
x

Do Less By Default
BRUCE RICHARDSON - INTEL

THOMAS MONJALON - MELLANOX



2

Introduction

WHY?



3

Consumability

• take bits (slices) of DPDK

• fit DPDK into an existing codebase

• integrate existing functionality into a 

DPDK app

Chocolate Fudge Cake by Tracy Hunter is licensed under CC BY 2.0

Make it easier to:

https://www.flickr.com/photos/11121785@N00/110294234/
https://www.flickr.com/photos/tracyhunter/
https://creativecommons.org/licenses/by/2.0/


4

Don’t Offer Less!

• Key phrase “by default”

• Provide array of re-usable components

• Make it trivial to do things the default 

way

• Aim:

• ensure external tools have a path to 

work with the majority of DPDK apps!

By Matt @ PEK from Taipei, Taiwan - Buffet breakfast, CC BY-SA 2.0

https://commons.wikimedia.org/w/index.php?curid=30754232


Episode I
IN WHICH OUR HEROES 

EXAMINE THEIR OPTIONS



6

Configuration Options Issues

• Command line options parsing done by DPDK EAL
from arguments passed to rte_eal_init(int argc, char **argv)

• Hard to translate settings from the application to this syntax

• Some configuration cannot be changed later with simple API function call

• One benefit: applications are encouraged to use the same syntax



7

Suggestion: New Option Store Library

• Functions to parse all as in legacy rte_eal_init

rte_opt_parse_argv(int argc, char **argv)

rte_opt_parse_args(const char *args)

• More fine grain parsing

rte_opt_parse_kv(const char *key, const char *value)

• Parsed values are written into a big structure rte_opt_settings for all

• DPDK libraries should not read settings directly from the structure



8

Suggestion: Options Store for DPDK Init

• Leverage new library to parse options with default syntax

• Keep same syntax or maintain compatibility

• Application is free to use the default parser or not

• New wrapper function, calling initialization functions

with parsed settings or default values

rte_default_init()

• Then deprecate rte_eal_init() ?



9

Future Considerations

• The new devargs syntax can be used in bus, device or driver settings

• Build-time settings should be almost all replaced by run-time options



Episode II
IN WHICH OUR HEROES DEAL 

WITH SOME CORE ISSUES



11

Core Management Issues

• EAL wants to do all core and thread management

• DPDK requires a coremask for EAL init

• If no coremask given, spawns thread for every core on system!

• Even for spawning no threads, still affinitizes current thread to a core

• How do you integrate DPDK into an existing multi-threaded app?

Public Domain, Link

https://commons.wikimedia.org/w/index.php?curid=48739


12

Suggested Changes

• Allow “-c 0” as coremask – do nothing!

• Don’t spawn any worker threads

• Don’t set affinity of master (current) thread

• Change behaviour for empty core mask – do nothing!

• Add API’s for explicit thread management by app, e.g.:

• rte_thread_init() – allocate lcore_id, FIFOs etc. 

• rte_thread_process() – accept DPDK work via FIFO, as per existing threads

• rte_thread_process_one() – accept one job from DPDK, then return to caller

• rte_thread_cleanup() 



13

Future Considerations

• How to allow orchestration of DPDK apps?

• How to enable app scale-up and scale-down?

• Needs common/default orchestrator-to-app comms

• Then needs some form of callback mechanism in app

• Built into EAL, BUT:
• needs to keep app in control!

• needs to be optional feature!



Episode III
IN WHICH OUR HEROES GET 

CONSTRUCTIVE



15

Constructors Issue
__attribute__((constructor))

DPDK cannot be fully disabled – Constructors are always enabled

• Functions declared with RTE_INIT() macro
run before main()

even if DPDK not initialized

• Application packaged with DPDK
may disable DPDK acceleration at run-time
if hardware not supported

• On x86, DPDK is compiled for SSE4.2 minimum

• Crash happens in useless DPDK constructor if CPU is too old



16

Suggested Changes

• Add __attribute__((target(minimum))) to RTE_INIT()

• The minimum can be default, sse2, etc

• Option 1

• Must apply target restriction to all functions called in constructors

• Hard to maintain

• Option 2

• Insert call to rte_cpu_is_supported() in RTE_INIT()

• Apply target restriction to CPU check functions

• Skip constructor code if CPU is not supported



17

Future Considerations

• Is it sane to keep using constructors in a library like DPDK?

• Could be changed in simple functions

called at the beginning of the DPDK initialization?



Episode V
IN WHICH OUR HEROES END 

WITH AN OFF-BY-ONE ERROR


