
VPP overview
Shwetha Bhandari
Developer@Cisco

Scalar Packet Processing

• A fancy name for processing one packet at a time
• Traditional, straightforward implementation scheme
• Interrupt, a calls b calls c … return return return
• Issues:

• thrashing the I-cache (when code path length exceeds the primary I-cache size)
• Dependent read latency (packet headers, forwarding tables, stack, other data structures)
• Each packet incurs an identical set of I-cache and D-Cache misses

2

Packet Processing Budget

14 Mpps on 3.5 GHz CPU = 250 cycles per
packet

3

Memory Read/Write latency

4

Introducing VPP: the vector packet processor

5

Introducing VPP
Accelerating the dataplane since 2002
Fast, Scalable and consistent

• 14+ Mpps per core
• Tested to 1TB
• Scalable FIB: supporting millions of entries
• 0 packet drops, ~15µs latency

Optimized
• DPDK for fast I/O
• ISA: SSE, AVX, AVX2, NEON ..
• IPC: Batching, no mode switching, no context

switches, non-blocking
• Multi-core: Cache and memory efficient

6

Network I/O

Packet Processing: VPP

Management Agent
Netconf/Yang REST ...

Introducing VPP
Extensible and Flexible modular design
• Implement as a directed graph of nodes
• Extensible with plugins, plugins are equal citizens.
• Configurable via CP and CLI
Developer friendly
• Deep introspection with counters and tracing

facilities.
• Runtime counters with IPC and errors information.
• Pipeline tracing facilities, life-of-a-packet.
• Developed using standard toolchains.

7

Network I/O

Packet Processing: VPP

Management Agent
Netconf/Yang REST ...

Introducing VPP
Fully featured

• L2: VLan, Q-in-Q, Bridge Domains, LLDP ...
• L3: IPv4, GRE, VXLAN, DHCP, IPSEC …
• L3: IPv6, Discovery, Segment Routing …
• CP: CLI, IKEv2 …

Integrated
• Language bindings
• Open Stack/ODL (Netconf/Yang)
• Kubernetes/Flanel (Python API)
• OSV Packaging

8

Network I/O

Packet Processing: VPP

Management Agent
Netconf/Yang REST ...

VPP in the Overall Stack

9

Hardware

Application Layer / App Server

VM/VIM Management Systems

Network Controller

Operating Systems

Data Plane Services

Orchestration

Network IOVPP Packet Processing

VPP: Dipping into internals..

• Always process as many packets as possible
• As vector size increases, processing cost per packet decreases
• Amortize I-cache misses
• Native support for interrupt and polling modes
• Node types:

• Internal
• Process
• Input

VPP Graph Scheduler

Sample Graph

12

dpdk-input

ethernet
-input

ip6-input

mpls-gre
-input

ip4-input-no-
checksum

ip4-lookup
ip4-lookup-
multicast

ip4-rewrite
-transit

ip4-local
ip4-classify

ip4-input

mpls
-ethernet

-input

How does it work?

* approx. 173 nodes in default deployment

ethernet-
input

dpdk-inputaf-packet-
input

vhost-user-
input

mpls-inputlldp-input

...-no-
checksum

ip4-input ip6-inputarp-inputcdp-input l2-input

ip4-lookup ip4-lookup-
mulitcast

ip4-rewrite-
transit

ip4-load-
balance

ip4-
midchain

mpls-policy-
encap

interface-
output

Packet 0

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Packet 7

Packet 8

Packet 9

Packet 10

1
2

Packet processing is decomposed into a directed
graph node …

… packets moved through
graph nodes in vector …

Instruction Cache

Data Cache

Microprocessor

… graph nodes are optimized
to fit inside the instruction cache …

3

4

… packets are pre-fetched,
into the data cache …

dispatch fn()

Get pointer to vector

PREFETCH #3 and #4

PROCESS #1 and #2

ASSUME next_node same as last packet

Update counters, advance buffers

Enqueue the packet to next_node

<as above but single packet>

while packets in vector

while 4 or more packets

while any packets

Microprocessor

ethernet-input

Packet 1

Packet 2

… packets are processed in groups of four,
any remaining packets are processed on by one …

4

… instruction cache is warm with the instructions from a single
graph node …

5

… data cache is warm with a small number of packets ..

