DPDK

Method for sharing a (PCl) device
between

Problem Statement

» Hardware accelerators can provide multiple functions via the same PCl device

e.g. Intel’s QuickAssist devices provide symmetric crypto, asymmetric crypto and compression
functions under the same BAR.

» EAL PCl presumes one and only one driver per device. This can lead to artificially
bundling multiple functions under one APl though it may be desirable to present
these to applications using separate APIs.

» This presentation proposes a mechanism to share a pci device between multiple
PMDs.

» It may also be extendable to non-pci devices.

Example problem

» Using Symmetric and Asymmetric crypto as examples of independent functions in the
following diagrams.

» Just to illustrate the generic problem.

» Doesn’t imply that these APIs shouldn’t be grouped under the same API, as currently
proposed in Asymmetric RFC.

Limitation: 1 PCl device — 1 driver

Not possible to create separate
device APIs to handle separate
functions and deliver from same HW
device.

Both PMDs register with EAL that they
can drive the device.

The PCl only calls probe unfil the first
driver is found.

Symmetric crypto

AP Asym crypto API

(e.g. asymdev)

Asym Crypto

Sym Crypto PMD PMD

Reqister
Reqgister

Probe T~
The second driver gets no access to

the device and cannot fulfil the AP Sym Crypto Asym Crypto
=alellal= Enaine

A A

EAL PCI

Optioni—combine APIs

« Both functions are combined under
the same device APIs.

« One HW PMD implements both
function:s. Sym & Asym cryptodev API

« Both HW functions are available to
application.

« But may not always be appropriate to
group API functions based on functions

grouped in HW accelerators. Sym & Asym Crypto PMD
. Regqister

EAL PCI Probe

« SW PMDs will typically only implement
one of the services on the API. Sym Crypfo Asym Crypto
Engine Engine

Option2 — allow PMDs to

Both PMDs register with EAL that they
can drive the device. They also
indicate they can share the device.
The PCI calls probe unftil a driver s
found.

If this driver can share EAL continues to
call probe on other drivers.

Reqister

share devices

cryptodev API for
sym

Sym Crypto PMD

<
[«
>
l

EAL PCI Reqgister

Probe

cryptodev API for
asym

Asym Crypto
PMD

There's a shared data area provided,
for PMDs to communicate sharing
arrangements.

Advantage: Design of APl is decoupled
from HW design.

Sym Crypto
Engine

Asym Crypto
Engine

Shared data area

» Up to PMDs to decide how they can share. Not prescriptive, it will vary
depending on HW device design.
» For example it could contain
» a set of resources. Each driver marks which resources it’s using.
» locks to control access to shared CSRs and shared data.

» state, e.g. if some part of device setup should only be done once, then could be
done by first PMD and marked as done.

Status of development

» POC working with 2 QAT PMDs, the sym crypto driver and another dummy driver.
» Open issue re how ethdev drivers can accommodate the changes.

Some of the tricky bits:
» Cryptodev used BDF string as name, needed to be unique, e.g. name = “0000:02:01.1"
Fixed by adding function to device name e.g. “0000:02.01.1.sym” and “0000:02.01.1.asym”.

» Shareability added as driver attribute rather than device attribute. l.e. indicates driver
understands how to share devices. It’s not a promise that it will share them. It could mark in
the shared data area that it has taken all the resources and won’t share. If a second driver
needs resources already taken by the first it will only be probed if it’s capable of sharing and
should fail to start due to lack of resources.

» rte_pci_devices are in global table. Each contains rte_driver and rte_pci_driver ptrs. Written
by first probe, overwritten by second. Fix: Replaced rte_pci_driver with an array.
Repercussions in ethdev need investigation. Still investigating rte_driver usage.

What it’s not

» Not a mechanism for sharing a device across processes. Shares a device across PMDs
within a process NOT across processes.

» Not a mechanism for making all devices on a bus shareable. The driver decides
whether it’s capable of sharing a specific device-type with another driver.

» Not a framework for handling how the drivers share the device. The details of how
they share it are controlled by the PMDs, not part of this mechanism. Supporting
functions, e.g. like a regmap library for managing access to shared CSRs could be
added later.

Code snippet

@@ -131,12 III.;'HTI[Z- @@ struct rte pci device {

| TAILQ ENTRY(rte pci device) next; /**< Next probed PCI device. */
struct rte_device device; /**< Inherit core device */
struct rte_pci_addr addr; /**< PCI location. */
struct rte pci id id; J*¥*< PCI ID. */

struct rte _mem_resource mem_resource[PCI_MAX RESOURCE];
/**< PCI Memory Resource */

| struct rte intr handle intr handle; /**< Interrupt handle */
- struct rte pci driver *driver[PCI_MAX DRIVERS SHARING]; /**< Associated drivers */
[+ struct rte pci driver *driver; [**< Assoclated drive
uintlé t max vfs; /**< sriov enable if not zero */
enum rte kernel driver kdrv; /**< Kernel driver passthrough */
| char name[PCI_PRI_STR SIZE+1]; /**< PCI location (ASCII) */
- uint8 t drivei rﬁnnt /**< For shared devices, number of drivers sharing */
- void * priv_shared data; /**< private data for shared devices */

};

Code snippets

static struct rte pci driver rte gat pmd = {
.1d table = pci _id gat map,
.drv flags = RTE PCI DRV NEED MAPPING | RTE PCI DRV CAN SHARE,
+ drv tlags = RTE PCI DRY NEED MAPPING,
.probe = crypto gat pci probe,
.remove = crypto gat pci remove

; FOREACH _DRIVER ON_PCIBUS (dr) {

rc = rte pci probe one driver(dr, dev);
if (rc < 0)
/* negative value is an error */
returmn -1;

Lf (dr->drv flags & RTE PCI DRY CAN SHARE)
continue:
return 0;

LT SO continue st

if (rc > 0)
/* positive value means driver doesn't support it */
continue;
+ * driver has claimed this device
+ * Check 1f 1t can share it with other PMDs,
-4-
+

‘alt

hlll']. '

Questions? |
Fiona Trahe

fiona.trahe@intel.com

Feedback?

