
Software-Based Networks:
Leveraging
high-performance NFV
platforms to meet future
communication challenges

K.K. Ramakrishnan
University of California,

Riverside
(kk@cs.ucr.edu)

Joint work with: Timothy Wood (GWU) ,
our students, collaborators

Network Function Virtualization
• Run network functions in software

2

Router

Switch

Commodity Server

RouterFirewall

LB
Virtualization Layer / OS
VM

Switch
VM

Firewall
Docker

LB
Docker

• More flexible than hardware
- Easy to instantiate new NFs
- Easy to deploy NFs; Easier to manage NFs

- Network Service Providers are migrating towards a
software based networking infrastructure

Virtualization Overheads
• Virtualization layer provides (resource and performance) isolation

among virtual machines
• Isolation involves many functions such as access permissions (security),

ability to schedule and share etc.
• Network overhead (packet delivery) is one of the most critical

concerns
• A generic virtualization architecture includes several critical

boundaries − host OS, virtual NIC, guest OS, and guest user
space−getting packet data there includes memory copies

3

NIC
Host OS
vSwitch

vNIC
Guest OS

Guest User
Space

NIC

Guest User
Space

(DPDK)

NIC

Guest User
Space

Host User
Space

(DPDK)

Packet M
ovem

ent

(a) Generic (b) SR-IOV (c) NetVMJinho Hwang, K.K. Ramakrishnan, and Timothy Wood, “NetVM: High Performance and Flexible Networking using
Virtualization on Commodity Platforms,” NSDI ‘14.

Our Contributions with NetVM
1. A virtualization-based high-speed packet delivery platform

- for flexible network service deployment that can meet the
performance of customized hardware, especially when involving
complex packet processing

2. Network shared-memory framework
- that truly exploits the DPDK (data plane development kit) library to
provide zero-copy delivery to VMs and between VMs (containers)

3. A hypervisor-based switching algorithm
- that can dynamically adjust a flow’s destination in a state-dependent
and/or data-dependent manner

4. High speed inter-VM communication
- enabling complex network services to be spread across multiple VMs

5. Security domains
- that restrict access of packet data to only trusted VMs

4

OpenNetVM – NFV Open Source Platform

• Network	Functions	run	in	Docker containers
• DPDK	based	design,	to	achieve	zero-copy,	high-speed	
I/O

• Key:	Shared	memory	across	NFs	and	NF	Manager

• Created	an	open	source	version
• Multiple	industrial	partners	evaluating	use	of	
OpenNetVM

• Of	course,	there	are	many	competitors	(e.g.,	Fast	Data	
Project	(fd.io),	etc.)	

http://sdnfv.github.io

OpenNetVM Architecture

• NF Manager (with DPDK)
runs in host’s User Space

• NFs run inside Docker
containers
-NUMA-aware processing
-Zero-copy data transfer to and between NFs
-No Interrupts using DPDK poll-mode driver
-Scalable RX and TX threads in manager
- Each NF has its own ring to receive/transmit a

packet descriptor
- NFs start in 0.5 seconds; throughput of 68 Gbps w/ 6

cores
6

Chained Packet Delivery
• Packets in memory do not have to be copied
• Applications in containers pass packet references to

other NFs – through the descriptor ring
• Only one application can access a given packet at

any time for writing – avoid locks

7

VM

Hypervisor User Space

VM

Huge Page Memory Sharing

NetVM

Applications

Packet

Applications

Trusted and Untrusted Domains
• Virtualization should provide security guarantees among VMs
• OpenNetVM provides a security boundary between trusted

and untrusted NFs
• Untrusted NFs cannot see packets from OpenNetVM
• Grouping of trusted NFs via huge page separation

8

Hypervisor

#1 Trusted VMs #2 Trusted VMs Non-Trusted VMs

VM VM VM VM VM VM

Memory
Sharing

Memory
Sharing

NetVM

Generic Net. Path

Performance w/ Real Traffic
• Send HTTP traffic through OpenNetVM

- 1 RX thread, 1 TX thread, 1 NF = 48Gbps
- 2 RX threads, 2 TX threads, 2 NFs = 68Gbps (NIC bottleneck?)
- 2 RX threads, 5 TX threads, chain of 5 NFs = 38Gbps

• Fast enough to run a software-based core router;
Middleboxes that function as a ‘bump-in-the-wire’

9

Service Chain Performance
• Negligible performance difference between
processes and containers.
- OpenNetVM sees only a 4% drop in throughput for a six NF

chain, while ClickOS falls by 39% with a chain of three NFs.

