
VFd: an SR-IOV Hypervisor using DPDK

Alex Zelezniak

DPDK Summit Userspace - Dublin- 2017

Current state

 Despite many improvements software overlays have fundamental inefficiencies for packet processing workloads

 High performance network functions being realized via hardware virtualization (SR-IOV) for foreseeable future

 SmartNIC and hardware offloads rely on SRIOV as the interface between tenants and the NIC

 Dynamic policy enforcement for needed resource management, security, and reliability in multi-tenant NIC sharing

 For example: allow VF to change MAC, enter promiscuous mode if policy permits, etc.

 Today, there is no single policy enforcement point that takes on “hypervisor-like” functions for SRIOV NICs

 Linux tools for SR-IOV don’t manage dynamic events – e.g., what to do if a VM tries to change MAC or set VLAN at runtime?

 Also, kernel drivers don’t support resource allocation, configuration, and offload features in a standardized way

• Steering traffic using multiple VLANs • Mirroring

• QoS (TC) • Separate VLAN/MAC anti-spoofing control

• VF stats • QinQ management

• BUM traffic management • MAC filtering

VFd: a “hypervisor” for SR-IOV NICs

 Privileged software (driver) performing hypervisor function for SR-IOV network devices

 Allocate/deallocate VFs

 Flexibly allocate resources, e.g., queues, QoS classes, to VFs

 Manage policy, e.g., VLAN steering, QinQ tagging, filtering, mirroring, anti-spoofing, in a single place

 Configure VFs

 Collect various PF/VF statistics

 Flexible, user-space tool

 Unfortunately, we hit some practical snags

 Several of the functions needed are missing

 Kernel doesn’t standardize functions that do exist - each NIC vendor implements in their own way

 No mechanisms for handling runtime events that are policy affecting

 Many environments often run old kernels, and kernel upgrades is a major activity that could impact vast infrastructure. This
impedes fast evolution in this rapidly changing space

SRIOV NIC

VF VF VF

VM LXC Kernel

VFd

VF lifecycle, policy

Cloud orchestrators

vSwitch/vR offloads

Why DPDK?

 User space, rapid evolution

 SR-IOV and DPDK are both tools for high performance, so common target community

 Support from most major modern NICs where SR-IOV is involved

 NFV mindset

VFd architecture

 Runs as a daemon process that can handle
static configuration as well as dynamic events

 Backend is DPDK

 Front end tools allowing
configuration and gathering statistics

VFd packet steering/VLAN stripping/QoS

 One or more VLAN IDs could be used to steer traffic to the VF

 Optionally VLAN ID could be removed on RX and inserted on TX

30 % 20 %

50 %

 Traffic classes with one strict-priority queue supported

 Packets placed to the appropriate queues based on PCP value

 Configurable Min/Max bandwidth values per TC/VF

DPDK APIs used

 Uses “experimental” DPDK API

 rte_pmd_ixgbe.h

 rte_pmd_i40e.h

 rte_pmd_bnxt.h

rte_pmd_[ixgbe|i40e|bnxt]_ping_vfs

rte_pmd_[ixgbe|i40e|bnxt]_set_vf_mac_anti_spoof

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_vlan_anti_spoof

rte_pmd _[ixgbe|i40e|bnxt]_ set_tx_loopback

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_unicast_promisc

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_broadcast

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_multicast_promisc

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_mac_addr

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_vlan_stripq

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_vlan_insert

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_vlan_filter

rte_pmd _[ixgbe|i40e|bnxt]_ get_vf_stats

rte_pmd _[ixgbe|i40e|bnxt]_ reset_vf_stats

“Generic” DPDK APIMove to

VFd status

 Supports ixgbe, i40e, bnxt devices

 Working on supporting QoS with more NICs

 Adding mirroring

 Improving operational support/troubleshooting

 Other vendors are working to contribute

Future

 Remove “experimental tag” from new API’s?

 Add generic APIs to DPDK?

 Add Netlink/sysfs/procfs to interface Linux tools?

 Variable number of queues per VF?

 Move complexity of VF configuration to the “SR-IOV Hypervisor“ simplifying creation of lightweight, portable VF?

 PF/VF reset/recovery?

 Standardized interface for SmartNIC offloads of hypervisor like functions – e.g., VFd as integration point for OVS, vRouter

 Who would benefit from using it? Cloud platform integrators, vSwitch/router projects, VNF vendors, …

 Who should think about contributing to it? NIC vendors, vSwitch/router projects, …

 How can you help?

Acknowledgments

AT&T
 E. Scott Daniels

 Kaustubh Joshi

 Dhanunjaya Ravada

 John Craig

Broadcom
 Ajit Khaparde

 Stephen Hurd

 Venugopala Bhat

 Hoan Do

 Sudheer Vegesna

Intel
Wenzhuo Lu

 Bernard Iremonger

 Aaron Rowden

 Rahul Shah

 Lian-min Wang

 Jingjing Wu

 Ferruh Yigit

Qi Z Zhang

 Helin Zhang

Questions?

Alex Zelezniak

alexz@att.com

http://www.github.com/att/vfd

