
DPDK	Summit	- San	Jose	– 2017

Boris	Pismenny

Accelerating Packet 
Processing with FPGA 
NICs

#DPDKSummit



2

Introduction

u NIC	packet	processing	offloads	has	been	proven	to	significantly	assist	packet	
processing,	e.g.,
u TCP/UDP	checksum

u TCP	segmentation	offloads

u RSS

u The	recently	introduced	rte_security APIs	allowed	NICs	to	accelerate	crypto	
operations	inline
u Received	packets	are	decrypted	by	the	NIC	before	being	scattered	to	memory

u Sent	packets	are	encrypted	by	the	NIC	before	being	sent	to	the	wire

u No	need	to	enqueue the	packets	to	another	cyprtodevPMD



3

Generic Inline Acceleration

u The	benefits	of	inline	acceleration	can	be	generalized	to	support	any
application-specific	action	by	FPGA-capable	NICs!
u A	single	NIC	may	support	multiple	Inline	Acceleration	Functional	Units	(I-AFUs)	

provided	by	multiple	parties

u The	I-AFU	can	be	programmed	in	the	field	to	do	any	packet	processing	task

u Any	packet	flow	can	be	redirected	to	any	I-AFU

u We	have	a	good	toolbox	for	handling	flows	which	is	constantly	evolving
u Count,	Mark,	Steer,	modify…

u Generic	acceleration	flow	actions	are	a	natural	fit
u Steer	any	flow	to	any	I-AFU

u Continue	packet	processing	according	to	steering



4

Examples

u Application-specific	byte-intensive	packet	
transformation

u Application-specific	flow-steering
u Accelerator	parses	packet	and	modifies	header	

fields	accordingly

u Flow	processing	resumes	normally	afterwards



5

Generic Inline Acceleration Requirements

u Discovery
u What	I-AFUs	are	currently	installed	on	the	NIC?

u Control
u Discovering	the	capabilities	of	an	I-AFU

u Configuring	an	I-AFU

u Flow	processing
u Packet	flows	are	matched	normally

u Opaque	action	specifies	the	I-AFU	that	should	handle	matching	packets

u Data	path
u Report/deliver	I-AFU	specific	information	via	opaque	mbufmeta-data



6

I-AFU Discovery

u Reports	the	following	information
u Vendor	ID	– This	is	the	ID	of	the	accelerator	provider

u Product	ID	– Uniquely	identifies	a	product	of	the	provider

u Version	– Product	version

u Given	this	information,	applications	uniquely	identify	the	I-AFU
u Semantics	are	known	to	the	application	a-priori



7

Control Path

u Opaque	command
struct rte_accel_session
*rte_accel_session(uint16_t	 id,

struct rte_accel_sess_conf *conf,

struct rte_mempool*mp,

);

u Create/Destroy/Configure	Session

struct rte_accel_session_conf {
unsigned	 short	vendor_id;
/**<	AFU	vendor	 ID	*/

unsigned	 short	product_id;
/**<	AFU	product	 ID*/

unsigned	 int	cmd_id;
/**<	AFU	command	 ID*/

unsigned	 int	length;
/**<	AFU	command	buffer	 length*/

unsigned	 char	buf[0];
/**<	AFU	command	buffer*/

};



8

Flow Steering

u New	non-terminating	action	“call	
accelerator”

u For	example:	Customer	AFU	replaces
FOO	with	BAR	in	payload	of	matching	
packets

/**	security	session	configuration	parameters	*/
struct rte_accel_session_conf accel_cmd =	{

.vendor_id =	0x1234,
/**<	Customer	AFU	vendor	ID	*/
.product_id =	0x5678,
/**<	Customer	product	 ID*/
.cmd_id =	1,
.length	=	8;
buf =	“FOO|BAR”
/**<	String	to	replace	*/

};

/**	flow	parameters	*/
attr->ingress	=	1;	/**	attr->egress	=	1	*/

pattern[0].type	=	RTE_FLOW_ITEM_TYPE_ETH;
pattern[1].type	=	RTE_FLOW_ITEM_TYPE_IPV4;
pattern[2].type	=	RTE_FLOW_ITEM_TYPE_UDP;
pattern[3].type	=	RTE_FLOW_ITEM_TYPE_END;

action[0].type	=	
RTE_FLOW_ACTION_TYPE_ACCEL;
action[0].conf =	accel_session;
action[1].type	=	
RTE_FLOW_ACTION_TYPE_END;



9

Related Work

u rte_prgdev – focused	on	burning/loading	images	into	programmable	devices
u Complementary	to	this	proposal

u rte_raw_dev – abstracted	the	PMD	device	functionality	for	accelerators
u Seems	like	a	good	direction	for	FPGAs	that	act	as	CPU-assists

u Complements	inline	packet	acceleration



Questions?


