
Technology Consulting Company IGEL Co.,Ltd.

Technology Consulting Company

Research, Development &

Global Standard

Using DPDK with Go

Takanari Hayama

taki@igel.co.jp

1



BACKGROUND

2017/9/26,27 DPDK Summit Userspace 2017 2



• Lagopus (https://github.com/lagopus/lagopus)

– Open Source OpenFlow 1.3 Software Switch

– DPDK or Raw Socket

– C

• Lagopus2 (https://github.com/lagopus/vsw)

– OpenSource Software Router (VLAN, IPsec, Match-Action)

– DPDK Only

– Go + C

Background

DPDK Summit Userspace 2017 32017/9/26,27

https://github.com/lagopus/lagopus)
https://github.com/lagopus/vsw)


• Performance

• Maintainability + Extensibility

Goals of Lagopus2

DPDK Summit Userspace 2017 42017/9/26,27



• Performance → DPDK + C

• Maintainability + Extensibility → Go

Goals of Lagopus2

DPDK Summit Userspace 2017 52017/9/26,27



Open Source Programming Language

• Simple

• Strong Type System

• Statically Typed with Flexibility

• Concurrency

• Garbage Collection

• Compiled Language

• Can use C Library via CGo

What is Go?

DPDK Summit Userspace 2017 62017/9/26,27



Go C

Complexity Simple by Design Can Become Complex

Performance Moderate Very Fast

Key-Value Data Type Yes (Map) No (requires other library)

Concurrency Yes (channel and go func) No (requires other tools)

Memory Management Yes (Garbage Collection) No

Compiled Language Yes Yes

Build System Built-in Your Choice

Go vs C

DPDK Summit Userspace 2017 72017/9/26,27



Goal

• Data Plane shall run fast

• Control Plane can be slow

• Control Plane shall not disturb Data Plane

Design

• Use C + DPDK directly where we need performance

• Let C to focus on packet processing

• Complicated tasks to be offloaded to Go

• Use DPDK Ring for communication between C and Go codes

• Make lock-free where possible

Performance

DPDK Summit Userspace 2017 82017/9/26,27



Goal

• Keep the code simple

Design

• Anything performance is not that important, do it in Go

• Make C part as simple as possible

• Make good use of Go types, i.e. Slice and Map, to make 

code simple

• Make good use of existing library, i.e. DPDK

Maintainability + Extensibility

DPDK Summit Userspace 2017 92017/9/26,27



2017/9/26,27 DPDK Summit Userspace 2017 10

Lagopus2 Architecture

Master

Lcore

Slave

Lcore 1

Slave

Lcore N
Non-DPDK Core

Tap

Module

HostIF

Module

Router

Module

Bridge

Module
ETHDEV

Module

Config

Agent

Netlink

Agent

Lagopus2 Core Scheduler Scheduler

ETHDEV-

RX
Bridge

ETHDEV-

TX
Router

…

Components 
written in Go

Components 
written in C

Physical CPU Core



Modules that require

performance

Architecture

Control in Go

Packet Processing

in C
Input 
Ring

Module that don't require 

performance

DPDK Summit Userspace 2017 112017/9/26,27

Control and

Packet Processing

in Go

Input 
Ring

Ring Ring

References 
to Output 

Rings

References 

to Output 
Rings



USING DPDK FROM GO

2017/9/26,27 DPDK Summit Userspace 2017 12



• Type Safety

• Simplicity

• Performance

2017/9/26,27 DPDK Summit Userspace 2017 13

Making Good Use of Go



DPDK API make heavy use of generic types, such as 
unsigned, int, uint8_t, like any other C based library.

For Go, we should have type safety.

• e.g. Make sure port_id passed to rte_eth_dev_* APIs is 

always valid port ID.

2017/9/26,27 DPDK Summit Userspace 2017 14

Type Safety



type EthDev struct {

port_id uint

socket_id int

}

type EthDevInfo C.struct_rte_eth_dev_info

func EthDevOpen(port_id uint) (*EthDev, error) {

pid := C.uint8_t(port_id)

if int(C.rte_eth_dev_is_valid_port(pid)) == 0 {

return nil, fmt.Errorf("Invalid port ID: %v", port_id)

}

return &EthDev{port_id, int(C.rte_eth_dev_socket_id(pid))}, nil

}

func (re *EthDev) DevInfo() *EthDevInfo {

var di EthDevInfo

C.rte_eth_dev_info_get(C.uint8_t(re.port_id), (*C.struct_rte_eth_dev_info)(&di))

return &di

}

2017/9/26,27 DPDK Summit Userspace 2017 15

Example: Type Safety



Most of DPDK API such as rte_ring passes around 

handles.

