
Rapid prototyping of DPDK applications with libmoon

Paul Emmerich
emmericp@net.in.tum.de
Technical University of Munich
Chair of Network Architectures and Services
DPDK Summit, 27.9.2017

• PhD student at Technical University of Munich
• Started in 2014, DPDK user since 2013
• PhD thesis about testing network devices
• Built the MoonGen packet generator for this
− Talked about MoonGen here last year
− Often used in academia nowadays :)

https://github.com/emmericp/MoonGen

Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and Georg Carle. 
MoonGen: A Scriptable High-Speed Packet Generator. Internet Measurement Conference (IMC) 2015, October 2015.

MoonGen
Packet Generator & Latency Measurement

Technische Universität München

Chair for Network Architectures and Services

Sebastian Gallenmüller, Paul Emmerich, Daniel Raumer, Georg Carle
Contact: {gallenmu | emmericp | raumer | carle}@net.in.tum.de

Features & Architecture

MoonGen is a scriptable high-speed packet generator built on a Intel’s Data
Plane Development Kit (DPDK) as backend offering a wide range of features:

I Speed: �10Gbit/s with minimal sized packets using a single CPU core

I Flexibility: Configuration & packet crafting in user-controlled Lua scripts

I Efficiency: Code optimization to generate fast scripts using LuaJIT

I Precision: Sub-µsec delay measurements on Intel 10Gbit NICs

I Parallelization: Multi-core support for rates beyond 10Gbit/s

MoonGen Core

DPDK

U
s
e
rs
c
ri
p
t

M
o
o
n
G
e
n

H
a
rd
w
a
re

NIC NIC

Port

q0 qn

Userscript
slaveUserscript

slave spawn

Userscript
slave

Userscript
master

config API data API

config API data API

MoonGen’s architecture

Latency Measurement Feature

I MoonGen reuses hardware features originally de-
signed for the Precision Time Protocol (PTP)

I Timestamping happens in hardware shortly be-
fore/after sending/receiving

I Precision of ± 3.2 ns on Intel X540 10Gbit NICs

I Limitations: Packets must look like PTP packets:
only UDP and PTP layer 2 packets are supported

Latency Measurement Example

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

Latency [µs]

P
ro
b
a
b
ili
ty

[%
]

Latency distribution of traffic forwarded through a VM
running on top of Open vSwitch at a load of 322k
packets/s.

Latency Measurement Demo

I Cable length determination through time-of-flight

I Demo setup uses an unaltered Intel X540 dual port
NIC

NIC
Intel X540

NIC
Intel X540

55
60

5

10

1545

50

20

25
30

35

40

More Information

Additional information and source code of MoonGen is
available at:

https://github.com/emmericp/MoonGen

USENIX Symposium on Networked Systems Design and Implementation, May 4 - 6, 2015, Oakland, CA, USA

About me

2

• Lots of one-off prototypes or implementations deployed only once
• Proof-of-concepts, benchmarks, traffic analysis
• Work often “outsourced“ to student theses
− Advisor for > 10 Bachelor’s and Master’s Theses using DPDK

• Teaching DPDK
− Exercise for our Advanced Computer Networks lecture: build a router
− Simple DPDK-based router, 4 VMs for each student for testing
− ~35 students participated
− Provided boilerplate code for device and memory initialization
− Most common mistake: handling mbufs

Using DPDK in academia

3

• Lots of boilerplate code required for initialization
• Things that should be simple often require lots of code
• Build system can be… annoying
• Hard to get students started

• Typical time frame for a student project: 4-6 months part-time
−Need to understand and research the general topic
−Design and implement a prototype
−Often: brush up on C skills before
−Analyze results, write thesis

• Hard to really get into DPDK in this scope for most students

Problems with DPDK for prototypes

4

• libmoon is a Lua wrapper for DPDK
• Originally written for the MoonGen packet generator

• Why Lua?
− Scripting language
− Can call existing C/C++ functions without overhead
− As fast as C/C++

• Comes with all the utilities you need for prototypes
− Simplified device initialization with reasonable defaults
− Command line parsing library
− Predefined helper threads for statistics, ARP, ICMP, LACP, …
− MoonGen packet library for structured access to packet data

The libmoon library

5

MoonGen
Packet Generator & Latency Measurement

Technische Universität München

Chair for Network Architectures and Services

Sebastian Gallenmüller, Paul Emmerich, Daniel Raumer, Georg Carle
Contact: {gallenmu | emmericp | raumer | carle}@net.in.tum.de

Features & Architecture

MoonGen is a scriptable high-speed packet generator built on a Intel’s Data
Plane Development Kit (DPDK) as backend offering a wide range of features:

