
DPDK ARCHITECTURE AND
ROADMAP DISCUSSION

KANNAN BABU RAMIA, INTEL
DEEPAK KUMAR JAIN, INTEL

LEGAL DISCLAIMER
• No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
• Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-

infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.
• This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice. Contact your

Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.
• The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized errata

are available on request.
• Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting:

http://www.intel.com/design/literature.htm
• Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
• *Other names and brands may be claimed as the property of others.
• Copyright © 2017, Intel Corporation. All rights reserved.
• Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These

optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. Notice Revision #20110804

• Mileage may vary Disclaimer: Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or
configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more
complete information about performance and benchmark results, visit www.intel.com/benchmarks Test and System Configurations: Estimates are
based on internal Intel analysis using at least Data Plane Development Kit IpSec sample application on Intel(R) Xeon(R) CPU E5-2658 v4@ 2.30GHz with
atleast using Intel(R) Communications Chipset(s) 8955 with Intel(R) QuickAssist Technology.

http://www.intel.com/design/literature.htm
http://www.intel.com/benchmarks

Agenda
 Key trends in network transformation
 DPDK role
 DPDK Architecture
 Multi Architecture/ Multi vendor support
 Open source projects using DPDK
 DPDK Roadmap
 Open Questions

End-to-end network
infrastructure

WORKLOAD
CONVERGENCE

NETWORK
VIRTUALIZATION

END-TO-END
TRANSFORMATION

Macro Base
Station

Small Cell

Switch

Router Data Center
Network

Core

Backbone

Copyright © 2017 Intel Corporation. All rights reserved.

DPDK Generational Performance
Gains

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to
assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

IPV4 L3 Forwarding Performance of 64Byte
Packets

*System Configuration
Hardware
Platform SuperMicro* - X10DRX
CPU Intel® Xeon® E5-2658 v4 Processor
Chipset Intel® C612 chipset

Sockets 2

Cores per Socket 14 (28 threads)

LL CACHE 30 MB

QPI/DMI 9.6GT/s

PCIe Gen3x8

MEMORY DDR4 2400 MHz, 1Rx4 8GB (total 64GB), 4 Channel per
Socket

NIC 10 x Intel® Ethernet CNA XL710-QDA2PCI-Express Gen3 x8
Dual Port 40 GbE Ethernet NIC (1x40G/card)

NIC Mbps 40,000

BIOS BIOS version: 1.0c (02/12/2015)

Software
OS Debian* 8.0

Kernel version 3.18.2

Other DPDK 2.2.0

55
80.1

164.9

255
279.9

*346.7

0

50

100

150

200

250

300

350

400

2010 (2S
WMR)

2011 (1S
SNB)

2012(2S
SNB)

2013 (2S
IVB)

2014 (2S
HSW)

2015 (2S
BDW)

L3
Fw

d
Pe

rf
or

m
an

ce
 (M

PP
S)

Year

37
Gbps

53.8
Gbps

110.8
Gbps

171.4
Gbps

187.2
Gbps

233
Gbps

2010 2011 20142012 20162015

NFV – Life of a Packet
M

AC Rx

Pa
rs

er

Fl
ow

Di
re

ct
or

M
AC Tx Tx

Sc
he

du
le

r

Pa
rs

er
Tr

af
fic

M
an

ag
er

AC
L

&
Cl

as
si

fie
r

Po
lic

er

De
cr

yp
t

Pa
rs

er
&

AC
L

Pa
ck

et
Ed

ito
r

CPU & Software

Ro
ut

in
g/

Fo
rw

ar
di

ng
/ N

AT

En
cr

yp
t

Crypto
Accelerator

Intel®
QuickAssist

TE
P

Po
lic

er

AC
L

VE
B

In
lin

e
De

cr
yp

t

AC
L

/
G

FT

VE
B

Pa
rs

er

TE
P

In
lin

e
Cr

yp
to

 vS
w

tic
h

vS
w

itc
h

Virtual Network Appliances

VEB – Virtual Embedded Bridge
TEP – Tunnel End Point
ACL – Access Control List
GFT – Generic Flow Table

Crypto
Accelerator

Intel®
QuickAssist

Ho
st

In

te
rf

ac
e

Ho
st

In

te
rf

ac
e

Ho
st

In

te
rf

ac
e

Ho
st

In

te
rf

ac
e

NIC Transmit

NIC Receive

Outer
Ethernet Header

Outer IP
Header

Outer UDP
Header

Overlay Header
(e.g. VXLAN)