Define API as Methods, not Functions, to wrap DPDK 

API for particular types.

• Clarify that the APIs are for particular types.

• Hide details that are not necessary for callers.

• Minimize the risks for anything may go wrong.

2017/9/26,27 DPDK Summit Userspace 2017 16

Simplicity



type Ring C.struct_rte_ring

type RingFlags uint

const (

RING_F_SP_ENQ = RingFlags(C.RING_F_SP_ENQ)

RING_F_SC_DEQ = RingFlags(C.RING_F_SC_DEQ)

)

func RingCreate(name string, count uint, socket_id int, flags RingFlags) *Ring {

cname := C.CString(name)

defer C.free((unsafe.Pointer)(cname))

return (*Ring)(C.rte_ring_create(cname, C.unsigned(count),

C.int(socket_id), C.unsigned(flags)))

}

func (r *Ring) Free() {

C.rte_ring_free((*C.struct_rte_ring)(r))

}

func (r *Ring) Enqueue(obj unsafe.Pointer) bool {

return int(C.rte_ring_enqueue((*C.struct_rte_ring)(r), obj)) == 0

}

2017/9/26,27 DPDK Summit Userspace 2017 17

Example: Simplicity



Even though we can't achieve real performance in 

Go, we definitely want relatively good performance.

Avoiding memory copy is cruicial.

2017/9/26,27 DPDK Summit Userspace 2017 18

Performance



type EtherHdr []byte

func (mb *Mbuf) EtherHdr() EtherHdr {

len := C.sizeof_struct_ether_hdr

mb.checkAndUpdateMbufLen()

return (EtherHdr)((*[1 << 30]byte)(unsafe.Pointer(uintptr(mb.buf_addr) +

uintptr(mb.data_off)))[:len:len])

}

2017/9/26,27 DPDK Summit Userspace 2017 19

Example: Performance

You can create a Go slice from the 

underlying C array without copying the 

array.

When the slice is released, only the 
reference to the C array is released. 

Underlying C array remains until the 

array is explicitly released in C.



Go automatically releases memory allocated in Go 
when they're not needed anymore.

HOWEVER, anything allocated in C shall be released 
explicitly. You have full responsibility!
• E.g., you must explicitly free ring when you don't 

need it anymore. 

No destructor, deinit or something similar to free C 
memory automatically in Go.

2017/9/26,27 DPDK Summit Userspace 2017 20

But… You Need to be Careful



type Ring C.struct_rte_ring

tells, that the type Ring is an alias to struct rte_ring in C.

However, if the type is defined in different package, Go can't check the 
identity of C types.

ring := dpdk.RingCreate("ring", 10, dpdk.SOCKET_ID_ANY, 0)

var cring *C.struct_rte_ring

cring = ring // Error

cring = (*C.struct_rte_ring)(ring) // Error

cring = (*C.struct_rte_ring)(unsafe.Pointer(ring)) // Ok!

Not quite type safe here… unsafe is really unsafe.

2017/9/26,27 DPDK Summit Userspace 2017 21

Your C type may be different from mine…



Any name starting with upper characters are exported in Go, i.e. has a global scope.

/*
struct my_struct {

int Visible;

int invisible;
}

*/

import "C"

type MyStruct C.struct_my_struct

You can access to MyStruct.Visible but not to MyStruct.invisible from outside the package.

Should define setter/getter where needed.

func (di *EthDevInfo) DefaultRxConf() *EthRxConf {
rc := di.default_rxconf
return (*EthRxConf)(&rc)

}

2017/9/26,27 DPDK Summit Userspace 2017 22

Regular C struct members are invisible



Could make DPDK API Go friendly.

Memory management and type conversion requires 

extra care.

Heavy use of unsafe may cause lots of problem, but 

sometime they're inevitable.

2017/9/26,27 DPDK Summit Userspace 2017 23

Conclusions



Command cgo - https://golang.org/cmd/cgo/
C? Go? Cgo! - https://blog.golang.org/c-go-cgo

cgo - https://github.com/golang/go/wiki/cgo

2017/9/26,27 DPDK Summit Userspace 2017 24

Useful References

https://golang.org/cmd/cgo/
https://blog.golang.org/c-go-cgo
https://github.com/golang/go/wiki/cgo


QUESTIONS?

2017/9/26,27 DPDK Summit Userspace 2017 25


