
SAMPLE VNF in OPNFV

KANNAN BABU RAMIA, INTEL
ANAND B JYOTI, INTEL

LEGAL DISCLAIMER
• No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
• Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose,

and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.
• This document contains information on products, services and/or processes in development. All information provided here is subject to change without

notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.
• The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current

characterized errata are available on request.
• Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting:

http://www.intel.com/design/literature.htm
• Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
• *Other names and brands may be claimed as the property of others.
• Copyright © 2017, Intel Corporation. All rights reserved.
• Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel

microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered
by this notice. Notice Revision #20110804

• Mileage may vary Disclaimer: Tests document performance of components on a particular test, in specific systems. Differences in
hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you
consider your purchase. For more complete information about performance and benchmark results,
visit www.intel.com/benchmarks Test and System Configurations: Estimates are based on internal Intel analysis using at least Data
Plane Development Kit IpSec sample application on Intel(R) Xeon(R) CPU E5-2658 v4@ 2.30GHz with atleast using Intel(R)
Communications Chipset(s) 8955 with Intel(R) QuickAssist Technology.

2

http://www.intel.com/design/literature.htm
http://www.intel.com/benchmarks

Agenda
 Packet Processing Concepts – Brief intro
 Best Known Methods for writing

performance tuned application over dpdk
 Sample vnf in OPNFV
 Example code snippets
 Open Questions

4

Packet Processing Concepts
Pros Cons

Perfect for scaling Need an efficient load balancer for
distribution. Synchronization overheads
(locks-reorder or flow affinity/atomicity)

Tolerate changes in the features and
variants in packet processing

Statefull/Asynchronous processing stage
might create imbalance in distribution

Easy in portability across platforms Must have HW packet acceleration

{T1...Tn} = F = { f1, f2, f3, f4...fn} AND (Ca * n) >= CF

T1

T2

Tn

IN Out

Pool of Threads (Run To Completion)

T1 + T2 +T3…+Tn = F1+F2+F3…+Fn & F={f1,f2,f3..fn} AND Ca >= CF1 or CF2..CFn

T1 T2 TnIN Out

Context Pipeline

T1+T2...Tm+Tn=F1+F2+F3 & F2={f1,f2...f3} AND Ca >= CF1 or CF2..CFn

T2

T3

Tm

IN Out

Hybrid Pipeline

T1 Tn

Pros Cons

Perfect for handling
statefull/asynchronous processing

Cant tolerate changes in features.
Requires replanning of function
partitioning

No dependency on HW packet
acceleration

Performance limited by per core
processing capacity

Suitable for high performance cores Not easily portable across platforms

Pros Cons

Mix of RTC and Context Pipeline Relies on high performance core

BKMs for packet processing
1. Avoiding serialization in the packet-processing pipeline, including serializing events such as locks,

special instructions such as CLFLUSH, and large critical sections
2. Accessing data from the cache where possible by making use of prefetch instructions and observing

best practices in design of the software pipeline
3. Designing data structures to be cache-aligned and avoiding occurrences of data being spread across

two cache lines. Avoid partial writes and contention between write/read operations.
4. Maintaining affinity between software threads and hardware threads. Isolating software threads

from one another with regards to scheduling relative to hardware threads.
5. Breaking down data-plane functionality so that it can be implemented with a combination of RTC

(Run to Completion) and pipeline methods
6. Use of pre-tuned open source optimized software components like DPDK libraries
7. Software pipelining, the concept is achieved by processing burst/bunch of packets and constructing

multiple stages to hide any latencies experienced by the processing stages.
8. Also minimize the DTLB and ITLB misses and cache Ping-Pong effects.

vFW Processing Flow Diagram
vFW BE Initialization vFW Pipeline

Create/Initialize
ACL Active/Standby Table

vfw_Init()

Register per port
port_in_action()

V4/V6 Sep

Mask=pkt_process&filter()
[FW Basic Filtering]

{Fragmented, Length, Protocol, TTL}

pkt_work_vfw_key()
[ACL Processing]
{action_bitmap Processing

Count, drop, fwd, dscp}

rte_vfw_process_packets()
[Connection Tracking]

{Accept/Conntrack/ConnexistMask}
Batch_lookup

rte_vfw_arp_packets()
[Reverse Send ARP pkts]

Create/Initialize
ConnectionTracker

Create/Initialize
Timers

Previously_buffered_pkts()
[SynproxyBuffered Pkts]

BKM#1
Avoiding serialization in the packet-processing pipeline

including serializing events such as locks, special instructions such as CLFLUSH, and large critical sections

 Multiple pipelines can run on separate cores
Packets being load shared across multiple pipeline for better latency and throughput

 ACL active/standby tables updated by CLI and single thread
Updates standby table and switches – Avoids locks

 Connection Tracker status structure
CT created per pipeline accessed by only one process(WT) – No Locks
Both ingress/egress traffic is handled by same thread. Ensures CT is accessed by single process.