IPSec ESP
transport

Inner Ethernet
Header

Inner
IP Header

Inner
L4 Header

Outer
CRC

Inner
Data

Outer Header (Underlay) Inner Payload (Overlay)
IPSec ESP

trailer

NFV - Service Function Chaining
CPU & Software

vS
w

tic
h

vS
w

itc
h

VEB – Virtual Embedded Bridge
TEP – Tunnel End Point
ACL – Access Control List
GFT – Generic Flow Table
VNF – Virtual Network Functions

V
ir

tu
al

 N
et

w
or

k
Fu

nc
tio

ns

Crypto
Accelerator

QuickAssistCrypto
Accelerator

QuickAssist
Crypto

Accelerator

Intel® QuickAssist
Technology VM to VM communication

between Virtual Network
Functions, needs multi-

100s of Gbps throughput
M

A
C

Rx

Pa
rs

er

Fl
ow

D
ir

ec
to

r

M
A

C
Tx Tx

Sc
he

du
le

r

TE
P

Po
lic

er

A
CL V
EB

In
lin

e
D

ec
ry

pt

A
CL

/
G

FT

V
EB

Pa
rs

er

TE
P

In
lin

e
Cr

yp
to

H
os

t
In

te
rf

ac
e

H
os

t
In

te
rf

ac
e

H
os

t
In

te
rf

ac
e

H
os

t
In

te
rf

ac
e

NIC Transmit

NIC Receive

DPDK Architecture
DPDK Fundamentals

• Implements run-to-completion
and pipeline models

• No scheduler - all devices
accessed by polling

• Supports 32-bit and 64-bit OSs
with and without NUMA

• Scales from Intel® Atom™ to
Intel® Xeon® processors

• Number of cores and processors
is not limited

• Optimal packet allocation across
DRAM channels

• Use of 2M & 1G hugepages and
cache aligned structures

• Uses bulk concepts - processing
‘n’ packets simultaneously

Multi-Architecture/
Multi-Vendor Support

2014 2015 2016 2017
First non-IA

contributions.
Non-Intel NIC support. Significant ARM vendor

engagement.
SoC enhancements.

Non-Intel crypto.

ENIC

POWER 8 TILE-Gx
ARM v7/v8

BNX2X MLX4/MLX5

NFP

CXGBE
SZEDATA2

ThunderX PMD

QEDE

ENA

BNXT

DPAA2ARMv8 Crypto
OcteonTX
LiquidIO

SoC Enhancements

Event APIEnhanced ARM Support

SFC

CPU Architectures

Poll Mode Drivers

AVP

ARK

http://seeklogo.com/qlogic-logo-114199.html

10

DPDK CONSUMPTION
DPDK in OS Distros

Version 6 +

Version 7.1 +

Version 7.1 +

Version 15.10 +

Version 10.1 +

Version 22 +
Packet Generators

Pktgen

MoonGen
Ostinato

vSwitches

VPP

Lagopus
BESS

TCP/IP Stacks

TLDK & VPP

LWIP DPDK+ Many more

Storage

SPDK

vRouters

VPP

DPDK Roadmap

11

Q1’17 (v 17.02)

• Added Elastic Flow Distributor library (rte_efd).L
• Added generic flow API (rte_flow).
• Added support for representing buses in EAL.
• Added APIs for MACsec offload support to the ixgbe PMD.
• Added VF Daemon (VFD) for i40e. – EXPERIMENTAL.
• virtio-user with vhost-kernel as another exceptional path.
• Added ARMv8 crypto PMD and updates to QAT, AESNI-MB PMDs.

Released

DPDK Roadmap

12

Q2’17 (v 17.05)

• Added Eventdev PMD.
• Added event driven programming model library (rte_eventdev).
• Added bit-rate calculation, latency stats and information metric library.
• Kept consistent PMD batching behaviour.
• Added VFIO hotplug and vmxnet3 version 3 support.
• Added MTU feature support to Virtio and Vhost.
• Added interrupt mode support for virtio-user.

In Development

DPDK Roadmap

13

Q2’17 (v 17.08)
• Generic QoS API
• Cryptodev Multi-Core SW Scheduler
• Generic Receive Offload
• Generic Flow Enhancements
• VF Port Reset for IXGBE
• API to Configure Queue Regions for RSS
• Support for IPFIX

In Development

OPEN QUESTIONS?

