
A framework for representation, configuration,
and management of virtual function ports

Declan Doherty (Intel)

DPDK Summit Userspace - Dublin- 2017

Legal Notices and Disclaimers

Intel technologies' features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Learn more at intel.com, or from the OEM
or retailer.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems.
Differences in hardware, software, or configuration will affect actual performance. Consult
other sources of information to evaluate performance as you consider your purchase. For
more complete information about performance and benchmark results, visit
http://www.intel.com/performance.

Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other
countries. *Other names and brands may be claimed as the property of others.

© 2017 Intel Corporation.

http://www.intel.com/performance

Agenda

 Port Representor Concepts

 SR-IOV NIC

 Multi-Port NIC

 Library Implementation Details

 Object Model

 Broker APIs

 Port Representor APIs

 Initialization Sequence

 Example eth_dev_ops function

 Future Work

Port Representors

 Port Representors are virtual poll mode drivers (PMD) which provide a logical
representation in DPDK for a port of a multi host port device.

 Primary purpose demonstrated in our RFC is to support configuration, management
and monitoring of virtual functions of a physical function bound to a userspace
control plane application.

 Port Representor PMDs are associated with a parent base driver which provide the
backend implementations for the representor ports.

 Allows VF ports to managed using existing DPDK APIs without the need to create and
maintain a set of device specific APIs.

Port Representors for a NIC supporting SR-IOV

Host OS Userspace

Control Domain

HW (Logical View)

Port 0

Physical Function

VEB

Virtual Function Virtual Function

Host OS Kernel
UIO

ETH DEV API ETH DEV API ETH DEV API

Control Plane Application

Guest VM Kernel

UIO

Guest VM Kernel

UIO

HyperVisor

[DATA PATH]

Guest VM Userspace

Application

ETH DEV API

VF PMD

Guest VM Userspace

Application

ETH DEV API

VF PMD

[DATA PATH]

[DATA PATH]

[CONTROL PATH]

[CONTROL PATH]

REPRESENTOR PMDREPRESENTOR PMDPF PMD

Port Representors for a NIC supporting SR-IOV

 Host Control Plane Application

 Port Representor PMDs are created to represent each virtual function (VF) of the PF PMD.

 Port Representor PMD control plane is through eth_dev_ops implemented by base driver (PF PMD).

 Port properties configured through representor:

 MAC, VLAN

 Promiscuous Mode

 Multicast/Broadcast

 Guest Application

 Configuration of data path only:

 Tx/Rx Queues

 RSS/Flow Director

 Offloads

 No data path supported for this use case.

Port Representors for a multi-port devices

Host OS Userspace

Control Domain

HW (Logical View)

Control/Switch Domain Control/Switch Domain

Control Domain

Port 1

Physical Function

VEB

Virtual Function Virtual Function

Host OS Kernel
UIO

ETH DEV API ETH DEV API ETH DEV API

Control Plane Application

Guest VM Kernel

UIO

Guest VM Kernel

UIO

HyperVisor

Guest VM Userspace

Application

ETH DEV API

VF PMD

Guest VM Userspace

Application

ETH DEV API

VF PMD

[DATA PATH]

[DATA PATH]

[CONTROL PATH]

[CONTROL PATH]

REPRESENTOR PMDREPRESENTOR PMDPF PMD

[DATA PATH]

Port 0

Physical Function

VEB

Virtual Function Virtual Function

ETH DEV API

PF PMD

ETH DEV API

REPRESENTOR PMDREPRESENTOR PMD

ETH DEV API

REPRESENTOR PMD

UIO

[DATA PATH]

[CONTROL PATH]

[CONTROL PATH]

Port Representors for a multi-port devices

 Introduces the new concept of switch/control domain to ethdev’s

 Base driver defines the switch/control domain.

 Each representor port inherits the domain from it’s root device.

 If hardware supports advance port-to-port switching capabilities then switch domain
can be use by application to know whether logical ports are in the same domain.