 SWLB (SWLB tuple based load distribution)- TxRx Pipeline used (HW independent)
NIC  RXQ SWLB  SWQs VNF WT SWQs TXQ NIC
Pros: Independent of NIC HW capability.
Cons: Load balancing to be done by a LB - More compute power

 HWLB (Set the filters in offload features of NIC)
NIC  RXQ VNF WT  TXQ NIC
Pros: Reduces the SWLB, Low latency and reduces a processing load due to SWLB
Cons: Only supported HW like Fortville NIC can be used

Example Cache Size and Latencies
• Intel i7-4770 (Haswell), 3.4 GHz (Turbo Boost off). DRAM 32 GB (PC3-12800

cl11 cr2).
• Cache Memory sizes

– L1 Data cache = 32 KB, 64 B/line, 8-WAY.  per core  512 cache
lines

– L1 Instruction cache = 32 KB, 64 B/line, 8-WAY.  per core
– L2 cache = 256 KB, 64 B/line, 8-WAY  Unified Instruction/data per

core
– L3 cache = 8 MB, 64 B/line  Unified Instruction/Data per CPU

• Cache latencies
– L1 Data Cache Latency = 4 cycles for simple access via pointer
– L2 Cache Latency = 12 cycles
– L3 Cache Latency = 36 cycles (3.4 GHz i7-4770)
– L3 Cache Latency = 43 cycles (1.6 GHz E5-2603 v3)
– L3 Cache Latency = 58 cycles (core9) - 66 cycles (core5) (3.6 GHz E5-

2699 v3 - 18 cores)
• RAM Access Latencies (LLC miss latency)

– RAM Latency = 36 cycles + 57 ns (3.4 GHz i7-4770)  36+194 = 230
Cycles = 67.64ns

– RAM Latency = 62 cycles + 100 ns (3.6 GHz E5-2699 dual)  62+300
= 362 cycles = 100.5ns

Main memory holds disk blocks
retrieved from local disks

Registers

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

L2 cache
(SRAM)

L1 cache holds cache lines
retrieved from L2 cache

CPU registers hold words
retrieved from L1 cache

L2 cache holds cache lines
retrieved from main memory

L0

L1

L2

L3

L4

L5

Smaller,
faster,
costlier
per byte

http//www.7-cpu.com/cpu/Haswell.html

http://www.7-cpu.com/cpu/Haswell.html

BKM#2 Accessing data from the cache
[make use of pre-fetch instructions and observing best practices in design of the

software pipeline]

 Pipelining and pre-fetch in vFW
 Pre-fetch the packets and associated data for processing to avoid cache miss latency
 Burst packet handling is supported in all functions

May not be able to accommodate 32 packets(mbuf/ip/tcp) headers and associated data in the
L1(32KB/core)/L2(256kB/core)/L3(56MB) cache leads to LLC cache miss
Batch process (4 packets at a time), while prefetching the packets and associated data for next batch

 ARP processing – Needed batch processing and pre-fetching

 BPF, ACL and ConnTrack – Just prefetching helped to improve the performance
 BPF operates on header information without any database
 ACL – Uses DPDK optimized library with burst process handling
 ConnTrack Accesses only TCP/UDP headers  IPv4/IPv6 separation was not needed

 DPDK optimized functionalities
 Cukkoo hash with bulk lookup is used from DPDK optimized libraries for CT
 Timers are used from DPDK

Code snippets walk through
Basic Packet Filtering, ACL, CT

/* BPF & Counters*/
rte_prefetch0(& vfw_pipe->counters);

/* Pre-fetch all rte_mbuf header */
for(j = 0; j < n_pkts; j++)

rte_prefetch0(pkts[j]);

memset(&ct_helper, 0, sizeof(struct rte_CT_helper));
rte_prefetch0(& vfw_pipe->counters->pkts_drop_ttl);
rte_prefetch0(& vfw_pipe->counters->entry_timestamp);

vfw_handle_buffered_packets()
rte_vfw_ipv4_packet_filter_and_process()

/* ACL and CT*/
rte_prefetch0((void*)vfw_pipe->plib_acl);
rte_prefetch0((void*)vfw_rule_table_ipv4_active);
lib_acl_ipv4_pkt_work_key()
rte_ct_cnxn_tracker_batch_lookup_type()

