Do Less By Default

Introduction @ DPDK

WHY?

Consumability 2)DPDK

Make it easier to:

take bits (slices) of DPDK

fit DPDK into an existing codebase

Integrate existing functionality into a
DPDK app

Chocolate Fudge Cake by Tracy Hunter is licensed under CC BY 2.0

https://www.flickr.com/photos/11121785@N00/110294234/
https://www.flickr.com/photos/tracyhunter/
https://creativecommons.org/licenses/by/2.0/

DPDK
Don’t Offer Less! /@)

- Key phrase “by default”

- Provide array of re-usable components

- Make it trivial to do things the default
way

- Aim:
ensure external tools have a path to
work with the majority of DPDK apps!

By Matt @ PEK from Taipei, Taiwan - Buffet breakfast, CC BY-SA 2.0

https://commons.wikimedia.org/w/index.php?curid=30754232

DPDK

IN WHICH OUR HEROES

Episode | EXAMINE THEIR OPTIONS

Configuration Options Issues @ DPDK

Command line options parsing done by DPDK EAL
from arguments passed 10 rte eal init(int argc, char **argv)

Hard to translate settings from the application to this syntax

Some configuration cannot be changed later with simple API function call

One benefit: applications are encouraged to use the same syntax

Suggestion: New Option Store Library /@) DPDK

Functions to parse all as in legacy rte_eal_init
rte opt parse argv (int argc, char **argv)
rte opt parse args(const char *args)

More fine grain parsing

rte opt parse kv (const char *key, const char *value)

Parsed values are written into a big structure rte opt settings for all

DPDK libraries should not read settings directly from the structure

Suggestion: Options Store for DPDK Init @ DPDK

Leverage new library to parse options with default syntax
- Keep same syntax or maintain compatibility

Application iIs free to use the default parser or not

New wrapper function, calling initialization functions
with parsed settings or default values

rte default init ()

Then deprecate rte eal init () ?

Future Considerations 2)DPDK

- The new devargs syntax can be used in bus, device or driver settings

Build-time settings should be almost all replaced by run-time options

DPDK

IN WHICH OUR HEROES DEAL

EpiSOde 1 WITH SOME CORE ISSUES

DPDK
Core Management Issues 9

EAL wants to do all core and thread management

DPDK requires a coremask for EAL init

\‘)\"\M

Public Domain, Link

If no coremask given, spawns thread for every core on system!
Even for spawning no threads, still affinitizes current thread to a core

How do you integrate DPDK into an existing multi-threaded app?

https://commons.wikimedia.org/w/index.php?curid=48739

Suggested Changes 2 DPDK

- Allow “-c 0" as coremask — do nothing!
Don’t spawn any worker threads
Don’t set affinity of master (current) thread

- Change behaviour for empty core mask — do nothing!

- Add API’s for explicit thread management by app, e.g.:
rte thread init () - allocate Icore_id, FIFOs etc.
rte thread process () —accept DPDK work via FIFO, as per existing threads
rte thread process one () —acceptone job from DPDK, then return to caller

rte thread cleanup ()

Future Considerations 2DPDK

How to allow orchestration of DPDK apps?

How to enable app scale-up and scale-down?

Needs common/default orchestrator-to-app comms

Then needs some form of callback mechanism in app

Built into EAL, BUT:

needs to keep app in control!
needs to be optional feature!

DPDK

IN WHICH OUR HEROES GET

Episode Il CONSTRUCTIVE

=) DPDK
Constructors Issue @

__attribute ((constructor))

DPDK cannot be fully disabled — Constructors are always enabled

Functions declared with RTE INIT () macro
run before main ()
even if DPDK not initialized

Application packaged with DPDK
may disable DPDK acceleration at run-time
If hardware not supported

On x86, DPDK is compiled for SSE4.2 minimum
Crash happens in useless DPDK constructor if CPU is too old

Suggested Changes 2 DPDK

- Add attribute ((target (minimum))) tO RTE INIT ()
- The minimum can be default, sse?2, etc

- Option 1
Must apply target restriction to all functions called in constructors
Hard to maintain

- Option 2
Insert call to rte cpu is supported() INRTE INIT ()
Apply target restriction to CPU check functions
Skip constructor code if CPU is not supported

Future Considerations 2)DPDK

Is it sane to keep using constructors in a library like DPDK?

Could be changed in simple functions
called at the beginning of the DPDK Initialization?

DPDK

- IN WHICH OUR HEROES END
EpISOde V WITH AN OFF-BY-ONE ERROR

