
Hemant	Agrawal,	Shreyansh	Jain	- NXP

DPDK	Summit	- San	Jose	– 2017

rte_rawdevice: 
Implementing Programmable 
Accelerators using Generic 
Offload

#DPDKSummit



2

?

XYZ accelerator 
Device

Problem Statement: Why a 
`rawdevice`?

u Device	‘flavour’	currently	available	in	DPDK	are	limited	by	their	characteristics

librte_ether

Ethernet Device

librte_cryptodev

Crypto Device

librte_eventdev

Event Device

?

Wireless Device

What	happens	for	cases	like	
these?	How	to	integrate	them	
with	DPDK	Framework?

u A	generic	‘flavor’	of	device	is	required	which	can	represent	non-generic	cases
u Custom	or	Specific	function	IP	Block	– Compression	Engine,	Pattern	Matching	Engine	etc.

u Leveraging	Device	Bus	model	for	their	scan->probe->consume	cycle

u Accelerating	adoption	of	such	blocks	without	creating	new	lib/*	for	each	new	type	of	device



3

Problem Statement: Why a 
`rawdevice`?

u Why	`rawdevice`	is	better	than	device	specific	APIs
§ Applications	prefers	uniform	device	view:	start/stop,	queue/ring	config,	enqueue/dequeue

§ Uniform	programming	model	across	devices	– all	accelerators	under	rawdevice

§ Quick	turnaround	time	– changes	to	lib/*	for	a	new	devices	is	a	longer	cycle

u A	generic	set	of	APIs	for	applications	– covering	a	broad	category	of	accelerators/IPs
u Command/Control	APIs:	start/stop,	configure	a	device,	query	configuration

u Data	I/O	APIs:	enqueue/dequeue	single	or	multiple	buffers

u Query	APIs:	Statistics,	register	dumps

u Firmware	Management	APIs:	load,	unload,	version	information



4

Definition of a `rawdevice` (1/2)

u A	*rte_rawdevice*	is	a	raw/generic	device	without	any	standard	configuration	or	
input/output	method	assumption.

u The	configure,	info	operation	will	be	opaque	structures.

u The	queue/ring	operations	will	not	assume	any	data	or	buffer	format.	

u Specific	PMDs	should	expose	any	specific	config	APIs	– not	expecting	portability.	

Rte_device

rte_eth_dev rte_cryptodev rte_eventdev rte_xyz… rte_raw_dev



5

Definition of a `rawdevice` (2/2)

u rte_rawdevice – A	generic	device	for	non-generic	IP	Blocks	

rte_rawdev {
rte_rawdev_data *data;
rte_rawdev_ops *dev_ops;
rte_device *dev;
rte_driver *driver;
attached : 1;

};

rte_rawdev_data {
socket_id;
dev_id;
nb_queues;
private; /* opaque info */
name;

}

rte_rawdev_ops {
start/stop/reset;
queue setup/teardown;
enqueue/dequeue bufs;
xstats get/reset;
firmware load/unload/version;

};

More	common	operations	can	
be	added	to	this	to	make	it	
more	‘generic’.

Opaque	private	data	can	store	
any	deviceódriver
handshake	data	for	the	
device.	Only	interpreted	by	
application	and	driver



6

Accelerator Offload Use-case on NXP 
SoC

u NXP	Platform	has	a	programmable	engine,	
called	‘AIOP’

u The	engine	can	exposes	a	NIC	interface	and	a	
command-control	interfaces		for	GPP-side,	
detectable	on	fsl-mc	bus.

u The	application	need	to	configure	the	engine	in	
order	to	use	it.	

u NXP	provides	a	library	exposing	the	application	
level	APIs	and	convert	them	to	command	
messages.	

u Some	of	the	example	use-cases	are	ovs offload	
or	wireless	offload.	

User Applications

DPDK

AIOP

NIC -*

NIC-Phy

IF -1* IF -2IF-Control

config API

cmd i/f NIC-
PHY

WRIOP (PHY Layer)

GPP

NXP-HW



7

Accelerator Offload Use-case on NXP 
SoC

User Applications

DPDK

AIOP

NIC -*

NIC-Phy

IF -1* IF -2IF-Control

config API

cmd i/f NIC-
PHY

WRIOP (PHY Layer)

