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Current state

 Despite many improvements software overlays have fundamental inefficiencies for packet processing workloads

 High performance network functions being realized via hardware virtualization (SR-IOV) for foreseeable future

 SmartNIC and hardware offloads rely on SRIOV as the interface between tenants and the NIC

 Dynamic policy enforcement for needed resource management, security, and reliability in multi-tenant NIC sharing

 For example: allow VF to change MAC, enter promiscuous mode if policy permits, etc.

 Today, there is no single policy enforcement point that takes on “hypervisor-like” functions for SRIOV NICs

 Linux tools for SR-IOV don’t manage dynamic events – e.g., what to do if a VM tries to change MAC or set VLAN at runtime?

 Also, kernel drivers don’t support resource allocation, configuration, and offload features in a standardized way

• Steering traffic using multiple VLANs • Mirroring

• QoS (TC) • Separate VLAN/MAC anti-spoofing  control

• VF stats • QinQ management

• BUM traffic management • MAC filtering



VFd: a “hypervisor” for SR-IOV NICs

 Privileged software (driver) performing hypervisor function for SR-IOV network devices

 Allocate/deallocate VFs

 Flexibly allocate resources, e.g., queues, QoS classes, to VFs

 Manage policy, e.g., VLAN steering, QinQ tagging, filtering, mirroring, anti-spoofing, in a single place 

 Configure VFs 

 Collect various PF/VF statistics

 Flexible, user-space tool

 Unfortunately, we hit some practical snags

 Several of the functions needed are missing 

 Kernel doesn’t standardize functions that do exist - each NIC vendor implements in their own way

 No mechanisms for handling runtime events that are policy affecting

 Many environments often run old kernels, and kernel upgrades is a major activity that could impact vast infrastructure. This 
impedes fast evolution in this rapidly changing space
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Why DPDK?

 User space, rapid evolution

 SR-IOV and DPDK are both tools for high performance, so common target community

 Support from most major modern NICs where SR-IOV is involved

 NFV mindset



VFd architecture

 Runs as a daemon process that can handle
static configuration as well as dynamic events

 Backend is DPDK

 Front end tools allowing 
configuration and gathering statistics



VFd packet steering/VLAN stripping/QoS

 One or more VLAN IDs could be used to steer traffic to the VF

 Optionally VLAN ID could be removed on RX and inserted on TX

30 % 20 %

50 %

 Traffic classes with one strict-priority queue supported

 Packets placed to the appropriate queues based on PCP value

 Configurable Min/Max bandwidth values per TC/VF



DPDK APIs used

 Uses “experimental” DPDK API

 rte_pmd_ixgbe.h

 rte_pmd_i40e.h

 rte_pmd_bnxt.h

rte_pmd_[ixgbe|i40e|bnxt]_ping_vfs

rte_pmd_[ixgbe|i40e|bnxt]_set_vf_mac_anti_spoof

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_vlan_anti_spoof

rte_pmd _[ixgbe|i40e|bnxt]_ set_tx_loopback

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_unicast_promisc

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_broadcast

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_multicast_promisc

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_mac_addr

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_vlan_stripq

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_vlan_insert

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_vlan_filter

rte_pmd _[ixgbe|i40e|bnxt]_ get_vf_stats

rte_pmd _[ixgbe|i40e|bnxt]_ reset_vf_stats

“Generic” DPDK APIMove to



VFd status

 Supports ixgbe, i40e, bnxt devices

 Working on supporting QoS with more NICs

 Adding mirroring

 Improving operational support/troubleshooting

 Other vendors are working to contribute



Future

 Remove “experimental tag” from new API’s?

 Add generic APIs to DPDK?

 Add Netlink/sysfs/procfs to interface Linux tools?

 Variable number of queues per VF?

 Move complexity of VF configuration to the “SR-IOV Hypervisor“ simplifying creation of lightweight, portable VF?

 PF/VF reset/recovery?

 Standardized interface for SmartNIC offloads of hypervisor like functions – e.g., VFd as integration point for OVS, vRouter

 Who would benefit from using it? Cloud platform integrators, vSwitch/router projects, VNF vendors, …

 Who should think about contributing to it? NIC vendors, vSwitch/router projects, …

 How can you help?
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Questions?

Alex Zelezniak

alexz@att.com

http://www.github.com/att/vfd


