
VFd: an SR-IOV Hypervisor using DPDK

Alex Zelezniak

DPDK Summit Userspace - Dublin- 2017

Current state

 Despite many improvements software overlays have fundamental inefficiencies for packet processing workloads

 High performance network functions being realized via hardware virtualization (SR-IOV) for foreseeable future

 SmartNIC and hardware offloads rely on SRIOV as the interface between tenants and the NIC

 Dynamic policy enforcement for needed resource management, security, and reliability in multi-tenant NIC sharing

 For example: allow VF to change MAC, enter promiscuous mode if policy permits, etc.

 Today, there is no single policy enforcement point that takes on “hypervisor-like” functions for SRIOV NICs

 Linux tools for SR-IOV don’t manage dynamic events – e.g., what to do if a VM tries to change MAC or set VLAN at runtime?

 Also, kernel drivers don’t support resource allocation, configuration, and offload features in a standardized way

• Steering traffic using multiple VLANs • Mirroring

• QoS (TC) • Separate VLAN/MAC anti-spoofing control

• VF stats • QinQ management

• BUM traffic management • MAC filtering

VFd: a “hypervisor” for SR-IOV NICs

 Privileged software (driver) performing hypervisor function for SR-IOV network devices

 Allocate/deallocate VFs

 Flexibly allocate resources, e.g., queues, QoS classes, to VFs

 Manage policy, e.g., VLAN steering, QinQ tagging, filtering, mirroring, anti-spoofing, in a single place

 Configure VFs

 Collect various PF/VF statistics

 Flexible, user-space tool

 Unfortunately, we hit some practical snags

 Several of the functions needed are missing

 Kernel doesn’t standardize functions that do exist - each NIC vendor implements in their own way

 No mechanisms for handling runtime events that are policy affecting

 Many environments often run old kernels, and kernel upgrades is a major activity that could impact vast infrastructure. This
impedes fast evolution in this rapidly changing space

SRIOV NIC

VF VF VF

VM LXC Kernel

VFd

VF lifecycle, policy

Cloud orchestrators

vSwitch/vR offloads

Why DPDK?

 User space, rapid evolution

 SR-IOV and DPDK are both tools for high performance, so common target community

 Support from most major modern NICs where SR-IOV is involved

 NFV mindset

VFd architecture

 Runs as a daemon process that can handle
static configuration as well as dynamic events

 Backend is DPDK

 Front end tools allowing
configuration and gathering statistics

VFd packet steering/VLAN stripping/QoS

 One or more VLAN IDs could be used to steer traffic to the VF

 Optionally VLAN ID could be removed on RX and inserted on TX

30 % 20 %

50 %

 Traffic classes with one strict-priority queue supported

 Packets placed to the appropriate queues based on PCP value

 Configurable Min/Max bandwidth values per TC/VF

DPDK APIs used

 Uses “experimental” DPDK API

 rte_pmd_ixgbe.h

 rte_pmd_i40e.h

 rte_pmd_bnxt.h

rte_pmd_[ixgbe|i40e|bnxt]_ping_vfs

rte_pmd_[ixgbe|i40e|bnxt]_set_vf_mac_anti_spoof

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_vlan_anti_spoof

rte_pmd _[ixgbe|i40e|bnxt]_ set_tx_loopback

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_unicast_promisc

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_broadcast

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_multicast_promisc

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_mac_addr

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_vlan_stripq

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_vlan_insert

rte_pmd _[ixgbe|i40e|bnxt]_ set_vf_vlan_filter

rte_pmd _[ixgbe|i40e|bnxt]_ get_vf_stats

rte_pmd _[ixgbe|i40e|bnxt]_ reset_vf_stats

“Generic” DPDK APIMove to

VFd status

 Supports ixgbe, i40e, bnxt devices

 Working on supporting QoS with more NICs

 Adding mirroring

 Improving operational support/troubleshooting

 Other vendors are working to contribute

Future

 Remove “experimental tag” from new API’s?

 Add generic APIs to DPDK?

 Add Netlink/sysfs/procfs to interface Linux tools?

 Variable number of queues per VF?

 Move complexity of VF configuration to the “SR-IOV Hypervisor“ simplifying creation of lightweight, portable VF?

 PF/VF reset/recovery?

 Standardized interface for SmartNIC offloads of hypervisor like functions – e.g., VFd as integration point for OVS, vRouter

 Who would benefit from using it? Cloud platform integrators, vSwitch/router projects, VNF vendors, …

 Who should think about contributing to it? NIC vendors, vSwitch/router projects, …

 How can you help?

Acknowledgments

AT&T
 E. Scott Daniels

 Kaustubh Joshi

 Dhanunjaya Ravada

 John Craig

Broadcom
 Ajit Khaparde

 Stephen Hurd

 Venugopala Bhat

 Hoan Do

 Sudheer Vegesna

Intel
Wenzhuo Lu

 Bernard Iremonger

 Aaron Rowden

 Rahul Shah

 Lian-min Wang

 Jingjing Wu

 Ferruh Yigit

Qi Z Zhang

 Helin Zhang

Questions?

Alex Zelezniak

alexz@att.com

http://www.github.com/att/vfd