GPP

NXP-HW

u [1] AIOP	device	is	scanned	over	‘fslmc’	bus	and	
probed through	a	DPAA2	driver

u [2] DPAA2	driver	creates	a	rawdevice and	
initializes	it.	Hereafter,	this	device	is	available	
as	a	port	for	the	application	to	use

u [3] Application	opens	the	rawdevice port.	It	can	
then	access	rawdevice APIs	for	device	
configuration/firmware	management/state

u [4] Some	other	custom	APIs	are	exposed	
directly	from	PMD	for	application	to	use

1

2 3 4



8

Example: Layering bbdev over 
rawdevice

u `bbdev`	or	Wireless	Base	Band	device	– recently	proposed	by	Amr	Mokhtar
rte_bbdev_ops {

configure;  start;  stop; close;

info_get, stats_get, stats_reset;

queue_setup/release/start/stop;
};

rte_bbdev {
enqueue_enc_ops;
enqueue_dec_ops;
dequeue_enc_ops;
dequeue_dec_ops;
…

}

rte_rawdev_ops {
configure/start/stop/close/reset;

xstats get/reset;

queue_setup/release/configure;
}

rte_rawdev {
rte_rawdev_data *data;
rte_rawdev_ops *dev_ops;
rte_device *dev;
rte_driver *driver;
attached : 1;

};

An example 
linkage



9

u ‘drivers/raw/bb_pmd’	calls	RTE_PMD_REGISTER_PCI(…)

u `bbdev`	is	scanned	by	standard	Bus	implementation	(assuming	PCI)
u During	probe,	device	is	identified	by	‘drivers/raw/bb_pmd’	and	initialized

u rte_rawdevice instance	is	created	and	populated;

u Either	have	custom	APIs	exposed	for	extra	functions,	or	overload	the	rte_rawdevice (private	data)

u Application	can	use	‘bbdev’	through	rawdevice port	number

Example: Layering bbdev over 
rawdevice



10

u Generalizing	across	well	known	devices	like	FPGA,	Compression	IP

u Generic	adapters	for	ethernet/crypto/eventdevdevices

u How	to	add	more	operations	without	affecting	core	structures?
u ~IOCTLs?

u Opaque	structures	containing	device	specific	operations

What next?



Questions?
Hemant	Agrawal	hemant.agrawal@nxp.com

Shreyansh	Jain	shreyansh.jain@nxp.com



12

Properties for raw device

rte_raw_device

•struct rte_raw_dev_data *data
•struct rte_raw_dev_ops *dev_ops
•struct rte_raw_fw_ops *fw_ops
•Struct rte_device *dev
•Struct rte_driver *driver
•Uint8_t in_use:1

rte_raw_dev_data

• uint8_t dev_id
• unit8_t nb_queues;
• uint8_t dev_started:1;
• void *dev_private
• void *dev_info
• Struct rte_driver *driver
• Char name[RTE_RAW_MAX_NAME]

rte_raw_dev_ops

• dev_info_get
• dev_configure
• dev_start
• dev_stop
• dev_close
• ….
• queue_def_conf
• queue_setup
• queue_release
• Dump
• Xtarts _get
• Xstats_reset

rte_raw_fw_ops

• fw_load
• fw_status
• fw_clock_sync
• fw_config
• fw_unload
• fw_stats



13

What is different from rte_prgdev ?

u The	last	proposal	of	rte_prgdev,		mainly	focused	on	firmware	image	
management.

u rte_raw_dev focus	is	attempting	to	provide	a	uniform	device	view	and	
accelerator	access	to	the	applications.	

u rte_raw_dev is	not	discounting	firmware	management,	but		makes	it	an	
optional	component.

u rte_raw_dev can	serve	as	a	staging	device	for	un-common	newly	added	
device	flavors.
u Any	commonly	used	rte_rawbased	device	can	be	converted	into	it’s	own	specific	

flavor.



14

SoCs – Flexible Programming 
Architecture

ØPacket Processing
Ø(1) Autonomous:  
Packets are received, processed and sent within 
the HW Engine. HW engine controller can 
programmed with different autonomous 
applications.
Ø(1) & (2) Semi Autonomous: Packets are 
received by HW Engine.  HW Engine controller 
does part of processing. GPP cores do rest of 
processing and send the result  packets out.
Ø(2) Non-Autonomous: 
Entire packet processing happens within GPP 
cores with no help from HW controller.

ØOther acceleration – any kind of HW offload. 
ØPattern Matching
ØData Compression

FMAN

DPAA

Data Path     
Cores

GPP Core (2)

GPP Core
Control  
Path Cores

Eth

Pattern

SEC

Data Comp

PCD

Controller (1)
HW Engine


