

VFd: an SR-IOV Hypervisor using DPDK

Alex Zelezniak DPDK Summit Userspace - Dublin- 2017

Current state

- Despite many improvements software overlays have fundamental inefficiencies for packet processing workloads
 - ▶ High performance network functions being realized via hardware virtualization (SR-IOV) for foreseeable future
 - SmartNIC and hardware offloads rely on SRIOV as the interface between tenants and the NIC
- > Dynamic policy enforcement for needed resource management, security, and reliability in multi-tenant NIC sharing
 - For example: allow VF to change MAC, enter promiscuous mode if policy permits, etc.
- ► Today, there is no single policy enforcement point that takes on "hypervisor-like" functions for SRIOV NICs
 - Linux tools for SR-IOV don't manage dynamic events e.g., what to do if a VM tries to change MAC or set VLAN at runtime?
 - Also, kernel drivers don't support resource allocation, configuration, and offload features in a standardized way

Steering traffic using multiple VLANs	• Mirroring
• QoS (TC)	Separate VLAN/MAC anti-spoofing control
• VF stats	QinQ management
BUM traffic management	MAC filtering

VFd: a "hypervisor" for SR-IOV NICs

Privileged software (driver) performing hypervisor function for SR-IOV network devices

- Allocate/deallocate VFs
- Flexibly allocate resources, e.g., queues, QoS classes, to VFs
- Manage policy, e.g., VLAN steering, QinQ tagging, filtering, mirroring, anti-spoofing, in a single place
- Configure VFs
- Collect various PF/VF statistics
- Flexible, user-space tool

Cloud orchestrators vSwitch/vR offloads VM LXC Kernel VFd VF VF VF SRIOV NIC

VF lifecycle, policy

DPDK

- Unfortunately, we hit some practical snags
 - Several of the functions needed are missing
 - Kernel doesn't standardize functions that do exist each NIC vendor implements in their own way
 - No mechanisms for handling runtime events that are policy affecting
 - Many environments often run old kernels, and kernel upgrades is a major activity that could impact vast infrastructure. This impedes fast evolution in this rapidly changing space

- ► User space, rapid evolution
- SR-IOV and DPDK are both tools for high performance, so common target community
- Support from most major modern NICs where SR-IOV is involved
- NFV mindset

VFd architecture

Runs as a daemon process that can handle static configuration as well as dynamic events

Backend is DPDK

 Front end tools allowing configuration and gathering statistics

0000:84:00.1 UP

DPDK

VFd packet steering/VLAN stripping/QoS

DPDK

- Traffic classes with one strict-priority queue supported
- Packets placed to the appropriate queues based on PCP value
- Configurable Min/Max bandwidth values per TC/VF

One or more VLAN IDs could be used to steer traffic to the VF

Optionally VLAN ID could be removed on RX and inserted on TX

DPDK APIs used

DPDK

Uses "experimental" DPDK API

- rte_pmd_ixgbe.h
- rte_pmd_i40e.h
- rte_pmd_bnxt.h

rte_pmd_[ixgbe | i40e | bnxt]_ping_vfs rte_pmd_[ixgbe | i40e | bnxt]_set_vf_mac_anti_spoof rte_pmd_[ixgbe | i40e | bnxt]_set_vf_vlan_anti_spoof rte_pmd_[ixgbe | i40e | bnxt]_set_tx_loopback rte_pmd_[ixgbe | i40e | bnxt]_set_vf_unicast_promisc rte_pmd_[ixgbe | i40e | bnxt]_set_vf_broadcast rte_pmd_[ixgbe | i40e | bnxt]_set_vf_multicast_promisc rte_pmd_[ixgbe | i40e | bnxt]_set_vf_mac_addr rte_pmd_[ixgbe | i40e | bnxt]_set_vf_vlan_stripq rte_pmd_[ixgbe | i40e | bnxt]_set_vf_vlan_insert rte_pmd_[ixgbe | i40e | bnxt]_set_vf_vlan_filter rte_pmd_[ixgbe | i40e | bnxt]_get_vf_stats rte_pmd_[ixgbe | i40e | bnxt]_reset_vf_stats

Move to

"Generic" DPDK API

VFd status

- Supports ixgbe, i40e, bnxt devices
- Working on supporting QoS with more NICs
- Adding mirroring
- Improving operational support/troubleshooting
- Other vendors are working to contribute

Future

- Remove "experimental tag" from new API's?
- Add generic APIs to DPDK?
- Add Netlink/sysfs/procfs to interface Linux tools?
- Variable number of queues per VF?
- Move complexity of VF configuration to the "SR-IOV Hypervisor" simplifying creation of lightweight, portable VF?
- PF/VF reset/recovery?
- Standardized interface for SmartNIC offloads of hypervisor like functions e.g., VFd as integration point for OVS, vRouter
- Who would benefit from using it? Cloud platform integrators, vSwitch/router projects, VNF vendors, ...
- ▶ Who should think about contributing to it? NIC vendors, vSwitch/router projects, ...
- How can you help?

Acknowledgments

DPDK

►AT&T

- E. Scott Daniels
- Kaustubh Joshi
- Dhanunjaya Ravada
- John Craig

▶ Broadcom

- Ajit Khaparde
- Stephen Hurd
- Venugopala Bhat
- Hoan Do
- Sudheer Vegesna

Intel

- Wenzhuo Lu
- Bernard Iremonger
- Aaron Rowden
- Rahul Shah
- ► Lian-min Wang
- Jingjing Wu
- Ferruh Yigit
- Qi Z Zhang
- Helin Zhang

Questions?

Alex Zelezniak alexz@att.com

http://www.github.com/att/vfd