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BACKGROUND
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• Lagopus (https://github.com/lagopus/lagopus)

– Open Source OpenFlow 1.3 Software Switch

– DPDK or Raw Socket

– C

• Lagopus2 (https://github.com/lagopus/vsw)

– OpenSource Software Router (VLAN, IPsec, Match-Action)

– DPDK Only

– Go + C

Background
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https://github.com/lagopus/lagopus)
https://github.com/lagopus/vsw)


• Performance

• Maintainability + Extensibility

Goals of Lagopus2
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• Performance → DPDK + C

• Maintainability + Extensibility → Go

Goals of Lagopus2
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Open Source Programming Language

• Simple

• Strong Type System

• Statically Typed with Flexibility

• Concurrency

• Garbage Collection

• Compiled Language

• Can use C Library via CGo

What is Go?
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Go C

Complexity Simple by Design Can Become Complex

Performance Moderate Very Fast

Key-Value Data Type Yes (Map) No (requires other library)

Concurrency Yes (channel and go func) No (requires other tools)

Memory Management Yes (Garbage Collection) No

Compiled Language Yes Yes

Build System Built-in Your Choice

Go vs C
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Goal

• Data Plane shall run fast

• Control Plane can be slow

• Control Plane shall not disturb Data Plane

Design

• Use C + DPDK directly where we need performance

• Let C to focus on packet processing

• Complicated tasks to be offloaded to Go

• Use DPDK Ring for communication between C and Go codes

• Make lock-free where possible

Performance
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Goal

• Keep the code simple

Design

• Anything performance is not that important, do it in Go

• Make C part as simple as possible

• Make good use of Go types, i.e. Slice and Map, to make 

code simple

• Make good use of existing library, i.e. DPDK

Maintainability + Extensibility
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Lagopus2 Architecture
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Modules that require

performance

Architecture

Control in Go

Packet Processing

in C
Input 
Ring

Module that don't require 

performance
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USING DPDK FROM GO
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• Type Safety

• Simplicity

• Performance
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Making Good Use of Go



DPDK API make heavy use of generic types, such as 
unsigned, int, uint8_t, like any other C based library.

For Go, we should have type safety.

• e.g. Make sure port_id passed to rte_eth_dev_* APIs is 

always valid port ID.
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Type Safety



type EthDev struct {

port_id uint

socket_id int

}

type EthDevInfo C.struct_rte_eth_dev_info

func EthDevOpen(port_id uint) (*EthDev, error) {

pid := C.uint8_t(port_id)

if int(C.rte_eth_dev_is_valid_port(pid)) == 0 {

return nil, fmt.Errorf("Invalid port ID: %v", port_id)

}

return &EthDev{port_id, int(C.rte_eth_dev_socket_id(pid))}, nil

}

func (re *EthDev) DevInfo() *EthDevInfo {

var di EthDevInfo

C.rte_eth_dev_info_get(C.uint8_t(re.port_id), (*C.struct_rte_eth_dev_info)(&di))

return &di

}
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Example: Type Safety



Most of DPDK API such as rte_ring passes around 

handles.

Define API as Methods, not Functions, to wrap DPDK 

API for particular types.

• Clarify that the APIs are for particular types.

• Hide details that are not necessary for callers.

• Minimize the risks for anything may go wrong.
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Simplicity



type Ring C.struct_rte_ring

type RingFlags uint

const (

RING_F_SP_ENQ = RingFlags(C.RING_F_SP_ENQ)

RING_F_SC_DEQ = RingFlags(C.RING_F_SC_DEQ)

)

func RingCreate(name string, count uint, socket_id int, flags RingFlags) *Ring {

cname := C.CString(name)

defer C.free((unsafe.Pointer)(cname))

return (*Ring)(C.rte_ring_create(cname, C.unsigned(count),

C.int(socket_id), C.unsigned(flags)))

}

func (r *Ring) Free() {

C.rte_ring_free((*C.struct_rte_ring)(r))

}

func (r *Ring) Enqueue(obj unsafe.Pointer) bool {

return int(C.rte_ring_enqueue((*C.struct_rte_ring)(r), obj)) == 0

}
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Example: Simplicity



Even though we can't achieve real performance in 

Go, we definitely want relatively good performance.

Avoiding memory copy is cruicial.
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Performance



type EtherHdr []byte

func (mb *Mbuf) EtherHdr() EtherHdr {

len := C.sizeof_struct_ether_hdr

mb.checkAndUpdateMbufLen()

return (EtherHdr)((*[1 << 30]byte)(unsafe.Pointer(uintptr(mb.buf_addr) +

uintptr(mb.data_off)))[:len:len])

}
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Example: Performance

You can create a Go slice from the 

underlying C array without copying the 

array.

When the slice is released, only the 
reference to the C array is released. 

Underlying C array remains until the 

array is explicitly released in C.



Go automatically releases memory allocated in Go 
when they're not needed anymore.

HOWEVER, anything allocated in C shall be released 
explicitly. You have full responsibility!
• E.g., you must explicitly free ring when you don't 

need it anymore. 

No destructor, deinit or something similar to free C 
memory automatically in Go.
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But… You Need to be Careful



type Ring C.struct_rte_ring

tells, that the type Ring is an alias to struct rte_ring in C.

However, if the type is defined in different package, Go can't check the 
identity of C types.

ring := dpdk.RingCreate("ring", 10, dpdk.SOCKET_ID_ANY, 0)

var cring *C.struct_rte_ring

cring = ring // Error

cring = (*C.struct_rte_ring)(ring) // Error

cring = (*C.struct_rte_ring)(unsafe.Pointer(ring)) // Ok!

Not quite type safe here… unsafe is really unsafe.
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Your C type may be different from mine…



Any name starting with upper characters are exported in Go, i.e. has a global scope.

/*
struct my_struct {

int Visible;

int invisible;
}

*/

import "C"

type MyStruct C.struct_my_struct

You can access to MyStruct.Visible but not to MyStruct.invisible from outside the package.

Should define setter/getter where needed.

func (di *EthDevInfo) DefaultRxConf() *EthRxConf {
rc := di.default_rxconf
return (*EthRxConf)(&rc)

}
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Regular C struct members are invisible



Could make DPDK API Go friendly.

Memory management and type conversion requires 

extra care.

Heavy use of unsafe may cause lots of problem, but 

sometime they're inevitable.
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Conclusions



Command cgo - https://golang.org/cmd/cgo/
C? Go? Cgo! - https://blog.golang.org/c-go-cgo

cgo - https://github.com/golang/go/wiki/cgo
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Useful References

https://golang.org/cmd/cgo/
https://blog.golang.org/c-go-cgo
https://github.com/golang/go/wiki/cgo


QUESTIONS?
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