6How does it work?

dispatch fn()

Get pointer to vector

PREFETCH #1 and #2

PROCESS #1 and #2

ASSUME next_node same as last packet

Update counters, advance buffers

Enqueue the packet to next_node

<as above but single packet>

while packets in vector

while 4 or more packets

while any packets

Microprocessor

ethernet-input

Packet 1

Packet 2

… prefetch packets #1 and #2 …

7

How does it work?

dispatch fn()

Get pointer to vector

PREFETCH #3 and #4

PROCESS #1 and #2

ASSUME next_node same as last packet

Update counters, advance buffers

Enqueue the packet to next_node

<as above but single packet>

while packets in vector

while 4 or more packets

while any packets

Microprocessor

ethernet-input

Packet 1

Packet 2

Packet 3

Packet 4

… process packet #3 and #4 …
… update counters, enqueue packets to the next node …

How does it work?
8

Modularity Enabling Flexible Plugins
Plugins can:

• Introduce new graph nodes
• Rearrange packet processing graph
• Can be built independently of VPP source tree
• Can be added at runtime (drop into plugin

directory)
• All in user space

Enabling:
• Ability to take advantage of diverse hardware

when present
• Support for multiple processor architectures

(x86, ARM, PPC)
• Few dependencies on the OS (clib) allowing

easier ports to other Oses/Env

ethernet-input

ip6-input
ip4inputmpls-ethernet-input

arp-input
llc-input

…

ip6-lookup

ip6-rewrite-transmit
ip6-local

…

Packet vector

Plug-in to create new nodes

Custom-A Custom-B

Plug-in to
enable new HW

input Nodes

VPP: performance

Phy-VS-Phy

VPP Performance at Scale

64B

1518B0.0
200.0
400.0
600.0
[Gbps]]

480Gbps zero frame loss

64B

1518B0.0
100.0
200.0
300.0
[Mpps]

200Mpps zero frame loss

64B
1518B0

200
400
600
[Gbps]]

IMIX => 342 Gbps,1518B => 462 Gbps

64B
0

100

200

300
[Mpps]

64B => 238 Mpps

IPv6, 24 of 72 cores IPv4+ 2k Whitelist, 36 of 72 cores Zero-packet-loss Throughput
for 12 port 40GE

Hardware:
Cisco UCS C460 M4

Intel® C610 series chipset
4 x Intel® Xeon® Processor E7-8890
v3
(18 cores, 2.5GHz, 45MB Cache)
2133 MHz, 512 GB Total
9 x 2p40GE Intel XL710
18 x 40GE = 720GE !!

Latency
18 x 7.7trillion packets soak test
Average latency: <23 usec
Min Latency: 7…10 usec
Max Latency: 3.5 ms

Headroom
Average vector size ~24-27
Max vector size 255
Headroom for much more
throughput/features
NIC/PCI bus is the limit not vpp

VPP: integrations

FD.io Integrations

21

VPP

C
on

tro
l P

la
ne

D
at

a
Pl

an
e

Honeycomb

Netconf/Yang

VBD app
Lispflowmapping

app

LISP Mapping Protocol

SFC

Netconf/yang

Openstack

Neutron
ODL

Plugin
FD.io
Plugin

FD.io ML2 Agent

REST

GBP app

Integration work done at

Felixv2 (Calico Agent)

Summary
• VPP is a fast, scalable and low latency network stack in user space.

• VPP is trace-able, debug-able and fully featured layer 2, 3 ,4 implementation.

• VPP is easy to integrate with your data-centre environment for both NFV and
Cloud use cases.

• VPP is always growing, innovating and getting faster.

• VPP is a fast growing community of fellow travellers.

ML: vpp-dev@lists.fd.io Wiki: wiki.fd.io/view/VPP

Join us in FD.io & VPP - fellow travellers are always welcome.
Please reuse and contribute!

23

Contributors…

Universitat Politècnica de Catalunya (UPC)

Yandex
Qiniu

	Slide Number 1
	Scalar Packet Processing
	Packet Processing Budget
	Memory Read/Write latency
	Slide Number 5
	Introducing VPP
	Introducing VPP
	Introducing VPP
	VPP in the Overall Stack
	Slide Number 10
	VPP Graph Scheduler
	Sample Graph
	How does it work?
	How does it work?
	How does it work?
	How does it work?
	Modularity Enabling Flexible Plugins
	Slide Number 18
	VPP Performance at Scale
	Slide Number 20
	FD.io Integrations
	Slide Number 22
	Contributors…
	Slide Number 24

