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DPDK Generational Performance 
Gains

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. 
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to 
assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.  For more complete information visit  www.intel.com/benchmarks. 

IPV4 L3 Forwarding Performance of 64Byte 
Packets

*System Configuration
Hardware
Platform SuperMicro* - X10DRX
CPU Intel® Xeon® E5-2658 v4 Processor
Chipset Intel® C612 chipset 

Sockets 2

Cores per Socket 14 (28 threads)

LL CACHE 30 MB

QPI/DMI 9.6GT/s

PCIe Gen3x8

MEMORY DDR4 2400 MHz, 1Rx4 8GB (total 64GB), 4 Channel per 
Socket

NIC 10 x Intel® Ethernet CNA XL710-QDA2PCI-Express Gen3 x8 
Dual Port 40 GbE Ethernet NIC (1x40G/card) 

NIC Mbps 40,000

BIOS BIOS version: 1.0c (02/12/2015)

Software
OS Debian* 8.0

Kernel version 3.18.2

Other DPDK 2.2.0
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NFV – Life of a Packet 
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NFV - Service Function Chaining
CPU & Software
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DPDK Architecture
DPDK Fundamentals

• Implements run-to-completion 
and pipeline models

• No scheduler - all devices 
accessed by polling

• Supports 32-bit and 64-bit OSs 
with and without NUMA 

• Scales from Intel® Atom™ to 
Intel® Xeon® processors

• Number of cores and processors 
is not limited

• Optimal packet allocation across 
DRAM channels

• Use of 2M & 1G hugepages and 
cache aligned structures

• Uses bulk concepts - processing 
‘n’ packets simultaneously



Multi-Architecture/
Multi-Vendor Support

2014 2015 2016 2017
First non-IA 

contributions.
Non-Intel NIC support. Significant ARM vendor 

engagement.
SoC enhancements. 

Non-Intel crypto.

ENIC

POWER 8 TILE-Gx
ARM v7/v8

BNX2X MLX4/MLX5

NFP

CXGBE
SZEDATA2

ThunderX PMD

QEDE

ENA

BNXT

DPAA2ARMv8 Crypto
OcteonTX
LiquidIO

SoC Enhancements

Event APIEnhanced ARM Support

SFC

CPU Architectures

Poll Mode Drivers

AVP

ARK

http://seeklogo.com/qlogic-logo-114199.html
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DPDK CONSUMPTION
DPDK in OS Distros

Version 6 +

Version 7.1 +

Version 7.1 +

Version 15.10 +

Version 10.1 +

Version 22 +
Packet Generators

Pktgen

MoonGen
Ostinato

vSwitches

VPP

Lagopus
BESS

TCP/IP Stacks

TLDK & VPP

LWIP DPDK+ Many more

Storage

SPDK

vRouters

VPP



DPDK Roadmap
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Q1’17 (v 17.02)

• Added Elastic Flow Distributor library (rte_efd).L
• Added generic flow API (rte_flow).
• Added support for representing buses in EAL.
• Added APIs for MACsec offload support to the ixgbe PMD.
• Added VF Daemon (VFD) for i40e. – EXPERIMENTAL.
• virtio-user with vhost-kernel as another exceptional path.
• Added ARMv8 crypto PMD and updates to QAT, AESNI-MB PMDs.

Released



DPDK Roadmap
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Q2’17 (v 17.05)

• Added Eventdev PMD.
• Added event driven programming model library (rte_eventdev).
• Added bit-rate calculation, latency stats and information metric library.
• Kept consistent PMD batching behaviour.
• Added VFIO hotplug and vmxnet3 version 3 support.
• Added MTU feature support to Virtio and Vhost.
• Added interrupt mode support for virtio-user.

In Development



DPDK Roadmap
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Q2’17 (v 17.08)
• Generic QoS API
• Cryptodev Multi-Core SW Scheduler
• Generic Receive Offload
• Generic Flow Enhancements
• VF Port Reset for IXGBE
• API to Configure Queue Regions for RSS
• Support for IPFIX

In Development



OPEN QUESTIONS?

14

 What is missing from DPDK?

 What are the major pain-points in using DPDK?

 What can be improved in DPDK? Build process? Logging?

 What are the big performance bottlenecks?

 Working with Kernel?
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DPDK Acceleration Enhancements

DPDK API

Traffic Gens
Pktgen, T-Rex, 
Moongen, …

vSwitch
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…
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example 

apps
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program 
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Threading 
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lthreads, …
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Packet Processing Kernel vs. User Space

User
Space

NIC

Applications

Stack

System Calls

CSRs

Interrupts

Memory (RAM)

Packet Data

Copy

Socket Buffers
(mbuf’s)

Configuration

Descriptors

Kernel Space Driver

Configuration

Descriptors

DMA

Benefit #1
Removed Data copy 
from Kernel to User 
Space

Benefit #2
No Interrupts 

Descriptors
Mapped from Kernel

Configuration
Mapped from Kernel

Descriptor
Rings

Memory (RAM)
User Space Driver with Zero Copy

Kernel
Space

User
Space

NIC

DPDK PMD

Stack

UIO Driver

System Calls

CSRs

DPDK Enabled App

DMA

Descriptor
Rings

Socket
Buffers
(skb’s)

1

2

3

1

2

Benefit #3
Network stack can 
be streamlined and 
optimized

DATA



DPDK In-Depth
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PCIe* Connectivity and Core Usage
Using run-to-completion or pipeline software models

