DPDK

|deas for adding generic HW
accelerators to DPD

e d
/ -~ L sl s
1| N 1 ’, od
d e SV I .-'-‘L‘ % e 16 = —~
ot G o 't-"l b S = — “; -3 ' f;’!";\ }p 2 ,L. J
S v 4 : > . =X B
e T R ‘Wi s - ——- | tlny 3
{ : | Aﬂ" P AT ! i"] o A4] m 1% o LJ"V Bl ‘I
A) | { | 14 { Bl
! b n,g $ o |
- | —- ! ", |
A8 ’“? ! '
|
i Ilﬂ‘%'it =gt
picls n :
GO .

—e.

Problem Statement

» SoCs may have many types of different accelerators, which may not be common or
use completely different set of capabilities.

» How to expose them via DPDK?
= Should we create new flavor of device type for each unique accelerator?

= The applications using these accelerator may not be portable across architectures.

An offload use-case of NXP

» NXP Platform has a programmable engine,
called ‘AIOP’ User Applications

» The engine can exposes a NIC interface and a
command-control interfaces for GPP-side,
detectable on fsl-mc bus.

config API

§ DPDK

IF-Control m

ordertouseit. = mmmmedemcec b mme e e e

» The application need to configure the engine in o

NIC- NXP-HW

cmdiff | | NIC-* | |
. |__PHY

» NXP provides a library exposing the application -

level APIs and convert them to command
messages. """""""" m-C:P-H;, ------------

» Some of the example use-cases are ovs offload
or wireless offload. 1 1 1 1

Why in DPDK?

» Why to add it into DPDK and not use vendor specific SDK APIs.
= Application prefers uniform device view: Start/Stop, queue/ring config
= Uniform programming model across devices — ease of application development for users

= Some of these accelerators may need closer integration e.g. eventdev — single place to get all
events.

» Can we find a common ground for such — differently configured — accelerators in
DPDK?

= Management — difficult to find a common/generic ground

= Input/output — Can be abstracted out.

Requirements for Accelerators Interfacing

An abstract, generic APls for applications to program hardware without knowing the details of
programmable devices.

v’ Command/Control APIs — Add, delete, enable, disable, modify, config - *services* etc.
* Synchronous or Asynchronous request/response model

v' Data /O APIs — enqueue/dequeue.
v' Query APIs — Query details: Status, statistics etc.

v Notification APIs — unsolicited notifications generated by the offload engine. Example : logs,
events, exception packets etc.

v" Firmware Management - load/unload/status of the firmware image.

Introducing rte_raw_device

» A *rte raw_device* is a raw/generic device without any standard configuration or
input/output method assumption.

» An virtual device — on demand creation by the applications.
» The configure, info operation will be opaque structures.
» The queue/ring operations will not assume any data or buffer format.

» Specific PMDs should expose any specific config APls — not expecting portability.

Rte_device

rte_eth_dev rte_cryptodev rte_eventdev re_xyz... rte_raw_dev

Properties for raw device

rte_raw_device

estruct rte_raw_dev_data *data

e struct rte_raw_dev_ops *dev_ops
e struct rte_raw_fw_ops *fw_ops

e Struct rte_device *dev

e Struct rte_driver *driver

e Uint8_t in_use:1

» rte_raw_dev_data

e Uint8_t dev_id

e UNIt8_t nb_queues;

e UiNnt8_t dev_started:1;

* void *dev_private

* void *dev_info

e Struct rte_driver *driver

e Char name[RTE_RAW_MAX_NAME]

rte_raw_fw_ops

 fw_load

* fw_status

e fw_clock_sync
» fw_config

e fw_unload

* fw_stats

A\ 4

rte_raw_dev_ops

* dev_info_get

» dev_configure
* dev_start

* dev_stop

* dev_close

* queue_def_conf
* queue_setup

* queue_release
* Dump

e Xtarts _get

» Xstats_reset

What is different from rte_prgdev ?

» The last proposal of rte_prgdev, mainly focused on firmware image management.

» rte_raw_dev focus is attempting to provide a uniform device view and accelerator
access to the applications.

» rte_raw_dev is not discounting firmware management, but makes it an optional
component.

» rte_raw_dev can serve as a staging device for un-common newly added device flavors.

» Any commonly used rte_raw based device can be converted into it’s own specific flavor.

Hemant Agrawal

Questions? hemant.agrawal@nxp.com

mailto:Hemant.Agrawal@nxp.com

SoCs — Flexible Programming Architecture

I GPP Core > Packet Processing
Control

Engine. HW engine controller can programmed with
different autonomous applications.

> (1) & (2) Semi Autonomous: Packets are received by
HW Engine. HW Engine controller does part of
processing. GPP cores do rest of processing and send

Data Path the result packets out.
Cores

DPAA > (2) Non-Autonomous:
Entire packet processing happens within GPP cores with
no help from HW controller.

Path Cores > (1) Autonomous:
/ \
ine

Packets are received, processed and sent within the HW
SEC

Contioiler (1)

> Other acceleration — any kind of HW offload.

Pattern _
> Pattern Matching

> Data Compression
Data Comp

