
Ideas for adding generic HW
accelerators to DPDK

Hemant Agrawal, NXP

DPDK Summit Userspace - Dublin- 2017

Problem Statement

 SoCs may have many types of different accelerators, which may not be common or
use completely different set of capabilities.

 How to expose them via DPDK?

 Should we create new flavor of device type for each unique accelerator?

 The applications using these accelerator may not be portable across architectures.

User Applications

An offload use-case of NXP

 NXP Platform has a programmable engine,
called ‘AIOP’

 The engine can exposes a NIC interface and a
command-control interfaces for GPP-side,
detectable on fsl-mc bus.

 The application need to configure the engine in
order to use it.

 NXP provides a library exposing the application
level APIs and convert them to command
messages.

 Some of the example use-cases are ovs offload
or wireless offload.

DPDK

AIOP

NIC -*

NIC-Phy

IF -1* IF -2IF-Control

config API

cmd i/f NIC-

PHY

WRIOP (PHY Layer)

GPP

NXP-HW

Why in DPDK?

 Why to add it into DPDK and not use vendor specific SDK APIs.

 Application prefers uniform device view: Start/Stop, queue/ring config

 Uniform programming model across devices – ease of application development for users

 Some of these accelerators may need closer integration e.g. eventdev – single place to get all
events.

 Can we find a common ground for such – differently configured – accelerators in
DPDK?

 Management – difficult to find a common/generic ground

 Input/output – Can be abstracted out.

Requirements for Accelerators Interfacing

An abstract, generic APIs for applications to program hardware without knowing the details of

programmable devices.

 Command/Control APIs – Add, delete, enable, disable, modify, config - *services* etc.
• Synchronous or Asynchronous request/response model

 Data I/O APIs – enqueue/dequeue.

 Query APIs – Query details: Status, statistics etc.

 Notification APIs – unsolicited notifications generated by the offload engine. Example : logs,
events, exception packets etc.

 Firmware Management - load/unload/status of the firmware image.

Introducing rte_raw_device

 A *rte_raw_device* is a raw/generic device without any standard configuration or
input/output method assumption.

 An virtual device – on demand creation by the applications.

 The configure, info operation will be opaque structures.

 The queue/ring operations will not assume any data or buffer format.

 Specific PMDs should expose any specific config APIs – not expecting portability.

Rte_device

rte_eth_dev rte_cryptodev rte_eventdev rte_xyz… rte_raw_dev

Properties for raw device

rte_raw_device

•struct rte_raw_dev_data *data

•struct rte_raw_dev_ops *dev_ops

•struct rte_raw_fw_ops *fw_ops

•Struct rte_device *dev

•Struct rte_driver *driver

•Uint8_t in_use:1

rte_raw_dev_data

•uint8_t dev_id

•unit8_t nb_queues;

•uint8_t dev_started:1;

•void *dev_private

•void *dev_info

•Struct rte_driver *driver

•Char name[RTE_RAW_MAX_NAME]

rte_raw_dev_ops

•dev_info_get

•dev_configure

•dev_start

•dev_stop

•dev_close

•….

•queue_def_conf

•queue_setup

•queue_release

•Dump

•Xtarts _get

•Xstats_reset

rte_raw_fw_ops

• fw_load

• fw_status

• fw_clock_sync

• fw_config

• fw_unload

• fw_stats

What is different from rte_prgdev ?

 The last proposal of rte_prgdev, mainly focused on firmware image management.

 rte_raw_dev focus is attempting to provide a uniform device view and accelerator
access to the applications.

 rte_raw_dev is not discounting firmware management, but makes it an optional
component.

 rte_raw_dev can serve as a staging device for un-common newly added device flavors.

 Any commonly used rte_raw based device can be converted into it’s own specific flavor.

Questions?
Hemant Agrawal

hemant.agrawal@nxp.com

mailto:Hemant.Agrawal@nxp.com

SoCs – Flexible Programming Architecture

 Packet Processing

 (1) Autonomous:
Packets are received, processed and sent within the HW
Engine. HW engine controller can programmed with
different autonomous applications.

 (1) & (2) Semi Autonomous: Packets are received by
HW Engine. HW Engine controller does part of
processing. GPP cores do rest of processing and send
the result packets out.

 (2) Non-Autonomous:
Entire packet processing happens within GPP cores with
no help from HW controller.

 Other acceleration – any kind of HW offload.

 Pattern Matching

 Data Compression

FMAN

DPAA

Data Path
Cores

GPP Core (2)

GPP Core
Control
Path Cores

Eth

Pattern

SEC

Data Comp

PCD

Controller (1)

HW Engine

