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Scalar Packet Processing

• A fancy name for processing one packet at a time
• Traditional, straightforward implementation scheme
• Interrupt, a calls b calls c … return return return
• Issues:

• thrashing the I-cache (when code path length exceeds the primary I-cache size)
• Dependent read latency (packet headers, forwarding tables, stack, other data structures)
• Each packet incurs an identical set of I-cache and D-Cache misses

2



Packet Processing Budget

14 Mpps on 3.5 GHz CPU = 250 cycles per 
packet
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Memory Read/Write latency
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Introducing VPP: the vector packet processor
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Introducing VPP
Accelerating the dataplane since 2002
Fast, Scalable and consistent

• 14+ Mpps per core
• Tested to 1TB
• Scalable FIB: supporting millions of entries
• 0 packet drops, ~15µs latency

Optimized
• DPDK for fast I/O
• ISA: SSE, AVX, AVX2, NEON ..
• IPC: Batching, no mode switching, no context 

switches, non-blocking 
• Multi-core: Cache and memory efficient
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Introducing VPP
Extensible and Flexible modular design
• Implement as a directed graph of nodes
• Extensible with plugins, plugins are equal citizens.
• Configurable via CP and CLI
Developer friendly
• Deep introspection with counters and tracing 

facilities.
• Runtime counters with IPC and errors information.
• Pipeline tracing facilities, life-of-a-packet. 
• Developed using standard toolchains.
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Introducing VPP
Fully featured

• L2: VLan, Q-in-Q, Bridge Domains, LLDP ...
• L3: IPv4, GRE, VXLAN, DHCP, IPSEC …
• L3: IPv6, Discovery, Segment Routing …
• CP: CLI, IKEv2 …

Integrated
• Language bindings
• Open Stack/ODL (Netconf/Yang)
• Kubernetes/Flanel (Python API)
• OSV Packaging
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VPP in the Overall Stack
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Hardware

Application Layer / App Server

VM/VIM Management Systems

Network Controller

Operating Systems

Data Plane Services

Orchestration 
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VPP: Dipping into internals..



• Always process as many packets as possible
• As vector size increases, processing cost per packet decreases
• Amortize I-cache misses 
• Native support for interrupt  and polling modes
• Node types:

• Internal
• Process
• Input

VPP Graph Scheduler 



Sample Graph
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How does it work?

* approx. 173 nodes in default deployment

ethernet-
input

dpdk-inputaf-packet-
input

vhost-user-
input

mpls-inputlldp-input

...-no-
checksum

ip4-input ip6-inputarp-inputcdp-input l2-input

ip4-lookup ip4-lookup-
mulitcast

ip4-rewrite-
transit

ip4-load-
balance

ip4-
midchain

mpls-policy-
encap

interface-
output

Packet 0

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Packet 7

Packet 8

Packet 9

Packet 10

1
2

Packet processing is decomposed into a directed 
graph node …

… packets moved through 
graph nodes in vector …

Instruction Cache

Data Cache

Microprocessor

… graph nodes are optimized 
to fit inside the instruction cache …
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… packets are pre-fetched, 
into the data cache …



dispatch fn()

Get pointer to vector

PREFETCH #3 and #4

PROCESS #1 and #2

ASSUME next_node same as last packet

Update counters, advance buffers

Enqueue the packet to next_node

<as above but single packet>

while packets in vector

while 4 or more packets

while any packets

Microprocessor

ethernet-input

Packet 1

Packet 2

… packets are processed in groups of four, 
any remaining packets are processed on by one … 
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… instruction cache is warm with the instructions from a single 
graph node …
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… data cache is warm with a small number of packets ..
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dispatch fn()

Get pointer to vector

PREFETCH #1 and #2

PROCESS #1 and #2

ASSUME next_node same as last packet

Update counters, advance buffers

Enqueue the packet to next_node

<as above but single packet>

while packets in vector

while 4 or more packets

while any packets

Microprocessor

ethernet-input

Packet 1

Packet 2

… prefetch packets #1 and #2 …
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dispatch fn()

Get pointer to vector

PREFETCH #3 and #4

PROCESS #1 and #2

ASSUME next_node same as last packet

Update counters, advance buffers

Enqueue the packet to next_node

<as above but single packet>

while packets in vector

while 4 or more packets

while any packets

Microprocessor

ethernet-input

Packet 1

Packet 2

Packet 3

Packet 4

… process packet #3 and #4 …
… update counters, enqueue packets to the next node …

How does it work?
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Modularity Enabling Flexible Plugins
Plugins can:

• Introduce new graph nodes
• Rearrange packet processing graph
• Can be built independently of VPP source tree
• Can be added at runtime (drop into plugin 

directory)
• All in user space

Enabling:
• Ability to take advantage of diverse hardware 

when present
• Support for multiple processor architectures 

(x86, ARM, PPC)
• Few dependencies on the OS (clib) allowing 

easier ports to other Oses/Env

ethernet-input

ip6-input
ip4inputmpls-ethernet-input

arp-input
llc-input

…

ip6-lookup

ip6-rewrite-transmit
ip6-local

…

Packet vector

Plug-in to create new nodes

Custom-A Custom-B

Plug-in to 
enable new HW 

input Nodes



VPP: performance



Phy-VS-Phy

VPP Performance at Scale
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64B => 238 Mpps

IPv6, 24 of 72 cores IPv4+ 2k Whitelist, 36 of 72 cores Zero-packet-loss Throughput 
for 12 port 40GE

Hardware:
Cisco UCS C460 M4

Intel® C610 series chipset
4 x Intel® Xeon® Processor E7-8890
v3
(18 cores, 2.5GHz, 45MB Cache)
2133 MHz, 512 GB Total
9 x 2p40GE Intel XL710
18 x 40GE = 720GE !!

Latency
18 x 7.7trillion packets soak test
Average latency:  <23 usec
Min Latency: 7…10 usec
Max Latency: 3.5 ms

Headroom
Average vector size ~24-27
Max vector size 255
Headroom for much more 
throughput/features
NIC/PCI bus is the limit not vpp



VPP: integrations



FD.io Integrations
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Honeycomb

Netconf/Yang

VBD app
Lispflowmapping

app

LISP Mapping Protocol

SFC

Netconf/yang

Openstack

Neutron
ODL

Plugin
FD.io
Plugin

FD.io ML2 Agent

REST

GBP app

Integration work done at

Felixv2 (Calico Agent)



Summary
• VPP is a fast, scalable and low latency network stack in user space. 

• VPP is trace-able, debug-able and fully featured layer 2, 3 ,4 implementation.

• VPP is easy to integrate with your data-centre environment for both NFV and 
Cloud use cases. 

• VPP is always growing, innovating and getting faster.

• VPP is a fast growing community of fellow travellers.

ML: vpp-dev@lists.fd.io Wiki: wiki.fd.io/view/VPP

Join us in FD.io & VPP - fellow travellers are always welcome. 
Please reuse and contribute!
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Contributors…

Universitat Politècnica de Catalunya (UPC)

Yandex
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