2 DEDK

Unified representor with
large scale ports

Suanming Mou - Nvidia

Classic switch model

Hypervisor (Application, NIC Rx) VMO VMn
[Uplink } [VFn } [VFO J [VF J [VF
Representor Representor Representor Driver Driver

ﬁ 1 Packets miss means i i
: & itcrossfromFDBto | |

ey

..... o vport 1 vport N

1
| —

E-Switch FDB(Forward database)

_ l E-Switch/

Wire
Slow path: ——

Fast path! s ——

Switching model handling example

Slow path:

Packet missed from wire will be received by application from PF.

Packet missed from VFn/VMn will be received by application from VFn representor port.
(Packet missed from FDB domain to NIC Rx domain)

Fast path:

Application will offload flow rules for the missed packets and next time the packets will be handled by
HW offloaded flow rules.(Handled by FDB domain flow rules)

Challenge:

Large scale of ports? Think about allocating and preparing mbuf memory, setup queues and polling all
the queues for each port.

Hypervisor

Application

rep0 repl

E-Switch
packet - miss flow
(slow path)

The polling mode in slow path

OVS

core 3

gl
\(x polling

PF 1 vfO repr reprs...

2 REDK

Challenges of large number representor ports

« OVS polls PF and all registered representors:
Usually, N cores and N queues each port, core <x> polls queue <x> of all ports

* High memory consumption:
For 1k SF+VF representor ports: 4 * 1024(rxd) * 3kB(mbuf) * 1024(ports) = 12GB

« High CPU usage, high cache miss:
Cache get flushed when polling so many ports, low performance

« High latency:
CPU handles traffic not offloaded(customized crypto, legacy tunnel)
Even if all packet come from one VF, OVS must poll all ports to get next burst

2 REDK

Optimization in mIx5 PMD - flows

e The port to representor behavior is controlled by repr_matching_en devarg in mix5 PMD(1 by default).
repr_matching_en =1, the internal flow rules will steer the packets to relevant representor port.

e Setting repr_matching_en = 0, add flow rules to E-Switch manager, let the flow rules to steer all the
packets to the PF(uplink as proxy) port.

e The offloaded flow rule will also copy the source port_id information to packet metadata(CQE). And later
the port_id will be written to mbuf in rx_burst function.

Hypervisor (Appllcatlon, NIC Rx)
Uplink VFn VFO VF VF
Representor Representor Re presentor Driver Driver

1 Packets miss means I

it cross from FDB to

\ ‘ NIC Rx /'
1 A A
L E-Switch FDB(Forward database)J

| E-Switch
N — oy

Slow path: s———
Fast path: ——

Flow rule tables

prio O pattern |Pv4..
action jump table x ¥

Pl

prio x pattern IPv6..
action jump tabley

i
o \
oy

pattern port VF/SF/PF
action jump offloaded table % pattern port_id
e action reprentor_port RSS

pattern port_id
action mark port_id / jump RSS table

v

pattern IPv4/6...
action RSS

2 REDK

Optimization — queue preparation

e While repr_matching_en = 0, no need to configure and setup the datapath queues for VF/SF ports
anymore. That will save huge numbers of memory.

ret = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);

for (q = 9; q < rx_rings; q++) {
ret = rte_eth_rx_queue_setup(port, q, RX_RING_SIZE, rte_eth_dev_socket_id(port), NULL, mbuf_pool);
if (ret < 9) {

for (q = 9; q < tx_rings; qgq++) {
ret = rte_eth_tx_queue_setup(port, q, TX_RING_SIZE, rte_eth_dev_socket_id(port), NULL);
if (ret < 9) {

2 REDK

The simplified poIIing mode

VS
core O core 1 core 2 core 3
\\ M rx polling
_______ proxy port
| E-Switch |

2 REDK

The polling differences

while (!force_quit) {
for (port_id = @; port_id < total port; port id++) {
nb_rx = rte_eth _rx _burst(port_id, queue_id, mbufs, MAX_ PKTS);
if (!nb_rx)
continue;
for (1 = 0; 1 < nb_rx; i++) {

}

while (!force_quit)

{

nb_rx = rte_eth rx burst(port_id, queue_id, mbufs, MAX_ PKTS);
if (!'nb_rx)

continue;
for (1 = 0; 1 < nb_rx; i++) {

src_port_id = mbufs[i]->hash.fdir.hi;

2 REDK

Results

e In the test model with 4 (1PF + 3VFs) ports and 8 queues with 8 cores (1 queue
per core), use traffic generator to send 64bytes packets to wire port.
Comparing the memory consumption and pps:

Memory consumption

total memory(MB) total mpps

mlegacy m unified mlegacy m unified

2D RERE

