSwitch reference
	Vhost data path acceleration (vDPA)

	Metrics Library
	Initializing the library
	Registering metrics
	Updating metric values
	Querying metrics
	Deinitialising the library
	Bit-rate statistics library
	Initialization
	Controlling the sampling rate

	Latency statistics library
	Initialization
	Triggering statistic updates
	Library shutdown
	Timestamp and latency calculation


	Telemetry Library
	Creating Callback Functions
	Function Type
	Formatting Data

	Registering Commands
	Using Commands

	Berkeley Packet Filter Library
	Packet data load instructions
	Not currently supported eBPF features

	IPsec Packet Processing Library
	SA level API
	RTE_SECURITY_ACTION_TYPE_NONE
	RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO
	RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO
	RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL
	RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL

	SA database API
	Create/destroy
	Add/delete rules
	Lookup

	Supported features
	Limitations

	Graph Library and Inbuilt Nodes
	Features
	Advantages of Graph architecture
	Performance tuning parameters
	Programming model
	Anatomy of Node:
	Node creation and registration
	Link the Nodes to create the graph topology
	Create the graph object
	Multicore graph processing
	In fast path
	Context update when graph walk in action
	Get the node statistics using graph cluster
	Node writing guidelines
	Static nodes
	Intermediate nodes

	Graph object memory layout
	Inbuilt Nodes
	ethdev_rx
	ethdev_tx
	pkt_drop
	ip4_lookup
	ip4_rewrite
	null


	Source Organization
	Makefiles and Config
	Libraries
	Drivers
	Applications

	Development Kit Build System
	Building the Development Kit Binary
	Build Directory Concept

	Building External Applications
	Makefile Description
	General Rules For DPDK Makefiles
	Makefile Types
	Internally Generated Build Tools
	Useful Variables Provided by the Build System
	Variables that Can be Set/Overridden in a Makefile Only
	Variables that can be Set/Overridden by the User on the Command Line Only
	Variables that Can be Set/Overridden by the User in a Makefile or Command Line


	Development Kit Root Makefile Help
	Configuration Targets
	Build Targets
	Install Targets
	Test Targets
	Documentation Targets
	Misc Targets
	Other Useful Command-line Variables
	Make in a Build Directory
	Compiling for Debug

	Installing DPDK Using the meson build system
	Summary
	Getting the Tools
	Configuring the Build
	Performing the Build
	Installing the Compiled Files
	Cross Compiling DPDK
	Using the DPDK within an Application

	Running DPDK Unit Tests with Meson
	Grouping of test cases
	Dealing with skipped test cases

	Building Your Own Application
	Compiling a Sample Application in the Development Kit Directory
	Build Your Own Application Outside the Development Kit
	Customizing Makefiles
	Application Makefile
	Library Makefile
	Customize Makefile Actions


	External Application/Library Makefile help
	Prerequisites
	Build Targets
	Help Targets
	Other Useful Command-line Variables
	Make from Another Directory

	Performance Optimization Guidelines
	Introduction

	Writing Efficient Code
	Memory
	Memory Copy: Do not Use libc in the Data Plane
	Memory Allocation
	Concurrent Access to the Same Memory Area
	NUMA
	Distribution Across Memory Channels
	Locking memory pages

	Communication Between lcores
	PMD Driver
	Lower Packet Latency

	Locks and Atomic Operations
	Locks
	Atomic Operations: Use C11 Atomic Builtins

	Coding Considerations
	Inline Functions
	Branch Prediction

	Setting the Target CPU Type

	Link Time Optimization
	Profile Your Application
	Profiling on x86
	Profiling with VTune

	Profiling on ARM64
	Using Linux perf
	Low-resolution generic counter
	High-resolution cycle counter


	Glossary