Processor 0
Physical 
Core 0
Linux* Control Plane

NUMA
Pool Caches
Queue/Rings
Buffers

10 GbE

10 GbE

Physical
Core 1
Intel® DPDK

PMD Packet I/O 
Packet work

Rx
Tx

Physical
Core 2
Intel® DPDK

PMD Packet I/O 
Flow work

Rx
Tx

Physical
Core 3
Intel® DPDK

PMD Packet I/O 
Flow Classification
App A, B, C

Rx
Tx

Physical
Core 5
Intel® DPDK

PMD Packet I/O 
Flow Classification
App A, B, C

Rx
Tx

Run to Completion Model
• I/O and Application workload can be handled on a single core
• I/O can be scaled over multiple cores

10 GbE

Pipeline Model
• I/O application disperses packets to other cores
• Application work performed on other cores

Processor 1

Physical 
Core 4
Intel® DPDK

10 GbE

Physical
Core 5
Intel® DPDK

Physical
Core 0
Intel® DPDK

PMD Packet I/O 
Hash

Physical
Core 1
Intel® DPDK App 

A
App 
B

App 
C

Physical
Core 2
Intel® DPDK App 

A
App 
B

App 
C

Physical
Core 3
Intel® DPDK

Rx
Tx

10 GbE
Pkt Pkt

Physical
Core 4
Intel® DPDK

PMD Packet I/O 
Flow Classification
App A, B, C

Rx
Tx

Pkt Pkt

Pkt Pkt

Pkt

Pkt

RSS Mode

QPI

PCIe
PCIe

PCIe
PCIe

PCIe
PCIe

NUMA
Pool Caches
Queue/Rings
Buffers

Can handle more I/O 
on fewer cores with 
vectorization



Core Components Architecture



User Space

Ethernet

Intel® DPDK PMD

IP

TCP

Session

Presentation

Application
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10GbE 10GbE 10GbE 10GbE 10GbE

4K pages 
(64)
SKbuff

DPDK

KNI

PMD PMD PMD PMD

Intel® DPDK allocates packet memory 
equally across 2, 3, 4 channels.
Aligned to have equal load over channels

Stacks available from  

Eco Systems

Run to completion model
on each core used

DPDK model

IGB-UIO

IGB IXGBE

KNI

RYO
Stacks

“Open-source
Stack”

(NetBSD)

Pkt Buffers 
(60K 2K buffers)

Events
(2K 100B 
buffers)

Rings for cached buffers

Per core lists, unique per lcore. Allows 
packet movement without locks 

2 MB / 1 GB Huge Pages
for Cache Aligned Structures



High Performance 
Components of DPDK

• Environment Abstraction Layer
– Abstracts huge-page file system, provides multi-thread and multi-process support, etc.

• Memory Manager
– Responsible for allocating pools of objects in memory. A pool is created in huge page memory space and uses a ring to store 

free objects. It also provides an alignment helper to ensure that objects are padded to spread them equally on all DRAM 
channels.

• Buffer Manager
– Reduces by a significant amount the time the operating system spends allocating and de-allocating buffers. The Intel® DPDK 

pre-allocates fixed size buffers which are stored in memory pools.

• Queue Manager
– Implements safe lockless queues, instead of using spinlocks, that allow different software components to process packets, 

while avoiding unnecessary wait times.

• Flow Classification
– Provides an efficient mechanism which incorporates Intel® Streaming SIMD Extensions (Intel® SSE) to produce a hash  based on 

tuple information so that packets may be placed into flows quickly for processing, thus greatly improving throughput.



EAL Initialization in a 
Linux Environment



Ethernet Device Framework
Application (calls rte_ethdev API)

Network H/W

rte_eth_rx_burst(…)

rrc_recv_pkts(…)

rte_eth_tx_burst(…)

rrc_xmit_pkts(…)

(Port ID, Queue ID)

(PMD specific context)

(Descriptors)

PA
CK

ET
 F

LO
W

PACKET FLO
W



Initialization

RX

TX

Polling

1. Initialization
o Init Memory Zones and Pools
o Init Devices and Device Queues
o Start Packet Forwarding Application

2. Packet Reception (RX)
o Poll Devices’ RX queues and receive packets in bursts
o Allocate new RX buffers from per queue memory pools 

to stuff into descriptors
3. Packet Transmission (TX)

o Transmit the received packets from RX
o Free the buffers that we used to store the packets

30,000 ft overview of packet 
flow

Packets to 
send


	Slide Number 1
	Slide Number 2
	Agenda
	End-to-end network infrastructure
	DPDK Generational Performance Gains
	NFV – Life of a Packet 
	NFV - Service Function Chaining
	DPDK Architecture
	Multi-Architecture/�Multi-Vendor Support
	DPDK CONSUMPTION
	DPDK Roadmap
	DPDK Roadmap
	DPDK Roadmap
	OPEN QUESTIONS?
	Slide Number 15
	DPDK Sample Apps
	DPDK Acceleration Enhancements
	Packet Processing Kernel vs. User Space
	DPDK In-Depth
	PCIe* Connectivity and Core Usage�Using run-to-completion or pipeline software models
	Core Components Architecture
	DPDK model
	High Performance Components of DPDK
	 EAL Initialization in a Linux Environment
	Ethernet Device Framework
	30,000 ft overview of packet flow

