
Ideas for adding generic HW
accelerators to DPDK

Hemant Agrawal, NXP

DPDK Summit Userspace - Dublin- 2017

Problem Statement

 SoCs may have many types of different accelerators, which may not be common or
use completely different set of capabilities.

 How to expose them via DPDK?

 Should we create new flavor of device type for each unique accelerator?

 The applications using these accelerator may not be portable across architectures.

User Applications

An offload use-case of NXP

 NXP Platform has a programmable engine,
called ‘AIOP’

 The engine can exposes a NIC interface and a
command-control interfaces for GPP-side,
detectable on fsl-mc bus.

 The application need to configure the engine in
order to use it.

 NXP provides a library exposing the application
level APIs and convert them to command
messages.

 Some of the example use-cases are ovs offload
or wireless offload.

DPDK

AIOP

NIC -*

NIC-Phy

IF -1* IF -2IF-Control

config API

cmd i/f NIC-

PHY

WRIOP (PHY Layer)

GPP

NXP-HW

Why in DPDK?

 Why to add it into DPDK and not use vendor specific SDK APIs.

 Application prefers uniform device view: Start/Stop, queue/ring config

 Uniform programming model across devices – ease of application development for users

 Some of these accelerators may need closer integration e.g. eventdev – single place to get all
events.

 Can we find a common ground for such – differently configured – accelerators in
DPDK?

 Management – difficult to find a common/generic ground

 Input/output – Can be abstracted out.

Requirements for Accelerators Interfacing

An abstract, generic APIs for applications to program hardware without knowing the details of

programmable devices.

 Command/Control APIs – Add, delete, enable, disable, modify, config - *services* etc.
• Synchronous or Asynchronous request/response model

 Data I/O APIs – enqueue/dequeue.

 Query APIs – Query details: Status, statistics etc.

 Notification APIs – unsolicited notifications generated by the offload engine. Example : logs,
events, exception packets etc.

 Firmware Management - load/unload/status of the firmware image.

Introducing rte_raw_device

 A *rte_raw_device* is a raw/generic device without any standard configuration or
input/output method assumption.

 An virtual device – on demand creation by the applications.

 The configure, info operation will be opaque structures.

 The queue/ring operations will not assume any data or buffer format.

 Specific PMDs should expose any specific config APIs – not expecting portability.

Rte_device

rte_eth_dev rte_cryptodev rte_eventdev rte_xyz… rte_raw_dev

Properties for raw device

rte_raw_device

•struct rte_raw_dev_data *data

•struct rte_raw_dev_ops *dev_ops

•struct rte_raw_fw_ops *fw_ops

•Struct rte_device *dev

•Struct rte_driver *driver

•Uint8_t in_use:1

rte_raw_dev_data

•uint8_t dev_id

•unit8_t nb_queues;

•uint8_t dev_started:1;

•void *dev_private

•void *dev_info

•Struct rte_driver *driver

•Char name[RTE_RAW_MAX_NAME]

rte_raw_dev_ops

•dev_info_get

•dev_configure

•dev_start

•dev_stop

•dev_close

•….

•queue_def_conf

•queue_setup

•queue_release

•Dump

•Xtarts _get

•Xstats_reset

rte_raw_fw_ops

• fw_load

• fw_status

• fw_clock_sync

• fw_config

• fw_unload

• fw_stats

What is different from rte_prgdev ?

 The last proposal of rte_prgdev, mainly focused on firmware image management.

 rte_raw_dev focus is attempting to provide a uniform device view and accelerator
access to the applications.

 rte_raw_dev is not discounting firmware management, but makes it an optional
component.

 rte_raw_dev can serve as a staging device for un-common newly added device flavors.

 Any commonly used rte_raw based device can be converted into it’s own specific flavor.

Questions?
Hemant Agrawal

hemant.agrawal@nxp.com

mailto:Hemant.Agrawal@nxp.com

SoCs – Flexible Programming Architecture

 Packet Processing

 (1) Autonomous:
Packets are received, processed and sent within the HW
Engine. HW engine controller can programmed with
different autonomous applications.

 (1) & (2) Semi Autonomous: Packets are received by
HW Engine. HW Engine controller does part of
processing. GPP cores do rest of processing and send
the result packets out.

 (2) Non-Autonomous:
Entire packet processing happens within GPP cores with
no help from HW controller.

 Other acceleration – any kind of HW offload.

 Pattern Matching

 Data Compression

FMAN

DPAA

Data Path
Cores

GPP Core (2)

GPP Core
Control
Path Cores

Eth

Pattern

SEC

Data Comp

PCD

Controller (1)

HW Engine