14

 What is missing from DPDK?

 What are the major pain-points in using DPDK?

 What can be improved in DPDK? Build process? Logging?

 What are the big performance bottlenecks?

 Working with Kernel?

16

Bond

QoS SchedLink Status
Interrupt

L3fwd

Load
Balancer

KNI

IPv4
Multicast

L2fwd
Keep Alive

Packet
Distrib

IP Pipeline

Hello
World

Exception
Path

L2fwd
Jobstats

L2fwd
IVSHMEM

Timer

IP Reass

VMDq DCB

PTP Client

Packet
OrderingCLI

DPDK

Multi
Process

Ethtool

L3fwd VF

IP Frag

QoS Meter

L2fwd

Perf
Thread

L2fwd
Crypto

RxTx
Callbacks

Quota &
W’mark

Skeleton

TEP Term

Vhost

VM Power
Manager

VMDq

L3fwd
Power

L3fwd ACL

Netmap

Vhost Xen

QAT

DPDK Sample Apps

L2fwd CAT

IPsec
Sec GW

17

DPDK Acceleration Enhancements

DPDK API

Traffic Gens
Pktgen, T-Rex,
Moongen, …

vSwitch
OVS, Lagopus,

…

DPDK
example

apps

AES-NI

Future
features

Event based
program
models

Threading
Models

lthreads, …

Video
Apps

EAL

MALLOC

MBUF

MEMPOOL

RING

TIMER

Core
Libraries

KNI

POWER

IVSHMEM

Platform

LPM

Classificati
on

ACL

Classify

e1000

ixgbe

bonding

af_pkt

i40e

fm10k

Packet Access (PMD)

ETHDEV

xenvirt

enic

ring

METER

SCHED

QoS

cxgbe

vmxnet3 virtio

PIPELINE

mlx4 memnic

others

HASH

Utilities

IP Frag

CMDLINE
JOBSTAT

KVARGS
REORDER

TABLE

Legacy DPDK

Future
acceleratorsCrypto Programmable

Classifier/Parser

HW

3rd

Party

GPU/FPGA

3rd

Party

SoC
PMD

External
mempool
manager

SoC
HW

SOC model

VNF Apps

DPDK Acceleration Enhancements

DPDK Framework

Network Stacks
libUNS, mTCP,

SeaStar,
libuinet, TLDK, …

Compression

3rd

Party

HW/SW

IPSec DPI
Hyperscan

Proxy
Apps, …

Kernel
Space

Driver

18

Packet Processing Kernel vs. User Space

User
Space

NIC

Applications

Stack

System Calls

CSRs

Interrupts

Memory (RAM)

Packet Data

Copy

Socket Buffers
(mbuf’s)

Configuration

Descriptors

Kernel Space Driver

Configuration

Descriptors

DMA

Benefit #1
Removed Data copy
from Kernel to User
Space

Benefit #2
No Interrupts

Descriptors
Mapped from Kernel

Configuration
Mapped from Kernel

Descriptor
Rings

Memory (RAM)
User Space Driver with Zero Copy

Kernel
Space

User
Space

NIC

DPDK PMD

Stack

UIO Driver

System Calls

CSRs

DPDK Enabled App

DMA

Descriptor
Rings

Socket
Buffers
(skb’s)

1

2

3

1

2

Benefit #3
Network stack can
be streamlined and
optimized

DATA

DPDK In-Depth

19

20

PCIe* Connectivity and Core Usage
Using run-to-completion or pipeline software models

Processor 0
Physical
Core 0
Linux* Control Plane

NUMA
Pool Caches
Queue/Rings
Buffers

10 GbE

10 GbE

Physical
Core 1
Intel® DPDK

PMD Packet I/O
Packet work

Rx
Tx

Physical
Core 2
Intel® DPDK

PMD Packet I/O
Flow work

Rx
Tx

Physical
Core 3
Intel® DPDK

PMD Packet I/O
Flow Classification
App A, B, C

Rx
Tx

Physical
Core 5
Intel® DPDK

PMD Packet I/O
Flow Classification
App A, B, C

Rx
Tx

Run to Completion Model
• I/O and Application workload can be handled on a single core
• I/O can be scaled over multiple cores

10 GbE

Pipeline Model
• I/O application disperses packets to other cores
• Application work performed on other cores

