

Tencent Data Center Security Use case

DPDK based security service layer on datacenter

haohao zhang

Agenda

- what and why of the security service layer
- how to design
- performance optimize
- evolution for large volume

where is the layer

security on host:

different OS CPU used must be controled complex policy

challenges of deploy on network perimeter:

traffic control foward information--act like a router performace --latency,Throughput debug

support security function

Anti-DDoS WAF IDS Forensics

.

DPDK

	multi core platform	DPDK on x86
Performance	high	middle
Reliability on massive deployment	high malfunction ratio	good
Devepment cost	high	middle
Debug	hard	midlle

1 Reliability is very important when you need manage thousands of devcies.

2 Some weird problem leads to hareware like fiber

deployment status

- covery all the perimeter globally
- Thousands of DPDK based security device
- support all type of business, incldue web, game, video...
- continue increasing

the software architecture

Security process	Log
Security forward ICP/Ip stack Monitor	
	ТАР
Packet process	Managa
Route Forward Monitor KNI	Wallage
DPDK	Linux Kernel
Socket0 core1 core2 coreN Socket1	coreN

multi process model

- primary process is stable
 - packet forwarding information
 - router inforamtion
 - memory management
 - basic statistic
 - TAP management
- secondary process changes quickly doing the security logical update frequently

fake dequeue

- 1. avoid packet losing after secondary process crash
- 2. not in high performance mode

 $(\ensuremath{\underline{1}})$ secondary read head and tail of ring

(2) secondary copy mbuf without dequeue

③ secondary process packet

④ use volitile varible notify the primary process to dequeue

performance optimization

- Local varible VS global varible
- Hyper Thread for different scenarios:
 - whether threads number need larger than physical thread

pipiline mode

- sometimes tx queue number can affect
- assemble language can be used for critical function
- memcpy cost

	phy0	phy1
coreO	0 # 24	12 # 36
core1	1 # 25	13 # 37
core2	2 # 26	14 # 38
core3	3 # 27	15 # 39
core4	4 # 28	16 # 40
core5	5 # 29	17 # 41
core6		
core7		
core8	6 # 30	18 # 42
core9	7 # 31	19 # 43
core10	8 # 32	20 # 44
core11	9 # 33	21 # 45
core12	10 # 34	22 # 46
core13	11 # 35	23 # 47

DPDK

evolution for large volume

▶ 100G NIC

► FPGA

CPU on other NUMA Node

Mellanox ConnectX-4 100GbE Single Port

8 cores

Thanks!!

欢迎关注DPDK开源社区