
Method for sharing a (PCI) device
between multiple PMDs

Fiona Trahe

DPDK Summit Userspace - Dublin- 2017

Problem Statement

 Hardware accelerators can provide multiple functions via the same PCI device

e.g. Intel’s QuickAssist devices provide symmetric crypto, asymmetric crypto and compression
functions under the same BAR.

 EAL PCI presumes one and only one driver per device. This can lead to artificially
bundling multiple functions under one API though it may be desirable to present
these to applications using separate APIs.

 This presentation proposes a mechanism to share a pci device between multiple
PMDs.

 It may also be extendable to non-pci devices.

Example problem

 Using Symmetric and Asymmetric crypto as examples of independent functions in the
following diagrams.

 Just to illustrate the generic problem.

 Doesn’t imply that these APIs shouldn’t be grouped under the same API, as currently
proposed in Asymmetric RFC.

Limitation: 1 PCI device – 1 driver

Symmetric crypto

API

(cryptodev)

Asym crypto API

(e.g. asymdev)

Sym Crypto PMD
Asym Crypto

PMD

PCI CSRs

Sym Crypto

Engine

Asym Crypto

Engine

EAL PCI

Register
Register

Probe

• Not possible to create separate

device APIs to handle separate

functions and deliver from same HW

device.

• Both PMDs register with EAL that they

can drive the device.

• The PCI only calls probe until the first

driver is found.

• The second driver gets no access to

the device and cannot fulfil the API

Option1 – combine APIs

Sym & Asym cryptodev API

Sym & Asym Crypto PMD

PCI CSRs

Sym Crypto

Engine

Asym Crypto

Engine

EAL PCI

Register

Probe

• Both functions are combined under

the same device APIs.

• One HW PMD implements both

functions.

• Both HW functions are available to

application.

• But may not always be appropriate to

group API functions based on functions

grouped in HW accelerators.

• SW PMDs will typically only implement

one of the services on the API.

Sym SW

PMD

Asym SW

PMD

Option2 – allow PMDs to share devices

cryptodev API for

sym

cryptodev API for

asym

Sym Crypto PMD
Asym Crypto

PMD

PCI CSRs

Sym Crypto

Engine

Asym Crypto

Engine

EAL PCI

Register
Register

Probe

• Both PMDs register with EAL that they

can drive the device. They also

indicate they can share the device.

• The PCI calls probe until a driver is

found.

• If this driver can share EAL continues to

call probe on other drivers.

• There’s a shared data area provided,

for PMDs to communicate sharing

arrangements.

• Advantage: Design of API is decoupled

from HW design.

Probe

Shared data area

 Up to PMDs to decide how they can share. Not prescriptive, it will vary
depending on HW device design.

 For example it could contain

 a set of resources. Each driver marks which resources it’s using.

 locks to control access to shared CSRs and shared data.

 state, e.g. if some part of device setup should only be done once, then could be
done by first PMD and marked as done.

Status of development

 POC working with 2 QAT PMDs, the sym crypto driver and another dummy driver.

 Open issue re how ethdev drivers can accommodate the changes.

Some of the tricky bits:

 Cryptodev used BDF string as name, needed to be unique, e.g. name = “0000:02:01.1”

Fixed by adding function to device name e.g. “0000:02.01.1.sym” and “0000:02.01.1.asym”.

 Shareability added as driver attribute rather than device attribute. I.e. indicates driver
understands how to share devices. It’s not a promise that it will share them. It could mark in
the shared data area that it has taken all the resources and won’t share. If a second driver
needs resources already taken by the first it will only be probed if it’s capable of sharing and
should fail to start due to lack of resources.

 rte_pci_devices are in global table. Each contains rte_driver and rte_pci_driver ptrs. Written
by first probe, overwritten by second. Fix: Replaced rte_pci_driver with an array.
Repercussions in ethdev need investigation. Still investigating rte_driver usage.

What it’s not

 Not a mechanism for sharing a device across processes. Shares a device across PMDs
within a process NOT across processes.

 Not a mechanism for making all devices on a bus shareable. The driver decides
whether it’s capable of sharing a specific device-type with another driver.

 Not a framework for handling how the drivers share the device. The details of how
they share it are controlled by the PMDs, not part of this mechanism. Supporting
functions, e.g. like a regmap library for managing access to shared CSRs could be
added later.

Code snippet

Code snippets

Questions?

Feedback?

Fiona Trahe

fiona.trahe@intel.com