Processor 1

Physical
Core 4
Intel® DPDK

10 GbE

Physical
Core 5
Intel® DPDK

Physical
Core 0
Intel® DPDK

PMD Packet I/O
Hash

Physical
Core 1
Intel® DPDK App

A
App
B

App
C

Physical
Core 2
Intel® DPDK App

A
App
B

App
C

Physical
Core 3
Intel® DPDK

Rx
Tx

10 GbE
Pkt Pkt

Physical
Core 4
Intel® DPDK

PMD Packet I/O
Flow Classification
App A, B, C

Rx
Tx

Pkt Pkt

Pkt Pkt

Pkt

Pkt

RSS Mode

QPI

PCIe
PCIe

PCIe
PCIe

PCIe
PCIe

NUMA
Pool Caches
Queue/Rings
Buffers

Can handle more I/O
on fewer cores with
vectorization

Core Components Architecture

User Space

Ethernet

Intel® DPDK PMD

IP

TCP

Session

Presentation

Application

L3
 F

or
w

ar
d

Kernel

10GbE 10GbE 10GbE 10GbE 10GbE

4K pages
(64)
SKbuff

DPDK

KNI

PMD PMD PMD PMD

Intel® DPDK allocates packet memory
equally across 2, 3, 4 channels.
Aligned to have equal load over channels

Stacks available from

Eco Systems

Run to completion model
on each core used

DPDK model

IGB-UIO

IGB IXGBE

KNI

RYO
Stacks

“Open-source
Stack”

(NetBSD)

Pkt Buffers
(60K 2K buffers)

Events
(2K 100B
buffers)

Rings for cached buffers

Per core lists, unique per lcore. Allows
packet movement without locks

2 MB / 1 GB Huge Pages
for Cache Aligned Structures

High Performance
Components of DPDK

• Environment Abstraction Layer
– Abstracts huge-page file system, provides multi-thread and multi-process support, etc.

• Memory Manager
– Responsible for allocating pools of objects in memory. A pool is created in huge page memory space and uses a ring to store

free objects. It also provides an alignment helper to ensure that objects are padded to spread them equally on all DRAM
channels.

• Buffer Manager
– Reduces by a significant amount the time the operating system spends allocating and de-allocating buffers. The Intel® DPDK

pre-allocates fixed size buffers which are stored in memory pools.

• Queue Manager
– Implements safe lockless queues, instead of using spinlocks, that allow different software components to process packets,

while avoiding unnecessary wait times.

• Flow Classification
– Provides an efficient mechanism which incorporates Intel® Streaming SIMD Extensions (Intel® SSE) to produce a hash based on

tuple information so that packets may be placed into flows quickly for processing, thus greatly improving throughput.

EAL Initialization in a
Linux Environment

Ethernet Device Framework
Application (calls rte_ethdev API)

Network H/W

rte_eth_rx_burst(…)

rrc_recv_pkts(…)

rte_eth_tx_burst(…)

rrc_xmit_pkts(…)

(Port ID, Queue ID)

(PMD specific context)

(Descriptors)

PA
CK

ET
 F

LO
W

PACKET FLO
W

Initialization

RX

TX

Polling

1. Initialization
o Init Memory Zones and Pools
o Init Devices and Device Queues
o Start Packet Forwarding Application

2. Packet Reception (RX)
o Poll Devices’ RX queues and receive packets in bursts
o Allocate new RX buffers from per queue memory pools

to stuff into descriptors
3. Packet Transmission (TX)

o Transmit the received packets from RX
o Free the buffers that we used to store the packets

30,000 ft overview of packet
flow

Packets to
send

	Slide Number 1
	Slide Number 2
	Agenda
	End-to-end network infrastructure
	DPDK Generational Performance Gains
	NFV – Life of a Packet
	NFV - Service Function Chaining
	DPDK Architecture
	Multi-Architecture/�Multi-Vendor Support
	DPDK CONSUMPTION
	DPDK Roadmap
	DPDK Roadmap
	DPDK Roadmap
	OPEN QUESTIONS?
	Slide Number 15
	DPDK Sample Apps
	DPDK Acceleration Enhancements
	Packet Processing Kernel vs. User Space
	DPDK In-Depth
	PCIe* Connectivity and Core Usage�Using run-to-completion or pipeline software models
	Core Components Architecture
	DPDK model
	High Performance Components of DPDK
	 EAL Initialization in a Linux Environment
	Ethernet Device Framework
	30,000 ft overview of packet flow