1
0

Service Diversity & Multiple Flows
• A typical NF platform may host NFs for many different service

chains
• Each flow may need customized services

11

NF Platform
Video

Detector
Policy
Engine Quality

Detector

Transco
der

Firewall Scrubber
IDS

Cache

Firewall
IDS

DPI
LB

… …

Service Diversity & Multi-Flows
• NF platforms host NFs for many different service chains
• Each flow may need customized services
• Many different flows, each with slightly different need

12

NF Platform
Video

Detector
Policy
Engine Quality

Detector

Transco
der

Firewall Scrubber
IDS

Cache

Firewall
IDS

DPI
LB

… …

Monolithic NFs
• Multiple flows have to go through an NF

- Scheduling packets: complex, multiple flows share packet queues
- NF must classify flows? NF manager?
- Manage flow interference
- Scalability: avoid restriction of 1 core per NF

Need a high speed platform which can isolate and process
flows with fine granularity and efficiently use resources

13

flow 1
flow 2

flow N
…

Core

flow 3
flow 2

flow N
…

Core

flow 1
flow 3

flow N
…

Core
Packet
Queue

Goal: Per-Flow NFs
• Make the flow the scheduling entity

• Deploy a unique NF for each flow or class of flows

Core

NF NF NF

NF

NFNF

NFNF

Core

NF NF NF

NF

NFNF

NFNF

Core

NF NF NF

NF

NFNF

NFNF

… … …
Per-
flow

Queue

14

Flurries
• A scalable platform for unique, short-lived NFs
• (ACM CoNext 2016)
•

15

• Run unique NFs per flow or per class of flows
• Benefits:

- do flow-level performance management
- Flexible and customized flow processing

Flurries
• A scalable platform for unique, short-lived NFs

16

• Challenges
- How to move packets efficiently across service chains?
- How to run large numbers of NFs on a host?
- How to manage the mapping of flows to NFs?
- How to schedule NFs?

Flurries contributions:
• Hybrid polling and interrupts to efficiently run 1000s of NFs
• Flow director maps flows to NFs; NFlib recycles NFs
• Adaptive wakeup system and prioritized NF scheduling

Flurries Performance: Benefit of Hybrid
Polling & Interrupts

• Throughput drops as the number of NFs increases on the core for
polling and netmap

• Flurries achieves good performance even with large number of
NFs

17

0

4

8

12

16

1 5 15 25 45

Th
ro

ug
hp

ut
 (M

pp
s)

of NFs

Polling Netmap
Flurries

Scale Out
• Run up to 80,000 NFs in a one second interval per host
• Achieve 30Gbps traffic rate and incur minimal added

latency to web traffic

18

• NFVnice in	a	nutshell:
– Complements	the	existing	kernel	task	schedulers.

• Integrates	“Rate	proportional	scheduling”	from	hardware	schedulers.
• Integrates	“Cost	Proportional	scheduling”	from	software	schedulers.

– Built	on	OpenNetVM[HMBox’16,	NSDI’14]:	A	DPDK	based	NFV	platform.
• Enables	deployment	of	containerized	(Docker)	or	process	based	NFs.

– Improves	NF	Throughput,	Fairness	and	CPU	Utilization	through:
• Proportional	and	Fair	share	of	CPU	to	NFs:	Tuning	Scheduler.
• Avoid	wasted	work	and	isolate	bottlenecks:	Backpressure.
• Efficient	I/O	management framework	for	NFs.

19

A user space control framework for scheduling NFV chains.
ACM Sigcomm 2017

Proportio

Fairness	

bottlenec

:Backpres

NFVnice

NFVnice:	Building	Blocks

20

NFVnice

cgroups
Work-conserving	and	proportional	
scheduling	(within each core)

Chain-aware	scheduling;	Avoid	
wasted	work	(within and across
cores)

Back
pressure

End-2-End	Bottleneck/congestion	
control (across nodes)ECN

Efficient	Disk	I/O	Mgmt.	Library
I/O
Mgt.

Cgroups:	(control	groups)	is	a	Linux	
kernel	feature	that	limits,	accounts	for	
and	isolates	the	resource	usage	(CPU,	
memory,	disk	I/O,	network,	etc.)	of	a	
collection	of	processes.

• What	is	Rate-Cost	Proportional	Fairness?
– Determines	the	NFs	CPU	share	by	accounting	for	both:

• NF	Load	(Avg.	packet	arrival	rate,	instantaneous	queue	length)
• NF	Priority	and	per-packet	computation	cost	(Median)

• Why?
– Efficient	and	fair	allocation	of	CPU	to	the	contending	NFs.
– Provides	upper	bound	on	the	wait/Idle	time	for	each	NF.
– Flexible	&	Extensible	approach	to	adapt	any	QOS	policy.

Rate-Cost	Proportional	Fairness

21

cgroups

Summary
•Networks	are	changing	– moving	to	a	software	
base

• SDN’s	centralized	control
• NFV’s	software	based	implementations

•NetVM/OpenNetVM efforts	enhance	industry	
direction

• NFV	platform	provides	significant	performance	
improvement

• A more	coherent	and	effective	software	network	
architecture

Getting	OpenNetVM

• Source	code	and	NSF	CloudLab images	at	
http://sdnfv.github.io/	