ARP post processing

/* ARP processing */
start_tsc_measure(vfw_pipe);
for(j = 0; j < (n_pkts & 0x3LLU); j++) {

rte_prefetch0(RTE_MBUF_METADATA_UINT32_PTR(pkts[j], META_DATA_OFFSET));
rte_prefetch0(RTE_MBUF_METADATA_UINT32_PTR(pkts[j], ETHERNET_START));

}
rte_prefetch0((void*)in_port_dir_a);
rte_prefetch0((void*)prv_to_pub_map);
uint8_t i;
for (i = 0; i < (n_pkts & (~0x3LLU)); i += 4) {

for (j = i+4; ((j < n_pkts) && (j < i+8)); j++) {
rte_prefetch0(RTE_MBUF_METADATA_UINT32_PTR(pkts[j],

META_DATA_OFFSET));
rte_prefetch0(RTE_MBUF_METADATA_UINT32_PTR(pkts[j],

ETHERNET_START));
}
pkt4_work_vfw_arp_ipv4_packets(&pkts[i], i, &keep_mask, synproxy_reply_mask,

vfw_pipe);
}

for (j = i; j < n_pkts; j++) {
rte_prefetch0(RTE_MBUF_METADATA_UINT32_PTR(pkts[j], META_DATA_OFFSET));
rte_prefetch0(RTE_MBUF_METADATA_UINT32_PTR(pkts[j], ETHERNET_START));

}
for (; i < n_pkts; i++) {

pkt_work_vfw_arp_ipv4_packets(pkts[i], i, &keep_mask, synproxy_reply_mask,
vfw_pipe);

}
end_tsc_measure(vfw_pipe, n_pkts);

BKM#3 Designing data structures to be cache-aligned
(Avoid occurrences of data being spread across two cache lines, partial writes and

contention between write and read operations.)

• __rte_cache_aligned compiler prefix is used for cache alignment for all required structures
• structure members 64byte aligned to avoid partial writes/contentions between Rd/Wr
• Missing alignments and re-arrange the members  Avoid cache ping/pong

Original Optimized

struct rte_VFW_counter_block {
32 char name[PIPELINE_NAME_SIZE];
8 uint64_t pkts_received;
8 uint64_t bytes_processed
8 uint64_t internal_time_sum;
8 uint64_t external_time_sum;

8 uint64_t num_batch_pkts_sum;
4 uint32_t time_measurements;
4 uint32_t num_pkts_measurements;
4 uint32_t unused_counter;
4 byte HOLE
8 uint64_t pkts_drop_without_rule;

uint64_t pkts_drop_ttl;
uint64_t pkts_drop_bad_size;
uint64_t pkts_drop_fragmented;
uint64_t pkts_drop_without_arp_entry;
uint64_t pkts_drop_unsupported_type;
struct rte_CT_counter_block *ct_counters;
uint64_t sum_latencies;
uint32_t count_latencies;

uint64_t pkts_fw_forwarded;
uint64_t pkts_acl_forwarded;

} __rte_cache_aligned;

struct rte_VFW_counter_block {
/* in_port_action */

char name[PIPELINE_NAME_SIZE];
uint64_t pkts_received;
uint64_t bytes_processed;
uint64_t num_batch_pkts_sum;
uint32_t num_pkts_measurements;
uint32_t unused_counter;

/* Profiling */
uint64_t internal_time_sum;
uint64_t external_time_sum;
uint64_t entry_timestamp;
uint64_t exit_timestamp;
uint32_t time_measurements;

/* ACL */
uint32_t count_latencies;
uint64_t sum_latencies;
uint64_t pkts_drop_without_rule;
uint64_t pkts_acl_forwarded;

/* BPF & ARP */
uint64_t pkts_drop_ttl;
uint64_t pkts_drop_bad_size;
uint64_t pkts_drop_fragmented;
uint64_t pkts_drop_without_arp_entry;
uint64_t pkts_drop_unsupported_type;
uint64_t pkts_fw_forwarded;
struct rte_CT_counter_block *ct_counters;

} __rte_cache_aligned;

OPEN QUESTIONS?

12

 Exchange views

 Pickup any features in the sample vnf for development

 Attend tomorrows hand-on session

	Slide Number 1
	LEGAL DISCLAIMER
	Agenda
	Packet Processing Concepts
	BKMs for packet processing
	vFW Processing Flow Diagram
	BKM#1 �Avoiding serialization in the packet-processing pipeline�including serializing events such as locks, special instructions such as CLFLUSH, and large critical sections
	Example Cache Size and Latencies
	BKM#2 Accessing data from the cache �[make use of pre-fetch instructions and observing best practices in design of the software pipeline]
	Code snippets walk through
	BKM#3 Designing data structures to be cache-aligned �(Avoid occurrences of data being spread across two cache lines, partial writes and �contention between write and read operations.)
	OPEN QUESTIONS?
	Slide Number 13

