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Port Representors

 Port Representors are virtual poll mode drivers (PMD) which provide a logical 
representation in DPDK for a port of a multi host port device.

 Primary purpose demonstrated in our RFC is to support configuration, management 
and monitoring of virtual functions of a physical function bound to a userspace
control plane application.

 Port Representor PMDs are associated with a parent base driver which provide the 
backend implementations for the representor ports.

 Allows VF ports to managed using existing DPDK APIs without the need to create and 
maintain a set of device specific APIs.



Port Representors for a NIC supporting SR-IOV
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Port Representors for a NIC supporting SR-IOV

 Host Control Plane Application

 Port Representor PMDs are created to represent each virtual function (VF) of the PF PMD.

 Port Representor PMD control plane is through eth_dev_ops implemented by base driver (PF PMD).

 Port properties configured through representor:

 MAC, VLAN

 Promiscuous Mode

 Multicast/Broadcast

 Guest Application

 Configuration of data path only:

 Tx/Rx Queues

 RSS/Flow Director

 Offloads

 No data path supported for this use case.



Port Representors for a multi-port devices
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Port Representors for a multi-port devices

 Introduces the new concept of switch/control domain to ethdev’s

 Base driver defines the switch/control domain.

 Each representor port inherits the domain from it’s root device.

 If hardware supports advance port-to-port switching capabilities then switch domain 
can be use by application to know whether logical ports are in the same domain.



Library
Implementation



Port Representor (Object Model)
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Port Representor

 Representor PMD 

 Generic skeleton PMD with infrastructure for creation of representor port and registration with 
broker.

 All configuration including capabilities and dev_ops functions configured by broker/ base driver.

 No restrictions on port representor capabilities set by framework, all are controlled by the base 
driver.

 Representor Broker

 Integrates into base driver (eg PF PMD)

 Base driver is not required to be an ethdev.

 Base driver configures number of representor ports supported and provides port configuration 
functions for representor port initialisation



Representor Broker APIs

 Register / Un-Register Broker in base driver
 int rte_representor_broker_register(struct rte_representor_broker *broker

 int rte_representor_broker_unregister(struct rte_representor_broker *broker);

struct rte_representor_broker {

TAILQ_ENTRY(rte_representor_broker) next;

const char *bus;

const char *device;

/**< Base Device Bus/Device Name */

uint16_t nb_virtual_ports;

struct rte_representor_port *virtual_ports;

/**< Array of virtual(representor) ports */

struct rte_representor_broker_port_ops *port_ops;

/**< Port Initialisation Functions */

void *private_data;

/**< Base Driver private data */

};

struct rte_representor_broker_port_ops

{

port_priv_data_set;

port_priv_data_free;

port_capabilities_set;

port_ops_get;

};



Representor Port APIs

 struct rte_representor_broker *

rte_representor_broker_find(const char *bus, const char *device);

 int rte_representor_port_register(struct rte_representor_broker *broker,

uint32_t vport_id,

struct rte_eth_dev *ethdev);

 Int rte_representor_port_unregister(struct rte_eth_dev *ethdev);



Port Representor (Initialisation Sequence)

API/EAL ARGS EAL
Base

Driver
Representor Port

create vdev

create representor pmd

port_register()

create
ethdev

 bus scan/probe

Virtual Bus

broker_find

broker id

Representor 
Broker

scan bus

private data set()

capabilites set()

dev_ops get()



Example eth_dev_ops function

static void

i40e_port_representor_dev_infos_get(struct rte_eth_dev *ethdev,

struct rte_eth_dev_info *dev_info){

struct rte_representor_port *port_rep = ethdev->data->dev_private;

struct i40e_representor_priv_data *i40e_priv_data = port_rep->priv_data;

/**< Function Implementation */

…

}; 

struct rte_representor_port {

struct rte_representor_broker *broker;

uint16_t id;

struct rte_eth_dev *ethdev;

enum {

RTE_REPRESENTOR_PORT_INVALID,

RTE_REPRESENTOR_PORT_VALID

} state;

void *priv_data;

}; 

struct i40e_representor_priv_data {

struct rte_eth_dev *pf_ethdev;

};



Future Work



Possible Future Work

 Data path enablement (next talk!)

 Enable hot-plug support so representor ports get created automatically, as VF are 
created.

 Port-to-Port switching through rte_flow using logical port id’s.

 Advance port capabilities management

 Port representor could be used to define capabilities of the underlying port. e.g. make a VF 
untrusted so it can change it’s MAC address etc.

 Limit hardware resources port can use, e.g. number of flow director rules.

 Policy enforcement

 stop VF over riding configuration applied in control plane application.

 Would require hooks into base driver to catch configuration requests coming through hardware 
mailbox
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