I Speed: �10Gbit/s with minimal sized packets using a single CPU core

I Flexibility: Configuration & packet crafting in user-controlled Lua scripts

I Efficiency: Code optimization to generate fast scripts using LuaJIT

I Precision: Sub-µsec delay measurements on Intel 10Gbit NICs

I Parallelization: Multi-core support for rates beyond 10Gbit/s

MoonGen Core

DPDK

U
se

rs
c
ri
p
t

M
o
o
n
G
e
n

H
a
rd
w
a
re

NIC NIC

Port

q0 qn

Userscript
slaveUserscript

slave spawn

Userscript
slave

Userscript
master

config API data API

config API data API

MoonGen’s architecture

Latency Measurement Feature

I MoonGen reuses hardware features originally de-
signed for the Precision Time Protocol (PTP)

I Timestamping happens in hardware shortly be-
fore/after sending/receiving

I Precision of ± 3.2 ns on Intel X540 10Gbit NICs

I Limitations: Packets must look like PTP packets:
only UDP and PTP layer 2 packets are supported

Latency Measurement Example

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

Latency [µs]
P
ro
b
a
b
ili
ty

[%
]

Latency distribution of traffic forwarded through a VM
running on top of Open vSwitch at a load of 322k
packets/s.

Latency Measurement Demo

I Cable length determination through time-of-flight

I Demo setup uses an unaltered Intel X540 dual port
NIC

NIC
Intel X540

NIC
Intel X540

55
60

5

10

1545

50

20

25
30

35

40

More Information

Additional information and source code of MoonGen is
available at:

https://github.com/emmericp/MoonGen

USENIX Symposium on Networked Systems Design and Implementation, May 4 - 6, 2015, Oakland, CA, USA

• libmoon example script, similar to DPDK’s l2fwd
− Multi-threaded
− Multi-queue with RSS
− Prints statistics

• 40 lines of code (without comments)

• DPDK l2fwd: ~650 lines of code (without comments)
− Used to be more in older versions, so it improved!

• We based our prototypes on the DPDK examples before libmoon
• Huge mess of copied & pasted code just to get basic functionality, e.g.:
− IO statistics
− Device configuration

Example: l2-forward.lua

6

• Reflects packets on multiple links, multi-thread/queue with RSS
• Worker thread, started once per queue pair
function reflector(rxQ, txQ)
 local bufs = memory.bufArray()
 while lm.running() do
 local rx = rxQ:tryRecv(bufs, 1000)
 for i = 1, rx do
 local pkt = bufs[i]:getEthernetPacket()
 local tmp = pkt.eth:getDst()
 pkt.eth:setDst(pkt.eth:getSrc())
 pkt.eth:setSrc(tmp)
 local vlan = bufs[i]:getVlan()
 if vlan then
 bufs[i]:setVlan(vlan)
 end
 end
 txQ:sendN(bufs, rx)
 end
end

Example: reflector.lua

7

Small things that can help a lot

8

libmoon comes with a lot of examples to get started

asdf

Check out libmoon on GitHub

9

https://github.com/libmoon/libmoon

https://github.com/libmoon/libmoon

10

Questions?

function master(args)
 local lacpQueues = {}
 for i, dev in ipairs(args.dev) do
 local dev = device.config{
 port = dev,
 rxQueues = args.threads + (args.lacp and 1 or 0),
 txQueues = args.threads + (args.lacp and 1 or 0),
 rssQueues = args.threads
 }
 -- last queue for lacp
 if args.lacp then
 table.insert(lacpQueues,
 {rxQueue = dev:getRxQueue(args.threads), txQueue = dev:getTxQueue(args.threads)})
 end
 args.dev[i] = dev
 end
 device.waitForLinks()

 -- setup lacp if requested
 if args.lacp then
 lacp.startLacpTask("bond0", lacpQueues)
 lacp.waitForLink("bond0")
 end

 -- print statistics
 stats.startStatsTask{devices = args.dev}

 for i, dev in ipairs(args.dev) do
 for i = 1, args.threads do
 lm.startTask("reflector", dev:getRxQueue(i - 1), dev:getTxQueue(i - 1))
 end
 end
 lm.waitForTasks()
end

reflector.lua main/setup

11

local lm = require "libmoon"
local memory = require "memory"
local device = require "device"
local stats = require "stats"
local lacp = require „proto.lacp"

function configure(parser)
 parser:argument("dev", "Devices to use."):args("+"):convert(tonumber)
 parser:option("-t —threads",
 "Number of threads per device."):args(1):convert(tonumber):default(1)
 parser:flag("-l --lacp", "Try to setup an LACP channel.")
end

reflector.lua boilerplate and CLI

12