Library
Implementation

Port Representor (Object Model)

REPRESENTOR PMD

REPRESENTOR PMD

BASE DRIVER IMPLEMENATION

REPRESENTOR BROKER

<<Interface>>

rte_representor

APIs

<<Interface>>

rte_ethdev

APIs

 rte_device rte_ethdev

- device

- ops

rte_representor_broker

- bus name
- device name
- number of ports
- representor ports[]
- port_ops
- private_data

- data

eth_dev_data

- private_data

rte_representor_port

- broker
- representor port id
- private data

instance private data

instance broker ops

instance private data

instance dev ops

Port Representor

 Representor PMD

 Generic skeleton PMD with infrastructure for creation of representor port and registration with
broker.

 All configuration including capabilities and dev_ops functions configured by broker/ base driver.

 No restrictions on port representor capabilities set by framework, all are controlled by the base
driver.

 Representor Broker

 Integrates into base driver (eg PF PMD)

 Base driver is not required to be an ethdev.

 Base driver configures number of representor ports supported and provides port configuration
functions for representor port initialisation

Representor Broker APIs

 Register / Un-Register Broker in base driver
 int rte_representor_broker_register(struct rte_representor_broker *broker

 int rte_representor_broker_unregister(struct rte_representor_broker *broker);

struct rte_representor_broker {

TAILQ_ENTRY(rte_representor_broker) next;

const char *bus;

const char *device;

/**< Base Device Bus/Device Name */

uint16_t nb_virtual_ports;

struct rte_representor_port *virtual_ports;

/**< Array of virtual(representor) ports */

struct rte_representor_broker_port_ops *port_ops;

/**< Port Initialisation Functions */

void *private_data;

/**< Base Driver private data */

};

struct rte_representor_broker_port_ops

{

port_priv_data_set;

port_priv_data_free;

port_capabilities_set;

port_ops_get;

};

Representor Port APIs

 struct rte_representor_broker *

rte_representor_broker_find(const char *bus, const char *device);

 int rte_representor_port_register(struct rte_representor_broker *broker,

uint32_t vport_id,

struct rte_eth_dev *ethdev);

 Int rte_representor_port_unregister(struct rte_eth_dev *ethdev);

Port Representor (Initialisation Sequence)

API/EAL ARGS EAL
Base

Driver
Representor Port

create vdev

create representor pmd

port_register()

create
ethdev

 bus scan/probe

Virtual Bus

broker_find

broker id

Representor
Broker

scan bus

private data set()

capabilites set()

dev_ops get()

Example eth_dev_ops function

static void

i40e_port_representor_dev_infos_get(struct rte_eth_dev *ethdev,

struct rte_eth_dev_info *dev_info){

struct rte_representor_port *port_rep = ethdev->data->dev_private;

struct i40e_representor_priv_data *i40e_priv_data = port_rep->priv_data;

/**< Function Implementation */

…

};

struct rte_representor_port {

struct rte_representor_broker *broker;

uint16_t id;

struct rte_eth_dev *ethdev;

enum {

RTE_REPRESENTOR_PORT_INVALID,

RTE_REPRESENTOR_PORT_VALID

} state;

void *priv_data;

};

struct i40e_representor_priv_data {

struct rte_eth_dev *pf_ethdev;

};

Future Work

Possible Future Work

 Data path enablement (next talk!)

 Enable hot-plug support so representor ports get created automatically, as VF are
created.

 Port-to-Port switching through rte_flow using logical port id’s.

 Advance port capabilities management

 Port representor could be used to define capabilities of the underlying port. e.g. make a VF
untrusted so it can change it’s MAC address etc.

 Limit hardware resources port can use, e.g. number of flow director rules.

 Policy enforcement

 stop VF over riding configuration applied in control plane application.

 Would require hooks into base driver to catch configuration requests coming through hardware
mailbox

Questions?
Declan Doherty

<declan.doherty@intel.com>

