
Let’s Hot plug:

By uevent mechanism in DPDK

Jeff guo
Intel
DPDK Summit User space - Dublin- 2017

Agenda

 Hot plug overview

 what we have & why uevent ?

 Uevent mechanism introduction

 Uevent in virtualization

 Open and plan

 Q & A

Hot plug tech

 Hotplug is a technology, which lets plug in a devices when system is running and use
them immediately. While lets unplug a device but not affect the system running.

 HW support(etc. new IA platform), OS support(etc. linux), driver support(etc. OFED)

 Kernel >= linux 2.6, pciehp, port service like

 Management: BIOS -> ACPI.

 Hot-insertion and hot-removal.

 Non surprise hot plug and surprise hot plug.

Hot plug user case

 Load balance

 Reduce power consumption

 Handle hardware error

(fail over or fail safe)

 live migration

Nic
(idle)

Nic
(In use)

Nic
(idle)

Nic
(In use)

2.Reduce power consumption 3.Handle hardware error

1.Load balance

4. Live migration

For 24/7 availability, don’t
take it down for any reason!

port1

what we have.

 General Hot plug API

hot plug add / remove,

dev_attach / dev_detach,

Port plug in & out

port0

Bus

Dpdk app

port2attach
detach

 Fail-safe driver

like an app helper,

Manage sub device and process hot plug
event,

dynamic switch fail device to safe device.
sub sub

Fail-safe

driver

app

sub sub

Fail-safe

driver

app

error
runing runningbackup

why uevent ?

 Currently , device plug & play by plan, it need stop/close port before detach,

It would be mass in cloud. And when attach port, need app knowledge the pci
device id.

 Hot plug event are diversity in drivers, not all uio driver exposure hot plug event,

need a general event from bus/device layer.

 Uevent is easy to use and management.

Netlink socket, kobject, asynchronous, sysfs, kernel space --> user space.

Abundant device status , like add/remove/change/online/offline.

why uevent ??

device

bus

driver

Linux Kernel is useful,
Just use it.kobject

pci/vdev, …

Igb_uio/vfio/
uio_generic/
other

scan / probe

attach/detach
Uevent monitor

bind
Initial
Operation

 Each component each scope, hot plug belong to device, might be better to
offload it from app and driver to the bus/device layer of the eal core lib.

Uevent mechanism

Fail-safe pmd

kobject

eal

Sub pmd Sub pmd

app

callback

Hot plug ueventKernel space

User space

callback

callback

Orange : Interrupt mechanism path
Blue : uevent mechanism path

Kernel driver

Hot plug interrupt

Uevent processing

Uevent monitoring Uevent process APPFault handler

Parse event Remap device
Switch device, fail-safe or

fail over

Detach device

Restore device

Attach device

removal event
Detect uevent

epolling

Register the uevent callback

Call back

Bind igb_uio

driver

insertion event

Enable uevent monitor

Call back

Uevent bring in.

 An new epolling, user register interesting event when start.

 A device_state machine in structure of rte_device.

PARSED/ PROBED / FAULT

 dev_event_type enumerate and uevent structure in a new file eal_dev.h. BSD not
support uevent.

uev_monitor_enable / uev_receive / uev_parse / uev_process/

dev_monitor_start / dev_monitor_stop

uevent monitor:

Uevent bring in..

 Add below API in rte eal device for common

rte_eal_dev_monitor_enable

rte_dev_callback_register / rte_dev_callback_unregister

_rte_dev_callback_process

rte_dev_bind_driver

Uevent bring in…

 add remap_device in bus layer, to remap the device resource to be “safe” before
device detach.

 Add dev_bind_driver in device layer, to auto bind driver before device attach.

 Add find_device_by_name in bus layer, to find device in the device list of bus by
the device name

Failure handler:

Uevent in virtualization

 Uevent support vfio, each vdev have its

own kobject and uevent, it directly process

vfio uevent when pf hot plug.

 live migration, share memory (NFS) or block
migration, detect the switching nic across the
platform by uevent.

 uevent for virtio and SRIOV ???
Nic (10G) Nic (25G)

Configuration

data

.vhd

Plan and Open…

 Make the API upstream, to public it for developer usage.

 Hot plug API + uevent + failsafe driver, integration and verification.

 Performance(hot plug action speed and packet loss) and robots.

 Co-work with community contributor, fix the gap with pci bus rework.

http://dpdk.org/dev/patchwork/patch/28950/

http://dpdk.org/dev/patchwork/patch/28949/

Questions ? Jeff Guo

Jia.guo@intel.com

